WO2023128044A1 - 부분 코팅막이 형성된 utg의 레이저 절단 및 후처리 방법 - Google Patents

부분 코팅막이 형성된 utg의 레이저 절단 및 후처리 방법 Download PDF

Info

Publication number
WO2023128044A1
WO2023128044A1 PCT/KR2022/000596 KR2022000596W WO2023128044A1 WO 2023128044 A1 WO2023128044 A1 WO 2023128044A1 KR 2022000596 W KR2022000596 W KR 2022000596W WO 2023128044 A1 WO2023128044 A1 WO 2023128044A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin
glass
film
film glass
cell
Prior art date
Application number
PCT/KR2022/000596
Other languages
English (en)
French (fr)
Inventor
이승준
이형섭
최선홍
최성웅
Original Assignee
주식회사 도우인시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 도우인시스 filed Critical 주식회사 도우인시스
Priority to CN202280055817.1A priority Critical patent/CN117794875A/zh
Publication of WO2023128044A1 publication Critical patent/WO2023128044A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/074Glass products comprising an outer layer or surface coating of non-glass material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating

Definitions

  • the present invention relates to a method for laser cutting and post-processing of a UTG having a partial coating film formed thereon, and more particularly, to a raw material having one side entirely coated with an acid-resistant coating film and the other side partially coated in the shape of a cell unit thin film glass. It relates to a method of post-processing after cutting state thin glass with an infrared laser.
  • Such thin glass is used as a display window of portable electronic products such as mobile phones, PMPs, and MP3 players. As the thin glass is thinner, it can occupy a superior position in terms of design and portability.
  • raw thin film glass is cut to a certain size.
  • micro cracks or chippings generated during cutting cause a decrease in the strength of the cut cell unit thin film glass, and to minimize this, a chamfering and chamfering process is additionally performed.
  • Example 1 In the method of bonding, laminating, and integrally processing the original state thin-film glass, there is a first embodiment of processing using a CNC and a second embodiment of processing using a laser beam. A detailed description of Example 1 is as follows.
  • Step 1-1 of applying the resin to the upper surface of the mother-state thin-film glass Step 1-2 of laminating thin film glass on the applied resin and then spreading the resin thinly, Step 1-3 of UV curing the thinly spread resin, Steps 1-1 to 1-3 repeating to laminate two or more mother-of-pearl thin-film glasses.
  • a CNC cutting process including a process of laminating two or more sheets of mother-state thin-film glass using resin and a roughing, semi-finishing, and finishing process for cutting the laminated mother-state thin-film glass into cell-unit thin-film glass ,
  • the process of smoothing the cut surface of the laminated cell unit thin film glass through chemical healing, the process of completely curing the resin to facilitate separation of the stacked cell unit thin film glass, and the cell after resin peeling Due to the unit thin film glass cleaning process and the cleaning process after chemically healing the cell unit thin film glass, not only does it take a long time to manufacture the cell unit thin film glass, but there is a problem that the cell unit thin film glass production cost increases.
  • a laser beam is irradiated along the cutting line of the mother-of-pearl thin-film glass to cut the mother-of-pearl thin-film glass, thereby forming a cell unit thin film from the mother-of-pearl thin-film glass.
  • the cut cell unit thin film glass is stacked with two or more top and bottom
  • Step 2-3 of UV-curing the resin, and steps 2-1 to 2-3 are repeatedly performed to laminate two or more cut cell unit thin film glasses.
  • the method using the laser beam includes a process of stacking two or more sheets of cut cell-unit thin-film glass using resin, a process of completely curing the resin applied between the stacked cell-unit thin-film glasses, resin peeling and stacking Due to the process of separating the cell-unit thin-film glass, not only does it take a lot of time to manufacture the cell-unit thin-film glass, but there is a problem that the production cost of the cell-unit thin-film glass increases.
  • micro cracks or micro chipping defects caused by CNC or thermal damage caused by lasers may cause deterioration in flexural strength even after cell-unit thin film glass reinforcement.
  • cell-unit thin-film glass is laminated in several layers using resin, and then There is a method of healing a defect or a thermally damaged area generated during glass cutting by performing chemical treatment.
  • the efficient processing methods of the thin glass have a problem in that micro cracks or micro chipping defects cannot be completely removed from the cutting edge of the thin glass due to the chamfering process and the polishing process.
  • the present invention can reduce the production cost during the glass cutting process and post-processing process performed during the manufacture of ultra-thin glass (UTG) applied to various electrical and electronic products. It is an object of the present invention to provide a method for laser cutting and post-processing of UTG having a partial coating film formed thereon.
  • another object of the present invention is to provide a method for laser cutting and post-processing UTG having a partial coating film, which can reduce the manufacturing cost of cell-unit thin-film glass through simplification of the manufacturing process when manufacturing cell-unit thin-film glass.
  • another object of the present invention is to improve the durability of the processed cell unit thin film glass by selectively removing the thermal damage around the glass cutting surface caused by the laser beam during glass cutting and coating film removal using a laser through selective chemical treatment. It is to provide a method of laser cutting and post-processing of UTG having a partial coating film that can be formed.
  • the laser cutting and post-processing method of the UTG having a partial coating film coats the entire front surface of the original thin film glass 1 with a coating solution for preventing contact with chemicals, and then dries to form a coating film.
  • a laser beam is irradiated along the line 6 to be cut formed in the shape of the cell unit thin film glass 3 at a predetermined interval from the outer line of the cell unit thin film glass 3 from the original state thin film glass 1 ) is separated after cutting (S3).
  • the line to be cut 6 is 1 um to 100 um away from the outer line of the partial coating film 2, and the coating film formed on the front surface and the partial coating film 2 formed on the back surface of the original thin film glass 1
  • the coating liquid used to form the It is an acid-resistant coating liquid, and the laser beam output from the infrared laser 4 is used.
  • the laser cutting and post-processing method of UTG on which a partial coating film is formed according to the present invention made of this procedure includes a glass cutting process performed during the manufacture of cell unit thin glass (UTG: Ultra-Thin Glass) applied to various electrical and electronic products, Production costs can be reduced in the post-processing process.
  • UTG Ultra-Thin Glass
  • the present invention can reduce the manufacturing cost of the cell-unit thin-film glass through the simplification of the manufacturing process when manufacturing the cell-unit thin-film glass, and thermal damage around the glass cut surface caused by the laser beam during glass cutting and coating film removal using a laser By removing the portion through selective chemical treatment, durability of the processed cell unit thin film glass can be improved.
  • FIG. 2 is a longitudinal cross-sectional view of a mother-state thin-film glass in which a coating film is formed on the entire front surface and a partial coating film is formed on the rear surface;
  • Figure 3 is a rear view of the original state thin film glass having a partial coating film formed on the rear side;
  • Figure 4 is a view for explaining a line to be cut
