WO2024045856A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2024045856A1
WO2024045856A1 PCT/CN2023/104048 CN2023104048W WO2024045856A1 WO 2024045856 A1 WO2024045856 A1 WO 2024045856A1 CN 2023104048 W CN2023104048 W CN 2023104048W WO 2024045856 A1 WO2024045856 A1 WO 2024045856A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency band
antenna assembly
electrically connected
circuit
Prior art date
Application number
PCT/CN2023/104048
Other languages
English (en)
French (fr)
Inventor
刘池
唐海军
吴敏超
姜文禹
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024045856A1 publication Critical patent/WO2024045856A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna assembly and electronic equipment.
  • Electronic devices with communication functions such as mobile phones are becoming more and more popular and their functions are becoming more and more powerful.
  • Electronic devices usually include antenna components to implement communication functions of the electronic device.
  • the communication performance of antenna components in electronic devices in the related art is not good enough, and there is still room for improvement.
  • this application provides an antenna assembly, which includes:
  • the first radiator has a first free end, a first ground end and a first feed point.
  • the first ground end is grounded.
  • the first feed point is located at the first free end. and the first ground terminal;
  • a first feed source the first feed source is electrically connected to the first feed point to excite a first resonant mode and a second resonant mode on the first radiator, the first resonant mode is In order to support the first LB frequency band, the second resonance mode is used to support the second LB frequency band, wherein the frequency of the first LB frequency band is greater than the frequency of the second LB frequency band.
  • this application provides an antenna assembly, which includes:
  • a first radiator, the first radiator has a first feed point
  • a first feed source the first feed source is electrically connected to the first feed point to support the LB frequency band;
  • the second radiator is spaced apart from the first radiator, and the second radiator has a second feed point;
  • the second feed source is electrically connected to the second feed point to support the MHB frequency band;
  • the coupling radiator is located between the first radiator and the second radiator, and the coupling radiator is coupled to the second radiator;
  • the first tuning circuit is electrically connected to the first radiator, is also electrically connected to the coupling radiator, and the first tuning circuit is also electrically connected to ground, the first tuning circuit Used to tune the LB frequency band and the MHB frequency band.
  • the present application provides an electronic device.
  • the electronic device includes a first circuit board and an antenna assembly as described in the first aspect.
  • the first feed source in the antenna assembly is disposed on the first circuit board. ;or,
  • the electronic device includes a first circuit board, a second circuit board and an antenna component as described in the second aspect, a first feed source in the antenna component is disposed on the first circuit board, and the second feed source disposed on the second circuit board.
  • Figure 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a three-dimensional exploded schematic view of the electronic device in Figure 1 from one angle;
  • Figure 3 is a three-dimensional exploded schematic view of the electronic device shown in Figure 1 from another angle;
  • FIG. 4 is a schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the main current flow corresponding to the first resonance mode in the antenna assembly shown in Figure 4;
  • Figure 6 is a schematic diagram of the main current flow corresponding to the second resonance mode in the antenna assembly shown in Figure 4;
  • FIG. 7 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 8 is a schematic diagram of a second tuning circuit in an embodiment of the antenna assembly shown in Figure 7;
  • Figure 9 is a schematic diagram of a second tuning circuit in another embodiment of the antenna assembly shown in Figure 7;
  • Figure 10 is a schematic diagram of a second tuning circuit in yet another embodiment of the antenna assembly shown in Figure 7;
  • Figure 11 is a schematic diagram of a first tuning circuit in an embodiment of the antenna assembly shown in Figure 7;
  • Figure 12 is a schematic diagram of a first tuning circuit in another embodiment of the antenna assembly shown in Figure 7;
  • Figure 13 is a schematic diagram of a first tuning circuit in yet another embodiment of the antenna assembly shown in Figure 7;
  • Figure 14 is a schematic diagram of a first tuning circuit in yet another embodiment of the antenna assembly shown in Figure 7;
  • Figure 15 is a schematic diagram of an antenna assembly provided by another embodiment of the present application when applied to an electronic device
  • Figure 16 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 17 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 18 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 19 is a schematic diagram of the main current flow corresponding to the third resonance mode in the antenna assembly shown in Figure 18;
  • Figure 20 is a schematic diagram of the main current flow corresponding to the fourth resonance mode in the antenna assembly shown in Figure 18;
  • Figure 21 is a schematic diagram of the main current flow corresponding to the fifth resonance mode in the antenna assembly shown in Figure 18;
  • Figure 22 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 23 is a schematic equivalent circuit diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 24 is a schematic equivalent circuit diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 25 is a schematic diagram of the circuit structure of the antenna assembly in Figure 24 used in electronic equipment;
  • Figure 26 is a schematic diagram of the distance between the first radiator and the second radiator of the antenna assembly provided in one embodiment
  • Figure 27 is a schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 28 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 29 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 30 is a schematic diagram of the middle frame and the first circuit board in Figure 29;
  • Figure 31 is a schematic diagram of an electronic device provided by another embodiment of the present application.
  • Figure 32 is a schematic diagram of the middle frame and the first circuit board in Figure 31;
  • Figure 33 is a schematic diagram of the positional relationship between the central axis and each radiator in the electronic device.
  • an antenna assembly which includes:
  • the first radiator has a first free end, a first ground end and a first feed point.
  • the first ground end is grounded.
  • the first feed point is located at the first free end. and the first ground terminal;
  • a first feed source the first feed source is electrically connected to the first feed point to excite a first resonant mode and a second resonant mode on the first radiator, the first resonant mode is In order to support the first LB frequency band, the second resonance mode is used to support the second LB frequency band, wherein the frequency of the first LB frequency band is greater than the frequency of the second LB frequency band.
  • the first resonance mode is a 1/4 wavelength mode from the first feed point to the first free end;
  • the second resonance mode is a mode from the first feed point to the first free end. 1/4 wavelength, and a 1/4 wavelength convection mode from the first feed point to the first ground terminal.
  • the frequency band supported by the first resonance mode includes the B8 frequency band or the N8 frequency band
  • the frequency band supported by the second resonance mode includes the B28 frequency band or the N28 frequency band.
  • the first feeding point is located in the middle of the first radiator.
  • the first radiator includes a first part and a second part connected by bending, the first part has the first free end, the second part has the first ground end, and the third A feed point is located at the first part or the second part and is provided adjacent to the corner where the first part and the second part are bent and connected.
  • the antenna assembly also includes:
  • a second radiator the second radiator has a second free end, a second ground end and a second feed point, the second ground end is grounded, and the second ground end is smaller than the second The free end is arranged away from the first grounding end;
  • the coupling radiator is disposed between the first ground end and the second free end, and one end of the coupling radiator forms a first gap with the first radiator.
  • the other end of the radiator forms a second gap and is coupled with the second radiator, and the coupling radiator has a first connection point;
  • the first tuning circuit is electrically connected to the first ground terminal, and is also electrically connected to the first connection point of the coupling radiator, and the first tuning circuit is also electrically connected to ground;
  • a second feed source the second feed source is electrically connected to the second feed point to excite the double resonance of the MHB frequency band on the second radiator and the coupling radiator, wherein the MHB frequency band
  • the dual resonance includes: one resonance mode is used to support the MB frequency band, and the other resonance mode is used to support the HB frequency band; or, one resonance mode is used to support the MB frequency band, and the other resonance mode is also used to support the MB frequency band; or, a resonance mode is used to support the MB frequency band. mode is used to support the HB frequency band, and the other resonance frequency band is used to support the HB frequency band.
  • the first radiator, the coupling radiator and the second radiator as a whole have a center line, the center line passes through the coupling radiator, and the first gap and the second radiator
  • the two slits are respectively located on both sides of the center line.
  • the second tuning circuit includes:
  • a plurality of first tuner sub-circuits one end of each first tuner sub-circuit being grounded;
  • a first switch the first switch has a common terminal, a plurality of first connection terminals and a first switching part, the common terminal is electrically connected to the second feed point, and the first connection terminal is electrically connected to to the other end of the first tuner sub-circuit, and different first connection terminals are electrically connected to different first tuner sub-circuits, the first switching part is electrically connected to the common terminal, and the first switch The portion is also electrically connected to one of the plurality of first connection terminals under the control of the control signal.
  • the second tuning circuit includes:
  • the second feed source electrically connects the second tuner sub-circuit to the second feed point
  • a third tuner sub-circuit one end of the second tuner sub-circuit is electrically connected to the connection point between the second feed source and the first tuner sub-circuit;
  • a plurality of fourth tuner sub-circuits one end of the fourth tuner sub-circuit is grounded;
  • a fifth tuner circuit one end of the fifth tuner circuit is electrically connected to the second feed point, and the other end is grounded;
  • a first switch the first switch has a common terminal, a plurality of first connection terminals and a first switching part, the common terminal is electrically connected to the second feed point, the plurality of first connection terminals One of the first connection terminals is electrically connected to the other end of the third tuner sub-circuit, and the remaining first connection terminals are electrically connected to the other end of the fourth tuner sub-circuit, and different fourth tuner sub-circuits are electrically connected to different A first connection terminal, the first switching part is electrically connected to the common terminal, and the first switching part is also electrically connected to one of the plurality of first connection terminals under the control of a control signal.
  • the second tuning circuit includes:
  • the second feed source electrically connects the second tuner sub-circuit to the second feed point
  • a third tuner sub-circuit one end of the second tuner sub-circuit is electrically connected to the connection point between the second feed source and the first tuner sub-circuit;
  • a plurality of fourth tuner sub-circuits one end of the fourth tuner sub-circuit is grounded;
  • a fifth tuner sub-circuit one end of the fifth tuner sub-circuit is electrically connected to the second feed point, and the other end is electrically connected to the other end of a fourth tuner sub-circuit among the plurality of fourth sub-circuits;
  • a first switch the first switch has a common terminal, a plurality of first connection terminals and a first switching part, the common terminal is electrically connected to the second feed point, the plurality of first connection terminals One of the first connection terminals is electrically connected to the other end of the third tuner sub-circuit, and the remaining first connection terminals are electrically connected to the other end of the fourth tuner sub-circuit, and different fourth tuner sub-circuits are electrically connected to different A first connection terminal, the first switching part is electrically connected to the common terminal, and the first switching part is also electrically connected to one of the plurality of first connection terminals under the control of a control signal.
  • the second tuner sub-circuit includes a first capacitor
  • the third tuner sub-circuit includes a second capacitor
  • the first switching part is electrically connected to any one of the fourth tuner sub-circuits, the The antenna component supports the MB frequency band
  • the antenna assembly supports the HB frequency band.
  • the first tuning circuit includes:
  • At least one sixth tuner sub-circuit one end of the at least one sixth tuner sub-circuit is electrically connected to the first radiator;
  • the second switch has a second connection end, a third connection end and a second switching part, the second connection end is grounded, and the third connection end is electrically connected to the sixth The other end of the tuner sub-circuit, and different third connection terminals are electrically connected to different sixth tuner sub-circuits, the second switching part is electrically connected to the second connection terminal or the third connection terminal, the third connection terminal The two switching parts connect or disconnect the second connection end and the third connection end under the control of the control signal;
  • At least one seventh tuner sub-circuit one end of the at least one seventh tuner sub-circuit is electrically connected to the first connection point of the coupling radiator;
  • the third switch has a fourth connection terminal, a fifth connection terminal and a third switching part, the fourth connection terminal is grounded, and the fifth connection terminal is electrically connected to the seventh tuner The other end of the circuit, and different fifth connection terminals are electrically connected to different seventh tuner sub-circuits, the third switching part is electrically connected to the fourth connection terminal or the fifth connection terminal, and the second switching part is at The fourth connection terminal and the fifth connection terminal are connected or disconnected under the control of the control signal.
  • the first tuning circuit also includes:
  • An eighth tuner circuit one end of the eighth tuner circuit is grounded, and the other end is electrically connected to the first radiator;
  • a ninth tuner circuit one end of the ninth tuner circuit is grounded, and the other end is electrically connected to the first connection point of the coupling radiator.
  • the seventh tuner sub-circuit includes a third capacitor
  • the first tuner circuit also includes a ninth tuner sub-circuit
  • the ninth tuner sub-circuit includes a fourth capacitor
  • one end of the ninth tuner sub-circuit is grounded. , the other end is electrically connected to the first connection point of the coupling radiator;
  • the antenna assembly also includes:
  • the SAR sensor is electrically connected to the inductor, and the SAR sensor is used to output the change in capacitance value detected by the coupling radiator.
  • the capacitance value increases, the emission of the second feed source Power is reduced.
  • the second tuning circuit is electrically connected to the second feed point; or,
  • the second radiator also has a second connection point, the second connection point is different from the second feed point, and the second tuning circuit is electrically connected to the second connection point.
  • the antenna assembly has an auxiliary radiator, the auxiliary radiator has a third ground point, and the third ground point is grounded; the second radiator has a free end, and the free end is connected to the auxiliary radiator. There is a third gap between;
  • the second radiator also has a third feed point, a first ground point and a second ground point.
  • the third feed point is spaced apart from the second feed point.
  • the second ground point is located at the Between the second feed point and the third feed point, and the second ground point is located closer to the third feed point than the first ground point, the antenna assembly further includes:
  • a third feed source is electrically connected to the third feed point to support the LB frequency band and/or WiFi 2.4G frequency band.
  • the third feed source when used to support the LB frequency band, the third feed source is used to excite a third resonance mode, and the third resonance mode is from the second ground point to the third gap. 1/4 wavelength mode.
  • the third feed source when used to support WiFi 2.4G mode, the third feed source is also used to excite the fourth resonant mode and the fifth resonant mode on the second radiator.
  • the four resonance modes and the fifth resonance mode are used to support WiFi 2.4G frequency band and Bluetooth frequency band.
  • the fourth resonance mode is a 3/4 wavelength mode from the second ground point to the third gap; the fifth resonance mode is a 1/4 wavelength mode from the third gap to the third ground point. 4 wavelength mode.
  • the antenna assembly also includes:
  • a fourth feed source the fourth feed source is electrically connected to the fourth feed point, so that the third radiator supports the WiFi 2.4G frequency band and the Bluetooth frequency band.
  • the third radiator and the second radiator are arranged diagonally,
  • the second radiator and the third radiator are both used to support the Bluetooth frequency band.
  • the pattern of the third radiator when transmitting and receiving the electromagnetic wave signal of the Bluetooth frequency band is the same as that of the second radiator.
  • the electromagnetic wave signals in the Bluetooth frequency band have complementary patterns.
  • the second radiator includes a third part and a fourth part that are bent and connected, and one end of the third part away from the fourth part is disposed adjacent to the first radiator;
  • the third radiator includes a fifth part and a sixth part that are bent and connected, and the fifth part is arranged adjacent to the first radiator compared to the sixth part.
  • the third radiator has a fourth ground point and a fifth ground point, and both the fourth ground point and the fifth ground point are grounded.
  • the fourth grounding point is arranged adjacent to the first radiator than the fifth grounding point, and the fifth grounding point is located between the fourth feed point and the fourth grounding point.
  • the fourth feeding point is located at the fifth part or the sixth part, and the fourth feeding point is arranged adjacent to the corner where the fifth part and the sixth part are connected.
  • the third feed source is used to support the Bluetooth frequency band
  • the fourth feed source is used to support the Bluetooth frequency band
  • the third feed source is connected to the radio frequency channel of the second radiator, and is connected with the fourth feed source
  • the radio frequency channels connecting the feed source to the third radiator are different.
  • the third feed source is used to support the Bluetooth frequency band
  • the fourth feed source is used to support the Bluetooth frequency band
  • the third feed source is connected to the radio frequency channel of the second radiator, and is connected to the fourth feed source.
  • the radio frequency channel through which the feed source is connected to the third radiator is the same;
  • the antenna assembly further includes a switching unit, the switching unit is used to electrically connect the third feed source to the second radiation through the radio frequency path. body, or, the fourth feed source is electrically connected to the third radiator through the radio frequency channel.
  • the fourth feed is also used to support the GPS L1 frequency band.
  • the antenna assembly also includes:
  • a fourth radiator the fourth radiator is spaced apart from the sixth part to form a fifth gap, the fifth gap is provided adjacent to the corner portion where the fifth part and the sixth part are bent and connected.
  • a fifth feed source is electrically connected to the fourth radiator to support the WiFi 5G frequency band or N78 frequency band.
  • the distance d1 between the first ground terminal and the second ground terminal satisfies: 10mm ⁇ d1 ⁇ 120mm.
  • an antenna assembly which includes:
  • a first radiator, the first radiator has a first feed point
  • a first feed source the first feed source is electrically connected to the first feed point to support the LB frequency band;
  • the second radiator is spaced apart from the first radiator, and the second radiator has a second feed point;
  • the second feed source is electrically connected to the second feed point to support the MHB frequency band;
  • the coupling radiator is located between the first radiator and the second radiator, and the coupling radiator is coupled to the second radiator;
  • the first tuning circuit is electrically connected to the first radiator, is also electrically connected to the coupling radiator, and the first tuning circuit is also electrically connected to ground, the first tuning circuit Used to tune the LB frequency band and the MHB frequency band.
  • the first radiator has a first free end, a first ground end and a first feed point, the first ground end is grounded, and the first feed point is located between the first free end and the first feed point. Between the first ground terminals, the first feed source is electrically connected to the first feed point;
  • the second radiator has a second free end, a second ground end and a second feed point.
  • the second ground end is grounded, and the second ground end is adjacent to the second free end.
  • the coupling radiator has a third free end and a fourth free end.
  • the third free end is separated from the first free end by a first coupling gap and is coupled with the first free end; the fourth free end is connected to the first free end.
  • the second free end is spaced from a second coupling gap and coupled to the second free end, the coupling radiator has a first connection point, the first ground end is adjacent to the third free end, and the first tuning The circuit is electrically connected to the first connection point and the first ground terminal.
  • the antenna assembly also includes:
  • the second tuning circuit is electrically connected to the second feed point and the ground.
  • the second tuning circuit is used to adjust the resonant frequency point of the MHB frequency band.
  • the first radiator includes a first part and a second part that are bent and connected, the first part has a first free end, and the second part has a second ground end;
  • the second radiator includes a third part and a fourth part that are bent and connected. One end of the third part away from the fourth part is disposed adjacent to the second part. The fourth part is connected to the first part. Part relative setting;
  • the coupling radiator is located between the second part and the third part, and the extension direction of the coupling radiator is consistent with the arrangement direction of the second part and the third part.
  • the second radiator also has a third feed point, a first ground point and a second ground point.
  • the third feed point is spaced apart from the second feed point.
  • the second ground point is located between the second feed point and the third feed point, and the second ground point is located closer to the third feed point than the first ground point, and the antenna assembly further include:
  • a third feed source is electrically connected to the third feed point to support the LB frequency band.
  • the third feed source is also used to excite a fourth resonance mode and a fifth resonance mode on the second radiator, and the fourth resonance mode and the fifth resonance mode are used to support WiFi 2.4G band or Bluetooth band.
  • the antenna assembly also includes:
  • a fourth feed source the fourth feed source is electrically connected to the fourth feed point, so that the third radiator supports the WiFi 2.4G frequency band or Bluetooth frequency band.
  • the third radiator and the second radiator are arranged diagonally,
  • the second radiator and the third radiator are both used to support the Bluetooth frequency band.
  • the pattern of the third radiator when transmitting and receiving the electromagnetic wave signal of the Bluetooth frequency band is the same as that of the second radiator.
  • the electromagnetic wave signals in the Bluetooth frequency band have complementary patterns.
  • an embodiment of the present application provides an electronic device.
  • the electronic device includes a first circuit board and an antenna component as described in any one of the first aspect or the first aspect, wherein the antenna component
  • the first feed source is provided on the first circuit board; or,
  • the electronic device includes a first circuit board, a second circuit board and an antenna component as described in the second aspect or any one of the second aspects, and a first feed source in the antenna component is disposed on the first circuit board, the second feed source is arranged on the second circuit board.
  • the electronic device further includes a middle frame, and the first radiator of the antenna assembly is formed on the middle frame.
  • the electronic equipment also includes:
  • the second functional device is spaced apart from the first functional device to form a gap
  • the first ground end of the first radiator of the antenna assembly is arranged corresponding to the gap.
  • the electronic device further includes a first side and a second side that are bent and connected, the first radiator part is arranged corresponding to the first side, and the first radiator part is arranged corresponding to the second side.
  • the first side is the long side of the electronic device
  • the second side is the short side of the electronic device
  • the electronic device has a central axis
  • the central axis is parallel to the first side and runs through the At the midpoint of the second side
  • the first radiator is located on one side of the central axis.
  • Figure 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application
  • Figure 2 is a three-dimensional exploded schematic view of the electronic device in Figure 1 from an angle
  • Figure 3 is a diagram A three-dimensional exploded view of the electronic device shown in 1 from another angle.
  • the electronic device 1 includes an antenna assembly 10 .
  • the antenna assembly 10 is used to send and receive electromagnetic wave signals to implement the communication function of the electronic device 1 .
  • This application does not specifically limit the position of the antenna assembly 10 on the electronic device 1 .
  • FIG. 1 is only an example and should not be understood as limiting the position of the antenna assembly 10 on the electronic device 1 .
  • the electronic device 1 includes a device body 30 and an antenna assembly 10 .
  • the antenna assembly 10 is carried on the device body 30 .
  • the device body 30 includes, but is not limited to, a display screen 310 and a housing 330 that are covered and connected to each other.
  • the antenna assembly 10 may be disposed inside the casing 330 of the electronic device 1 , or may be partially integrated with the casing 330 , or may be partially disposed outside the casing 330 .
  • the electronic device 1 includes, but is not limited to, mobile phones, telephones, televisions, tablets (Pads), cameras, personal computers, notebook computers (Personal Computer, PC), vehicle-mounted equipment, headphones, watches, wearable devices, base stations, and vehicle-mounted radars. , Customer Premise Equipment (CPE) and other equipment that can send and receive electromagnetic wave signals.
  • the electronic device 1 is a mobile phone as an example.
  • the electronic device 1 may be, but is not limited to, a device with or without a display screen.
  • the electronic device 1 also includes a circuit board 350, a battery, and functional devices (the functional devices may include a camera module 360, a microphone, a receiver, a speaker, and a face recognition module) located in the receiving space.
  • the functional devices may include a camera module 360, a microphone, a receiver, a speaker, and a face recognition module located in the receiving space.
  • the fingerprint recognition modules may include a camera module 360, a microphone, a receiver, a speaker, and a face recognition module located in the receiving space.
  • the functional devices may include a camera module 360, a microphone, a receiver, a speaker, and a face recognition module located in the receiving space.
  • the functional devices may include a camera module 360, a microphone, a receiver, a speaker, and a face recognition module located in the receiving space.
  • the functional devices may include a camera module 360, a microphone, a receiver, a speaker, and a face recognition module located in the receiving space.
  • the functional devices may include a camera module 360
  • the antenna assembly 10 includes but is not limited to the following embodiments.
  • the width direction of the electronic device 1 is defined as the X-axis direction
  • the length direction of the electronic device 1 is defined as the Y-axis direction
  • the thickness direction of 1 is defined as the Z-axis direction.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other, and the direction indicated by the arrow is the positive direction.
  • the antenna component 10 includes a first radiator 110 and a first feed source S1.
  • the first radiator 110 has a first free end 1111, a first ground end 1121 and a first feeding point P1.
  • the first ground terminal 1121 is grounded, and the first feed point P1 is located between the first free end 1111 and the first ground terminal 1121 .
  • the first feed source S1 is electrically connected to the first feed point P1 to excite a first resonance mode and a second resonance mode on the first radiator 110.
  • the first resonance mode and the first resonance mode are electrically connected to the first feed point P1.
  • the second resonance mode is used to support the low frequency (Low Frequency Band, LB) frequency band.
  • the first resonance mode is used to support a first LB frequency band
  • the second resonance mode is used to support a second LB frequency band, wherein the first LB frequency band is larger than the second LB frequency band.
  • the first radiator 110 may be, but is not limited to, a laser direct structuring (LDS) radiator, a flexible circuit board (Flexible Printed Circuit, FPC) radiator, or a print direct structuring (Print Direct Structuring, PDS) radiator, or metal branch radiator.
  • LDS laser direct structuring
  • FPC Flexible Printed Circuit
  • PDS Print Direct Structuring
  • metal branch radiator When the antenna assembly 10 is applied to the electronic device 1, the first radiator 110 It may be a structural component antenna (Mechanical Design Antenna, MDA) radiator designed using the embedded metal of the electronic device 1 itself.
  • the first radiator 110 can be an antenna radiator designed using the middle frame 320 of the electronic device 1 made of plastic and metal.
  • the first radiator 110 may also be a metal branch antenna radiator designed with the metal middle frame 320 .
  • the shapes of the first radiator 110 include, but are not limited to, bent shapes, strips, sheets, rods, and coated shapes. layers, films, etc.
  • the present application does not limit the extension trajectory of the first radiator 110. Therefore, the first radiator 110 can extend in a straight line, a curve, or a multi-stage bending trajectory.
  • the above-mentioned first radiator 110 may be a line with uniform width on the extension track, or may be a strip with varying widths such as a gradient width or a widened area.
  • the first radiator 110 is in a bent shape.
  • the first ground end 1121 and the first free end 1111 are not opposite to each other in a straight line, but the first ground end 1121 and the first free end 1111 are the first radiators. two ends of the body 110. In other embodiments, the first ground end 1121 and the first free end 1111 of the first radiator 110 are opposite ends of the linear first radiator 110 .
  • the method of electrically connecting the first ground terminal 1121 to the ground includes but is not limited to direct electrical connection (such as welding); or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic sheets, conductive glue, embedded metal, or electronics.
  • the middle frame of device 1 is electrically connected indirectly through materials or other means.
  • the middle frame 320 of the electronic device 1 includes a body part 321 and a frame part 322.
  • the frame portion 322 is disposed on the periphery of the main body portion 321 , and the frame portion 322 is bent and connected to the main body portion 321 .
  • the first radiator 110 may be formed on the frame part 322 .
  • the main body part 321 constitutes the pole of the earth.
  • the first ground terminal 1121 is connected to the body part 321 through the connecting material between the frame part 322 and the body part 321 for grounding.
  • This application does not limit the specific position of the first feed point P1 on the first radiator 110, as long as the first feed point P1 is located between the first ground end 1121 and the first free end 1111 That’s it.
  • the first feed source S1 is electrically connected to the first feed point P1 by, but is not limited to, direct electrical connection (such as welding); or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic pieces, Conductive glue, etc. are used for indirect electrical connection.
  • the first feed source S1 is electrically connected to the first feed point P1 through a conductive elastic piece.
  • the antenna assembly 10 itself has a reference ground, also called a ground pole or ground.
  • a reference ground also called a ground pole or ground.
  • Specific forms of the reference ground include but are not limited to metal conductive plates, metal conductive layers formed inside flexible circuit boards, rigid circuit boards, etc.
  • the reference ground of the antenna assembly 10 is electrically connected to the reference ground of the electronic device 1 .
  • the antenna assembly 10 itself does not have a reference ground.
  • the first ground terminal 1121 of the antenna assembly 10 is electrically connected to the reference ground of the electronic device 1 or the electronic device in the electronic device 1 through a direct electrical connection or indirectly through a conductive member. Reference place.
  • the frequency range of the LB frequency band is 703MHz-960MHz.
  • the first resonance mode supports the LB frequency band, which means that the first resonance mode supports part of the LB frequency band.
  • the LB frequency band supported by the first resonance mode is named first LB band.
  • the first resonance mode supports some frequency bands from 703MHz to 960MHz, such as the B8 frequency band or the N8 frequency band.
  • the second resonance mode supporting the LB frequency band means that the second resonance mode supports part of the frequency band in the LB frequency band.
  • the LB frequency band supported by the second resonance mode is named the second LB frequency band. .
  • the second resonance mode supports some frequency bands from 703MHz to 960MHz, such as the B28 frequency band or the N28 frequency band.
  • the first LB frequency band supported by the first resonance mode and the second LB frequency band supported by the second resonance mode are the same standard, or they may be different standards.
  • the first resonance mode supports the B8 frequency band
  • the second resonance mode supports B28 frequency band
  • the first resonance mode supports the N8 frequency band
  • the second resonance mode supports the N28 frequency band.
  • the first resonance mode supports the N8 frequency band, and the second resonance mode supports the B28 frequency band; or, the first resonance mode supports the B8 frequency band, and the second resonance mode supports the N28 frequency band.
  • the first feed source S1 is electrically connected to the first feed point P1 to excite the first resonant mode and the second resonant mode on the first radiator 110 , the first resonance mode and the second resonance mode are both used to support the LB frequency band. Therefore, the antenna assembly 10 can have more resonant modes supporting the LB frequency band, and the antenna assembly 10 has better communication performance.
  • the antenna assembly 10 there are gaps between both ends of the first radiator 110 and other components.
  • the two gaps are not easy to be held at the same time. or obscured. Even if one of the two gaps is blocked, both The other of the two gaps is not blocked, so that the first radiator 110 can also transmit and receive electromagnetic wave signals in the LB frequency band. Therefore, the antenna assembly 10 has better communication performance.
  • a part of the first radiator 110 may be disposed corresponding to the bottom edge of the electronic device 1 , and the other part may be disposed corresponding to a side edge of the electronic device 1 .
  • the antenna assembly 10 when the antenna assembly 10 is applied to the electronic device 1, for example, when the electronic device 1 is used to play games and other scenarios that require long-term holding, the two gaps of the first radiator 110 are not easy to be simultaneously Being held by or obscured by the user's hands. Therefore, when the antenna assembly 10 is used in the electronic device 1 , the antenna assembly 10 has anti-hand-holding and excellent hand-held performance for two-handed games.
  • Figure 5 is a schematic diagram of the main current flow corresponding to the first resonant mode in the antenna assembly shown in Figure 4;
  • Figure 6 is a schematic diagram of the main current flow corresponding to the second resonant mode in the antenna assembly shown in Figure 4.
  • the current corresponding to each resonance mode is shown separately.
  • each mode is not completely independent when working.
  • this does not affect the explanation of the main characteristics of each resonance mode here.
  • the flow direction of each current is only illustrative, and does not represent the actual current strength, nor does it represent the position of the zero point of the current where two currents flowing in opposite directions interact.
  • the first resonance mode is a 1/4 wavelength mode from the first feed point P1 to the first free end 1111 .
  • the first resonance mode is a 1/4 wavelength mode from the first feed point P1 to the first free end 1111 .
  • the 1/4 wavelength mode is a resonance mode with relatively high efficiency, so it can enhance the transceiver efficiency in the frequency band supported by the first resonance mode.
  • the current corresponding to the first resonance mode is named first current I 1 , and the first current I 1 flows from the first feed point P1 to the first free end 1111 .
  • the second resonance mode is 1/4 wavelength from the first feed point P1 to the first free end 1111, and the wavelength from the first feed point P1 to the first ground end 1121. 1/4 wavelength convection mode.
  • the second resonance mode is 1/4 wavelength from the first feed point P1 to the first free end 1111, and the first feed point P1 to the first ground end 1121 1/4 wavelength convection mode.
  • the 1/4 wavelength mode is a resonance mode with relatively high efficiency, so it can enhance the transceiver efficiency in the frequency band supported by the second resonance mode.
  • the current corresponding to the second resonance mode is named the second current.
  • the second current includes a first sub-current I 21 and a second sub-current I 22 .
  • the first sub-current I 21 is fed from the first power supply.
  • Point P1 flows to the first free end 1111, and the second sub-current I22 flows from the first feed point P1 to the first ground end 1121.
  • the frequency of the frequency band supported by the first resonance mode is greater than the frequency of the frequency band supported by the second resonance mode.
  • the frequency of the first LB frequency band is greater than the frequency of the second LB frequency band. That is, the frequency band supported by the first resonance mode is a higher frequency band of the LB frequency band, and the frequency band supported by the second resonance mode is a lower frequency band of the LB frequency band. Therefore, the antenna assembly 10 can fully utilize the relatively high frequency band in the LB frequency band and utilize the relatively low frequency band in the LB frequency band.
  • the bandwidth of the LB frequency band supported by the antenna assembly 10 is relatively large. big.
  • the antenna assembly 10 uses the LB frequency band for communication, even if the antenna assembly 10 has a frequency offset in the LB frequency band, since the bandwidth of the LB frequency band supported by the antenna assembly 10 is relatively large, the frequency after the frequency offset will It also falls within the range of the LB frequency band supported by the antenna assembly 10. Therefore, the antenna assembly 10 has better communication performance when using the LB frequency band for communication.
  • the frequency band supported by the first resonance mode includes the B8 frequency band or the N8 frequency band
  • the frequency band supported by the second frequency band includes the B28 frequency band or the N28 frequency band
  • the antenna assembly 10 When the antenna assembly 10 communicates with other devices, it can make full use of the B8 frequency band or N8 frequency band, and the B28 frequency band or N28 frequency band to communicate with other devices.
  • the first radiator 110 includes a first part 111 and a second part 112 that are bent and connected.
  • the first part 111 has the first free end 1111
  • the second part 112 has the first ground end 1121
  • the first feed point P1 is located in the first part 111 or the second part 112 , and is provided adjacent to the corner where the first part 111 and the second part 112 are bent and connected.
  • the first radiator 110 includes a first portion 111 and a second portion 112 that are bent and connected.
  • the antenna assembly 10 When the antenna assembly 10 is applied to an electronic device 1, it is convenient for the first radiator 110 to be installed in the electronic device 1. layout.
  • the first part 111 is provided corresponding to the side of the electronic device 1
  • the second part 112 is provided corresponding to the other side (for example, the bottom side) of the electronic device 1 .
