WO2023125225A1 - 电子设备及其控制方法 - Google Patents

电子设备及其控制方法 Download PDF

Info

Publication number
WO2023125225A1
WO2023125225A1 PCT/CN2022/140992 CN2022140992W WO2023125225A1 WO 2023125225 A1 WO2023125225 A1 WO 2023125225A1 CN 2022140992 W CN2022140992 W CN 2022140992W WO 2023125225 A1 WO2023125225 A1 WO 2023125225A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
electronic device
electrically connected
conductive
frequency band
Prior art date
Application number
PCT/CN2022/140992
Other languages
English (en)
French (fr)
Inventor
李宗尚
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023125225A1 publication Critical patent/WO2023125225A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, and in particular to an electronic device and a control method for the electronic device.
  • the present application provides an electronic device and a control method for the electronic device, which improve the detection accuracy of whether a subject to be tested is close to or away from the electronic device, and promote the miniaturization of the electronic device.
  • an electronic device includes a frame, a main board, and an antenna assembly, and the antenna assembly:
  • a first radiator disposed inside the frame and at least partially opposite to the main board, the first radiator has a first feeding point
  • a first feed source the first feed source is electrically connected to the first feed point, and the first feed source is used to stimulate the first radiator to at least send and receive LB frequency band, MHB frequency band, UHB frequency band, Wi- At least one of Fi band, GNSS band;
  • An induction chip the induction chip is electrically connected to the first radiator, and the induction chip is used to at least receive the induction signal generated by the first radiator when the subject to be measured approaches and judge the The subject to be measured approaches or moves away from the first radiator.
  • the present application provides a method for controlling an electronic device, the method is applied to the electronic device, and the method includes:
  • the induction signal It is judged according to the induction signal whether the subject to be tested is close to the electronic device, and the radiated power of at least part of the antenna assembly is reduced when the subject to be tested is close to the electronic device.
  • the sensing signal from the sensing chip
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a disassembled structure of the electronic device provided in FIG. 1;
  • Fig. 3 is a partially enlarged schematic diagram of the electronic device provided in Fig. 2;
  • FIG. 4 is a schematic structural diagram of the first antenna assembly provided by the embodiment of the present application.
  • Fig. 5 is a schematic diagram of the detailed structure of the first antenna assembly provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a feed path of the first antenna assembly provided in FIG. 5;
  • Fig. 7 is a schematic structural diagram of the first radiator provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a second type of first radiator provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a second isolation device provided in the first matching circuit in the antenna assembly provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of an induction signal detection path of the first antenna assembly provided in FIG. 5;
  • Fig. 11 is a schematic structural diagram of the electrical connection mode of the first type of first conductive detection element in the second type of antenna assembly provided by the embodiment of the present application;
  • Fig. 12 is a schematic structural diagram of the electrical connection mode of the second first conductive detection element in the second antenna assembly provided by the embodiment of the present application;
  • Fig. 13 is a schematic structural diagram of the electrical connection mode of the third first conductive detection element in the second antenna assembly provided by the embodiment of the present application;
  • Fig. 14 is a schematic structural diagram of the electrical connection mode of the fourth first conductive detection element in the second antenna assembly provided by the embodiment of the present application;
  • Fig. 15 is a schematic structural diagram of the first type of first conductive detection element provided by the embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of the second type of first conductive detection element provided by the embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of the third first conductive detection element provided by the embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of the electrical connection between the first radiator, the second radiator and the sensing chip in the third antenna assembly provided by the embodiment of the present application;
  • Fig. 19 is a schematic structural diagram of the second type of electrical connection between the first radiator, the second radiator and the induction chip in the third antenna assembly provided by the embodiment of the present application;
  • Fig. 20 is a schematic structural diagram of the electrical connection of the third first radiator, the second radiator and the induction chip in the third antenna assembly provided by the embodiment of the present application;
  • Fig. 21 is a schematic structural diagram of the first radiator and the second radiator both electrically connected to the first feed source in the third antenna assembly provided by the embodiment of the present application;
  • FIG. 22 is a schematic structural diagram of the first radiator in the third antenna assembly provided in FIG. 20 and is also electrically connected to the fifth isolation device;
  • Fig. 23 is a schematic structural diagram of the first electrical connection mode of the first radiator, the second conductive detection element, the second radiator and the sensing chip in the fourth antenna assembly provided by the embodiment of the present application;
  • Fig. 24 is a schematic structural diagram of the second electrical connection mode of the first radiator, the second conductive detection element, the second radiator and the sensing chip in the fourth antenna assembly provided by the embodiment of the present application;
  • Fig. 25 is a schematic structural diagram of the first type of second conductive detection element in the fourth type of antenna assembly provided by the embodiment of the present application;
  • Fig. 26 is a schematic structural diagram of the second type of second conductive detection element in the fourth type of antenna assembly provided by the embodiment of the present application;
  • Fig. 27 is a schematic structural diagram of the third type of second conductive detection element in the fourth type of antenna assembly provided by the embodiment of the present application;
  • Fig. 28 is a schematic structural diagram of the fourth antenna assembly provided in Fig. 27;
  • Fig. 29 is a partial schematic diagram of the fourth antenna assembly provided in Fig. 28;
  • Fig. 30 is a schematic structural diagram of a fifth antenna assembly provided by an embodiment of the present application.
  • Fig. 31 is an equivalent circuit diagram of the fifth antenna assembly provided in Fig. 30;
  • Fig. 32 is a return loss curve diagram of the first feed source, the first radiator, and the third radiator in the fifth antenna assembly provided in Fig. 31;
  • Fig. 33 is a schematic structural diagram of the first tuning circuit provided in Fig. 31;
  • FIG. 34 is a schematic structural diagram of the second tuning circuit provided in FIG. 31;
  • Fig. 35 is a return loss curve diagram of the second feed source and the second radiator in the fifth antenna assembly provided in Fig. 31;
  • Fig. 36 is a flow chart of the first electronic device control method provided by the embodiment of the present application.
  • FIG. 37 is a flow chart of a second electronic device control method provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 provided in an embodiment of the present application.
  • the electronic device 1000 includes an antenna assembly.
  • the antenna assembly is used to send and receive radio frequency signals, wherein the radio frequency signals are transmitted as electromagnetic wave signals in the air medium, so as to realize the communication function of the electronic device 1000 .
  • the present application does not specifically limit the position of the antenna assembly on the electronic device 1000 , and FIG. 1 is only an example.
  • the electronic device 1000 further includes a display screen 200 and a casing 300 that are closed and connected to each other.
  • the antenna assembly can be disposed inside the housing 300 of the electronic device 1000 , or partly integrated with the housing 300 , or partially disposed outside the housing 300 .
  • the radiator of the antenna assembly in FIG. 1 is integrated with the casing 300 .
  • the electronic device 1000 includes, but is not limited to, mobile phones, phones, tablet computers, personal computers, notebook computers, vehicle-mounted devices, smart earphones, smart watches, smart wearable devices, vehicle-mounted radars, and customer premise equipment (Customer Premise Equipment, CPE) and other devices capable of sending and receiving electromagnetic wave signals.
  • CPE Customer Premise Equipment
  • the thickness direction of the device 1000 is defined as the Z-axis direction.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other.
  • the direction indicated by the arrow is the positive direction.
  • the casing 300 includes a frame 310 and a rear cover 320 .
  • a support plate 330 is formed in the frame 310 by injection molding, and a plurality of installation slots for installing various electronic devices are formed on the support plate 330 .
  • the support plate 330 together with the frame 310 forms a middle frame 340 of the electronic device 1000 .
  • the middle frame 340 and the rear cover 320 are closed, a receiving space is formed on both sides of the middle frame 340 .
  • One side (such as the rear side) of the frame 310 surrounds the periphery of the rear cover 320
  • the other side (such as the front side) of the frame 310 surrounds the periphery of the display screen 200 .
  • the electronic device 1000 also includes a circuit board 500 (including a main board, a sub-board, a flexible circuit board, etc.), a battery 600, a camera module, a microphone, a receiver, a speaker, a face recognition module, and a fingerprint recognition module located in the storage space.
  • a circuit board 500 including a main board, a sub-board, a flexible circuit board, etc.
  • a battery 600 for storing data.
  • a camera module located in the storage space.
  • microphone a microphone
  • a receiver a microphone
  • speaker a face recognition module
  • a fingerprint recognition module located in the storage space.
  • a fingerprint recognition module located in the storage space.
  • Devices such as modules that can realize the basic functions of the mobile phone will not be described in detail in this embodiment. Understandably, the above introduction to the electronic device 1000 is only an illustration of an environment in which the antenna assembly is applied, and the specific structure of the electronic device 1000 should not be construed as a limitation to the antenna assembly provided in this application.
  • the antenna assembly 100 is applied to an electronic device 1000 .
  • the circuit board 500 of the electronic device 1000 includes a main board 510, wherein the main circuit system forming the electronic device 1000 is installed on the main board 510, including: processor, cellular mobile radio frequency, Bluetooth, GPS and Wi-Fi chips, memory chips, power management Chips, audio and video processing chips, input and output interfaces, etc.
  • the part of the support plate 330 used to carry the main board 510 becomes the main board bracket 520 , that is, the main board 510 is fixed on the main board bracket 520 by means of screws or the like. Both the main board 510 and the main board bracket 520 are disposed in the frame 310 . The main board 510 is disposed on the main board bracket 520 .
  • FIG. 4 is a first antenna assembly 100 provided in this application.
  • the antenna assembly 100 at least includes a first radiator 10 , a first feed 20 and a sensing chip 30 .
  • the first radiator 10 is disposed inside the frame 310 of the electronic device 1000 and at least part of the first radiator 10 is disposed opposite to the main board 510 of the electronic device 1000 .
  • at least part of the first radiator 10 is arranged opposite to the main board 510 of the electronic device 1000 in the Z-axis direction (also the thickness direction of the electronic device 1000 or the main board 510 ).
  • at least part of the first radiator 10 is disposed opposite to the carrying surface of the main board 510 for carrying devices.
  • both the main board 510 and the first radiator 10 are disposed on the main board bracket 520 .
  • the main board bracket 520 , the main board 510 and the first radiator 10 are stacked in sequence along the Z-axis direction (please refer to the Z-axis direction in FIG. 2 , which is also the thickness direction of the electronic device 1000 ).
  • the main board bracket 520 is a part of the support plate 330 in the middle frame 340 , and the main board 510 is fixed on the main board bracket 520 in the Z-axis direction.
  • the first radiator 10 is at least partially disposed on the main board 510 along the Z-axis direction. Wherein, the orthographic projection of the first radiator 10 in the Z-axis direction at least partially covers the main board 510 .
  • a part of the orthographic projection of the first radiator 10 in the Z-axis direction covers a part of the main board 510, and another part of the orthographic projection of the first radiator 10 in the Z-axis direction may be located outside the main board 510, for example , located in the gap between the main board 510 and the frame 310 .
  • the orthographic projection of the first radiator 10 in the Z-axis direction may be completely located in the area where the main board 510 is located.
  • the first radiator 10 has a first feeding point A1, and the position and function of the first feeding point A1 will be described later.
  • the first radiator 10 is a port for the antenna assembly 100 to send and receive radio frequency signals, wherein the radio frequency signals are transmitted in the form of electromagnetic wave signals in the air medium.
  • the present application does not specifically limit the shape of the first radiator 10 .
  • the shape of the first radiator 10 includes but not limited to strip shape, sheet shape, rod shape, coating shape, film shape and so on.
  • the first radiator 10 shown in FIG. 3 is only an example, and cannot limit the shape of the first radiator 10 provided in this application.
  • the antenna formed by the first radiator 10 is a bracket antenna.
  • the bracket antenna includes but is not limited to a flexible circuit board antenna formed on a flexible circuit board (Flexible Printed Circuit board, FPC), a laser direct forming antenna through laser direct forming (Laser Direct Structuring, LDS), a printing direct forming (Print Direct Structuring, PDS) printing direct forming antenna, conductive sheet antenna, etc.
  • FPC Flexible Printed Circuit board
  • LDS Laser Direct Structuring
  • PDS printing direct forming
  • the material of the first radiator 10 is a conductive material
  • specific materials include but are not limited to metals such as copper, gold, and silver, or alloys formed of copper, gold, and silver, or copper, gold, silver, and Alloys formed of other materials; graphene, or conductive materials formed by combining graphene with other materials; oxide conductive materials such as tin oxide and indium oxide; carbon nanotubes and polymers to form hybrid materials, etc.
  • the first radiator 10 is in the shape of a sheet or a thin layer.
  • the surface of the first radiator 10 is roughly parallel to the X-Y plane.
  • the present application does not limit that the first radiator 10 is located on the side of the main board 510 facing the display screen 200 or on the side of the main board 510 facing the rear cover 320 .
  • the first feed source 20 is electrically connected to the first feed point A1.
  • the first feed source 20 includes but is not limited to a radio frequency transceiver chip and a radio frequency front-end circuit.
  • the first feed source 20 is disposed on the main board 510 of the electronic device 1000 .
  • the electrical connection of the first feed source 20 to the first feed point A1 includes but not limited to direct welding, or indirect electrical connection through coaxial lines, microstrip lines, conductive shrapnel, conductive glue, etc. .
  • the first feed point A1 is electrically connected to the radio frequency port of the first feed source 20 through a conductive member (such as a conductive shrapnel).
  • the radio frequency signal emitted by the first feed source 20 is fed into the first radiator 10 through the first feed point A1, and the radio frequency signal can excite the first radiator 10 to generate a resonant current to form a resonance, so as to The frequency band corresponding to the resonant current is supported.
  • the first feed source 20 may also receive radio frequency signals through the first radiator 10 via the first feed point A1.
  • the first feed source 20 is used to excite the first radiator 10 to at least transmit and receive at least one of LB frequency band, MHB frequency band, UHB frequency band, N41 frequency band, N78 frequency band, N79 frequency band, Wi-Fi frequency band and GNSS frequency band.
  • the LB frequency band refers to a frequency band lower than 1000 MHz (excluding 1000 MHz).
  • the MHB frequency band refers to the frequency band of 1000MHz-3000MHz (including 1000MHz, excluding 3000MHz).
  • the UHB frequency band refers to the frequency band of 3000MHz-10000MHz (including 3000MHz).
  • the Wi-Fi frequency band includes but is not limited to at least one of Wi-Fi 2.4G, Wi-Fi 5G, Wi-Fi 6E, etc.
  • the full name of GNSS is Global Navigation Satellite System, and the Chinese name is Global Navigation Satellite System. System (Galileo satellite navigation system, Galileo) and regional navigation system, etc.
  • the sensing chip 30 is electrically connected to the first radiator 10 .
  • the sensing chip 30 is used to at least receive a sensing signal generated by the first radiator 10 when the subject to be measured approaches, and determine whether the subject to be measured is approaching or moving away from the first radiator 10 according to the sensing signal.
  • the sensing chip 30 can determine that the subject to be measured is approaching or moving away from the electronic device 1000 .
  • the subject to be measured is a living body, including but not limited to the head, hands, abdomen, legs and other positions of the human body, or other living bodies.
  • the first radiator 10 by setting the first radiator 10 in the antenna assembly 100 inside the frame 310 of the electronic device 1000, the first radiator 10 not only transmits and receives LB frequency band, MHB band Frequency band, UHB frequency band, N41 frequency band, N78 frequency band, N79 frequency band, Wi-Fi frequency band, GNSS frequency band at least one, also by electrically connecting the first radiator 10 to the sensor chip 30, so that the first radiator 10 also As an inductive conductor for sensing whether the subject to be detected is approaching, the first radiator 10 can be used for multiple purposes, so as to increase the function of the antenna assembly 100 and reduce the size of the antenna assembly 100 .
  • the first radiator 10 is arranged inside the frame 310 of the electronic device 100 and at least partly opposite to the motherboard 510 of the electronic device 100, since there is a large amount of space inside the frame 310, there is no need to be limited by the shape of the frame 310, so the first radiator The shape and structure of 10 can be flexibly set, so as to expand its sensing area for sensing whether the subject to be measured is approaching, thereby increasing the sensing distance for the antenna assembly 100 to sense whether the subject to be measured is approaching, and improving whether the subject to be measured is close to or far away from the electronic device 1000. The detection accuracy is improved and the miniaturization of the electronic device 1000 is promoted.
  • the specific absorbed power of the human body is mainly to detect the specific absorption rate when the mobile phone is 0mm, 5mm (or other distances, depending on different regulations) from the limbs. (SAR) value, the specific absorption rate (SAR) value at the corresponding distance cannot exceed the standard.
  • SAR Specific Absorption Rate
  • SAR refers to the electromagnetic wave energy absorption ratio of electronic equipment, which is the electromagnetic power absorbed or consumed by human tissue per unit mass.
  • the sensor chip 30 is used to detect whether the mobile phone is close to the body, and controls the board-level power of the antenna assembly 100 to back off when the mobile phone is close to the body, and does not perform board-level power back-off when the mobile phone is far away from the body. Therefore, the sensing chip 30 is particularly critical to the detection distance of the approach of the human body.
  • the first radiator 10 can be used as a sensing chip for the sensing chip 30 to sense the approach of a human body, wherein the first radiator 10 and the sensing chip 30 form a SAR sensor.
  • the SAR sensor receives the induction signal generated by the induction sheet when the human body approaches, and judges the distance between the human body and the induction sheet according to the size of the induction signal, or judges whether the human body is close to or far away from the induction sheet, so that the controller can sense the proximity of the human body.
  • the power of the antenna is backed off within the preset distance range of the chip, thereby reducing the radiated energy of the antenna, so that the electromagnetic wave energy absorption ratio of the human body is reduced when the human body is close to the electronic device 100 , so as to meet the SAR compliance of the electronic device 1000 .
  • the detection principle of the SAR sensor is as follows: when the human body is close to the sensing sheet (such as the first radiator 10 in this embodiment), since the human body is equivalent to a capacitor connected to the ground, it will be between the sensing sheet and the ground. An inductive capacitance is formed, and its inductive capacitance is usually several pF to tens of pF. Because the induction capacitance formed between the induction sheet and the human body corresponds to the distance between the induction sheet and the human body.
  • the sensing chip 30 detects the distance between the human body and the sensing chip by detecting the change of the sensing capacitance between the sensing chip and the human body, and then detects the distance between the human body and the electronic device 1000, and then judges whether the human body touches or approaches the electronic device 1000. device 1000; or whether the human body is in a state of approaching the electronic device 1000.
  • the electronic device 1000 needs to back off the antenna transmission power within a certain distance range (shorter distance range) from the human body (important organs, such as the head) close to the electronic device 1000, so as to intelligently reduce the 1000 radiant energy, so the absorption ratio of electromagnetic wave energy absorbed or consumed by human tissue is correspondingly reduced, that is, the SAR value is reduced.
  • the sensing chip 30 is a chip for detecting the change of the sensing capacitance formed between the first radiator 10 and the human body. Wherein, the sensing chip 30 can be disposed on the main board 510 .
  • the sensing chip 30 is electrically connected to a controller (not shown) of the electronic device 1000 .
  • a memory (not shown) of the electronic device 1000 is provided with a mapping table of the sensing capacitance, the distance between the sensing sheet (the first radiator 10 ) and the human body, and the facing area.
  • the sensing chip 30 sends the detected sensing capacitance to the controller of the electronic device 1000 in the form of an electrical signal, and the controller of the electronic device 1000 determines the change of the distance between the human body and the electronic device 1000 according to the change of the sensing capacitance, and When the human body approaches the electronic device 1000, corresponding antenna power backoff is performed.
  • the present application does not specifically limit the detectable preset distance range of the sensing sheet, for example, 5mm, 7mm, 8mm, 10mm and so on.
  • the requirement for the sensing distance of the approaching human body that can be detected by the electronic device 1000 increases accordingly in practical applications.
  • the length design of the frame antenna needs to match the supported frequency band, so the length of the frame antenna cannot be arbitrarily expanded, so the sensing area of the frame antenna is limited.
  • the length of the antenna supporting the UHB frequency band is relatively short, so the sensing area of the frame antenna used to support the UHB frequency band is relatively small, and the sensing distance that the frame antenna with a small area can detect the approach of the human body is also small, for example, the sensing distance If the sensing distance for the human body is required to be 7mm or more in practical applications, the sensing chip cannot sense the capacitance change or the detection capacitance change is inaccurate because it is above 5mm. When the distance between the devices 1000 ranges from 5 mm to 7 mm, the electronic device 1000 does not perform power back-off, so that the electronic device 1000 cannot meet the requirement of the SAR index.
  • the frame antenna when used as the sensor for detecting the detection distance of the human body, because the structure of the frame antenna is relatively complicated, such as a ground point, a switch tuning circuit, etc., it is difficult to be compatible with the frame antenna to effectively support the frequency bands to be supported. As an induction sheet that detects the detection distance of the approach of the human body.
  • the first radiator 10 used as the sensing sheet for detecting the approaching detection distance of the human body is arranged inside the frame 310 of the electronic device 1000 and at least partly opposite to the main board 510 of the electronic device 1000, the frame There is a large amount of space on the main board 510 inside the 310, the first radiator 10 does not need to use the frame 310 as a carrier, and does not need to be limited by the shape of the frame 310, for example, the main board 510 is used as a carrier or the entire support plate 330 is used as a carrier, so,
  • the shape and structure of the first radiator 10 can be flexibly set, so that the sensing sheet for detecting the proximity of the human body can expand its sensing area, thereby increasing the detection distance of the antenna assembly 100 for detecting the proximity of the human body, and ensuring the specific absorption of the electronic device 1000. It can ensure the compliance of rate index and ensure the communication performance at the same time.
  • the first radiator 10 is disposed in the frame 310
  • the antenna assembly 100 further includes a first isolation device 42 and a first matching circuit M1.
  • the first matching circuit M1 is used for tuning the frequency band supported by the first radiator 10 .
  • the first matching circuit M1 includes, but is not limited to, capacitors, inductors, capacitor-inductor combinations, switch tuning devices, and the like.
  • the first isolation device 42 is configured to be in an open state for the sensing signal.
  • the first isolation device 42 is a device that blocks low frequency or DC passes through high frequency, such as a capacitor.
  • the first isolation device 42 is a capacitor, which is in a conduction state for relatively high-frequency AC signals (radio frequency signals), and is in an open-circuit state for DC signals and extremely low-frequency AC signals.
  • the first isolation device 42 can block Cutting off the induction signal flows to the first matching circuit M1 through the first radiator 10 or blocking the DC signal on the first matching circuit M1 affects the induction signal detected by the first radiator 10, so the first radiator 10 is in a suspended state compared to the first matching circuit M1 when transmitting the induction signal.
  • This application does not specifically limit the capacitance value of the first isolation device 42 , for example, 22pF, but is not limited to this data.
  • the present application does not specifically limit the form of the first radiator 10 , and the first radiator 10 includes but is not limited to a monopole antenna, a planar inverted-F antenna (PIFA antenna) and the like.
  • PIFA antenna planar inverted-F antenna
  • the first radiator 10 is a monopole antenna.
  • the shape of the first radiator 10 includes, but is not limited to, a rhombus in FIG. 7 , and the first radiator 10 may also be in the shape of a square, a circle, or the like.
  • the first feeding point A1 is located near one end of the first radiator 10 , and the other ends of the first radiator 10 are all free ends.
  • a first isolation device 42 (DC blocking capacitor) is provided at the first feeding point A1, so that the first radiator 10 is in a suspended state compared with the first feed source 20, so that the induction on the first radiator 10 The signal is unaffected at the first feed 20 .
  • the first radiator 10 in this embodiment is a monopole antenna, which is only provided with the first feed point A1 electrically connected to the first feed source 20, and is not provided with a ground terminal electrically connected to the reference ground.
  • the first isolation device 42 is disposed at the first feeding point A1 without disposing the first isolation device 42 at other positions, which can simplify the number of components and the layout of the first antenna assembly 100 .
  • the first radiator 10 is a planar inverted-F antenna.
  • the shape of the first radiator 10 includes, but is not limited to, a rhombus in FIG. 8 , and the first radiator 10 may also be in the shape of a square, a circle, or the like.
  • the first feeding point A1 is located near the end of the first radiator 10 .
  • the first radiator 10 also has a first ground point (or ground terminal) electrically connected to the reference ground.
  • a first isolation device 42 (DC blocking capacitor) is provided between the first feed point A1 of the first radiator 10 and the first matching circuit M1, and a first isolation device 42 (DC blocking capacitor) is also provided between the first ground point and the reference ground.
  • first isolation device 42 DC blocking capacitor
  • a feed source 20 referring to the signal influence on the ground.
  • the above are only two examples of the structure of the first radiator 10.
  • a DC blocking capacitor large capacitor
  • the value of the DC blocking capacitor is 22pF, for example, also Can be other values.
  • the first radiator 10 is a monopole antenna, which itself does not have a path back to the ground, and only needs to directly add a DC blocking capacitor on the feeding path.
  • the first radiator 10 When the first radiator 10 has a return path, for example, the first radiator 10 is a planar inverted F antenna, by setting a DC blocking capacitor on the return path of the first radiator 10, the first radiator 10 The induction signal will not return directly to the ground, but is in a suspended state compared to the reference ground.
  • the first radiator 10 can also be a T-shaped antenna, a loop antenna, etc., referring to the above description, at the first feeding point A1 of the first radiator 10, between the first radiator 10 and the reference ground, at the first Between a radiator 10 and the tuning switch, between the first radiator 10 and the matching circuit, a first isolation device 42 (such as a DC blocking capacitor) is arranged, so that the first radiator 10 is relatively to the first feed source 20, the reference The ground, tuning switch, matching circuit, etc. are suspended to reduce the influence of signals in other circuits on the induced signal in the first radiator 10 .
  • a first isolation device 42 such as a DC blocking capacitor
  • the first matching circuit M1 is electrically connected between the first feed source 20 and the first feed point A1 .
  • the capacitor in the first matching circuit M1 can be used as a DC blocking capacitor without additional A DC blocking capacitor is set at the first feeding point A1, so that the original capacitive device in the first matching circuit M1 is used to multiplex the first isolation device 42, and there is no need to make more circuit improvements in the first antenna assembly 100,
  • the distance function of the first radiator 10 close to the human body can be realized, and the structure of the first antenna assembly 100 can also be simplified.
  • the second isolation device 41 is electrically connected between the first radiator 10 and the sensing chip 30 .
  • the second isolation device 41 may be electrically connected to any position on the first radiator 10 .
  • the body 10 When the subject to be measured approaches the first radiator 10, the first radiator 10 forms a coupling capacitance with the surface of the subject to be measured, so that the surface charge of the first radiator 10 changes, and the first radiator 10
  • the body 10 generates an induction signal.
  • the induction signal is a direct current signal or a small alternating current signal.
  • the sensing signal includes, but is not limited to, a current signal, or a voltage signal converted from a current signal, or an inductance signal converted from a current signal.
  • the sensing chip 30 includes, but is not limited to, devices for detecting current signals, voltage signals or inductance signals, such as miniature galvanometers, miniature current transformers and the like.
  • the second isolation device 41 is used to conduct the induction signal generated by the first radiator 10 when the subject to be measured approaches, and to conduct the radio frequency of the first radiator 10 .
  • the signal is open circuit.
  • the second isolation device 41 is a device that blocks high frequency from passing low frequency or direct current, such as an inductor. Since the induction signal is a DC signal or an extremely low frequency AC signal, the radio frequency signal sent and received by the first radiator 10 is a relatively high frequency AC signal compared to the induction signal.
  • the second isolation device 41 is an inductor, capable of conducting DC signals and extremely low-frequency AC signals, and is in an open state for relatively high-frequency AC signals (radio frequency signals). In this way, the second isolation device 41 can block radio frequency signals.
  • the signal flows to the sensing chip 30 through the first radiator 10, so as not to affect the detection result of the sensing signal by the sensing chip 30, so as to ensure accurate detection of the SAR value.
  • the present application does not specifically limit the inductance value of the second isolation device 41 , for example, 82nH, but is not limited to this data.
  • the circuit channel for detecting the induction signal when the subject to be tested is approaching and the circuit channel for sending and receiving radio frequency signals are two independent channels that are independent of each other and will not affect each other
  • one of the circuit channels is that the first isolation device 42 makes the first radiator 10 in a suspended state relative to the first matching circuit M1 (and reference ground, etc.) when transmitting the induction signal, and the induction signal on the first radiator 10 is passed through
  • the second isolation device 41 flows to the induction chip 30; wherein another circuit channel is that the second isolation device 41 makes the first radiator 10 and the induction chip 30 be in an open state when transmitting radio frequency signals, so that the first radiator 10
  • the radio frequency signal is transmitted between the first matching circuit M1 (and the reference ground, etc.), so as to reduce the influence on the detection result of the induction chip 30 .
  • the above realizes that the first radiator 10 can simultaneously detect the induction signal when the subject to be tested approaches and send and receive radio frequency signals.
  • the first radiator 10 is used to generate a first resonance mode under the excitation of the first feed source 20 and the tuning of the first matching circuit M1, so as to support the N79 frequency band.
  • the resonance mode is characterized by the fact that the first radiator 10 has a high efficiency of transmitting and receiving electromagnetic waves at and near the resonance frequency under the excitation of the first feed source 20 .
  • the corresponding frequency band at and near the resonance frequency of the first resonance mode covers the N79 frequency band, so that the first radiator 10 supports the N79 frequency band.
  • the first resonance mode includes 1/4 wavelength mode, or 1/2 wavelength mode, or 3/4 wavelength mode, or 1 times wavelength mode.
  • the first resonant mode is a 1/4 wavelength mode, which means that the length of the resonant current path on the first radiator 10 (that is, the effective electrical length) is approximately 1/4 times the wavelength of the medium (the wavelength in the medium), this description is an explanation for the understanding of the term, but it cannot be used as a limitation on the size of the first radiator 10 .