  • FIG. 5 is a view showing an oblique cut portion formed at a right angle corner of a cell unit thin film glass facing a coating film when the cut cell unit thin film glass is healed.
  • the laser cutting and post-processing method of UTG having a partial coating film according to the present invention is coated with a coating solution for preventing chemical contact on the entire front surface of the original thin film glass 1, and then drying to form a coating film (S1); Forming a partial coating layer 2 on the rear surface of the mother-of-pearl thin-film glass 1 to match the shape of the cell unit thin-film glass 3 to be cut from the mother-of-pearl thin-film glass 1 (S2); and irradiating a laser beam to the rear surface of the mother-of-pearl thin-film glass 1 to cut the coating film formed on the front surface of the mother-of-pearl thin-film glass 1 and the mother-of-pearl thin-film glass 1, the partial coating film 2
  • a laser beam is irradiated along the line 6 to be cut formed in the shape of the cell unit thin film glass 3 at a predetermined interval from the outer line of the cell unit thin film glass 3 from the original state thin film glass 1
  • the original state thin film glass 1 is the original state thin film glass 1 before extracting the cell-unit thin film glass 3 from the original state thin film glass 1, and is also referred to as mother glass.
  • the cell unit thin film glass 3 is a thin glass cut and separated from the original thin film glass 1 .
  • the present invention selectively cuts the cut cell unit thin film glass 3 to remove thermal damage and defect areas around the cut surface of the cell unit thin film glass 3 generated during the laser cutting process.
  • S6 a step of healing (Healing) with.
  • the line to be cut 6 is preferably 1 um to 100 um away from the outer line of the partial coating layer 2 .
  • the thickness of the original state thin film glass 1 and the cell unit thin film glass 3 is less than 100um.
  • the thickness of the coating film formed on either side of the original state thin film glass 1 is less than 30um.
  • the original thin film glass 1 uses sodium alumino-silicate glass.
  • the present invention further includes a step (S7) of cleaning and then strengthening the cell-unit thin film glass 3 for which surface healing is completed.
  • the laser beam uses a laser beam output from the infrared laser 4, and the laser beam output from the infrared laser 4 generates a wavelength of 1000 nm or more.
  • the infrared laser 4 uses a nanosecond infrared laser 4, a picosecond infrared laser 4, or a femtosecond infrared laser 4, and the infrared laser 4 is a Bessel beam Beam) output.
  • the laser beam wavelength of the infrared laser 4 outputting a Bessel beam is 1020 nm to 1040 nm, the laser beam size is 0.8 um to 1.8 um, and the pulse duration of the laser beam ( Pulse duration) is 3 ps to 12 ps.
  • the pulse repetition rate of the laser beam is 190khz to 210khz, and the pulse energy is 3uJ to 42uJ.
  • the coating liquid used to form the coating film formed on the front surface and the partial coating film 2 formed on the rear surface of the original thin film glass 1 is an acid-resistant coating liquid and is an acrylic solution, polyethylene resin, polypropylene resin, polyvinyl chloride resin, or polystyrene resin.
  • the solution must have an ultraviolet absorbance of 10% or more in the ultraviolet wavelength range of 400 nm or less, and a solution with an infrared absorption rate of 1% or less in the infrared wavelength range of 1000 nm or more is used.
  • slot die coating method When coating the coating solution on the front or rear surface of the mother-state thin film glass 1, slot die coating method, spray coating method, inkjet coating method, bar coding method, screen A print pattern printing method and a slit coater pattern division printing method can be used.
  • the drying method of the coating solution may use an infrared lamp, a hot air generator, a hot plate, an oven, or the like, and a cluster type or inline type drying device is used.
  • the cell-unit thin-film glass 3 is selectively treated with chemical In the step of healing the laser cut surface (S4), as shown in FIG.
  • An oblique cutout 5 is formed by a healing solution, and the horizontal width W of the oblique cutout 5 is 3um to 500um or less, and the height of the oblique cutout 5 ( H) is 3um or more, but does not exceed 50% of the thickness of the thin film glass 3 in a cell unit.
  • the cell unit thin film glass 3 is healed by being dipped in a healing solution, which includes ammonium difluoride, sulfuric acid, nitric acid, water, and additives.
  • a healing solution which includes ammonium difluoride, sulfuric acid, nitric acid, water, and additives.
  • the additive is a surfactant used to improve healing performance, and the surfactant serves to increase the uniformity of healing by lowering surface tension.
  • the healing solution includes 0.5 to 0.9% by weight of ammonium difluoride, 3 to 15% by weight of sulfuric acid, 1 to 10% by weight of nitric acid, 80 to 90% by weight of water, and 0.01 to 0.1% by weight of additives.
  • the surfactant may be a compound represented by Formula 1 below:
  • R 1 is 4, 8, 12-tripropylpentadecane (4, 8, 12-triproplypentadecane)
  • A is triethanolamine.
  • step S5 of removing all the coating film formed on the surface of the cell unit thin film glass 3 after cleaning the cell unit thin film glass 3 the cell unit thin film glass 3 coated with the coating film is immersed in a coating film removal solution. Melt and remove the coating film.
  • the coating film removal solution uses potassium hydroxide (KOH) as a basic aqueous solution, and the temperature of the potassium hydroxide (KOH) is 25 degrees or higher.
  • KOH potassium hydroxide
  • an additional cleaning process may be performed after the coating film is removed.
  • the cleaning solution of the cell-unit thin-film glass 3 whose surface healing is completed is potassium hydroxide (KOH) or sodium hydroxide (NaOH) solution and , Pure deionized water to which a surfactant is added, but the pH of the washing liquid is 10 or more.
  • a potassium nitrate molten solution is used as a strengthening liquid used for strengthening the cell-unit thin-film glass 3.
  • the step (S7) of cleaning and strengthening the cell-unit thin-film glass 3, the surface healing of which has been completed, includes preheating the cleaned cell-unit thin-film glass 3 in the range of 200 ° C to 400 ° C, and the preheated cell unit Step of strengthening the thin film glass 3 by immersing it in a strengthening liquid maintained at 370 ° C to 470 ° C, discharging the thin film glass 3 of a cell unit from the strengthening liquid and then slowly cooling it until it reaches room temperature .
  • the laser cutting and post-processing method of the UTG with a partial coating film according to the present invention made of this procedure is glass cutting performed during the manufacture of cell unit thin film glass 3 (UTG: Ultra-Thin Glass) applied to various electrical and electronic products It is possible to reduce production costs in the process and post-processing process.
  • UTG Ultra-Thin Glass
  • the present invention can reduce the manufacturing cost of the cell-unit thin-film glass 3 through the simplification of the manufacturing process when manufacturing the cell-unit thin-film glass 3, and the laser beam cuts the glass and removes the coating film using a laser.
  • the durability of the processed cell-unit thin film glass 3 may be improved by removing the thermally damaged area around the glass cut surface through selective chemical treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명에 따른 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법은 원장 상태 박막 글라스(1)의 전면 전체에 화학물 접촉 방지용 코팅액을 코팅(Coating) 후 건조시켜 코팅막을 형성하는 단계(S1)와; 상기 원장 상태 박막 글라스(1)의 후면에 상기 원장 상태 박막 글라스(1)로부터 절단하고자 하는 셀 단위 박막 글라스(3)의 형상과 일치하는 부분 코팅막(2)을 형성하는 단계(S2); 및 상기 원장 상태 박막 글라스(1) 전면에 형성된 코팅막과 상기 원장 상태 박막 글라스(1)를 절단하기 위해 상기 원장 상태 박막 글라스(1)의 후면에 레이저 빔을 조사하되, 상기 부분 코팅막(2)의 외곽선으로부터 소정 간격 떨어지면서 상기 셀 단위 박막 글라스(3) 형상으로 이뤄진 절단 예정 라인(6)을 따라 레이저 빔(Laser Beam)을 조사하여 상기 원장 상태 박막 글라스(1)로부터 셀 단위 박막 글라스(3)를 절단 후 분리해내는 단계(S3)를 포함한다.