  • the first feed point P1 is located at the first part 111 as an example. It is understandable that in other embodiments, the first feed point P1 may also be located at the first part 111 .
  • the second part 112 can be provided as long as the first feeding point P1 is located adjacent to the corner where the first part 111 and the second part 112 are bent and connected.
  • the first feeding point P1 is located in the middle of the first radiator 110.
  • the first feed point P1 is located at the same or approximately the same distance from the two opposite ends of the first radiator 110 (for example, the phase difference is less than or equal to the preset distance, the preset distance may be but is not limited to 10mm).
  • the middle part of the first radiator 110 is the part including the midpoint of the first radiator 110 , and does not only refer to the midpoint of the first radiator 110 .
  • the first radiator 110 in the antenna assembly 10 of the present application includes a first part 111 and a second part 112 that are bent and connected to facilitate adaptation to the shape of the electronic device 1 to which the antenna assembly 10 is applied.
  • the first part 111 and the second part 112 may respectively correspond to two sides of the electronic device 1 that are bent and connected.
  • the first feeding point P1 is located at the first part 111 or the second part 112 and is adjacent to the corner of the first part 111 and the second part 112. In other words, the first feeding point P1 A feed point P1 is provided adjacent to the middle of the first radiator 110 .
  • the so-called middle part means that the equivalent electrical length of the radiation part between the first feed point P1 and the first free end 1111 is equal to or approximately equal to the first feed point P1 to the first ground end 1121 The equivalent electrical length of the radiating part between.
  • the so-called “approximately equal” may mean, but is not limited to, that the distance between the first feed point P1 and the two opposite ends of the first radiator 110 is less than or equal to a preset distance, and the preset distance may be, but is not limited to Limited to 10mm.
  • the first feed source S1 When the first feed source S1 is electrically connected to the first feed point P1 of the first radiator 110, it is usually electrically connected to the first feed point P1 through a radio frequency signal line.
  • the equivalent resistance of the radio frequency signal line is usually small (50 ohms).
  • the first feeding point P1 is located at the first part 111 or the second part 112 and is located adjacent to the corner where the first part 111 and the second part 112 are bent and connected, so that the first feeding point P1
  • the feeding point P1 is located on the first radiator 110 where the current is strongest or relatively strong. Therefore, the equivalent impedance of the first radiator 110 is low.
  • the equivalent impedance of the first radiator 110 is relatively matched with the impedance of the radio frequency signal line connecting the first feed source S1 to the first radiator 110 . Therefore, the antenna unit composed of the first feed source S1 and the first radiator 110 in the antenna assembly 10 has better radiation performance. It can be understood that when the first feed point P1 is located in the middle of the first radiator 110, the equivalent impedance of the first radiator 110 is low. In this way, the equivalent impedance of the first radiator 110 is relatively matched with the impedance of the radio frequency signal line connecting the first feed source S1 to the first radiator 110 . Therefore, the antenna unit composed of the first feed source S1 and the first radiator 110 in the antenna assembly 10 has better radiation performance.
  • FIG. 7 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the antenna assembly 10 further includes a second radiator 120, a coupling radiator 130, a first tuning circuit 140, a second tuning circuit 150, and a second feed source S2.
  • the second radiator 120 has a second free end 1211, a second ground end 1212 and a second feeding point P2.
  • the second ground terminal 1212 is connected to the ground, and the second ground terminal 1212 is arranged farther away from the first ground terminal 1121 than the second free end 1211 .
  • the coupling radiator 130 is disposed between the first ground end 1121 and the second free end 1211, and one end of the coupling radiator 130 and the first radiator 110 form a first gap 130a, so The other end of the coupling radiator 130 forms a second gap 130b with the second radiator 120 and is coupled.
  • the coupling radiator 130 has a first connection point B1.
  • the first tuning circuit 140 is electrically connected to the first ground terminal 1121 and the first connection point B1 of the coupling radiator 130 .
  • the first tuning circuit 140 is also electrically connected to the ground.
  • the second tuning circuit 150 is electrically connected to the second radiator 120 and ground.
  • the second feed source S2 is electrically connected to the second feed point P2 to excite the middle and high frequencies (Middle Frequency Band and High Frequency Band, MHB) on the second radiator 120 and the coupling radiator 130 Dual resonance in the frequency band.
  • the second radiator 120 may be, but is not limited to, a laser direct structuring (LDS) radiator, a flexible circuit board (Flexible Printed Circuit, FPC) radiator, or a print direct structuring (Print Direct Structuring, PDS) radiator, or metal branch radiator.
  • LDS laser direct structuring
  • FPC Flexible Printed Circuit
  • PDS Print Direct Structuring
  • the second radiator 120 may be a structural component antenna (Mechanical Design Antenna, MDA) radiator designed using the embedded metal of the electronic device 1 itself.
  • the second radiator 120 may be a structural antenna radiator designed using the metal middle frame 320 of the electronic device 1 .
  • the second radiator 120 does not specifically limit the shape, structure and material of the second radiator 120.
  • the shapes of the second radiator 120 include, but are not limited to, bent shapes, strips, sheets, rods, and coated shapes. layers, films, etc.
  • the present application does not limit the extension trajectory of the second radiator 120. Therefore, the second radiator 120 can extend in a straight line, a curve, a multi-stage bend, etc.
  • the above-mentioned second radiator 120 may be a line with a uniform width on the extension track, or may be a strip with a gradient width, a widened area, and other widths.
  • the second ground terminal 1212 is electrically connected to the ground in a manner including but not limited to direct electrical connection (such as welding); or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic sheets, conductive glue, embedded metal, or electronics.
  • the middle frame of device 1 is electrically connected indirectly through materials or other means.
  • the middle frame 320 of the electronic device 1 includes a body part 321 and a frame part 322.
  • the frame portion 322 is disposed on the periphery of the main body portion 321 , and the frame portion 322 is bent and connected to the main body portion 321 .
  • the second radiator 120 may be formed on the frame part 322 .
  • the main body part 321 constitutes the pole of the earth.
  • the second ground terminal 1212 is connected to the body part 321 through the connecting material between the frame part 322 and the body part 321 for grounding.
  • This application does not limit the specific position of the second feed point P2 on the second radiator 120, as long as the second feed point P2 is located at the second free end 1211.
  • the second feed source S2 is electrically connected to the second feed point P2 by, but is not limited to, direct electrical connection (such as welding); or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic pieces, Conductive glue, etc. are used for indirect electrical connection.
  • the second feed source S2 is electrically connected to the second feed point P2 through a conductive elastic piece.
  • the coupling radiator 130 may be, but is not limited to, a Laser Direct Structuring (LDS) radiator, a Flexible Printed Circuit (FPC) radiator, or a Print Direct Structuring (PDS) radiator. ) radiator, or a metal branch radiator.
  • LDS Laser Direct Structuring
  • FPC Flexible Printed Circuit
  • PDS Print Direct Structuring
  • MDA structural component antenna
  • the coupling radiator 130 may be a structural antenna radiator designed using the metal middle frame 320 of the electronic device 1 .
  • the coupling radiator 130 does not specifically limit the shape, structure and material of the coupling radiator 130.
  • the shapes of the coupling radiator 130 include but are not limited to bent, strip, sheet, rod, coating, Film, etc.
  • the coupling radiator 130 is in the shape of a strip, the present application does not limit the extension trajectory of the coupling radiator 130. Therefore, the coupling radiator 130 can extend in a straight line, a curve, or a multi-stage bending trajectory.
  • the above-mentioned coupling radiator 130 may be a line with a uniform width on the extension track, or may be a strip with a gradient width, a widened area, and other widths.
  • the coupling radiator 130 is disposed between the first ground end 1121 and the second free end 1211 , and the coupling radiator 130 is coupled to the second free end 1211 .
  • the coupling radiator 130 forms a first gap 130a with the first radiator 110, and the other end of the coupling radiator 130 forms a second gap 130b with the second radiator 120 and is coupled.
  • the coupling radiator 130 and the portion (second portion 112 ) where the first ground terminal 1121 is located may be arranged along a straight line, or substantially along a straight line.
  • the situation where the coupling radiator 130 and the first ground terminal 1121 are arranged substantially along a straight line includes but is not limited to the design or manufacturing of the coupling radiator 130 and the first ground terminal 1121. There are small tolerances in the process, or they are set deliberately.
  • the coupling radiator 130 and the second free end 1211 have a second gap 130b, and the coupling radiator 130 and the second free end 1211 can generate capacitive coupling through the second gap 130b.
  • the coupling radiator 130 and the part where the second free end 1211 is located may be arranged along a straight line, or substantially along a straight line, as long as the coupling radiator 130 can be aligned with the second free end 1211 Just couple.
  • the situation where the coupling radiator 130 and the second free end 1211 are arranged substantially along a straight line includes but is not limited to the design or manufacturing of the coupling radiator 130 and the second free end 1211 . There are small tolerances in the process, or they are set deliberately.
  • the width of the second gap 130b may be 0.5-2 mm, but is not limited to this size.
  • the width of the second gap 130b is 0.5 ⁇ 2 mm, the coupling radiator 130 and the second free end 1211 can have a better coupling effect.
  • the coupling mentioned above is “capacitive coupling”.
  • Capacitive coupling means that an electric field is generated between two radiators, and the signal of one radiator can be transmitted to the other radiator through the electric field.
  • the signal of the other radiator can be transmitted to the other radiator through the electric field. Described a radiator, so that the two radiators can achieve electrical signal conduction even if they are not in direct contact or connected.
  • the coupling radiator 130 and the second free end 1211 of the second radiator 120 means that the coupling radiator 130 and the second free end 1211 of the second radiator 120 generate The electric field, the signal from the second free end 1211 of the second radiator 120 can be transmitted to the coupling radiator 130 through the electric field, and accordingly, the signal from the coupling radiator 130 can be transmitted to the second radiator 120 through the electric field.
  • the second free end 1211 is provided so that the second radiator 120 and the coupling radiator 130 can conduct electrical signals even if they are not in direct contact or connected.
  • the first tuning circuit 140 Since the first tuning circuit 140 is electrically connected to the first radiator 110, the first tuning circuit 140 can tune and decouple the LB frequency band. In addition, the first tuning circuit 140 is also electrically connected to the coupling radiator 130 , and the coupling radiator 130 is coupled to the second radiator 120 . Therefore, the first switch 152 also controls the MHB. Tuning frequency band. Depend on It can be seen that the first tuning circuit 140 can facilitate the tuning of the LB frequency band and the MHB frequency band, and can better balance the performance of the antenna supporting the LB frequency band and the antenna supporting the MHB frequency band. In addition, compared with using two first tuning circuits 140 to tune the LB frequency band and the MHB frequency band respectively, the antenna assembly 10 provided in the embodiment of the present application can use one first tuning circuit 140 to achieve the corresponding functions, so it can save costs.
  • the frequency range of the MHB frequency band is 1710MHz-2690MHz.
  • the MHB frequency band usually includes a middle frequency (Middle Frequency band, MB) frequency band and a high frequency (High Frequency Band, HB) frequency band.
  • the frequency range of the MB frequency band is 1710MHz-2170MHz.
  • the frequency range of the HB frequency band is 2300MHz-2690MHz.
  • the second feed source S2 is electrically connected to the second feed point P2 to excite double resonance in the MHB frequency band.
  • One of the double resonance modes is used to support part of the frequency band in the MHB frequency band.
  • the double resonance Another resonant mode in the resonance is used to support another part of the MHB frequency band.
  • the dual resonance of the MHB frequency band includes: one resonance mode is used to support the MB frequency band, and the other resonance mode is used to support the HB frequency band; or, one resonance mode is used to support the MB frequency band, and the other resonance mode is also used to support the MB frequency band.
  • MB band alternatively, one resonance mode is used to support the HB band and the other resonance mode is used to support the HB band.
  • the first feed source S1 is electrically connected to the first feed point P1 of the first radiator 110
  • the second feed source S2 is electrically connected to the second feed point P2 of the second radiator 120 .
  • Point P1 and second feed point P2 are separated. In other words, the feeds of the LB band and the MHB band are fed separately, so they can better support Carrier Aggregation (CA).
  • CA Carrier Aggregation
  • the second feed source S2 can easily excite double resonance in the MHB frequency band. . Therefore, it can be beneficial to expand the bandwidth of the MHB frequency band supported by the antenna assembly 10, and is beneficial to carrier aggregation (Carrier Aggregation, CA), dual-SIM and single-band scenarios.
  • carrier aggregation Carrier Aggregation, CA
  • the second feed source S2 excites dual resonances, in which one resonance mode is used to support the MB frequency band and the other resonance mode is used to support the HB frequency band.
  • Dual-SIM scenarios can include dual-SIM dual active (DSDA) or dual-receive mode dual-SIM dual standby (Dual-Receive Dual SIM Dual Standby, DR-DSDS).
  • DSDA means that two cards can work at the same time. However, the frequency bands supported by the two cards are different. In other words, one of the two cards can support frequency band a, and the other card supports frequency band b. Frequency band a and frequency band b do not belong to the same frequency band.
  • DSDA one card can transmit and receive signals; the other card can also transmit and receive signals.
  • DR-DSDS means that one of the two cards can transmit signals and receive signals; the other card can only receive signals but cannot transmit signals.
  • the second feed source S2 excites dual resonances, in which one resonance mode is used to support the MB frequency band, and the other resonance mode is also used to support the MB frequency band.
  • the second feed source S2 excites dual resonances, in which one resonance mode is used to support the HB frequency band, and the other resonance mode is also used to support the HB frequency band.
  • the second tuning circuit 150 is electrically connected to the second feeding point P2. In other embodiments, the second tuning circuit 150 is electrically connected to the second radiator 120 , and the connection point of the second tuning circuit 150 to the second radiator 120 is different from that of the second radiator 120 .
  • the second feed point P2 this implementation will be introduced in detail later.
  • the second tuning circuit 150 When the second tuning circuit 150 is electrically connected to the second feed point P2, the second tuning circuit 150 and the second feed source S2 may share an electrical connector (such as a conductive elastic piece) for electrical connection. to the second radiator 120 without using two separate conductive members, therefore, the cost of the antenna assembly 10 can be reduced.
  • an electrical connector such as a conductive elastic piece
  • the second feed S2 is radiated between the second radiator 120 and the coupled radiation.
  • Body 130 is relatively easy to form double resonance in the MHB frequency band.
  • the second feed source S2 can excite the double resonance of the MHB frequency band on the second radiator 120 and the coupling radiator 130. Therefore, the antenna assembly 10 can support the MHB frequency band.
  • the antenna assembly 10 has Better communication capabilities. It should be noted that when the second radiator 120 and the coupling radiator 130 jointly support the MHB frequency band, the second radiator 120 is the main radiation branch, and the coupling radiator 130 is the coupling branch, that is, Secondary radiation branches.
  • the second radiator 120 and the coupling radiator 130 jointly support the MHB frequency band. Therefore, when the antenna assembly 10 is used in the electronic device 1, it is difficult to combine the second radiator 120 and the coupling radiator 130.
  • the coupling radiator 130 is held or blocked at the same time. Therefore, when the electronic device 1 to which the antenna assembly 10 is applied is held or blocked by one or both hands, the antenna assembly 10 still has good radiation in the MHB frequency band. performance.
  • the second radiator 120 and the coupling radiator 130 are located at the bottom of the electronic device 1 .
  • the coupling radiator 130 is usually disposed corresponding to the middle of the bottom side of the electronic device 1 . Therefore, when the electronic device 1 to which the antenna assembly 10 is applied is held, the coupling radiator 130 is usually not easy to be held by one hand or blocked, so it has a better one-handed effect.
  • the second radiator 120 and the coupling radiator 130 are located at the bottom of the electronic device 1, when the electronic device 1 is used (such as making a phone call, etc.), they are usually far away from the user's head. It is not easy to cause large radiation to the user's head.
  • the antenna assembly 10 when the antenna assembly 10 is used in an electronic device 1, the second radiator 120 and the coupling radiator 130 are located at the bottom of the electronic device 1 , the coupling radiator 130 is usually disposed corresponding to the middle of the bottom edge of the electronic device 1, so that the antenna assembly 1 has better head-hand performance and head-to-head performance.
  • the antenna assembly 10 has better performance for human hands, heads, and hands.
  • the second feed source S1 is relatively easy to form an MHB frequency band in the second radiator 120 and the coupling radiator 130. Double resonance.
  • the antenna assembly 10 in the embodiment of the present application has two radiators (the second radiator 120 and the coupling radiator 130) to support the MHB frequency band, and the MHB frequency band has dual resonance. Therefore, the MHB supported by the antenna assembly 10 The frequency band has a wider bandwidth.
  • the electronic device 1 to which the antenna assembly 10 is applied is held or blocked by the user and causes frequency deviation, since the bandwidth of the MHB frequency band supported by the antenna assembly 10 is relatively wide, even if there is a resonance frequency point in the MHB frequency band offset, it can still fall within the bandwidth range, thus ensuring the communication performance when using the frequency offset caused by MHB frequency band communication due to being held or blocked by one or both hands.
  • the first radiator 110 , the coupling radiator 130 and the second radiator 120 as a whole have a center line L0 , the center line L0 passes through the coupling radiator 130 , and the first gap 130a and the second gap 130b are respectively located on both sides of the center line L0.
  • the overall central line L0 formed by the first radiator 110 , the coupling radiator 130 and the second radiator 120 is consistent with the center line L0 of the electronic device 1 .
  • the central axes L1 (see FIG. 33 extending along the length direction and passing through the midpoint O of the short side of the electronic device 1 ) coincide or substantially coincide.
  • the first slit 130a and the second slit 130b are respectively located on both sides of the center line L0. Therefore, the first slit 130a and the second slit 130b are not easily If it is blocked or held by the user's hand, or if the first slit 130a and the second slit 130b are not easily blocked or held by the user's hand at the same time, then the radiation performance of the antenna assembly 10 is better.
  • the first slit 130a and the second slit 130b are not easily blocked or held by the user's hands, or the first slit 130a and the second slit 130b are not easily blocked or held by the user's hands. If the second gap 130b is not easily blocked or held by the user's hand at the same time, the horizontal screen effect of the electronic device 1 to which the antenna assembly 10 is applied will be better.
  • FIG. 8 is a schematic diagram of a second tuning circuit in an embodiment of the antenna assembly shown in FIG. 7 .
  • the second tuning circuit 150 includes a plurality of first tuning sub-circuits 151 and first switches 152 . One end of each first tuner sub-circuit 151 is grounded.
  • the first switch 152 has a common terminal 1521 , a plurality of first connection terminals 1522 and a first switching part 1523 .
  • the common terminal 1521 is electrically connected to the second feed point P2
  • the first connection terminal 1522 is electrically connected to the other end of the first tuner sub-circuit 151
  • the different first connection terminals 1522 are electrically connected to Different first tuner sub-circuit 151
  • the first switching part 1523 is electrically connected to the common terminal 1521
  • the first switching part 1523 is also electrically connected to the plurality of first connections under the control of a control signal.
  • the second tuning circuit 150 is used to adjust the electrical length of the second radiator 120, and thereby adjust the frequency band and resonant frequency of the electromagnetic wave signal supported by the second radiator 120.
  • the first tuning subcircuit 151 includes a capacitor, an inductor, or a combination of a capacitor and an inductor. In one embodiment, each first tuner sub-circuit 151 is different, so that when different first tuner sub-circuits 151 are individually electrically connected to the second radiator 120, the electrical power to the second radiator 120 is reduced. Length adjustment varies.
  • each first tuner sub-circuit 151 referred to here is different, which may be because the components included in each first tuner sub-circuit 151 are different; or, the components included are the same, but the connection relationship between the components Different; or, the included devices are the same, and the connection relationship is the same, but the parameters of the devices (such as capacitance value, or inductance L value) are different.
  • the second tuning circuit 150 includes In addition to the structure shown in the schematic diagram of the embodiment, other matching (eg, capacitance, or inductance, or a combination of capacitance and inductance) may also be included. That is, this application
  • the second tuning circuit 150 provided in the embodiment includes, but is not limited to, the plurality of first tuning sub-circuits 151 and the first switching switch 152 mentioned above.
  • the antenna assembly 10 includes, but is not limited to, the second tuning circuit 150 described above.
  • other matchings are omitted in the embodiments and schematic diagrams of this application.
  • the number of the first tuner sub-circuits 151 is multiple (n), where n is greater than or equal to two. In the schematic diagram of this embodiment, the number of the first tuner sub-circuits 151 is four. An example is used for illustration, and it can be understood that it should not be construed as a limitation on the second tuning circuit 150 provided in the embodiment of the present application.
  • the first switch 152 is a single-pole multi-throw switch (SPnT). Since the number of the first tuning sub-circuits 151 is four in this embodiment, correspondingly, the first switch 152 is a single-pole four-throw switch (SP4T). It is understandable that it should not constitute Limitations on the second tuning circuit 150 provided by the embodiment of the present application.
  • the first switch 152 is a single-pole multi-throw switch. In other words, multiple first tuner sub-circuits 151 share one first switching switch 152 . In other embodiments, each first tuner sub-circuit 151 adopts individual switch control. When multiple first tuner sub-circuits 151 share the first switching switch 152, the number of the first switching switches 152 is smaller. Therefore, the antenna assembly 10 has a smaller volume and a smaller cost. In the following embodiments, some switches are described and illustrated using a single-pole multi-throw switch as an example. It is understandable that multiple switches can also be used for implementation.
  • the first switching part 1523 is electrically connected to the common terminal 1521, and the first switching part 1523 is electrically connected to one of the plurality of first connection terminals 1522 under the control of a control signal to connect the One of the plurality of first tuner sub-circuits 151 is electrically connected to the second feed point P2.
  • the first switching part 1523 is electrically connected to different first connection terminals 1522 under the control of the control signal, different first tuner sub-circuits 151 are electrically connected to the second feed point P2, so that the The adjustment effect of the electrical length of the second radiator 120 is different.
  • the antenna assembly 10 provided in the embodiment of the present application can adjust the electrical length of the second radiator 120 by designing the second tuning circuit 150, thereby adjusting the frequency band and resonant frequency supported by the second radiator 120. Click to adjust.
  • FIG. 9 is a schematic diagram of a second tuning circuit in another embodiment of the antenna assembly shown in FIG. 7 .
  • the second tuning circuit 150 includes a second tuner sub-circuit 153 , a third tuner sub-circuit 154 , a plurality of fourth tuner sub-circuits 155 , fifth tuner sub-circuits 156 and a first switch 152 .
  • the second feed source S2 is electrically connected to the second tuner sub-circuit 153 to the second feed point P2.
  • One end of the second tuner sub-circuit 153 is electrically connected to a connection point between the second feed source S2 and the first tuner sub-circuit 151 .
  • One end of the fourth tuner sub-circuit 155 is grounded.
  • the first switch 152 has a common terminal 1521 , a plurality of first connection terminals 1522 and a first switching part 1523 .
  • the common terminal 1521 is electrically connected to the second feed point P2
  • one of the plurality of first connection terminals 1522 is electrically connected to the other end of the third tuner sub-circuit 154
  • the remaining first connection terminals 1522 is electrically connected to the other end of the fourth tuner sub-circuit 155
  • different fourth tuner sub-circuits 155 are electrically connected to different first connection terminals 1522
  • the first switching part 1523 is electrically connected to the common terminal.
  • 1521, and the first switching part 1523 is also electrically connected to one of the plurality of first connection terminals 1522 under the control of the control signal.
  • the second tuning circuit 150 is used to adjust the electrical length of the second radiator 120 to adjust the frequency band and resonance frequency of the electromagnetic wave signal supported by the second radiator 120 .
  • the second tuning subcircuit 153 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • the third tuning subcircuit 154 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • the fourth tuning subcircuit 155 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • the fifth tuning subcircuit 156 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • each fourth tuner sub-circuit 155 is different, so that when different fourth tuner sub-circuits 155 are electrically connected to the second radiator 120 , there is a difference in the electrical length of the second radiator 120 . There are different degrees of adjustment. It should be noted that each fourth tuner sub-circuit 155 referred to here is different, which may be because the devices included in each fourth tuner sub-circuit 155 are different; or, the included devices are the same, but the connection relationship between the devices Different; or, the included devices are the same, and the connection relationship is the same, but the parameters of the devices (such as capacitance value, or inductance L value) are different.
  • the schematic circuit structure diagram of the second tuning circuit 150 provided in this embodiment should not be understood as a reference to the practical application of the present application.
  • the structure of the second tuning circuit 150 provided by the embodiment is limited.
  • the second tuning circuit 150 may also include other matching (such as capacitance or inductance). , or a combination of capacitor and inductor). That is, the second tuning circuit 150 provided in the embodiment of the present application includes, but is not limited to, including the above-mentioned second tuner sub-circuit 153, third tuner sub-circuit 154, a plurality of fourth tuner sub-circuits 155, and fifth tuner sub-circuit. 156 and the first switch 152.
  • the antenna assembly 10 includes, but is not limited to, the second tuning circuit 150 described above.
  • other matchings are omitted in the embodiments and schematic diagrams of this application.
  • the number of the fourth tuner sub-circuit 155 is one or more (that is, greater than or equal to two). In the schematic diagram of this embodiment, the number of the fourth tuning sub-circuits 155 is three as an example. It can be understood that this should not be construed as a limitation on the second tuning circuit 150 provided in the embodiment of the present application.
  • the first switch 152 is a single-pole multi-throw switch (SPnT). In this embodiment, the first switch 152 is a single-pole four-throw switch (SP4T) as an example. It can be understood that this should not be construed as a limitation on the second tuning circuit 150 provided in the embodiment of the present application.
  • the antenna assembly 10 provided in the embodiment of the present application can adjust the electrical length of the second radiator 120 by designing the second tuning circuit 150, thereby adjusting the frequency band and resonant frequency supported by the second radiator 120. Click to adjust.
  • FIG. 10 is a schematic diagram of a second tuning circuit in yet another embodiment of the antenna assembly shown in FIG. 7 .
  • the second tuning circuit 150 includes a second tuner sub-circuit 153 , a third tuner sub-circuit 154 , a plurality of fourth tuner sub-circuits 155 , fifth tuner sub-circuits 156 and a first switch 152 .
  • the second feed source S2 is electrically connected to the second tuner sub-circuit 153 to the second feed point P2.
  • One end of the second tuner sub-circuit 153 is electrically connected to a connection point between the second feed source S2 and the first tuner sub-circuit 151 .
  • One end of the fourth tuner sub-circuit 155 is grounded.
  • the first switch 152 has a common terminal 1521, a plurality of first connection terminals 1522 and a first switching part 1523.
  • the common terminal 1521 is electrically connected to the second feed point P2.
  • the plurality of first connections One of the terminals 1522 is electrically connected to the other terminal of the third tuner circuit 154, and the remaining first connection terminals 1522 are electrically connected to the other terminal of the fourth tuner circuit 155, and different fourth tuners
  • the circuit 155 is electrically connected to different first connection terminals 1522
  • the first switching part 1523 is electrically connected to the common terminal 1521
  • the first switching part 1523 is also electrically connected to the plurality of terminals under the control of a control signal.
  • One of the first connection terminals 1522 is electrically connected to the other terminal of the third tuner circuit 154, and the remaining first connection terminals 1522 are electrically connected to the other terminal of the fourth tuner circuit 155, and different fourth tuners
  • the circuit 155 is electrically connected to different first connection terminals 1522
  • the first switching part 1523 is electrically connected to the common terminal 1521
  • the first switching part 1523 is also electrically connected to the plurality of terminals under the control of a control signal.
  • the second tuning circuit 150 is used to adjust the electrical length of the second radiator 120 to adjust the frequency band and resonance frequency of the electromagnetic wave signal supported by the second radiator 120 .
  • the second tuning subcircuit 153 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • the third tuning subcircuit 154 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • the fourth tuning subcircuit 155 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • the fifth tuning subcircuit 156 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • each fourth tuner sub-circuit 155 is different, so that when different fourth tuner sub-circuits 155 are electrically connected to the second radiator 120 , there is a difference in the electrical length of the second radiator 120 . There are different degrees of adjustment. It should be noted that each fourth tuner sub-circuit 155 referred to here is different, which may be because the devices included in each fourth tuner sub-circuit 155 are different; or, the included devices are the same, but the connection relationship between the devices Different; or, the included devices are the same, and the connection relationship is the same, but the parameters of the devices (such as capacitance value, or inductance L value) are different.
  • the schematic circuit structure diagram of the second tuning circuit 150 provided in this embodiment should not be understood as limiting the structure of the second tuning circuit 150 provided in this embodiment.
  • the second tuning circuit 150 includes In addition to the structure shown in the schematic diagram of the embodiment, other matching (such as capacitance, or inductance L, or a combination of capacitance and inductance L) may also be included. That is, the second tuning circuit 150 provided in the embodiment of the present application includes, but is not limited to, including the above-mentioned second tuner sub-circuit 153, third tuner sub-circuit 154, a plurality of fourth tuner sub-circuits 155, and fifth tuner sub-circuit. 156 and the first switch 152.
  • the feed path of the second feed source S2 in the antenna assembly 10 provided by the embodiment of the present application also has other matching (such as capacitance, or inductance L, or a combination of capacitance and inductance L), that is, the antenna assembly 10 provided by the embodiment of the present application includes but is not limited to including the above-mentioned second tuning circuit 150.
  • other matchings are omitted in the embodiments and schematic diagrams of this application.
  • the number of the fourth tuner sub-circuit 155 is one or more (that is, greater than or equal to two). In the schematic diagram of this embodiment, the number of the fourth tuning sub-circuits 155 is three as an example. It can be understood that this should not be construed as a limitation on the second tuning circuit 150 provided in the embodiment of the present application.
  • the first switch 152 is a single-pole multi-throw switch (SPnT). In this embodiment, the first switch 152 is a single-pole four-throw switch (SP4T) as an example. It can be understood that this should not be construed as a limitation on the second tuning circuit 150 provided in the embodiment of the present application.
  • the antenna assembly 10 provided in the embodiment of the present application can adjust the electrical length of the second radiator 120 by designing the second tuning circuit 150, thereby adjusting the frequency band supported by the second radiator 120.
  • each tuning sub-circuit in the second tuning circuit 150 provided in the embodiment of the present application can be connected in parallel, in series, or in both series and parallel.
  • the second tuner sub-circuit 153 includes a first capacitor C1
  • the third tuner sub-circuit 154 includes a second capacitor C2.
  • the antenna assembly 10 supports the MB frequency band.
  • the antenna assembly 10 supports the HB frequency band.
  • the second radiator 120 of the antenna assembly 10 supports the MB frequency band.
  • the second radiator 120 of the antenna assembly 10 supports the HB frequency band. It should be noted that when the MB frequency band or the HB frequency band is supported, the second tuning circuit 150 electrically connected to the second feed point P2 adjusts the electrical length of the second radiator 120 so that the second Radiator 120 better supports MB band or HB band.
  • the second tuning subcircuit 153 includes a first capacitor C1, and the second feed source S2 is electrically connected to the second feed point P2 through the first capacitor C1. Therefore, the second feed source S2 passes through the The first capacitor C1 performs capacitive feeding.
  • the first switching part 1523 is electrically connected to any one of the fourth tuner sub-circuits 155
  • the second tuner sub-circuit 153 is disconnected from the second feed point P2, that is, The second capacitor C2 is not electrically connected to the second radiator 120 .
  • the second tuning circuit 150 uses the fourth tuning sub-circuit 155 to adjust (tuning) the electrical length of the second radiator 120 , and the antenna assembly 10 supports the MB frequency band.
  • the antenna assembly 10 supports the MB frequency band. It should be noted that when the number of the fourth tuner sub-circuits 155 is greater than or equal to two and the first switching part 1523 is electrically connected to different fourth tuner sub-circuits 155, the antenna assembly 10 The sub-frequency bands in the MB frequency band supported are different; or the sub-frequency bands in the MB frequency band supported by the antenna assembly 10 are the same, but the resonant frequencies of the supported sub-frequency bands are different.
  • the first switching part 1523 When the first switching part 1523 is electrically connected to the third tuning sub-circuit 154, the first capacitor C1 and the second capacitor C2 are connected in parallel, and the first capacitor C1 and the second capacitor C2 are connected in parallel. A parallel unit is formed. The capacitance value of the parallel unit is greater than the capacitance value of the first capacitor C1.
  • the second feed source S2 is connected to the second feed source S2 through the parallel unit formed by the first capacitor C1 and the second capacitor C2.
  • the radiator 120 is fed so that the second radiator 120 supports the HB frequency band.
  • the antenna assembly 10 is made to support the HB frequency band.
  • the HB frequency band may be, but is not limited to, the B41 frequency band or the N41 frequency band.
  • the structure of the first tuning circuit 140 in the antenna assembly 10 provided in the embodiment of the present application will be introduced below with reference to the accompanying drawings. Please refer to Figures 11 and 12.
  • Figure 11 is a schematic diagram of the first tuning circuit in one embodiment of the antenna assembly shown in Figure 7;
  • Figure 12 is a schematic diagram of the first tuning circuit in another embodiment of the antenna assembly shown in Figure 7.
  • the first tuning circuit 140 includes at least one sixth tuner sub-circuit 141, at least one second switch 142, at least one seventh tuner sub-circuit 143 and at least one third switch. Replace switch 144.
  • One end of the at least one sixth tuner sub-circuit 141 is electrically connected to the first radiator 110 , specifically to the connection point B0 of the first radiator 110 .
  • the second switch 142 has a second connection end 1421 , a third connection end 1422 and a second switching part 1423 .
