WO2023127688A1 - ペレット、成形品およびペレットの製造方法 - Google Patents

ペレット、成形品およびペレットの製造方法 Download PDF

Info

Publication number
WO2023127688A1
WO2023127688A1 PCT/JP2022/047396 JP2022047396W WO2023127688A1 WO 2023127688 A1 WO2023127688 A1 WO 2023127688A1 JP 2022047396 W JP2022047396 W JP 2022047396W WO 2023127688 A1 WO2023127688 A1 WO 2023127688A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellet
pellets
thermoplastic resin
fiber
rayon
Prior art date
Application number
PCT/JP2022/047396
Other languages
English (en)
French (fr)
Inventor
尚秀 杉山
哲彦 水阪
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023127688A1 publication Critical patent/WO2023127688A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to pellets, molded articles, and pellet manufacturing methods.
  • thermoplastic resin For the purpose of weight reduction, molded products made of thermoplastic resin are used as metal substitutes. In order to increase the mechanical strength of molded articles formed from such thermoplastic resins, production and development of resin compositions containing reinforcing fibers are being promoted.
  • a step of supplying a fiber bundle obtained by bundling fibers and a molten resin to a die, bringing the fiber bundle and the molten resin into contact with each other in the die to impregnate the fiber bundle with the molten resin, and a step of impregnating the fiber bundle with the molten resin. is withdrawn from a die, cooled, and cut, wherein the ratio of the major axis to the minor axis of the fiber cross section (long axis/short axis) is 2.5 to 6.
  • a method for producing fiber-reinforced resin pellets is disclosed, which is characterized by the use of fibers.
  • reinforcing fiber bundles such as glass fibers are impregnated with a thermoplastic resin, taken as long fiber strands, and then cut by a pelletizer to produce pellets.
  • a thermoplastic resin taken as long fiber strands
  • a pelletizer to produce pellets.
  • the pellets obtained in this manner are susceptible to cracking in some cases.
  • An object of the present invention is to solve such problems, and to provide a pellet that is less likely to crack during production, a molded article formed from the pellet, and a method for producing the pellet.
  • the present inventors have conducted studies and found that rayon fibers satisfying predetermined conditions are used as reinforcing fibers, and that having a predetermined MFR is used as a thermoplastic resin to be impregnated, and further, It was found that the cracking of pellets can be effectively suppressed by adjusting the pellet length. Specifically, the above problems have been solved by the following means.
  • thermoplastic resin has a melt flow rate (MFR) of 70 to 200 g/10 minutes when measured at a temperature of 230 ° C. and a load of 2.16 kg
  • MFR melt flow rate
  • the rayon fiber has a number average fiber diameter of 5 to 30 ⁇ m
  • the pellet wherein the number average length of the pellet is 3 to 30 mm.
  • the thermoplastic resin contains at least one selected from polypropylene resin and polyacetal resin.
  • thermoplastic resin comprises an acid-unmodified polypropylene resin and an acid-modified polypropylene resin modified with maleic anhydride and/or maleic acid.
  • thermoplastic resin comprises an acid-unmodified polypropylene resin and an acid-modified polypropylene resin modified with maleic anhydride and/or maleic acid.
  • the pellets are bundled with 2,000 to 30,000 rayon fibers aligned in the length direction, impregnated with the thermoplastic resin in a melted state, and integrated.
  • ⁇ 5> The pellet according to any one of ⁇ 1> to ⁇ 4>, wherein the rayon fibers contained in the pellet have a number average fiber length of 3 to 30 mm.
  • ⁇ 6> The pellet according to any one of ⁇ 1> to ⁇ 5>, wherein the rayon fiber has an apparent Young's modulus of 10 to 50 GPa.
  • ⁇ 7> The pellet according to any one of ⁇ 1> to ⁇ 6>, wherein the rayon fiber has a tensile elongation of 3 to 20%.
  • ⁇ 8> Any one of ⁇ 1> to ⁇ 7>, wherein the thermoplastic resin content is 90 to 60% by mass and the rayon fiber content is 40 to 10% by mass in the pellets.
  • Pellets as described in . ⁇ 9> The pellet according to any one of ⁇ 1> to ⁇ 8>, wherein the degree of X-ray orientation of the rayon fibers is 90% or more.
  • ⁇ 10> A pellet blend containing the pellets according to any one of ⁇ 1> to ⁇ 9> and other thermoplastic resin pellets.
  • ⁇ 11> A molded article formed from the pellet according to any one of ⁇ 1> to ⁇ 9> and/or the pellet blend according to ⁇ 10.
  • ⁇ 12> After 2,000 to 30,000 rayon fibers are bundled in a state of being aligned in the length direction and impregnated with a thermoplastic resin in a molten state and integrated, the number average length is 3 to 3.
  • FIG. 1 is a schematic diagram showing a pellet manufacturing apparatus of an example.
  • the pellet of this embodiment is a pellet containing a thermoplastic resin and a bundle of 2,000 to 30,000 rayon fibers arranged in parallel in the fiber length direction, wherein at least part of the thermoplastic resin is The rayon fiber bundle is impregnated, and the melt flow rate (MFR) when measured at a temperature of 230 ° C. and a load of 2.16 kg according to JIS K 7210 of the thermoplastic resin is 70 to 200 g / 10 minutes.
  • the rayon fiber has a number average fiber diameter of 5 to 30 ⁇ m, and the pellet has a number average length of 3 to 30 mm. With such a configuration, it is possible to provide pellets that are less likely to crack during production, a molded article formed from the pellets, and a method for producing the pellets.
  • a rayon fiber bundle is sometimes referred to as a rayon fiber bundle.
  • a bundle of 2,000 to 30,000 rayon fibers arranged in parallel in the fiber length direction is used.
  • the pelletizer 3 cuts to a desired pellet length.
  • the pelletizer 3 cuts the strand by rotating in the direction of A in FIG.
  • energy is applied to the strand. If this energy is not well absorbed by the strand before the strand breaks, the energy cannot be absorbed at the interface between the thermoplastic resin and the rayon fiber or between the thermoplastic resin, and the pellets obtained are presumed to crack.
  • fibers other than glass fibers are good as reinforcing fibers.
  • the pellets of this embodiment contain a thermoplastic resin.
  • the thermoplastic resin used in this embodiment has a melt flow rate (MFR) of 70 to 200 g/10 minutes when measured at a temperature of 230° C. and a load of 2.16 kg according to JIS K 7210.
  • MFR melt flow rate
  • the rayon fiber bundle can be easily impregnated with the thermoplastic resin, and cracking of the pellets during production can be effectively suppressed.
  • the resin becomes hard, and cracking of pellets during production can be effectively suppressed.
  • the MFR of the thermoplastic resin is preferably 72 g/10 min or more, more preferably 75 g/10 min or more, still more preferably 78 g/10 min or more, and 80 g/10 min or more. More preferably, it may be 90 g/10 minutes or more, or 100 g/10 minutes or more.
  • the MFR of the thermoplastic resin is also preferably 200 g/10 min or less, more preferably 190 g/10 min or less, even more preferably 180 g/10 min or less, and 170 g/10 min or less. is more preferably 160 g/10 minutes or less, and may be 140 g/10 minutes or less, or 120 g/10 minutes or less.
  • thermoplastic resin used in the present embodiment is not particularly defined as long as it satisfies the above MFR, but polyolefin resin, polyamide resin, styrene resin, polycarbonate resin, polyvinyl chloride, polyvinylidene chloride, acrylic resin, polyester resin, Polyacetal resins and polyphenylene sulfide resins can be mentioned, preferably containing at least one selected from polyolefin resins and polyacetal resins, more preferably containing at least one selected from polypropylene resins and polyacetal resins, polypropylene More preferably, it contains a resin.
  • Polyolefin resins include polypropylene resin, polyethylene resin, poly-1-butene resin, polyisobutylene resin, ethylene-propylene copolymer, ethylene-propylene-diene terpolymer (however, the diene component as a raw material is 10 mass % or less), polymethylpentene resin, ethylene and/or propylene (however, these components as raw materials are 50 mol% or more) and other copolymer monomers (vinyl acetate, methacrylate alkyl ester, acrylic acid alkyl ester, aromatic Random, block, and graft copolymers with vinyl, etc.) can be used.