Description

부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법
본 발명은 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법에 관한 것으로, 보다 상세하게는, 한쪽면이 내산성 코팅막으로 전체 코팅되고, 반대면이 셀(Cell) 단위 박막 글라스 형상으로 부분 코팅된 원장 상태 박막 글라스를 적외선 레이저로 절단한 다음, 후처리하는 방법에 관한 것이다.
근래에는 스마트폰과 같은 전자 제품의 슬림화로 인해 종래 사용되던 일반적인 유리나 아크릴이 박막 글라스로 대체되고 있다.
이러한 박막 글라스는 휴대폰이나, PMP, MP3와 같은 휴대용 전자 제품의 디스플레이 창으로 사용되는데, 상기 박막 글라스는 얇을 수록 디자인성 및 휴대성에서 우월한 위치를 점유할 수 있다.
각종 전자 제품에 적용되는 셀 단위 박막 글라스를 제작하기 위해서는 원장 상태 박막 글라스를 일정 크기로 재단한다.
이때, 재단시 발생하는 미세 크랙(Crack)이나 미세 칩핑(Chipping)들은 재단된 셀 단위 박막 글라스의 강도 저하를 가져오며, 이를 최소화하기 위하여 면삭, 면취 공정을 추가로 진행하게 된다.
하지만, 이러한 공정은 원장 상태 박막 글라스가 매우 얇기 때문에 면삭, 면취 공정을 진행하는 동안 파손 우려가 있으며, 제품에 적용되는 셀 단위 박막 글라스를 개별적으로 면삭, 면취하는 것은 인력 및 시간에 있어, 많은 손실이 발생한다는 문제점이 있었다.
이러한 문제점을 해결하기 위하여 원장 상태 박막 글라스를 접합하여 적층한 후 일체로 가공하는 방법이 제안되었다.
상기 원장 상태 박막 글라스를 접합하여 적층한 후 일체로 가공하는 방법에는 CNC를 이용하여 가공하는 제1 실시 예와, 레이저 빔을 이용하여 가공하는 제2 실시 예가 있는데, 상기 CNC를 이용하여 가공하는 제1 실시 예에 대해 구체적으로 설명하면, 다음과 같다.
먼저, 상기 제1 실시 예에 대해 크게 분류하면, 2개 이상의 원장 상태 박막 글라스를 적층시키되 2개 이상의 원장 상태 박막 글라스 사이에는 기설정된 패턴에 따라 높이 간격 유지용 레진이 도포되는 단계와, CNC 가공법을 이용하여 2개 이상이 적층된 원장 상태 박막 글라스를 커팅하여 원장 상태 박막 글라스로부터 각종 전기 전자 제품에 적용되는 셀 단위 박막 글라스를 잘라내는 단계, 여러 장이 적층된 셀 단위 박막 글라스를 화학적 힐링(Healing)을 통하여 셀 단위 박막 글라스의 커팅면을 매끄럽게 다듬는 단계, 힐링(Healing)된 셀 단위 박막 글라스를 세정하는 단계, 셀 단위 박막 글라스와 셀 단위 박막 글라스 사이에 도포된 레진을 박리하기 쉽도록 완전 경화시키는 단계, 셀 단위 박막 글라스와 셀 단위 박막 글라스 사이에 접착된 레진을 박리시키는 단계, 레진이 제거된 셀 단위 박막 글라스를 세정하는 단계, 세정 완료된 셀 단위 박막 글라스를 화학적으로 힐링(Healing)시키는 단계, 화학적으로 힐링(Healing)된 셀 단위 박막 글라스를 세정하고 세정 완료된 셀 단위 박막 글라스를 강화한 다음 후속 공정으로 내보내는 단계를 포함한다.
상기 2개 이상의 원장 상태 박막 글라스를 적층시키되 2개 이상의 원장 상태 박막 글라스 사이에는 기설정된 패턴에 따라 높이 간격 유지용 레진이 도포되는 단계는 원장 상태 박막 글라스의 윗면에 레진을 도포하는 제1-1 단계와, 도포된 레진 위에 원장 상태 박막 글라스를 적층한 후 레진을 얇게 펼치는 제1-2 단계, 얇게 펼쳐진 레진을 UV 경화하는 제1-3 단계, 상기 제1-1 단계 내지 제1-3 단계를 반복하여 2개 이상의 원장 상태 박막 글라스를 적층시키는 단계를 포함한다.
하지만, 상기 제1 실시 예의 경우 레진을 이용하여 원장 상태 박막 글라스를 2장 이상 적층시키는 공정과, 적층된 원장 상태 박막 글라스를 셀 단위 박막 글라스로 잘라내기 위한 황삭 중삭 정삭 가공 공정을 포함한 CNC 커팅 공정, 적층된 셀 단위 박막 글라스를 화학적 힐링(Healing)을 통해 셀 단위 박막 글라스의 커팅면을 매끄럽게 다듬는 공정, 적층된 셀 단위 박막 글라스의 분리를 쉽게 하기 위해 레진을 완전 경화시키는 공정, 레진 박리 후 셀 단위 박막 글라스 세정 공정, 셀 단위 박막 글라스를 화학적으로 힐링(Healing)한 후 세정하는 공정으로 인해 셀 단위 박막 글라스 제조 시간이 많이 소요될 뿐만 아니라, 셀 단위 박막 글라스 생산 비용이 높아진다는 문제점이 있었다.
다음, 제2 실시 예에 대해 구체적으로 설명하면, 다음과 같다.
상기 레이저 빔을 이용하여 가공하는 제2 실시예에 대해 크게 분류하면, 원장 상태 박막 글라스의 커팅 라인을 따라 레이저 빔(Beam)을 조사하여 원장 상태 박막 글라스를 커팅하여 원장 상태 박막 글라스로부터 셀 단위 박막 글라스를 잘라내는 단계와; 커팅된 셀 단위 박막 글라스를 2개 이상 적층시키되 상하 배치된 셀 단위 박막 글라스 사이에 높이 간격용 레진을 도포하는 제2 단계; 2개 이상이 적층된 셀 단위 박막 글라스를 화학적 힐링(Healing)을 통하여 커팅된 셀 단위 박막 글라스의 커팅면을 매끄럽게 다듬는 제3 단계; 적층된 셀 단위 박막 글라스를 세정하는 제4 단계; 여러 장이 적층된 셀 단위 박막 글라스와 셀 단위 박막 글라스 사이에 도포된 레진을 박리하기 쉽도록 완전 경화시키는 제5 단계; 셀 단위 박막 글라스에 접착된 레진을 박리시킨 후 낱개로 분리된 셀 단위 박막 글라스를 세정하는 제6 단계; 세정 완료된 셀 단위 박막 글라스를 화학적으로 힐링(Healing)시키는 제7 단계; 화학적으로 힐링(Healing)된 셀 단위 박막 글라스를 세정 후 강화 공정을 거친 후 후속 공정으로 내보내는 제8 단계를 포함한다.