  • the second connection terminal 1421 is grounded, the third connection terminal 1422 is electrically connected to the other end of the sixth tuner sub-circuit 141 , and different third connection terminals 1422 are electrically connected to different sixth tuner sub-circuits 141 , the second switching part 1423 is electrically connected to the second connection end 1421 or the third connection end 1422, and the second switching part 1423 connects or disconnects the second connection end 1421 under the control of a control signal. and the third connection terminal 1422.
  • the second switching part 1423 is electrically connected to the third connection end 1422 as an example.
  • the third switch 144 has a fourth connection end 1441 , a fifth connection end 1442 and a third switching part 1443 .
  • the fourth connection terminal 1441 is grounded, the fifth connection terminal 1442 is electrically connected to the other end of the seventh tuner sub-circuit 143, and different fifth connection terminals 1442 are electrically connected to different seventh tuner sub-circuits 143, so
  • the third switching part 1443 is electrically connected to the fourth connection terminal 1441 or the fifth connection terminal 1442, and the second switching part 1423 connects or disconnects the fourth connection terminal 1441 and the fifth connection under the control of a control signal. end1442.
  • the third switching part 1443 is electrically connected to the fifth connection terminal 1442 as an example.
  • the first tuning circuit 140 can adjust the electrical length of the first radiator 110, thereby adjusting the frequency band and frequency range of the electromagnetic wave signal supported by the first radiator 110. Resonance frequency point.
  • the first tuning circuit 140 can adjust each sub-band and resonant frequency point of the LB frequency band supported by the first radiator 110 .
  • the first tuning circuit 140 can also adjust the electrical length of the coupling radiator 130, thereby adjusting the second radiator 120 and the coupling The frequency band and resonant frequency point of the electromagnetic wave signal that the radiator 130 jointly supports.
  • the first tuning circuit 140 can adjust each sub-band and the resonant frequency point of the sub-band in the MHB frequency band jointly supported by the second radiator 120 and the coupling radiator 130 .
  • the first tuning circuit 140 provided in the embodiment of the present application is electrically connected to the first radiator 110 and is also electrically connected to the coupling radiator 130 to facilitate the LB supported by the first radiator 110
  • the frequency band is tuned and decoupled, and the MHB frequency band supported by the second radiator 120 and the coupling radiator 130 is facilitated to be tuned and decoupled.
  • the number of the sixth tuner sub-circuit 141 is three and the number of the seventh tuner sub-circuit 143 is one. It can be understood that the sixth tuner in the figure is The illustrated number of circuits 141 should not be understood as a limitation on the number of sixth tuners provided by the embodiments of the present application and should not be understood as a limitation on the number of the seventh tuner circuits 143 . In FIG. 12 , the number of the sixth tuner sub-circuit 141 is two and the number of the seventh tuner sub-circuit 143 is two.
  • the sixth tuner in the figure is The illustrated number of circuits 141 should not be understood as a limitation on the number of sixth tuners provided by the embodiments of the present application and should not be understood as a limitation on the number of the seventh tuner circuits 143 .
  • the sixth tuning sub-circuit 141 includes a capacitor, an inductor L, or a combination of the capacitor and the inductor L.
  • the seventh tuning sub-circuit 143 includes a capacitor, an inductor L, or a combination of the capacitor and the inductor L.
  • each sixth tuner sub-circuit 141 when there are multiple sixth tuner sub-circuits 141 , each sixth tuner sub-circuit 141 is different, so that when different sixth tuner sub-circuits 141 are electrically connected to the coupling radiator 130 , the degree of adjustment of the electrical length of the coupling radiator 130 is different. It should be noted that each sixth tuner sub-circuit 141 referred to here is different, which may be because the devices included in each sixth tuner sub-circuit 141 are different; or, the included devices are the same, but the connection relationship between the devices Different; or, the included devices are the same, and the connection relationship is the same, but the parameters of the devices (such as capacitance value, or inductance L value) are different.
  • each seventh tuner sub-circuit 143 is different, so that when different seventh tuner sub-circuits 143 are electrically connected to the second When the second radiator 120 is used, the degree of adjustment of the electrical length of the second radiator 120 is different.
  • each seventh tuner sub-circuit 143 referred to here is different, which may be because the devices included in each seventh tuner sub-circuit 143 are different; or, the included devices are the same, but the connection relationship between the devices Different; or, the included devices are the same, and the connection relationship is the same, but the parameters of the devices (such as capacitance value, or inductance L value) are different.
  • the number of the sixth tuning sub-circuit 141 is usually greater than or equal to two.
  • FIG. 13 is a schematic diagram of the first tuning circuit in yet another embodiment of the antenna assembly shown in FIG. 7;
  • FIG. 14 is a schematic diagram of the first tuning circuit in yet another embodiment of the antenna assembly shown in FIG. 7. Schematic of the first tuned circuit.
  • the first tuning circuit 140 further includes at least one of an eighth tuner sub-circuit 145 and a ninth tuner sub-circuit 146 .
  • the first tuning circuit 140 further includes at least one of an eighth tuner sub-circuit 145 and a ninth tuner sub-circuit 146, including: the first tuner circuit 140 includes an eighth tuner sub-circuit 145; or, the first tuner circuit 140 includes an eighth tuner sub-circuit 145;
  • the tuning circuit 140 includes a ninth tuner sub-circuit 146; or, the first tuning circuit 140 includes an eighth tuner sub-circuit 145 and a ninth tuner sub-circuit 146.
  • the first tuning circuit 140 includes an eighth tuner sub-circuit 145 and a ninth tuner sub-circuit 146 as an example.
  • One end of the eighth tuner circuit 145 is grounded, and the other end is electrically connected to the first radiator 110 .
  • One end of the ninth tuner subcircuit 146 is grounded, and the other end is electrically connected to the first connection point B1 of the coupling radiator 130 .
  • the eighth tuning subcircuit 145 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • the ninth tuning subcircuit 146 includes a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • the eighth tuning sub-circuit 145 When the first tuning circuit 140 includes the eighth tuning sub-circuit 145, the eighth tuning sub-circuit 145 is electrically connected to the first radiator 110, and when the second switching switch 142 is all turned off, The eighth tuner sub-circuit 145 can still tune the LB frequency band supported by the first radiator 110 . In addition, since the eighth tuner sub-circuit 145 is directly electrically connected to the first radiator 110 instead of being electrically connected to the first radiator 110 through a switch, the eighth tuner sub-circuit 145 has no effect on the The low-frequency band supported by the first radiator 110 has less loss during tuning.
  • the eighth tuner sub-circuit 145 is electrically connected to the first radiator.
  • the sixth tuner sub-circuit 141 of 110 jointly tunes the LB frequency band supported by the first radiator 110 .
  • the ninth tuning sub-circuit 146 When the first tuning circuit 140 includes the ninth tuning sub-circuit 146, the ninth tuning sub-circuit 146 is electrically connected to the coupling radiator 130, and when the third switching switch 144 is all turned off, the The ninth tuner sub-circuit 146 can still tune the MHB frequency band supported by the coupling radiator 130 and the second radiator 120 . In addition, since the ninth tuner sub-circuit 146 is directly electrically connected to the coupling radiator 130 instead of being electrically connected to the coupling radiator 130 through a switch, the ninth tuner sub-circuit 146 has no effect on the coupling radiation. The loss when tuning the MHB frequency band supported by the body 130 and the second radiator 120 is small.
  • the ninth tuner sub-circuit 146 is electrically connected to the third coupling radiator.
  • the seventh tuner sub-circuit 143 of 130 jointly tunes the MHB frequency band supported by the coupling radiator 130 and the second radiator 120 .
  • FIG. 15 is a schematic diagram of an antenna assembly provided by another embodiment of the present application when it is applied to an electronic device.
  • the seventh tuner sub-circuit 143 includes a third capacitor
  • the first tuner circuit 140 further includes a ninth tuner sub-circuit 146
  • the ninth tuner sub-circuit 146 includes a fourth capacitor.
  • the antenna assembly 10 also includes an inductor L and an electromagnetic wave absorption ratio (Specific Absorption Rate, SAR) sensor 160 (also known as a SAR chip, or SAR IC).
  • SAR Specific Absorption Rate
  • the SAR sensor 160 is electrically connected to the inductor L, and the SAR sensor 160 is used to output the change in capacitance value detected by the coupling radiator 130 .
  • the SAR sensor 160 is electrically connected to the processor 90 in the electronic device 1 to output the change in capacitance value detected by the coupling radiator 130 to the processor 90 . The specific situation will be described in detail later.
  • the antenna assembly 10 also includes an inductor L and a SAR sensor 160 which are combined into the first tuning circuit 140 provided in the previous embodiment for illustration. It can be understood that the The antenna assembly 10 further includes an inductor L and the SAR sensor 160 can also be integrated into the first tuning circuit 140 provided in any of the previous embodiments.
  • the antenna assembly 10 may include one SAR sensor 160 or two SAR sensors 160 . When the antenna assembly 10 includes a SAR sensor 160, the SAR sensor 160 is integrated into the first tuning circuit 140; or, when the antenna assembly 10 includes an SAR sensor 160, the SAR sensor 160 is integrated into the first tuning circuit 140. in the second tuning circuit 150 . When the antenna assembly 10 includes two SAR sensors 160 , one SAR sensor 160 is integrated into the first tuning circuit 140 and the other SAR sensor 160 is integrated into the second tuning circuit 150 .
  • the antenna assembly 10 provided in the embodiment of the present application has a SAR when the antenna assembly 10 operates in the MHB frequency band.
  • the value is usually high, and the SAR of the antenna assembly 10 when working in the LB frequency band is usually not high. Therefore, the antenna assembly 10 in the embodiment of the present application uses the inductor L and the SAR sensor 160 to be combined into the second tuning circuit 150 as an example for illustration.
  • the inductor L and SAR sensing are not integrated into the first tuning circuit 140 .
  • the coupling radiator 130 Due to the existence of the third capacitor and the fourth capacitor, for the SAR sensor 160 operating in DC, the coupling radiator 130 is equivalent to floating, which can prevent the ground pole (or ground system) or the second feed The influence of direct current in source S2 on the detection accuracy of the coupling radiator 130. Therefore, the coupling radiator forms an equivalent capacitance with the target organism (eg, human body or animal body).
  • the target organism eg, human body or animal body.
  • the SAR sensor 160 is electrically connected to the connection point B1 of the coupling radiator 130 through the inductor L.
  • the coupling radiator 130 transmits changes in the capacitance value of the equivalent capacitance to the SAR sensor 160 .
  • the SAR sensor 160 outputs the change in capacitance value detected by the coupling radiator 130 to the processor 90 .
  • the inductor L is used to isolate the influence of the SAR sensor 160 on the coupling radiator 130 .
  • the inductance L value of the inductor L may be, but is not limited to, 68 nH, 82 nH, etc.
  • a capacitance is formed between the coupling radiator 130 and the ground, and the capacitance value between the coupling radiator 130 and the ground is the original capacitance value.
  • a target organism such as a human body
  • the capacitance value of the capacitor and the coupling radiator 130 and the target organism related to the distance between bodies.
  • the capacitance value of the capacitance formed between the coupling radiator 130 and the target organism is named the detection capacitance value.
  • the SAR sensor 160 outputs changes in the capacitance value (or capacitance) detected by the coupling radiator 130. When the capacitance value increases, the transmission power of the second feed source S2 decreases.
  • the SAR sensor 160 outputs the change in capacitance value (or capacitance) detected by the coupling radiator 130 to the processor 90 .
  • the processor 90 controls the transmission power of the second feed source S2 to decrease.
  • the electronic device 1 when the antenna assembly 10 is applied to an electronic device 1 , the electronic device 1 further includes a processor 90 .
  • the processor 90 is electrically connected to the SAR sensor 160 .
  • the processor 90 can determine the distance between the target organism and the target organism according to the magnitude of the detection capacitance value. spacing between coupling radiators 130 . In other words, the processor 90 can determine whether the target organism is close to the coupling radiator 130 or far away from the coupling radiator 130 based on the change in the detection capacitance value.
  • the processor 90 controls the power of the second feed source S2 according to the detection capacitance value.
  • the distance between the target organism and the coupling radiator 130 is less than or equal to the preset distance, it indicates that the MHB frequency band supported by the coupling radiator 130 and the second radiator 120 is effective for the target.
  • the radiation of living organisms exceeds the standard. It should be noted that for the consideration of radiation safety, some countries or regions have formulated radiation safety standards. Some countries or regions have different safety standards.
  • the preset distance is a safety distance when the coupling radiator 130 and the second radiator 120 radiate electromagnetic wave signals in the MHB frequency band according to safety standards; or, the preset distance is smaller than the safety distance.
  • the processor 90 determines whether the distance between the target organism and the coupling radiator 130 is less than or equal to a preset distance according to the detection capacitance value, and the processor 90 also It is used to reduce the transmission power (also called conduction power) of the second feed source S2 when it is determined that the distance between the target organism and the coupling radiator 130 is less than or equal to the preset distance. To reduce the radiation of the MHB frequency band supported by the coupling radiator 130 and the second radiation pattern to the target organism.
  • the processor 90 determines whether the detection capacitance value is greater than or equal to a preset capacitance value.
  • the preset capacitance value is the safety capacitance value when the electromagnetic wave signal in the MHB frequency band radiated by the coupling radiator 130 and the second radiator 120 meets safety standards; or, the preset capacitance value is less than the Safety capacitance value. It should be noted that for the same country or region, the safety capacitance value and the safety distance usually have a unique corresponding relationship.
  • the antenna assembly 10 provided in the embodiment of the present application also includes a SAR sensor 160. Therefore, the detected capacitance value of the coupling radiator 130 can be transmitted to the processor 90 of the electronic device 1, so as to facilitate the The processor 90 controls the transmission power of the second feed source S2 according to the capacitance value of the coupling radiator 130 . This in turn can reduce or even prevent coupling radiation when the target organism is close to the When the body 130 is used, the MHB frequency band supported by the coupling radiator 130 and the second radiator 120 radiates greater radiation to the target organism. Correspondingly, the radiation hazard to the target organism is reduced or even prevented.
  • FIG. 16 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the antenna component 10 includes a first radiator 110 and a first feed source S1.
  • the first radiator 110 has a first free end 1111, a first ground end 1121 and a first feeding point P1.
  • the first ground terminal 1121 is grounded, and the first feed point P1 is located between the first free end 1111 and the first ground terminal 1121 .
  • the first feed source S1 is electrically connected to the first feed point P1 to excite a first resonance mode and a second resonance mode on the first radiator 110.
  • the first resonance mode and the first resonance mode are electrically connected to the first feed point P1.
  • the second resonance mode is used to support the low frequency (Low Frequency Band, LB) frequency band.
  • LB Low Frequency Band
  • the antenna assembly 10 further includes a second radiator 120, a coupling radiator 130, a first tuning circuit 140, a second tuning circuit 150 and a second feed source S2.
  • the second radiator 120 has a second free end 1211, a second ground end 1212 and a second feeding point P2.
  • the second ground terminal 1212 is connected to the ground, and the second ground terminal 1212 is disposed adjacent to the first ground terminal 1121 compared to the second free end 1211 .
  • Coupling radiator 130, the coupling radiator 130 is disposed between the first ground end 1121 and the second free end 1211, and the coupling radiator 130 is coupled to the second free end 1211, the The coupling radiator 130 has a first connection point B1.
  • the first tuning circuit 140 is electrically connected to the first ground terminal 1121 and also to the first connection point B1, and the first tuning circuit 140 is also electrically connected to ground.
  • the second radiator 120 also has a second connection point B2, which is different from the second feeding point P2.
  • the second tuning circuit 150 is electrically connected to the second connection point B2, and the second tuning circuit 150 is also electrically connected to ground.
  • the second feed source S2 is electrically connected to the second feed point P2 to excite double resonance in the MHB frequency band.
  • the second tuning circuit 150 is electrically connected to the second connection point B2.
  • the antenna assembly 10 may also enable the antenna assembly 10 to support dual resonance in the MHB frequency band. As long as the antenna assembly 10 can support dual resonance in the MHB frequency band.
  • the schematic diagrams of the previous embodiments are schematic diagrams of the antenna assembly 10 provided in some embodiments, and should not be understood as limiting the antenna assembly 10 provided in the embodiments of the present application.
  • the antenna assembly 10 in some embodiments may also be in a mirror image relationship with the antenna assembly 10 provided in the previous embodiments.
  • the first radiator 110 is located on the left side of the coupling radiator 130 and the second radiator 120 is located on the right side of the coupling radiator 130 .
  • make a signal In the antenna assembly 10 in other embodiments, the first radiator 110 may also be located on the right side of the coupling radiator 130 , and the second radiator 120 may also be located on the left side of the coupling radiator 130 .
  • FIG. 17 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the antenna assembly shown in FIG. 17 is a mirror image of the antenna assembly 10 shown in FIG. 7 .
  • FIG. 18 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the antenna assembly 10 in this embodiment can be integrated into the embodiment provided in FIG. 7 and related descriptions.
  • the antenna assembly 10 has an auxiliary radiator 220.
  • the auxiliary radiator 220 has a third ground point G3, and the third ground point G3 is grounded.
  • the second radiator 120 has a free end (named a fifth free end for convenience of description) 1215 , and a third gap 220 a is formed between the free end 1215 and the auxiliary radiator 220 .
  • the second radiator 120 also has a third feed point P3, a first ground point G1 and a second ground point G2.
  • the third feed point P3 is spaced apart from the second feed point P2, and the second ground point G2 is located between the second feed point P2 and the third feed point P3, and the second ground point G2 is located between the second feed point P2 and the third feed point P3.
  • the second ground point G2 is disposed adjacent to the third feeding point P3 compared to the first ground point G1.
  • the antenna assembly 10 also includes a third feed source S3.
  • the third feed source S3 is electrically connected to the third feed point P3 to support the LB frequency band and/or WiFi 2.4G frequency band.
  • the third feed source S3 is electrically connected to the third feed point P3 to support the LB frequency band and/or WiFi 2.4G frequency band, including: the third feed source S3 supports the LB frequency band, but does not Supports WiFi 2.4G frequency band; or, the third feed source S3 supports WiFi 2.4G frequency band, but does not support LB frequency band; or, the third feed source S3 supports LB frequency band, and supports WiFi 2.4G frequency band.
  • the third feed source S3 is electrically connected to the third feed point P3 to support the LB frequency band and/or the WiFi 2.4G frequency band. Therefore, the antenna assembly 10 can support more frequency bands, so that the antenna assembly 10 has better communication performance.
  • the first resonance mode and the second resonance mode are both used to support the LB frequency band, which is equivalent to having two LB frequency bands.
  • the antenna assembly 10 supports Holds 3 LB frequency bands.
  • a first LB antenna supporting the LB frequency band includes a first feed source S1 and a first radiator 110
  • a second LB antenna supporting the LB frequency band includes a third feed source S2 and a second radiator 120.
  • the first LB antenna and the second LB antenna are disposed on both sides of the coupling radiator 130 and are not disposed adjacently. Therefore, the isolation degree of the first LB antenna and the second LB antenna is better.
  • the third feed source S3 can be used to support the WiFi 2.4G frequency band but not the LB frequency band. It should be noted that for domestic electronic equipment 1 in China, when three LB frequency bands are required, the third feed source S3 can also support the LB frequency band.
  • the coupling radiator 130 is spaced between the second radiator 120 and the first radiator 110 and is not disposed immediately adjacent to each other. Therefore, the two radiators supporting the LB frequency band Only the antenna has better isolation.
  • one antenna supporting the LB frequency band includes the first radiator 110 and the first feed source S1
  • the other antenna supporting the LB frequency band includes the second radiator 120 and the third feed source S3.
  • the third feed source S3 can not only support the WiFi 2.4G frequency band, but also support the GPS L5 frequency band.
  • the first resonance mode and the second resonance mode are both used to support the LB frequency band, which is equivalent to having two LB frequency bands.
  • the first resonance mode supports the LB frequency band (such as the B8 frequency band)
  • the second resonance mode supports the LB frequency band (such as the N28 frequency band).
  • the third feed source S3 can support the LB frequency band.
  • the third feed source S3 can support the LB frequency band and the WiFi 2.4G frequency band.
  • the B20 frequency band and WiFi 2.4G frequency band among which the B20 frequency band is a sub-band in the LB frequency band.
  • the antenna assembly 10 can support the N28 frequency band, the B20 frequency band and the WiFi 2.4G frequency band.
  • the antenna component 10 can support the B8 frequency band, N28 frequency band, B20 frequency band and WiFi 2.4G frequency band.
  • the third feed S3 is disposed on the circuit board, for convenience of naming, it is usually called the A1 board, for compatibility with A1 boards sold in China and abroad, or for unified design for cost considerations.
  • China's domestic antenna assembly 10 can also support three low-frequency bands. That is, in the antenna assembly 10 used in electronic equipment 1 in China, the third feed source S3 can also support the LB frequency band (such as the B20 frequency band) and the WiFi 2.4G frequency band.
  • the third feed S3 can be designed to support the WiFi 2.4 frequency band.
  • the third feed source S3 is designed to support the B20 frequency band + WiFi 2.4 frequency band
  • the first feed source S1 or the third LB antenna in the antenna assembly 10 (not shown) can be designed to support N28 band. Therefore, the antenna assembly 10 sold abroad can support the B20 frequency band + N28 frequency band.
  • the third feed S3 in the antenna assembly 10 in the embodiment of the present application is also designed to support the B20 frequency band + WIFI2.4G frequency band.
  • the third feed source S3 and the second radiator 120 in the antenna assembly 10 are the same. Therefore, the same set of molds can be used to reduce the manufacturing cost of the antenna assembly 10, and Reduce the cost of the electronic device 1 . It should be noted that according to the different frequency bands required at home and abroad, different motherboards can be selected or different matching can be set on the A1 board, so the radio frequency solutions are different.
  • the antenna assembly 10 In the antenna assembly 10 provided in this embodiment, the third resonance mode excited by the third feed source S3 on the second radiator 120 is used to support the LB frequency band. Therefore, the antenna assembly 10 has Better communication performance.
  • FIG. 19 is a schematic diagram of the main current flow corresponding to the third resonance mode in the antenna assembly shown in FIG. 18 .
  • the third feed source S3 is used to support the LB frequency band
  • the third feed source S3 is used to excite a third resonance mode.
  • the third resonance mode is from the second ground point G2 to the third gap. 1/4 wavelength mode of 220a.
  • the third resonance mode is a 1/4 wavelength mode from the second ground point G2 to the third gap 220a.
  • the 1/4 wavelength mode is a resonance mode with relatively high efficiency, so it can enhance the transceiver efficiency in the frequency band supported by the third resonance mode.
  • the current corresponding to the third resonance mode is named third current I 3 , and the third current I 3 flows from the second ground point G2 to the third gap 220a.
  • the third feed source S3 When the third feed source S3 is used to support WiFi 2.4G mode, the third feed source S3 is also used to excite the fourth resonance mode and the fifth resonance mode on the second radiator 120.
  • the fourth resonance mode and the fifth resonance mode are used to support WiFi 2.4G frequency band and Bluetooth frequency band.
  • the WiFi frequency band and the Bluetooth frequency band are relatively close. Therefore, the Wifi frequency band and the Bluetooth frequency band can share an antenna.
  • the third feed source S3 excites the fourth resonance mode and the fifth resonance mode on the second radiator 120.
  • the fourth resonance mode and the fifth resonance mode jointly support the WiFi 2.4G frequency band, And the fourth resonance mode and the fifth resonance mode jointly support the Bluetooth frequency band, so that the antenna assembly 10 has more communication frequency bands and has better communication effect.
  • the third feed source S3 excites a fourth resonance mode and a fifth resonance mode on the second radiator 120 , and the fourth resonance mode and the fifth resonance mode are used to support
  • the Bluetooth frequency band has a wider bandwidth.
  • the Bluetooth frequency band supported by the third feed source S3 and the second radiator 120 in the antenna assembly 10 The bandwidth is relatively wide, and even if the resonant frequency point of the Bluetooth band is offset, it can still fall within the bandwidth range, thereby ensuring that the Bluetooth band communication is used when the frequency deviation is caused by being held or blocked by one or both hands. Communication performance.
  • the antenna assembly 10 works in the Bluetooth frequency band, it has a wider bandwidth and better human hand performance, human head performance, and human head hand performance.
  • the third feed source S3 excites the fourth resonance mode and the fifth resonance mode on the second radiator 120 , and the fourth resonance mode and the fifth resonance mode
  • the WiFi 2.4G frequency band has a wider bandwidth.
  • the electronic device 1 applied to the antenna assembly 10 is held or blocked by the user, causing frequency deviation, the WiFi 2.4 supported by the third feed source S3 and the second radiator 120 in the antenna assembly 10
  • the bandwidth of the G band is relatively wide. Even if the resonant frequency point of the WiFi 2.4G band is offset, it can still fall within the bandwidth range, thereby ensuring that communication using the WiFi 2.4G band is held or blocked by one or both hands. communication performance caused by frequency offset.
  • the antenna assembly 10 works in the WiFi 2.4G frequency band, it has a wider bandwidth and better human hand performance, human head performance, and human head hand performance.
  • Figure 20 is a schematic diagram of the main current flow corresponding to the fourth resonant mode in the antenna assembly shown in Figure 18;
  • Figure 21 is a main current flow diagram corresponding to the fifth resonant mode in the antenna assembly shown in Figure 18.
  • the fourth resonance mode is a 3/4 wavelength mode from the second ground point G2 to the third gap 220a.
  • the fifth resonance mode is a 1/4 wavelength mode from the third gap 220a to the third ground point G3.
  • the auxiliary radiator 220 may be, but is not limited to, a Laser Direct Structuring (LDS) radiator, a Flexible Printed Circuit (FPC) radiator, or a Print Direct Structuring (PDS) radiator. ) radiator, or a metal branch radiator.
  • LDS Laser Direct Structuring
  • FPC Flexible Printed Circuit
  • PDS Print Direct Structuring
  • auxiliary radiator 220 may be a structural component antenna (Mechanical Design Antenna, MDA) radiator designed using the embedded metal of the electronic device 1 itself.
  • MDA Mechanical Design Antenna
  • the auxiliary radiator 220 may be a structural antenna radiator designed using the metal middle frame 320 of the electronic device 1 .
  • auxiliary radiator 220 does not specifically limit the shape, structure and material of the auxiliary radiator 220.
  • the shapes of the auxiliary radiator 220 include but are not limited to bent, strip, sheet, rod, coating, Film, etc.
  • the present application does not limit the extension trajectory of the auxiliary radiator 220 , so the auxiliary radiator 220 can extend in a straight line, a curve, a multi-stage bend, etc.
  • the above-mentioned auxiliary radiator 220 may be a line with a uniform width on the extension track, or may be a strip with a gradient width, a widened area, and other widths.
  • the third ground point G3 is electrically connected to the ground in a manner including but not limited to direct electrical connection (such as welding); or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic sheets, conductive glue, embedded metal, or electronics.
  • the middle frame of device 1 is electrically connected indirectly through materials or other means.
  • the third ground point G3 is electrically connected to the ground in a manner that the third ground point G3 of the auxiliary radiator 220 is electrically connected to the middle frame 320 through the middle frame connection material.
  • the fourth resonance mode is a 3/4 wavelength mode from the second ground point G2 to the third gap 220a. Therefore, the antenna assembly 10 can fully utilize the high-order mode of the second radiator 120, It is beneficial to reduce the electrical length of the second radiator 120, thereby saving The space of the antenna assembly 10 is reduced. When the antenna assembly 10 is used in the electronic device 1, it facilitates layout in the electronic device 1. Referring to FIG. 20 , the current corresponding to the fourth resonance mode is named fourth current I 4 , and the fourth current I 4 flows from the second ground point G2 to the third gap 220a.
  • the fifth resonance mode is a 1/4 wavelength mode from the third gap 220a to the third ground point G3.
  • the 1/4 wavelength mode is a resonance mode with relatively high efficiency, so the fifth resonance can be enhanced. Transceiver efficiency of frequency bands supported by the mode. Since the fifth resonance mode acts on the auxiliary radiator 220 , the fifth resonance mode is a resonance mode parasitic on the auxiliary radiator 220 . Referring to FIG. 21 , the current corresponding to the fifth resonance mode is named fifth current I 5 , and the fifth current I 5 flows from the third gap 220a to the third ground point G3.
  • the auxiliary radiator 220 When the antenna assembly 10 is applied to an electronic device 1 , the auxiliary radiator 220 is usually disposed corresponding to the long side of the electronic device 1 , and the auxiliary branches are at a distance connected to the long and short sides of the electronic device 1 . There is a certain distance around the corner. Therefore, when the electronic device 1 is horizontally screened and the antenna assembly 10 works in the WiFi 2.4G frequency band, the auxiliary radiator 220 is usually difficult to hold by the user's hand. Therefore, the antenna The electronic device 1 to which the component 10 is applied has good horizontal screen performance.
  • FIG. 22 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the antenna assembly 10 further includes a third radiator 170 and a fourth feed source S4.
  • the third radiator 170 has a fourth feeding point P4.
  • the fourth feed source S4 is electrically connected to the fourth feed point P4, so that the third radiator 170 supports the WiFi 2.4G frequency band and the Bluetooth frequency band.
  • the material of the third radiator 170 please refer to the previous description of the first radiator 110 , and the material of the first radiator 110 can be applied to the third radiator 170 .
  • the material of the third radiator 170 will not be described again here.
  • the WiFi frequency band and the Bluetooth frequency band are relatively close. Therefore, the WiFi frequency band and the Bluetooth frequency band can share an antenna.
  • the fourth feed source S4 is electrically connected to the fourth feed point P4, so that the third radiator 170 supports the WiFi 2.4G frequency band and the Bluetooth frequency band so that the antenna assembly 10 has more communication frequency bands. , has better communication effect.
  • the fourth feed source S4 is electrically connected to the fourth feed point P4, so that the third radiator 170 supports the GPS L1 frequency band. Therefore, the third radiator 170 can support the GPS L1 frequency band and the WiFi 2.4G frequency band.
  • the third radiator 170 is arranged diagonally from the second radiator 120 .
  • the second radiator 120 and the third radiator 170 are both used to support the Bluetooth frequency band.
  • the pattern of the third radiator 170 when sending and receiving electromagnetic wave signals in the Bluetooth frequency band is different from that of the second radiation.
  • the patterns of the body 120 when transmitting and receiving electromagnetic wave signals in the Bluetooth frequency band are complementary.
  • the third radiator 170 and the second radiator 120 are arranged diagonally. Therefore, the third radiator 170 and the second radiator 120 are not easily blocked at the same time. When one of the second radiator 120 and the third radiator 170 is blocked, the other one can still work. Therefore, the antenna assembly 10 can be improved to utilize the second radiator 120 and the third radiator 170 .
  • the communication performance of the Bluetooth frequency band and WiFi 2.4G frequency band supported by the third radiator 170 is described below. For example, when the second radiator 120 and the third radiator 170 both support the Bluetooth band (or WiFi 2.4G band), the second radiator 120 is blocked (for example, placed in the pocket of the user's clothes).
  • the Bluetooth frequency band signal supported by the second radiator 120 is attenuated greatly, seriously affecting the communication quality of the antenna assembly 10 using the Bluetooth frequency band to communicate.
  • the antenna assembly 10 uses the Bluetooth frequency band to communicate with the Bluetooth headset, if the second radiator 120 is blocked and continues to use the Bluetooth frequency band to communicate with the Bluetooth headset, it will affect the performance of the Bluetooth headset. experience.
  • the third radiator 170 and the second radiator 120 are arranged diagonally and have complementary directional patterns, when the second radiator 120 is blocked, the third radiation The third radiator 170 is not easily blocked, and the third radiator 170 still has good communication performance.
  • the second radiator 120 and the third radiator 170 support the Bluetooth frequency band
  • the second radiator 120 and the third feed source S3 can be regarded as a Bluetooth antenna ( For convenience of description, it is named as the first Bluetooth antenna).
  • the third radiator 170 and the fourth feed source S4 can be regarded as a Bluetooth antenna (for convenience of description, it is named as the second Bluetooth antenna). That is, the antenna assembly 10 includes two Bluetooth antennas. It can be seen from the previous description that when one Bluetooth antenna is blocked, the other Bluetooth antenna can be used for communication. Generally speaking, when the antenna assembly 10 is used in an electronic device 1 , the first Bluetooth antenna is usually arranged corresponding to the bottom of the electronic device 1 , and the second Bluetooth antenna is usually arranged corresponding to the top of the electronic device 1 .
  • the electronic device 1 such as a mobile phone
  • the antenna assembly 10 When the electronic device 1 (such as a mobile phone) to which the antenna assembly 10 is applied is put into the user's pocket, whether the top of the electronic device 1 is facing down or the bottom of the electronic device 1 is facing down, there is a Bluetooth antenna that can communicate with the user. Bluetooth headsets make a better connection.
  • the antenna assembly 10 provided by the embodiment of the present application can improve the performance of the electronic device 1 in the pocket and the blue Experience when communicating with Bluetooth headsets. It can be understood that, conversely, when the Bluetooth headset is placed in the user's pocket, the antenna assembly 10 can still communicate well with the Bluetooth headset. That is, the antenna assembly 10 can improve the communication experience when communicating with a Bluetooth headset placed in a user's pocket.
  • both the second radiator 120 and the third radiator 170 support the WiFi 2.4G frequency band. Therefore, the second radiator 120 and the third feed source S3 can be regarded as a WiFi antenna (for the sake of description, they are named the first WiFi antenna), and the third radiator 170 and the fourth feed source S4 can be regarded as a WiFi antenna. It is a WiFi antenna (for convenience of description, it is named the second WiFi antenna). That is, the antenna assembly 10 includes two WiFi antennas.