  • the 1/2 wavelength mode, or 3/4 wavelength mode, or 1 times wavelength mode reference may also be made to the description of the 1/4 wavelength mode, which will not be repeated here.
  • the effective electrical length between the first feeding point A1 of the first radiator 10 and the free end or the ground terminal is about the resonant frequency (such as N79 frequency band ) is 1/4 times of the corresponding medium wavelength, which can excite the 1/4 wavelength mode of the resonant frequency (such as the N79 frequency band), wherein the 1/4 wavelength mode is the fundamental mode, which is also a resonant mode with high efficiency. Therefore, when the size of the first radiator 10 is relatively small, a resonant mode with high efficiency can be excited at the resonant frequency (such as the N79 frequency band), so that the radiation efficiency of the supported frequency band (such as the N79 frequency band) is relatively high. High, that is, the electronic device 1000 (for example, the N79 frequency band) has relatively good signal sending and receiving quality.
  • the resonant frequency such as N79 frequency band
  • the present application is not limited to the first radiator 10 having a strip shape.
  • the first radiator 10 may also be in the shape of a sheet, wherein both the physical length of the first radiator 10 along a certain direction and the area of the first radiator 10 will affect the length of the first radiator 10 along the first direction. Upward equivalent electrical length.
  • the first direction is the length direction of the first radiator 10 .
  • the shape and area of the first radiator 10 by designing the shape and area of the first radiator 10, its high-order modes (such as 1/2 wavelength mode, or 3/4 wavelength mode, or 1 times wavelength mode) can also be excited to realize support for
  • the radiation efficiency of the frequency band (such as the N79 frequency band) is relatively high and the size of the first radiator 10 is relatively large.
  • the sensing area of the first radiator 10 for the SAR value is relatively large, and the first radiator 10 is relatively large for the human body.
  • the proximity sensing distance is also relatively large.
  • the first radiator 10 is designed to support the N79 frequency band in this application, and the radiator supporting the N79 frequency band will be designed as a bracket
  • the antenna is used as an induction sheet for detecting the approach of the subject to be tested, which can reduce the modification of the antenna circuit with high frequency and avoid the clutter affecting the frequency band with high frequency due to the need to increase the function of the induction signal approaching the subject to be tested .
  • the first radiator 10 can be replaced to support other frequency bands with a relatively low frequency of use, and the antenna of the frequency band with a relatively low frequency of use can be used as a sensor for detecting the proximity of the subject to be tested .
  • FIG. 11 is a second antenna assembly 100 provided in this application.
  • the difference between the second type of antenna assembly 100 and the first type of antenna assembly 100 is that the antenna assembly 100 provided in this embodiment further includes a first conductive detection member 51 .
  • the first conductive detection element 51 is made of conductive material.
  • the material of the first conductive detection member 51 may be the same as or different from that of the first radiator 10 .
  • connection methods of the first conductive detection part 51, the sensing chip 30 and the first radiator 10 include but not limited to the following embodiments:
  • the first conductive detection element 51 is electrically connected to the first radiator 10 .
  • the first conductive detection element 51 is used to generate an induction signal when the subject to be tested approaches.
  • the sensing distance of the first radiator 10 is relatively small, and the detection distance can be further increased by setting the first conductive detection element 51, so that the SAR value can be detected sensitively within a required distance.
  • the electrical connection methods between the first conductive detection part 51 and the first radiator 10 include but are not limited to the following embodiments: the first conductive detection part 51 and the first radiator 10 are integrally formed; The first radiator 10 is directly in contact with and electrically connected to; the first conductive detection element 51 is electrically connected to the first radiator 10 through an intermediate connecting piece such as a connecting wire or a conductive shrapnel.
  • the present application does not specifically limit the shape of the first conductive detection element 51 , and the shape of the first conductive detection element 51 includes but is not limited to a sheet shape, a wire shape, and the like.
  • the first conductive detection part 51 is electrically connected to the sensing chip 30, but not electrically on the first radiator 10 .
  • the sensing chip 30 is also used to receive the sensing signal of the first conductive sensing element 51 when the first conductive sensing element 51 is electrically connected to the sensing chip 30, and judge the subject to be tested according to the sensing signal. close to or away from the first conductive detection element 51 .
  • the sensing chip 30 can determine that the subject to be tested is approaching or moving away from the electronic device 1000 .
  • the first conductive detection part 51 forms a capacitive structure with the subject to be tested, and as the distance between the subject to be tested and the first conductive detection part 51 Change, the capacitance of the capacitive structure changes.
  • the first conductive detection part 51 is electrically connected to the induction chip 30, so that the induction chip 30 detects that the subject to be tested is close to the electronic device 1000 by detecting the induction signal on the first conductive detection part 51, and the subject to be tested and the electronic device 1000 The distance between them, and then get the SAR value.
  • the first conductive detection part 51 is used as a sensing chip for detecting the proximity of the subject to be tested, and the detection channel formed between the first conductive detection part 51 and the sensing chip 30 can be connected with the detection channel formed between the first radiator 10 and the sensing chip 30 Independent. In this way, there are two independent channels for detecting the approach of the subject to be tested. When the chip or device in one of the detection channels is damaged and cannot work, the other detection channel can still work normally, thereby improving the reliability of the distance between the human body and the body. .
  • the sensing area for detecting the approach of the subject to be tested can be increased, thereby increasing the sensing distance, and laying the foundation for subsequent accurate power return; in addition, the first The conductive detection element 51 is not electrically connected to the first radiator 10 , so the first conductive detection element 51 will not have clutter effects on the first radiator 10 , so as to reduce the impact on the first radiator 10 in the transceiver frequency band.
  • the first conductive detection part 51 is electrically connected to the sensing chip 30 and the first Radiator 10.
  • the sensing chip 30 is also used to receive the sensing signal of the first conductive sensing element 51 when the first conductive sensing element 51 is electrically connected to the sensing chip 30, and judge the subject to be tested according to the sensing signal. close to or away from the first conductive detection element 51 .
  • this embodiment is a combination of the above-mentioned first embodiment and the second embodiment.
  • the first conductive detection element 51 is used as an induction sheet for detecting the approach of the subject to be tested, and the first conductive detection element 51 and the second A radiator 10 is connected to each other so as to be connected into a whole with a relatively large area, that is, a relatively large inductive sheet is formed, and the detection distance can be increased when the human body is approaching; moreover, the first conductive detection element
  • the detection channel between 51 and the sensing chip 30 and the detection channel between the first radiator 10 and the sensing chip 30 are independent of each other. In this way, there are two independent channels for detecting the approach of the subject to be tested. When the devices, chips, etc. in one of the detection channels are damaged and cannot work, the other detection channel can still work normally, thereby improving the reliability of the distance between the human body and the body. sex.
  • the present application does not specifically limit the position of the first conductive detection element 51 .
  • the first conductive detection part 51 is arranged on the main board bracket 520, at least partly opposite to the main board 510, and the first conductive detection part 51 is arranged adjacent to the first radiator 10, so that the first conductive detection part 51 is located
  • the area and the area where the first radiator 10 is located form a continuous overall area, thereby forming a continuous sensing area for detecting the detection distance of the approach of the human body.
  • the present application does not specifically limit the specific position where the first conductive detection member 51 is electrically connected to the first radiator 10 .
  • the first conductive detection member 51 is electrically connected to the first feeding point A1.
  • the first feeding point A1 is a current strong point where a resonant current is generated on the first radiator 10 .
  • the first conductive detection element 51 When the first conductive detection element 51 is electrically connected to the first feeding point A1, its boundary conditions will not be changed, and it will have little impact on the frequency band of the first radiator 10 for transmitting and receiving, which is convenient for the first radiator 10 to tune out the frequency band to be supported, for example, It is convenient to tune out the N79 frequency band; at the same time, it is also convenient to adjust the clutter generated by the first conductive detection part 51 through the area and length of the first conductive detection part 51, that is, to realize the controllable clutter generated by the first conductive detection part 51, In order to reduce the impact of the clutter generated by the first conductive detection element 51 on the frequency band supported by the antenna assembly 100 .
  • the present application does not specifically limit the specific structure of the first conductive detection element 51 .
  • the first conductive detection part 51 includes a first conductive trace 511 .
  • One end of the first conductive wire 511 is electrically connected to the first radiator 10 .
  • one end of the first conductive trace 511 is electrically connected to the first feed point A1 of the first radiator 10 , so as to reduce the influence of the first conductive trace 511 on the frequency band of the first radiator 10 for transmitting and receiving.
  • the extension track of the first conductive trace 511 includes at least one of a straight line, a bent line, and a curve.
  • the first conductive trace 511 forms a sensing block after being bent and extended. That is, the first conductive wires 511 are relatively evenly distributed in the sensing area to reduce blank areas, thereby reducing detection blind areas.
  • the first conductive wire 511 may or may not be electrically connected to the sensor chip 30 .
  • the present application does not specifically limit the length and width of the first conductive trace 511 . It can be understood that the width of the first conductive trace 511 is much smaller than the width of the first radiator 10 . By adjusting the length and width of the first conductive trace 511 , the clutter generated by the first conductive trace 511 will not affect the frequency band transmitted and received by the first radiator 10 .
  • the first radiator 10 is used to support the N79 frequency band.
  • the length and width of the first conductive trace 511 can be adjusted so that the clutter of the first conductive trace 511 is kept away from the N79 frequency band and at the same time away from other frequency bands that need to be supported.
  • the length of the first conductive trace 511 is relatively long and the width is relatively small.
  • the area of the sensing block formed by the first conductive trace 511 is relatively large, thereby making the detection distance larger.
  • the clutter of the first conductive trace 511 is reduced or the clutter generated by the first conductive trace 511 is adjusted to a low frequency position, so as to reduce the influence on the frequency band supported by the first radiator 10 .
  • the first conductive detection part 51 includes a first conductive sheet 512 .
  • the first conductive sheet 512 is electrically connected to the first radiator 10 .
  • the first conductive sheet 512 is directly electrically connected to the first feeding point A1; or, the first conductive sheet 512 is electrically connected to one end of the conductive trace, and the other end of the conductive trace is electrically connected to the
  • the first feeding point A1 of the first radiator 10 is described above to reduce the influence of the first conductive sheet 512 on the transceiver frequency band of the first radiator 10 and to realize controllable clutter generated by the first conductive sheet 512 .
  • the first conductive sheet 512 may or may not be electrically connected to the sensing chip 30 .
  • the first conductive sheet 512 is solid or mesh.
  • the first conductive sheet 512 is sheet-shaped, and its detection area is relatively large, and the first conductive sheet 512 and the first radiator 10 can be arranged adjacent to each other to form a continuous overall sensing area.
  • the first conductive sheet 512 provided in this embodiment not only makes the area of the formed sensing block relatively larger, but also makes the detection distance larger. Compared with the first conductive trace 511, it is easier to process and shape, and the formed sensing area The area is larger.
  • the first conductive detection part 51 includes a first conductive sheet 512 and a first conductive trace 511 .
  • the first conductive sheet 512 and the first conductive wire 511 are electrically connected to the first radiator 10 .
  • the first conductive wiring 511 is electrically connected to the first radiator 10 .
  • the first conductive sheet 512 may be electrically connected to an end of the first conductive trace 511 not connected to the first radiator 10 , or may be electrically connected to a middle position of the first conductive trace 511 .
  • the difference between the first conductive trace 511 in this embodiment and the conductive trace electrically connected to the first conductive sheet 512 in the second embodiment is that the first conductive trace 511 in this embodiment is the same as that in the first embodiment.
  • the induction block is formed by wiring as described in .
  • the sensing area formed in this embodiment includes the area where the first conductive sheet 512 is located, the sensing area formed by the first conductive trace 511, and the area where the first radiator 10 is located.
  • the sensing area of distance can further increase the sensing distance.
  • FIG. 18 is a third antenna assembly 100 provided in this application.
  • the difference between the third type of antenna assembly 100 and the first type of antenna assembly 100 is:
  • the antenna assembly 100 further includes at least one second radiator 60 .
  • the antenna assembly 100 further includes at least one second radiator 60 .
  • the number of the second radiators 60 may also be two or more.
  • the second radiator 60 is disposed inside the frame 310 of the electronic device 1000 and at least partially opposite to the main board 510 of the electronic device 1000 .
  • the second radiator 60 can be disposed on the same surface as the first radiator 10 .
  • the second radiator 60 is a bracket antenna.
  • the present application does not limit the frequency bands supported by the second radiator 60 .
  • the second radiator 60 is used for transmitting and receiving at least one of LB frequency band, MHB frequency band, UHB frequency band, N41 frequency band, N78 frequency band, N79 frequency band, Wi-Fi frequency band, and GNSS frequency band.
  • the second radiator 60 is electrically connected to the sensor chip 30 and/or the first radiator 10 .
  • the second radiator 60 is electrically connected to the first radiator 10 but The sensing chip 30 is not electrically connected.
  • the second radiator 60 is used to generate an induction signal when the subject to be measured approaches.
  • the second radiator 60 and the first radiator 10 By setting the second radiator 60 and the first radiator 10 to be connected to each other, they can be connected into a whole with a relatively large area, that is, to form a sensing chip with a relatively large area, which can increase the detection distance when the human body approaches. distance.
  • the sensing distance of the first radiator 10 is relatively small, and by setting the second radiator 60 also as a sensing sheet for sensing whether the subject to be measured is approaching, the detection distance can be further increased, so that the detection distance can be sensitively detected within the required distance. SAR value detected.
  • the second radiator 60 is electrically connected to the sensing chip 30 but The first radiator 10 is not electrically connected.
  • the sensing chip 30 is also used for receiving the sensing signal of the second radiator 60 when the second radiator 60 is electrically connected to the sensing chip 30, and judging according to the sensing signal that the subject to be measured is approaching or away from the second radiator 60 .
  • the sensing chip 30 can determine that the subject to be measured is approaching or moving away from the electronic device 1000 .
  • the circuit between the second radiator 60 and the sensing chip 30 and the circuit between the first radiator 10 and the sensing chip 30 may form mutually independent detection channels.
  • the sensing area for detecting the approach of the subject to be measured can be increased, thereby increasing the sensing distance, and laying the foundation for subsequent accurate power return; in addition, the detection The subject to be tested has two independent channels. When the chip or device in one of the detection channels is damaged and cannot work, the other detection channel can still work normally, thereby improving the reliability of the distance of the human body.
  • the second radiator 60 is electrically connected to the sensing chip 30 and It is electrically connected to the first radiator 10 .
  • the sensing chip 30 is also used for receiving the sensing signal of the second radiator 60 when the second radiator 60 is electrically connected to the sensing chip 30, and judging according to the sensing signal that the subject to be measured is approaching or away from the second radiator 60 .
  • the circuit between the second radiator 60 and the sensing chip 30 and the circuit between the first radiator 10 and the sensing chip 30 may form mutually independent detection channels.
  • this embodiment is a combination of the above-mentioned first embodiment and the second embodiment.
  • the second radiator 60 is used as a sensor for detecting the approach of the subject to be measured, and the second radiator 60 is connected with the first radiator.
  • the bodies 10 are connected to each other so as to be connected into a whole with a relatively large area, that is, to form a relatively large inductive sheet, which can increase the detection distance when the human body is close to the distance; moreover, the second radiator 60 and the inductive
  • the detection channels between the chips 30 and the detection channels between the first radiator 10 and the sensing chip 30 are independent of each other. In this way, there are two independent channels for detecting the approach of the subject to be tested. When the chip or device in one of the detection channels is damaged and cannot work, the other detection channel can still work normally, thereby improving the reliability of the distance between the human body and the body. .
  • the present application does not specifically limit the position of the second radiator 60 .
  • the second radiator 60 is disposed on the mainboard bracket 520, at least partly opposite to the mainboard 510, and the second radiator 60 is arranged adjacent to the first radiator 10, so that the area where the second radiator 60 is located is the same as the first radiator 10.
  • the area where a radiator 10 is located forms a continuous overall area, and further forms a continuous sensing area for detecting the detection distance of the approach of a human body.
  • the second radiator 60 has a second feeding point A2.
  • the present application does not specifically limit the structure of the second radiator 60 , and the second radiator 60 includes but is not limited to a planar inverted-F antenna, a monopole antenna, a T-shaped antenna, and the like.
  • the specific implementation manner of the structure of the second radiator 60 reference may be made to the implementation manner of the structure of the first radiator 10 , which will not be repeated here.
  • the antenna assembly 100 further includes a second feed source 80 .
  • the second feed source 80 is electrically connected to the second feed point A2.
  • the first radiator 10 and the second radiator 60 are different feed sources.
  • the second radiator 60 has a second feeding point A2.
  • the second feeding point A2 is electrically connected to the first feeding source 20 .
  • the first radiator 10 and the second radiator 60 are the same feed source, so as to reduce the number of feed sources and radio frequency ports, and simplify the structure of the antenna assembly 100 .
  • the second radiator 60 is used to generate a second resonance mode to support the N79 frequency band.
  • the second resonance mode includes a 1/4 wavelength mode, or a 1/2 wavelength mode, or a 3/4 wavelength mode, or a 1 times wavelength mode.
  • the resonance mode and the wavelength mode reference may be made to the description of the first resonance mode and the wavelength mode in the first radiator 10 , which will not be repeated here.
  • Both the second radiator 60 and the first radiator 10 provided in this embodiment can be used to support the N79 frequency band with a relatively low usage rate.
  • Multiple radiators are multiplexed as the induction sheet for detecting the approach of the subject to be measured, which can reduce the improvement of the antenna circuit with high frequency of use and avoid the clutter affecting the high frequency of use due to the need to increase the function of the sensing signal approaching the subject to be measured.
  • frequency band When the subsequent N79 frequency band is a frequency band with a high frequency of use, the first radiator 10 can be replaced to support other frequency bands with a relatively low frequency of use, and the antenna of the frequency band with a relatively low frequency of use can be used as a sensor for detecting the proximity of the subject to be tested .
  • the antenna assembly 100 further includes a fourth isolation device 43 , a third isolation device 44 and a second matching circuit M3 .
  • One end of the third isolation device 44 is electrically connected to the second feeding point A2.
  • the other end of the third isolation device 44 is electrically connected to one end of the second matching circuit M3.
  • the other end of the second matching circuit M3 is electrically connected to the second feed source 80 .
  • the second matching circuit M3 is used for tuning the frequency band supported by the second radiator 60 .
  • the third isolation device 44 is configured to be in an open state for the sensing signal.
  • the fourth isolation device 43 is electrically connected between the second radiator 60 and the sensing chip 30 .
  • the fourth isolation device 43 is configured to be in a conduction state to the induction signal generated by the second radiator 60 when the subject under test approaches, and to be in an open state to the radio frequency signal of the second radiator 60 .
  • the structure and function of the third isolation device 44 are the same as those of the first isolation device 42 , so the specific implementation manner of the structure of the third isolation device 44 can refer to the specific implementation manner of the structure of the first isolation device 42 .
  • the structure and function of the fourth isolation device 43 are the same as those of the second isolation device 41 , so the specific implementation manner of the structure of the fourth isolation device 43 can refer to the specific implementation manner of the structure of the second isolation device 41 .
  • the first radiator 10 and/or the second radiator 60 has a ground point.
  • the ground point is used for electrical connection with reference ground.
  • the first radiator 10 and/or the second radiator 60 are planar inverted-F antennas.
  • the first radiator 10 is taken as a planar inverted-F antenna as an example.
  • the antenna assembly 100 further includes a fifth isolation device 45 .
  • One end of the fifth isolation device 45 is electrically connected to the ground point, and the other end of the fifth isolation device 45 is grounded.
  • the fifth isolation device 45 is configured to be in an open state for the sensing signal.
  • the structure and function of the fifth isolation device 45 are the same as those of the first isolation device 42 , so the specific implementation of the structure of the fifth isolation device 45 can refer to the specific implementation of the structure of the first isolation device 42 .
  • a first isolation device 42 (this embodiment is referred to as the fifth isolation device 42) must be provided at the first feed point A1 and the ground point of the first radiator 10. device 45 ), so that the first radiator 10 is suspended compared to the first feed source 20 and the reference ground.
  • the second radiator 60 also has a second ground point, the second ground point is used to electrically connect the reference ground, and one of the third isolation devices 44 (that is, the fifth isolation device 45) electrically connected between the second ground point and the reference ground, and another third isolation device 44 electrically connected between the second feeding point A2 and the second matching circuit M3 is not connected between one end of the second feed source 80 .
  • the second ground point is used to electrically connect the reference ground
  • one of the third isolation devices 44 that is, the fifth isolation device 45
  • another third isolation device 44 electrically connected between the second feeding point A2 and the second matching circuit M3 is not connected between one end of the second feed source 80 .
  • the arrangement of the fifth isolation device 45 and the third isolation device 44 makes the second radiator 60 in a suspended state compared with the second feed source 80 and the reference ground when transmitting the induction signal, so that the induction signal on the second radiator 60 It is not affected by the signal on the second feed source 80 and the reference ground.
  • FIG. 23 is a fourth antenna assembly 100 provided in this application.
  • the difference between the antenna assembly 100 of the fourth type and the antenna assembly 100 of the third type is that:
  • the antenna assembly 100 further includes at least one second conductive detection element 52 .
  • the second conductive detection part 52 is used for sensing whether the subject to be tested approaches the second conductive detection part 52 .
  • the second conductive detection element 52 in this embodiment may be the first conductive detection element 51 in the antenna assembly 100 of the second type. That is, the first conductive detection element 51 in the antenna assembly 100 of the second type is combined with the first radiator 10 and the second radiator 60 in the antenna assembly 100 of the third type.
  • the combination includes but is not limited to the following embodiments: first, the first conductive detection element 51, the first radiator 10 and the second radiator 60 are not connected to each other, and are electrically connected to the sensing chip 30 independently; the second The first conductive detection element 51, the first radiator 10 and the second radiator 60 are electrically connected between two, and are electrically connected to the sensing chip 30, and the other is electrically connected to the sensing chip 30 independently; The first conductive detection element 51 , the first radiator 10 and the second radiator 60 are electrically connected to each other, and are electrically connected to the sensing chip 30 .
  • This application does not specifically limit the arrangement of the first radiator 10, the first conductive detection part 51 (the second conductive detection part 52), and the second radiator 60.
  • the first radiator 10, the first conductive detection part 51 (the second conductive detection element 52 ) and the second radiator 60 can form a continuous whole sensing area.
  • the arrangement of the first radiator 10, the first conductive detection element 51 (the second conductive detection element 52), and the second radiator 60 includes but not limited to the following embodiments: the first radiator 10, the first conductive detection element 51 (the second conductive detection part 52) and the second radiator 60 are arranged and electrically connected in sequence; or, the first conductive detection part 51 (the second conductive detection part 52), the first radiator 10 and the second radiator 60 are sequentially arranged arrangement and electrical connection; or, the first radiator 10 , the second radiator 60 and the first conductive detection element 51 (second conductive detection element 52 ) are sequentially arranged and electrically connected.
  • the second conductive detection element 52 in this embodiment may also be a different conductive detection element from the first conductive detection element 51 in the antenna assembly 100 of the second type.
  • the second conductive detection member 52 is made of conductive material.
  • the material of the second conductive detection member 52 may be the same as or different from that of the first radiator 10 .
  • connection methods between the second conductive detection part 52 and the first radiator 10 and the second radiator 60 include but not limited to the following embodiments:
  • the second conductive detection element 52 is electrically connected to the first radiator 10 and the second radiator 60 .
  • the second conductive detection element 52 By setting the second conductive detection element 52 to communicate with the first radiator 10 and the second radiator 60, they are connected to form a whole with a relatively large area, that is, to form a relatively large inductive sheet.
  • the detection distance can be increased when the distance is greater.
  • both the first radiator 10 and the second radiator 60 support the N79 frequency band, since the frequency of the N79 frequency band is relatively high, the areas of the first radiator 10 and the second radiator 60 are relatively small.
  • the sensing distance between the first radiator 10 and the second radiator 60 is relatively small, and the second conductive detection element 52 is added to sense the Whether the subject to be detected is close, the detection distance can be further increased, so that the SAR value can be detected sensitively within the required distance.
  • the second conductive detection element 52 is electrically connected to the second radiator 60 , and the second conductive detection element 52 is not electrically connected to the first radiator 10 .
  • the second conductive detection element 52 and the second radiator 60 serve as the sensing chip of one detection channel, and the first radiator 10 serves as another detection channel. channel sensor.
  • the second conductive detection member 52 is electrically connected with the first radiator 10 and the second radiator 60 as a whole.
  • the present application does not specifically limit the positional design of the first radiator 10 , the second conductive detection element 52 and the second radiator 60 .
  • the first radiator 10, the second conductive detector 52 and the second radiator 60 are arranged adjacent to each other in sequence, that is, the area where the first radiator 10 is located, the second conductive detector
  • the area where the element 52 is located and the area where the second radiator 60 is located form a continuous overall detection area to obtain a relatively large detection area to increase the detection distance.
  • the electrical connections between the second conductive detection part 52 and the first radiator 10 and the second radiator 60 include but not limited to the following embodiments: the second conductive detection part 52 and the first radiator 10 and the second radiator The body 60 is integrally formed; the second conductive detection part 52 is in direct contact with the first radiator 10 and the second radiator 60 and is electrically connected; the second conductive detection part 52 is connected to the first radiator 10 and the second radiator 60 Wires, conductive shrapnel and other intermediate connectors are electrically connected.
  • the present application does not specifically limit the shape of the second conductive detection element 52 , and the shape of the second conductive detection element 52 includes but is not limited to a sheet shape, a wire shape, and the like.
  • the first radiator 10 , the second conductive detection element 52 , and the second radiator 60 are sequentially electrically connected as an example for illustration.
  • the present application does not specifically limit the specific position where the second conductive detection member 52 is electrically connected to the first radiator 10 and the second radiator 60 .
  • the second conductive detection member 52 is electrically connected to the first feed point A1
  • the second conductive detection member 52 is electrically connected to the second feed point A2.
  • the first feeding point A1 is a current strong point where a resonant current is generated on the first radiator 10 .
  • the second feeding point A2 is a current strong point where the resonant current is generated on the second radiator 60 .
  • the second conductive detection part 52 When the second conductive detection part 52 is electrically connected to the first feeding point A1 and the second feeding point A2, its boundary conditions will not be changed, and the impact on the first radiator 10 and the second radiator 60 in the transceiver frequency band is small, which is convenient for the first radiator 10 and the second radiator 60.
  • the first radiator 10 and the second radiator 60 are tuned to the frequency bands to be supported, for example, it is convenient to tune the N79 frequency band on the first radiator 10 and the second radiator 60; , length, etc. to adjust the clutter generated by the second conductive detection part 52, that is, to realize the controllability of the clutter generated by the second conductive detection part 52, so as to reduce the impact of the clutter generated by the second conductive detection part 52 on the antenna assembly 100 The impact of supported frequency bands.
  • the present application does not specifically limit the specific structure of the second conductive detection element 52 .
  • the second conductive detection part 52 includes a second conductive trace 521 .
  • the second conductive wire 521 is electrically connected between the first radiator 10 and the second radiator 60 .
  • the second conductive wire 521 is electrically connected to the first feeding point A1 of the first radiator 10 and the second feeding point A2 of the second radiator 60, so as to reduce the influence of the second conductive wire 521 on the first radiation body 10 and the second radiator 60 affect the transceiver frequency band.
  • the extension track of the second conductive trace 521 includes at least one of a straight line, a bent line and a curve.
  • the second conductive wire 521 forms a sensing block after being bent and extended. That is, the second conductive traces 521 are relatively evenly distributed in the sensing area, so as to reduce blank areas, thereby reducing detection blind areas.
  • the present application does not specifically limit the length and width of the second conductive trace 521 . It can be understood that the width of the second conductive trace 521 is much smaller than the width of the first radiator 10 . By adjusting the length and width of the second conductive trace 521, the clutter generated by the second conductive trace 521 will not affect the frequency band transmitted and received by the first radiator 10 and the second radiator 60
  • the first radiator 10 and the second radiator 60 are used to support the N79 frequency band.
  • the length and width of the second conductive trace 521 can be adjusted to keep the clutter of the second conductive trace 521 away from the N79 frequency band and at the same time keep it away from other frequency bands that need to be supported.