또한, 상기 커팅된 셀 단위 박막 글라스를 2개 이상 적층시키되 상하 배치된 셀 단위 박막 글라스의 사이에 높이 간격용 레진을 도포하는 제2 단계는 상기 커팅된 셀 단위 박막 글라스를 2개 이상 적층시키되 상하 배치된 한 쌍의 셀 단위 박막 글라스 사이에 높이 간격용 레진을 도포하는 제2-1 단계와, 도포된 레진 위에 셀 단위 박막 글라스를 적층한 후 레진을 얇게 펼치는 제2-2 단계, 평탄하게 펼쳐진 레진을 UV 경화하는 제2-3 단계, 상기 제2-1 단계 내지 제2-3 단계를 반복 수행하여 2개 이상의 커팅된 셀 단위 박막 글라스를 적층시키는 단계를 포함한다.
하지만, 상기 레이저 빔을 이용하는 방법은 레진을 이용하여 커팅된 셀 단위 박막 글라스를 2장 이상 적층시키는 공정과, 적층된 셀 단위 박막 글라스 사이에 도포된 레진을 완전 경화시키는 공정, 레진 박리 및 적층된 셀 단위 박막 글라스를 분리시키는 공정으로 인해 셀 단위 박막 글라스 제조 시간이 많이 소요될 뿐만 아니라, 셀 단위 박막 글라스의 생산 비용이 높아진다는 문제점이 있었다.
또한, CNC를 이용한 유리 절단 방법의 경우 커팅면에 미세 크랙(Crack)이나 미세 칩핑(Chipping)과 같은 결함이 발생되며, 레이저를 이용한 유리 절단 및 코팅막 제거 방법의 경우 레이저 조사 부분에 열손상이 발생되어 셀 단위 박막 글라스가 쉽게 파손되는 문제점이 있었다.
이러한 CNC에 의한 미세 크랙(Crack)이나 미세 칩핑(Chipping) 결함이나 레이저(Laser)에 의한 열 손상은 셀 단위 박막 글라스 강화 후에도 굴곡 강도 저하의 원인이 될 수 있다.
CNC나 레이저 절단면의 약화된 부분을 보완하기 위하여 주로 사용하는 방법으로 상기 제1 실시예와, 제2 실시예에서와 같이, 셀 단위 박막 글라스를 레진을 이용하여 여러 층으로 적층한 다음, 절단면에 화학 처리를 진행하여 유리 절단시 발생된 결함이나 열손상 부위를 힐링(Healing)시키는 방법이 있다.
하지만, 이러한 절단면 처리 방법에도 한계가 있어, CNC 공정이나 레이저 공정을 이용한 박막 글라스 절단 시 박막 글라스의 손상을 최소화할 수 있는 방법을 확보해야 하는데, 이러한 방법을 확보할 경우 공정 마진이 작아지고 각종 전기 전자 제품에 적용되는 셀 단위 박막 글라스의 가공 시간이 오래 걸리는 문제점을 가지고 있으며, 면처리 공정까지 추가 진행하면, 셀 단위 박막 글라스 제조 공정이 매우 복잡해져 제품 제작시 비용 상승의 원인이 될 수 있다.
한편, 본 발명의 선행 기술로는 출원번호 "10-2010-0026394"호의 "박판 유리의 효율적인 가공 방법"이 출원되어 공개되었는데, 상기 박판 유리의 효율적인 가공 방법은 적층된 유리 원판들 사이 사이에 접합 물질을 도포하여 유리 원판들이 서로간에 접합되도록 하고, 접합된 유리 원판을 블록 단위로 일괄 재단하는 공정과, 블록 단위의 박판 소재를 면삭 가공하는 공정, 및 브러시의 회전력과 연마재를 이용하여 절단된 단면을 폴리싱하는 공정을 포함한다.
하지만, 상기 박판 유리의 효율적인 가공 방법은 면삭 가공 공정과 폴리싱 공정으로 인해 박판 유리의 커팅 단면에 미세 크랙(Crack)이나 미세 칩핑(Chipping) 결함이 완전히 제거가 안되는 것들이 있어서, 문제점이 있었다.
이에 본 발명은 상기 문제점을 해결하기 위하여 각종 전기 전자 제품에 적용되는 셀 단위 박막 글라스(UTG: Ultra-Thin Glass)의 제조 시 행해지는 유리 절단 공정과, 가공 후처리 공정 시 생산 비용을 절감할 수 있는 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법을 제공하는데 본 발명의 목적이 있다.
또한, 본 발명의 또 다른 목적은 셀 단위 박막 글라스 제조시 제조 공정의 단순화를 통해 셀 단위 박막 글라스의 제조 원가를 낮출 수 있는 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법을 제공하는 것이다.
또, 본 발명의 또 다른 목적은 레이저를 이용한 유리 절단과 코팅막 제거 시 레이저 빔으로 인해 발생된 유리 절단면 주변의 열손상 부위를 선택적 화학적 처리를 통해 제거함으로써 가공 완료된 셀 단위 박막 글라스의 내구성을 향상시킬 수 있는 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명에 따른 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법은 원장 상태 박막 글라스(1)의 전면 전체에 화학물 접촉 방지용 코팅액을 코팅(Coating) 후 건조시켜 코팅막을 형성하는 단계(S1)와; 상기 원장 상태 박막 글라스(1)의 후면에 상기 원장 상태 박막 글라스(1)로부터 절단하고자 하는 셀 단위 박막 글라스(3)의 형상과 일치하는 부분 코팅막(2)을 형성하는 단계(S2); 및 상기 원장 상태 박막 글라스(1) 전면에 형성된 코팅막과, 상기 원장 상태 박막 글라스(1)를 절단하기 위해 상기 원장 상태 박막 글라스(1)의 후면에 레이저 빔을 조사하되, 상기 부분 코팅막(2)의 외곽선으로부터 소정 간격 떨어지면서 상기 셀 단위 박막 글라스(3) 형상으로 이뤄진 절단 예정 라인(6)을 따라 레이저 빔(Laser Beam)을 조사하여 상기 원장 상태 박막 글라스(1)로부터 셀 단위 박막 글라스(3)를 절단 후 분리해내는 단계(S3)를 포함한다.