  • the third radiator 170 is arranged diagonally from the second radiator 120 .
  • the second radiator 120 and the third radiator 170 are both used to support the WiFi frequency band.
  • the pattern of the third radiator 170 when sending and receiving electromagnetic wave signals in the WiFi frequency band is different from that of the second radiation.
  • the patterns of the body 120 when transmitting and receiving electromagnetic wave signals in the WiFi frequency band are complementary.
  • the antenna assembly 10 in this embodiment includes two WiFi antennas, it also has better communication performance.
  • the electronic device 1 is in the horizontal screen mode and uses the WiFi 2.4G frequency band to play games, it has a better horizontal screen gaming experience.
  • the second radiator 120 includes a third portion 121 and a fourth portion 122 that are bent and connected. One end of the third part 121 away from the fourth part 122 is disposed adjacent to the first radiator 110 .
  • the third radiator 170 includes a fifth portion 171 and a sixth portion 172 that are bent and connected. The fifth portion 171 is disposed closer to the first radiator 110 than the sixth portion 172 .
  • the second radiator 120 and the third radiator 170 are arranged diagonally, and the above structural design of the second radiator 120 and the third radiator 170 facilitates the connection between the antenna assembly 10 and the
  • the antenna assembly 10 is adapted to the shape of the electronic device 1 to which the antenna assembly 10 is applied.
  • the third radiator 170 has a fourth ground point G4 and a fifth ground point G5.
  • the fourth ground point G4 and the fifth ground point G5 are both grounded.
  • the fourth ground point G4 is smaller than the fifth ground point G4.
  • G5 is disposed adjacent to the first radiator 110
  • the fifth ground point G5 is located between the fourth feed point P4 and the fourth ground point G4 .
  • the fourth ground point G4 is grounded to prevent the third radiator 170 from affecting the first radiator 110 .
  • the fifth ground point G5 is located between the fourth feed point P4 and the fourth ground point G4, and the fifth ground point G5 to the third radiator 170 are away from the fourth ground point G4
  • the part between the free ends is the radiation part of the third radiator 170 that supports the WiFi 2.4G frequency band and the Bluetooth frequency band.
  • the fourth feeding point P4 is located at the fifth part 171 or the sixth part 172 , and the fourth feeding point P4 is provided adjacent to the corner where the fifth part 171 and the sixth part 172 are connected.
  • the fourth feed source S4 When the fourth feed source S4 is electrically connected to the fourth feed point P4, it is usually electrically connected to the fourth feed point P4 through a radio frequency signal line.
  • the equivalent resistance of the radio frequency signal line is usually small (50 ohms).
  • the fourth feeding point P4 is located at the fifth part 171 or the sixth part 172 , and the fourth feeding point P4 is adjacent to the corner where the fifth part 171 and the sixth part 172 are connected.
  • the arrangement can ensure that the fourth feed point P4 is located on the fourth radiator 180 where the current is strongest or relatively strong. Therefore, the equivalent impedance of the fourth radiator 180 is low.
  • the equivalent impedance of the fourth radiator 180 is relatively matched with the impedance of the radio frequency signal line connecting the fourth feed source S4 to the fourth radiator 180 . Therefore, the antenna unit composed of the fourth feed source S4 and the fourth radiator 180 in the antenna assembly 10 has better radiation performance.
  • first gap 130a between the first radiator 110 and the coupling radiator 130
  • fourth gap 170a between the first radiator 110 and the third radiator 170.
  • the first gap 130a and the fourth gap 170a are not easy to radiate at the same time. being held or covered.
  • the other one of the first slit 130 and the fourth slit 170a can also transmit and receive electromagnetic wave signals in the LB frequency band. Therefore, , has better communication performance.
  • FIG. 23 is a schematic equivalent circuit diagram of an antenna assembly provided by an embodiment of the present application.
  • the third feed source S3 is used to support the Bluetooth frequency band
  • the fourth feed source S4 is used to support the Bluetooth frequency band
  • the third feed source S3 is connected to the radio frequency path of the second radiator 120, and is connected to the radio frequency path of the second radiator 120.
  • the radio frequency path connecting the fourth feed source S4 to the third radiator 170 is different.
  • the third feed source S3 is used to support the Bluetooth frequency band
  • the fourth feed source S4 is used to support the Bluetooth frequency band.
  • the third feed source S3 is electrically connected to the second radiator 120 through a radio frequency path 210a
  • the fourth feed source S4 is electrically connected to the third radiator 170 through a radio frequency path 210b.
  • the radio frequency path 210a is electrically connected to the second radiator 120.
  • the radio frequency path 210b is different. It can be seen that the antenna assembly 10 provided by the embodiment of the present application has two Bluetooth radio frequency channels.
  • the antenna assembly 10 has two Bluetooth radio frequency channels. Therefore, when the antenna assembly 10 uses the Bluetooth frequency band to work, it can use any one or both of the two Bluetooth radio frequency channels to work. Therefore, the The antenna assembly 10 has better communication performance.
  • FIG. 24 is a schematic equivalent circuit diagram of an antenna assembly provided by another embodiment of the present application.
  • the third feed source S3 is used to support the Bluetooth frequency band
  • the fourth feed source S4 is used to support the Bluetooth frequency band;
  • the third feed source S3 is connected to the radio frequency path 210 of the second radiator 120, and is connected to the radio frequency path 210 of the second radiator 120.
  • the fourth feed source S4 is connected to the radio frequency path 210 of the third radiator 170 in the same manner.
  • the antenna assembly 10 further includes a switching unit 190, which is used to electrically connect the third feed source S3 to the second radiator 120 through the radio frequency path 210, or to enable the fourth The feed source S4 is electrically connected to the third radiator 170 through the radio frequency path 210 .
  • the switching unit 190 can electrically connect the third feed source S3 to the second radiator 120 through the radio frequency path 210, or enable the fourth feed source S4 to be electrically connected to the second radiator through the radio frequency path 210.
  • the third radiator 170 is configured as the third radiator 170 . Therefore, only one Bluetooth antenna of the antenna assembly 10 is working at the same time.
  • the second radiator 120 and the third radiator 170 support the Bluetooth frequency band
  • the second radiator 120 and the third feed source S3 can be regarded as a Bluetooth antenna (for the sake of description, naming is the first Bluetooth antenna)
  • the third radiator 170 and the fourth feed source S4 can be regarded as a Bluetooth antenna (for convenience of description, it is named the second Bluetooth antenna).
  • the switching unit 190 may receive a control signal, and under the control of the control signal, electrically connect the third feed source S3 to the second radiator 120 through the radio frequency path 210 , or, the fourth feed source S4 is electrically connected to the third radiator 170 through the radio frequency path 210 .
  • the antenna assembly 10 in this embodiment is a single-channel Bluetooth antenna.
  • FIG. 25 is a schematic diagram of the circuit structure of the antenna assembly in FIG. 24 used in electronic equipment.
  • the electronic device 1 further includes a detector 80 and a processor 90 .
  • the detector 80 is used to detect the posture or signal strength of the electronic device 1 to generate a detection signal.
  • the processor 90 is electrically connected to the detector 80 , and the processor 90 is configured to generate the control signal according to the detection signal.
  • the detector 80 may be, but is not limited to, a gravity sensor.
  • the gravity sensor can detect the posture of the electronic device 1 .
  • the detector 80 may be a radio frequency front-end circuit for detecting the signal strength of the first antenna and the second antenna. The case where the detector 80 includes a gravity sensor will be described below.
  • a first sub-detection signal is generated.
  • the processor 90 generates the first sub-control signal according to the first sub-detection signal.
  • the switching unit 190 is used to electrically connect the third feed source S3 to the second radiator 120 through the radio frequency path 210 under the control of the first sub-control signal.
  • the detection signal includes the first sub-detection signal
  • the control signal includes the first sub-control signal.
  • a second sub-detection signal is generated.
  • the processor 90 generates the second sub-control signal according to the second sub-detection signal.
  • the switching unit 190 is used to electrically connect the fourth feed source S4 to the third radiator 170 through the radio frequency path 210 under the control of the second sub-control signal.
  • the detection signal also includes the second sub-detection signal
  • the control signal includes the second sub-control signal.
  • the first posture is different from the second posture.
  • the signal strength of the second Bluetooth antenna for transmitting and receiving electromagnetic wave signals in the Bluetooth band is greater than the signal strength of the first Bluetooth antenna for transmitting and receiving electromagnetic wave signals in the Bluetooth band.
  • the antenna assembly 10 has good signal strength when working in the Bluetooth frequency band. Therefore, the communication effect of the antenna assembly 10 when communicating using the Bluetooth frequency band is better.
  • the fourth feed S4 is also used to support the GPS L1 frequency band.
  • the fourth feed S4 is also used to support the GPS L1 frequency band. Therefore, the antenna assembly 10 can support more frequency bands and has better communication performance.
  • the fourth feed source S4 is used to support GPS L1
  • the fourth feed source S4 and the third radiator 170 may support the GPS L1 frequency band and the WiFi 2.4G frequency band.
  • the antenna assembly 10 further includes a fourth radiator 180 and a fifth feed source S5 .
  • the fourth radiator 180 is spaced apart from the sixth portion 172 to form a fifth gap 180a.
  • the fifth gap 180a is adjacent to the corner portion where the fifth portion 171 and the sixth portion 172 are bent and connected. set up.
  • the fifth feed source S5 is electrically connected to the fourth radiator 180 to support the WiFi 5G frequency band or N78 frequency band.
  • the fifth feed source S5 is electrically connected to the fourth radiator 180 to support the WiFi 5G frequency band or N78 frequency band. Therefore, the communication effect of the antenna assembly 10 can be improved.
  • the fourth radiator 180 and the auxiliary radiator 220 are bent and connected. In other embodiments, the fourth radiator 180 is spaced apart from the auxiliary radiator 220 and disconnected.
  • FIG. 26 is a schematic diagram of the distance between the first radiator and the second radiator of the antenna assembly according to an embodiment.
  • the closest parts between the first radiator 110 and the second radiator 120 are the first ground end 1121 and the second free end 1211 .
  • the distance d1 between the first ground end 1121 and the second free end 1211 satisfies: 10mm ⁇ d1 ⁇ 120mm.
  • the distance d1 between the first ground end 1121 and the second free end 1211 may be, but is not limited to, 10 mm, or 15 mm, or 20 mm, or 25 mm, or 30 mm, or 35 mm, or 40 mm, or 45 mm, or 50 mm, Or 55mm, or 60mm, or 70mm, or 80mm, or 90mm, or 100mm, or 110mm, or 120mm.
  • d1 can also be other values greater than or equal to 10mm and less than or equal to 120mm, as long as 10mm ⁇ d1 ⁇ 120mm is satisfied.
  • the first radiator 110 and the second radiator 120 are far apart.
  • both the first radiator 110 and the second radiator 120 support the LB frequency band
  • the first radiator 110 and the second radiator 120 support the LB frequency band.
  • the first radiator 110 and the second radiator 120 have a good isolation effect.
  • FIG. 27 is a schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly 10 includes a first radiator 110 , a first feed source S1 , a second radiator 120 , a second feed source S2 , a coupling radiator 130 and a first tuning circuit 140 .
  • the first radiator 110 has a first feeding point P1.
  • the first feed source S1 is electrically connected to the first feed point P1 to support the LB frequency band.
  • the second radiator 120 is spaced apart from the first radiator 110 , and the second radiator 120 has a second feeding point P2.
  • the second feed source S2 is electrically connected to the second feed point P2 to support the MHB frequency band.
  • the coupling radiator 130 is located between the first radiator 110 and the second radiator 120 , and is coupled to the second radiator 120 .
  • the first tuning circuit 140 is electrically connected to the first radiator 110 and is also electrically connected to the coupling radiator 130 , and the first tuning circuit 140 is also electrically connected to ground.
  • the first tuning circuit 140 Used to tune the LB frequency band and the MHB frequency band.
  • the first feed source S1 is electrically connected to the first feed point P1 of the first radiator 110 to support the LB frequency band; the second feed source S2 is electrically connected to the The second feeding point P2 of the second radiator 120 is configured to support the MHB frequency band. It can be seen from this that the radiator supporting the LB frequency band and the radiator supporting the MHB frequency band in the antenna assembly 10 are not shared. Since the first tuning circuit 140 is electrically connected to the first radiator 110, the first tuning circuit 140 can tune and decouple the LB frequency band. In addition, the first tuning circuit 140 is also electrically connected to the coupling radiator 130 , and the coupling radiator 130 is coupled to the second radiator 120 . Therefore, the first switch 152 also controls the MHB. Tuning frequency band. It can be seen that the first tuning circuit 140 can facilitate the tuning of the LB frequency band and the MHB frequency band, and can better balance the performance of the antenna supporting the LB frequency band and the antenna supporting the MHB frequency band.
  • the first radiator 110 has a first free end 1111, a first ground end 1121 and a first feeding point P1.
  • the first ground terminal 1121 is grounded, the first feed point P1 is located between the first free terminal 1111 and the first ground terminal 1121, and the first feed source S1 is electrically connected to the first Feed point P1.
  • the second radiator 120 has a second free end 1211, a second ground end 1212 and a second feeding point P2.
  • the second ground terminal 1212 is connected to the ground, and the second ground terminal 1212 is arranged farther away from the first ground terminal 1121 than the second free end 1211 .
  • the coupling radiator 130 has a third free end 131 and a fourth free end 132 .
  • the third free end 131 is separated from the first free end 1111 by a first gap 130a.
  • the fourth free end 132 is separated from the second free end 1211 by a second gap 130b, and is separated from the second free end 1211 by a second gap 130b.
  • the two free ends are 1211 coupled.
  • the third free end 131 has a first connection point B1, the first ground end 1121 is adjacent to the third free end 131, and the first tuning circuit 140 is electrically connected to the first connection point B1 and the The first ground terminal 1121.
  • first ground end 1121 of the first radiator 110 has a connection point B0, and the connection point B0 is disposed adjacent to the first gap 130a.
  • the first tuning circuit 140 is electrically connected to the first radiator 110, the first tuning circuit 140 is electrically connected to the connection point B0.
  • the first connection point B1 is connected to the first connection point B1.
  • the distance between the first ground terminals 1121 is relatively close, which facilitates the electrical connection of the first tuning circuit 140 to the first connection point B1 and the first ground.
  • the antenna assembly 10 also includes a second tuning circuit 150 .
  • the second tuning circuit 150 is electrically connected to the second feed point P2 and ground.
  • the second tuning circuit 150 is used to adjust the resonant frequency point of the MHB frequency band.
  • the second tuning circuit 150 is used to adjust the resonant frequency point of the MHB frequency band, so that the antenna assembly 10 has better communication quality when communicating using the MHB frequency band.
  • the second feed source S2 can easily excite the MHB frequency band. Double resonance. Therefore, it can be beneficial to expand the bandwidth of the MHB frequency band supported by the antenna assembly 10, and is beneficial to CA, dual-SIM, single-band and other scenarios.
  • the first radiator 110 includes a first part 111 and a second part 112 that are bent and connected.
  • the first part 111 has the first free end 1111
  • the second part 112 has the second ground end 1212 .
  • the second radiator 120 includes a third portion 121 and a fourth portion 122 that are bent and connected.
  • One end of the third part 121 away from the fourth part 122 is disposed adjacent to the second part 112
  • the fourth part 122 is disposed opposite to the first part 111 .
  • the coupling radiator 130 is located between the second part 112 and the third part 121, and the extending direction of the coupling radiator 130 is consistent with the arrangement of the second part 112 and the third part 121. Same direction.
  • the structure of the first radiator 110 and the second radiator 120 facilitates the antenna assembly 10 to adapt to the shape of the electronic device 1 when it is applied to the electronic device 1 .
  • the coupling radiator 130 is disposed corresponding to the bottom of the electronic device 1 .
  • the so-called bottom of the electronic device 1 usually refers to the part close to the ground or adjacent to the user when the electronic device 1 is used in portrait mode.
  • FIG. 28 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the second radiator 120 also has a third feed point P3, a first ground point G1 and a second ground point G2.
  • the third feed point P3 is spaced apart from the second feed point P2, and the second ground point G2 is located between the second feed point P2 and the third feed point P3, and the second ground point G2 is located between the second feed point P2 and the third feed point P3.
  • the second ground point G2 is disposed adjacent to the third feeding point P3 compared to the first ground point G1.
  • the antenna assembly 10 also includes a third feed source S3.
  • the third feed source S3 is electrically connected to the third feed point P3 to support the LB frequency band.
  • the third feed source S3 also supports the LB frequency band, thus enabling the antenna assembly 10 to have better communication performance.
  • the third resonance mode excited by the third feed source S3 on the second radiator 120 is used to support the LB frequency band.
  • the third resonance mode please refer to the previous description and will not be described again here.
  • the antenna assembly 10 has two LB antennas.
  • a first LB antenna supporting the LB frequency band includes a first feed source S1 and a first radiator 110
  • a second LB antenna supporting the LB frequency band includes a third feed source S2 and a second radiator 120. Therefore, the antenna assembly 10 can achieve dual low frequencies.
  • the first LB antenna is used to support the B20 frequency band + N28 frequency band
  • the second LB antenna is used to support the B20 frequency band.
  • the antenna assembly 10 may further include a third LB antenna, please refer to FIG. 22 .
  • the third LB antenna may be disposed on an upper side of the electronic device 1 .
  • the antenna assembly 10 further includes a fourth radiator 180 and a fifth feed source S5.
  • the fifth feed source S5 is electrically connected to the fourth radiator 180 to support the LB frequency band. Therefore, when the antenna component 10 includes a first LB antenna, a second LB antenna and a third LB antenna, the antenna component 10 can achieve three low frequencies.
  • the first LB antenna is used to support the B20 frequency band + N28 frequency band
  • the second LB antenna is used to support the B20 frequency band
  • the third LB antenna is used to support the B20 frequency band.
  • the LB antenna supports the N28 frequency band, so it can better realize the NSA combination of the B20 frequency band + N28 frequency band.
  • the antenna assembly 10 can realize the NSA combination of the first frequency band + the second frequency band.
  • the antenna assembly 10 provided in the embodiment of the present application is also applicable.
  • the third feed source S3 is also used to excite two resonance modes on the second radiator 120. These two resonance modes are used to support the WiFi 2.4G frequency band or the Bluetooth frequency band. For convenience of description, these two resonance modes are named the fourth resonance mode and the fifth resonance mode respectively. The fourth resonance mode and the fifth resonance mode are used to support WiFi 2.4G frequency band or Bluetooth frequency band. In other words, the third feed source S3 is also used to excite the fourth resonant mode and the fifth resonant mode on the second radiator 120. The fourth resonant mode and the fifth resonant mode are expressed by Supports WiFi 2.4G frequency band or Bluetooth frequency band.
  • the WiFi frequency band and the Bluetooth frequency band are relatively close. Therefore, the WiFi frequency band and the Bluetooth frequency band can share an antenna.
  • the third feed source S3 excites the fourth resonance mode and the fifth resonance mode on the second radiator 120.
  • the fourth resonance mode and the fifth resonance mode jointly support the WiFi 2.4G frequency band, And the fourth resonance mode and the fifth resonance mode jointly support the Bluetooth frequency band, so that the antenna assembly 10 has more communication frequency bands and has better communication effect.
  • the antenna assembly 10 further includes a third radiator 170 and a fourth feed source S4.
  • the third radiator 170 has a fourth feeding point P4.
  • the fourth feed source S4 is electrically connected to the fourth feed point P4, so that the third radiator 170 supports the WiFi 2.4G frequency band or the Bluetooth frequency band.
  • the WiFi frequency band and the Bluetooth frequency band are relatively close. Therefore, the WiFi frequency band and the Bluetooth frequency band can share an antenna.
  • the fourth feed source S4 is electrically connected to the fourth feed point P4, so that the third radiator 170 supports the WiFi 2.4G frequency band and the Bluetooth frequency band so that the antenna assembly 10 has more communication frequency bands. , has better communication effect.
  • the fourth feed source S4 is electrically connected to the fourth feed point P4, so that the third radiator 170 supports the GPS L1 frequency band. Therefore, the third radiator 170 can support the GPS L1 frequency band and the WiFi 2.4G frequency band.
  • the third radiator 170 and the second radiator 120 are arranged diagonally.
  • the second radiator 120 and the third radiator 170 are both used to support the Bluetooth frequency band.
  • the pattern of the third radiator 170 when sending and receiving electromagnetic wave signals in the Bluetooth frequency band is different from that of the second radiation.
  • the patterns of the body 120 when transmitting and receiving electromagnetic wave signals in the Bluetooth frequency band are complementary.
  • the third radiator 170 and the second radiator 120 are arranged diagonally. Therefore, the third radiator 170 and the second radiator 120 are not easily blocked at the same time.
  • the third radiator 170 and the second radiator 120 are not easily blocked at the same time.
  • the antenna assembly 10 further includes a fourth radiator 180 and a fifth feed source S5.
  • the fourth radiator 180 is spaced apart from the sixth portion 172 to form a fifth gap 180a.
  • the fifth gap 180a is adjacent to the corner portion where the fifth portion 171 and the sixth portion 172 are bent and connected. set up.
  • the fifth feed source S5 is electrically connected to the fourth radiator 180 to support the WiFi 5G frequency band or N78 frequency band.
  • the fifth feed source S5 is electrically connected to the fourth radiator 180 to support the WiFi 5G frequency band or N78 frequency band. Therefore, the communication effect of the antenna assembly 10 can be improved.
  • the fourth radiator 180 and the auxiliary radiator 220 are bent and connected. In other embodiments, the fourth radiator 180 is spaced apart from the auxiliary radiator 220 and disconnected.
  • Figure 29 is a schematic structural diagram of an electronic device provided by an embodiment of the present application
  • Figure 30 is a schematic diagram of the middle frame and the first circuit board in Figure 29.
  • the electronic device 1 includes an antenna assembly 10 .
  • the antenna assembly 10 is used to send and receive electromagnetic wave signals to implement the communication function of the electronic device 1 .
  • the electronic device 1 includes a circuit board and the antenna assembly 10 described in any of the previous embodiments.
  • the electronic device 1 includes a first circuit board 40 and the antenna assembly 10 described in any of the previous embodiments.
  • the antenna assembly 10 The first feed source S1 is provided on the first circuit board 40 .
  • the schematic diagram of the middle frame 320 and the first circuit board 40 shown in FIG. 30 is a rear view of the electronic device 1 after the housing 330 is removed.
  • the first circuit board 40 is disposed on one side of the middle frame 320 (for example, it can be carried on the surface of the middle frame 320 facing the housing 330).
  • the electronic device 1 includes the antenna assembly 10 provided in the previous embodiment as an example. It can be understood that this should not be understood as a limitation to the electronic device 1 provided in the embodiment of the present application.
  • each radiator (first radiator 110, second radiator 120, third radiator 170, fourth radiator 180, coupling radiator 130, auxiliary radiator) in the antenna assembly 10 is 220, etc.) are formed on the middle frame 320 of the electronic device 1 as an example. It can be understood that in other embodiments, each radiator in the antenna assembly 10 may not be formed on the electronic device 1
  • the middle frame 320 of 1 is a laser directly formed radiator, a flexible circuit board radiator, a printed circuit board radiator, a metal branch radiator, or an MDA radiator. No limitation is made in this application.
  • each gap between each radiator (for example, the first gap 130a, the second gap 130b, the third gap 220a, the fourth gap 170a, At least one of the fifth gaps 180a) is filled with an insulating member 331 to enhance the structural strength of the middle frame 320 and prevent external moisture or dust from entering the inside of the electronic device 1 through the gap or dust.
  • the electronic device 1 further includes a second feed source S2
  • the electronic device 1 further includes a second circuit board 50 .
  • the electronic device 1 includes a first circuit board 40 , a second circuit board 50 and the antenna assembly 10 described in any of the previous embodiments.
  • the first feed source S1 in the antenna assembly 10 is provided on the first circuit board 40
  • the second feed source S2 is provided on the second circuit board 50 .
  • the first circuit board 40 is also called the A2 board, and the second circuit board 50 is also called the A1 board.
  • each radiator (the first radiator 110, the second radiator 120, the third radiator 170, The fourth radiator 180 , the coupling radiator 130 , the auxiliary radiator 220 , etc.) are all formed on the middle frame 320 of the electronic device 1 . It is understandable that in other embodiments, each radiator in the antenna assembly 10 may not be formed on the middle frame 320 of the electronic device 1 , but may be a laser directly formed radiator or a flexible circuit board radiator. body, or printed circuit board radiator, or metal branch radiator, or MDA radiator. No limitation is made in this application.
  • the electronic device 1 further includes a first side 1a and a second side 1b that are bent and connected.
  • the first radiator 110 is partially disposed corresponding to the first side 1a, and the first radiator 110 is partially disposed corresponding to the second side 1b.
  • the first side 1a is the long side and the second side 1b is the short side for illustration.
  • the first side 1a may also be a short side
  • the second side 1b may also be a long side
  • the first radiator 110 is partially disposed corresponding to the first side 1a
  • the second side 1b may be a long side.
  • a radiator 110 is partially disposed corresponding to the second side 1 b. Therefore, the first radiator 110 can fully utilize the length of the two sides of the electronic device 1 that are bent and connected.
  • the corner formed by the bending of the first side 1a and the second side 1b has a relatively good clearance area to improve the radiation of the LB frequency band supported by the first radiator 110 in the antenna assembly 10 efficiency.
  • the antenna assembly 10 there are gaps between both ends of the first radiator 110 and other components.
  • the two gaps are not easy to be held at the same time. or obscured. Even when one of the two slits is blocked, the other of the two slits is not blocked. Therefore, the first radiator 110 can still transmit and receive electromagnetic wave signals in the LB frequency band. Therefore, the antenna Component 10 has better communication performance.
  • a part of the first radiator 110 may be disposed corresponding to the bottom edge of the electronic device 1 , and the other part may be disposed corresponding to a side edge of the electronic device 1 .
  • the antenna assembly 10 when the antenna assembly 10 is applied to the electronic device 1, for example, when the electronic device 1 is used to play games and other scenarios that require long-term holding, the two gaps of the first radiator 110 are not easy to be simultaneously Being held by or obscured by the user's hands. Therefore, when the antenna assembly 10 is used in the electronic device 1 , the antenna assembly 10 has anti-hand-holding and excellent hand-held performance for two-handed games.
  • the second side 1 b is the bottom side of the electronic device 1 .
  • the second radiator 120 and the coupling radiator 130 are located at the bottom of the electronic device 1 .
  • the coupling radiator 130 is usually disposed corresponding to the middle of the bottom side (the second side 1 b in this embodiment) of the electronic device 1 . Therefore, when the electronic device 1 to which the antenna assembly 10 is applied is held, the coupling radiator 130 is usually not easy to be held by one hand or blocked, so it has a better one-hand effect.
  • the second radiator 120 and the coupling radiator 130 are located at the bottom of the electronic device 1, when the electronic device 1 is used (such as making a phone call, etc.), they are usually far away from the user's head. It is not easy to cause large radiation to the user's head. Therefore, when the antenna assembly 10 is used in an electronic device 1, the second radiator 120 and the coupling radiator 130 are located at the bottom of the electronic device 1 , the coupling radiator 130 is usually disposed corresponding to the middle of the bottom edge of the electronic device 1, so that the antenna assembly 1 has better head-hand performance and head-to-head performance. In summary, the antenna assembly 10 has better performance for human hands, heads, and hands.
  • Figure 31 is a schematic diagram of an electronic device provided by another embodiment of the present application
  • Figure 32 is a schematic diagram of the middle frame and the first circuit board in Figure 31.
  • the electronic device 1 also has a first functional device 60 and a second functional device 70 .
  • the second functional device 70 is spaced apart from the first functional device 60 to form a gap 60a.
  • the first ground end 1121 of the first radiator 110 of the antenna assembly 10 is disposed corresponding to the gap 60a.
  • the first functional device 60 may be a USB interface
  • the second functional device 70 may be a speaker.
  • the first functional device 60 is a speaker
  • the second functional device 70 is a USB interface.
  • the second functional device 70 is spaced apart from the first functional device 60 to form a gap 60a.
  • the first ground terminal 1121 of the first antenna component 10 is disposed corresponding to the gap 60a. Therefore, the first ground terminal 1121 can be easily prepared.
  • the first functional device 60 is disposed away from the corner of the first part 111 and the second part 112 of the first radiator 110 than the second functional device 70 . In other words, the first functional device 60 is disposed closer to the second radiator 120 than the second functional device 70 .
  • the first functional device 60 is provided corresponding to the coupling radiator 130 .
  • the first gap 130a When the first gap 130a is formed between the first ground terminal 1121 and the coupling radiator 130, it is convenient to form the first gap 130a. In addition, the first gap 130a can be set corresponding to the gap 60a. Therefore, the first gap 130a can avoid being blocked by the first functional device 60 and the second functional device 70, and the first radiation Body 110 has better radiation performance.
  • FIG 33 is a schematic diagram of the positional relationship between the central axis and each radiator in the electronic device.
  • the first side 1a is the long side of the electronic device 1
  • the second side 1b is the short side of the electronic device 1.
  • the electronic device 1 has a central axis L1, and the central axis L1 is parallel to the first side. 1a, and passing through the midpoint of the second side 1b, the first radiator 110 is located on one side of the central axis L1.
  • the user's thumb When the user holds the electronic device 1 with his hand, the user's thumb usually holds the short side of the electronic device 1 corresponding to the central axis L1.
  • the first radiator 110 is located on the central axis L1. one side.
  • the electronic device 1 to which the antenna assembly 10 is applied is used horizontally, the first radiator 110 is not easily blocked or held by the user's hands. Then, the horizontal screen of the electronic device 1 to which the antenna assembly 10 is applied is The screen effect is better.
  • the overall central line L0 formed by the first radiator 110 , the coupling radiator 130 and the second radiator 120 is consistent with the center line L0 of the electronic device 1 .
  • the central axes L1 (see FIG. 33 extending along the length direction and passing through the midpoint O of the short side of the electronic device 1 ) coincide or substantially coincide.
  • the center line L0 and the central axis L1 coincide with each other as an example. Please refer to the previous description for specific beneficial effects and will not be repeated here.
  • the schematic diagrams of the antenna assembly 10 and the electronic device 1 provided by various embodiments of the present application only show components related to the present application. In addition to In addition to the components included in the previous embodiments, it is not excluded that other components are also included, for example, the antenna assembly 10 or the electronic device 1 also includes other antennas. Antenna radiators, gaps, grounding points, etc. in other antennas are not shown.
  • the antenna assembly 10 further includes one or more matching circuits, the matching circuits are electrically connected to the feed point, for example, the antenna assembly 10 It may include one or more of the following situations: the first matching circuit is electrically connected to the first feed point P1; the second matching circuit is electrically connected to the second feed point P2; the third matching circuit is electrically connected to the third feed point Electric point P3; the fourth matching circuit is electrically connected to the fourth feed point P4; the fifth matching circuit is electrically connected to the fifth feed point P5 on the fourth radiator, wherein the fifth feed source S5 is also electrically connected to the Describe the fifth feed point P5.
  • the matching circuit is not shown, which does not mean that the antenna assembly 10 does not include the matching circuit.