  • the length of the second conductive trace 521 is relatively long and the width is relatively small.
  • the area of the sensing block formed by the second conductive trace 521 is relatively large, thereby making the detection distance larger.
  • the second conductive detection part 52 further includes a second conductive sheet 522 .
  • the second conductive sheet 522 is electrically connected between the first radiator 10 and the second radiator 60 .
  • the second conductive sheet 522 is directly electrically connected between the first feeding point A1 of the first radiator 10 and the second feeding point A2 of the second radiator 60; or, the The second conductive sheet 522 is electrically connected to the first feed point A1 of the first radiator 10 through a conductive trace, and the second conductive sheet 522 is electrically connected to the second radiator 10 through another conductive trace.
  • the second feeding point A2 of the body 60 is used to reduce the influence of the second conductive sheet 522 on the first radiator 10 and the second radiator 60 to transmit and receive frequency bands, and to realize controllable clutter generated by the second conductive sheet 522 .
  • the second conductive sheet 522 is solid or mesh.
  • the second conductive sheet 522 is sheet-shaped, and its detection area is relatively large.
  • the second conductive sheet 522 can be adjacent to the first radiator 10 and the second radiator 60 to form a continuous overall sensing area.
  • the second conductive sheet 522 provided in this embodiment not only makes the area of the formed sensing block relatively larger, but also makes the detection distance larger. Compared with the second conductive trace 521, it is easier to process and shape, and the formed sensing area The area is larger.
  • the second conductive detection part 52 includes a second conductive sheet 522 and a second conductive trace 521 .
  • the second conductive sheet 522 and the second conductive wire 521 are electrically connected to the first radiator 10 and the second radiator 60 .
  • opposite ends of the second conductive wire 521 are electrically connected to the first radiator 10 and the second radiator 60 respectively.
  • the second conductive sheet 522 can be electrically connected to a middle position of the second conductive trace 521 .
  • the difference between the second conductive trace 521 in this embodiment and the conductive trace electrically connected to the second conductive sheet 522 in the second embodiment is that the second conductive trace 521 in this embodiment is the same as that in the first embodiment.
  • the induction block is formed by wiring as described in .
  • the sensing area formed in this embodiment includes the area where the second conductive sheet 522 is located, the sensing area formed by the second conductive trace 521, the area where the first radiator 10 is located, and the area where the second radiator 60 is located. In this way, the sensing area of the approaching distance of the human body is further increased, thereby further increasing the sensing distance.
  • This application does not specifically limit the arrangement of the first radiator 10, the first conductive detection element 51, the second conductive detection element 52, and the second radiator 60.
  • the first radiator 10, the first conductive detection element 51 , the second conductive detection element 52 , and the second radiator 60 form a continuous overall sensing area.
  • the arrangement of the first radiator 10, the first conductive detection element 51, the second conductive detection element 52, and the second radiator 60 includes but not limited to the following embodiments: the first radiator 10, the first conductive detection element 51 , the second conductive detection piece 52, and the second radiator 60 are arranged in sequence and electrically connected; or, the first conductive detection piece 51, the first radiator 10, the second conductive detection piece 52, and the second radiator 60 are arranged in sequence and electrically connected connection; or, the first conductive detection element 51, the first radiator 10, the second radiator 60, and the second conductive detection element 52 are arranged in sequence and electrically connected; or, the first radiator 10, the first conductive detection element 51, The second radiator 60 and the second conductive detection element 52 are sequentially arranged and electrically connected.
  • the first conductive detection element 51 is electrically connected between the first radiator 10 and the second radiator 60
  • the second conductive detection element 52 is directly electrically connected to the second radiator 60 as an example. for example.
  • the first radiator 10 and the second radiator 60 are arranged and spaced apart along the first direction (x-axis direction).
  • the first conductive detection element 51 and the second conductive detection element 52 are disposed between the first radiator 10 and the second radiator 60 .
  • the first feeding point A1 is set on a side close to the second radiator 60
  • the second feeding point A2 is set on a side close to the first radiator 10 .
  • the first conductive detection part 51 includes a first conductive trace 511 and a first conductive sheet 512 .
  • the second conductive detection element 52 includes a second conductive sheet 522 .
  • the first conductive wire 511 is electrically connected between the first feeding point A1 and the second feeding point A2 .
  • the first conductive sheet 512 is electrically connected to the first conductive trace 511 .
  • the second conductive sheet 522 is electrically connected to the second feeding point A2.
  • the first radiator 10 , the first conductive sheet 512 , the second conductive sheet 522 and the second radiator 60 are sequentially
  • the first conductive trace 511 includes a first segment 511 a , a second segment 511 b , a third segment 511 c , a fourth segment 511 d and a fifth segment 511 e which are sequentially connected.
  • the first section 511a is located in the gap between the first radiator 10 and the first conductive sheet 512, one end of the first section 511a is electrically connected to the first feeding point A1, and the other end of the first section 511a is first along the Y axis Extend in the opposite direction, then turn back and extend forward along the Y axis, and connect to one end of the second segment 511b.
  • the second segment 511b is arranged opposite to the first conductive sheet 512 along the Y axis, and the other end of the second segment 511b is along the X axis. Reversely extending to one end connected to the third segment 511c, the third segment 511c is located between the first conductive sheet 512 and the second conductive sheet 522 .
  • the third section 511c first extends in the reverse direction along the Y axis, then turns back and then extends forward along the Y axis, and is connected to one end of the fourth section 511d.
  • the fourth section 511d and the second conductive sheet 522 are arranged in opposite directions along the Y axis , the other end of the fourth segment 511d extends in reverse along X to connect to one end of the fifth segment 511e, the fifth segment 511e is arranged between the second radiator 60 and the second conductive sheet 522, and the other end of the fifth segment 511e is electrically Connect to the second feed point A2.
  • the present application does not specifically limit the structures of the first radiator 10 and the second radiator 60 .
  • the first radiator 10 is approximately rectangular and extends along the X-axis direction.
  • avoidance holes and the like can be provided on the first radiator 10 to avoid screw holes on the mainboard support 520 .
  • both the first radiator 10 and the second radiator 60 shown in FIG. 28 are provided with circumvention gaps.
  • An edge of the second radiator 60 is also arc-shaped.
  • This application does not need to reserve a regular area on the main board 510 or the main board bracket 520 to set the first radiator 10 and the second radiator 60, that is, the first radiator 10 and the second radiator 60 can be used on the main board 510 or the main board bracket 520
  • the irregular space reduces the manufacturing difficulty and improves the space utilization ratio of the first radiator 10 and the second radiator 60 on the motherboard 510 or the motherboard bracket 520 .
  • the first radiator 10 can work in the 1/4 wavelength mode from the first feeding point A1 to the free end (point C) of the first radiator 10 .
  • the second radiator 60 can work in the 1/4 wavelength mode from the second feeding point A2 to the free end (point E).
  • the first radiator 10 and the second radiator 60 provided in this application are connected through a conductive detection element.
  • the conductive detection member is not limited to the shape and length in FIG. 28 .
  • the conductive detection part includes conductive traces and conductive sheets, and the conductive traces can be of any shape and length.
  • the conductor sheet does not participate in radiation, can be in any shape, and can be hung on the conductive trace or not. If the conductor piece is hung on the conductive wiring, it will become a whole with the conductive wiring and the first radiator 10, and as the sensing piece for detecting the close detection distance of the human body, the overall sensing area can be increased, and the sensing area is larger than that of a single support.
  • the antenna is large.
  • the first radiator 10 , the second radiator 60 , the conductive wires and the conductive sheet as a whole can be used as a sensing sheet for detecting the detection distance of the approach of the human body.
  • the sensing chip that detects the detection distance of the human body can detect the approach of the human body, thereby triggering the board-level power back, thereby reducing the radiation energy entering the human body, thereby reducing the SAR value.
  • the sensing chip that detects the detection distance of the human body can detect that the human body is far away, so as not to trigger board-level power back-off, thereby ensuring communication performance and improving user experience.
  • a capacitance will be formed between the human body and the induction sheet.
  • the capacitance value will also change accordingly.
  • the first radiator 10 and the second radiator 60 are connected together through conductive traces + conductor sheets, and then pass through two detection channels with the sensing chip 30 (between the first radiator 10 and the sensing chip 30 ).
  • the formed detection channel is connected with the detection channel formed between the second radiator 60 and the sensor chip 30 ).
  • the sensing chip 30 detects changes in different capacitance values, it can further determine that the human body is in a state of being far away from the sensing chip or approaching the sensing chip.
  • the simultaneous detection of two detection channels can not only increase the detection area of the sensing chip 30, increase the detection distance, and make the detection more sensitive, but also ensure that in the case of one channel failure, the other detection channel can still perform detection, adding a The detection line of defense greatly enhances the reliability.
  • the embodiment of the present application also provides a fifth antenna assembly 100 , and the antenna assembly 100 provided in this embodiment can be combined with the embodiments of the first antenna assembly 100 to the fourth antenna assembly 100 described above.
  • the antenna assembly 100 further includes a third radiator 70 .
  • the third radiator 70 is disposed on the frame 310 of the electronic device 1000 .
  • the third radiator 70 may be integrated with the frame 310 of the electronic device 1000, that is, the third radiator 70 is a frame antenna (or called a middle frame antenna).
  • the third radiator 70 can be formed on the frame 310 by laser direct structuring (Laser Direct Structuring, LDS), printing direct structuring (Print Direct Structuring, PDS), etc. on the inner surface.
  • the third radiator 70 may be formed on a flexible circuit board, and then the flexible circuit board is attached on the frame 310 .
  • the third radiator 70 is taken as an example of a frame antenna.
  • the present application does not specifically limit the frequency bands supported by the third radiator 70 .
  • the third radiator 70 may be used to support at least one of LB frequency band, MHB frequency band, UHB frequency band, N41 frequency band, N78 frequency band, N79 frequency band, Wi-Fi frequency band, and GNSS frequency band.
  • the third radiator 70 has a third feeding point A3.
  • the third feed point A3 is electrically connected to the first feed source 20, that is, the first radiator 10 and the third radiator 70 are co-fed, so as to reduce the number of feed sources and simplify the antenna Structure of assembly 100 .
  • the third feeding point A3 is arranged adjacent to the first feeding point A1. Both the third feed point A3 and the first feed point A1 are electrically connected to the first feed source 20, by setting the third feed point A3 adjacent to the first feed point A1 , to reduce transmission loss.
  • the third feed point A3 and the first feed point A1 are electrically connected to two different feed sources, so that the first feed point A1 of the first radiator 10 and the third radiator 70 The position of the third feeding point A3 can be set freely.
  • first feed point A1 and the third feed point A3 are electrically connected to the first feed source 20
  • second feed point A2 is electrically connected to the second feed source 80 as an example for illustration.
  • the present application does not specifically limit the structure of the third radiator 70.
  • the third radiator 70 may be an inverted F antenna, a loop antenna, an L-shaped antenna, a T-shaped antenna, and the like.
  • the structure of the third radiator 70 provided in this embodiment will be illustrated below with reference to the accompanying drawings.
  • the third radiator 70 includes a first sub-radiator 71 and a second sub-radiator 72 .
  • the shapes of the first sub-radiator 71 and the second sub-radiator 72 include but not limited to strip shape, sheet shape, rod shape, coating shape, film shape and the like.
  • the first sub-radiator 71 and the second sub-radiator 72 shown in FIG. 31 are merely an example, and cannot limit the shapes of the first sub-radiator 71 and the second sub-radiator 72 provided in this application.
  • both the first sub-radiator 71 and the second sub-radiator 72 are strip-shaped.
  • the application does not limit the extension tracks of the first sub-radiator 71 and the second sub-radiator 72 .
  • the first sub-radiator 71 and the second sub-radiator 72 are linear.
  • first sub-radiator 71 and the second sub-radiator 72 may also extend in curved or curved tracks.
  • the above-mentioned first sub-radiator 71 and second sub-radiator 72 can be a line with uniform width on the extension track, or can be a strip shape with a gradually changing width or a widening area.
  • the first sub-radiator 71 has a first ground terminal 711 , the third feeding point A3 and a first coupling terminal 712 arranged in sequence.
  • the second sub-radiator 72 has a second coupling end 721 and a second grounding end 722 .
  • the coupling gap 73 is between the first coupling end 712 and the second coupling end 721 .
  • the first ground terminal 711 and the first coupling terminal 712 are two ends of the first sub-radiator 71 respectively.
  • the second coupling end 721 and the second grounding end 722 are two ends of the second sub-radiator 72 respectively.
  • the first sub-radiator 71 and the second sub-radiator 72 are capacitively coupled through the coupling slot 73 .
  • capacitively coupling means that an electric field is generated between the first sub-radiator 71 and the second sub-radiator 72, and the electric signal on the second sub-radiator 72 can be transmitted to the second sub-radiator 72 through the electric field.
  • the first sub-radiator 71 is used so that the electrical signal conduction can be realized even when the first sub-radiator 71 and the second sub-radiator 72 are not in direct contact or direct connection.
  • first sub-radiators 71 and the second sub-radiators 72 may be arranged in a straight line or substantially in a straight line (that is, there is a small tolerance in the design process).
  • first sub-radiator 71 and the second sub-radiator 72 may also be arranged staggered in the extension direction to form an avoidance space.
  • first ground terminal 711 and the second ground terminal 722 are electrically connected to the reference ground GND, and the electrical connection methods include but are not limited to direct welding, or through coaxial lines, microstrip lines, conductive shrapnel, conductive glue, etc. indirect electrical connection.
  • the reference ground GND can be an independent integral structure, or multiple independent but electrically connected structures.
  • the reference ground GND provided in this application can be set inside the antenna assembly 100 or outside the antenna assembly 100 (for example, inside the electronic device 1000 or inside an electronic device of the electronic device 1000 ).
  • the antenna assembly 100 itself has a reference ground GND.
  • Specific forms of the reference ground GND include, but are not limited to, metal conductive plates, metal conductive layers formed inside flexible circuit boards, and rigid circuit boards.
  • the antenna assembly 100 itself does not have a reference ground GND, and the first ground terminal 711 and the second ground terminal 722 of the antenna assembly 100 are directly electrically connected or indirectly electrically connected to the The reference ground of the electronic device 1000 or the reference ground of the electronic devices in the electronic device 1000 .
  • the antenna assembly 100 is set on the electronic device 1000, which is a mobile phone, and the reference ground of the electronic device 1000 is the magnesium-aluminum metal alloy plate of the support plate 330 of the mobile phone.
  • the first ground terminal 711 and the second ground terminal 722 of the antenna assembly 100 are electrically connected to the magnesium-aluminum metal alloy plate.
  • Other structures of the antenna assembly 100 described later are electrically connected to the reference ground GND, and reference can be made to any one of the implementations described above that are electrically connected to the reference ground GND.
  • the antenna assembly 100 further includes a third matching circuit M3.
  • One end of the third matching circuit M3 is electrically connected to the third feeding point A3, and the other end of the third matching circuit M3 is electrically connected to the first feeding source 20 .
  • the third matching circuit M3 includes but is not limited to capacitors, inductors, capacitor-inductor combinations, switch tuning devices and the like.
  • the third matching circuit M3 is used for tuning the frequency band supported by the third radiator 70 , so as to tune a variety of resonance modes on the third radiator 70 .
  • the third radiator 70 provided in this embodiment is provided with the coupling slot 73 .
  • the third radiator 70 generates multiple resonance modes under the excitation of the first feed source 20 .
  • the third radiator 70 supports at least 3 resonance modes to support more frequency bands.
  • the third radiator 70 generates at least a third resonant mode, a fourth resonant mode and a fifth resonant mode under the excitation of the first feed source 20, so as to at least simultaneously support the MHB frequency band, UHB frequency band and N78 frequency band.
  • the third resonant mode, the fourth resonant mode and the fifth resonant mode all include at least one of 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode, and 1 times wavelength mode By.
  • the third resonance mode (corresponding to mode 1 in FIG. 32 ) includes 1/2 of the first sub-radiator 71 between the first ground terminal 711 and the first coupling terminal 712. 4 wavelength mode.
  • the first sub-radiator 71 between the first ground terminal 711 and the first coupling terminal 712 supports the MHB frequency band (taking the B3 frequency band as an example) under the excitation of the first feed source 20 description), wherein the resonance current corresponding to the third resonance mode works in the 1/4 wavelength mode.
  • the sum of the equivalent electrical length of the first matching circuit M1 and the electrical length of the first sub-radiator 71 between the first ground terminal 711 and the first coupled terminal 712 is approximately corresponding to the B3 frequency band 1/4 times the wavelength of the medium to generate a third resonant mode at the resonant frequency for the B3 band.
  • the resonant current distribution of the third resonant mode includes: the resonant current flows from the first ground terminal 711 to the first coupled terminal 712 .
  • the flow direction of the resonant current can also be reversed, that is, the resonant current flows from the first coupling end 712 to the first grounding end 711 .
  • the fourth resonance mode (corresponding to mode 2 in FIG. 32 ) includes 1 of the first sub-radiator 71 between the third feeding point A3 and the first coupling end 712.
  • the /4 wavelength mode and the 1/4 wavelength mode of the second sub-radiator 72 between the second coupling end 721 and the second grounding end 722 .
  • the first sub-radiator 71 between the third feeding point A3 and the first coupling end 712, the sub-radiator 71 between the second coupling end 721 and the second grounding end 722 The fourth resonance mode that the second sub-radiator 72 generates under the excitation of the first feed source 20 supports the MHB frequency band (taking the N41 frequency band as an example), wherein the resonance current corresponding to the fourth resonance mode works at 1 /4 wavelength mode.
  • the electrical length of the first sub-radiator 71 between the first grounding end 711 and the first coupling end 712 is about 1/4 times the wavelength of the medium corresponding to the N41 frequency band
  • the second coupling The electrical length of the second sub-radiator 72 between the terminal 721 and the second ground terminal 722 is about 1/4 times the wavelength of the medium corresponding to the N41 frequency band, so as to generate a fourth resonance mode when the resonant frequency is the N41 frequency band .
  • the resonant current distribution of the fourth resonant mode includes: the resonant current flows from the third feeding point A3 to the first coupling end 712 , and from the second coupling end 721 to the second grounding end 722 .
  • the flow direction of the resonance current can also be reversed, that is, the resonance current flows from the second ground terminal 722 to the second coupling terminal 721 and from the first coupling terminal 712 to the third feeding point A3.
  • the fifth resonance mode (corresponding to mode 3 in FIG. 32 ) includes 1 of the first sub-radiator 71 between the third feeding point A3 and the first coupling end 712. /4 wavelength mode and 1/4 wavelength mode of the second sub-radiator 72 between the second ground terminal 722 and the second coupling terminal 721 .
  • the first sub-radiator 71 between the third feeding point A3 and the first coupling end 712, the sub-radiator 71 between the second coupling end 721 and the second grounding end 722 The fourth resonant mode that the second sub-radiator 72 generates under the excitation of the first feed source 20 supports the UHB frequency band (taking the N78 frequency band as an example), wherein the resonant current corresponding to the fourth resonant mode works at 1 /4 wavelength mode.
  • the electrical length of the first sub-radiator 71 between the first grounding end 711 and the first coupling end 712 is about 1/4 times the wavelength of the medium corresponding to the N78 frequency band
  • the second coupling The electrical length of the second sub-radiator 72 between the terminal 721 and the second ground terminal 722 is about 1/4 times the wavelength of the medium corresponding to the N78 frequency band, so as to generate a fourth resonant mode at the resonant frequency of the N78 frequency band .
  • the resonant current distribution of the fourth resonant mode includes: a resonant current from the third feeding point A3 to the first coupling end 712 , and from the second grounding end 722 to the second coupling end 721 .
  • the flow direction of the resonant current can also be reversed, that is, the resonant current flows from the first coupling end 712 to the third feeding point A3, and from the second coupling end 721 to the second grounding end 722 .
  • the antenna assembly 100 further includes a tuning circuit T1.
  • One end of the tuning circuit T1 is electrically connected to the third matching circuit M3 or the third radiator 70 , and the other end of the tuning circuit T1 is grounded.
  • the tuning circuit T1 includes an antenna switch or an adjustable capacitor.
  • the tuning circuit T1 further includes a switch circuit 731 and a plurality of tuning branches 732 .
  • One end of the switch circuit 731 is electrically connected to the third matching circuit M3 or the third radiator 70
  • one end of the plurality of tuning branches 732 is electrically connected to the other end of the switch circuit 731 . That is, the switch circuit 731 is a single-pole multi-throw switch.
  • the other ends of the plurality of tuning branches 732 are grounded, and the plurality of tuning branches 732 are used for tuning the frequency band of the third radiator 70 .
  • each tuning branch 732 is different.
  • the multiple tuning branches 732 are multiple capacitive devices with different capacitance values; or, the multiple tuning branches 732 are multiple inductive devices with different inductance values.
  • the impedance value of the tuning circuit T1 is adjusted, thereby adjusting the equivalent electrical length of the tuning branch 732, and further adjusting the tuning branch 732.
  • the sum of the equivalent electrical length and the electrical length of the third radiator 70 further adjusts the size of the frequency band supported by the third radiator 70 .
  • the tuning branch 732 may include a capacitor, or an inductor, may be a series device of a capacitor and an inductor, may also be a parallel device of a capacitor and an inductor, or may be the above-mentioned series device It can also be connected in parallel with a capacitor, the above-mentioned series device can be connected in parallel with an inductor, it can also be that two above-mentioned series devices are connected in parallel, it can also be that two above-mentioned parallel devices are connected in series, and so on.
  • the tuning circuit T1 includes an adjustable capacitor 733 , and the adjustable capacitor 733 is used to tune the frequency band supported by the third radiator 70 .
  • the adjustable capacitor 733 is a capacitor with adjustable capacitance value. In this way, by adjusting the capacitance value of the capacitor, the impedance value of the tuning circuit T1 can be adjusted, and then the equivalent electrical length of the tuning circuit T1 can be adjusted to further adjust The sum of the equivalent electrical length of the tuning branch 732 and the electrical length of the third radiator 70 can further adjust the size of the frequency band supported by the third radiator 70 .
  • the tuning circuit T1 may also be a combination of the above-mentioned first implementation manner and the second implementation manner, for example, the tuning branch 732 includes the adjustable capacitor 733 .
  • the MHB frequency band includes but is not limited to the B3 frequency band and N41 frequency band listed above, and can also be other frequency bands, for example, N1 frequency band, N2 frequency band, N3 frequency band, N7 frequency band, N38 frequency band, B1 frequency band, B2 frequency band, At least one of B3 frequency band, B4 frequency band, B7 frequency band, B9 frequency band, B10 frequency band, B11 frequency band, B21 frequency band, B24 frequency band, B25 frequency band, B33 frequency band-B43 frequency band, etc.
  • the switching circuit 731 of the tuning circuit T1 can be switched to a different tuning branch 732 to change the equivalent impedance of the tuning circuit T1, thereby adjusting the equivalent electrical length of the tuning circuit T1 + the third radiator 70, and then tuning the third radiator.
  • the radiator 70 can support any frequency band in the MHB frequency band and any frequency band in the UHB frequency band.
  • FIG. 32 is the return loss curve of the antenna part of the first feed source 20, the first radiator 10 and the third radiator 70 in the antenna assembly shown in FIG.
  • the antenna assembly 100 includes a first sub-radiator 71, a coupling slot 73, a second sub-radiator 72, a first matching circuit M1, a tuning circuit T1 and a first feed source 20, by tuning the first matching circuit M1 and the tuning circuit T1 , which can generate the MHB+N78 frequency band (as shown in the return loss curve in Figure 32).
  • the 1/4 wavelength fundamental mode (corresponding to mode 1 in FIG. 31 ) from the first ground terminal 711 to the coupling slot 73 can generate an MB frequency band (for example, a B3 frequency band).
  • the 1/4 wavelength mode from the third feed point to the coupling slot 73 and the 1/4 wavelength mode from the coupling slot 73 to the second ground terminal 722 (corresponding to mode 2 in FIG.
  • the tuning circuit T1 can switch the positions of the resonant frequencies of the modes 1 to 3 by switching different logics, so as to cover the entire MHB+UHB frequency band.
  • the first radiator 10 can be adjusted to any frequency band by adjusting its length, area, and first matching circuit M1 (as in this embodiment, its frequency band is adjusted to the N79 frequency band, as shown in the mode 4 in the return loss curve in Figure 32 ), whose mode is the 1/4 wavelength mode from the first feeding point A1 to point C in the first radiator 10 (corresponding to mode 4 in the return loss curve of FIG. 32 ). Since the first radiator 10 and the third radiator 70 use the first feed source 20, the above four modes can be excited at the same time, so that the MHB+UHB+N79 frequency band can be supported at the same time, for example, MHB+N41+N78+ N79 frequency band.
  • the second radiator 60 can generate any frequency band by adjusting its length, area, and second matching circuit M3 (as in this embodiment, its frequency band is adjusted to the N79 frequency band, as shown in the mode 5 in the return loss curve in Figure 35) , whose mode is the 1/4 wavelength mode from the second feeding point A2 to point E in the second radiator 60 .
  • the antenna assembly 100 is designed to cover a wide frequency band, support LB+MHB+N41+N78+N79 (or other frequency bands) at the same time, support multi-carrier aggregation (Carrier Aggregation, CA) state, and have excellent performance. Can effectively improve user experience.
  • the present application provides an antenna assembly 100, including a border antenna that can support the MHB+N78 frequency band, one or more support antennas that can support the N79 frequency band, and an induction chip 30 for detecting the detection distance of the human body approaching, wherein one or Multiple antennas that can support the N79 frequency band can also be FPC or LDS antennas, which are used as induction plates for detecting the detection distance of the approaching human body.
  • this application provides a frame antenna that can support MHB+N78 frequency bands, dual bracket antennas (N79 frequency band or LB or other arbitrary frequency bands), conductive
  • the antenna assembly 100 of wires, conductor sheets and sensing chip 30, the conductor sheet can be made of FPC, LDS or PDS process, it does not participate in radiation, can be in any shape, and can be hung on the conductive wire or not.
  • the antenna assembly 100 is designed to cover a wide frequency band, and supports LB/MHB+N41+N78+N79 (or other frequency bands) frequency bands, and supports multiple CA states, making the antenna assembly 100 Under the
  • the embodiment of the present application also provides a method for controlling the electronic device 1000, the method is applied to the electronic device 1000 described in any one of the above implementation modes, please refer to FIG. 36, and refer to FIGS. 1 to 35 in conjunction, the The method at least includes the following steps:
  • the processor of the electronic device 1000 (the processor is or includes the above-mentioned controller) is electrically connected to the sensing chip 30 .
  • the processor of the electronic device 1000 receives the sensing signal from the sensing chip 30 .
  • the sensing signal includes but is not limited to sensing capacitance.
  • the sensing chip 30 sends the detected sensing capacitance to the processor of the electronic device 1000 in the form of an electric signal, and the processor of the electronic device 1000 judges the change of the distance between the human body and the sensing chip according to the change of the sensing capacitance. Specifically, it is determined whether the human body approaches the electronic device 1000 .
  • the subject to be measured is a human body as an example.
  • the processor of the electronic device 1000 judges that the human body approaches the electronic device 1000 according to the change of the sensing signal, the processor of the electronic device 1000 controls at least part of the radiation power of the antenna assembly 100 to decrease.
  • the present application does not specifically limit the reduction of the radiation power of the antenna assembly 100, and the specific reduction can be set according to actual requirements, so that the electronic device 1000 can be intelligently adjusted when the subject to be measured approaches the electronic device 1000
  • the radiation power of the electronic device 1000 is used to intelligently reduce the specific absorption rate of the subject to be measured for electromagnetic wave signals, so as to meet the SAR compliance requirements of the electronic device 1000 .
  • the present application is not limited to reducing the radiation power of the first radiator 10.
  • the radiation power of the third radiator 70 close to the first radiator 10 can also be reduced, so as to reduce the radiation power of the electronic device 1000 when the human body approaches , thereby reducing the specific absorption rate of the human body for electromagnetic waves.
  • the method provided by the embodiment of this application also includes:
  • This step can be performed before, after or simultaneously with step 120 .
  • FIG. 37 is just an example. When the determination result in step 120 is negative, proceed to step 140 .
  • the subject to be measured is a human body as an example.
  • the processor of the electronic device 1000 determines that the human body is far away from the electronic device 1000 according to the change of the sensing signal, the processor of the electronic device 1000 controls the radiation power of at least part of the antenna assembly 100 to remain unchanged or increase.
  • the present application does not specifically limit the increase of the radiation power of the antenna assembly 100, and the specific increase can be set according to actual requirements, so that the electronic device 1000 can be intelligently adjusted when the subject to be measured is far away from the electronic device 1000
  • the radiated power of the electronic device 1000 is used to determine the antenna performance of the electronic device 1000 while satisfying the SAR compliance requirement of the electronic device 1000 .
  • the present application is not limited to adjusting the radiation power of the first radiator 10 , and optionally, the radiation power of the third radiator 70 close to the first radiator 10 may also be adjusted.
  • the sensing chip 30 by receiving the sensing signal from the sensing chip 30, it is judged according to the sensing signal whether the subject to be tested is close to the electronic device 1000, and when the subject to be tested is close to the electronic device 1000, Reducing at least part of the radiation power of the antenna assembly 100, so as to intelligently reduce the radiation power of the electronic device 1000 when the subject to be measured is close to the electronic device 1000, so as to intelligently reduce the specific absorption rate of the subject to be measured for electromagnetic wave signals; further, According to the induction signal, it is judged whether the subject under test is far away from the electronic device 1000, and when the subject under test is far away from the electronic device 1000, at least part of the radiation power of the antenna assembly 100 remains unchanged or at least partly increases The radiated power of the antenna assembly 100 can be adjusted intelligently when the subject to be tested is far away from the electronic device 1000 , so as to ensure the communication performance of the electronic device 1000 .
  • the electronic device 1000 expands its sensing area for sensing the subject to be tested, thereby increasing the sensing distance threshold for the antenna assembly 100 to sense whether the subject to be tested is approaching, thereby improving the detection accuracy of whether the subject to be tested is close to or far away from the electronic device 1000 , so it has higher sensitivity in intelligently reducing the specific absorption rate of the subject to be tested for electromagnetic wave signals, so as to meet the higher SAR compliance requirements of the electronic device 1000 .