상기 절단 예정 라인(6)은 상기 부분 코팅막(2)의 외곽선으로부터 1um 내지 100um 떨어지고, 상기 원장 상태 박막 글라스(1)의 전면에 형성된 코팅막과 후면에 형성된 부분 코팅막(2) 형성에 사용되는 코팅액은 내산성 코팅액이며, 상기 레이저 빔은 적외선 레이저(4)로부터 출력된 레이저 빔을 이용한다.
이러한 절차로 이루어진 본 발명에 따른 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법은 각종 전기 전자 제품에 적용되는 셀 단위 박막 글라스(UTG: Ultra-Thin Glass)의 제조 시 행해지는 유리 절단 공정과, 가공 후처리 공정 시 생산 비용을 절감할 수 있다.
또한, 본 발명은 셀 단위 박막 글라스 제조시 제조 공정의 단순화를 통해 셀 단위 박막 글라스의 제조 원가를 낮출 수 있고, 레이저를 이용한 유리 절단과 코팅막 제거 시 레이저 빔으로 인해 발생된 유리 절단면 주변의 열손상 부위를 선택적 화학적 처리를 통해 제거함으로써 가공 완료된 셀 단위 박막 글라스의 내구성을 향상시킬 수 있다.
도면 1은 본 발명의 제어 블록도,
도면 2는 전면 전체에 코팅막이 형성되고 후면에 부분 코팅막이 형성된 원장 상태 박막 글라스의 종단면도,
도면 3은 후면에 부분 코팅막이 형성된 원장 상태 박막 글라스의 후면도,
도면 4는 절단 예정 라인을 설명하기 위한 도면,
도면 5는 절단된 셀 단위 박막 글라스를 힐링(Healing) 했을 때 코팅막과 마주 접한 셀 단위 박막 글라스의 직각 모서리부에 형성된 빗면형 절단부를 도시한 도면.
*부호의 설명*
1. 원장 상태 박막 글라스 2. 부분 코팅막
3. 셀 단위 박막 글라스 4. 적외선 레이저
5. 빗면형 절단부 6. 절단 예정 라인
이하, 첨부된 도면을 참조하여 본 발명을 자세히 설명한다.
본 발명에 따른 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법은 도면 1 내지 도면 4에 도시한 바와 같이, 원장 상태 박막 글라스(1)의 전면 전체에 화학물 접촉 방지용 코팅액을 코팅(Coating) 후 건조시켜 코팅막을 형성하는 단계(S1)와; 상기 원장 상태 박막 글라스(1)의 후면에 상기 원장 상태 박막 글라스(1)로부터 절단하고자 하는 셀 단위 박막 글라스(3)의 형상과 일치하는 부분 코팅막(2)을 형성하는 단계(S2); 및 상기 원장 상태 박막 글라스(1) 전면에 형성된 코팅막과, 상기 원장 상태 박막 글라스(1)를 절단하기 위해 상기 원장 상태 박막 글라스(1)의 후면에 레이저 빔을 조사하되, 상기 부분 코팅막(2)의 외곽선으로부터 소정 간격 떨어지면서 상기 셀 단위 박막 글라스(3) 형상으로 이뤄진 절단 예정 라인(6)을 따라 레이저 빔(Laser Beam)을 조사하여 상기 원장 상태 박막 글라스(1)로부터 셀 단위 박막 글라스(3)를 절단 후 분리해내는 단계(S3)를 포함한다.
상기 원장 상태 박막 글라스(1)는 원장 상태 박막 글라스(1)로부터 셀 단위 박막 글라스(3)를 추출하기 전 원래 상태의 박막 글라스(1)로서 마더 글라스(Mother glass)라고도 칭한다.
상기 셀 단위 박막 글라스(3)는 상기 원장 상태 박막 글라스(1)로부터 절단 분리된 박막 글라스이다.
또한, 본 발명은 도면 1에 도시한 바와 같이, 레이저 절단 과정 중 발생된 셀 단위 박막 글라스(3) 절단면 주변의 열손상 부위와 결함 부위를 제거하기 위해 절단된 셀 단위 박막 글라스(3)를 선택적 화학적 처리를 통하여 셀 단위 박막 글라스(3)의 레이저 절단면을 힐링(Healing)시키는 단계(S4)와; 상기 셀 단위 박막 글라스(3)를 세정 후 상기 셀 단위 박막 글라스(3) 표면에 형성된 코팅막을 모두 제거하는 단계(S5); 및 상기 코팅막이 모두 제거된 셀 단위 박막 글라스(3) 표면의 결함이나 흠을 제거하기 위해 코팅막이 모두 제거된 셀 단위 박막 글라스(3)를 세정 후 상기 셀 단위 박막 글라스(3)의 표면을 화학적으로 힐링(Healing)시키는 단계(S6)를 더 포함한다.
상기 절단 예정 라인(6)은 상기 부분 코팅막(2)의 외곽선으로부터 1um 내지 100um 떨어짐이 바람직하다.
상기 원장 상태 박막 글라스(1)와 셀 단위 박막 글라스(3)의 두께는 100um 이하이다.
상기 원장 상태 박막 글라스(1)의 어느 한쪽 면에 형성된 코팅막의 두께는 30um 미만이다.
상기 원장 상태 박막 글라스(1)는 알칼리 알루미노 실리케이트(Sodium Alumino-Silicate Glass)계 유리를 이용한다.
또한, 본 발명은 도면 1에 도시한 바와 같이, 표면 힐링이 완료된 셀 단위 박막 글라스(3)를 세정한 후 강화시키는 단계(S7)를 더 포함한다.
상기 레이저 빔은 적외선 레이저(4)로부터 출력된 레이저 빔을 이용하되, 상기 적외선 레이저(4)로부터 출력된 레이저 빔은 1000nm 이상의 파장을 발생한다.
상기 적외선 레이저(4)는 나노초 적외선 레이저(4)나, 피코초 적외선 레이저(4), 또는 펨토초 적외선 레이저(4)(Femtosecond IR Laser)를 사용하며, 상기 적외선 레이저(4)는 베셀 빔(Bessel Beam)을 출력한다.
베셀 빔(Bessel Beam)을 출력하는 상기 적외선 레이저(4)의 레이저 빔 파장(Wavelength)은 1020nm 내지 1040nm이고, 레이저 빔 사이즈(Beam size)는 0.8um 내지 1.8um이며, 레이저 빔의 펄스 지속 시간(Pulse duration)은 3ps 내지 12ps이다.