  • the matching circuit may include a capacitor, an inductor, or a combination of a capacitor and an inductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线组件及电子设备。所述天线组件包括第一辐射体及第一馈源;所述第一辐射体具有第一自由端、第一接地端及第一馈电点,所述第一接地端接地,所述第一馈电点位于所述第一自由端与所述第一接地端之间;所述第一馈源电连接至所述第一馈电点,以在所述第一辐射体上激励起第一谐振模式及第二谐振模式,所述第一谐振模式支持第一LB频段,所述第二谐振模式支持第二LB频段,其中,第一LB频段的频率大于第二LB频段的频率。本实施方式提供的天线组件中能够有两个谐振模式支持LB频段,所述天线组件在LB频段具有较宽的带宽,所述天线组件具有较好的通信性能。

Description

天线组件及电子设备
本申请要求2022年8月29日递交的申请名称为“天线组件及电子设备”的申请号为202211041884.6的在先申请优先权,上述在先申请的内容以引用的方式并入本文本中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件及电子设备。
背景技术
随着技术的发展,手机等具有通信功能电子设备的普及度越来越高,且功能越来越强大。电子设备中通常包括天线组件以实现电子设备的通信功能。然而,相关技术中的电子设备中的天线组件的通信性能不够好,还有待提升的空间。
发明内容
第一方面,本申请提供了一种天线组件,所述天线组件包括:
第一辐射体,所述第一辐射体具有第一自由端、第一接地端及第一馈电点,所述第一接地端接地,所述第一馈电点位于所述第一自由端与所述第一接地端之间;及
第一馈源,所述第一馈源电连接至所述第一馈电点,以在所述第一辐射体上激励起第一谐振模式及第二谐振模式,所述第一谐振模式用于支持第一LB频段,所述第二谐振模式用于支持第二LB频段,其中,所述第一LB频段的频率大于所述第二LB频段的频率。
第二方面,本申请提供一种天线组件,所述天线组件包括:
第一辐射体,所述第一辐射体具有第一馈电点;
第一馈源,所述第一馈源电连接至第一馈电点,以支持LB频段;
第二辐射体,所述第二辐射体与所述第一辐射体间隔设置,所述第二辐射体具有第二馈电点;
第二馈源,所述第二馈源电连接至所述第二馈电点,以支持MHB频段;
耦合辐射体,所述耦合辐射体位于所述第一辐射体与所述第二辐射体之间,且所述耦合辐射体与所述第二辐射体耦合;及
第一调谐电路,所述第一调谐电路电连接至所述第一辐射体,还电连接至所述耦合辐射体,且所述第一调谐电路还电连接至地,所述第一调谐电路用于对所述LB频段及所述MHB频段进行调谐。
第三方面,本申请提供一种电子设备,所述电子设备包括第一电路板及如第一方面所述的天线组件,所述天线组件中的第一馈源设置于所述第一电路板;或者,
所述电子设备包括第一电路板、第二电路板及如第二方面所述的天线组件,所述天线组件中的第一馈源设置于所述第一电路板,所述第二馈源设置于所述第二电路板。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种电子设备的结构示意图;
图2为图1中的电子设备的一角度下的立体分解示意图;
图3为图1所示的电子设备的另一角度下的立体分解示意图;
图4为本申请一实施方式提供的天线组件的示意图;
图5为图4中所示的天线组件中第一谐振模式对应的主要电流流向示意图;
图6为图4中所示的天线组件中第二谐振模式对应的主要电流流向示意图;
图7为本申请另一实施方式提供的天线组件的示意图;
图8为图7中所示的天线组件中一实施方式中的第二调谐电路的示意图;
图9为图7中所示的天线组件中另一实施方式中的第二调谐电路的示意图;
图10为图7中所示的天线组件中再一实施方式中的第二调谐电路的示意图;
图11为图7中所示的天线组件中一实施方式中的第一调谐电路的示意图;
图12为图7中所示的天线组件中另一实施方式中的第一调谐电路的示意图;
图13为图7中所示的天线组件中再一实施方式中的第一调谐电路的示意图;
图14为图7中所示的天线组件中又一实施方式中的第一调谐电路的示意图;
图15为本申请另一实施方式提供的天线组件应用到电子设备时的示意图;
图16为本申请又一实施方式提供的天线组件的示意图;
图17为本申请另一实施方式提供的天线组件的示意图;
图18为本申请又一实施方式提供的天线组件的示意图;
图19为图18中所示的天线组件中第三谐振模式对应的主要电流流向示意图;
图20为图18中所示的天线组件中第四谐振模式对应的主要电流流向示意图;
图21为图18中所示的天线组件中第五谐振模式对应的主要电流流向示意图;
图22为本申请又一实施方式提供的天线组件的示意图;
图23为本申请一实施方式提供的天线组件的等效电路示意图;
图24为本申请另一实施方式提供的天线组件的等效电路示意图;
图25为图24中的天线组件应用于电子设备中的电路结构示意图;
图26为一实施方式提供的天线组件第一辐射体与所述第二辐射体的间距示意图;
图27为本申请一实施方式提供的天线组件的示意图;
图28为本申请另一实施方式提供的天线组件的示意图;
图29为本申请一实施方式提供的电子设备的结构示意图;
图30为图29中中框及第一电路板的示意图;
图31为本申请另一实施方式提供的电子设备的示意图;
图32为图31中中框及第一电路板的示意图;
图33为电子设备中的中轴线与各个辐射体的位置关系示意图。
主要元件标号说明:
电子设备1,第一边1a,第二边1b,天线组件10,设备本体30,第一电路板40,第二电路板50,第
一功能器件60,第二功能器件70,检测器80,处理器90;
显示屏310,中框320,壳体330,电路板350,摄像头模组360;
第一辐射体110,第一部111,第二部112,第一自由端1111,第一接地端1121,第一馈电点P1,第
一馈源S1;
第二辐射体120,第三部121,第四部122,第二自由端1211,第二接地端1212,第二馈电点P2,第
二馈源S2,第三馈源点P3,第三馈源S3,第一接地点G1,第二接地点G2;
耦合辐射体130,第三自由端131,第四自由端132,第一连接点B1,第一缝隙130a,第二缝隙130b;
第一调谐电路140,第六调谐子电路141,第二切换开关142,第二连接端1421,第三连接端1422,
第二切换部1423,第七调谐子电路143,第三切换开关144,第八调谐子电路145,第九调谐子电路146;
第二调谐电路150,第一调谐子电路151,第一切换开关152,公共端1521,第一连接端1522,第一
切换部1523,第二调谐子电路153,第三调谐子电路154,第四调谐子电路155,第五调谐子电路156;
电感L,SRA传感器160,第三辐射体170,第五部171,第六部172,第四馈源S4,第四辐射体180,
第三接地点G3,第四接地点G4,第五接地点G5,第五馈源S5;
切换单元190,射频通路210、210a、210b,辅助辐射体220,绝缘件331;
第三缝隙220a、第四缝隙170a、第五缝隙180a,间隙60a。
具体实施方式
第一方面,本申请实施方式提供一种天线组件,所述天线组件包括:
第一辐射体,所述第一辐射体具有第一自由端、第一接地端及第一馈电点,所述第一接地端接地,所述第一馈电点位于所述第一自由端与所述第一接地端之间;及
第一馈源,所述第一馈源电连接至所述第一馈电点,以在所述第一辐射体上激励起第一谐振模式及第二谐振模式,所述第一谐振模式用于支持第一LB频段,所述第二谐振模式用于支持第二LB频段,其中,所述第一LB频段的频率大于所述第二LB频段的频率。
其中,所述第一谐振模式为所述第一馈电点至所述第一自由端的1/4波长模式;所述第二谐振模式为所述第一馈电点至所述第一自由端1/4波长,以及第一馈电点至所述第一接地端的1/4波长的对流模式。
其中,所述第一谐振模式所支持的频段包括B8频段或N8频段,所述第二谐振模式所支持的频段包括B28频段或N28频段。
其中,所述第一馈电点位于所述第一辐射体的中部。
其中,所述第一辐射体包括弯折相连的第一部及第二部,所述第一部具有所述第一自由端,所述第二部具有所述第一接地端,所述第一馈电点位于所述第一部或第二部,且邻近所述第一部与所述第二部弯折相连的拐角处设置。
其中,所述天线组件还包括:
第二辐射体,所述第二辐射体具有第二自由端、第二接地端及第二馈电点,所述第二接地端接地,且所述第二接地端相较于所述第二自由端背离所述第一接地端设置;
耦合辐射体,所述耦合辐射体设置于所述第一接地端及所述第二自由端之间,且所述耦合辐射体的一端与所述第一辐射体形成第一缝隙,所述耦合辐射体的另一端与所述第二辐射体形成第二缝隙且耦合,所述耦合辐射体具有第一连接点;
第一调谐电路,所述第一调谐电路电连接至所述第一接地端,还电连接所述耦合辐射体的第一连接点,且所述第一调谐电路还电连接至地;
第二调谐电路,所述第二调谐电路电连接至所述第二辐射体及地;及
第二馈源,所述第二馈源电连接所述第二馈电点,以在所述第二辐射体及所述耦合辐射体上激励起MHB频段的双谐振,其中,所述MHB频段的双谐振包括:一个谐振模式用于支持MB频段,另一谐振模式用于支持HB频段;或者,一个谐振模式用于支持MB频段,另一谐振模式也用于支持MB频段;或者,一个谐振模式用于支持HB频段,另一谐振频段用于支持HB频段。
其中,所述第一辐射体、所述耦合辐射体及所述第二辐射体构成的整体具有中心线,所述中心线穿过所述耦合辐射体,且所述第一缝隙及所述第二缝隙分别位于所述中心线的两侧。
其中,所述第二调谐电路包括:
多个第一调谐子电路,每个第一调谐子电路的一端接地;及
第一切换开关,所述第一切换开关具有公共端、多个第一连接端及第一切换部,所述公共端电连接至所述第二馈电点,所述第一连接端电连接至所述第一调谐子电路的另一端,且不同的第一连接端电连接至不同的第一调谐子电路,所述第一切换部电连接至所述公共端,且所述第一切换部还在控制信号的控制下电连接至所述多个第一连接端的一者。
其中,所述第二调谐电路包括:
第二调谐子电路,所述第二馈源电连接所述第二调谐子电路至所述第二馈电点;
第三调谐子电路,所述第二调谐子电路的一端电连接至所述第二馈源与所述第一调谐子电路的连接点;
多个第四调谐子电路,所述第四调谐子电路的一端接地;
第五调谐子电路,所述第五调谐子电路的一端电连接至所述第二馈电点,另一端接地;及
第一切换开关,所述第一切换开关具有公共端、多个第一连接端及第一切换部,所述公共端电连接至所述第二馈电点,所述多个第一连接端中的一者电连接至所述第三调谐子电路的另一端,其余第一连接端中电连接至所述第四调谐子电路的另一端,且不同的第四调谐子电路电连接不同的第一连接端,所述第一切换部电连接至所述公共端,且所述第一切换部还在控制信号的控制下电连接至所述多个第一连接端的一者。
其中,所述第二调谐电路包括:
第二调谐子电路,所述第二馈源电连接所述第二调谐子电路至所述第二馈电点;
第三调谐子电路,所述第二调谐子电路的一端电连接至所述第二馈源与所述第一调谐子电路的连接点;
多个第四调谐子电路,所述第四调谐子电路的一端接地;
第五调谐子电路,所述第五调谐子电路的一端电连接至所述第二馈电点,另一端电连接所述多个第四子电路中的一个第四调谐子电路的另一端;及
第一切换开关,所述第一切换开关具有公共端、多个第一连接端及第一切换部,所述公共端电连接至所述第二馈电点,所述多个第一连接端中的一者电连接至所述第三调谐子电路的另一端,其余第一连接端中电连接至所述第四调谐子电路的另一端,且不同的第四调谐子电路电连接不同的第一连接端,所述第一切换部电连接至所述公共端,且所述第一切换部还在控制信号的控制下电连接至所述多个第一连接端的一者。
其中,第二调谐子电路包括第一电容,所述第三调谐子电路包括第二电容,当所述第一切换部电连接至所述第四调谐子电路中的任一者时,所述天线组件持MB频段;
当所述第一切换部电连接至所述第三调谐子电路时,所述天线组件支持HB频段。
其中,所述第一调谐电路包括:
至少一个第六调谐子电路,所述至少一个第六调谐子电路的一端电连接至所述第一辐射体;
至少一个第二切换开关,所述第二切换开关具有第二连接端、第三连接端及第二切换部,所述第二连接端接地,所述第三连接端电连接至所述第六调谐子电路的另一端,且不同的第三连接端电连接至不同的第六调谐子电路,所述第二切换部电连接所述第二连接端或所述第三连接端,所述第二切换部在控制信号的控制下连通或断开所述第二连接端及第三连接端;
至少一个第七调谐子电路,所述至少一个第七调谐子电路的一端电连接至所述耦合辐射体的第一连接点;及
至少一个第三切换开关,所述第三切换开关具有第四连接端、第五连接端及第三切换部,所述第四连接端接地,第五连接端电连接至所述第七调谐子电路的另一端,且不同的第五连接端电连接至不同的第七调谐子电路,所述第三切换部电连接所述第四连接端或第五连接端,所述第二切换部在控制信号的控制下连通或断开所述第四连接端及第五连接端。
其中,所述第一调谐电路还包括:
第八调谐子电路,所述第八调谐子电路的一端接地,另一端电连接至所述第一辐射体;
和/或,
第九调谐子电路,所述第九调谐子电路的一端接地,另一端电连接至所述耦合辐射体的第一连接点。
其中,所述第七调谐子电路包括第三电容,所述第一调谐电路还包括第九调谐子电路,所述第九调谐子电路包括第四电容,所述第九调谐子电路的一端接地,另一端电连接至所述耦合辐射体的第一连接点;
所述天线组件还包括:
电感,所述电感电连接至所述耦合辐射体的第一连接点;及
SAR传感器,所述SAR传感器电连接所述电感,且所述SAR传感器用于将所述耦合辐射体检测到的电容值的变化输出,当电容值增大时,所述第二馈源的发射功率降低。
其中,所述第二调谐电路电连接至所述第二馈点;或者,
所述第二辐射体还具有第二连接点,所述第二连接点不同于所述第二馈电点,所述第二调谐电路电连接至所述第二连接点。
其中,所述天线组件具有辅助辐射体,所述辅助辐射体具有第三接地点,所述第三接地点接地;所述第二辐射体具有自由端,所述自由端与所述辅助辐射体之间具有第三缝隙;
所述第二辐射体还具有第三馈电点、第一接地点及第二接地点,所述第三馈电点与所述第二馈电点间隔设置,所述第二接地点位于所述第二馈电点与所述第三馈电点之间,且所述第二接地点相较于所述第一接地点邻近所述第三馈电点设置,所述天线组件还包括:
第三馈源,所述第三馈源电连接至所述第三馈电点,以支持所述LB频段,和/或WiFi 2.4G频段。
其中,所述第三馈源用于支持LB频段时,所述第三馈源用于激励起第三谐振模式,所述第三谐振模式为所述第二接地点到所述第三缝隙的1/4波长模式。
其中,当所述第三馈源用于支持WiFi 2.4G式时,所述第三馈源还用于在所述第二辐射体上激励起第四谐振模式及第五谐振模式,所述第四谐振模式及所述第五谐振模式用于支持WiFi 2.4G频段和蓝牙频段。
其中,所述第四谐振模式为所述第二接地点到所述第三缝隙的3/4波长模式;所述第五谐振模式为所述第三缝隙至所述第三接地点的1/4波长模式。
其中,所述天线组件还包括:
第三辐射体,所述第三辐射体具有第四馈电点;及
第四馈源,所述第四馈源电连接所述第四馈电点,以使得所述第三辐射体支持所述WiFi 2.4G频段和蓝牙频段。
其中,所述第三辐射体与所述第二辐射体对角设置,
所述第二辐射体及所述第三辐射体均用于支持所述蓝牙频段,所述第三辐射体收发所述蓝牙频段的电磁波信号时的方向图,与所述第二辐射体收发所述蓝牙频段的电磁波信号时的方向图互补。
其中,所述第二辐射体包括弯折相连的第三部及第四部,所述第三部背离所述第四部的一端邻近所述第一辐射体设置;
所述第三辐射体包括弯折相连的第五部及第六部,所述第五部相较于所述第六部邻近所述第一辐射体设置。
其中,所述第三辐射体与所述第一辐射体之间具有第四缝隙,所述第三辐射体具有第四接地点及第五接地点,第四接地点及第五接地点均接地,所述第四接地点相较于所述第五接地点邻近所述第一辐射体设置,所述第五接地点位于所述第四馈电点与所述第四接地点之间。
其中,所述第四馈电点位于所述第五部或第六部,且所述第四馈电点邻近所述第五部与所述第六部相连的拐角处设置。
其中,所述第三馈源用于支持蓝牙频段,且所述第四馈源用于支持蓝牙频段;所述第三馈源连接至所述第二辐射体的射频通道,与所述第四馈源连接至所述第三辐射体的射频通道不同。
其中,所述第三馈源用于支持蓝牙频段,且所述第四馈源用于支持蓝牙频段;所述第三馈源连接至所述第二辐射体的射频通道,与所述第四馈源连接至所述第三辐射体的射频通道相同;所述天线组件还包括切换单元,所述切换单元用于使得所述第三馈源通过所述射频通路电连接至所述第二辐射体,或者,使得所述第四馈源电通过所述射频通道电连接至所述第三辐射体。
其中,所述第四馈源还用于支持GPS L1频段。
其中,所述天线组件还包括:
第四辐射体,所述第四辐射体与所述第六部间隔设置,以形成第五缝隙,所述第五缝隙邻近所述第五部与所述第六部弯折相连的拐角部设置;及
第五馈源,所述第五馈源电连接至所述第四辐射体,以支持WiFi 5G频段或N78频段。
其中,所述第一接地端与所述第二接地端之间的距离d1满足:10mm≤d1≤120mm。
第二方面,本申请实施方式提供一种天线组件,所述天线组件包括:
第一辐射体,所述第一辐射体具有第一馈电点;
第一馈源,所述第一馈源电连接至第一馈电点,以支持LB频段;
第二辐射体,所述第二辐射体与所述第一辐射体间隔设置,所述第二辐射体具有第二馈电点;
第二馈源,所述第二馈源电连接至所述第二馈电点,以支持MHB频段;
耦合辐射体,所述耦合辐射体位于所述第一辐射体与所述第二辐射体之间,且所述耦合辐射体与所述第二辐射体耦合;及
第一调谐电路,所述第一调谐电路电连接至所述第一辐射体,还电连接至所述耦合辐射体,且所述第一调谐电路还电连接至地,所述第一调谐电路用于对所述LB频段及所述MHB频段进行调谐。
其中,所述第一辐射体具有第一自由端、第一接地端及第一馈电点,所述第一接地端接地,所述第一馈电点位于所述第一自由端与所述第一接地端之间,所述第一馈源电连接至所述第一馈电点;
所述第二辐射体具有第二自由端、第二接地端及第二馈电点,所述第二接地端接地,且所述第二接地端相较于所述第二自由端邻近所述第一接地端设置;
所述耦合辐射体具有第三自由端及第四自由端,所述第三自由端与所述第一自由端间隔第一耦合缝隙,且与第一自由端耦合;所述第四自由端与所述第二自由端间隔第二耦合缝隙,且与第二自由端耦合,所述耦合辐射体具有第一连接点,所述第一接地端邻近所述第三自由端,所述第一调谐电路电连接至所述第一连接点及所述第一接地端。
其中,所述天线组件还包括:
第二调谐电路,所述第二调谐电路电连接至第二馈电点及地,所述第二调谐电路用于调节MHB频段的谐振频点。
其中,所述第一辐射体包括弯折相连的第一部及第二部,所述第一部具有第一自由端,所述第二部具有第二接地端;
所述第二辐射体包括弯折相连的第三部及第四部,所述第三部背离所述第四部的一端邻近所述第二部设置,所述第四部与所述第一部相对设置;
所述耦合辐射体位于所述第二部与所述第三部之间,且所述耦合辐射体的延伸方向与所述第二部及所述第三部的排布方向一致。
其中,所述第二辐射体还具有第三馈电点、第一接地点及第二接地点,所述第三馈电点与所述第二馈电点间隔设置,所述第二接地点位于所述第二馈电点与所述第三馈电点之间,且所述第二接地点相较于所述第一接地点邻近所述第三馈电点设置,所述天线组件还包括:
第三馈源,所述第三馈源电连接至所述第三馈电点,以支持所述LB频段。
其中,所述第三馈源还用于在所述第二辐射体上激励起第四谐振模式及第五谐振模式,所述第四谐振模式及所述第五谐振模式用于支持WiFi 2.4G频段或蓝牙频段。
其中,所述天线组件还包括:
第三辐射体,所述第三辐射体具有第四馈电点;及
第四馈源,所述第四馈源电连接所述第四馈电点,以使得所述第三辐射体支持所述WiFi 2.4G频段或蓝牙频段。
其中,所述第三辐射体与所述第二辐射体对角设置,
所述第二辐射体及所述第三辐射体均用于支持所述蓝牙频段,所述第三辐射体收发所述蓝牙频段的电磁波信号时的方向图,与所述第二辐射体收发所述蓝牙频段的电磁波信号时的方向图互补。
第三方面,本申请实施方式提供一种电子设备,所述电子设备包括第一电路板及如如第一方面或第一方面中任意中任意一项所述的天线组件,所述天线组件中的第一馈源设置于所述第一电路板;或者,
所述电子设备包括第一电路板、第二电路板及如第二方面或第二方面中任意一项所述的天线组件,所述天线组件中的第一馈源设置于所述第一电路板,所述第二馈源设置于所述第二电路板。
其中,所述电子设备还包括中框,所述天线组件的第一辐射体形成于所述中框上。
其中,所述电子设备还包括:
第一功能器件;及
第二功能器件,所述第二功能器件与所述第一功能器件间隔设置,以形成间隙;
所述天线组件的第一辐射体的第一接地端对应所述间隙设置。
其中,所述电子设备还包括弯折相连的第一边及第二边,所述第一辐射体部分对应所述第一边设置,所述第一辐射体部分对应所述第二边设置。
其中,所述第一边为电子设备的长边,所述第二边为电子设备的短边,所述电子设备具中轴线,所述中轴线平行于所述第一边,且贯穿所述第二边的中点,所述第一辐射体位于所述中轴线的一侧。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参照图1、图2及图3,图1为本申请实施例提供的一种电子设备的结构示意图;图2为图1中的电子设备的一角度下的立体分解示意图;图3为图1所示的电子设备的另一角度下的立体分解示意图。所述电子设备1包括天线组件10。所述天线组件10用于收发电磁波信号,以实现所述电子设备1的通信功能。本申请对于所述天线组件10在所述电子设备1上的位置不做具体的限定,图1只是一种示例,不应当理解为对天线组件10在所述电子设备1中的位置的限定。
所述电子设备1包括设备本体30和天线组件10,所述天线组件10承载于所述设备本体30。所述设备本体30包括但不仅限包括相互盖合连接的显示屏310及壳体330。所述天线组件10可设于所述电子设备1的壳体330内部、或部分与所述壳体330集成为一体、或部分设于所述壳体330外。
所述电子设备1包括不限于为手机、电话、电视、平板电脑(Pad)、照相机、个人计算机、笔记本电脑(Personal Computer,PC)、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以所述电子设备1为手机为例,其他的设备可参考本申请中的具体描述。此外,所述电子设备1可以为但不仅限于为具有或不具有显示屏的设备。
请参阅图3,所述电子设备1还包括设于收容空间内的电路板350、电池、功能器件(所述功能器件可以包括摄像头模组360、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组中的一者或多者)等能够实现手机的基本功能的器件,在本实施例中不再赘述。可以理解地,上述对电子设备1的介绍仅是所述天线组件10所应用的一种环境的说明,所述电子设备1的具体结构不应当理解为对本申请提供的天线组件10的限定。
以下结合附图对于本申请提供的所述天线组件10的具体结构进行举例说明,当然,本申请提供的所述天线组件10包括但不限于以下的实施方式。
为了便于描述,以电子设备1处于图1中的视角为参照,在笛卡尔坐标系中,电子设备1的宽度方向定义为X轴方向,电子设备1的长度方向定义为Y轴方向,电子设备1的厚度方向定义为Z轴方向。其中,X轴方向、Y轴方向及Z轴方向两两垂直,箭头所指示的方向为正向。
请一并参阅图4,图4为本申请一实施方式提供的天线组件的示意图。所述天线组件10包括第一辐射体110及第一馈源S1。所述第一辐射体110具有第一自由端1111、第一接地端1121及第一馈电点P1。所述第一接地端1121接地,所述第一馈电点P1位于所述第一自由端1111与所述第一接地端1121之间。所述第一馈源S1电连接至所述第一馈电点P1,以在所述第一辐射体110上激励起第一谐振模式及第二谐振模式,所述第一谐振模式及所述第二谐振模式用于支持低频(Low Frequency Band,LB)频段。具体地,所述第一谐振模式用于支持第一LB频段,所述第二谐振模式用于支持第二LB频段,其中,所述第一LB频段大于所述第二LB频段。
所述第一辐射体110可以为但不仅限于为激光直接成型(Laser Direct Structuring,LDS)辐射体,或者,柔性电路板(Flexible Printed Circuit,FPC)辐射体,或者印刷直接成型(Print Direct Structuring,PDS)辐射体、或者为金属枝节辐射体。当所述天线组件10应用于电子设备1时,所述第一辐射体110 可为利用所述电子设备1自身嵌件金属设计的结构件天线(Mechanical Design Antenna,MDA)辐射体。比如,所述第一辐射体110可利用所述电子设备1的塑胶及金属形成的中框320设计出来的天线辐射体。此外,所述第一辐射体110还可以为金属中框320设计出来的金属枝节天线辐射体。
可以理解的,本申请对于第一辐射体110的形状、构造及材质不做具体的限定,第一辐射体110的形状皆包括但不限于弯折装、条状、片状、杆状、涂层、薄膜等。当第一辐射体110呈条状时,本申请对于第一辐射体110的延伸轨迹不做限定,故第一辐射体110皆可呈直线、曲线、多段弯折等轨迹延伸。上述的第一辐射体110在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
请参阅图4,所述第一辐射体110呈弯折状,第一接地端1121和第一自由端1111不沿直线方向相对,但第一接地端1121和第一自由端1111为第一辐射体110的两个末端。在其他实施方式中,所述第一辐射体110的第一接地端1121与第一自由端1111为呈直线条形的第一辐射体110的相对两端。所述第一接地端1121电连接至地的方式包括但不限于直接电连接(比如焊接);或通过同轴线、微带线、射频线、导电弹片、导电胶、嵌件金属、或电子设备1的中框连料等方式间接电连接。
举例而言,所述电子设备1的中框320包括本体部321及边框部322。所述边框部322设置于所述本体部321的周缘,且所述边框部322与所述本体部321弯折相连。在一个实施方式中,所述第一辐射体110可形成于所述边框部322上。所述本体部321构成地极。所述第一接地端1121通过边框部322与本体部321之间的连料连接至所述本体部321,以接地。
本申请对于第一馈电点P1在第一辐射体110上的具体位置不做限定,只要所述第一馈电点P1位于所述第一接地端1121及所述第一自由端1111之间即可。
所述第一馈源S1电连接至所述第一馈电点P1的方式可以为但不仅限于为直接电连接(比如焊接);或通过同轴线、微带线、射频线、导电弹片、导电胶、等方式间接电连接。在本实施方式中,以所述第一馈源S1通过导电弹片的方式电连接至所述第一馈电点P1。
天线组件10自身具有参考地,也称为地极或地。该参考地的具体形式包括但不限于金属导电板件、成型于柔性电路板内部、硬质电路板中的金属导电层等。当天线组件10设于电子设备1内时,天线组件10的参考地电连接至电子设备1的参考地。再可选的,天线组件10本身不具有参考地,天线组件10的第一接地端1121通过直接电连接或通过导电件间接电连接至电子设备1的参考地或电子设备1内的电子器件的参考地。
所述LB频段的频段范围为703MHz-960MHz。需要说明的是,所述第一谐振模式支持LB频段,是指所述第一谐振模式支持LB频段中的部分频段,为了方便描述,将所述第一谐振模式支持的LB频段命名为第一LB频段。比如,所述第一谐振模式支持703MHz-960MHz中的部分频段,比如,B8频段或N8频段。相应的,所述第二谐振模式支持LB频段,是指所述第二谐振模式支持LB频段中的部分频段,为了方便描述,将所述第二谐振模式支持的LB频段命名为第二LB频段。比如,所述第二谐振模式支持703MHz-960MHz中的部分频段,比如,B28频段或N28频段。需要说明的是,所述第一谐振模式支持的第一LB频段及所述第二谐振模式支持第二LB频段为相同的制式,也可以为不同的制式。当所述第一谐振模式支持的第一LB频段及所述第二谐振模式支持的第二LB频段为相同的制式时:所述第一谐振模式支持B8频段,所述第二谐振模式支持B28频段;或者,所述第一谐振模式支持N8频段,所述第二谐振模式支持N28频段。当所述第一谐振模式支持的第一LB频段及所述第二谐振模式支持的第二LB频段为不同的制式时:所述第一谐振模式支持N8频段,所述第二谐振模式支持B28频段;或者,所述第一谐振模式支持B8频段,所述第二谐振模式支持N28频段。
本申请实施方式提供的天线组件10,所述第一馈源S1电连接至所述第一馈电点P1,以在所述第一辐射体110上激励起第一谐振模式及第二谐振模式,所述第一谐振模式及所述第二谐振模式均用于支持LB频段。因此,所述天线组件10中能够有较多谐振模式支持LB频段,所述天线组件10具有较好的通信性能。
在一实施方式中,所述第一辐射体110的两端与其他部件之间各具有缝隙,当所述天线组件10应用于所述电子设备1中时,两个缝隙不容易同时被握住或被遮挡。即便两个缝隙中的一者被遮挡时,两 个缝隙中的另一者未被遮挡,因此,使得所述第一辐射体110还可以收发所述LB频段的电磁波信号,因此,所述天线组件10具有较好的通信性能。当所述天线组件10应用于电子设备1时,所述第一辐射体110的一部分对应所述电子设备1的底边设置,另一部分可对应所述电子设备1的侧边设置。因此,当所述天线组件10应用于所述电子设备1时,比如,利用所述电子设备1打游戏等需要长时间握持的场景,所述第一辐射体110的两个缝隙不容易同时被用户的手握持或被用户的手遮挡。因此,当所述天线组件10应用于所述电子设备1中时,所述天线组件10具有抗手持、优异的双手游戏手持性能。
请进一步参阅图5及图6,图5为图4中所示的天线组件中第一谐振模式对应的主要电流流向示意图;图6为图4中所示的天线组件中第二谐振模式对应的主要电流流向示意图。需要说明的是,为了方便说明各个模式的主要特征表象,将各个谐振模式对应的电流进行单独示意,然,各个模式工作时,并不是完全独立的。然,不影响这里对各个谐振模式主要特征表象的阐述。此外,各个电流的流向仅为示意,不代表实际的电流强弱,且不代表两个流向相对的电流共同作用的电流零点的位置。
请参阅图5,所述第一谐振模式为所述第一馈电点P1至所述第一自由端1111的1/4波长模式。
在本实施方式中,所述第一谐振模式为所述第一馈电点P1至所述第一自由端1111的1/4波长模式。1/4波长模式为效率相对较高的谐振模式,故能够增强所述第一谐振模式支持的频段的收发效率。所述第一谐振模式对应的电流命名为第一电流I1,所述第一电流I1自所述第一馈电点P1流向所述第一自由端1111。
请参阅图6,所述第二谐振模式为所述第一馈电点P1至所述第一自由端1111的1/4波长,以及第一馈电点P1至所述第一接地端1121的1/4波长的对流模式。
在本实施方式中,所述第二谐振模式为所述第一馈电点P1至所述第一自由端1111的1/4波长,以及第一馈电点P1至所述第一接地端1121的1/4波长的对流模式。1/4波长模式为效率相对较高的谐振模式,故能够增强所述第二谐振模式支持的频段的收发效率。所述第二谐振模式对应的电流命名为第二电流,所述第二电流包括第一子电流I21及第二子电流I22,所述第一子电流I21自所述第一馈电点P1流向所述第一自由端1111,所述第二子电流I22自第一馈电点P1至所述第一接地端1121。
在本实施方式中,所述第一谐振模式所支持的频段的频率大于所述第二谐振模式所支持的频段的频率。换而言之,所述第一LB频段的频率大于所述第二LB频段的频率。即,所述第一谐振模式所支持的频段为LB频段的较高频段,所述第二谐振模式所支持的频段为LB频段中的较低频段。因此,所述天线组件10在可充分利用所述LB频段中频段相对较高的频段,以及利用所述LB频段中频段相对较低的频段,所述天线组件10所支持的LB频段的带宽较大。当所述天线组件10利用所述LB频段进行通信时,即便所述天线组件10在所述LB频段有频偏,由于所述天线组件10支持的LB频段的带宽较大,频偏后的频率也落在所述天线组件10所支持的LB频段的范围内,因此,当所述天线组件10利用所述LB频段进行通信时具有较好的通信性能。
在本实施方式中,所述第一谐振模式所支持的频段包括B8频段或N8频段,所述第二频段所支持的频段包括B28频段或N28频段。
当所述天线组件10与其他设备进行通信时,可充分利用B8频段或N8频段,以及B28频段或者N28频段与其他设备进行通信。
请再次参阅图4,所述第一辐射体110包括弯折相连的第一部111及第二部112。所述第一部111具有所述第一自由端1111,所述第二部112具有所述第一接地端1121,所述第一馈电点P1位于所述第一部111或第二部112,且邻近所述第一部111与所述第二部112弯折相连的拐角处设置。
所述第一辐射体110包括弯折相连的第一部111和第二部112,当所述天线组件10应用于电子设备1时,便于所述第一辐射体110在所述电子设备1中布局。比如,所述第一部111对应所述电子设备1的侧边设置,所述第二部112对应所述电子设备1的另一侧边(比如,底边)设置。
在本实施方式中,以所述第一馈电点P1位于所述第一部111为例进行示意,可以理解地,在其他实施方式中,所述第一馈电点P1也可位于所述第二部112,只要所述第一馈电点P1邻近所述第一部111与所述第二部112弯折相连的拐角处设置即可。