  • a polyolefin resin When a polyolefin resin is used as the thermoplastic resin, part of it is preferably an acid-modified polyolefin resin in order to facilitate the impregnation of the rayon fiber bundle.
  • the acid-modified polyolefin resin maleic anhydride and/or acid-modified polyolefin resin modified with maleic acid (preferably maleic anhydride-modified polypropylene resin) is preferable.
  • the acid content in the thermoplastic resin is 0.005 to 0.5 mass% on average in terms of maleic anhydride. A range is preferred.
  • the thermoplastic resin contains an acid-unmodified polypropylene resin and a maleic anhydride-modified polypropylene resin.
  • the blend ratio is 5 parts by mass or more of the acid-unmodified polyolefin resin per 1 part by mass of the acid-modified polyolefin resin. preferably 7 parts by mass or more, more preferably 10 parts by mass or more, preferably 99 parts by mass or less, more preferably 70 parts by mass or less, It is more preferably 60 parts by mass or less, even more preferably 50 parts by mass or less, and may be 40 parts by mass or less.
  • the thermoplastic resin may contain only one type each of the acid-unmodified polyolefin resin and the acid-modified polyolefin resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • thermoplastic resin contains a polyacetal resin
  • its type is not particularly limited.
  • a copolymer containing a divalent oxyalkylene group having 2 to 6 carbon atoms as a structural unit may also be used.
  • Examples of the oxyalkylene group having 2 to 6 carbon atoms include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • the ratio of the oxyalkylene group having 2 to 6 carbon atoms to the total number of moles of the oxymethylene group and the oxyalkylene group having 2 to 6 carbon atoms is not particularly limited, and is 0.5 to 10 mol. %.
  • Trioxane is usually used as the main raw material to produce the above polyacetal resin.
  • a cyclic formal or a cyclic ether can be used.
  • Specific examples of cyclic formals include 1,3-dioxolane, 1,3-dioxane, 1,3-dioxepane, 1,3-dioxocane, 1,3,5-trioxepane, 1,3,6-trioxocane and the like.
  • Specific examples of cyclic ethers include ethylene oxide, propylene oxide and butylene oxide.
  • 1,3-dioxolane may be used as the main raw material, and in order to introduce an oxypropylene group, 1,3-dioxane may be used as the main raw material. In order to introduce an oxybutylene group, 1,3-dioxepane may be used as the main raw material.
  • the amount of hemiformal terminal groups, the amount of formyl terminal groups, and the amount of terminal groups unstable to heat, acid and base are small.
  • the hemiformal terminal group is represented by --OCH2OH
  • the formyl terminal group is represented by --CHO.
  • the thermoplastic resin in this embodiment may contain a resin additive within the scope of the present invention. Specifically, stabilizers (thermal stabilizers, antioxidants, etc.), ultraviolet absorbers, antistatic agents, flame retardants, flame retardant aids, anti-dripping agents, anti-fogging agents, anti-blocking agents, fluidity improvers. , plasticizers, dispersants, antibacterial agents, and the like. When these components are blended, the total amount is preferably 10% by mass or less of the thermoplastic resin, and may be 5% by mass or less.
  • the content of the thermoplastic resin in the pellets of the present embodiment is preferably 60% by mass or more, more preferably 62% by mass or more, further preferably 64% by mass or more, and 66% by mass or more. It is more preferable that the content is 67% by mass or more. By making it more than the said lower limit, there exists a tendency for intensity
  • the pellets of the present embodiment may contain only one type of thermoplastic resin, or may contain two or more types thereof. When two or more types are included, the total amount is preferably within the above range.
  • the pellet of this embodiment contains a bundle of 2,000 to 30,000 rayon fibers arranged in parallel in the fiber length direction. In this way, a bundle of 2,000 to 30,000 rayon fibers aligned in the length direction is used and cut as described above to obtain pellets containing long fibers.
  • the length of the pellet is usually the length of the rayon fiber, there is a tendency to easily obtain a molded article having excellent mechanical strength.
  • the rayon fiber used in this embodiment has a number average fiber diameter of 5 to 30 ⁇ m.
  • the number average fiber diameter of the rayon fibers is preferably 7 ⁇ m or more, more preferably 9 ⁇ m or more, still more preferably 10 ⁇ m or more, and even more preferably 11 ⁇ m or more.
  • the number average fiber diameter of the rayon fibers is preferably 28 ⁇ m or less, more preferably 25 ⁇ m or less, even more preferably 20 ⁇ m or less, even more preferably 15 ⁇ m or less, and 13 ⁇ m or less. It is even more preferable to have
  • the rayon fiber used in this embodiment preferably has a degree of X-ray orientation of 90% or more.
  • the degree of X-ray orientation is preferably 91% or more, more preferably 92% or more. Although the upper limit of the degree of X orientation may be 100%, it is practically 99% or less, 98% or less, 97% or less, 96% or less, or 95% or less.
  • the apparent Young's modulus of the rayon fiber used in the present embodiment is preferably 10 GPa or more, more preferably 12 GPa or more, still more preferably 14 GPa or more, even more preferably 15 GPa or more, and 16 GPa.
  • the above is even more preferable.
  • the apparent Young's modulus of the rayon fiber is preferably 50 GPa or less, more preferably 45 GPa or less, even more preferably 40 GPa or less, even more preferably 36 Pa or less, and 35 GPa or less. It is even more preferable to have By making it equal to or less than the upper limit, the effect of reducing pellet cracking tends to be further improved.
  • the tensile elongation of the rayon fiber used in the present embodiment is preferably 3% or more, more preferably 5% or more, even more preferably 7% or more, and even more preferably 9% or more. Preferably, it is 11% or more, and even more preferably 13% or more.
  • the tensile elongation of the rayon fiber is preferably 20% or less, more preferably 19% or less, even more preferably 18% or less, and even more preferably 17% or less.
  • Raw materials for the rayon fibers used in this embodiment include viscose rayon, polynosic, modal, cupra, lyocell (Tencel), Bocell and FORTIZAN (manufactured by CELANESE) obtained by stretching cellulose acetate and then saponifying it with an alkali. fiber) etc. can be used.
  • the content of rayon fiber in the pellets of the present embodiment is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and 30 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin. is more preferred. By setting the content to the above lower limit or more, the strength, rigidity and impact resistance of the resulting molded article tend to be further improved.
  • the content of rayon fiber in the pellets of the present embodiment is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, and 80 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. more preferably 70 parts by mass or less, and even more preferably 60 parts by mass or less.
  • the content of rayon fibers in the pellets of the present embodiment is preferably 10% by mass or more, more preferably 15% by mass or more, further preferably 16% by mass or more, and 17% by mass or more. It is more preferably 18% by mass or more, and even more preferably 19% by mass or more. By setting the content to the above lower limit or more, the strength, rigidity and impact resistance of the resulting molded article tend to be further improved.
  • the content of rayon fiber in the pellets of the present embodiment is preferably 40% by mass or less, more preferably 38% by mass or less, further preferably 36% by mass or less, and 35% by mass. is more preferably 34% by mass or less, and even more preferably 33% by mass or less.
  • the pellets of the present embodiment may contain only one type of rayon fiber, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • ⁇ Pellets> It is a pellet containing a thermoplastic resin and a bundle of 2,000 to 30,000 rayon fibers arranged in parallel in the fiber length direction.
  • the rayon fiber bundle is impregnated with at least a portion of the thermoplastic resin.
  • the thermoplastic resin is impregnated to the center of the rayon fiber bundle, but there may be a region in the center of the rayon fiber bundle that is not impregnated with the thermoplastic resin.