Landscapes

  • Support Of Aerials (AREA)
  • Transmitters (AREA)

Abstract

本申请提供的一种电子设备及其控制方法,电子设备包括天线组件、边框及主板,天线组件包括第一辐射体、第一馈源及感应芯片。第一辐射体设于所述边框内侧且至少部分与所述主板相对设置,所述第一辐射体具有第一馈电点。所述第一馈源电连接于所述第一馈电点,所述第一馈源用于激励所述第一辐射体至少收发LB频段、MHB频段、UHB频段、Wi-Fi频段、GNSS频段中的至少一者。所述感应芯片电连接所述第一辐射体,所述感应芯片用于至少接收所述第一辐射体在待测主体靠近时所产生的感应信号并根据所述感应信号判断所述待测主体接近或远离所述第一辐射体。本申请提供的电子设备能够提高待测主体是否靠近或远离电子设备的检测准确性且促进电子设备小型化。

Description

电子设备及其控制方法
本申请要求于2021年12月28日提交中国专利局、申请号为202111630765X、申请名称为“电子设备及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种电子设备及电子设备的控制方法。
背景技术
随着移动通信技术的发展和移动终端等电子设备的广泛使用,移动终端与人体等待测主体之间的距离对于调控电子设备的工作状态具有重要的作用。随着电子设备的小型化发展,如何提高待测主体是否靠近或远离电子设备的检测准确性且促进电子设备小型化,成为需要解决的技术问题。
发明内容
本申请提供一种提高待测主体是否靠近或远离电子设备的检测准确性且促进电子设备小型化的电子设备及该电子设备的控制方法。
第一方面,本申请提供的一种电子设备,包括边框、主板及天线组件,所述天线组件:
第一辐射体,设于所述边框内侧且至少部分与所述主板相对设置,所述第一辐射体具有第一馈电点;
第一馈源,所述第一馈源电连接于所述第一馈电点,所述第一馈源用于激励所述第一辐射体至少收发LB频段、MHB频段、UHB频段、Wi-Fi频段、GNSS频段中的至少一者;以及
感应芯片,所述感应芯片电连接所述第一辐射体,所述感应芯片用于至少接收所述第一辐射体在待测主体靠近时所产生的感应信号并根据所述感应信号判断所述待测主体接近或远离所述第一辐射体。
第二方面,本申请提供了一种电子设备的控制方法,所述方法应用于所述的电子设备,所述方法包括:
接收来自感应芯片的感应信号;
根据所述感应信号判断所述待测主体是否接近所述电子设备,并在所述待测主体接近所述电子设备时降低至少部分的所述天线组件的辐射功率。本申请提供的控制方法,通过接收来自感应芯片的感应信号,根据所述感应信号判断所述待测主体是否接近所述电子设备,并在所述待测主体接近所述电子设备时降低至少部分的所述天线组件的辐射功率,以在待测主体靠近于电子设备时降低电子设备的辐射功率,以智能降低待测主体对于电磁波信号的比吸收率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1提供的电子设备的结构拆分示意图;
图3是图2提供的电子设备的局部放大示意图;
图4是本申请实施例提供的第一种天线组件的结构示意图;
图5是本申请实施例提供的第一种天线组件的细节结构示意图;
图6是图5提供的第一种天线组件的馈电路径的示意图;
图7是本申请实施例提供的第一种第一辐射体的结构示意图;
图8是本申请实施例提供的第二种第一辐射体的结构示意图;
图9是本申请实施例提供的天线组件中的第一匹配电路中设有第二隔离器件的结构示意图;
图10是图5提供的第一种天线组件的感应信号检测路径的示意图;
图11是本申请实施例提供的第二种天线组件中第一种第一导电检测件的电连接方式的结构示意图;
图12是本申请实施例提供的第二种天线组件中第二种第一导电检测件的电连接方式的结构示意图;
图13是本申请实施例提供的第二种天线组件中第三种第一导电检测件的电连接方式的结构示意图;
图14是本申请实施例提供的第二种天线组件中第四种第一导电检测件的电连接方式的结构示意图;
图15是本申请实施例提供的第一种第一导电检测件的结构示意图;
图16是本申请实施例提供的第二种第一导电检测件的结构示意图;
图17是本申请实施例提供的第三种第一导电检测件的结构示意图;
图18是本申请实施例提供的第三种天线组件中第一种第一辐射体、第二辐射体与感应芯片的电连接方式的结构示意图;
图19是本申请实施例提供的第三种天线组件中第二种第一辐射体、第二辐射体与感应芯片的电连接方式的结构示意图;
图20是本申请实施例提供的第三种天线组件中第三种第一辐射体、第二辐射体与感应芯片的电连接方式的结构示意图;
图21是本申请实施例提供的第三种天线组件中第一辐射体与第二辐射体皆电连接第一馈源的结构示意图;
图22是图20提供的第三种天线组件中第一辐射体还电连接第五隔离器件的结构示意图;
图23是本申请实施例提供的第四种天线组件中第一辐射体、第二导电检测件、第二辐射体与感应芯片的第一种电连接方式的结构示意图;
图24是本申请实施例提供的第四种天线组件中第一辐射体、第二导电检测件、第二辐射体与感应芯片的第二种电连接方式的结构示意图;
图25是本申请实施例提供的第四种天线组件中第一种第二导电检测件的结构示意图;
图26是本申请实施例提供的第四种天线组件中第二种第二导电检测件的结构示意图;
图27是本申请实施例提供的第四种天线组件中第三种第二导电检测件的结构示意图;
图28是图27提供的第四种天线组件的具体结构示意图;
图29是图28提供的第四种天线组件的局部示意图;
图30是本申请实施例提供的第五种天线组件的结构示意图;
图31是图30提供的第五种天线组件的等效电路图;
图32是图31提供的第五种天线组件中第一馈源、第一辐射体、第三辐射体的回波损耗曲线图;
图33是图31提供的第一种调谐电路的结构示意图;
图34是图31提供的第二种调谐电路的结构示意图;
图35是图31提供的第五种天线组件中第二馈源、第二辐射体的回波损耗曲线图;
图36是本申请实施例提供的第一种电子设备的控制方法的流程图;
图37是本申请实施例提供的第二种电子设备的控制方法的流程图。
附图标号如下:
电子设备-1000;天线组件-100;显示屏-200;壳体-300;边框-310;后盖-320;支撑板-330;中框-340;电路板-500;电池-600;主板-510;主板支架-520;第一辐射体-10;第一馈源-20;感应芯片-30;第一馈电点-A1;第二隔离器件-41;第一隔离器件-42;第一匹配电路-M1;第一导电检测件-51;第一导电走线-511;第一导电片-512;第二辐射体-60;第二馈电点-A2;第二馈源-80;第四隔离器件-43;第三隔离器件-44;第二匹配电路-M2;第五隔离器件-45;第二导电检测件-52;第二导电走线-521;第二导电片-522;第一段-511a;第二段-511b;第三段-511c;第四段-511d;第五段-511e;第三辐射体-70;第三馈电点-A3;第一子辐射体-71;第二子辐射体-72;耦合缝隙-73;第一接地端-711;所述第三馈电点-A3;第一耦合端-712;第二耦合端-721;第二接地端-722;第三匹配电路-M3;调谐电路-T1;开关电路-731;调谐分支-732;可调电容-733;参考地-GND。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本申请中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
请参照图1,图1为本申请实施例提供的一种电子设备1000的结构示意图。所述电子设备1000包括天线组件。所述天线组件用于收发射频信号,其中,射频信号在空气介质中以电磁波信号进行传输,以实现所述电子设备1000的通信功能。本申请对于所述天线组件在所述电子设备1000上的位置不做具体的限定,图1只是一种示例。所述电子设备1000还包括相互盖合连接的显示屏200及壳体300。所述天线组件可设于所述电子设备1000的壳体300内部、或部分与所述壳体300集成为一体、或部分设于所述壳体300外。图1中所述天线组件的辐射体与所述壳体300集成为一体。
所述电子设备1000包括不限于为手机、电话、平板电脑、个人计算机、笔记本电脑、车载设备、智能耳机、智能手表、智能可穿戴设备、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以所述电子设备1000为手机为例,其他的设备可参考本申请中的具体描述。
为了便于描述,以所述电子设备1000处于图1中的视角为参照,所述电子设备1000的宽度方向定义为X轴方向,所述电子设备1000的长度方向定义为Y轴方向,所述电子设备1000的厚度方向定义为Z轴方向。X轴方向、Y轴方向及Z轴方向两两垂直。其中,箭头所指示的方向为正向。
请参阅图2,所述壳体300包括边框310及后盖320。所述边框310内通过注塑形成支撑板330,所述支撑板330上形成多个用于安装各种电子器件的安装槽。所述支撑板330与所述边框310一起成为所述电子设备1000的中框340。所述显示屏200、所述中框340及所述后盖320盖合后在所述中框340的两侧皆形成收容空间。所述边框310的一侧(例如后侧)围接于所述后盖320的周沿,所述边框310的另一侧(例如前侧)围接于所述显示屏200的周沿。所述电子设备1000还包括设于收容空间内的电路板500(包括主板、副板、柔性电路板等)、电池600、摄像头模组、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。可以理解地,上述对所述电子设备1000的介绍仅是所述天线组件所应用的一种环境的说明,所述电子设备1000的具体结构不应当理解为对本申请提供的所述天线组件的限定。
以下结合附图对于本申请提供的所述天线组件的具体结构进行举例说明,当然,本申请提供的所述天线组件包括但不限于以下的实施方式。
请参阅图3,天线组件100应用于电子设备1000。电子设备1000的电路板500包括主板510,其中,主板510上安装了组成电子设备1000的主要电路系统,包括:处理器,蜂窝移动射频、蓝牙、GPS及Wi-Fi芯片,存储芯片,电源管理芯片,音视频处理芯片、输入、输出接口等。
本申请中,请参阅图3,支撑板330上用于承载主板510的部分成为主板支架520,即主板510通过螺钉等方式固定于主板支架520上。所述主板510及所述主板支架520皆设于所述边框310内。所述主板510设于所述主板支架520上。
请参阅图4,图4为本申请提供的第一种天线组件100。天线组件100至少包括第一辐射体10、第一馈源20及感应芯片30。
所述第一辐射体10设于所述电子设备1000的边框310内侧且第一辐射体10的至少部分与所述电子设备1000的主板510相对设置。其中,第一辐射体10的至少部分与所述电子设备1000的主板510的相对设置为在Z轴方向(也是电子设备1000或者说主板510的厚度方向)相对设置。换言之,第一辐射体10的至少部分与主板510用于承载器件的承载面相对设置。可选的,主板510及第一辐射体10皆设于主板支架520上。主板支架520、主板510及第一辐射体10沿Z轴方向(请参考图2中的Z轴方向,也是电子设备1000的厚度方向)依次层叠设置。主板支架520是中框340中支撑板330的一部分,主板510在Z轴方向上固定在主板支架520上。第一辐射体10在Z轴方向上至少部分设于主板510上。其中,第一辐射体10在Z轴方向上的正投影至少部分覆盖主板510。可选的,第一辐射体10在Z轴方向上的一部分正投影覆盖所述主板510的一部分,第一辐射体10在Z轴方向的另一部分正投影可位于所述主板510之外,例如,位于所述主板510与所述边框310之间的间隙。当然,在其他实施方式中,所述第一辐射体10在Z轴方向上的正投影可完全位于所述主板510所在区域内。
所述第一辐射体10具有第一馈电点A1,后续对于第一馈电点A1的位置和功能进行说明。
其中,所述第一辐射体10为所述天线组件100收发射频信号的端口,其中,射频信号在空气介质中以电磁波信号形式传输。本申请对于所述第一辐射体10的形状不做具体的限定。例如,所述第一辐射体10的形状皆包括但不限于条状、片状、杆状、涂层状、薄膜状等。图3所示的所述第一辐射体10仅仅为一种示例,并不能对本申请提供的所述第一辐射体10的形状造成限定。可选的,所述第一辐射体10所形成的天线为支架天线。其中,支架天线包括但不限于为成型于柔性电路板(Flexible Printed Circuit board,FPC)上的柔性电路板天线、通过激光直接成型(Laser Direct Structuring,LDS)的激光直接成型天线、通过印刷直接成型(Print Direct Structuring,PDS)的印刷直接成型天线、导电片天线等。
可选的,所述第一辐射体10的材质为导电材质,具体材质包括但不限于为铜、金、银等金属,或铜、金、银相互形成的合金,或铜、金、银与其他材料形成的合金;石墨烯、或由石墨烯与其他材料结合形成的导电材料;氧化锡铟等氧化物导电材料;碳纳米管及聚合物形成混合材料等等。
可选的,所述第一辐射体10为薄片状或薄层状。所述第一辐射体10的面大致与X-Y面平行。本申请不限定所述第一辐射体10位于所述主板510朝向所述显示屏200所在侧或所述主板510朝向所述后 盖320所在侧。
所述第一馈源20电连接于所述第一馈电点A1。其中,第一馈源20包括但不限于为射频收发芯片和射频前端电路。所述第一馈源20设于所述电子设备1000的主板510上。所述第一馈源20电连接于所述第一馈电点A1的电连接方式包括但不限于通过直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。本实施例中,第一馈电点A1通过导电件(例如导电弹片)电连接至第一馈源20的射频端口。
所述第一馈源20发射的射频信号经所述第一馈电点A1馈入所述第一辐射体10,射频信号能够激励起所述第一辐射体10产生谐振电流,形成谐振,以支持该谐振电流对应的频段。当然,第一馈源20也可以经所述第一馈电点A1通过所述第一辐射体10接收射频信号。
所述第一馈源20用于激励所述第一辐射体10至少收发LB频段、MHB频段、UHB频段、N41频段、N78频段、N79频段、Wi-Fi频段、GNSS频段中的至少一者。其中,LB频段是指低于1000MHz的频段(不包括1000MHz)。MHB频段是指1000MHz-3000MHz(包括1000MHz,不包括3000MHz)的频段。UHB频段是指3000MHz-10000MHz的频段(包括3000MHz)。Wi-Fi频段包括但不限于为Wi-Fi 2.4G、Wi-Fi 5G、Wi-Fi 6E等中的至少一者。GNSS全称为Global Navigation Satellite System,中文名称为全球导航卫星系统,GNSS包括全球性的全球定位系统(Global Positioning System,GPS)、北斗、全球卫星导航系统(Global Navigation Satellite System,GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system,Galileo)以及区域性导航系统等。
所述感应芯片30电连接所述第一辐射体10。所述感应芯片30用于至少接收所述第一辐射体10在待测主体靠近时所产生的感应信号并根据所述感应信号判断所述待测主体接近或远离所述第一辐射体10。当第一辐射体10靠近于电子设备1000的壳体时,所述感应芯片30可判断所述待测主体接近或远离电子设备1000。
其中,所述待测主体为生物体,包括但不限于人体的头部、手部、腹部、腿部等其他的位置,或其他的生命体。
本申请提供的电子设备1000,通过将天线组件100中的第一辐射体10设于电子设备1000的边框310内侧,第一辐射体10不仅在第一馈源20的激励下收发LB频段、MHB频段、UHB频段、N41频段、N78频段、N79频段、Wi-Fi频段、GNSS频段中的至少一者,还通过将第一辐射体10电连接于感应芯片30,以使第一辐射体10还作为感应待测主体是否接近的感应导体,实现第一辐射体10的一物多用,以增加天线组件100的功能的同时还使天线组件100的尺寸较小。由于第一辐射体10设于电子设备100的边框310内侧且至少部分与电子设备100的主板510相对设置,由于边框310内侧具有大量的空间,无需受到边框310形状限制,如此,第一辐射体10的形状和结构可灵活设置,以便于扩展其感应待测主体是否接近的感应面积,进而增大天线组件100感应待测主体是否接近的感应距离,提高待测主体是否靠近或远离电子设备1000的检测准确性且促进电子设备1000小型化。
在一种应用场景中,手机中人体特定吸收功率的合规性需要极其重视,人体特定吸收功率主要是检测手机距离肢体0mm、5mm(或其他距离,据不同法规而定)时的比吸收率(SAR)值,对应的距离下比吸收率(SAR)值不能超标。其中,比吸收率(Specific Absorption Rate,SAR)是指电子设备的电磁波能量吸收比值,为单位质量的人体组织所吸收或消耗的电磁功率。同时,为了保证通信性能,不能时刻保持天线组件100的板级功率处于回退状态,这将大大降低手机的通信性能。因而,感应芯片30用于检测手机是否处于接近肢体的状态,在接近状态下控制天线组件100的板级功率进行回退,在远离肢体的状态下不进行板级功率回退。因此,感应芯片30对于人体接近的检测距离尤为关键。
本实施例中,所述第一辐射体10可作为感应芯片30感应人体接近的感应片,其中,所述第一辐射体10和感应芯片30形成SAR传感器。SAR传感器通过接收感应片在人体接近时所产生的感应信号,并根据感应信号大小判断人体与感应片之间的距离、或判断人体处于接近或远离感应片的状态,以便于控制器人体接近感应片的预设距离范围内进行天线的功率回退,进而实现天线的辐射能量降低,从而人体在靠近电子设备100时的电磁波能量吸收比值降低,以满足电子设备1000的SAR合规性。
可选的,SAR传感器的检测原理如下:当人体靠近感应片(例如本实施例中的第一辐射体10)时,由于人体相当于一个接大地的电容,因此会在感应片和大地之间形成一个感应电容,其感应电容量通常有几pF到几十pF。由于该感应片与人体之间形成的感应电容量与感应片和人体之间的距离一一对应。故,感应芯片30通过检测感应片与人体之间的感应电容量的变化,检测人体与感应片之间的距离,进而检测人体与电子设备1000之间的距离,进而判断人体是否接触或接近电子设备1000;或人体是否处于接近电子设备1000的状态。
一般地,为了满足安全规范,电子设备1000需要在人体(重要器官,例如头部等)接近电子设备 1000一定距离范围(较近的距离范围)内进行天线发射功率回退,以智能降低电子设备1000的辐射能量,从而人体组织所吸收或消耗的电磁波能量吸收比值也相应地降低,即SAR值降低。
所述感应芯片30为用于检测第一辐射体10与人体之间形成的感应电容量变化的芯片。其中,所述感应芯片30可设于主板510上。
可选的,所述感应芯片30电连接电子设备1000的控制器(未图示)。电子设备1000的存储器(未图示)内设有感应电容量与感应片(第一辐射体10)和人体之间的距离、正对面积的映射表。所述感应芯片30将所检测到的感应电容量以电信号形式发送至电子设备1000的控制器,电子设备1000的控制器根据感应电容量变化确定人体与电子设备1000之间的距离变化,并在人体接近电子设备1000时,进行相对应的天线功率回退。其中,本申请对于感应片可检测的预设距离范围不做具体的限定,例如5mm、7mm、8mm、10mm等。
随着对于SAR值合规性的要求增加,在实际应用中对于电子设备1000所能够检测到的人体靠近的感应距离要求也随之增加。在将边框天线作为检测人体靠近的检测距离的感应片的技术方案中,由于边框天线的长度设计需要匹配所支持的频段,故边框天线的长度无法任意扩展,从而边框天线的感应面积受限,例如,支持UHB频段的天线长度相对较短,故用于支持UHB频段的边框天线的感应面积相对较小,面积较小的边框天线所能够检测到人体靠近的感应距离也小,例如,感应距离小于5mm,而如果在实际应用中对于人体靠近的感应距离要求为7mm或以上时,该感应片由于在5mm以上不能感应到电容变化量或者检测电容变化量不准,这将导致人体在与电子设备1000相距5mm~7mm范围时,电子设备1000也未进行功率回退,导致电子设备1000无法达到比吸收率指标的要求。此外,在边框天线作为检测人体靠近的检测距离的感应片时,由于边框天线的结构相对复杂,例如常设有接地点、接开关调谐电路等,难以兼容边框天线有效地支持所要支持频段的同时还作为检测人体靠近的检测距离的感应片。
本申请提供的电子设备1000,由于用于作为检测人体靠近的检测距离的感应片的第一辐射体10设于电子设备1000的边框310内侧且至少部分与电子设备1000的主板510相对设置,边框310内侧的主板510上具有大量的空间,第一辐射体10无需以边框310为载体,无需受到边框310形状限制,例如,以主板510为承载体或以整个支撑板330为承载体,如此,第一辐射体10的形状和结构可灵活设置,以便于检测人体靠近的检测距离的感应片扩展其的感应面积,进而增大天线组件100检测人体靠近的检测距离,确保电子设备1000的比吸收率指标的合规性的同时还能够确保通信性能。此外,由于第一辐射体10设于边框310内,不会占据边框310上的空间。
可选的,请参阅图5,所述天线组件100还包括第一隔离器件42及第一匹配电路M1。
所述第一隔离器件42的一端电连接于所述第一馈电点A1,所述第一隔离器件42的另一端电连接所述第一匹配电路M1的一端,所述第一匹配电路M1的另一端电连接所述第一馈源20。所述第一匹配电路M1用于调谐所述第一辐射体10所支持的频段。所述第一匹配电路M1包括但不限于为电容、电感、电容-电感组合、开关调谐器件等等。
请参阅图6,所述第一隔离器件42用于对所述感应信号呈开路状态。
可选的,所述第一隔离器件42为阻低频或直流通高频的器件,例如电容。所述第一隔离器件42为电容,对于相对较高频率的交流信号(射频信号)呈导通状态,对直流信号和极低频率的交流信号呈开路状态,如此,第一隔离器件42可以阻断感应信号经第一辐射体10流向所述第一匹配电路M1或者阻断所述第一匹配电路M1上的直流信号影响到第一辐射体10所检测到的感应信号,故第一辐射体10在传输感应信号时相较于第一匹配电路M1为悬浮状态。
本申请对于第一隔离器件42的电容值不做具体的限定,例如22pF,但不限于此数据。
本申请对于第一辐射体10的形式不做具体的限定,第一辐射体10包括但不限于为单极子天线、平面倒F天线(PIFA天线)等。
在第一种第一辐射体10的结构的实施方式中,请参阅图7,第一辐射体10为单极子天线。第一辐射体10的形状包括但不限于为图7中的菱形,第一辐射体10还可以呈方形、圆形等。第一馈电点A1位于第一辐射体10的一个端部附近,第一辐射体10的其他端部皆为自由端。在第一馈电点A1处设有第一隔离器件42(隔直电容),以使第一辐射体10相较于第一馈源20呈悬浮状态,进而使第一辐射体10上的感应信号不受第一馈源20处的影响。
本实施方式中的第一辐射体10为单极子天线,其仅设有与第一馈源20电连接的第一馈电点A1,未设置电连接参考地的接地端,如此,只需在第一馈电点A1处设置第一隔离器件42,无需在其他位置设置第一隔离器件42,可简化第一天线组件100的器件数量和布局。
在第二种第一辐射体10的结构的实施方式中,请参阅图8,第一辐射体10为平面倒F天线。第一辐射体10的形状包括但不限于为图8中的菱形,第一辐射体10还可以呈方形、圆形等。第一馈电点A1 位于第一辐射体10的端部附近。第一辐射体10还具有电连接参考地的第一接地点(或接地端)。本实施方式在第一辐射体10的第一馈电点A1与第一匹配电路M1之间设有一个第一隔离器件42(隔直电容),还在第一接地点与参考地之间设有另一个第一隔离器件42(隔直电容),以使第一辐射体10相较于第一馈源20、参考地呈悬浮状态,进而使第一辐射体10上的感应信号不受第一馈源20、参考地上的信号影响。
以上仅仅为第一辐射体10结构的两种举例,为了使第一辐射体10能够作为检测人体靠近的检测距离的感应片,通过在馈电路径和回地路径上设置隔直电容(大电容,隔离直流或小交流),使第一辐射体10不直接回地,第一辐射体10相较于第一馈源20、参考地皆呈悬浮状态,隔直电容的值举例为22pF,也可以是其他值。在第一种第一辐射体10结构的实施方式中,第一辐射体10为单极子天线,其本身没有回地路径,只需在馈电路径上直接加隔直电容即可。
当第一辐射体10具有回地路径时,例如,第一辐射体10为平面倒F天线,通过在第一辐射体10的回地路径上设置隔直电容,以使第一辐射体10上的感应信号不会直接回地,而是相较于参考地处于悬浮状态。
当然,第一辐射体10还可以为T形天线、环形天线等,参考上述的说明,在第一辐射体10的第一馈电点A1处、第一辐射体10与参考地之间、第一辐射体10与调谐开关之间、第一辐射体10与匹配电路之间皆设置第一隔离器件42(例如隔直电容),以使第一辐射体10相对于第一馈源20、参考地、调谐开关、匹配电路等呈悬浮状态,以减少其他电路中的信号对于第一辐射体10中感应信号的影响。
进一步地,请参阅图9,第一匹配电路M1电连接于第一馈源20与第一馈电点A1之间。当第一匹配电路M1电连接至第一馈电点A1的器件为电容,且该电容的电容值可隔离感应信号,则可将第一匹配电路M1中该电容作为隔直电容,无需再额外在第一馈电点A1处设置隔直电容,如此,利用第一匹配电路M1中原本的电容器件复用第一隔离器件42,则无需在第一天线组件100中进行较多的电路改进,即可实现第一辐射体10的人体靠近的距离功能,也简化了第一天线组件100的结构。
其中,所述第二隔离器件41电连接于所述第一辐射体10与所述感应芯片30之间。可选的,所述第二隔离器件41可电连接所述第一辐射体10上的任意位置。
当待测主体靠近所述第一辐射体10时,所述第一辐射体10与待测主体的表面形成耦合电容,使所述第一辐射体10的表面电荷发生变化,所述第一辐射体10产生感应信号。该感应信号为直流信号或小交流信号。感应信号包括但不限于为电流信号、或由电流信号转换成的电压信号、或由电流信号转换层的电感信号。可选的,所述感应芯片30包括但不限于为用于检测电流信号、电压信号或电感信号的器件,例如微型检流计、微型电流互感器等等。
请参阅图10,所述第二隔离器件41用于对所述第一辐射体10在所述待测主体接近时产生的感应信号呈导通状态,及对所述第一辐射体10的射频信号呈开路状态。
可选的,所述第二隔离器件41为阻高频通低频或直流的器件,例如电感。由于感应信号为直流信号或极低频率的交流信号,所述第一辐射体10收发的射频信号相对于感应信号而言为相对较高频率的交流信号。所述第二隔离器件41为电感,能够导通直流信号和极低频率的交流信号,对于相对较高频率的交流信号(射频信号)呈开路状态,如此,第二隔离器件41可以阻断射频信号经第一辐射体10流向感应芯片30,从而不影响感应芯片30对于感应信号的检测结果,以确保检测到准确的SAR值。
本申请对于第二隔离器件41的电感值不做具体的限定,例如82nH,但不限于此数据。