또한, 레이저 빔의 펄스 반복수(Pulse repetition rate)는 190khz 내지 210khz이고, 펄스 에너지(Pulse energy)는 3uJ 내지 42uJ이다.
상기 원장 상태 박막 글라스(1)의 전면에 형성된 코팅막과 후면에 형성된 부분 코팅막(2) 형성에 사용되는 코팅액은 내산성 코팅액으로서 아크릴계 용액이거나, 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리염화비닐 수지, 폴리스틸렌 수지 중 400nm 이하의 자외선 파장대에서 자외선 흡수율이 10% 이상인 용액이어야 하고, 1000nm 이상의 적외선 파장대에서 적외선 흡수율이 1% 이하인 용액을 이용한다.
상기 원장 상태 박막 글라스(1)의 전면 또는 후면에 코팅액을 코팅할 때에는 슬롯 다이 코팅(Slot die coating)법이나, 스프레이 코팅(Spray coating)법, 잉크젯 코팅(Inkjet Coating)법, 바코딩법, 스크린 프린트 패턴 인쇄법, 슬릿코터 패턴 분할 인쇄법을 이용할 수 있다.
상기 코팅액의 건조 방법은 적외선 램프(IR Lamp)나, 열풍 발생기, 핫 플레이트(Hot Plate), 오븐(Oven) 등을 이용할 수 있으며, 클러스터 타입 또는 인라인 타입(Inline Type)의 건조 장치를 이용한다.
상기 레이저 절단 과정 중 발생된 셀 단위 박막 글라스(3) 절단면 주변의 열손상 부위와 결함 부위를 제거하기 위해 절단된 셀 단위 박막 글라스(3)를 선택적 화학적 처리를 통해 셀 단위 박막 글라스(3)의 레이저 절단면을 힐링(Healing)시키는 단계(S4)에서 상기 셀 단위 박막 글라스(3)의 전후면에 형성된 코팅막과 마주 접한 셀 단위 박막 글라스(3)의 직각 모서리부에는 도면 5에 도시한 바와 같이, 힐링(Healing) 용액에 의해 빗면 형태의 빗면형 절단부(5)가 형성되고, 상기 빗면형 절단부(5)의 가로폭(W)은 3um 내지 500um 이하이며, 상기 빗면형 절단부(5)의 높이(H)는 3um 이상이되, 셀 단위 박막 글라스(3) 두께의 50%를 넘지 않는다.
상기 셀 단위 박막 글라스(3)는 힐링 용액에 디핑(Dipping)되어 힐링(Healing)되는데, 상기 힐링(Healing) 용액은 이플루오르화 암모늄과, 황산, 질산, 물, 및 첨가제를 포함한다.
상기 첨가제는 힐링 성능을 향상시키기 위해 사용되는 계면 활성제로, 상기 계면 활성제는 표면 장력을 저하시켜 힐링의 균일성을 증가시키는 역할을 한다.
상기 힐링 용액은 이플루오르화 암모늄 0.5 내지 0.9 중량%, 황산 3 내지 15 중량%, 질산 1 내지 10 중량%, 물 80 내지 90 중량%, 및 첨가제 0.01 내지 0.1 중량%를 포함한다.
상기 계면활성제는 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
Figure PCTKR2022000596-appb-img-000001
여기서,
R1은 4, 8, 12-트리프로필펜타데칸(4, 8, 12-triproplypentadecane)
A는 트리에탄올아민이다.
상기 셀 단위 박막 글라스(3)를 세정 후 상기 셀 단위 박막 글라스(3) 표면에 형성된 코팅막을 모두 제거하는 단계(S5)는 상기 코팅막이 코팅된 셀 단위 박막 글라스(3)를 코팅막 제거 용액에 담궈 코팅막을 녹여 제거한다.
상기 코팅막 제거 용액은 염기성 수용액으로서 수산화칼륨(KOH)을 이용하되, 상기 수산화칼륨(KOH)의 온도는 25도 이상이다.
다만, 일부 코팅막의 부착에 의해 셀 단위 박막 글라스(3) 표면에 존재하는 코팅막 흔적을 제거하기 위해 코팅막 제거 후 추가 세정 공정을 진행할 수 있다.
상기 표면 힐링이 완료된 셀 단위 박막 글라스(3)를 세정한 후 강화시키는 단계(S7)에서 표면 힐링이 완료된 셀 단위 박막 글라스(3)의 세정액은 수산화칼륨(KOH) 또는 수산화나트륨(NaOH) 용액과, 계면 활성제가 첨가된 순수 탈이온수(Deionized water)을 포함하되, 상기 세정액의 PH는 10 이상이다.
상기 표면 힐링이 완료된 셀 단위 박막 글라스(3)를 세정한 후 강화시키는 단계(S7)에서 상기 셀 단위 박막 글라스(3)의 강화에 사용되는 강화액은 질산칼륨 용융액을 이용한다.
상기 표면 힐링이 완료된 셀 단위 박막 글라스(3)를 세정한 후 강화시키는 단계(S7)는 세정이 끝난 셀 단위 박막 글라스(3)를 200℃ 내지 400℃ 범위에서 예열시키는 단계와, 예열된 셀 단위 박막 글라스(3)를 370℃ 내지 470℃가 유지되는 강화액속에 침지시켜 강화시키는 단계, 셀 단위 박막 글라스(3)를 강화액으로부터 배출한 다음 상온에 도달할 때까지 서서히 냉각시키는 단계를 포함한다.
이러한 절차로 이루어진 본 발명에 따른 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법은 각종 전기 전자 제품에 적용되는 셀 단위 박막 글라스(3)(UTG: Ultra-Thin Glass)의 제조 시 행해지는 유리 절단 공정과, 가공 후처리 공정 시 생산 비용을 절감할 수 있다.
또한, 본 발명은 셀 단위 박막 글라스(3) 제조시 제조 공정의 단순화를 통해 셀 단위 박막 글라스(3)의 제조 원가를 낮출 수 있고, 레이저를 이용한 유리 절단과 코팅막 제거 시 레이저 빔으로 인해 발생된 유리 절단면 주변의 열손상 부위를 선택적 화학적 처리를 통해 제거함으로써 가공 완료된 셀 단위 박막 글라스(3)의 내구성을 향상시킬 수 있다.