在其他实施方式中,若所述第一辐射体110为直条形状或类似直条形状辐射体,所述第一馈电点 P1位于所述第一辐射体110的中部,比如,所述第一馈电点P1位于到所述第一辐射体110相背的两端的距离相同或者近似相同(比如,相差小于或等于预设距离,所述预设距离可以为但不仅限于为10mm)。换而言之,所述第一辐射体110的中部为包括所述第一辐射体110的中点在内的部分,并不仅指的所述第一辐射体110的中点。本申请天线组件10中的第一辐射体110包括弯折相连的第一部111与第二部112,便于与所述天线组件10所应用的电子设备1的形态适配。所述第一部111与所述第二部112可分别与所述电子设备1弯折相连的两个边对应。
所述第一馈电点P1位于所述第一部111或者所述第二部112,且邻近所述第一部111与所述第二部112的拐角处,换而言之,所述第一馈电点P1邻近所述第一辐射体110的中部设置。所谓中部,是指,所述第一馈电点P1至所述第一自由端1111之间的辐射部分的等效电长度等于或近似等于所述第一馈电点P1到第一接地端1121之间的辐射部分的等效电长度。所谓近似等于,可以为但不仅限于为所述第一馈电点P1位于到所述第一辐射体110相背的两端的距离相差小于或等于预设距离,所述预设距离可以为但不仅限于为10mm。
所述第一馈源S1电连接至所述第一辐射体110的第一馈电点P1时,通常通过射频信号线与所述第一馈电点P1电连接。所述射频信号线的等效电阻通常较小(50欧姆)。所述第一馈电点P1位于所述第一部111或第二部112,且邻近所述第一部111与所述第二部112弯折相连的拐角处设置,可使得所述第一馈电点P1位于所述第一辐射体110上电流最强或者较强的部位。因此,所述第一辐射体110的等效阻抗较低。进而使得所述第一辐射体110的等效阻抗与连接第一馈源S1至所述第一辐射体110的射频信号线之间的阻抗较为匹配。因此,所述天线组件10中所述第一馈源S1与所述第一辐射体110组成的天线单元的辐射性能较好。可以理解地,当所述第一馈电点P1位于所述第一辐射体110的中部时,所述第一辐射体110的等效阻抗较低。进而使得所述第一辐射体110的等效阻抗与连接第一馈源S1至所述第一辐射体110的射频信号线之间的阻抗较为匹配。因此,所述天线组件10中所述第一馈源S1与所述第一辐射体110组成的天线单元的辐射性能较好。
请参阅图7,图7为本申请另一实施方式提供的天线组件的示意图。所述天线组件10还包括第二辐射体120、耦合辐射体130、第一调谐电路140、第二调谐电路150、及第二馈源S2。所述第二辐射体120具有第二自由端1211、第二接地端1212及第二馈电点P2。所述第二接地端1212接地,且所述第二接地端1212相较于所述第二自由端1211背离所述第一接地端1121设置。所述耦合辐射体130设置于所述第一接地端1121及所述第二自由端1211之间,且所述耦合辐射体130的一端与所述第一辐射体110形成第一缝隙130a,所述耦合辐射体130的另一端与所述第二辐射体120形成第二缝隙130b且耦合。所述耦合辐射体130具有第一连接点B1。所述第一调谐电路140电连接至所述第一接地端1121,还电连接所述耦合辐射体130的第一连接点B1,所述第一调谐电路140还电连接至地。所述第二调谐电路150电连接至所述第二辐射体120及地。所述第二馈源S2电连接所述第二馈电点P2,以在所述第二辐射体120及所述耦合辐射体130上激励起中高频(Middle Frequency Band and High Frequency Band,MHB)频段的双谐振。
所述第二辐射体120可以为但不仅限于为激光直接成型(Laser Direct Structuring,LDS)辐射体,或者,柔性电路板(Flexible Printed Circuit,FPC)辐射体,或者印刷直接成型(Print Direct Structuring,PDS)辐射体、或者为金属枝节辐射体。当所述天线组件10应用于电子设备1时,所述第二辐射体120可为利用所述电子设备1自身嵌件金属设计的结构件天线(Mechanical Design Antenna,MDA)辐射体。比如,所述第二辐射体120可利用所述电子设备1的金属中框320设计出来的结构件天线辐射体。
可以理解的,本申请对于第二辐射体120的形状、构造及材质不做具体的限定,第二辐射体120的形状皆包括但不限于弯折装、条状、片状、杆状、涂层、薄膜等。当第二辐射体120呈条状时,本申请对于第二辐射体120的延伸轨迹不做限定,故第二辐射体120皆可呈直线、曲线、多段弯折等轨迹延伸。上述的第二辐射体120在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
所述第二接地端1212电连接至地的方式包括但不限于直接电连接(比如焊接);或通过同轴线、微带线、射频线、导电弹片、导电胶、嵌件金属、或电子设备1的中框连料等方式间接电连接。举例而 言,所述电子设备1的中框320包括本体部321及边框部322。所述边框部322设置于所述本体部321的周缘,且所述边框部322与所述本体部321弯折相连。在一个实施方式中,所述第二辐射体120可形成于所述边框部322上。所述本体部321构成地极。所述第二接地端1212通过边框部322与本体部321之间的连料连接至所述本体部321,以接地。
本申请对于第二馈电点P2在第二辐射体120上的具体位置不做限定,只要所述第二馈电点P2位于所述第二自由端1211即可。
所述第二馈源S2电连接至所述第二馈电点P2的方式可以为但不仅限于为直接电连接(比如焊接);或通过同轴线、微带线、射频线、导电弹片、导电胶、等方式间接电连接。在本实施方式中,以所述第二馈源S2通过导电弹片的方式电连接至所述第二馈电点P2。
所述耦合辐射体130可以为但不仅限于为激光直接成型(Laser Direct Structuring,LDS)辐射体,或者,柔性电路板(Flexible Printed Circuit,FPC)辐射体,或者印刷直接成型(Print Direct Structuring,PDS)辐射体、或者为金属枝节辐射体。当所述天线组件10应用于电子设备1时,所述耦合辐射体130可为利用所述电子设备1自身嵌件金属设计的结构件天线(Mechanical Design Antenna,MDA)辐射体。比如,所述耦合辐射体130可利用所述电子设备1的金属中框320设计出来的结构件天线辐射体。
可以理解的,本申请对于耦合辐射体130的形状、构造及材质不做具体的限定,耦合辐射体130的形状皆包括但不限于弯折装、条状、片状、杆状、涂层、薄膜等。当耦合辐射体130呈条状时,本申请对于耦合辐射体130的延伸轨迹不做限定,故耦合辐射体130皆可呈直线、曲线、多段弯折等轨迹延伸。上述的耦合辐射体130在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
所述耦合辐射体130设置于所述第一接地端1121及所述第二自由端1211之间,且所述耦合辐射体130与所述第二自由端1211耦合。
所述耦合辐射体130的一端与所述第一辐射体110形成第一缝隙130a,所述耦合辐射体130的另一端与所述第二辐射体120形成第二缝隙130b且耦合。可选地,所述耦合辐射体130与所述第一接地端1121所在的部分(第二部112)可沿直线排列,或大致沿直线排列。所述耦合辐射体130与所述第一接地端1121所在的部分大致沿着直线排列的情况包括但不仅限于所述耦合辐射体130体与所述第一接地端1121所在的部分在设计或制造过程中有存在较小的公差导致的,或者是特意设置的。
所述耦合辐射体130与所述第二自由端1211具有第二缝隙130b,所述耦合辐射体130与所述第二自由端1211端能够通过所述第二缝隙130b产生容性耦合。可选地,所述耦合辐射体130与所述第二自由端1211端所在的部分可沿直线排列,或者大致沿直线排列,只要满足所述耦合辐射体130能够与所述第二自由端1211耦合即可。所述耦合辐射体130与所述第二自由端1211所在的部分大致沿着直线排列的情况包括但不仅限于所述耦合辐射体130体与所述第二自由端1211所在的部分在设计或制造过程中有存在较小的公差导致的,或者是特意设置的。
在一实施方式中,所述第二缝隙130b的宽度可以为0.5~2mm,但不限于此尺寸。当所述第二缝隙130b的宽度为0.5~2mm时,可使得所述耦合辐射体130与所述第二自由端1211具有较好的耦合效果。
需要说明的是,前面所述的耦合即“容性耦合”。所谓“容性耦合”是指,两个辐射体之间产生电场,一辐射体的信号能够通过电场传递至另一辐射体,相应的,所述另一辐射体的信号能够通过电场传递至所述一辐射体,以使得两个辐射体即使在不直接接触或不直接连接的情况下也能够实现电信号的导通。举例而言,所述耦合辐射体130与所述第二辐射体120的第二自由端1211耦合,是指,所述耦合辐射体130与所述第二辐射体120的第二自由端1211产生电场,所述第二辐射体120的第二自由端1211的信号能够通过电场传递至耦合辐射体130,相应的,所述耦合辐射体130的信号能够通过电场传递至所述第二辐射体120的第二自由端1211,以使得第二辐射体120和耦合辐射体130即使在不直接接触或不直接连接的情况下也能够实现电信号的导通。
由于所述第一调谐电路140电连接至所述第一辐射体110,因此,所述第一调谐电路140可对所述LB频段进行调谐和解耦。此外,所述第一调谐电路140还电连接至所述耦合辐射体130,所述耦合辐射体130与所述第二辐射体120耦合,因此,所述第一切换开关152还对所述MHB频段进行调谐。由 此可见,所述第一调谐电路140可便于对所述LB频段及所述MHB频段的调谐,可较好的兼顾支持LB频段的天线及支持MHB频段的天线的性能。此外,相较于利用两个第一调谐电路140分别对于LB频段及MHB频段进行调谐而言,本申请实施方式提供的天线组件10可利用一个第一调谐电路140就可实现相应功能,因此可节约成本。
所述MHB频段的频段范围1710MHz-2690MHz。所述MHB频段通常包括中频(Middle Frequency band,MB)频段和高频(High Frequency Band,HB)频段。所述MB频段的频段范围为1710MHz-2170MHz。所述HB频段的频段范围为2300MHz-2690MHz。所述第二馈源S2电连接所述第二馈电点P2,以激励MHB频段的双谐振,所述双谐振中的一个谐振模式用于支持所述MHB频段中的部分频段,所述双谐振中的另一个谐振模式用于支持MHB频段中的另外部分频段。具体地,所述MHB频段的双谐振包括:一个谐振模式用于支持MB频段,另一谐振模式用于支持HB频段;或者,一个谐振模式用于支持MB频段,另一谐振模式也用于支持MB频段;或者,一个谐振模式用于支持HB频段,另一谐振频段用于支持HB频段。
所述第一馈源S1电连接至第一辐射体110的第一馈电点P1,所述第二馈源S2电连接至第二辐射体120的第二馈电点P2,第一馈电点P1和第二馈电点P2分开。换而言之,LB频段及MHB频段的馈电为分开馈电,因此,可更好地支持载波聚合(Carrier Aggregation,CA)。
所述第二辐射体120及所述耦合辐射体130在所述第一调谐电路140及所述第二调谐电路150的共同作用下,所述第二馈源S2容易激励起MHB频段的双谐振。因此,可有利于拓展所述天线组件10所支持的MHB频段的带宽,并有利于载波聚合(Carrier Aggregation,CA)、双卡及单波段等场景。
举例而言,在CA场景下,所述第二馈源S2激励起的双谐振,其中一个谐振模式用于支持MB频段,另一个谐振模式用于支持HB频段。
双卡场景,可以包括双卡双通(Dual SIM dual active,DSDA),或者双接受模式双卡双待(Dual Receive Dual SIM Dual Standby,DR-DSDS)。其中,DSDA是指两个卡可同时工作,然,两个卡支持的频段不同换而言之,两个卡中的一个卡可支持频段a,另一个卡壳支持频段b,频段a和频段b不属于同一个频段。此外,对于DSDA,其中一个卡即可发射信号,也可接收信号;另一个卡也即可发射信号,也可接收信号。其中,DR-DSDS是指两个卡中的一个卡可发射信号,且可接收信号;另一个卡只可接收信号,不可发射信号。
在单波段场景下,所述第二馈源S2激励起的双谐振,其中一个谐振模式用于支持MB频段,且另外一个谐振模式也用于支持MB频段。或者,在单波段场景下,所述第二馈源S2激励起的双谐振,其中一个谐振模式用于支持HB频段,且另外一个谐振模式也用于支持HB频段。
在本实施方式中,所述第二调谐电路150电连接至所述第二馈电点P2。在其他实施方式中,所述第二调谐电路150电连接至所述第二辐射体120,且所述第二调谐电路150电连接至所述第二辐射体120的连接点不同于所述第二馈电点P2,此种实施方式稍后详细介绍。
当所述第二调谐电路150电连接至所述第二馈电点P2时,所述第二调谐电路150和所述第二馈源S2可共用一个电连接件(比如,导电弹片)电连接至所述第二辐射体120,而不用使用两个单独的导电件,因此,可减小所述天线组件10的成本。
本申请实施方式提供的天线组件10,所述第一调谐电路140与所述第二调谐电路150的共同作用下,所述第二馈源S2在所述第二辐射体120及所述耦合辐射体130比较容易形成MHB频段的双谐振。所述第二馈源S2可在所述第二辐射体120与所述耦合辐射体130上激励起MHB频段的双谐振,因此,所述天线组件10可支持MHB频段,所述天线组件10具有较好的通信功能。需要说明的是,当所述第二辐射体120及所述耦合辐射体130共同支持MHB频段时,所述第二辐射体120为主辐射枝节,所述耦合辐射体130为耦合枝节,即为次要辐射枝节。
此外,所述第二辐射体120与所述耦合辐射体130共同支持所述MHB频段,因此,当所述天线组件10应用于电子设备1中时,较难将所述第二辐射体120及所述耦合辐射体130同时握持或遮挡,因此,所述天线组件10所应用的电子设备1在被单手或双手握持或遮挡时,所述天线组件10仍然在MHB频段具有较好的辐射性能。
在一实施方式中,当所述天线组件10应用于电子设备1中时,所述第二辐射体120及所述耦合辐射体130位于所述电子设备1的底部。所述耦合辐射体130通常对应所述电子设备1的底边的中部设置。因此,所述天线组件10所应用的电子设备1在被握持时,所述耦合辐射体130通常不容易被单手握持或被遮挡住,因此,具有较好的单手人手效果。此外,所述第二辐射体120及所述耦合辐射体130位于所述电子设备1的底部时,当所述电子设备1被使用(比如打电话等场景)时,通常远离用户的头部,不容易对用户的头部造成较大辐射,因此,当所述天线组件10应用于电子设备1中时,所述第二辐射体120及所述耦合辐射体130位于所述电子设备1的底部,所述耦合辐射体130通常对应所述电子设备1的底边的中部设置,从而使得所述天线组件1具有较好的头手性能及人头性能。综上,所述天线组件10具有较好的人手性能、人头性能、人头手性能。
此外,所述第一调谐电路140与所述第二调谐电路150的共同作用下,所述第二馈源S1在所述第二辐射体120及所述耦合辐射体130比较容易形成MHB频段的双谐振。本申请实施方式中的天线组件10有两个辐射体(第二辐射体120及耦合辐射体130)支持MHB频段,且所述MHB频段具有双谐振,因此,所述天线组件10所支持的MHB频段具有较宽的带宽。进一步地,即便所述天线组件10所应用的电子设备1被用户握持或遮挡造成频偏时,由于所述天线组件10所支持的MHB频段的带宽较宽,MHB频段的谐振频点即便有所偏移,则仍然可落在所述带宽范围内,进而保证了利用MHB频段通信由于被单手或双手握持或遮挡造成的频偏时的通信性能。
所述第一辐射体110、所述耦合辐射体130及所述第二辐射体120构成的整体具有中心线L0,所述中心线L0穿过所述耦合辐射体130,且所述第一缝隙130a及所述第二缝隙130b分别位于所述中心线L0的两侧。
当所述天线组件10应用于电子设备1中时,所述第一辐射体110、所述耦合辐射体130及所述第二辐射体120构成的整体的中心线L0与所述电子设备1的中轴线L1(参见图33沿长度方向延伸,且穿过电子设备1的短边的中点O)重合或大致重合。
当用户用手握持所述电子设备1时,用户的拇指通常会握持到中心线L0或近似中心线L0的位置。本申请实施方式提供的天线组件10,所述第一缝隙130a及所述第二缝隙130b分别位于所述中心线L0的两侧,因此,所述第一缝隙130a及所述第二缝隙130b不易被用户的手遮挡或握住,或者,所述第一缝隙130a及所述第二缝隙130b不易同时被用户的手遮挡或握住,那么,所述天线组件10的辐射性能较好。当所述天线组件10所应用的电子设备1被横屏使用时,所述第一缝隙130a及所述第二缝隙130b不易被用户的手遮挡或握住,或者,所述第一缝隙130a及所述第二缝隙130b不易同时被用户的手遮挡或握住,那么,所述天线组件10所应用的电子设备1的横屏效果较好。
请参阅图8,图8为图7中所示的天线组件中一实施方式中的第二调谐电路的示意图。所述第二调谐电路150包括多个第一调谐子电路151及第一切换开关152。每个第一调谐子电路151的一端接地。所述第一切换开关152具有公共端1521、多个第一连接端1522及第一切换部1523。所述公共端1521电连接至所述第二馈电点P2,所述第一连接端1522电连接至所述第一调谐子电路151的另一端,且不同的第一连接端1522电连接至不同的第一调谐子电路151,所述第一切换部1523电连接至所述公共端1521,且所述第一切换部1523还在控制信号的控制下电连接至所述多个第一连接端1522的一者。
所述第二调谐电路150用于调节所述第二辐射体120的电长度,进而调整所述第二辐射体120所支持的电磁波信号的频段及谐振频点。
所述第一调谐子电路151包括电容,或电感,或电容和电感的组合。在一实施方式中,每个第一调谐子电路151不同,以使得当不同的第一调谐子电路151单独电连接至所述第二辐射体120时,对所述第二辐射体120的电长度的调节程度不同。需要说明的是,这里所指的每个第一调谐子电路151不同,可以为每个第一调谐子电路151所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,然,器件的参数(如电容值,或电感L值)不同。
需要说明的是,本实施方式提供的第二调谐电路150的电路结构示意图不应当理解为对本申请实施方式提供的第二调谐电路150的结构的限定,所述第二调谐电路150除了包括本申请实施方式的示意图中所示的结构之外,还可包括其他的匹配(如,电容,或电感,或电容和电感的组合)。即,本申请 实施方式提供的第二调谐电路150包括但不仅限于包括上述的所述多个第一调谐子电路151及所述第一切换开关152。
需要说明的是,本申请实施方式提供的天线组件10中的第二馈源S2的馈路上还有其他匹配(如,电容,或电感,或电容和电感的组合),即,本申请实施方式提供的天线组件10包括但不仅限于包括上述第二调谐电路150。为了清晰地阐述,本申请实施方式及示意图中省略了其他匹配。
所述第一调谐子电路151的数目为多个(n个),其中,n大于或等于两个,在本实施方式的示意图中,以所述多个第一调谐子电路151的数目为四个为例进行示意,可以理解地,不应当构成对本申请实施方式提供的第二调谐电路150的限定。所述第一切换开关152为单刀多掷开关(SPnT)。由于本实施方式中以所述第一调谐子电路151的数目为四个为例进行示意,相应的,所述第一切换开关152为单刀四掷开关(SP4T),可以理解地,不应当构成对本申请实施方式提供的第二调谐电路150的限定。
所述第一切换开关152为单刀多掷开关。换而言之,多个第一调谐子电路151共用了一个第一切换开关152。在其他实施方式中,每个第一调谐子电路151采用单独的开关控制。当多个第一调谐子电路151共用所述第一切换开关152时,所述第一切换开关152的数目较少,因此,所述天线组件10具有较小的体积,具有较小的成本。后面的实施方式中,部分切换开关以单刀多掷开关为例进行描述及示意,可以理解地,也可以采用多个开关来实现。
所述第一切换部1523电连接至所述公共端1521,且所述第一切换部1523在控制信号的控制下电连接至所述多个第一连接端1522的一者,以将所述多个第一调谐子电路151中的一者电连接至所述第二馈电点P2。当所述第一切换部1523在控制信号的控制下电连接至不同的第一连接端1522时,不同的第一调谐子电路151被电连接至所述第二馈电点P2,从而使得对所述第二辐射体120的电长度的调节效果不同。换而言之,当不同的第一调谐子电路151通过所述第一切换部1523电连接至所述第二馈电点P2时,所述第二辐射体120的电长度不同。由此可见,本申请实施方式提供的天线组件10通过设计第二调谐电路150,可调整所述第二辐射体120的电长度,进而对所述第二辐射体120所支持的频段及谐振频点进行调节。
请参阅图9,图9为图7中所示的天线组件中另一实施方式中的第二调谐电路的示意图。所述第二调谐电路150包括第二调谐子电路153、第三调谐子电路154、多个第四调谐子电路155、第五调谐子电路156及第一切换开关152。所述第二馈源S2电连接所述第二调谐子电路153至所述第二馈电点P2。所述第二调谐子电路153的一端电连接至所述第二馈源S2与所述第一调谐子电路151的连接点。所述第四调谐子电路155的一端接地。所述第五调谐子电路156的一端电连接至所述第二馈电点P2,另一端接地。所述第一切换开关152具有公共端1521、多个第一连接端1522及第一切换部1523。所述公共端1521电连接至所述第二馈电点P2,所述多个第一连接端1522中的一者电连接至所述第三调谐子电路154的另一端,其余第一连接端1522中电连接至所述第四调谐子电路155的另一端,且不同的第四调谐子电路155电连接不同的第一连接端1522,所述第一切换部1523电连接至所述公共端1521,且所述第一切换部1523还在控制信号的控制下电连接至所述多个第一连接端1522的一者。
所述第二调谐电路150用于调节所述第二辐射体120的电长度,进而调整所述第二辐射体120所支持的电磁波信号的频段及谐振频点。
所述第二调谐子电路153包括电容,或电感,或电容和电感的组合。所述第三调谐子电路154包括电容,或电感,或电容和电感的组合。所述第四调谐子电路155包括电容,或电感,或电容和电感的组合。所述第五调谐子电路156包括电容,或电感,或电容和电感的组合。
在一实施方式中,每个第四调谐子电路155不同,以使得当不同第四调谐子电路155电连接至所述第二辐射体120时,对所述第二辐射体120的电长度的调节程度不同。需要说明的是,这里所指的每个第四调谐子电路155不同,可以为每个第四调谐子电路155所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,然,器件的参数(如电容值,或电感L值)不同。
需要说明的是,本实施方式提供的第二调谐电路150的电路结构示意图不应当理解为对本申请实 施方式提供的第二调谐电路150的结构的限定,所述第二调谐电路150除了包括本申请实施方式的示意图中所示的结构之外,还可包括其他的匹配(如,电容,或电感,或电容和电感的组合)。即,本申请实施方式提供的第二调谐电路150包括但不仅限于包括上述的所述第二调谐子电路153、第三调谐子电路154、多个第四调谐子电路155、第五调谐子电路156及第一切换开关152。
需要说明的是,本申请实施方式提供的天线组件10中的第二馈源S2的馈路上还有其他匹配(如,电容,或电感,或电容和电感的组合),即,本申请实施方式提供的天线组件10包括但不仅限于包括上述第二调谐电路150。为了清晰地阐述,本申请实施方式及示意图中省略了其他匹配。
所述第四调谐子电路155的个数为一个或多个(即大于或等于两个)。在本实施方式的示意图中,以所述第四调谐子电路155的个数为三个为例进行示意,可以理解地,不应当构成对本申请实施方式提供的第二调谐电路150的限定。所述第一切换开关152为单刀多掷开关(SPnT)。本实施方式中以所述第一切换开关152为单刀四掷开关(SP4T)为例进行示意,可以理解地,不应当构成对本申请实施方式提供的第二调谐电路150的限定。
当所述第一切换部1523在控制信号的控制下电连接至不同的第一连接端1522时,不同的调谐子电路(第三调谐子电路154、或第四调谐子电路155)被电连接至所述第二馈电点P2,从而使得对所述第二辐射体120的电长度的调节效果不同。换而言之,当不同的调谐子电路通过所述第一切换部1523电连接至所述第二馈电点P2时,所述第二辐射体120的电长度不同。由此可见,本申请实施方式提供的天线组件10通过设计第二调谐电路150,可调整所述第二辐射体120的电长度,进而对所述第二辐射体120所支持的频段及谐振频点进行调节。
请参阅图10,图10为图7中所示的天线组件中再一实施方式中的第二调谐电路的示意图。所述第二调谐电路150包括第二调谐子电路153、第三调谐子电路154、多个第四调谐子电路155、第五调谐子电路156及第一切换开关152。所述第二馈源S2电连接所述第二调谐子电路153至所述第二馈电点P2。所述第二调谐子电路153的一端电连接至所述第二馈源S2与所述第一调谐子电路151的连接点。所述第四调谐子电路155的一端接地。所述第五调谐子电路156的一端电连接至所述第二馈电点P2,另一端电连接所述多个第四子电路中的一个第四调谐子电路155的另一端。所述第一切换开关152具有公共端1521、多个第一连接端1522及第一切换部1523,所述公共端1521电连接至所述第二馈电点P2,所述多个第一连接端1522中的一者电连接至所述第三调谐子电路154的另一端,其余第一连接端1522中电连接至所述第四调谐子电路155的另一端,且不同的第四调谐子电路155电连接不同的第一连接端1522,所述第一切换部1523电连接至所述公共端1521,且所述第一切换部1523还在控制信号的控制下电连接至所述多个第一连接端1522的一者。
所述第二调谐电路150用于调节所述第二辐射体120的电长度,进而调整所述第二辐射体120所支持的电磁波信号的频段及谐振频点。
所述第二调谐子电路153包括电容,或电感,或电容和电感的组合。所述第三调谐子电路154包括电容,或电感,或电容和电感的组合。所述第四调谐子电路155包括电容,或电感,或电容和电感的组合。所述第五调谐子电路156包括电容,或电感,或电容和电感的组合。
在一实施方式中,每个第四调谐子电路155不同,以使得当不同第四调谐子电路155电连接至所述第二辐射体120时,对所述第二辐射体120的电长度的调节程度不同。需要说明的是,这里所指的每个第四调谐子电路155不同,可以为每个第四调谐子电路155所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,然,器件的参数(如电容值,或电感L值)不同。
需要说明的是,本实施方式提供的第二调谐电路150的电路结构示意图不应当理解为对本申请实施方式提供的第二调谐电路150的结构的限定,所述第二调谐电路150除了包括本申请实施方式的示意图中所示的结构之外,还可包括其他的匹配(如,电容,或电感L,或电容和电感L的组合)。即,本申请实施方式提供的第二调谐电路150包括但不仅限于包括上述的所述第二调谐子电路153、第三调谐子电路154、多个第四调谐子电路155、第五调谐子电路156及第一切换开关152。
需要说明的是,本申请实施方式提供的天线组件10中的第二馈源S2的馈路上还有其他匹配(如, 电容,或电感L,或电容和电感L的组合),即,本申请实施方式提供的天线组件10包括但不仅限于包括上述第二调谐电路150。为了清晰地阐述,本申请实施方式及示意图中省略了其他匹配。
所述第四调谐子电路155的个数为一个或多个(即大于或等于两个)。在本实施方式的示意图中,以所述第四调谐子电路155的个数为三个为例进行示意,可以理解地,不应当构成对本申请实施方式提供的第二调谐电路150的限定。所述第一切换开关152为单刀多掷开关(SPnT)。本实施方式中以所述第一切换开关152为单刀四掷开关(SP4T)为例进行示意,可以理解地,不应当构成对本申请实施方式提供的第二调谐电路150的限定。
当所述第一切换部1523在控制信号的控制下电连接至不同的第一连接端1522时,不同的调谐子电路(第三调谐子电路154、或第四调谐子电路155)被电连接至所述第二馈电点P2,从而使得对所述第二辐射体120的电长度的调节效果不同。换而言之,当不同的调谐子电路通过所述第一切换部1523电连接至所述第二馈电点P2时,所述第二辐射体120的电长度不同。由此可见,本申请实施方式提供的天线组件10通过设计第二调谐电路150,可调整所述第二辐射体120的电长度,进而对所述第二辐射体120所支持的频段进行调节。
由图8、图9及图10以及相关附图对应的实施方式可见,图8中的所述多个第一调谐子电路151采用并联的设置方式;图9及图10中,第三调谐子电路154为串联的连接方式,所述多个第四子调节电路为并连的连接方式。由此可见,本申请实施方式提供的第二调谐电路150中的各个调谐子电路可采用并联,或者串联,或者既串又并的连接方式。
进一步地,结合图9及其对应的实施方式,或结合图10及其对应的实施方式,第二调谐子电路153包括第一电容C1,所述第三调谐子电路154包括第二电容C2。当所述第一切换部1523电连接至所述第四调谐子电路155中的任一者时,所述天线组件10支持所述MB频段。当所述第一切换部1523电连接至所述第三调谐子电路154时,所述天线组件10支持HB频段。具体地,当所述第一切换部1523电连接至所述第四调谐子电路155中的任一者时,所述天线组件10的第二辐射体120支持所述MB频段。当所述第一切换部1523电连接至所述第三调谐子电路154时,所述天线组件10的第二辐射体120支持所述HB频段。需要说的是,当支持MB频段或HB频段时,电连接至所述第二馈电点P2的第二调谐电路150对所述第二辐射体120的电长度进行调节,使得所述第二辐射体120更好的支持MB频段或HB频段。
所述第二调谐子电路153包括第一电容C1,所述第二馈源S2通过第一电容C1电连接至所述第二馈电点P2,因此,所述第二馈源S2通过所述第一电容C1进行容性馈电。当所述第一切换部1523电连接至所述第四调谐子电路155中的任一者时,所述第二调谐子电路153与所述第二馈电点P2断开,也就是,所述第二电容C2未电连接至所述第二辐射体120。换而言之,所述第二调谐电路150利用所述第四调谐子电路155对所述第二辐射体120的电长度进行调节(调谐),所述天线组件10支持MB频段。
当所述第一切换部1523电连接至所述第四调谐子电路155中的任一者时,所述天线组件10支持MB频段。需要说明的是,当所述第四调谐子电路155的数目为大于或等于两个时,所述第一切换部1523电连接至不同的第四调谐子电路155时,所述天线组件10所支持MB频段中的子频段不同;或者,所述天线组件10所支持的MB频段中的子频段相同,然,所支持的子频段的谐振频点不同。
当所述第一切换部1523电连接至所述第三调谐子电路154时,所述第一电容C1和所述第二电容C2并联,所述第一电容C1与所述第二电容C2并联形成并联单元,并联单元的电容值大于所述第一电容C1的电容值,所述第二馈源S2通过所述第一电容C1与所述第二电容C2形成的并联单元对所述第二辐射体120进行馈电,以使得所述第二辐射体120支持所述HB频段。换而言之,使得所述天线组件10支持所述HB频段。所述HB频段可以为但不仅限于为B41频段,或N41频段。
下面将结合附图对本申请实施方式提供的天线组件10中的第一调谐电路140的结构进行介绍。请参阅图11及图12,图11为图7中所示的天线组件中一实施方式中的第一调谐电路的示意图;图12为图7中所示的天线组件中另一实施方式中的第一调谐电路的示意图。所述第一调谐电路140包括至少一个第六调谐子电路141、至少一个第二切换开关142、至少一个第七调谐子电路143及至少一个第三切 换开关144。所述至少一个第六调谐子电路141的一端电连接至所述第一辐射体110,具体为连接至所述第一辐射体110的连接点B0。所述第二切换开关142具有第二连接端1421、第三连接端1422及第二切换部1423。所述第二连接端1421接地,所述第三连接端1422电连接至所述第六调谐子电路141的另一端,且不同的第三连接端1422电连接至不同的第六调谐子电路141,所述第二切换部1423电连接所述第二连接端1421或所述第三连接端1422,所述第二切换部1423在控制信号的控制下连通或断开所述第二连接端1421及第三连接端1422。在本实施方式的示意图中,以所述第二切换部1423电连接所述第三连接端1422为例进行示意。所述至少一个第七调谐子电路143的一端电连接至所述耦合辐射体130的第一连接点B1。所述第三切换开关144具有第四连接端1441、第五连接端1442及第三切换部1443。所述第四连接端1441接地,第五连接端1442电连接至所述第七调谐子电路143的另一端,且不同的第五连接端1442电连接至不同的第七调谐子电路143,所述第三切换部1443电连接所述第四连接端1441或第五连接端1442,所述第二切换部1423在控制信号的控制下连通或断开所述第四连接端1441及第五连接端1442。在本实施方式的示意图中,以所述第三切换部1443电连接至所述第五连接端1442为例进行示意。