本申请通过设置第二隔离器件41和第一隔离器件42,使检测待测主体靠近时的感应信号的电路通道与收发射频信号的电路通道为相互独立,且不会相互影响的两个独立通道,其中一个电路通道为,第一隔离器件42使第一辐射体10在传输感应信号时相对于第一匹配电路M1(和参考地等)呈悬浮状态,第一辐射体10上的感应信号经第二隔离器件41流向感应芯片30;其中另一个电路通道为,第二隔离器件41使第一辐射体10在传输射频信号时与感应芯片30为开路状态,如此,第一辐射体10上的射频信号在第一匹配电路M1(和参考地等)之间传输,以减少对于感应芯片30的检测结果的影响。以上实现所述第一辐射体10能够同时检测待测主体靠近时的感应信号及收发射频信号。
可选的,所述第一辐射体10在所述第一馈源20的激励下及第一匹配电路M1的调谐下用于产生第一谐振模式,以支持N79频段。其中,谐振模式表征为所述第一辐射体10在第一馈源20的激励下在谐振频率处及谐振频率附近具有较高的电磁波收发效率。其中,第一谐振模式的谐振频率处及谐振频率附近对应的频段覆盖N79频段,如此,实现第一辐射体10支持N79频段。其中,所述第一谐振模式包括1/4波长模式、或1/2波长模式、或3/4波长模式、或1倍波长模式。
从一种便于理解角度说明,第一谐振模式为1/4波长模式可理解为所述第一辐射体10上的谐振电流路径的长度(即有效电长度)约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍, 此描述为对于术语便于理解的解释,但不能作为所述第一辐射体10的尺寸的限定。1/2波长模式、或3/4波长模式、或1倍波长模式也可以参考1/4波长模式的描述,在此不再赘述。
举例而言,当第一辐射体10为长条形时,所述第一辐射体10的第一馈电点A1至自由端或接地端之间的有效电长度约为谐振频率(例如N79频段)的对应的介质波长的1/4倍,可激励出该谐振频率(例如N79频段)的1/4波长模式,其中,1/4波长模式为基模,也是效率较高的谐振模态,故使第一辐射体10的尺寸相对较小的情况下还能够在该谐振频率(例如N79频段)激励起效率较高的谐振模式,以使支持的频段(例如N79频段)的辐射效率相对较高,即电子设备1000(例如N79频段)具有较好的信号收发质量。
当然,本申请并不限于第一辐射体10呈长条形。可选的,第一辐射体10还可以呈片状,其中,第一辐射体10沿某一方向上的物理长度和第一辐射体10的面积皆会影响到第一辐射体10沿第一方向上的等效电长度。其中,第一方向为第一辐射体10的长度方向。
可选的,通过对第一辐射体10的形状、面积设计,还可以激励其的高阶模式(例如1/2波长模式、或3/4波长模式、或1倍波长模式),实现对支持的频段(例如N79频段)的辐射效率相对较高及使第一辐射体10的尺寸相对较大,如此,第一辐射体10对于SAR值的感应面积相对较大,第一辐射体10对于人体靠近的感应距离也相对较大。
由于N79频段的使用频率相较于MHB频段、UHB频段、N41频段、N78频段的使用率较低,故本申请中设计第一辐射体10支持N79频段,即将支持N79频段的辐射体设计为支架天线,并用作检测待测主体接近的感应片,可减少对使用频率高的天线电路的改动及避免因为需要增加待测主体接近的感应信号的功能而带来杂波影响到使用频率高的频段。当后续N79频段为使用频率高的频段后,第一辐射体10可换成支持其他的使用频率相对低的频段,并将使用频率相对低的频段的天线作为作检测待测主体接近的感应片。
请参阅图11,图11为本申请提供的第二种天线组件100。第二种天线组件100与第一种天线组件100(请参见图5)不同的是:本实施提供的天线组件100还包括第一导电检测件51。其中,第一导电检测件51为导电材质。可选的,第一导电检测件51的材质可以与第一辐射体10的材质相同或不同。
第一导电检测件51、感应芯片30与第一辐射体10的连接方式包括但不限于以下的实施方式:
第一种第一导电检测件51、感应芯片30与第一辐射体10连接的实施方式中,请参阅图11,所述第一导电检测件51电连接于所述第一辐射体10。所述第一导电检测件51用于在待测主体靠近时产生感应信号。通过设置第一导电检测件51与第一辐射体10相互导通,以连接成一个面积相对较大的整体,即形成一个面积相对较大的感应片,在进行人体靠近的距离时可增加其检测距离。
当第一辐射体10支持N79频段时,由于N79频段的频率相对较高,第一辐射体10的面积相对较小,当第一辐射体10作为感应所述待测主体是否接近的感应片时,第一辐射体10的感应距离相对较小,通过设置第一导电检测件51可进一步增加检测距离,以在所需距离内即可灵敏地检测到SAR值。
第一导电检测件51与第一辐射体10之间的电连接方式包括但不限于为以下的实施方式:第一导电检测件51与第一辐射体10一体成型;第一导电检测件51与第一辐射体10直接接触并电连接;第一导电检测件51与第一辐射体10通过连接走线、导电弹片等中间连接件电连接等。
本申请对于第一导电检测件51的形状不做具体的限定,第一导电检测件51的形状包括但不限于为片状、线状等。
第二种第一导电检测件51、感应芯片30与第一辐射体10连接的实施方式中,请参阅图12,所述第一导电检测件51电连接所述感应芯片30,但未电连接于所述第一辐射体10。所述感应芯片30还用于在所述第一导电检测件51电连接所述感应芯片30时接收所述第一导电检测件51的感应信号,并根据所述感应信号判断所述待测主体接近或远离所述第一导电检测件51。当第一导电检测件51靠近于电子设备1000的壳体时,所述感应芯片30可判断所述待测主体接近或远离电子设备1000。
可选的,所述第一导电检测件51在待测主体(例如人体)靠近时,与待测主体之间形成电容结构,且随着待测主体与第一导电检测件51之间的距离变化,电容结构的电容量变化。所述第一导电检测件51电连接感应芯片30,以便于感应芯片30通过检测第一导电检测件51上的感应信号进而检测到待测主体靠近电子设备1000,及待测主体与电子设备1000之间的距离,进而获取到SAR值。
第一导电检测件51作为检测待测主体靠近的感应片,第一导电检测件51与感应芯片30之间形成的检测通道可与第一辐射体10与感应芯片30之间形成的的检测通道相互独立。如此,检测待测主体靠近具有两个相互独立的通道,在其中一个检测通道中的芯片或器件受损而无法工作时,另一个检测通道仍能够正常工作,进而提高人体靠近的距离的可靠性。
通过设置第一导电检测件51作为检测待测主体靠近的感应片,既可以增加检测待测主体靠近的感 应面积,进而增大感应距离,为后续进行准确的功率退回奠定基础;此外,第一导电检测件51未电连接第一辐射体10,如此,第一导电检测件51不会对第一辐射体10具有杂波影响等,以减少对于第一辐射体10收发频段的影响。
第三种第一导电检测件51、感应芯片30与第一辐射体10连接的实施方式中,请参阅图13,所述第一导电检测件51电连接所述感应芯片30和所述第一辐射体10。所述感应芯片30还用于在所述第一导电检测件51电连接所述感应芯片30时接收所述第一导电检测件51的感应信号,并根据所述感应信号判断所述待测主体接近或远离所述第一导电检测件51。
可选的,本实施方式为上述的第一种实施方式与第二种实施方式的结合,换言之,第一导电检测件51作为检测待测主体靠近的感应片,第一导电检测件51与第一辐射体10相互导通,以连接成一个面积相对较大的整体,即形成一个面积相对较大的感应片,在进行人体靠近的距离时可增加其检测距离;而且,第一导电检测件51与感应芯片30之间的检测通道、第一辐射体10与感应芯片30之间的检测通道相互独立。如此,检测待测主体靠近具有两个相互独立的通道,在其中一个检测通道中的器件、芯片等受损而无法工作时,另一个检测通道仍能够正常工作,进而提高人体靠近的距离的可靠性。
本申请对于第一导电检测件51的位置不做具体的限定。可选的,第一导电检测件51设于主板支架520上,至少部分与主板510相对,且第一导电检测件51与第一辐射体10相邻设置,如此,第一导电检测件51所在区域与第一辐射体10所在区域形成一个连续的整体区域,进而形成检测人体靠近的检测距离的连续感应区域。
本申请对于第一导电检测件51电连接第一辐射体10的具体位置不做具体的限定。可选的,请参阅图14,所述第一导电检测件51电连接于所述第一馈电点A1。其中,第一馈电点A1为第一辐射体10上产生谐振电流的电流强点。第一导电检测件51电连接于第一馈电点A1时不会改变其边界条件,对于第一辐射体10收发频段的影响小,便于第一辐射体10调谐出所要支持的频段,例如,便于调谐出N79频段;同时也便于通过第一导电检测件51的面积、长度等调节第一导电检测件51所产生的杂波,即实现第一导电检测件51所产生的杂波可控,以减少第一导电检测件51所产生的杂波对天线组件100所支持的频段的影响。
本申请对于第一导电检测件51的具体结构不做具体的限定。
第一种第一导电检测件51的实施方式中,请参阅图15,所述第一导电检测件51包括第一导电走线511。所述第一导电走线511的一端电连接所述第一辐射体10。可选的,第一导电走线511的一端电连接第一辐射体10的第一馈电点A1,以减少第一导电走线511对于第一辐射体10收发频段的影响。所述第一导电走线511的延伸轨迹包括直线、弯折线、曲线中的至少一者。
其中,所述第一导电走线511通过弯折、折返延伸后形成一块感应区块。即第一导电走线511相对均匀地分布在这个感应区块,以减少空白区域,从而减少检测盲区。
第一导电走线511可电连接或不电连接感应芯片30。
本申请对于第一导电走线511的长度、宽度不做具体的限定。可以理解的,第一导电走线511的宽度远远小于第一辐射体10的宽度。通过调节第一导电走线511的长度、宽度,以使第一导电走线511所产生的杂波不会影响到第一辐射体10所收发的频段。
例如,第一辐射体10用于支持N79频段。可通过调节第一导电走线511的长度、宽度,以使将第一导电走线511的杂波远离N79频段,同时也远离其他所需要支持的频段。
可选的,第一导电走线511的长度相对较长、宽度相对较小,一方面使第一导电走线511所形成的感应区块的面积相对较大,进而使其检测距离较大,另一方面减少第一导电走线511的杂波或将第一导电走线511所产生的杂波调节至低频位置,以减少对于第一辐射体10所支持的频段的影响。
第二种第一导电检测件51的实施方式中,请参阅图16,所述第一导电检测件51包括第一导电片512。所述第一导电片512电连接于所述第一辐射体10。可选的,所述第一导电片512直接电连接于第一馈电点A1;或者,所述第一导电片512电连接于导电走线的一端,导电走线的另一端电连接于所述第一辐射体10的第一馈电点A1,以减少第一导电片512对于第一辐射体10收发频段的影响,及实现第一导电片512所产生的杂波可控。
第一导电片512可电连接或不电连接感应芯片30。
可选的,所述第一导电片512呈实心状或网孔状。
其中,第一导电片512呈片状,其检测面积相对较大,所述第一导电片512与第一辐射体10可相邻设置以形成一个连续的整体感应区域。本实施方式提供的第一导电片512不仅使所形成的感应区块的面积相对较大,进而使其检测距离较大,相较于第一导电走线511更易加工成型,且形成的感应区域面积更大。
第三种第一导电检测件51的实施方式中,请参阅图17,所述第一导电检测件51包括第一导电片512和第一导电走线511。第一导电片512和第一导电走线511电连接于第一辐射体10。其中,第一导电走线511电连接第一辐射体10。第一导电片512可电连接于第一导电走线511未连接第一辐射体10的一端,也可以电连接于第一导电走线511的中间位置。
本实施方式中的第一导电走线511与第二种实施方式中电连接第一导电片512的导电走线的区别在于,本实施方式中的第一导电走线511如第一种实施方式中所述的通过布线的方式形成了感应区块。换言之,本实施方式中形成的感应区域包括第一导电片512所在区域、第一导电走线511所形成的感应区块及第一辐射体10所在的区域,如此,进一步地增大人体靠近的距离的感应面积,进而进一步地增加感应距离。
请参阅图18,图18为本申请提供的第三种天线组件100。第三种天线组件100与第一种天线组件100不同的是:
可选的,请参阅图18,所述天线组件100还包括至少一个第二辐射体60。以第二辐射体60的数量为一个为例。当然,在其他实施方式中,第二辐射体60的数量还可以为两个或两个以上。
所述第二辐射体60设于所述电子设备1000的边框310内侧且至少部分与所述电子设备1000的主板510相对设置。换言之,第二辐射体60可与第一辐射体10设于同一表面。第二辐射体60为支架天线。
本申请对于第二辐射体60所支持的频段不做限定。所述第二辐射体60用于至少收发LB频段、MHB频段、UHB频段、N41频段、N78频段、N79频段、Wi-Fi频段、GNSS频段中的至少一者。
所述第二辐射体60电连接于所述感应芯片30和/或所述第一辐射体10。
第一种第二辐射体60、所述感应芯片30、所述第一辐射体10电连接的实施方式中,请参阅图18,所述第二辐射体60电连接于第一辐射体10但不电连接所述感应芯片30。所述第二辐射体60用于在待测主体靠近时产生感应信号。
通过设置第二辐射体60与第一辐射体10相互导通,以连接成一个面积相对较大的整体,即形成一个面积相对较大的感应片,在进行人体靠近的距离时可增加其检测距离。
当第一辐射体10支持N79频段时,由于N79频段的频率相对较高,第一辐射体10的面积相对较小,当第一辐射体10作为感应所述待测主体是否接近的感应片时,第一辐射体10的感应距离相对较小,通过设置第二辐射体60也作为感应所述待测主体是否接近的感应片,可进一步增加检测距离,以在所需距离内即可灵敏地检测到SAR值。
第二种第二辐射体60、所述感应芯片30、所述第一辐射体10电连接的实施方式中,请参阅图19,所述第二辐射体60电连接于所述感应芯片30但不电连接第一辐射体10。所述感应芯片30还用于在所述第二辐射体60电连接所述感应芯片30时接收所述第二辐射体60的感应信号,并根据所述感应信号判断所述待测主体接近或远离所述第二辐射体60。当第二辐射体60靠近于电子设备1000的壳体时,所述感应芯片30可判断所述待测主体接近或远离电子设备1000。第二辐射体60与所述感应芯片30之间的线路与第一辐射体10与所述感应芯片30之间的线路可形成相互独立的检测通道。
通过设置所述第二辐射体60作为检测待测主体靠近的感应片,既可以增加检测待测主体靠近的感应面积,进而增大感应距离,为后续进行准确的功率退回奠定基础;此外,检测待测主体靠近具有两个相互独立的通道,在其中一个检测通道中的芯片或器件受损而无法工作时,另一个检测通道仍能够正常工作,进而提高人体靠近的距离的可靠性。
第三种第二辐射体60、所述感应芯片30、所述第一辐射体10电连接的实施方式中,请参阅图20,所述第二辐射体60电连接于所述感应芯片30且电连接第一辐射体10。所述感应芯片30还用于在所述第二辐射体60电连接所述感应芯片30时接收所述第二辐射体60的感应信号,并根据所述感应信号判断所述待测主体接近或远离所述第二辐射体60。第二辐射体60与所述感应芯片30之间的线路与第一辐射体10与所述感应芯片30之间的线路可形成相互独立的检测通道。
可选的,本实施方式为上述的第一种实施方式与第二种实施方式的结合,换言之,第二辐射体60作为检测待测主体靠近的感应片,第二辐射体60与第一辐射体10相互导通,以连接成一个面积相对较大的整体,即形成一个面积相对较大的感应片,在进行人体靠近的距离时可增加其检测距离;而且,第二辐射体60与感应芯片30之间的检测通道、第一辐射体10与感应芯片30之间的检测通道相互独立。如此,检测待测主体靠近具有两个相互独立的通道,在其中一个检测通道中的芯片或器件受损而无法工作时,另一个检测通道仍能够正常工作,进而提高人体靠近的距离的可靠性。
本申请对于第二辐射体60的位置不做具体的限定。可选的,第二辐射体60设于主板支架520上,至少部分与主板510相对,且第二辐射体60与第一辐射体10相邻设置,如此,第二辐射体60所在区 域与第一辐射体10所在区域形成一个连续的整体区域,进而形成检测人体靠近的检测距离的连续感应区域。
可选的,请参阅图20,所述第二辐射体60具有第二馈电点A2。本申请对于第二辐射体60的结构不做具体的限定,第二辐射体60包括但不限于为平面倒F天线、单极子天线、T形天线等。第二辐射体60结构的具体实施方式可参考第一辐射体10的结构的实施方式,在此不再赘述。
可选的,请参阅图20,所述天线组件100还包括第二馈源80。所述第二馈源80电连接所述第二馈电点A2。换言之,第一辐射体10与第二辐射体60为不同的馈源。
再可选的,请参阅图21,所述第二辐射体60具有第二馈电点A2。所述第二馈电点A2电连接所述第一馈源20。换言之,第一辐射体10与第二辐射体60为相同的馈源,以减少馈源、射频端口的数量,简化天线组件100的结构。
可选的,所述第二辐射体60用于产生第二谐振模式,以支持N79频段。其中,所述第二谐振模式包括1/4波长模式、或1/2波长模式、或3/4波长模式、或1倍波长模式。谐振模式和波长模式的具体说明可以参考第一辐射体10中第一谐振模式和波长模式的说明,在此不再赘述。
本实施例提供的第二辐射体60与第一辐射体10可皆用于支持使用率相对较低的N79频段,将支持N79频段的辐射体设计为支架天线,并将原本要求支持N79频段的多个辐射体复用为检测待测主体接近的感应片,可减少使用频率高的天线电路的改进及避免因为需要增加待测主体接近的感应信号的功能而带来杂波影响到使用频率高的频段。当后续N79频段为使用频率高的频段后,第一辐射体10可换成支持其他的使用频率相对低的频段,并将使用频率相对低的频段的天线作为作检测待测主体接近的感应片。
可选的,请参阅图20及图21,所述天线组件100还包括第四隔离器件43、第三隔离器件44及第二匹配电路M3。所述第三隔离器件44的一端电连接于所述第二馈电点A2。所述第三隔离器件44的另一端电连接所述第二匹配电路M3的一端。所述第二匹配电路M3的另一端电连接所述第二馈源80。所述第二匹配电路M3用于调谐所述第二辐射体60所支持的频段。所述第三隔离器件44用于对所述感应信号呈开路状态。
所述第四隔离器件43电连接于所述第二辐射体60与所述感应芯片30之间。所述第四隔离器件43用于对所述第二辐射体60在所述待测主体接近时产生的感应信号呈导通状态,及对所述第二辐射体60的射频信号呈开路状态。
其中,第三隔离器件44的结构、功能与第一隔离器件42的结构、功能相同,故第三隔离器件44结构的具体实施方式可以参考第一隔离器件42结构的具体实施方式。第四隔离器件43的结构、功能与第二隔离器件41的结构、功能相同,故第四隔离器件43结构的具体实施方式可以参考第二隔离器件41结构的具体实施方式。
所述第一辐射体10和/或所述第二辐射体60具有接地点。所述接地点用于电连接参考地。例如,第一辐射体10和/或所述第二辐射体60为平面倒F天线。
请参阅图22,图22中以第一辐射体10为平面倒F天线为例。所述天线组件100还包括第五隔离器件45。所述第五隔离器件45的一端电连接于所述接地点,所述第五隔离器件45的另一端接地。所述第五隔离器件45用于对所述感应信号呈开路状态。所述第五隔离器件45的结构、功能与第一隔离器件42的结构、功能相同,故第五隔离器件45结构的具体实施方式可以参考第一隔离器件42结构的具体实施方式。
前面已说明第一辐射体10为平面倒F天线时需要在第一辐射体10的第一馈电点A1处和接地点处皆设有第一隔离器件42(本实施方式称为第五隔离器件45),以使第一辐射体10相较于第一馈源20、参考地呈悬浮状态。
对于第二辐射体60而言,所述第二辐射体60还具有第二接地点,所述第二接地点用于电连接参考地,一个所述第三隔离器件44(即第五隔离器件45)电连接于所述第二接地点与所述参考地之间,及另一个所述第三隔离器件44电连接于所述第二馈电点A2与所述第二匹配电路M3未连接第二馈源80的一端之间。
第五隔离器件45、第三隔离器件44的设置使得第二辐射体60在传输感应信号时相较于第二馈源80、参考地呈悬浮状态,进而使第二辐射体60上的感应信号不受第二馈源80、参考地上的信号影响。
请参阅图23,图23为本申请提供的第四种天线组件100。第四种天线组件100与第三种天线组件100不同的是:
所述天线组件100还包括至少一个第二导电检测件52。所述第二导电检测件52用于感应所述待测主体是否接近所述第二导电检测件52。
可选的,本实施方式中的第二导电检测件52可以为第二种天线组件100中的第一导电检测件51。即将第二种天线组件100中的第一导电检测件51与第三种天线组件100中的第一辐射体10和第二辐射体60相结合。结合后包括但不限于以下的实施方式:第一种,第一导电检测件51、第一辐射体10和第二辐射体60相互不连接,并各自独立地电连接至感应芯片30;第二种,第一导电检测件51、第一辐射体10和第二辐射体60三者中两者之间电连接,并电连接至感应芯片30,另一者独立地电连接至感应芯片30;第一导电检测件51、第一辐射体10和第二辐射体60三者之间电连接,并电连接至感应芯片30。
本申请对于第一辐射体10、第一导电检测件51(第二导电检测件52)、第二辐射体60的排布方式不做具体的限定,第一辐射体10、第一导电检测件51(第二导电检测件52)、第二辐射体60形成一个连续的整体感应区域即可。
第一辐射体10、第一导电检测件51(第二导电检测件52)、第二辐射体60的排布方式包括但不限于以下的实施方式:第一辐射体10、第一导电检测件51(第二导电检测件52)及第二辐射体60依次排列及电连接;或者,第一导电检测件51(第二导电检测件52)、第一辐射体10及第二辐射体60依次排列及电连接;或者,第一辐射体10、第二辐射体60及第一导电检测件51(第二导电检测件52)依次排列及电连接。
再可选的,本实施方式中的第二导电检测件52还可以与第二种天线组件100中的第一导电检测件51为不同的导电检测件。
其中,第二导电检测件52为导电材质。可选的,第二导电检测件52的材质可以与第一辐射体10的材质相同或不同。
第二导电检测件52与第一辐射体10、第二辐射体60的连接方式包括但不限于以下的实施方式:
第一种第二导电检测件52与第一辐射体10、第二辐射体60的连接实施方式中,请参阅图23,所述第二导电检测件52电连接于所述第一辐射体10与所述第二辐射体60之间。
通过设置第二导电检测件52与第一辐射体10、第二辐射体60相互导通,以连接成一个面积相对较大的整体,即形成一个面积相对较大的感应片,在进行人体靠近的距离时可增加其检测距离。
当第一辐射体10、第二辐射体60皆支持N79频段时,由于N79频段的频率相对较高,第一辐射体10、第二辐射体60的面积相对较小,当第一辐射体10、第二辐射体60作为感应所述待测主体是否接近的感应片时,第一辐射体10、第二辐射体60的感应距离相对较小,通过增设第二导电检测件52用于感应所述待测主体是否接近,可进一步增加检测距离,以在所需距离内即可灵敏地检测到SAR值。
第二种第二导电检测件52与第一辐射体10、第二辐射体60的连接实施方式中,请参阅图24,所述第二导电检测件52电连接于所述第二辐射体60,及所述第二导电检测件52未电连接所述第一辐射体10。
当第一辐射体10和第二辐射体60未电连接时,所述第二导电检测件52和所述第二辐射体60作为一个检测通道的感应片,第一辐射体10作为另一个检测通道的感应片。
当第一辐射体10和第二辐射体60电连接时,第二导电检测件52与第一辐射体10、第二辐射体60电连接成一个整体。
本申请对于所述第一辐射体10、所述第二导电检测件52与所述第二辐射体60的位置设计不做具体的限定。可选的,所述第一辐射体10、所述第二导电检测件52与所述第二辐射体60依次相邻设置,即所述第一辐射体10所在区域、所述第二导电检测件52所在区域与所述第二辐射体60所在区域形成一个连续的整体检测区域,得到相对较大的检测面积,以提高检测距离。
第二导电检测件52与第一辐射体10、第二辐射体60之间的电连接方式包括但不限于为以下的实施方式:第二导电检测件52与第一辐射体10、第二辐射体60一体成型;第二导电检测件52与第一辐射体10、第二辐射体60直接接触并电连接;第二导电检测件52与第一辐射体10、第二辐射体60通过连接走线、导电弹片等中间连接件电连接等。
本申请对于第二导电检测件52的形状不做具体的限定,第二导电检测件52的形状包括但不限于为片状、线状等。
以下第一辐射体10、第二导电检测件52、第二辐射体60依次电连接为例进行说明。
本申请对于第二导电检测件52电连接第一辐射体10、第二辐射体60的具体位置不做具体的限定。可选的,所述第二导电检测件52电连接于所述第一馈电点A1,所述第二导电检测件52电连接于所述第二馈电点A2。其中,第一馈电点A1为第一辐射体10上产生谐振电流的电流强点。第二馈电点A2为第二辐射体60上产生谐振电流的电流强点。第二导电检测件52电连接于第一馈电点A1、第二馈电点A2时不会改变其边界条件,对于第一辐射体10、第二辐射体60收发频段的影响小,便于第一辐射体10、第二辐射体60调谐出所要支持的频段,例如,便于在第一辐射体10、第二辐射体60上调谐出N79频段; 同时也便于通过第二导电检测件52的面积、长度等调节第二导电检测件52所产生的杂波,即实现第二导电检测件52所产生的杂波可控,以减少第二导电检测件52所产生的杂波对天线组件100所支持的频段的影响。
本申请对于第二导电检测件52的具体结构不做具体的限定。
第一种第二导电检测件52的实施方式中,请参阅图25,所述第二导电检测件52包括第二导电走线521。所述第二导电走线521电连接于所述第一辐射体10与所述第二辐射体60之间。
可选的,第二导电走线521电连接第一辐射体10的第一馈电点A1和第二辐射体60的第二馈电点A2,以减少第二导电走线521对于第一辐射体10、第二辐射体60收发频段的影响。所述第二导电走线521的延伸轨迹包括直线、弯折线、曲线中的至少一者。
其中,所述第二导电走线521通过弯折、折返延伸后形成一块感应区块。即第二导电走线521相对均匀地分布在这个感应区块,以减少空白区域,从而减少检测盲区。
本申请对于第二导电走线521的长度、宽度不做具体的限定。可以理解的,第二导电走线521的宽度远远小于第一辐射体10的宽度。通过调节第二导电走线521的长度、宽度,以使第二导电走线521所产生的杂波不会影响到第一辐射体10、第二辐射体60所收发的频段
例如,第一辐射体10、第二辐射体60用于支持N79频段。可通过调节第二导电走线521的长度、宽度,以使将第二导电走线521的杂波远离N79频段,同时也远离其他所需要支持的频段。
可选的,第二导电走线521的长度相对较长、宽度相对较小,一方面使第二导电走线521所形成的感应区块的面积相对较大,进而使其检测距离较大,另一方面减少第二导电走线521的杂波或将第二导电走线521所产生的杂波调节至低频位置,以减少对于第一辐射体10、第二辐射体60所支持的频段的影响。