  • the pellets of this embodiment have a number average length of 3 to 30 mm. Moreover, the number average fiber length of the rayon fibers contained in the pellets is usually 3 to 30 mm.
  • Such pellets are also called long fiber pellets and are known as fibers in which the reinforcing fibers in the pellet have a long fiber length.
  • the number average length of the pellets is preferably 4 mm or more, preferably 25 mm or less, more preferably 20 mm or less, further preferably 15 mm or less, and 10 mm or less. is more preferably 8 mm or less, and may be 7 mm or less.
  • the number average fiber length of the rayon fibers contained in the pellets is preferably the same as the number average length of the pellets.
  • the above-mentioned "same" is intended to include things considered to be the same in the technical field of the present invention, in addition to being the same in a geometric sense.
  • the number average fiber length of the rayon fibers in the pellet is the same as the preferred range of the pellet length.
  • the number of rayon fibers is preferably 3,000 or more, more preferably 25,000 or less, even more preferably 20,000 or less, and 15,000 or less. more preferably 10,000 or less, even more preferably 8,000 or less, and may be 7,000 or less, or 6,000 or less.
  • the total content of the thermoplastic resin and the rayon fiber preferably accounts for 85% by mass or more of the pellet, more preferably 90% by mass or more, and 95% by mass or more. is more preferable, it is still more preferable that it accounts for 98% by mass or more, and it is still more preferable that it accounts for 99% by mass or more.
  • the pellet of the present embodiment is obtained by impregnating a bundle of 2,000 to 30,000 rayon fibers aligned in the length direction with the thermoplastic resin in a molten state and integrating them, and then a number average It can be produced by cutting to a length of 3 to 30 mm. More specifically, the pellets of the present embodiment are obtained by attaching 2,000 to 30,000 rayon fibers aligned in the length direction to a bundle of 2,000 to 30,000 rayon fibers in a molten state. It can be taken as and manufactured by cutting the strand with a pelletizer.
  • Strands (rayon fiber bundles of long fibers impregnated with a thermoplastic resin) and pellets can be produced from the strands by other known production methods than those described above.
  • JP-A-7-251437, JP-A-8-118490, etc. can be applied.
  • the pellet of this embodiment can be molded into a molded article.
  • other components can be blended as necessary.
  • Other components are exemplified by thermoplastic resins and resin additives.
  • thermoplastic resins include polyolefin resins, polyamide resins, styrene resins, polycarbonate resins, polyvinyl chloride, polyvinylidene chloride, acrylic resins, polyester resins, polyacetal resins, and polyphenylene sulfide resins. At least one selected is preferred.
  • resin additives include low shrinkage agents, flame retardants, flame retardant aids, plasticizers, antioxidants, ultraviolet absorbers, colorants, pigments, fillers, and the like.
  • the pellets of this embodiment may also be used as a pellet blend together with other thermoplastic resin pellets.
  • the ratio of rayon fibers in the resulting molded article can also be adjusted. Since the pellets of the present embodiment have good dispersibility in the molten resin, the rayon fibers can be uniformly dispersed in the molded article obtained.
  • Molded articles of the present embodiments are formed from the pellets of the present embodiments and/or the pellet blends described above.
  • the molded article of the present embodiment can use rayon fibers in which the cellulose molecules are highly oriented in the longitudinal direction of the fibers (for example, the degree of X-ray orientation is 90% or more), so that the strength of the fibers is high, and damage can occur easily. Shortening of rayon fibers is effectively suppressed.
  • the mechanical strength (flexural elastic modulus, etc.) of the resulting molded product can be increased.
  • the molded article obtained from the pellets of the present embodiment contains rayon fibers having a predetermined apparent Young's modulus, and is lighter than those containing inorganic fibers such as glass fibers ( That is, since the density can be reduced, a molded article having a large specific elastic modulus (bending elastic modulus/density) can be obtained.
  • the molded product of the present embodiment can have a desired shape according to the application, but as described above, since the specific elastic modulus can be increased, when it is made into a thin plate-shaped molded product, it is lightweight and One with high mechanical strength can be obtained. When the molded product of the present embodiment is made into a thin plate-like molded product, high mechanical strength can be obtained even when the thickness is set to 1 to 5 mm, for example. In addition, since the molded article formed from the pellets of the present embodiment contains rayon fibers, it does not leave a combustion residue like glass fibers when burned.
  • the molded product of this embodiment is lightweight and has high mechanical strength (especially specific elastic modulus), so it is a substitute for metal parts used in various fields such as electrical and electronic equipment, communication equipment, automobiles, building materials, and daily necessities. It can be used as a product, and is particularly suitable for housings of various devices and plate-like exterior materials.
  • Raw material PP1 Polypropylene resin (manufacturer: Japan Polypro, product number: BC10HRF, MFR 100 g / 10 minutes)
  • PP2 Dry blend of polypropylene resin (manufacturer: Japan Polypro, product number: BC10HRF, MFR 100g/10 minutes) and soft polypropylene (manufacturer: Idemitsu Kosan, product number: Elmodu S-600, MFR 2600g/10 minutes) at a mass ratio of 100/30. bottom.
  • the MFR after blending was 150 g/10 min.
  • PP3 Dry blend of polypropylene resin (manufacturer: Japan Polypro, product number: BC10HRF, MFR 100 g/10 minutes) and soft polypropylene (manufacturer: Idemitsu Kosan, product number: Elmodu S-600, MFR 2600 g/10 minutes) at a mass ratio of 100/70 bottom.
  • the MFR after blending was 300 g/10 min.
  • PP4 polypropylene resin (manufacturer: Japan Polypro, product number: BC05B, MFR50g/10 minutes)
  • PP5 polypropylene resin (manufacturer: Japan Polypro, product number: BC06C, MFR60g/10 minutes)
  • PP6 polypropylene resin (manufacturer: Japan Polypro, product number: BC08F, MFR75g/10 minutes)
  • MAPP maleic anhydride-modified polypropylene resin, manufacturer: Sanyo Chemical Industries, product number: Yumex 1001, MFR 230 g/10 minutes
  • Rayon fiber bundle manufacturer: Cordenka, product number: RT700, number average fiber diameter 13 ⁇ m, degree of X-ray orientation 92%, number of fibers 1000, apparent Young's modulus 16 GPa, tensile elongation 16%
  • Glass fiber bundle Manufacturer: Nippon Electric Glass, product number: T-431N, number average fiber diameter 17 ⁇ m, number of fibers 4000, apparent Young's modulus 74 GPa, tensile elongation 3%
  • melt flow rate MFR
  • the melt flow rate of the thermoplastic resin and resin component was measured according to JIS K 7210 at a temperature of 230°C and a load of 2.16 kg. The unit is g/10 minutes.
  • ⁇ Tensile elongation> The tensile elongation of the rayon fiber was measured in accordance with JIS L1013 at a sample fiber length of 2.5 cm and a crosshead speed of 2.5 cm/min after conditioning for one week in an atmosphere of 20°C and a relative humidity of 65%. .
  • the unit is %.
  • Examples 1-4, Comparative Examples 1-4 ⁇ Production of pellets> Among the components shown in Table 1, the components excluding rayon fiber are added from the top feed port of a twin-screw extruder (trade name: AS type 30 m / m, manufactured by Nakatani Kikai Co., Ltd.) The ratio shown in Table 1 (unit: mass%) ), and melt-kneaded at a set cylinder temperature of 200° C. and a screw rotation speed of 10 rpm to obtain a melt of the resin component.
  • a twin-screw extruder trade name: AS type 30 m / m, manufactured by Nakatani Kikai Co., Ltd.
  • 31 is a roving
  • 10 is a melt of a resin component
  • 22 is an impregnation die
  • 41, 42, 43 and 44 are impregnation rolls
  • 40B is a guide roll
  • 24 is a nozzle
  • 32 indicate each strand.
  • the pellets of this embodiment were able to effectively suppress pellet cracking during production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