由于所述第一切换开关152的一部分电连接至所述第一辐射体110的第一馈电点P1(具体为,第六调节电路可通过第二切换开关142电连接至所述第一辐射体110的第一馈电点P1),因此,所述第一调谐电路140可调节所述第一辐射体110的电长度,进而调整所述第一辐射体110所支持的电磁波信号的频段及谐振频点。在本实施方式中,第一调谐电路140可调节所述第一辐射体110所支持的LB频段的各个子频段及谐振频点。此外,所述第一切换开关152的另外部分电连接至所述耦合辐射体130的第一连接点B1(具体为,所述第七调谐子电路143可通过所述第三切换开关144电连接至所述耦合辐射体130的第一连接点B1),因此,所述第一调谐电路140还可调节所述耦合辐射体130的电长度,进而调整所述第二辐射体120及所述耦合辐射体130共同支持的电磁波信号的频段及谐振频点。在本实施方式中,所述第一调谐电路140可调节所述第二辐射体120及所述耦合辐射体130共同支持的MHB频段中的各个子频段及子频段的谐振频点。
由此可见,本申请实施方式提供的第一调谐电路140电连接至所述第一辐射体110,且还电连接至所述耦合辐射体130,便于对所述第一辐射体110支持的LB频段进行调谐和解耦,且便于对所述第二辐射体120及所述耦合辐射体130支持的MHB频段进行调谐和解耦。本申请实施方式中对第一辐射体110及所述耦合辐射体130无需设置两个单独调谐器件,进而减小了成本。
在图11中,以所述第六调谐子电路141的数目为三个且所述第七调谐子电路143的数目为一个为例进行示意,可以理解地,图示中所述第六调谐子电路141的图示数目不应当理解为对本申请实施方式提供的第六调节子数目的限定及不应当理解为对所述第七调谐子电路143数目的限定。图12中,以所述第六调谐子电路141的数目为两个且所述第七调谐子电路143的数目为两个为例进行示意,可以理解地,图示中所述第六调谐子电路141的图示数目不应当理解为对本申请实施方式提供的第六调节子数目的限定及不应当理解为对所述第七调谐子电路143数目的限定。
所述第六调谐子电路141包括电容,或电感L,或电容和电感L的组合。所述第七调谐子电路143包括电容,或电感L,或电容和电感L的组合。
在一实施方式中,当所述第六调谐子电路141为多个时,每个第六调谐子电路141不同,以使得当不同第六调谐子电路141电连接至所述耦合辐射体130时,对所述耦合辐射体130的电长度的调节程度不同。需要说明的是,这里所指的每个第六调谐子电路141不同,可以为每个第六调谐子电路141所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,然,器件的参数(如电容值,或电感L值)不同。
相应的,在一实施方式中,当所述第七调谐子电路143为多个时,每个第七调谐子电路143不同,以使得当不同第七调谐子电路143电连接至所述第二辐射体120时,对所述第二辐射体120的电长度的调节程度不同。需要说明的是,这里所指的每个第七调谐子电路143不同,可以为每个第七调谐子电路143所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,然,器件的参数(如电容值,或电感L值)不同。
需要说明的是,由于低频频段中的子频段较多,因此,为了实现对低频频段较好调节,所述第六调谐子电路141的数目通常大于或等于两个。
请参阅图13及图14,图13为图7中所示的天线组件中再一实施方式中的第一调谐电路的示意图;图14为图7中所示的天线组件中又一实施方式中的第一调谐电路的示意图。所述第一调谐电路140还包括第八调谐子电路145及第九调谐子电路146中的至少一个。所述第一调谐电路140还包括第八调谐子电路145及第九调谐子电路146中的至少一个,包括:所述第一调谐电路140包括第八调谐子电路145;或者,所述第一调谐电路140包括第九调谐子电路146;或者,所述第一调谐电路140包括第八调谐子电路145及第九调谐子电路146。在本实施方式的示意图中,以所述第一调谐电路140包括第八调谐子电路145及第九调谐子电路146为例进行示意。所述第八调谐子电路145的一端接地,另一端电连接至所述第一辐射体110。所述第九调谐子电路146的一端接地,另一端电连接至所述耦合辐射体130的第一连接点B1。
所述第八调谐子电路145包括电容,或电感,或电容和电感的组合。所述第九调谐子电路146包括电容,或电感,或电容和电感的组合。
当所述第一调谐电路140包括所述第八调谐子电路145,所述第八调谐子电路145电连接至所述第一辐射体110,当所述第二切换开关142全部断开时,所述第八调谐子电路145仍然可对所述第一辐射体110支持的LB频段进行调谐。此外,由于所述第八调谐子电路145直接电连接至所述第一辐射体110而并非通过开关电连接至所述第一辐射体110,因此,所述第八调谐子电路145对所述第一辐射体110支持的低频频段进行调谐时的损耗较小。
需要说明的是,当所述第二切换开关142将第六调谐子电路141电连接至所述第一辐射体110时,所述第八调谐子电路145及电连接至所述第一辐射体110的第六调谐子电路141共同对所述第一辐射体110支持的LB频段进行调谐。
当所述第一调谐电路140包括所述第九调谐子电路146,所述第九调谐子电路146电连接至所述耦合辐射体130,当所述第三切换开关144全部断开时,所述第九调谐子电路146仍然可对所述耦合辐射体130及所述第二辐射体120支持的MHB频段进行调谐。此外,由于所述第九调谐子电路146直接电连接至所述耦合辐射体130而并非通过开关电连接至所述耦合辐射体130,因此,所述第九调谐子电路146对所述耦合辐射体130及所述第二辐射体120所支持的MHB频段进行调谐时的损耗较小。
需要说明的是,当所述第三切换开关144将第七调谐子电路143电连接至所述第一辐射体110时,所述第九调谐子电路146及电连接至所述第耦合辐射体130的第七调谐子电路143共同对所述耦合辐射体130及所述第二辐射体120所支持的MHB频段进行调谐。
请参阅图15,图15为本申请另一实施方式提供的天线组件应用到电子设备时的示意图。所述第七调谐子电路143包括第三电容,所述第一调谐电路140还包括第九调谐子电路146,所述第九调谐子电路146包括第四电容。所述天线组件10还包括电感L及电磁波吸收比(Specific Absorption Rate,SAR)传感器160(也称为,SAR芯片,或SAR IC)。所述电感L电连接至所述耦合辐射体130的第一连接点B1。所述SAR传感器160电连接所述电感L,且所述SAR传感器160用于将所述耦合辐射体130检测到的电容值的变化输出。在本实施方式中,所述SAR传感器160与电子设备1中的处理器90电连接,以将所述耦合辐射体130检测到的电容值的变化输出至所述处理器90。具体情况稍后详细描述。
需要说明的是,本实施方式的示意图中所述天线组件10还包括电感L及SAR传感器160结合到前面一种实施方式提供的第一调谐电路140中为例进行示意,可以理解地,所述天线组件10还包括电感L及SAR传感器160还可结合到前面任意一种实施方式提供的第一调谐电路140中。综上所述,所述天线组件10中可包括一个SAR传感器160,也可包括两个SAR传感器160。所述天线组件10中包括一个SAR传感器160时,所述SAR传感器160结合到第一调谐电路140中;或者,所述天线组件10中包括一个所述SAR传感器160,所述SAR传感器160结合到所述第二调谐电路150中。当所述天线组件10中包括两个所述SAR传感器160,一所述SAR传感器160结合到第一调谐电路140中,另一SAR传感器160结合到所述第二调谐电路150中。
需要说明的是,本申请实施方式提供的天线组件10,当所述天线组件10工作在MHB频段时的SAR 值通常较高,而所述天线组件10工作在LB频段时的SAR通常不高。因此,本申请实施方式的天线组件10利用所述电感L及SAR传感器160结合到第二调谐电路150中为例进行示意。而没有将电感L及SAR传感结合到第一调谐电路140中。
由于所述第三电容及所述第四电容的存在,对于工作于直流的SAR传感器160来说,所述耦合辐射体130相当于是悬浮的,可防止地极(或地系统)或第二馈源S2中的直流电对所述耦合辐射体130的检测精度的影响。因此,所述耦合辐射体与目标生物体(比如,人体或动物体)形成等效电容。当所述目标生物体接近所述耦合辐射体130时,所述耦合辐射体130与所述目标生物体形成的等效电容的电容值变大;当所述目标生物体远离所述耦合辐射体130时,所述耦合辐射体130与所述目标生物体形成的等效电容的电容值减小。所述SAR传感器160通过所述电感L电连接至所述耦合辐射体130的连接点B1。所述耦合辐射体130将所述等效电容的电容值的变化传输至所述SAR传感160。所述SAR传感器160将所述耦合辐射体130检测到的电容值的变化输出至所述处理器90。所述电感L用于隔绝所述SAR传感器160对所述耦合辐射体130的影响。所述电感L的电感L值可以为但不仅限于为68nH,或者82nH等。
具体地,所述耦合辐射体130和地之间形成电容,所述耦合辐射体130和地之间的电容值为原始电容值。当目标生物体(比如,人体)靠近所述耦合辐射体130时,则耦合辐射体130与所述目标生物体之间形成电容,所述电容的电容值和耦合辐射体130与所述目标生物体之间的距离相关。为了方便描述,将所述耦合辐射体130与目标生物体之间形成的电容的电容值命名为检测电容值。所述SAR传感器160将所述耦合辐射体130检测的电容值(或称为电容量)的变化输出,当所述电容值增大时,所述第二馈源S2的发射功率降低。
在一实施方式中,所述SAR传感器160将所述耦合辐射体130检测的电容值(或称为电容量)的变化输出至处理器90。当所述电容值增大时,所述处理器90控制所述第二馈源S2的发射功率降低。
在一实施方式中,当所述天线组件10应用于电子设备1时,所述电子设备1还包括处理器90。所述处理器90与所述SAR传感器160电连接。用于根据所述电容值的变化控制所述第二馈源S2的发射功率。具体地,由于所述检测电容值和所述耦合辐射体130与所述目标生物体之间的间距相关,因此,所述处理器90可根据所述检测电容值的大小判断出目标生物体与耦合辐射体130之间的间距。换而言之,所述处理器90可根据所述检测电容值的大小变化判断出所述目标生物体是靠近所述耦合辐射体130还是远离所述耦合辐射体130。所述处理器90根据所述检测电容值的大小控制所述第二馈源S2的功率。当所述目标生物体与所述耦合辐射体130之间的间距小于或等于预设距离时,则表明所述耦合辐射体130及所述第二辐射体120所支持的MHB频段对所述目标生物体的辐射超标。需要说明的是,处于对辐射安全的考量一些国家或地区辐射制定出安规标准。部分国家或地区的安规标准不同。所述预设距离为所述耦合辐射体130及所述第二辐射体120辐射MHB频段的电磁波信号辐射安规标准时的安规距离;或者,所述预设距离小于所述安规距离。
因此,在一实施方式中,所述处理器90根据所述检测电容值判断所述目标生物体与所述耦合辐射体130之间的间距是否小于或等于预设距离,所述处理器90还用于在判定出所述目标生物体与所述耦合辐射体130之间的距离小于或等于预设距离时,降低所述第二馈源S2的发射功率(也称为传导功率)。以减小所述耦合辐射体130及所述第二辐射图所支持的MHB频段对目标生物体的辐射。
在另一实施方式中,所述处理器90判断所述检测电容值是否大于或等于预设电容值,当所述处理器90判定所述检测电容值大于或等于预设电容值时,则降低所述第二馈源S2的发射功率(也称为传导功率)。以减小所述耦合辐射体130及所述第二辐射图所支持的MHB频段对目标生物体的辐射。其中,所述预设电容值为所述耦合辐射体130及所述第二辐射体120辐射MHB频段的电磁波信号符合安规标准时的安规电容值;或者,所述预设电容值小于所述安规电容值。需要说明是,对于同一国家或地区,所述安规电容值与所述安规距离通常为唯一对应关系。
综上所述,本申请实施方式提供的天线组件10还包括SAR传感器160,因此,可将所述耦合辐射体130的检测到的电容值传输至电子设备1的处理器90,以便于所述处理器90根据所述耦合辐射体130的电容值控制所述第二馈源S2的发射功率。进而可降低甚至防止当所述目标生物体靠近所述耦合辐射 体130时,所述耦合辐射体130与所述第二辐射体120所支持的MHB频段对目标生物体的辐射较大,相应的,减小甚至防止了对目标生物体辐射危害。
请参阅图16,图16为本申请又一实施方式提供的天线组件的示意图。所述天线组件10包括第一辐射体110及第一馈源S1。所述第一辐射体110具有第一自由端1111、第一接地端1121及第一馈电点P1。所述第一接地端1121接地,所述第一馈电点P1位于所述第一自由端1111与所述第一接地端1121之间。所述第一馈源S1电连接至所述第一馈电点P1,以在所述第一辐射体110上激励起第一谐振模式及第二谐振模式,所述第一谐振模式及所述第二谐振模式用于支持低频(Low Frequency Band,LB)频段。
此外,本实施方式中,所述天线组件10还包括第二辐射体120、耦合辐射体130、第一调谐电路140、第二调谐电路150及第二馈源S2。所述第二辐射体120具有第二自由端1211、第二接地端1212及第二馈电点P2。所述第二接地端1212接地,且所述第二接地端1212相较于所述第二自由端1211邻近所述第一接地端1121设置。耦合辐射体130,所述耦合辐射体130设置于所述第一接地端1121与所述第二自由端1211之间,且所述耦合辐射体130与所述第二自由端1211耦合,所述耦合辐射体130具有第一连接点B1。所述第一调谐电路140电连接至所述第一接地端1121,还电连接至所述第一连接点B1,且所述第一调谐电路140还电连接至地。所述第二辐射体120还具有第二连接点B2,所述第二连接点B2不同于所述第二馈电点P2。所述第二调谐电路150电连接至所述第二连接点B2,且所述第二调谐电路150还电连接至地。所述第二馈源S2电连接所述第二馈电点P2,以激励MHB频段的双谐振。
相较于所述第二调谐电路150电连接至所述第二馈电点P2的天线组件10而言,本实施方式中,所述第二调谐电路150电连接至所述第二连接点B2的天线组件10也可使得所述天线组件10支持MHB频段的双谐振。只要满足所述天线组件10能够支持所述MHB频段的双谐振即可。
需要说明的是,前面实施方式的示意图是对一些实施方式提供的天线组件10的示意,并不应当理解为对本申请实施方式提供的天线组件10的限定。在一些实施方式中的天线组件10也可与前面实施方式中提供的天线组件10的为镜像关系。举例而言,在前面实施方式的示意图的视角中,以所述第一辐射体110位于所述耦合辐射体130的左边,所述第二辐射体120位于所述耦合辐射体130的右边为例进行示意。在其他实施方式中的天线组件10中,所述第一辐射体110也可以位于所述耦合辐射体130的右边,所述第二辐射体120也可位于所述耦合辐射体130的左边。请参阅图17,图17为本申请另一实施方式提供的天线组件的示意图。图17中所示的天线组件为图7所示的天线组件10的镜像。
请参阅图18,图18为本申请又一实施方式提供的天线组件的示意图。本实施方式中的天线组件10可结合到图7及相关描述提供的实施方式中。所述天线组件10具有辅助辐射体220,所述辅助辐射体220具有第三接地点G3,所述第三接地点G3接地。所述第二辐射体120具有自由端(为了方便描述,命名为第五自由端)1215,所述自由端1215与所述辅助辐射体220之间具有第三缝隙220a。所述第二辐射体120还具有第三馈电点P3、第一接地点G1及第二接地点G2。所述第三馈电点P3与所述第二馈电点P2间隔设置,所述第二接地点G2位于所述第二馈电点P2与所述第三馈电点P3之间,且所述第二接地点G2相较于所述第一接地点G1邻近所述第三馈电点P3设置。所述天线组件10还包括第三馈源S3。所述第三馈源S3电连接至所述第三馈电点P3,以用于支持所述LB频段和/或WiFi 2.4G频段。
所述第三馈源S3电连接至所述第三馈电点P3,以用于支持所述LB频段和/或WiFi 2.4G频段,包括:所述第三馈源S3支持LB频段,但不支持WiFi 2.4G频段;或者,第三馈源S3支持WiFi 2.4G频段,但不支持LB频段;或者,所述第三馈源S3支持LB频段,且支持WiFi 2.4G频段。
在本实施方式提供的天线组件10中,所述第三馈源S3电连接至所述第三馈电点P3,以用于支持LB频段和/或WiFi 2.4G频段。因此,可使得所述天线组件10支持较多的频段,使得所述天线组件10具有更好的通信性能。
由前面介绍可知,所述第一谐振模式及所述第二谐振模式均用于支持LB频段,相当于有两个LB频段。当所述第三馈源S3电连接至所述第三馈电点P3,以用于支持LB频段时,所述天线组件10支 持3个LB频段。
当所述第三馈源S3电连接至所述第三馈电点P3,以用于支持LB频段时,因此,具有支持LB频段的两个天线。其中,一个支持LB频段的第一LB天线包括第一馈源S1及第一辐射体110,支持LB频段的第二LB天线包括第三馈源S2及第二辐射体120。第一LB天线及第二LB天线设置于所述耦合辐射体130的两侧,并非相邻设置,因此,所述第一LB天线及所述第二LB天线的隔离度较好。
对于应用于中国国内的电子设备1的天线组件10而言,通常还不需要三个LB频段,因此,所述第三馈源S3可用于支持WiFi 2.4G频段而不支持LB频段。需要说明的是,对于中国国内的电子设备1而言,在需要三个LB频段时,所述第三馈源S3还可支持所述LB频段。
当所述第三馈源S3支持LB频段时,所述第二辐射体120与所述第一辐射体110之间间隔有所述耦合辐射体130,并非紧邻设置,因此,支持LB频段的两只天线具有较好的隔离度。其中,支持LB频段的一只天线包括所述第一辐射体110及所述第一馈源S1,支持LB频段的另一只天线包括第二辐射体120及所述第三馈源S3。
此外,在一实施方式中,所述第三馈源S3除了支持WiFi 2.4G频段之外,还可支持GPS L5频段。
由前面介绍可知,所述第一谐振模式及所述第二谐振模式均用于支持LB频段,相当于有两个LB频段。比如,所述第一谐振模式支持LB频段(比如B8频段),所述第二谐振模式支持LB频段(比如N28频段)。对于应用于中国之外的其他国家(简称国外)的电子设备1的天线组件10而言,通常需要三个LB频段,因此,所述第三馈源S3可支持LB频段。对于应用于国外的电子设备1的天线组件10而言,所述第三馈源S3可支持LB频段及WiFi 2.4G频段。比如,B20频段及WiFi 2.4G频段,其中,B20频段为LB频段中的子频段。当所述第二谐振模式支持LB频段(比如N28频段)时,所述天线组件10可支持N28频段、B20频段及WiFi 2.4G频段。此外,所述天线组件10中的第一谐振模式支持B8频段时,所述天线组件10可支持B8频段、N28频段、B20频段及WiFi 2.4G频段。
由于所述第三馈源S3设置于电路板上,为了方便命名,通常称为A1板,为了兼容销售到中国及国外的A1板兼容性或为了成本考量的统一设计。中国国内的天线组件10也可支持三个低频频段。即,应用于中国国内的电子设备1中的天线组件10中,所述第三馈源S3也可支持LB频段(如B20频段)及WiFi 2.4G频段。
具体地,对于同一款电子设备1而言,在销往中国国内(简称管内)及国外时,需要考量国内和国外所需要的频段有所差异,频段和频段的组合也有所差异。若根据国内或国外所需要的频段不同,制备完全不同的天线组件10,则需要所需要的模具不同,需要至少两套模具。那么,相较于利用一套模具而言,至少两套模具增加了所述电子设备1的制造成本。
对于国内的天线组件10而言,当不需要三只LB天线时,比如,所述第三馈源S3被设计为可支持WiFi 2.4频段即可。对于需要B20频段+N28频段的国外市场,所述第三馈源S3被设计为支持B20频段+WiFi 2.4频段,第一馈源S1或者所述天线组件10中第三LB天线(图未示)可被设计为支持N28频段。因此,销往国外时长的天线组件10可支持B20频段+N28频段。
为了兼容所述天线组件10所应用的电子设备1在国内及国外销售,或者,为了兼容第二馈源S2及所述第三馈源S3所在的电路板(第二电路板50,也称为A1板)以降低成本,在国内市场,本申请实施方式中的天线组件10中的第三馈源S3也被设计为支持B20频段+WIFI2.4G频段。
对于国内及国外不同的市场,所述天线组件10中的第三馈源S3及第二辐射体120均一样,因此,可使用同一套模具,以减小所述天线组件10的制备成本,以及减小所述电子设备1的成本。需要说明的是,可针对性的对于国内及国外所需要的频段的不同,选取不同的主板或者在A1板上设置不同的匹配,以是的射频方案不同。
本实施方式提供的天线组件10中,所述第三馈源S3在所述第二辐射体120上激励起的第三谐振模式用于支持所述LB频段,因此,使得所述天线组件10具有更好的通信性能。
请参阅图19,图19为图18中所示的天线组件中第三谐振模式对应的主要电流流向示意图。所述第三馈源S3用于支持LB频段时,所述第三馈源S3用于激励起第三谐振模式,所述第三谐振模式为所述第二接地点G2到所述第三缝隙220a的1/4波长模式。
所述第三谐振模式为所述第二接地点G2到所述第三缝隙220a的1/4波长模式。1/4波长模式为效率相对较高的谐振模式,故能够增强所述第三谐振模式支持的频段的收发效率。所述第三谐振模式对应的电流命名为第三电流I3,所述第三电流I3自所述第二接地点G2流向所述第三缝隙220a。
当所述第三馈源S3用于支持WiFi 2.4G式时,所述第三馈源S3还用于在所述第二辐射体120上激励起第四谐振模式及第五谐振模式,所述第四谐振模式及所述第五谐振模式用于支持WiFi 2.4G频段和蓝牙频段。
WiFi频段和蓝牙频段较为接近,因此,所述Wifi频段和所述蓝牙频段可以共用天线。所述第三馈源S3在所述第二辐射体120上激励起第四谐振模式及所述第五谐振模式,所述第四谐振模式及所述第五谐振模式共同支持WiFi 2.4G频段,以及所述第四谐振模式及所述第五谐振模式共同支持蓝牙频段,从而使得所述天线组件10具有较多的通信频段,具有较好的通信效果。
在本实施方式中,所述第三馈源S3在所述第二辐射体120上激励起第四谐振模式及第五谐振模式,所述第四谐振模式及所述第五谐振模式用于支持蓝牙频段时,所述蓝牙频段具有较宽的带宽。进一步地,即便所述天线组件10所应用的电子设备1被用户握持或遮挡造成频偏时,由于所述天线组件10中的第三馈源S3及第二辐射体120所支持的蓝牙频段的带宽较宽,蓝牙频段的谐振频点即便有所偏移,则仍然可落在所述带宽范围内,进而保证了利用蓝牙频段通信由于被单手或双手握持或遮挡造成的频偏时的通信性能。换而言之,所述天线组件10工作在蓝牙频段时具有较宽的带宽以及较好的人手性能、人头性能、人头手性能。
相应地,在本实施方式中,所述第三馈源S3在所述第二辐射体120上激励起第四谐振模式及第五谐振模式,所述第四谐振模式及所述第五谐振模式用于支持WiFi 2.4G频段时,所述WiFi 2.4G频段具有较宽的带宽。进一步地,即便所述天线组件10所应用的电子设备1被用户握持或遮挡造成频偏时,由于所述天线组件10中的第三馈源S3及第二辐射体120所支持的WiFi 2.4G频段的带宽较宽,WiFi 2.4G频段的谐振频点即便有所偏移,则仍然可落在所述带宽范围内,进而保证了利用WiFi 2.4G频段通信由于被单手或双手握持或遮挡造成的频偏时的通信性能。换而言之,所述天线组件10工作在WiFi 2.4G频段时具有较宽的带宽以及较好的人手性能、人头性能、人头手性能。
请参阅图20及图21,图20为图18中所示的天线组件中第四谐振模式对应的主要电流流向示意图;图21为图18中所示的天线组件中第五谐振模式对应的主要电流流向示意图。所述第四谐振模式为所述第二接地点G2到所述第三缝隙220a的3/4波长模式。所述第五谐振模式为所述第三缝隙220a至所述第三接地点G3的1/4波长模式。
所述辅助辐射体220可以为但不仅限于为激光直接成型(Laser Direct Structuring,LDS)辐射体,或者,柔性电路板(Flexible Printed Circuit,FPC)辐射体,或者印刷直接成型(Print Direct Structuring,PDS)辐射体、或者为金属枝节辐射体。当所述天线组件10应用于电子设备1时,所述辅助辐射体220可为利用所述电子设备1自身嵌件金属设计的结构件天线(Mechanical Design Antenna,MDA)辐射体。比如,所述辅助辐射体220可为利用所述电子设备1的金属中框320设计出来的结构件天线辐射体。
可以理解的,本申请对于辅助辐射体220的形状、构造及材质不做具体的限定,辅助辐射体220的形状皆包括但不限于弯折装、条状、片状、杆状、涂层、薄膜等。当辅助辐射体220呈条状时,本申请对于辅助辐射体220的延伸轨迹不做限定,故辅助辐射体220皆可呈直线、曲线、多段弯折等轨迹延伸。上述的辅助辐射体220在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
所述第三接地点G3电连接至地的方式包括但不限于直接电连接(比如焊接);或通过同轴线、微带线、射频线、导电弹片、导电胶、嵌件金属、或电子设备1的中框连料等方式间接电连接。在本实施方式中,所述第三接地点G3电连接至地的方式为所述辅助辐射体220的第三接地点G3通过所述中框连料的方式电连接至中框320。
所述第四谐振模式为所述第二接地点G2到所述第三缝隙220a的3/4波长模式,因此,所述天线组件10可充分利用所述第二辐射体120的高次模,有利于减小所述第二辐射体120的电长度,从而节 约了所述天线组件10的空间。当所述天线组件10应用于电子设备1中时,便于在电子设备1中布局。请参阅图20,所述第四谐振模式对应的电流命名为第四电流I4,所述第四电流I4自所述第二接地点G2流向所述第三缝隙220a。
所述第五谐振模式为所述第三缝隙220a至所述第三接地点G3的1/4波长模式,1/4波长模式为效率相对较高的谐振模式,故能够增强所述第五谐振模式支持的频段的收发效率。由于所述第五谐振模式的作用在所述辅助辐射体220上,因此,所述第五谐振模式为所述辅助辐射体220上寄生出来的谐振模式。请参阅图21,所述第五谐振模式对应的电流命名为第五电流I5,所述第五电流I5自所述第三缝隙220a流向所述第三接地点G3。
当所述天线组件10应用于电子设备1时,所述辅助辐射体220通常对应所述电子设备1的长边设置,且所述辅助枝节距离所述电子设备1的长边和短边相连的拐角处有一定距离,因此,在所述电子设备1横屏时且所述天线组件10工作在WiFi 2.4G频段时,所述辅助辐射体220通常难被用户手掌握持,因此,所述天线组件10所应用的电子设备1具有不错的横屏性能。
请参阅图22,图22为本申请又一实施方式提供的天线组件的示意图。所述天线组件10还包括第三辐射体170及第四馈源S4。所述第三辐射体170具有第四馈电点P4。所述第四馈源S4电连接所述第四馈电点P4,以使得所述第三辐射体170支持所述WiFi 2.4G频段和蓝牙频段。
所述第三辐射体170的材质等可参阅前面关于第一辐射体110的描述,所述第一辐射体110的材质等可应用于所述第三辐射体170上。在此不再对所述第三辐射体170的材质等进行赘述。
WiFi频段和蓝牙频段较为接近,因此,所述WiFi频段和所述蓝牙频段可以共用天线。所述第四馈源S4电连接所述第四馈电点P4,以使得所述第三辐射体170支持所述WiFi 2.4G频段和蓝牙频段从而使得所述天线组件10具有较多的通信频段,具有较好的通信效果。
此外,在一实施方式中,所述第四馈源S4电连接所述第四馈电点P4,以使得所述第三辐射体170支持GPS L1频段。因此,所述第三辐射体170可支持GPS L1频段及WiFi 2.4G频段。
所述第三辐射体170与所述第二辐射体120对角设置。所述第二辐射体120及所述第三辐射体170均用于支持所述蓝牙频段,所述第三辐射体170收发所述蓝牙频段的电磁波信号时的方向图,与所述第二辐射体120收发所述蓝牙频段的电磁波信号时的方向图互补。
所述第三辐射体170及所述第二辐射体120对角设置,因此,所述第三辐射体170及所述第二辐射体120不容易同时被遮挡。当所述第二辐射体120及所述第三辐射体170中的一者被遮挡时,另一者还可工作,因此,可提升所述天线组件10利用所述第二辐射体120及所述第三辐射体170支持的蓝牙频段及WiFi 2.4G频段进行通信时的通信性能。比如,当所述第二辐射体120及所述第三辐射体170均支持蓝牙频段(或WiFi 2.4G频段)时,所述第二辐射体120被遮挡(比如,放入用户衣服的口袋中,且第二辐射体120朝下设置),则,所述第二辐射体120所支持的蓝牙频段信号衰减较大,严重影响所述天线组件10利用所述蓝牙频段进行通信的通信质量。当所述天线组件10利用所述蓝牙频段与蓝牙耳机进行通信时,若第二辐射体120被遮挡的情况下,继续使用所述蓝牙频段与蓝牙耳机进行通信,则,会影响到蓝牙耳机的体验。本申请实施方式中,由于所述第三辐射体170与所述第二辐射体120对角设置,且方向图互补,因此,在所述第二辐射体120被遮挡时,所述第三辐射体170不容易被遮挡,所述第三辐射体170仍然具有较好的通信性能。
需要说明的是,由于所述第二辐射体120及所述第三辐射体170均支持蓝牙频段,因此,所述第二辐射体120及第三馈源S3等可视为一只蓝牙天线(为了方面描述,命名为第一只蓝牙天线),第三辐射体170及第四馈源S4可视为一只蓝牙天线(为了方便描述,命名为第二只蓝牙天线)。即,所述天线组件10包括两只蓝牙天线。由前面描述可知当一只蓝牙天线被遮挡时,可利用另一只蓝牙天线进行通信。通常而言,当所述天线组件10应用于电子设备1中时,第一只蓝牙天线通常对应电子设备1的底部设置,第二只蓝牙天线通常对应地电子设备1的顶部设置。当所述天线组件10所应用的电子设备1(比如手机)放入用户的口袋中时,不管是电子设备1的顶部朝下,还是电子设备1的底部朝下,均有一只蓝牙天线可与蓝牙耳机进行较好的连接。
综上所述,本申请实施方式提供的天线组件10可提升所应用的电子设备1放入口袋场景下的与蓝 牙耳机进行通信时的体验。可以理解地,反过来,当蓝牙耳机放入用户口袋场景下,所述天线组件10仍然可与所述蓝牙耳机进行较好的通信。即,所述天线组件10可提升与放入用户口袋场景下的蓝牙耳机进行通信时的通信体验。
由于WiFi频段和蓝牙频段较为接近,因此,所述WiFi频段和所述蓝牙频段可以共用天线。因此,在一种实施方式中,所述第二辐射体120及所述第三辐射体170均支持WiFi 2.4G频段。因此,所述第二辐射体120及第三馈源S3等可视为一只WiFi天线(为了方面描述,命名为第一只WiFi天线),第三辐射体170及第四馈源S4可视为一只WiFi天线(为了方便描述,命名为第二只WiFi天线)。即,所述天线组件10包括两只WiFi天线。
第三辐射体170与所述第二辐射体120对角设置。所述第二辐射体120及所述第三辐射体170均用于支持所述WiFi频段,所述第三辐射体170收发所述WiFi频段的电磁波信号时的方向图,与所述第二辐射体120收发所述WiFi频段的电磁波信号时的方向图互补。
请参照对两只蓝牙天线的分析,本实施方式中的天线组件10包括两只WiFi天线时,也具有较好的通信性能。当所述电子设备1处于横屏模式,且利用WiFi 2.4G频段打游戏时,具有较好的横屏游戏体验。
所述第二辐射体120包括弯折相连的第三部121及第四部122。所述第三部121背离所述第四部122的一端邻近所述第一辐射体110设置。所述第三辐射体170包括弯折相连的第五部171及第六部172。所述第五部171相较于所述第六部172邻近所述第一辐射体110设置。
由上述可见,所述第二辐射体120与第三辐射体170呈对角设置,且所述第二辐射体120及所述第三辐射体170的上述结构设计便于所述天线组件10与所述天线组件10所应用的电子设备1的外形相适应。
所述第三辐射体170与所述第一辐射体110之间具有第四缝隙170a。所述第三辐射体170具有第四接地点G4及第五接地点G5,第四接地点G4及第五接地点G5均接地,所述第四接地点G4相较于所述第五接地点G5邻近所述第一辐射体110设置,所述第五接地点G5位于所述第四馈电点P4与所述第四接地点G4之间。
所述第四接地点G4接地,可防止所述第三辐射体170对所述第一辐射体110的影响。所述第五接地点G5位于所述第四馈电点P4与所述第四接地点G4之间,所述第五接地点G5至所述第三辐射体170背离所述第四接地点G4的自由端之间的部分为所述第三辐射体170支持WiFi 2.4G频段和蓝牙频段的辐射部分。
所述第四馈电点P4位于所述第五部171或第六部172,且所述第四馈电点P4邻近所述第五部171与所述第六部172相连的拐角处设置。
所述第四馈源S4电连接至第四馈电点P4时,通常通过射频信号线与第四馈电点P4电连接。所述射频信号线的等效电阻通常较小(50欧姆)。所述第四馈电点P4位于所述第五部171或所述第六部172,且所述第四馈电点P4邻近所述第五部171与所述第六部172相连的拐角处设置,可使得所述第四馈电点P4位于所述第四辐射体180上电流最强或者较强的部位。因此,所述第四辐射体180的等效阻抗较低。进而使得所述第四辐射体180的等效阻抗与连接第四馈源S4至所述第四辐射体180的射频信号线之间的阻抗较为匹配。因此,所述天线组件10中所述第四馈源S4与所述第四辐射体180组成的天线单元的辐射性能较好。