第二种第二导电检测件52的实施方式中,请参阅图26,所述第二导电检测件52还包括第二导电片522。所述第二导电片522电连接于所述第一辐射体10与所述第二辐射体60之间。可选的,所述第二导电片522直接电连接于所述第一辐射体10的第一馈电点A1与所述第二辐射体60的第二馈电点A2之间;或者,所述第二导电片522通过一段导电走线电连接于所述第一辐射体10的第一馈电点A1,所述第二导电片522通过另一段导电走线电连接于所述第二辐射体60的第二馈电点A2,以减少第二导电片522对于第一辐射体10、第二辐射体60收发频段的影响,及实现第二导电片522所产生的杂波可控。所述第二导电片522呈实心状或网孔状。
其中,第二导电片522呈片状,其检测面积相对较大,所述第二导电片522与第一辐射体10、第二辐射体60可相邻设置以形成一个连续的整体感应区域。本实施方式提供的第二导电片522不仅使所形成的感应区块的面积相对较大,进而使其检测距离较大,相较于第二导电走线521更易加工成型,且形成的感应区域面积更大。
第三种第二导电检测件52的实施方式中,请参阅图27,所述第二导电检测件52包括第二导电片522和第二导电走线521。第二导电片522和第二导电走线521电连接于第一辐射体10和第二辐射体60。可选的,第二导电走线521的相对两端分别电连接第一辐射体10和第二辐射体60。第二导电片522可以电连接于第二导电走线521的中间位置。
本实施方式中的第二导电走线521与第二种实施方式中电连接第二导电片522的导电走线的区别在于,本实施方式中的第二导电走线521如第一种实施方式中所述的通过布线的方式形成了感应区块。换言之,本实施方式中形成的感应区域包括第二导电片522所在区域、第二导电走线521所形成的感应区块、第一辐射体10所在的区域、第二辐射体60所在的区域,如此,进一步地增大人体靠近的距离的感应面积,进而进一步地增加感应距离。
本申请对于第一辐射体10、第一导电检测件51、第二导电检测件52、第二辐射体60的排布方式不做具体的限定,第一辐射体10、第一导电检测件51、第二导电检测件52、第二辐射体60形成一个连续的整体感应区域即可。
第一辐射体10、第一导电检测件51、第二导电检测件52、第二辐射体60的排布方式包括但不限于以下的实施方式:第一辐射体10、第一导电检测件51、第二导电检测件52、第二辐射体60依次排列并电连接;或者,第一导电检测件51、第一辐射体10、第二导电检测件52、第二辐射体60依次排列并电连接;或者,第一导电检测件51、第一辐射体10、第二辐射体60、第二导电检测件52依次排列并电连接;或者,第一辐射体10、第一导电检测件51、第二辐射体60、第二导电检测件52依次排列并电连接等。
举例而言,请参阅图28,以第一导电检测件51电连接于第一辐射体10与第二辐射体60之间,第二导电检测件52直接电连接第二辐射体60为例进行举例说明。
第一辐射体10、第二辐射体60沿第一方向(x轴方向)排列且间隔设置。第一导电检测件51、第二导电检测件52设于第一辐射体10和第二辐射体60之间。第一馈电点A1设于靠近第二辐射体60的一侧,第二馈电点A2设于靠近第一辐射体10的一侧。第一导电检测件51包括第一导电走线511和第一导电片512。第二导电检测件52包括第二导电片522。第一导电走线511电连接于第一馈电点A1与第二馈电点A2之间。第一导电片512电连接第一导电走线511。第二导电片522电连接第二馈电点A2。第一辐射体10、第一导电片512、第二导电片522及第二辐射体60依次沿X轴方向设置。
请参阅图29,第一导电走线511包括依次连接的第一段511a、第二段511b、第三段511c、第四段511d及第五段511e。其中,第一段511a位于第一辐射体10与第一导电片512之间的间隙中,第一段511a的一端电连接第一馈电点A1,第一段511a的另一端先沿Y轴反向延伸,然后折返后沿Y轴正向延伸,并连接至第二段511b的一端,第二段511b与第一导电片512沿Y轴反向排列,第二段511b的另一端沿X反向延伸至连接第三段511c的一端,所述第三段511c位于第一导电片512与第二导电片522之间。所述第三段511c先沿Y轴反向延伸,然后折返后沿Y轴正向延伸,并连接至第四段511d的一端,第四段511d与第二导电片522沿Y轴反向排列,第四段511d的另一端沿X反向延伸至连接第五段511e的一端,第五段511e设于第二辐射体60与第二导电片522之间,第五段511e的另一端电连接至第二馈电点A2。
本申请对于第一辐射体10和第二辐射体60的结构不做具体的限定。可选的,第一辐射体10大致呈矩形,沿X轴方向延伸。第一辐射体10设于主板支架520上时,可因规避主板支架520上的螺孔等在第一辐射体10上设置规避孔等。可以理解的,图28所示的第一辐射体10和第二辐射体60上皆设有规避缺口。第二辐射体60的一边缘还呈弧形。
本申请无需在主板510或主板支架520上预留规则的区域设置第一辐射体10、第二辐射体60,即第一辐射体10、第二辐射体60可利用主板510或主板支架520上的不规则的空间,以减少制作难度,提高第一辐射体10、第二辐射体60在主板510或主板支架520上空间利用率。
其中,请参阅图29,第一辐射体10可工作在第一馈电点A1到第一辐射体10的自由端(C点)的1/4波长模式。第二辐射体60可工作在第二馈电点A2到自由端(E点)的1/4波长模式。
本申请提供的第一辐射体10和第二辐射体60通过导电检测件相连。导电检测件不限于图28中的形状和长度。导电检测件包括导电走线和导电片,导电走线可为任意形状、任意长度。导体片不参与辐射,可为任意形状,可挂在导电走线上或者不挂。若导体片挂在导电走线上时,则与导电走线、第一辐射体10成为一个整体,作为检测人体靠近的检测距离的感应片,可增大整体感应面积,感应面积较单支支架天线大。第一辐射体10、第二辐射体60、导电走线及导体片整体可以作为检测人体靠近的检测距离的感应片。当人体靠近其附近区域时,检测人体靠近的检测距离的感应片可以检测到人体靠近,从而触发板级功率回退,从而减小辐射能量进入人体,从而降低SAR值。当人体远离其附近区域时,检测人体靠近的检测距离的感应片可以检测到人体远离,从而不触发板级功率回退,从而保证通信性能,提升用户体验。人体与感应片之间会形成一个电容。当人体与感应片的距离发生变化时,电容值也会随之发生变化。图28中可以看到,第一辐射体10、第二辐射体60通过导电走线+导体片连成一体后与感应芯片30通过两个检测通道(第一辐射体10与感应芯片30之间形成的检测通道和第二辐射体60与感应芯片30之间形成的检测通道)进行连接。当感应芯片30通过检测到不同的电容值变化时,进而可以判断处人体处于远离感应片或者接近感应片的状态。两个检测通道的同时检测,不但可以增大感应芯片30的检测面积,增加检测距离,检测更灵敏,而且可以保证在一个通道失效的情况下,另一个检测通道依然可以进行检测,增加了一道检测防线,可靠性大大增强。
本申请实施例还提供了第五种天线组件100,本实施例提供的天线组件100可与上述第一种天线组件100的实施例至第四种天线组件100的实施例相结合。
请参阅图30,所述天线组件100还包括第三辐射体70。所述第三辐射体70设于所述电子设备1000的边框310。可选的,电子设备1000的边框310为金属材质时,第三辐射体70可以与电子设备1000的边框310集成为一体,即第三辐射体70为边框天线(或称为中框天线)。可选的,电子设备1000为非导电材质时,第三辐射体70可通过激光直接成型(Laser Direct Structuring,LDS)、印刷直接成型(Print Direct Structuring,PDS)等工艺成型在所述边框310的内表面上。可选的,第三辐射体70可成型在柔性电路板上,然后将柔性电路板贴设于边框310上。
本实施例以第三辐射体70为边框天线为例。本申请对于第三辐射体70所支持的频段不做具体的限定。可选的,所述第三辐射体70可用于支持LB频段、MHB频段、UHB频段、N41频段、N78频段、N79频段、Wi-Fi频段、GNSS频段中的至少一者。
所述第三辐射体70具有第三馈电点A3。
可选的,请参阅图30,所述第三馈电点A3电连接所述第一馈源20,即第一辐射体10和第三辐射体70共馈,以减少馈源数量及简化天线组件100的结构。所述第三馈电点A3与所述第一馈电点A1相邻设置。所述第三馈电点A3与所述第一馈电点A1皆电连接所述第一馈源20,通过设置所述第三馈电点A3与所述第一馈电点A1相邻设置,以减少传输损耗。
当然,在其他实施方式中,第三馈电点A3与第一馈电点A1分别电连接两个不同的馈源,便于第一辐射体10的第一馈电点A1与第三辐射体70的第三馈电点A3的位置可以自由设置。
本实施例以第一馈电点A1与第三馈电点A3电连接第一馈源20,第二馈电点A2电连接第二馈源80为例进行举例说明。
本申请对于第三辐射体70的结构不做具体的限定,可选的,第三辐射体70可以为倒置的F天线、环形天线、L形天线、T形天线等。以下结合附图对于本实施例提供的第三辐射体70的结构进行举例说明。
可选的,请参阅图31,所述第三辐射体70包括第一子辐射体71及第二子辐射体72。
例如,第一子辐射体71、第二子辐射体72的形状皆包括但不限于条状、片状、杆状、涂层状、薄膜状等。图31所示的第一子辐射体71、第二子辐射体72仅仅为一种示例,并不能对本申请提供的第一子辐射体71、第二子辐射体72的形状造成限定。本实施例中,第一子辐射体71、第二子辐射体72皆呈条状。本申请对于第一子辐射体71、第二子辐射体72的延伸轨迹不做限定。本实施例中,第一子辐射体71、第二子辐射体72呈直线状。在其他实施方式中,第一子辐射体71、第二子辐射体72也可以呈弯折状、曲线等轨迹延伸。上述的第一子辐射体71、第二子辐射体72在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
请参阅图31,所述第一子辐射体71与所述第二子辐射体72之间具有耦合缝隙73。所述第一子辐射体71具有依次设置的第一接地端711、所述第三馈电点A3及第一耦合端712。所述第二子辐射体72具有第二耦合端721及第二接地端722。所述第一耦合端712与所述第二耦合端721之间为所述耦合缝隙73。
所述第一接地端711及所述第一耦合端712分别为第一子辐射体71的两个末端。所述第二耦合端721及所述第二接地端722分别为第二子辐射体72的两个末端。
换言之,所述第一子辐射体71与所述第二子辐射体72通过所述耦合缝隙73容性耦合。其中,“容性耦合”是指,所述第一子辐射体71与所述第二子辐射体72之间产生电场,所述第二子辐射体72上的电信号能够通过电场传递至所述第一子辐射体71,以使所述第一子辐射体71与所述第二子辐射体72即使在不直接接触或不直接连接的状态下也能够实现电信号导通。可选的,所述第一子辐射体71与所述第二子辐射体72可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。当然,在其他实施方式中,所述第一子辐射体71与所述第二子辐射体72还可在延伸方向上错开设置,以形成避让空间。
具体的,所述第一接地端711、第二接地端722电连接参考地GND,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。参考地GND可以为一个独立的整体结构,也可以是多个相互独立但相互电连接所述结构。
本申请提供的参考地GND可设于所述天线组件100内,或设于所述天线组件100外(例如所述电子设备1000内、或所述电子设备1000的电子器件内)。可选的,所述天线组件100自身具有参考地GND。该参考地GND的具体形式包括但不限于金属导电板件、成型于柔性电路板内部、硬质电路板中的金属导电层等。当所述天线组件100设于所述电子设备1000内时,所述天线组件100的参考地GND电连接至所述电子设备1000的参考地。再可选的,所述天线组件100本身不具有参考地GND,所述天线组件100的所述第一接地端711、第二接地端722通过直接电连接或通过导电件间接电连接至所述电子设备1000的参考地或所述电子设备1000内的电子器件的参考地。本实施例中,所述天线组件100设于所述电子设备1000,所述电子设备1000为手机,所述电子设备1000的参考地为手机所述支撑板330的镁铝金属合金板。所述天线组件100的所述第一接地端711、第二接地端722电连接至镁铝金属合金板。后续所述天线组件100的其他结构电连接参考地GND,可参考上述的任意一种电连接至参考地GND的实施方式。
可选的,请参阅图31,所述天线组件100还包括第三匹配电路M3。所述第三匹配电路M3的一端电连接所述第三馈电点A3,所述第三匹配电路M3的另一端电连接所述第一馈源20。其中,所述第三匹配电路M3包括但不限于为电容、电感、电容-电感组合、开关调谐器件等等。第三匹配电路M3用于调谐所述第三辐射体70所支持的频段,以便于在第三辐射体70上调谐出多种谐振模态。
可选的,本实施方式提供的所述第三辐射体70上设有所述耦合缝隙73。所述第三辐射体70在所述第一馈源20的激励下产生多个谐振模式。可选的,所述第三辐射体70至少支持3个谐振模式,以支 持更多的频段。
请参阅图32,所述第三辐射体70在所述第一馈源20的激励下至少产生第三谐振模式、第四谐振模式及第五谐振模式,以至少同时支持MHB频段、UHB频段及N78频段。其中,所述第三谐振模式、所述第四谐振模式及所述第五谐振模式皆包括1/4波长模式、1/2波长模式、3/4波长模式、1倍波长模式中的至少一者。
可选的,所述第三谐振模式(对应图32中的模态1)包括所述第一接地端711至所述第一耦合端712之间的所述第一子辐射体71的1/4波长模式。
其中,所述第一接地端711至所述第一耦合端712之间的所述第一子辐射体71在所述第一馈源20的激励下产生的支持MHB频段(以B3频段为例进行说明)的第三谐振模式,其中,第三谐振模式对应的谐振电流工作在1/4波长模式。其中,所述第一匹配电路M1的等效电长度及所述第一接地端711至所述第一耦合端712之间的所述第一子辐射体71的电长度之和约为B3频段对应的介质波长的1/4倍,以在谐振频率为B3频段产生第三谐振模式。
具体的,第三谐振模式的谐振电流分布包括:谐振电流从所述第一接地端711至所述第一耦合端712。其中,谐振电流的流向还可以反向,即谐振电流从所述第一耦合端712流向所述第一接地端711。
可选的,所述第四谐振模式(对应图32中的模态2)包括所述第三馈电点A3至所述第一耦合端712之间的所述第一子辐射体71的1/4波长模式及所述第二耦合端721至所述第二接地端722之间的所述第二子辐射体72的1/4波长模式。
其中,所述第三馈电点A3至所述第一耦合端712之间的所述第一子辐射体71、所述第二耦合端721至所述第二接地端722之间的所述第二子辐射体72在所述第一馈源20的激励下产生的支持MHB频段(以N41频段为例进行说明)的第四谐振模式,其中,第四谐振模式对应的谐振电流工作在1/4波长模式。其中,所述第一接地端711至所述第一耦合端712之间的所述第一子辐射体71的电长度约为N41频段对应的介质波长的1/4倍、所述第二耦合端721至所述第二接地端722之间的所述第二子辐射体72的电长度约为N41频段对应的介质波长的1/4倍,以在谐振频率为N41频段产生第四谐振模式。
具体的,第四谐振模式的谐振电流分布包括:谐振电流从所述第三馈电点A3至所述第一耦合端712、及所述第二耦合端721至所述第二接地端722。其中,谐振电流的流向还可以反向,即谐振电流从所述第二接地端722流向所述第二耦合端721、及从所述第一耦合端712至所述第三馈电点A3。
可选的,所述第五谐振模式(对应图32中的模态3)包括所述第三馈电点A3至所述第一耦合端712之间的所述第一子辐射体71的1/4波长模式及所述第二接地端722至所述第二耦合端721之间的所述第二子辐射体72的1/4波长模式。
其中,所述第三馈电点A3至所述第一耦合端712之间的所述第一子辐射体71、所述第二耦合端721至所述第二接地端722之间的所述第二子辐射体72在所述第一馈源20的激励下产生的支持UHB频段(以N78频段为例进行说明)的第四谐振模式,其中,第四谐振模式对应的谐振电流工作在1/4波长模式。其中,所述第一接地端711至所述第一耦合端712之间的所述第一子辐射体71的电长度约为N78频段对应的介质波长的1/4倍、所述第二耦合端721至所述第二接地端722之间的所述第二子辐射体72的电长度约为N78频段对应的介质波长的1/4倍,以在谐振频率为N78频段产生第四谐振模式。
具体的,第四谐振模式的谐振电流分布包括:谐振电流从所述第三馈电点A3至所述第一耦合端712、及所述第二接地端722至所述第二耦合端721。其中,谐振电流的流向还可以反向,即谐振电流从所述第一耦合端712至所述第三馈电点A3,及从所述第二耦合端721流向所述第二接地端722。
可选的,请参阅图31,所述天线组件100还包括调谐电路T1。所述调谐电路T1的一端电连接于所述第三匹配电路M3或所述第三辐射体70,所述调谐电路T1的另一端接地。所述调谐电路T1包括天线开关或可调电容。
在第一种调谐电路T1的实施方式中,请参阅图33,所述调谐电路T1还包括开关电路731及多个调谐分支732。所述开关电路731的一端电连接于所述第三匹配电路M3或第三辐射体70,多个所述调谐分支732的一端皆电连接所述开关电路731的另一端。即所述开关电路731为单刀多掷开关。多个所述调谐分支732的另一端皆接地,所述多个所述调谐分支732用于调谐所述第三辐射体70的频段的大小。
每个所述调谐分支732的阻抗值不同。例如,多个所述调谐分支732为电容值不同的多个电容器件;或者,多个所述调谐分支732为电感值不同的多个电感器件。通过调节所述开关电路731电连接至不同的所述调谐分支732,以调节所述调谐电路T1的阻抗值,进而调节所述调谐分支732的等效电长度,进一步调节所述调谐分支732的等效电长度与所述第三辐射体70的电长度之和,进而调节所述第三辐射体70所支持频段的大小。
可选的,所述调谐分支732可以包括一个电容,也可以为一个电感,可以是一个电容与一个电感的串联器件,也可以是一个电容与一个电感的并联器件,还可以是上述的串联器件与一个电容并联,还可以是上述的串联器件与一个电感并联,还可以是两个上述的串联器件相并联,还可以是两个上述的并联器件相串联,等等。
在第二种调谐电路T1的实施方式中,请参阅图34,所述调谐电路T1包括可调电容733,所述可调电容733用于调谐所述第三辐射体70所支持频段的大小。所述可调电容733为可调电容值的电容器,如此,通过调节电容器的电容值,实现所述调谐电路T1的阻抗值可调,进而调节所述调谐电路T1的等效电长度,进一步调节所述调谐分支732的等效电长度与所述第三辐射体70的电长度之和,进而调节所述第三辐射体70所支持频段的大小。
当然,调谐电路T1还可以为上述的第一种实施方式和第二种实施方式的结合,例如,所述调谐分支732中包括所述可调电容733。
可选的,MHB频段包括但不限于为上述列举的B3频段、N41频段,还可以是其他的频段,例如,N1频段、N2频段、N3频段、N7频段、N38频段、B1频段、B2频段、B3频段、B4频段、B7频段、B9频段、B10频段、B11频段、B21频段、B24频段、B25频段、B33频段-B43频段等中的至少一者。
具体可以通过调节调谐电路T1的开关电路731切换至不同的调谐分支732,以改变调谐电路T1的等效阻抗,进而调节调谐电路T1+第三辐射体70上的等效电长度,进而调谐第三辐射体70可支持MHB频段中的任意频段及UHB频段中的任意频段。
请参阅图32及图35,图32是图31所示的天线组件中第一馈源20、第一辐射体10及第三辐射体70的天线部分的回波损耗曲线,图35是图31所示的天线组件中第二馈源80、第二辐射体60的天线部分的回波损耗曲线。
天线组件100包括第一子辐射体71、耦合缝隙73、第二子辐射体72和第一匹配电路M1、调谐电路T1和第一馈源20组成,通过调谐第一匹配电路M1和调谐电路T1,其可以产生MHB+N78频段(如图32中回波损耗曲线)。其中,第一接地端711到耦合缝隙73的1/4波长基模(对应图31中的模态1)可以产生MB频段(例如B3频段)。第三馈源点至耦合缝隙73的1/4波长模式和耦合缝隙73到第二接地端722的1/4波长模式(对应图32中的模态2)可以产生HB频段(例如N41频段)。第一接地端711到耦合缝隙73的1/4波长模式和第二接地端722到耦合缝隙73组成的平衡模式(对应图32中的模态3)产生N78频段。调谐电路T1可以通过切换不同的逻辑,从而切换上述模态1~模态3的谐振频率的位置,以覆盖到整个MHB+UHB频段。第一辐射体10可通过调整其的长度、面积、第一匹配电路M1使其产生任意频段(如本实施方式中其频段调整为N79频段,如图32中回波损耗曲线中的模态4),其模态是第一辐射体10中第一馈电点A1到C点的1/4波长模式(对应图32回波损耗曲线中的模态4)。由于第一辐射体10与第三辐射体70用第一馈源20,故可同时激励出上述的四个模态,如此可以同时支持MHB+UHB+N79频段,例如,MHB+N41+N78+N79频段。第二辐射体60可通过调整其长度、面积、第二匹配电路M3使其产生任意频段(如本实施方式中其频段调整为N79频段,如图35中回波损耗曲线中的模态5),其模态是第二辐射体60中第二馈电点A2到E点的1/4波长模式。如此,此天线组件100设计覆盖频段广,同时支持LB+MHB+N41+N78+N79(或者其他频段),支持多载波聚合(Carrier Aggregation,CA)态,性能卓越。可以有效提升用户体验。
本申请提供了一种天线组件100,包括可支持MHB+N78频段的边框天线、一个或多支可支持N79频段的支架天线及用于检测人体靠近的检测距离的感应芯片30,其中,一个或多支可支持N79频段的天线还可以为FPC或LDS天线,其作为检测人体靠近的检测距离的感应片。
对于单支可支持N79频段的支架天线的感应面积相对较小,使得检测人体靠近的检测距离小,不能充分发挥检测人体靠近的检测距离的作用,确保电子设备1000的比吸收率指标的合规性不能在保证通信性能良好的前提下得到很好的保证的问题;本申请提供了一种可支持MHB+N78频段的边框天线、双支支架天线(N79频段或者LB或者其他任意频段)、导电走线、导体片及感应芯片30的天线组件100,导体片可以为FPC或LDS或PDS工艺,其不参与辐射,可为任意形状,可挂在导电走线上或者不挂。若挂在导电走线上,则与导电走线、第一辐射体10成为一个整体,作为检测人体靠近的检测距离的感应片,可增大整体面积,相较于单支支架天线的感应面积大,可以有效增大检测人体靠近的检测距离的感应面积,增大检测距离,充分发挥检测人体靠近的检测距离的功能,板级功率能够得到有效回退,使得确保电子设备1000的比吸收率指标的合规性得到大大的保障,可靠性大大增强;采用双通道检测人体靠近的检测距离,检测更灵敏,而且可以保证在一个通道失效的情况下,另一个检测通道依然可以进行检测,增加了一道检测防线,可靠性大大增强;另一方面,天线组件100设计覆盖频段广,同时支持LB/MHB+N41+N78+N79(或者其他频段)频段,支持多CA态,使得此天线组件100在有效保证确保电子 设备1000的比吸收率指标的合规性的前提下,通信性能好,大大提升了用户体,提升了品牌形象。
本申请实施例还提供了一种电子设备1000的控制方法,所述方法应用于上述任意一种实施方式所述的电子设备1000,请参阅图36,以及结合参阅图1至图35,所述方法至少包括以下步骤:
110、接收来自感应芯片30的感应信号。
具体的,电子设备1000的处理器(所述处理器为上述的控制器或包括上述的控制器)电连接所述感应芯片30。电子设备1000的处理器接收来自感应芯片30的感应信号。感应信号包括但不限于为感应电容量。
120、根据所述感应信号判断所述待测主体是否接近所述电子设备1000。
以待测主体为人体为例。所述感应芯片30将所检测到的感应电容量以电信号形式发送至电子设备1000的处理器,电子设备1000的处理器根据感应电容量的变化判断人体与感应片之间的距离变化。具体为,判断人体是否接近电子设备1000。
130、在所述待测主体接近所述电子设备1000时降低至少部分的所述天线组件100的辐射功率。
其中,以待测主体为人体为例。当电子设备1000的处理器根据所述感应信号的变化判断人体接近电子设备1000时,电子设备1000的处理器控制至少部分的所述天线组件100的辐射功率降低。本申请对于所述天线组件100的辐射功率的降低量不做具体的限定,其具体的降低量可以根据实际要求进行设定,以使电子设备1000在待测主体接近电子设备1000时能够智能调节电子设备1000的辐射功率,以智能降低待测主体对于电磁波信号的比吸收率,以满足电子设备1000的SAR合规性要求。
本申请并不限于将第一辐射体10的辐射功率降低,可选的,还可以降低靠近第一辐射体10的第三辐射体70的辐射功率,以降低电子设备1000在人体靠近时辐射功率,进而降低人体对于电磁波的比吸收率。
进一步地,请参阅图37,本申请实施例提供的方法还包括:
140、根据所述感应信号判断所述待测主体是否远离所述电子设备1000。
本步骤可以在步骤120之前、之后或同时进行。图37只是一种示例,在步骤120判断结果为否时,进行步骤140。
150、在所述待测主体远离所述电子设备1000时至少部分的所述天线组件100的辐射功率不变或者增加至少部分的所述天线组件100的辐射功率。
其中,以待测主体为人体为例。当电子设备1000的处理器根据所述感应信号的变化判断人体远离电子设备1000时,电子设备1000的处理器控制至少部分的所述天线组件100的辐射功率不变或增加。本申请对于所述天线组件100的辐射功率的增加量不做具体的限定,其具体的增加量可以根据实际要求进行设定,以使电子设备1000在待测主体远离电子设备1000时能够智能调节电子设备1000的辐射功率,以使满足电子设备1000的SAR合规性要求的同时还能够确定电子设备1000的天线性能。
相应地,本申请并不限于将第一辐射体10的辐射功率调节,可选的,还可以调节靠近第一辐射体10的第三辐射体70的辐射功率。
本申请提供的控制方法,通过接收来自感应芯片30的感应信号,根据所述感应信号判断所述待测主体是否接近所述电子设备1000,并在所述待测主体接近所述电子设备1000时降低至少部分的所述天线组件100的辐射功率,以在待测主体靠近于电子设备1000时智能降低电子设备1000的辐射功率,以智能降低待测主体对于电磁波信号的比吸收率;进一步地,根据所述感应信号判断所述待测主体是否远离所述电子设备1000,并在所述待测主体远离所述电子设备1000时至少部分的所述天线组件100的辐射功率不变或者增加至少部分的所述天线组件100的辐射功率,以智能调节在待测主体远离电子设备1000时的辐射功率,以确保电子设备1000的通信性能。
由于本申请中电子设备1000通过扩展其感应待测主体的感应面积,进而增大天线组件100感应待测主体是否接近的感应距离阈值,提高待测主体是否靠近或远离电子设备1000的检测准确性,所以在智能降低待测主体对于电磁波信号的比吸收率具有更高的灵敏度,以满足电子设备1000更高的SAR合规性要求。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (25)