製造時に割れが生じにくいペレット、前記ペレットから形成された成形品、および、ペレットの製造方法の提供。熱可塑性樹脂、および、繊維長方向に並列している2,000~30,000本のレーヨン繊維の束を含むペレットであって、熱可塑性樹脂の少なくとも一部が前記レーヨン繊維の束に含浸しており、熱可塑性樹脂のJIS K 7210に従った、温度230℃、荷重2.16kgで測定した際のメルトフローレート(MFR)が70~200g/10分であり、レーヨン繊維は、数平均繊維径が5~30μmであり、ペレットの数平均長さが3~30mmである、ペレット。

Description

ペレット、成形品およびペレットの製造方法
 本発明は、ペレット、成形品およびペレットの製造方法に関する。
 軽量化の目的で金属代替品として熱可塑性樹脂から形成された成形品が使用されている。このような熱可塑性樹脂から形成された成形品の機械的強度を高めるため、強化繊維が配合された樹脂組成物の製造や開発が進められている。
 例えば、繊維を束ねた繊維束と溶融樹脂をダイスに供給し、ダイス内で繊維束と溶融樹脂とを接触させて繊維束に溶融樹脂を含浸させる工程と、前記溶融樹脂を含浸させた繊維束をダイスから引き出し、冷却、切断する工程と、を有する繊維強化樹脂ペレットの製造方法において、前記繊維として、繊維断面の長径と短径の比(長径/短径)が2.5~6である繊維を使用することを特徴とする繊維強化樹脂ペレットの製造方法が開示されている。
特開2005-349697号公報
 上述の通り、熱可塑性樹脂をガラス繊維等の強化繊維束に含浸させて、長繊維ストランドとして引き取った後、ペレタイザーにてカットし、ペレットを製造することが行われている。しかしながら、このようにして得られるペレットに割れが生じやすい場合があることが分かった。
 本発明はかかる課題を解決することを目的とするものであって、製造時に割れが生じにくいペレット、前記ペレットから形成された成形品、および、ペレットの製造方法を提供することを目的とする。
 上記課題のもと、本発明者が検討を行った結果、強化繊維として、所定の条件を満たすレーヨン繊維を用い、かつ、含浸させる熱可塑性樹脂として、所定のMFRを有するものを用い、さらに、ペレット長を調整することにより、ペレットの割れを効果的に抑制しうることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>熱可塑性樹脂、および、繊維長方向に並列している2,000~30,000本のレーヨン繊維の束を含むペレットであって、
前記熱可塑性樹脂の少なくとも一部が前記レーヨン繊維の束に含浸しており、
前記熱可塑性樹脂のJIS K 7210に従った、温度230℃、荷重2.16kgで測定した際のメルトフローレート(MFR)が70~200g/10分であり、
前記レーヨン繊維は、数平均繊維径が5~30μmであり、
前記ペレットの数平均長さが3~30mmである、ペレット。
<2>前記熱可塑性樹脂が、ポリプロピレン樹脂およびポリアセタール樹脂から選択される少なくとも1種を含む、<1>に記載のペレット。
<3>前記熱可塑性樹脂が、酸未変性ポリプロピレン樹脂と、無水マレイン酸および/またはマレイン酸で変性された酸変性ポリプロピレン樹脂とを含む、<1>または<2>に記載のペレット。
<4>前記ペレットが、レーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに前記熱可塑性樹脂を溶融させた状態で含浸させて一体化した後に、数平均長さが3~30mmとなるように切断したものである、<1>~<3>のいずれか1つに記載のペレット。
<5>前記ペレットに含まれるレーヨン繊維の数平均繊維長が3~30mmである、<1>~<4>のいずれか1つに記載のペレット。
<6>前記レーヨン繊維の見掛ヤング率が10~50GPaである、<1>~<5>のいずれか1つに記載のペレット。
<7>前記レーヨン繊維の引張伸び率が3~20%である、<1>~<6>のいずれか1つに記載のペレット。
<8>前記ペレットにおいて、前記熱可塑性樹脂の含有量が90~60質量%であり、前記レーヨン繊維の含有量が40~10質量%である、<1>~<7>のいずれか1つに記載のペレット。
<9>前記レーヨン繊維のX線配向度が90%以上である、<1>~<8>のいずれか1つに記載のペレット。
<10><1>~<9>のいずれか1つに記載のペレットと、他の熱可塑性樹脂ペレットとを含む、ペレットブレンド物。
<11><1>~<9>のいずれか1つに記載のペレット、および/または、<10に記載のペレットブレンド物から形成された成形品。
<12>レーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに熱可塑性樹脂を溶融させた状態で含浸させて一体化した後に、数平均長さが3~30mmとなるように切断することを含む、<1>~<9>のいずれか1つに記載のペレットの製造方法。
 本発明により、製造時に割れが生じにくいペレット、前記ペレットから形成された成形品、および、ペレットの製造方法を提供可能になった。
ペレットの製造方法(ストランドをカットする部分)を示す概略図である。 実施例のペレットの製造装置を示す概略図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書で示す規格が年度によって、測定方法等が異なる場合、特に述べない限り、2021年1月1日時点における規格に基づくものとする。
 図1または2は模式図であり、縮尺度などは実際と整合していないこともある。
 本実施形態のペレットは、熱可塑性樹脂、および、繊維長方向に並列している2,000~30,000本のレーヨン繊維の束を含むペレットであって、前記熱可塑性樹脂の少なくとも一部が前記レーヨン繊維の束に含浸しており、前記熱可塑性樹脂のJIS K 7210に従った、温度230℃、荷重2.16kgで測定した際のメルトフローレート(MFR)が70~200g/10分であり、前記レーヨン繊維は、数平均繊維径が5~30μmであり、前記ペレットの数平均長さが3~30mmであることを特徴とする。
 このような構成とすることにより、製造時に割れが生じにくいペレット、前記ペレットから形成された成形品、および、ペレットの製造方法を提供することが可能になる。
 本明細書では、レーヨン繊維の束をレーヨン繊維束ということがある。
 本実施形態では、繊維長方向に並列している2,000~30,000本のレーヨン繊維の束を用いる。このような長繊維束に、熱可塑性樹脂を含浸させてペレットとする場合、通常は、図1に示すように、熱可塑性樹脂が含浸した繊維束1を、ロール2等で、ストランド状に引き取り、ペレタイザー3にて所望のペレット長となるようにカットする。ペレタイザー3は、図1では、Aの方向に回転することによって、ストランドをカットする。ここで、ストランドのカットの際には、ストランドに対してエネルギーがかかる。このエネルギーが、ストランドが切れる前にストランドに上手く吸収されないと、熱可塑性樹脂とレーヨン繊維の界面や熱可塑性樹脂間で前記エネルギーが吸収できずに、得られるペレットが割れてしまうと推定された。この問題を解決するために、強化繊維として、ガラス繊維以外の繊維がよいことが分かった。すなわち、強化繊維として、ガラス繊維を用いると、ペレットの割れが生じやすいことが分かった。これは、ガラス繊維は、剛性(例えば、見掛ヤング率)が高く、靭性(例えば、引張伸び率)が低すぎるためと推測された。一方、例えば、ポリエステル繊維のように剛性が低すぎる繊維は、強化繊維として機能しない。本実施形態においては、剛性と靭性のバランスの取れた繊維であるレーヨン繊維を用いることによりペレットの割れを抑制できたと推測される。
 さらに、含浸させる熱可塑性樹脂のMFRを調整することにより、ペレットの割れを効果的に抑制できた。すなわち、含浸させる熱可塑性樹脂のMFRが低いと、樹脂成分がレーヨン繊維の束に含浸しにくくなり、引取り機やペレタイザーを通過する際、ペレット割れが多発することが分かった。一方、含浸させる熱可塑性樹脂のMFRが高いと樹脂がもろくなって、ペレットが割れやすくなることも分かった。本実施形態では、所定のMFRを満たす熱可塑性樹脂を用いることにより、ペレットの割れを抑制できたと推測される。
<熱可塑性樹脂>
 本実施形態のペレットは熱可塑性樹脂を含む。