Claims (4)

  1. 원장 상태 박막 글라스(1)의 전면 전체에 화학물 접촉 방지용 코팅액을 코팅(Coating) 후 건조시켜 코팅막을 형성하는 단계(S1)와;
    상기 원장 상태 박막 글라스(1)의 후면에 상기 원장 상태 박막 글라스(1)로부터 절단하고자 하는 셀 단위 박막 글라스(3)의 형상과 일치하는 부분 코팅막(2)을 형성하는 단계(S2);
    및 상기 원장 상태 박막 글라스(1) 전면에 형성된 코팅막과, 상기 원장 상태 박막 글라스(1)를 절단하기 위해 상기 원장 상태 박막 글라스(1)의 후면에 레이저 빔을 조사하되, 상기 부분 코팅막(2)의 외곽선으로부터 소정 간격 떨어지면서 상기 셀 단위 박막 글라스(3) 형상으로 이뤄진 절단 예정 라인(6)을 따라 레이저 빔(Laser Beam)을 조사하여 상기 원장 상태 박막 글라스(1)로부터 셀 단위 박막 글라스(3)를 절단 후 분리해내는 단계(S3)를 포함하는 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법.
  2. 제1 항에 있어서,
    상기 절단 예정 라인(6)은 상기 부분 코팅막(2)의 외곽선으로부터 1um 내지 100um 떨어진 것을 특징으로 하는 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법.
  3. 제1 항에 있어서,
    상기 원장 상태 박막 글라스(1)의 전면에 형성된 코팅막과 후면에 형성된 부분 코팅막(2) 형성에 사용되는 코팅액은 내산성 코팅액인 것을 특징으로 하는 포함하는 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법.
  4. 제1 항에 있어서,
    상기 레이저 빔은 적외선 레이저(4)로부터 출력된 레이저 빔을 이용하는 것을 특징으로 하는 부분 코팅막이 형성된 UTG의 레이저 절단 및 후처리 방법.
PCT/KR2022/000596 2021-12-30 2022-01-13 부분 코팅막이 형성된 utg의 레이저 절단 및 후처리 방법 WO2023128044A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280055817.1A CN117794875A (zh) 2021-12-30 2022-01-13 形成部分涂膜的utg的激光切割以及后处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0192436 2021-12-30
KR1020210192436A KR102580360B1 (ko) 2021-12-30 2021-12-30 부분 코팅막이 형성된 utg의 가공 방법