  1. 一种电子设备,包括边框、主板及天线组件,所述天线组件包括:
    第一辐射体,设于所述边框内侧且至少部分与所述主板相对设置,所述第一辐射体具有第一馈电点;
    第一馈源,设于所述主板,所述第一馈源电连接于所述第一馈电点,所述第一馈源用于激励所述第一辐射体至少收发LB频段、MHB频段、UHB频段、Wi-Fi频段、GNSS频段中的至少一者;以及
    感应芯片,所述感应芯片电连接所述第一辐射体,所述感应芯片用于至少接收所述第一辐射体在待测主体靠近时所产生的感应信号并根据所述感应信号判断所述待测主体接近或远离所述第一辐射体。
  2. 如权利要求1所述的电子设备,所述天线组件还包括第一导电检测件,所述第一导电检测件电连接于所述第一辐射体和/或所述感应芯片,所述第一导电检测件用于在待测主体靠近时产生感应信号,所述感应芯片还用于在所述第一导电检测件电连接所述感应芯片时接收所述第一导电检测件的感应信号,并根据所述感应信号判断所述待测主体接近或远离所述第一导电检测件。
  3. 如权利要求2所述的电子设备,所述第一导电检测件电连接于所述第一馈电点。
  4. 如权利要求2或3所述的电子设备,所述第一导电检测件包括第一导电走线,所述第一导电走线的一端电连接所述第一辐射体,所述第一导电走线的延伸轨迹包括直线、弯折线、曲线中的至少一者;
    和/或,所述第一导电检测件包括第一导电片,所述第一导电片电连接于所述第一辐射体,所述第一导电片呈实心状或网孔状。
  5. 如权利要求1所述的电子设备,所述天线组件还包括至少一个第一隔离器件及第一匹配电路,所述第一隔离器件用于对所述感应信号呈开路状态,所述第一匹配电路的一端电连接所述第一馈源;
    所述第一隔离器件电连接于所述第一馈电点与所述第一匹配电路的另一端之间;
    或,所述第一辐射体还具有第一接地点,所述第一接地点用于电连接参考地,一个所述第一隔离器件电连接于所述第一接地点与所述参考地之间,及另一个所述第一隔离器件电连接于所述第一馈电点与所述第一匹配电路的另一端之间。
  6. 如权利要求5所述的电子设备,所述天线组件还包括第二隔离器件,所述第二隔离器件电连接于所述第一辐射体与所述感应芯片之间,所述第二隔离器件用于对所述第一辐射体在所述待测主体接近时产生的感应信号呈导通状态,及对所述第一辐射体的射频信号呈开路状态。
  7. 如权利要求1所述的电子设备,所述第一辐射体在所述第一馈源的激励下用于产生第一谐振模式,以支持N79频段,其中,所述第一谐振模式包括1/4波长模式、或1/2波长模式、或3/4波长模式、或1倍波长模式。
  8. 如权利要求1所述的电子设备,所述天线组件还包括至少一个第二辐射体,所述第二辐射体设于所述边框内侧且至少部分与所述主板相对设置,所述第二辐射体用于至少收发LB频段、MHB频段、UHB频段、Wi-Fi频段、GNSS频段中的至少一者;所述第二辐射体电连接于所述感应芯片和/或所述第一辐射体,所述第二辐射体还用于在待测主体靠近时产生感应信号,所述感应芯片还用于在所述第二辐射体电连接所述感应芯片时接收所述第二辐射体的感应信号,并根据所述感应信号判断所述待测主体接近或远离所述第二辐射体。
  9. 如权利要求8所述的电子设备,所述天线组件还包括至少一个第二导电检测件,所述第二导电检测件电连接于所述第一辐射体与所述第二辐射体之间;或,所述第二导电检测件电连接于所述第二辐射体,及所述第二导电检测件未电连接所述第一辐射体。
  10. 如权利要求9所述的电子设备,所述第一辐射体、所述第二导电检测件与所述第二辐射体依次相邻设置。
  11. 如权利要求9所述的电子设备,所述第二导电检测件包括第二导电走线,所述第二导电走线电连接于所述第一辐射体与所述第二辐射体之间,所述第二导电走线的延伸轨迹包括直线、弯折线、曲线中的至少一者;
    和/或,所述第二导电检测件还包括第二导电片,所述第二导电片电连接于所述第一辐射体与所述 第二辐射体之间,所述第二导电片呈实心状或网孔状。
  12. 如权利要求9所述的电子设备,所述第二辐射体具有第二馈电点,所述天线组件还包括第二馈源,所述第二馈源设于所述主板,所述第二馈源电连接所述第二馈电点。
  13. 如权利要求12所述的电子设备,所述第二导电检测件的一端电连接于所述第一馈电点,所述第二导电检测件电连接于所述第二馈电点。
  14. 如权利要求12所述的电子设备,所述天线组件还包括至少一个第三隔离器件及第二匹配电路,所述第三隔离器件用于对所述感应信号呈开路状态,所述第二匹配电路的一端电连接所述第二馈源;
    所述第三隔离器件电连接于所述第二馈电点与所述第二匹配电路的另一端之间;
    或,所述第二辐射体还具有第二接地点,所述第二接地点用于电连接参考地,一个所述第三隔离器件电连接于所述第二接地点与所述参考地之间,及另一个所述第三隔离器件电连接于所述第二馈电点与所述第二匹配电路的另一端之间。
  15. 如权利要求14所述的电子设备,所述天线组件还包括第四隔离器件,所述第四隔离器件电连接于所述第二辐射体与所述感应芯片之间,所述第四隔离器件用于对所述第二辐射体在所述待测主体接近时产生的感应信号呈导通状态,及对所述第二辐射体的射频信号呈开路状态。
  16. 如权利要求8所述的电子设备,所述第二辐射体具有第二馈电点,所述第二馈电点电连接所述第一馈源。
  17. 如权利要求8所述的电子设备,所述第二辐射体用于产生第二谐振模式,以支持N79频段,其中,所述第二谐振模式包括1/4波长模式、或1/2波长模式、或3/4波长模式、或1倍波长模式。
  18. 如权利要求1-3、5-17任意一项所述的电子设备,所述天线组件还包括第三辐射体,所述第三辐射体设于所述边框,所述第三辐射体用于支持LB频段、MHB频段、UHB频段、Wi-Fi频段、GNSS频段中的至少一者。
  19. 如权利要求18所述的电子设备,所述第三辐射体具有第三馈电点,所述第三馈电点与所述第一馈电点相邻设置,所述第三馈电点电连接所述第一馈源。
  20. 如权利要求19所述的电子设备,所述第三辐射体包括第一子辐射体及第二子辐射体,所述第一子辐射体与所述第二子辐射体之间具有耦合缝隙,所述第一子辐射体具有依次设置的第一接地端、所述第三馈电点及第一耦合端,所述第二子辐射体具有第二耦合端及第二接地端,所述第一耦合端与所述第二耦合端之间为所述耦合缝隙。
  21. 如权利要求20所述的电子设备,所述第三辐射体在所述第一馈源的激励下至少产生第三谐振模式、第四谐振模式及第五谐振模式,以至少同时支持MHB频段、UHB频段及N78频段,其中,所述第三谐振模式、所述第四谐振模式及所述第五谐振模式皆包括1/4波长模式、1/2波长模式、3/4波长模式、1倍波长模式中的至少一者。
  22. 如权利要求21所述的电子设备,所述第三谐振模式包括所述第一接地端至所述第一耦合端之间的所述第一子辐射体的1/4波长模式;
    和/或,所述第四谐振模式包括所述第三馈电点至所述第一耦合端之间的所述第一子辐射体的1/4波长模式及所述第二耦合端至所述第二接地端之间的所述第二子辐射体的1/4波长模式;
    和/或,所述第五谐振模式包括所述第三馈电点至所述第一耦合端之间的所述第一子辐射体的1/4波长模式及所述第二接地端至所述第二耦合端之间的所述第二子辐射体的1/4波长模式。
  23. 如权利要求19-22任意一项所述的电子设备,所述天线组件还包括第三匹配电路及调谐电路,所述第三匹配电路的一端电连接所述第三馈电点,所述第三匹配电路的另一端电连接所述第一馈源;所述调谐电路的一端电连接于所述第三匹配电路或所述第三辐射体,所述调谐电路的另一端接地,所述调谐电路包括天线开关或可调电容。
  24. 一种电子设备的控制方法,所述方法应用于权利要求1-23任意一项所述的电子设备,所述方法包括:
    接收来自感应芯片的感应信号;
    根据所述感应信号判断所述待测主体是否接近所述电子设备,并在所述待测主体接近所述电子设备时降低至少部分的所述天线组件的辐射功率。
  25. 如权利要求24所述的方法,所述方法还包括:
    根据所述感应信号判断所述待测主体是否远离所述电子设备,并在所述待测主体远离所述电子设备时保持至少部分的所述天线组件的辐射功率不变或者增加至少部分的所述天线组件的辐射功率。
PCT/CN2022/140992 2021-12-28 2022-12-22 电子设备及其控制方法 WO2023125225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111630765.X 2021-12-28
CN202111630765.XA CN116365215A (zh) 2021-12-28 2021-12-28 电子设备及其控制方法