 本実施形態で用いる熱可塑性樹脂は、JIS K 7210に従った、温度230℃、荷重2.16kgで測定した際のメルトフローレート(MFR)が70~200g/10分である。前記MFRを下限値以上とすることにより、熱可塑性樹脂がレーヨン繊維束に含浸しやすくすることができ、製造時のペレットの割れを効果的に抑制できる。また、前記MFRを上限値以下とすることにより、樹脂が硬くなり、製造時のペレットの割れを効果的に抑制できる。
 前記熱可塑性樹脂のMFRは、72g/10分以上であることが好ましく、75g/10分以上であることがより好ましく、78g/10分以上であることがさらに好ましく、80g/10分以上であることが一層好ましく、さらには、90g/10分以上、100g/10分以上であってもよい。前記熱可塑性樹脂のMFRは、また、200g/10分以下であることが好ましく、190g/10分以下であることがより好ましく、180g/10分以下であることがさらに好ましく、170g/10分以下であることが一層好ましく、160g/10分以下であることがより一層好ましく、140g/10分以下、120g/10分以下であってもよい。
 本実施形態のペレットが熱可塑性樹脂を2種以上含む場合、混合物のMFRとする。
 本実施形態で用いる熱可塑性樹脂の種類は、上記MFRを満たす限り特に定めるものではないが、ポリオレフィン樹脂、ポリアミド樹脂、スチレン樹脂、ポリカーボネート樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂を挙げることができ、ポリオレフィン樹脂およびポリアセタール樹脂から選択される少なくとも1種を含むことが好ましく、ポリプロピレン樹脂およびポリアセタール樹脂から選択される少なくとも1種を含むことがより好ましく、ポリプロピレン樹脂を含むことがさらに好ましい。
 ポリオレフィン樹脂としては、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ-1-ブテン樹脂、ポリイソブチレン樹脂、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン三元共重合体(ただし、原料としてのジエン成分が10質量%以下)、ポリメチルペンテン樹脂、エチレンおよび/またはプロピレン(ただし、原料としてこれらの成分が50モル%以上)と他の共重合モノマー(酢酸ビニル、メタクリル酸アルキルエステル、アクリル酸アルキルエステル、芳香族ビニル等)とのランダム、ブロック、グラフト共重合体等を用いることができる。
 熱可塑性樹脂として、ポリオレフィン樹脂を使用するときは、レーヨン繊維束に含浸させやすくするため、一部は、酸変性ポリオレフィン樹脂であることが好ましい。
 酸変性ポリオレフィン樹脂としては、無水マレイン酸および/またはマレイン酸で変性された酸変性ポリオレフィン樹脂(好ましくは無水マレイン酸変性ポリプロピレン樹脂)が好ましい。
 本実施形態において、ポリオレフィン樹脂として、酸未変性ポリオレフィン樹脂と、酸変性ポリオレフィン樹脂を併用するとき、熱可塑性樹脂中の酸量が、無水マレイン酸換算で平均0.005~0.5質量%の範囲であることが好ましい。
 本実施形態では、特に、熱可塑性樹脂が、酸未変性ポリプロピレン樹脂と無水マレイン酸変性ポリプロピレン樹脂とを含むことが好ましい。
 熱可塑性樹脂が、酸未変性ポリオレフィン樹脂と酸変性ポリオレフィン樹脂を含む場合、そのブレンド比(質量比率)は、酸変性ポリオレフィン樹脂1質量部に対し、酸未変性ポリオレフィン樹脂が、5質量部以上であることが好ましく、7質量部以上であることがより好ましく、10質量部以上であることがさらに好ましく、また、99質量部以下であることが好ましく、70質量部以下であることがより好ましく、60質量部以下であることがさらに好ましく、50質量部以下であることが一層好ましく、40質量部以下であってもよい。
 本実施形態において熱可塑性樹脂は、酸未変性ポリオレフィン樹脂および酸変性ポリオレフィン樹脂をそれぞれ1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 一方、熱可塑性樹脂がポリアセタール樹脂を含む場合、その種類は特に限定されるものではなく、2価のオキシメチレン基のみを構成単位として含むホモポリマーであっても、2価のオキシメチレン基と、炭素数が2~6の2価のオキシアルキレン基とを構成単位として含むコポリマーであってもよい。
 炭素数が2~6のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、および、オキシブチレン基などが挙げられる。
 ポリアセタール樹脂においては、オキシメチレン基および炭素数2~6のオキシアルキレン基の総モル数に占める炭素数2~6のオキシアルキレン基の割合は特に限定されるものではなく、0.5~10モル%であればよい。
 上記ポリアセタール樹脂を製造するためには通常、主原料としてトリオキサンが用いられる。また、ポリアセタール樹脂中に炭素数2~6のオキシアルキレン基を導入するには、環状ホルマールや環状エーテルを用いることができる。環状ホルマールの具体例としては、1,3-ジオキソラン、1,3-ジオキサン、1,3-ジオキセパン、1,3-ジオキソカン、1,3,5-トリオキセパン、1,3,6-トリオキソカンなどが挙げられ、環状エーテルの具体例としては、エチレンオキシド、プロピレンオキシドおよびブチレンオキシドなどが挙げられる。ポリアセタール樹脂中にオキシエチレン基を導入するには、主原料として、1,3-ジオキソランを用いればよく、オキシプロピレン基を導入するには、主原料として、1,3-ジオキサンを用いればよく、オキシブチレン基を導入するには、主原料として、1,3-ジオキセパンを用いればよい。なお、ポリアセタール樹脂においては、ヘミホルマール末端基量、ホルミル末端基量、熱や酸、塩基に対して不安定な末端基量が少ない方がよい。ここで、ヘミホルマール末端基とは、-OCH2OHで表されるものであり、ホルミル末端基とは-CHOで表されるものである。
 本実施形態における熱可塑性樹脂は、本発明の趣旨を逸脱しない範囲で樹脂添加剤を含んでいてもよい。具体的には、安定剤(熱安定剤、酸化防止剤等)、紫外線吸収剤、帯電防止剤、難燃剤、難燃助剤、滴下防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤等が挙げられる。これらの成分を配合する場合、その総量が熱可塑性樹脂の10質量%以下の割合であることが好ましく、5質量%以下であってもよい。
 本実施形態のペレットにおける熱可塑性樹脂の含有量は、60質量%以上であることが好ましく、62質量%以上であることがより好ましく、64質量%以上であることがさらに好ましく、66質量%以上であることが一層好ましく、67質量%以上あることがより一層好ましい。前記下限値以上とすることにより、強度、剛性、耐衝撃性が向上する傾向にある。また、本実施形態のペレットにおける熱可塑性樹脂の含有量は、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることがさらに好ましく、75質量%以下であることが一層好ましく、70質量%以下であることがより一層好ましい。前記上限値以下とすることにより、含浸性やストランド切れの抑制効果が向上する傾向にある。
 本実施形態のペレットは、熱可塑性樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<レーヨン繊維>
 本実施形態のペレットは、繊維長方向に並列している2,000~30,000本のレーヨン繊維の束を含む。このように、レーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものを用い、上述の通り、カットすることにより、長繊維を含むペレットが得られる。特に、通常は、ペレット長がレーヨン繊維長となるため、機械的強度に優れた成形品がより得られやすい傾向にある。
 本実施形態で用いるレーヨン繊維は、数平均繊維径が5~30μmである。前記下限値以上とすることにより、熱可塑性樹脂のレーヨン繊維への含浸性やストランド切れの抑制効果がより向上する傾向にある。また、前記上限値以下とすることにより、強化繊維としての補強効果より向上する傾向にある。
 前記レーヨン繊維の数平均繊維径は、7μm以上であることが好ましく、9μm以上であることがさらに好ましく、10μm以上であることが一層好ましく、11μm以上であることがより一層好ましい。また、前記レーヨン繊維の数平均繊維径は、28μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることがさらに好ましく、15μm以下であることが一層好ましく、13μm以下であることがより一層好ましい。