Publications (1)

Publication Number Publication Date
WO2023128044A1 true WO2023128044A1 (ko) 2023-07-06

Family

ID=86999304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000596 WO2023128044A1 (ko) 2021-12-30 2022-01-13 부분 코팅막이 형성된 utg의 레이저 절단 및 후처리 방법

Country Status (3)

Country Link
KR (1) KR102580360B1 (ko)
CN (1) CN117794875A (ko)
WO (1) WO2023128044A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182644A (ja) * 2003-03-24 2006-07-13 Nishiyama Stainless Chem Kk ガラスの切断分離方法、フラットパネルディスプレイ用ガラス基板及びフラットパネルディスプレイ
KR20130139106A (ko) * 2012-06-12 2013-12-20 삼성디스플레이 주식회사 커버 글라스 가공 방법
KR20150107203A (ko) * 2014-03-13 2015-09-23 주식회사 제우스 강화유리 절단방법
KR101970921B1 (ko) * 2018-08-17 2019-04-19 주식회사 진우엔지니어링 원판글라스를 이용한 휴대단말기용 패턴글라스 제조방법
KR102067930B1 (ko) * 2019-05-17 2020-02-11 주식회사 진우엔지니어링 양면패턴을 갖는 스마트폰 카메라용 윈도우글라스 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031021A (ja) 2006-07-31 2008-02-14 Optrex Corp 基板の切断方法
KR20110107181A (ko) 2010-03-24 2011-09-30 (주)여명 박판유리의 효율적인 가공방법
JP5978966B2 (ja) * 2012-12-05 2016-08-24 日立化成株式会社 回路付きカバーガラスの製造方法
KR20170019698A (ko) * 2015-08-12 2017-02-22 엠엔지솔루션 주식회사 글라스 절단 방법
KR102240445B1 (ko) * 2020-12-09 2021-04-14 주식회사 진우엔지니어링 L 챔퍼형 커버윈도우용 박막글라스 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182644A (ja) * 2003-03-24 2006-07-13 Nishiyama Stainless Chem Kk ガラスの切断分離方法、フラットパネルディスプレイ用ガラス基板及びフラットパネルディスプレイ
KR20130139106A (ko) * 2012-06-12 2013-12-20 삼성디스플레이 주식회사 커버 글라스 가공 방법
KR20150107203A (ko) * 2014-03-13 2015-09-23 주식회사 제우스 강화유리 절단방법
KR101970921B1 (ko) * 2018-08-17 2019-04-19 주식회사 진우엔지니어링 원판글라스를 이용한 휴대단말기용 패턴글라스 제조방법
KR102067930B1 (ko) * 2019-05-17 2020-02-11 주식회사 진우엔지니어링 양면패턴을 갖는 스마트폰 카메라용 윈도우글라스 제조방법

Also Published As

Publication number Publication date
KR20230102368A (ko) 2023-07-07
CN117794875A (zh) 2024-03-29
KR102580360B1 (ko) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2014137058A1 (ko) 커버글라스 및 이의 제조 방법
KR101269474B1 (ko) 강화글라스 절단 방법
KR101620375B1 (ko) 적층, 컷팅공정을 포함하는 초박형 유리 가공방법
ATE240589T1 (de) Verfahren zum herstellen von dünnschicht- solarzellen-modulen
WO2013060063A1 (zh) 一种电容式触摸屏玻璃面板及其制作方法
WO2017166904A1 (zh) 一种动力电池线路板的内层铜板露铜制作方法
WO2023128044A1 (ko) 부분 코팅막이 형성된 utg의 레이저 절단 및 후처리 방법
CN102486692A (zh) 触控感应器图案及信号导线的制造方法
CN105513973A (zh) 一种盲孔的制作方法
WO2023017909A1 (ko) 레이저를 이용한 유리 절단 및 후처리 방법
WO2023068420A1 (ko) 레이저를 이용한 코팅막 제거와 유리 절단 및 후처리 방법
JP2022512609A (ja) 埋込サイド電極を備えたディスプレイを形成するためのシステムおよび方法
JP4865351B2 (ja) 液晶ディスプレイ
DE102006042329B4 (de) Verfahren zum selektiven plasmachemischen Trockenätzen von auf Oberflächen von Silicium-Wafern ausgebildetem Phosphorsilikatglas
KR20110098362A (ko) 강화유리 가공 방법
WO2023234467A1 (ko) 유리 절단 및 후처리 방법에 의해 제조된 셀 단위 박막 글라스
JPS63121849A (ja) 改良されたマスキング露光方法及びそれを用いた製版方法
KR20200135614A (ko) 유리 기판 절단 방법 및 도광판 제조 방법
KR102604022B1 (ko) 내산 코팅 및 필름을 이용한 utg 글라스의 사이드 힐링 방법
KR102304985B1 (ko) 박막 글라스의 식각 커팅 방법 및 이의 제조 방법으로 제조된 박막 글라스
WO2016208790A1 (ko) 고속 표면 가공 장치
CN102026490A (zh) Ito镀膜电路板的制备方法
KR102491775B1 (ko) 레이저와 습식 식각을 이용한 박막 글라스 커팅 및 커팅면 형상 가공 방법
KR102443795B1 (ko) 초박형 글라스의 가공 방법
WO2020000596A1 (zh) 用于太阳能芯片组件的透光处理系统和透光处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916205

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 202280055817.1

Country of ref document: CN