Publications (1)

Publication Number Publication Date
WO2023125225A1 true WO2023125225A1 (zh) 2023-07-06

Family

ID=86905669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140992 WO2023125225A1 (zh) 2021-12-28 2022-12-22 电子设备及其控制方法

Country Status (2)

Country Link
CN (1) CN116365215A (zh)
WO (1) WO2023125225A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173294A1 (zh) * 2019-02-27 2020-09-03 华为技术有限公司 共体天线及电子设备
CN112751212A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线系统及电子设备
CN112751213A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备
CN112768959A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线组件和电子设备
CN112821031A (zh) * 2020-12-29 2021-05-18 Oppo广东移动通信有限公司 电子设备
CN214542523U (zh) * 2021-06-03 2021-10-29 维沃移动通信有限公司 电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173294A1 (zh) * 2019-02-27 2020-09-03 华为技术有限公司 共体天线及电子设备
CN112751212A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线系统及电子设备
CN112751213A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备
CN112768959A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线组件和电子设备
CN112821031A (zh) * 2020-12-29 2021-05-18 Oppo广东移动通信有限公司 电子设备
CN214542523U (zh) * 2021-06-03 2021-10-29 维沃移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN116365215A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2022068827A1 (zh) 天线组件和电子设备
US9502750B2 (en) Electronic device with reduced emitted radiation during loaded antenna operating conditions
US20230361470A1 (en) Antenna assembly and electronic device
WO2022142824A1 (zh) 天线系统及电子设备
EP2885839B1 (en) Antenna apparatus and method of making same
WO2023142785A1 (zh) 天线组件及电子设备
WO2022142820A1 (zh) 天线组件及电子设备
CN112768959B (zh) 天线组件和电子设备
WO2021129110A1 (zh) 电子设备
WO2023155593A1 (zh) 电子设备
US20230232142A1 (en) Earphone module
EP2760076B1 (en) Antenna and portable device having the same
US20240072440A1 (en) Antenna assembly and electronic device
CN114243271A (zh) 天线装置、电路板组件及电子设备
US10181638B2 (en) Radiofrequency antenna device
WO2023125225A1 (zh) 电子设备及其控制方法
WO2023155596A1 (zh) 电子设备及其控制方法
CN218415017U (zh) 天线系统和终端设备
KR102078101B1 (ko) 피파 타입 안테나를 포함하는 전자 기기 및 그의 무선 신호 송수신 장치
US20130271341A1 (en) Multiband antenna and wireless communication device using same
US20080129611A1 (en) Antenna module and electronic device using the same
WO2023109439A1 (zh) 天线组件、电子设备及其控制方法
CN106654573B (zh) 射频天线装置
WO2024045853A1 (zh) 天线组件及电子设备
WO2024045856A1 (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914479

Country of ref document: EP

Kind code of ref document: A1