 本実施形態で用いるレーヨン繊維は、X線配向度が90%以上であることが好ましい。X線配向度を90%以上とすることにより、セルロース分子が繊維の長手方向に高配向したものとなり、見掛ヤング率が高く、熱可塑性樹脂との界面強度も高く、長繊維としての特性にも優れる繊維となる。すなわち、長繊維強化樹脂材料用の繊維として非常に優れている。前記X線配向度は、91%以上であることが好ましく、92%以上であることがより好ましい。前記X配向度の上限は100%であってもよいが、99%以下、98%以下、97%以下、96%以下、95%以下が実際的である。
 本実施形態で用いるレーヨン繊維の見掛ヤング率は、10GPa以上であることが好ましく、12GPa以上であることがより好ましく、14GPa以上であることがさらに好ましく、15GPa以上であることが一層好ましく、16GPa以上であることがより一層好ましい。前記下限値以上とすることにより、ペレットの剛性がより向上する傾向にある。また、前記レーヨン繊維の見掛ヤング率は、50GPa以下であることが好ましく、45GPa以下であることがより好ましく、40GPa以下であることがさらに好ましく、36Pa以下であることが一層好ましく、35GPa以下であることがより一層好ましい。前記上限値以下とすることにより、ペレット割れの低減効果がより向上する傾向にある。
 本実施形態で用いるレーヨン繊維の引張伸び率は、3%以上であることが好ましく、5%以上であることがより好ましく、7%以上であることがさらに好ましく、9%以上であることが一層好ましく、11%以上であることがより一層好ましく、13%以上であることがさらに一層好ましい。前記下限値以上とすることにより、ペレット割れの低減効果がより向上する傾向にある。また、前記レーヨン繊維の引張伸び率は、20%以下であることが好ましく、19%以下であることがより好ましく、18%以下であることがさらに好ましく、17%以下であることが一層好ましい。前記上限値以下とすることにより、ペレットの剛性がより向上する傾向にある。
 特に、本実施形態で用いるレーヨン繊維が上記配向度と見掛ヤング率と引張伸び率を満たすことにより、得られる成形品の機械的強度が向上する。
 本実施形態で用いるレーヨン繊維の原料としては、ビスコースレーヨン、ポリノジック、モダール、キュプラ、リヨセル(テンセル)、BocellやFORTIZAN(〔CELANESE社製〕セルロースアセテートを延伸した後、アルカリでケン化させて得られる繊維)等を使用することができる。
 本実施形態のペレットにおけるレーヨン繊維の含有量は、熱可塑性樹脂100質量部に対し、10質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。前記下限値以上とすることにより、得られる成形品の強度、剛性、耐衝撃性がより向上する傾向にある。また、本実施形態のペレットにおけるレーヨン繊維の含有量は、熱可塑性樹脂100質量部に対し、100質量部以下であることが好ましく、90質量部以下であることがより好ましく、80質量部以下であることがさらに好ましく、70質量部以下であることが一層好ましく、60質量部以下であることがより一層好ましい。前記上限値以下とすることにより、得られる成形品のペレット割れの低減効果がより向上する傾向にある。
 本実施形態のペレットにおけるレーヨン繊維の含有量は、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、16質量%以上であることがさらに好ましく、17質量%以上であることが一層好ましく、18質量%以上あることがより一層好ましく、19質量%以上であることがさらに一層好ましい。前記下限値以上とすることにより、得られる成形品の強度、剛性、耐衝撃性がより向上する傾向にある。また、本実施形態のペレットにおけるレーヨン繊維の含有量は、40質量%以下であることが好ましく、38質量%以下であることがより好ましく、36質量%以下であることがさらに好ましく、35質量%以下であることが一層好ましく、34質量%以下であることがより一層好ましく、33質量%以下であることがさらに一層好ましい。前記上限値以下とすることにより、得られる成形品のペレット割れの低減効果がより向上する傾向にある。
 本実施形態のペレットは、レーヨン繊維を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<ペレット>
 熱可塑性樹脂、および、繊維長方向に並列している2,000~30,000本のレーヨン繊維の束を含むペレットである。本実施形態のペレットは、前記熱可塑性樹脂の少なくとも一部が前記レーヨン繊維の束に含浸している。熱可塑性樹脂はレーヨン繊維束の中心部まで含浸していることが理想であるが、レーヨン繊維束の中心部に熱可塑性樹脂が含浸していない領域があってもよい。本実施形態のペレットは、数平均長さが3~30mmである。また、通常は、ペレットに含まれるレーヨン繊維の数平均繊維長が3~30mmである。このようなペレットは、長繊維ペレットとも称され、ペレット中の強化繊維の繊維長が長い繊維として知られる。
 本実施形態において、ペレットの数平均長さが4mm以上であることが好ましく、また、25mm以下であることが好ましく、20mm以下であることがより好ましく、15mm以下であることがさらに好ましく、10mm以下であることが一層好ましく、8mm以下であることがより一層好ましく、7mm以下であってもよい。
 本実施形態においてペレットに含まれるレーヨン繊維の数平均繊維長は、ペレットの数平均長さと同じであることが好ましい。前記「同じ」とは、幾何学的な意味で同じの場合の他、本発明の技術分野において同じと見なされるものを含む趣旨である。例えば、詳細を後述するとおり、レーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに熱可塑性樹脂を溶融させた状態で含浸させて一体化した後に、数平均長さが3~30mmとなるように切断したものは、ペレットの数平均長さとレーヨン繊維の数平均繊維長が同じであると言える。
 したがって、本実施形態において、ペレット中のレーヨン繊維の数平均繊維長の好ましい範囲は、前記ペレット長の好ましい範囲と同じである。
 レーヨン繊維束を構成するレーヨン繊維の本数は、30,000本を超えると繊維束の中心部にまで溶融させた熱可塑性樹脂を含浸できなくなり、繊維強化樹脂組成物を成形加工した場合に、繊維の分散が悪くなり外観や機械的強度が悪くなる。レーヨン繊維の本数が2,000本より少なくなると、樹脂含浸繊維束の製造時に繊維束が切れる等の製造上の問題が発生する。レーヨン繊維の本数は好ましくは3,000本以上であることが好ましく、また、25,000本以下であることがより好ましく、20,000本以下であることがさらに好ましく、15,000本以下であることが一層好ましく、10,000本以下であることがより一層好ましく、8,000本以下であることがさらに一層好ましく、7,000本以下、6,000本以下であってもよい。
 本実施形態のペレットにおいては、熱可塑性樹脂とレーヨン繊維の合計含有量が、ペレットの85質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましく、98質量%以上を占めることが一層好ましく、99質量%以上を占めることがより一層好ましい。
 本実施形態のペレットは、レーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに前記熱可塑性樹脂を溶融させた状態で含浸させて一体化した後に、数平均長さが3~30mmとなるように切断することによって製造できる。より具体的には、本実施形態のペレットは、レーヨン繊維を長さ方向に揃えた状態で2,000~30,000本を束ねたものに熱可塑性樹脂を溶融させた状態で付着させ、ストランドとして引き取り、ストランドをペレタイザーでカットして製造することができる。
 ストランド(熱可塑性樹脂が含浸した長繊維のレーヨン繊維束)およびストランドからペレットを製造する方法は、上記の他、周知の製造方法により製造することができ、例えば、特開平6-313050号公報、特開2007-176227号公報、特公平6-2344号公報、特開平6-114832号公報、特開平6-293023号公報、特開平7-205317号公報、特開平7-216104号公報、特開平7-251437号公報、特開平8-118490号公報等に記載の製造方法を適用することができる。
 本実施形態のペレットは、成形して成形品とすることができる。成形品を得るときは、上記したペレットに加えて、必要に応じて、他の成分を配合することができる。
 他の成分としては、熱可塑性樹脂や樹脂添加剤が例示される。熱可塑性樹脂としては、ポリオレフィン樹脂、ポリアミド樹脂、スチレン樹脂、ポリカーボネート樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂を挙げることができ、ポリオレフィン樹脂およびポリアセタール樹脂から選択される少なくとも1種が好ましい。また、樹脂添加剤としては、低収縮剤、難燃剤、難燃助剤、可塑剤、酸化防止剤、紫外線吸収剤、着色剤、顔料、充填剤等が例示される。
 本実施形態のペレットは、また、他の熱可塑性樹脂ペレットと共に、ペレットブレンド物として用いてもよい。他の熱可塑性樹脂ペレットとブレンドすることにより、得られる成形品中のレーヨン繊維の割合を調節することもできる。本実施形態のペレットは、溶融した樹脂に対する分散性が良いので、得られた成形品中にレーヨン繊維を均一に分散することができる。
 本実施形態の成形品は、本実施形態のペレット、および/または、上記ペレットブレンド物から形成される。
 本実施形態の成形品は、セルロース分子が繊維の長手方向に高配向した(例えば、X線配向度が90%以上)のレーヨン繊維を使用することができるので、繊維の強度が高く、破損によりレーヨン繊維が短くなることが効果的に抑制される。また、繊維そのものの強度や弾性率も高いことから、得られた成形品の機械的強度(曲げ弾性率等)を大きくすることができる。
 さらに、本実施形態のペレットから得られた成形品は、所定の見掛ヤング率を有するレーヨン繊維を含有しており、ガラス繊維等の無機繊維を含有するものと比べると軽量であることから(すなわち、密度を小さくできることから)、比弾性率(曲げ弾性率/密度)の大きな成形品を得ることができる。
 本実施形態の成形品は、用途に応じた所望形状にすることができるが、上記のとおり、比弾性率を大きくすることができるため、薄い板状成形体にした場合には、軽量でかつ高い機械的強度を有するものを得ることができる。本実施形態の成形品を薄い板状成形体にする場合には、例えば1~5mmの厚さにした場合でも、高い機械的強度のものを得ることができる。
 また、本実施形態のペレットから形成された成形品は、レーヨン繊維を含有していることから、燃焼したときにもガラス繊維のような燃焼残渣が残らない。
 本実施形態の成形品は、軽量で機械的強度(特に比弾性率)が高いため、電気・電子機器、通信機器、自動車、建築材料、日用品等の各種分野で使用されている金属部品の代替品として使用することができ、特に各種機器のハウジング、板状の外装材として好適である。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
1.原料
PP1:ポリプロピレン樹脂(製造元:日本ポリプロ、品番:BC10HRF、MFR100g/10分)
PP2:ポリプロピレン樹脂(製造元:日本ポリプロ、品番:BC10HRF、MFR100g/10分)と軟質ポリプロピレン(製造元:出光興産、品番:エルモーデュS-600、MFR2600g/10分)を100/30の質量比率でドライブレンドした。ブレンド後のMFRは150g/10分であった。
PP3:ポリプロピレン樹脂(製造元:日本ポリプロ、品番:BC10HRF、MFR100g/10分)と軟質ポリプロピレン(製造元:出光興産、品番:エルモーデュS-600、MFR2600g/10分)を100/70の質量比率でドライブレンドした。ブレンド後のMFRは300g/10分であった。
PP4:ポリプロピレン樹脂(製造元:日本ポリプロ、品番:BC05B、MFR50g/10分)
PP5:ポリプロピレン樹脂(製造元:日本ポリプロ、品番:BC06C、MFR60g/10分)
PP6:ポリプロピレン樹脂(製造元:日本ポリプロ、品番:BC08F、MFR75g/10分)
MAPP:無水マレイン酸変性ポリプロピレン樹脂、製造元:三洋化成工業、品番:ユーメックス1001、MFR230g/10分
レーヨン繊維束:製造元:Cordenka、品番:RT700、数平均繊維径13μm、X線配向度92%、繊維本数1000本、見掛けヤング率16GPa、引張伸び率16%
ガラス繊維束:製造元:日本電気硝子、品番:T-431N、数平均繊維径17μm、繊維本数4000本、見掛けヤング率74GPa、引張伸び率3%
2.原料の物性値の測定方法
<メルトフローレート(MFR)>
 熱可塑性樹脂および樹脂成分のメルトフローレートは、JIS K 7210に従い、温度230℃、荷重2.16kgで測定した。単位は、g/10分である。
<X線配向度>
 シンチレーションカウンターを(101)面の回折角度に相当する2θ=20.0°に固定し、軽く梳いた繊維束を入射X線に対し垂直に回転させ、方位角ψの回折X線強度を測定、E.Ott、M.Spurlin編「Cellulose and Cellulose Derivatives」2nd.ed.、Vol.II,Interscience publishers,New York(1954)に記載される次式により算出した。式中、ψ1/2は、方位角度(degrees)で表した半値幅である。
fc(%)={(1-(ψ1/2/180))×100
尚、測定に用いた装置及び条件は以下のとおりである。
・装置:リガク製RINT2550
・付属装置:繊維試料台
・X線源:CuKα
・出力:40kV 370mA
・検出器:シンチレーションカウンター
<見掛ヤング率>
 レーヨン繊維の見掛ヤング率は、JIS L1013 に準拠して測定した。単位は、GPaで示した。
<引張伸び>
 レーヨン繊維の引張伸び率は、JIS L1013に準拠し、20℃、相対湿度65%の雰囲気下で1週間調湿後、サンプル繊維長2.5cm、クロスヘッドスピード2.5cm/minにて測定した。単位は、%で示した。
<数平均繊維径>
 レーヨン繊維の数平均繊維径は、20℃、相対湿度65%の雰囲気下で1週間調湿後、サンプル繊維長2.5cmの繊維1本に0.1gの重りを取り付け、オートバイブロ式繊度測定器(サーチ株式会社製DENICON DCー21)にて1本あたりの繊度を測定した。測定した繊度、レーヨン繊維の比重(1.5)を用いて繊維が円形断面を有すると近似した場合の繊維径を算出、N=30の平均値をレーヨン繊維の数平均繊維径とした。
3.実施例1~4、比較例1~4
<ペレットの製造>
 表1に記載の成分のうち、レーヨン繊維を除く成分を二軸押出機(商品名:AS型30m/m、ナカタニ機械社製)におけるトップフィード口より、表1に示す割合(単位:質量%)で、供給し、シリンダー設定温度を200℃、スクリュー回転数10rpmで、溶融混練して、樹脂成分の溶融物を得た。
 長繊維ペレット製造装置(商品名:KOSLFP-112、神戸製鋼所社製)を用い、表1に記載した繊維本数となるようにレーヨン繊維ロービングまたはガラス繊維ロービング31を束にした状態で50℃で予備加熱した状態で開繊して引きながら、上記で得られた樹脂成分の溶融物10を図2に示す構成の含浸ダイ22を通して含浸させ、ストランド32として引取速度20m/分で引取り、ペレット長が表1に示す長さとなるようにカットしてペレットを得た。カット長とペレット中のレーヨン繊維の繊維長は、同じ長さであった。図2において、31はロービングを、10は樹脂成分の溶融物を、22は含浸ダイを、41、42、43、および、44は含浸ロールを、40Bは案内ロールを、24はノズルを、32はストランドをそれぞれ示している。
<ペレットの割れ>
 得られたペレットから100個を無造作に抽出し、目視にて以下の通り評価した。5人の専門家がそれぞれ行い平均値とした。
A:ペレットの割れが8%未満
B:ペレットの割れが8%以上15%未満
C:ペレットの割れが15%以上
Figure JPOXMLDOC01-appb-T000001
 本実施形態のペレットは、製造時のペレット割れを効果的に抑制できた。
1  熱可塑性樹脂が含浸した繊維束(ストランド)
2  ロール
3  ペレタイザー
31 ロービング
10 樹脂成分の溶融物
22 含浸ダイ
41、42、43、44 含浸ロール
40B 案内ロール
24 ノズル
32 ストランド

Claims (12)

  1. 熱可塑性樹脂、および、繊維長方向に並列している2,000~30,000本のレーヨン繊維の束を含むペレットであって、
    前記熱可塑性樹脂の少なくとも一部が前記レーヨン繊維の束に含浸しており、
    前記熱可塑性樹脂のJIS K 7210に従った、温度230℃、荷重2.16kgで測定した際のメルトフローレート(MFR)が70~200g/10分であり、
    前記レーヨン繊維は、数平均繊維径が5~30μmであり、
    前記ペレットの数平均長さが3~30mmである、ペレット。
  2. 前記熱可塑性樹脂が、ポリプロピレン樹脂およびポリアセタール樹脂から選択される少なくとも1種を含む、請求項1に記載のペレット。
  3. 前記熱可塑性樹脂が、酸未変性ポリプロピレン樹脂と、無水マレイン酸および/またはマレイン酸で変性された酸変性ポリプロピレン樹脂とを含む、請求項1または2に記載のペレット。
  4. 前記ペレットが、レーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに前記熱可塑性樹脂を溶融させた状態で含浸させて一体化した後に、数平均長さが3~30mmとなるように切断したものである、請求項1~3のいずれか1項に記載のペレット。
  5. 前記ペレットに含まれるレーヨン繊維の数平均繊維長が3~30mmである、請求項1~4のいずれか1項に記載のペレット。
  6. 前記レーヨン繊維の見掛ヤング率が10~50GPaである、請求項1~5のいずれか1項に記載のペレット。
  7. 前記レーヨン繊維の引張伸び率が3~20%である、請求項1~6のいずれか1項に記載のペレット。
  8. 前記ペレットにおいて、前記熱可塑性樹脂の含有量が90~60質量%であり、前記レーヨン繊維の含有量が40~10質量%である、請求項1~7のいずれか1項に記載のペレット。
  9. 前記レーヨン繊維のX線配向度が90%以上である、請求項1~8のいずれか1項に記載のペレット。
  10. 請求項1~9のいずれか1項に記載のペレットと、他の熱可塑性樹脂ペレットとを含む、ペレットブレンド物。
  11. 請求項1~9のいずれか1項に記載のペレット、および/または、請求項10に記載のペレットブレンド物から形成された成形品。
  12. レーヨン繊維を長さ方向に揃えた状態で2,000~30,000本束ねたものに熱可塑性樹脂を溶融させた状態で含浸させて一体化した後に、数平均長さが3~30mmとなるように切断することを含む、請求項1~9のいずれか1項に記載のペレットの製造方法。
PCT/JP2022/047396 2021-12-28 2022-12-22 ペレット、成形品およびペレットの製造方法 WO2023127688A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021213902 2021-12-28
JP2021-213902 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127688A1 true WO2023127688A1 (ja) 2023-07-06

Family

ID=86999099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047396 WO2023127688A1 (ja) 2021-12-28 2022-12-22 ペレット、成形品およびペレットの製造方法

Country Status (1)

Country Link
WO (1) WO2023127688A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220173A (ja) * 2004-02-03 2005-08-18 Idemitsu Kosan Co Ltd 繊維強化ポリオレフィン系樹脂組成物及びその成形品
JP2013091775A (ja) * 2011-10-05 2013-05-16 Daicel Polymer Ltd 繊維強化樹脂組成物
JP2018187944A (ja) * 2014-06-18 2018-11-29 ダイセルポリマー株式会社 繊維強化樹脂組成物
JP2021133538A (ja) * 2020-02-25 2021-09-13 三井化学株式会社 炭素繊維強化樹脂成形体の製造方法
JP2022081402A (ja) * 2020-11-19 2022-05-31 ダイセルミライズ株式会社 レーヨン長繊維強化樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220173A (ja) * 2004-02-03 2005-08-18 Idemitsu Kosan Co Ltd 繊維強化ポリオレフィン系樹脂組成物及びその成形品
JP2013091775A (ja) * 2011-10-05 2013-05-16 Daicel Polymer Ltd 繊維強化樹脂組成物
JP2018187944A (ja) * 2014-06-18 2018-11-29 ダイセルポリマー株式会社 繊維強化樹脂組成物
JP2021133538A (ja) * 2020-02-25 2021-09-13 三井化学株式会社 炭素繊維強化樹脂成形体の製造方法
JP2022081402A (ja) * 2020-11-19 2022-05-31 ダイセルミライズ株式会社 レーヨン長繊維強化樹脂組成物

Similar Documents

Publication Publication Date Title
JP5938299B2 (ja) 繊維強化樹脂組成物
JP5676080B2 (ja) 有機繊維強化複合樹脂組成物および有機繊維強化複合樹脂成形品
KR20170077189A (ko) 열가소성 복합체, 열가소성 복합체의 제조 방법 및 사출-성형품
US10975233B2 (en) High flow fiber-reinforced propylene composition having low emissions
JP2009114332A (ja) 長繊維強化複合樹脂組成物および成形品
WO2018218647A1 (en) Thermoplastic composite, method of making thermoplastic composite, and injection-molded product
KR20150056577A (ko) 고충격 폴리프로필렌 조성물
JP2001316534A (ja) 長繊維強化ポリプロピレン樹脂組成物および成形品
US20210221967A1 (en) Long Fiber-Reinforced Propylene Composition for Use in a Thin Part
EP2927265A1 (en) Pellet mixture, carbon fiber-reinforced polypropylene resin composition, molded body, and method for producing pellet mixture
JP2023182600A (ja) 耐候性繊維強化プロピレン組成物
EP3342804B1 (en) Composite and method of preparing the same
JP5255541B2 (ja) プロピレン系樹脂組成物
JP2005213479A (ja) ポリオレフィン系炭素繊維強化樹脂組成物及びそれからなる成形品
JP7198287B2 (ja) 長繊維強化プロピレン系樹脂組成物および長繊維強化成形体
WO2023127688A1 (ja) ペレット、成形品およびペレットの製造方法
JP5465698B2 (ja) 長繊維強化複合樹脂組成物およびその成形品
JP2009013331A (ja) 長繊維強化複合樹脂組成物および成形品
JP7073115B2 (ja) ペレット
JP5238938B2 (ja) 長繊維強化複合樹脂組成物および成形品
WO2018193893A1 (ja) ポリオレフィン樹脂組成物及びポリオレフィン樹脂組成物成形体
CN113388205B (zh) 聚丙烯组合物、聚丙烯材料及其制备方法和应用
JP2006016462A (ja) 長繊維強化ポリアミド樹脂成形用組成物及び成形体の製造方法。
JP2024092166A (ja) 樹脂成形物及びその製造方法
JP2022039310A (ja) 繊維強化ポリアミド樹脂組成物成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915911

Country of ref document: EP

Kind code of ref document: A1