由此可见,所述第一辐射体110与所述耦合辐射体130之间具有第一缝隙130a,所述第一辐射体110与所述第三辐射体170之间具有第四缝隙170a。换而言之,所述第一辐射体110的两端具有缝隙,当所述天线组件10应用于所述电子设备1中时,所述第一缝隙130a及所述第四缝隙170a不容易同时被握住或被遮挡。当所述第一缝隙130及所述第四缝隙170a中的一者被遮挡时,第一缝隙130及所述第四缝隙170a中的另一者还可以收发所述LB频段的电磁波信号,因此,具有较好的通信性能。
请参阅图23,图23为本申请一实施方式提供的天线组件的等效电路示意图。所述第三馈源S3用于支持蓝牙频段,且所述第四馈源S4用于支持蓝牙频段;所述第三馈源S3连接至所述第二辐射体120的射频通路,与所述第四馈源S4连接至所述第三辐射体170的射频通路不同。
所述第三馈源S3用于支持蓝牙频段,所述第四馈源S4用于支持蓝牙频段。所述第三馈源S3通过射频通路210a与所述第二辐射体120电连接,所第四馈源S4通过射频通路210b与所述第三辐射体170电连接,所述射频通路210a与所述射频通路210b不同。由此可见,本申请实施方式提供的天线组件10中具有两个蓝牙射频通路。所述天线组件10具有两个蓝牙射频通路,因此,当所述天线组件10利用所述蓝牙频段进行工作时可利用两个蓝牙射频通路中的任意一个或两个射频通路工作,因此,所述天线组件10具有较好的通信性能。
请参阅图24,图24为本申请另一实施方式提供的天线组件的等效电路示意图。所述第三馈源S3用于支持蓝牙频段,且所述第四馈源S4用于支持蓝牙频段;所述第三馈源S3连接至所述第二辐射体120的射频通路210,与所述第四馈源S4连接至所述第三辐射体170的射频通路210相同。所述天线组件10还包括切换单元190,所述切换单元190用于使得所述第三馈源S3通过所述射频通路210电连接至所述第二辐射体120,或者,使得所述第四馈源S4电通过所述射频通路210电连接至所述第三辐射体170。
由此可见,所述第一只蓝牙天线与所述第二只蓝牙天线共用同一射频通路210。所述切换单元190可将第三馈源S3通过所述射频通路210电连接至所述第二辐射体120,或者,使得所述第四馈源S4电通过所述射频通路210电连接至所述第三辐射体170,因此,所述天线组件10在同一时刻只有一个蓝牙天线工作。
由于所述第二辐射体120及所述第三辐射体170均支持蓝牙频段,因此,所述第二辐射体120及第三馈源S3等可视为一只蓝牙天线(为了方面描述,命名为第一只蓝牙天线),第三辐射体170及第四馈源S4可视为一只蓝牙天线(为了方便描述,命名为第二只蓝牙天线)。
具体地,在一实施方式中,所述切换单元190可接收控制信号,并在所述控制信号的控制下将第三馈源S3通过所述射频通路210电连接至所述第二辐射体120,或者,使得所述第四馈源S4电通过所述射频通路210电连接至所述第三辐射体170。由此可见,本实施方式中所述天线组件10为单通道蓝牙天线。
请参阅图25,图25为图24中的天线组件应用于电子设备中的电路结构示意图。当所述天线组件10应用于电子设备1中时,所述电子设备1还包括检测器80及处理器90。所述检测器80用于检测所述电子设备1的姿态或信号强度,以生成检测信号。所述处理器90与所述检测器80电连接,所述处理器90用于根据所述检测信号生成所述控制信号。
在一实施方式中,所述检测器80可以为但不仅限于重力传感器。所述重力传感器可检测所述电子设备1的姿态。在另一实施方式中,所述检测器80可以为射频前端电路,用于检测所述第一只天线及所述第二只天线的信号强度。下面对所述检测器80包括重力传感器的情况进行描述。
当所述检测器80检测到所述电子设备1的姿态为第一姿态时,以生成第一子检测信号。所述处理器90根据所述第一子检测信号生成所述第一子控制信号。所述切换单元190用于在所述第一子控制信号的控制下将第三馈源S3通过所述射频通路210电连接至所述第二辐射体120。换而言之,当所述电子设备1处于第一姿态时,所述第一只蓝牙天线工作。其中,所述检测信号包括所述第一子检测信号,所述控制信号包括所述第一子控制信号。当所述电子设备1处于所述第一姿态时,所述第一只蓝牙天线收发蓝牙频段的电磁波信号的信号强度大于所述第二只蓝牙天线收发蓝牙频段的电磁波信号的信号强度。
当所述检测器80检测到所述电子设备1的姿态为第二姿态时,以生成第二子检测信号。所述处理器90根据所述第二子检测信号生成所述第二子控制信号。所述切换单元190用于在所述第二子控制信号的控制下将所述第四馈源S4电通过所述射频通路210电连接至所述第三辐射体170。其中,所述检测信号还包括所述第二子检测信号,所述控制信号包括所述第二子控制信号。所述第一姿态不同于所述第二姿态。当所述电子设备1处于所述第二姿态时,所述第二只蓝牙天线收发蓝牙频段的电磁波信号的信号强度大于所述第一只蓝牙天线收发蓝牙频段的电磁波信号的信号强度。
本实施方式中,所述天线组件10工作在蓝牙频段时,具有较好的信号强度。因此,所述天线组件10利用蓝牙频段通信时的通信效果较好。
在一实施方式中,所述第四馈源S4还用于支持GPS L1频段。
所述第四馈源S4还用于支持GPS L1频段,因此,所述天线组件10可支持较多的频段,具有较好的通信性能。当所述第四馈源S4用于支持GPS L1时,所述第四馈源S4及所述第三辐射体170可支持GPS L1频段和WiFi 2.4G频段。
请进一步参阅图22,所述天线组件10还包括第四辐射体180及第五馈源S5。所述第四辐射体180与所述第六部172间隔设置,以形成第五缝隙180a,所述第五缝隙180a邻近所述第五部171与所述第六部172弯折相连的拐角部设置。在本实施方式中,所述第五馈源S5电连接至所述第四辐射体180,以支持WiFi 5G频段或N78频段。
所述第五馈源S5电连接至所述第四辐射体180,以支持所述WiFi 5G频段或N78频段,因此,可提升所述天线组件10的通信效果。
在本实施方式中,所述第四辐射体180和所述辅助辐射体220弯折相连。在其他实施方式中,所述第四辐射体180与所述辅助辐射体220间隔设置,且断开。
请参阅图26,图26为一实施方式提供的天线组件第一辐射体与所述第二辐射体的间距示意图。所述第一辐射体110与所述第二辐射体120之间最近的部位为第一接地端1121及第二自由端1211。所述第一接地端1121与所述第二自由端1211之间的距离d1满足:10mm≤d1≤120mm。所述第一接地端1121与第二自由端1211之间的距离d1可以为但不仅限于为10mm,或15mm,或20mm,或25mm,或30mm,或35mm,或40mm,或45mm,或50mm,或55mm,或60mm,或70mm,或80mm,或90mm,或100mm,或110mm,或120mm。当然,所述d1也可以为大于或等于10mm且小于或等于120mm的其他数值,只要满足10mm≤d1≤120mm即可。
当10mm≤d1≤120mm时,所述第一辐射体110及所述第二辐射体120间隔较远,当所述第一辐射体110及所述第二辐射体120均支持LB频段时,所述第一辐射体110与所述第二辐射体120具有较好的隔离效果。
请参阅图27,图27为本申请一实施方式提供的天线组件的示意图。所述天线组件10包括第一辐射体110、第一馈源S1、第二辐射体120、第二馈源S2、耦合辐射体130及第一调谐电路140。所述第一辐射体110具有第一馈电点P1。所述第一馈源S1电连接至第一馈电点P1,以支持LB频段。所述第二辐射体120与所述第一辐射体110间隔设置,所述第二辐射体120具有第二馈电点P2。所述第二馈源S2电连接至所述第二馈电点P2,以支持MHB频段。所述耦合辐射体130位于所述第一辐射体110与所述第二辐射体120之间,且所述耦合辐射体130与所述第二辐射体120耦合。所述第一调谐电路140电连接至所述第一辐射体110,还电连接至所述耦合辐射体130,且所述第一调谐电路140还电连接至地,所述第一调谐电路140用于对所述LB频段及所述MHB频段进行调谐。
本实施方式提供的天线组件10,所述第一馈源S1电连接至所述第一辐射体110的第一馈电点P1,以支持LB频段;所述第二馈源S2电连接至所述第二辐射体120的第二馈电点P2,以支持所述MHB频段。由此可见,所述天线组件10中支持LB频段的辐射体与支持MHB频段的辐射体不共用。由于所述第一调谐电路140电连接至所述第一辐射体110,因此,所述第一调谐电路140可对所述LB频段进行调谐和解耦。此外,所述第一调谐电路140还电连接至所述耦合辐射体130,所述耦合辐射体130与所述第二辐射体120耦合,因此,所述第一切换开关152还对所述MHB频段进行调谐。由此可见,所述第一调谐电路140可便于对所述LB频段及所述MHB频段的调谐,可较好的兼顾支持LB频段的天线及支持MHB频段的天线的性能。
所述第一辐射体110具有第一自由端1111、第一接地端1121及第一馈电点P1。所述第一接地端1121接地,所述第一馈电点P1位于所述第一自由端1111与所述第一接地端1121之间,所述第一馈源S1电连接至所述第一馈电点P1。
所述第二辐射体120具有第二自由端1211、第二接地端1212及第二馈电点P2。所述第二接地端1212接地,且所述第二接地端1212相较于所述第二自由端1211背离所述第一接地端1121设置。
所述耦合辐射体130具有第三自由端131及第四自由端132。所述第三自由端131与所述第一自由端1111间隔第一缝隙130a。所述第四自由端132与所述第二自由端1211间隔第二缝隙130b,且与第 二自由端1211耦合。所述第三自由端131具有第一连接点B1,所述第一接地端1121邻近所述第三自由端131,所述第一调谐电路140电连接至所述第一连接点B1及所述第一接地端1121。
此外,所述第一辐射体110的第一接地端1121具有连接点B0,所述连接点B0邻近所述第一缝隙130a设置。所述第一调谐电路140电连接至所述第一辐射体110时,所述第一调谐电路140电连接至所述连接点B0。
本实施方式中,由于所述第一接地端1121邻近所述第三自由端131,且所述第三自由端131具有所述第一连接点B1,因此,所述第一连接点B1与所述第一接地端1121之间距离较近,便于所述第一调谐电路140电连接至所述第一连接点B1及所述第一接地。
所述天线组件10还包括第二调谐电路150。所述第二调谐电路150电连接至第二馈电点P2及地,所述第二调谐电路150用于调节MHB频段的谐振频点。
所述第二调谐电路150用于调节MHB频段的谐振频点,因此,使得所述天线组件10利用所述MHB频段进行通信时具有较好的通信质量。
此外,所述第二辐射体120及所述耦合辐射体130在所述第一调谐电路140及所述第二调谐电路150的共同作用下,所述第二馈源S2容易激励起MHB频段的双谐振。因此,可有利于拓展所述天线组件10所支持的MHB频段的带宽,并有利于CA、双卡及单波段等场景。
所述第一辐射体110包括弯折相连的第一部111及第二部112。所述第一部111具有所述第一自由端1111,所述第二部112具有所述第二接地端1212。所述第二辐射体120包括弯折相连的第三部121及第四部122。所述第三部121背离所述第四部122的一端邻近所述第二部112设置,所述第四部122与所述第一部111相对设置。所述耦合辐射体130位于所述第二部112与所述第三部121之间,且所述耦合辐射体130的延伸方向与所述第二部112及所述第三部121的排布方向一致。
本实施方式中,所述第一辐射体110及所述第二辐射体120的结构,便于所述天线组件10应用于所述电子设备1时,与所述电子设备1的外形相适应。
在一实施方式中,所述耦合辐射体130对应所述电子设备1的底部设置。所谓电子设备1的底部,通常是指,所述电子设备1在竖屏使用时,靠近地面或邻近用户的部位。
请参阅图28,图28为本申请另一实施方式提供的天线组件的示意图。在本实施方式中,所述第二辐射体120还具有第三馈电点P3、第一接地点G1及第二接地点G2。所述第三馈电点P3与所述第二馈电点P2间隔设置,所述第二接地点G2位于所述第二馈电点P2与所述第三馈电点P3之间,且所述第二接地点G2相较于所述第一接地点G1邻近所述第三馈电点P3设置。所述天线组件10还包括第三馈源S3。所述第三馈源S3电连接至所述第三馈电点P3,以支持所述LB频段。
所述第三馈源S3还支持LB频段,因此,使得所述天线组件10具有更好的通信性能。在本实施方式中,所述述第三馈源S3在所述第二辐射体120上激励起的第三谐振模式用于支持所述LB频段。所述第三谐振模式请参阅前面描述,在此不再赘述。
由此可见,本申请实施方式提供的天线组件10具有两只LB天线。其中,一个支持LB频段的第一LB天线包括第一馈源S1及第一辐射体110,支持LB频段的第二LB天线包括第三馈源S2及第二辐射体120。因此,所述天线组件10可实现双低频。
在一实施方式中,所述第一LB天线用于支持B20频段+N28频段,所述第二LB天线用于支持B20频段。
当所述天线组件10还可包括第三LB天线,请参阅图22,举例而言,所述第三LB天线可设置于所述电子设备1的上部侧边。天线组件10还包括第四辐射体180及第五馈源S5。所述第五馈源S5电连接至所述第四辐射体180,以支持LB频段。因此,所述天线组件10包括第一LB天线、第二LB天线及第三LB天线时,所述天线组件10可实现三低频。在双低频的非独立组网(Non-Standalone,NSA)模式模式下,所述第一LB天线用于支持B20频段+N28频段,所述第二LB天线用于支持B20频段,所述第三LB天线支持N28频段,因此,可较好实现B20频段+N28频段的NSA组合。当然,这里只是以B20+N28组合为例进行说明,其他频段也适合。换而言之,所述天线组件10可实现第一频段+第二频段的NSA组合。
此外,在双卡或者需要三只LB天线的场景,本申请实施方式提供的天线组件10也适用。
所述第三馈源S3还用于在所述第二辐射体120上激励起两个谐振模式,这两个谐振模式用于支持WiFi 2.4G频段或蓝牙频段。为了方便描述,这两个谐振模式分别命名为第四谐振模式及第五谐振模式。所述第四谐振模式及所述第五谐振模式用于支持WiFi 2.4G频段或蓝牙频段。换而言之,所述第三馈源S3还用于在所述第二辐射体120上激励起第四谐振模式及第五谐振模式,所述第四谐振模式及所述第五谐振模式用于支持WiFi 2.4G频段或蓝牙频段。
WiFi频段和蓝牙频段较为接近,因此,所述WiFi频段和所述蓝牙频段可以共用天线。所述第三馈源S3在所述第二辐射体120上激励起第四谐振模式及所述第五谐振模式,所述第四谐振模式及所述第五谐振模式共同支持WiFi 2.4G频段,以及所述第四谐振模式及所述第五谐振模式共同支持蓝牙频段,从而使得所述天线组件10具有较多的通信频段,具有较好的通信效果。
请再次参阅图28,所述天线组件10还包括第三辐射体170及第四馈源S4。所述第三辐射体170具有第四馈电点P4。所述第四馈源S4电连接所述第四馈电点P4,以使得所述第三辐射体170支持所述WiFi 2.4G频段或蓝牙频段。
WiFi频段和蓝牙频段较为接近,因此,所述WiFi频段和所述蓝牙频段可以共用天线。所述第四馈源S4电连接所述第四馈电点P4,以使得所述第三辐射体170支持所述WiFi 2.4G频段和蓝牙频段从而使得所述天线组件10具有较多的通信频段,具有较好的通信效果。
此外,在一实施方式中,所述第四馈源S4电连接所述第四馈电点P4,以使得所述第三辐射体170支持GPS L1频段。因此,所述第三辐射体170可支持GPS L1频段及WiFi 2.4G频段。
请再次参阅图28,所述第三辐射体170与所述第二辐射体120对角设置。所述第二辐射体120及所述第三辐射体170均用于支持所述蓝牙频段,所述第三辐射体170收发所述蓝牙频段的电磁波信号时的方向图,与所述第二辐射体120收发所述蓝牙频段的电磁波信号时的方向图互补。
所述第三辐射体170及所述第二辐射体120对角设置,因此,所述第三辐射体170及所述第二辐射体120不容易同时被遮挡。具体细节及相关有益效果请参阅前面相关描述,在此不再赘述。
请再次参阅图28,所述天线组件10还包括第四辐射体180及第五馈源S5。所述第四辐射体180与所述第六部172间隔设置,以形成第五缝隙180a,所述第五缝隙180a邻近所述第五部171与所述第六部172弯折相连的拐角部设置。所述第五馈源S5电连接至所述第四辐射体180,以支持WiFi 5G频段或N78频段。
所述第五馈源S5电连接至所述第四辐射体180,以支持所述WiFi 5G频段或N78频段,因此,可提升所述天线组件10的通信效果。
在本实施方式中,所述第四辐射体180和所述辅助辐射体220弯折相连。在其他实施方式中,所述第四辐射体180与所述辅助辐射体220间隔设置,且断开。
请参阅图29及图30,图29为本申请一实施方式提供的电子设备的结构示意图;图30为图29中中框及第一电路板的示意图。所述电子设备1包括天线组件10。所述天线组件10用于收发电磁波信号,以实现所述电子设备1的通信功能。所述电子设备1包括电路板及前面任意一实施方式所述天线组件10,所述电子设备1包括第一电路板40及前面任意实施方式所述的天线组件10,所述天线组件10中的第一馈源S1设置于所述第一电路板40。
图30中所示的中框320及第一电路板40的示意图为将所述电子设备1的壳体330去除之后的背示图。所述第一电路板40设置于所述中框320的一侧(比如,可承载于所述中框320朝向所述壳体330的表面)。在本实施方式的示意图中,以所述电子设备1包括前面一种实施方式提供的天线组件10为例进行示意,可以理解的,不应当理解为对本申请实施方式提供的电子设备1的限定。
在本实施方式中,以所述天线组件10中的各个辐射体(第一辐射体110、第二辐射体120、第三辐射体170、第四辐射体180、耦合辐射体130、辅助辐射体220等)均形成于所述电子设备1的中框320上为例进行示意,可以理解地,在其他实施方式中,所述天线组件10中的各个辐射体也可以不形成于所述电子设备1的中框320上,而是为激光直接成型辐射体、或柔性电路板辐射体、或印刷电路板辐射体、或金属枝节辐射体、或MDA辐射体。在本申请中不做限定。
当所述天线组件10的各个辐射体形成于所述中框320上,各个辐射体之间的各个缝隙(比如,第一缝隙130a、第二缝隙130b、第三缝隙220a、第四缝隙170a、第五缝隙180a)中的至少一者填充有绝缘件331,以提升所述中框320的结构强度,以及防止外界水汽或灰尘通过所述缝隙或灰尘进入到所述电子设备1的内部。
请继续参阅图29及图30,当所述电子设备1还包括第二馈源S2时,所述电子设备1还包括第二电路板50。换而言之,所述电子设备1包括第一电路板40、第二电路板50及前任意实施方式所述的天线组件10。所述天线组件10中的第一馈源S1设置于所述第一电路板40,所述第二馈源S2设置于所述第二电路板50。
所述第一电路板40也称为A2板,所述第二电路板50也称为A1板。
在本实施方式中,当所述天线组件10应用于所述电子设备1中时,所述天线组件10的各个辐射体(第一辐射体110、第二辐射体120、第三辐射体170、第四辐射体180、耦合辐射体130、辅助辐射体220等)均形成于所述电子设备1的中框320上。可以理解地,在其他实施方式中,所述天线组件10中的各个辐射体也可以不形成于所述电子设备1的中框320上,而是为激光直接成型辐射体、或柔性电路板辐射体、或印刷电路板辐射体、或金属枝节辐射体、或MDA辐射体。在本申请中不做限定。
进一步地,请再次参阅图29,所述电子设备1还包括弯折相连的第一边1a及第二边1b。所述第一辐射体110部分对应所述第一边1a设置,所述第一辐射体110部分对应所述第二边1b设置。
在本实施方式中,以所述第一边1a为长边,所述第二边1b为短边为例进行示意。在其他实施方式中,所述第一边1a也可以为短边,所述第二边1b也可以为长边,所述第一辐射体110部分对应所述第一边1a设置,所述第一辐射体110部分对应所述第二边1b设置,因此,所述第一辐射体110可充分利用所述电子设备1弯折相连的两个边的长度。此外,所述第一边1a和所述第二边1b弯折相连形成的拐角处具有相对较好的净空区域,以提高所述天线组件10中第一辐射体110所支持的LB频段的辐射效率。
在一实施方式中,所述第一辐射体110的两端与其他部件之间各具有缝隙,当所述天线组件10应用于所述电子设备1中时,两个缝隙不容易同时被握住或被遮挡。即便两个缝隙中的一者被遮挡时,两个缝隙中的另一者未被遮挡,因此,使得所述第一辐射体110还可以收发所述LB频段的电磁波信号,因此,所述天线组件10具有较好的通信性能。当所述天线组件10应用于电子设备1时,所述第一辐射体110的一部分对应所述电子设备1的底边设置,另一部分可对应所述电子设备1的侧边设置。因此,当所述天线组件10应用于所述电子设备1时,比如,利用所述电子设备1打游戏等需要长时间握持的场景,所述第一辐射体110的两个缝隙不容易同时被用户的手握持或被用户的手遮挡。因此,当所述天线组件10应用于所述电子设备1中时,所述天线组件10具有抗手持、优异的双手游戏手持性能。
在一实施方式中,所述第二边1b为所述电子设备1的底边。在本实施方式中,当所述天线组件10应用于电子设备1中时,所述第二辐射体120及所述耦合辐射体130位于所述电子设备1的底部。所述耦合辐射体130通常对应所述电子设备1的底边(本实施方式中为第二边1b)的中部设置。因此,所述天线组件10所应用的电子设备1在被握持时,所述耦合辐射体130通常不容易被单手握持或被遮挡住,因此,具有较好的单手人手效果。此外,所述第二辐射体120及所述耦合辐射体130位于所述电子设备1的底部时,当所述电子设备1被使用(比如打电话等场景)时,通常远离用户的头部,不容易对用户的头部造成较大辐射,因此,当所述天线组件10应用于电子设备1中时,所述第二辐射体120及所述耦合辐射体130位于所述电子设备1的底部,所述耦合辐射体130通常对应所述电子设备1的底边的中部设置,从而使得所述天线组件1具有较好的头手性能及人头性能。综上,所述天线组件10具有较好的人手性能、人头性能、人头手性能。
请参阅图31及图32,图31为本申请另一实施方式提供的电子设备的示意图;图32为图31中中框及第一电路板的示意图。所述电子设备1还具有第一功能器件60及第二功能器件70。所述第二功能器件70与所述第一功能器件60间隔设置,以形成间隙60a。所述天线组件10的第一辐射体110的第一接地端1121对应所述间隙60a设置。
在本实施方式中,所述第一功能器件60可以为USB接口,所述第二功能器件70可以为扬声器。 在其他实施方式中,所述第一功能器件60为扬声器,所述第二功能器件70为USB接口。所述第二功能器件70与所述第一功能器件60间隔设置,以形成间隙60a。所述第一天线组件10的第一接地端1121对应所述间隙60a设置,因此,可便于制备出所述第一接地端1121。
在本实施方式中,所述第一功能器件60相较于所述第二功能器件70背离所述第一辐射体110中第一部111与第二部112的拐角处设置。换而言之,所述第一功能器件60相较于所述第二功能器件70邻近所述第二辐射体120设置。所述第一功能器件60对应所述耦合辐射体130设置。
当所述第一接地端1121与所述耦合辐射体130之间形成第一缝隙130a时,便于形成所述第一缝隙130a。此外,所述第一缝隙130a可对应所述间隙60a设置,因此,所述第一缝隙130a可避开所述第一功能器件60及所述第二功能器件70的遮挡,所述第一辐射体110具有较好的辐射性能。
请参阅图33,图33为电子设备中的中轴线与各个辐射体的位置关系示意图。所述第一边1a为电子设备1的长边,所述第二边1b为电子设备1的短边,所述电子设备1具中轴线L1,所述中轴线L1平行于所述第一边1a,且贯穿所述第二边1b的中点,所述第一辐射体110位于所述中轴线L1的一侧。
当用户用手握持所述电子设备1时,用户的拇指通常会握持到电子设备1的短边处,且对应中轴线L1处,所述第一辐射体110位于所述中轴线L1的一侧。当所述天线组件10所应用的电子设备1被横屏使用时,所述第一辐射体110不易被用户的手遮挡或握住,那么,所述天线组件10所应用的电子设备1的横屏效果较好。
当所述天线组件10应用于电子设备1中时,所述第一辐射体110、所述耦合辐射体130及所述第二辐射体120构成的整体的中心线L0与所述电子设备1的中轴线L1(参见图33沿长度方向延伸,且穿过电子设备1的短边的中点O)重合或大致重合。在本实施方式的示意图中,以所述中心线L0与所述中轴线L1重合为例进行示意。具体有益效果请参阅前面描述,在此不再赘述。
需要说明的是,本申请各个实施方式提供的天线组件10及电子设备1的示意图中仅给出了和本申请相关的部件,本申请申请各个实施方式提供的天线组件10及电子设备1中除了包括前面各个实施方式中所包括的部件之外,不排除还包括其他部件,比如,所述天线组件10或者所述电子设备1中还包括其他天线。其他天线中的天线辐射体、缝隙、接地点等未进行示意。
需要说明的是,在本申请各个实施方式提供的天线组件10中,所述天线组件10还包括一个或多个匹配电路,所述匹配电路电连接至馈电点,比如,所述天线组件10可包括如下情况中的一种或多种:第一匹配电路电连接至第一馈电点P1;第二匹配电路电连接至第二馈电点P2;第三匹配电路电连接至第三馈电点P3;第四匹配电路电连接至第四馈电点P4;第五匹配电路电连接至第四辐射体上的第五馈电点P5,其中,第五馈源S5还电连接至所述第五馈电点P5。在本申请各个实施方式的示意图中为了清晰示意出本申请相关的技术点,均未对所述匹配电路进行示意,不代表所述天线组件10中不包括匹配电路。所述匹配电路可包括电容,或电感,或电容和电感的组合等。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (42)

  1. 一种天线组件,其中,所述天线组件包括:
    第一辐射体,所述第一辐射体具有第一自由端、第一接地端及第一馈电点,所述第一接地端接地,所述第一馈电点位于所述第一自由端与所述第一接地端之间;及
    第一馈源,所述第一馈源电连接至所述第一馈电点,以在所述第一辐射体上激励起第一谐振模式及第二谐振模式,所述第一谐振模式用于支持第一LB频段,所述第二谐振模式用于支持第二LB频段,其中,所述第一LB频段的频率大于所述第二LB频段的频率。
  2. 如权利要求1所述的天线组件,其中,所述第一谐振模式为所述第一馈电点至所述第一自由端的1/4波长模式;所述第二谐振模式为所述第一馈电点至所述第一自由端1/4波长,以及第一馈电点至所述第一接地端的1/4波长的对流模式。
  3. 如权利要求2所述的天线组件,其中,所述第一谐振模式所支持的频段包括B8频段或N8频段,所述第二谐振模式所支持的频段包括B28频段或N28频段。
  4. 如权利要求1所述的天线组件,其中,所述第一馈电点位于所述第一辐射体的中部。
  5. 如权利要求4所述的天线组件,其中,所述第一辐射体包括弯折相连的第一部及第二部,所述第一部具有所述第一自由端,所述第二部具有所述第一接地端,所述第一馈电点位于所述第一部或第二部,且邻近所述第一部与所述第二部弯折相连的拐角处设置。
  6. 如权利要求1-5任意一项所述的天线组件,其中,所述天线组件还包括:
    第二辐射体,所述第二辐射体具有第二自由端、第二接地端及第二馈电点,所述第二接地端接地,且所述第二接地端相较于所述第二自由端背离所述第一接地端设置;
    耦合辐射体,所述耦合辐射体设置于所述第一接地端及所述第二自由端之间,且所述耦合辐射体的一端与所述第一辐射体形成第一缝隙,所述耦合辐射体的另一端与所述第二辐射体形成第二缝隙且耦合,所述耦合辐射体具有第一连接点;
    第一调谐电路,所述第一调谐电路电连接至所述第一接地端,还电连接所述耦合辐射体的第一连接点,且所述第一调谐电路还电连接至地;
    第二调谐电路,所述第二调谐电路电连接至所述第二辐射体及地;及
    第二馈源,所述第二馈源电连接所述第二馈电点,以在所述第二辐射体及所述耦合辐射体上激励起MHB频段的双谐振,其中,所述MHB频段的双谐振包括:一个谐振模式用于支持MB频段,另一谐振模式用于支持HB频段;或者,一个谐振模式用于支持MB频段,另一谐振模式也用于支持MB频段;或者,一个谐振模式用于支持HB频段,另一谐振频段用于支持HB频段。
  7. 如权利要求6所述的天线组件,其中,所述第一辐射体、所述耦合辐射体及所述第二辐射体构成的整体具有中心线,所述中心线穿过所述耦合辐射体,且所述第一缝隙及所述第二缝隙分别位于所述中心线的两侧。
  8. 如权利要求6所述的天线组件,其中,所述第二调谐电路包括:
    多个第一调谐子电路,每个第一调谐子电路的一端接地;及
    第一切换开关,所述第一切换开关具有公共端、多个第一连接端及第一切换部,所述公共端电连接至所述第二馈电点,所述第一连接端电连接至所述第一调谐子电路的另一端,且不同的第一连接端电连接至不同的第一调谐子电路,所述第一切换部电连接至所述公共端,且所述第一切换部还在控制信号的控制下电连接至所述多个第一连接端的一者。
  9. 如权利要求6所述的天线组件,其中,所述第二调谐电路包括:
    第二调谐子电路,所述第二馈源电连接所述第二调谐子电路至所述第二馈电点;
    第三调谐子电路,所述第二调谐子电路的一端电连接至所述第二馈源与所述第一调谐子电路的连接点;
    多个第四调谐子电路,所述第四调谐子电路的一端接地;
    第五调谐子电路,所述第五调谐子电路的一端电连接至所述第二馈电点,另一端接地;及
    第一切换开关,所述第一切换开关具有公共端、多个第一连接端及第一切换部,所述公共端电连 接至所述第二馈电点,所述多个第一连接端中的一者电连接至所述第三调谐子电路的另一端,其余第一连接端中电连接至所述第四调谐子电路的另一端,且不同的第四调谐子电路电连接不同的第一连接端,所述第一切换部电连接至所述公共端,且所述第一切换部还在控制信号的控制下电连接至所述多个第一连接端的一者。
  10. 如权利要求6所述的天线组件,其中,所述第二调谐电路包括:
    第二调谐子电路,所述第二馈源电连接所述第二调谐子电路至所述第二馈电点;
    第三调谐子电路,所述第二调谐子电路的一端电连接至所述第二馈源与所述第一调谐子电路的连接点;
    多个第四调谐子电路,所述第四调谐子电路的一端接地;
    第五调谐子电路,所述第五调谐子电路的一端电连接至所述第二馈电点,另一端电连接所述多个第四子电路中的一个第四调谐子电路的另一端;及
    第一切换开关,所述第一切换开关具有公共端、多个第一连接端及第一切换部,所述公共端电连接至所述第二馈电点,所述多个第一连接端中的一者电连接至所述第三调谐子电路的另一端,其余第一连接端中电连接至所述第四调谐子电路的另一端,且不同的第四调谐子电路电连接不同的第一连接端,所述第一切换部电连接至所述公共端,且所述第一切换部还在控制信号的控制下电连接至所述多个第一连接端的一者。
  11. 如权利要求9或10所述的天线组件,其中,第二调谐子电路包括第一电容,所述第三调谐子电路包括第二电容,当所述第一切换部电连接至所述第四调谐子电路中的任一者时,所述天线组件持MB频段;
    当所述第一切换部电连接至所述第三调谐子电路时,所述天线组件支持HB频段。
  12. 如权利要求6所述的天线组件,其中,所述第一调谐电路包括:
    至少一个第六调谐子电路,所述至少一个第六调谐子电路的一端电连接至所述第一辐射体;
    至少一个第二切换开关,所述第二切换开关具有第二连接端、第三连接端及第二切换部,所述第二连接端接地,所述第三连接端电连接至所述第六调谐子电路的另一端,且不同的第三连接端电连接至不同的第六调谐子电路,所述第二切换部电连接所述第二连接端或所述第三连接端,所述第二切换部在控制信号的控制下连通或断开所述第二连接端及第三连接端;
    至少一个第七调谐子电路,所述至少一个第七调谐子电路的一端电连接至所述耦合辐射体的第一连接点;及
    至少一个第三切换开关,所述第三切换开关具有第四连接端、第五连接端及第三切换部,所述第四连接端接地,第五连接端电连接至所述第七调谐子电路的另一端,且不同的第五连接端电连接至不同的第七调谐子电路,所述第三切换部电连接所述第四连接端或第五连接端,所述第二切换部在控制信号的控制下连通或断开所述第四连接端及第五连接端。
  13. 如权利要求12所述的天线组件,其中,所述第一调谐电路还包括:
    第八调谐子电路,所述第八调谐子电路的一端接地,另一端电连接至所述第一辐射体;
    和/或,
    第九调谐子电路,所述第九调谐子电路的一端接地,另一端电连接至所述耦合辐射体的第一连接点。
  14. 如权利要求12所述的天线组件,其中,所述第七调谐子电路包括第三电容,所述第一调谐电路还包括第九调谐子电路,所述第九调谐子电路包括第四电容,所述第九调谐子电路的一端接地,另一端电连接至所述耦合辐射体的第一连接点;
    所述天线组件还包括:
    电感,所述电感电连接至所述耦合辐射体的第一连接点;及
    SAR传感器,所述SAR传感器电连接所述电感,且所述SAR传感器用于将所述耦合辐射体检测到的电容值的变化输出,当电容值增大时,所述第二馈源的发射功率降低。
  15. 如权利要求6所述的天线组件,其中,
    所述第二调谐电路电连接至所述第二馈点;或者,
    所述第二辐射体还具有第二连接点,所述第二连接点不同于所述第二馈电点,所述第二调谐电路电连接至所述第二连接点。
  16. 如权利要求6所述的天线组件,其中,所述天线组件具有辅助辐射体,所述辅助辐射体具有第三接地点,所述第三接地点接地;所述第二辐射体具有自由端,所述自由端与所述辅助辐射体之间具有第三缝隙;
    所述第二辐射体还具有第三馈电点、第一接地点及第二接地点,所述第三馈电点与所述第二馈电点间隔设置,所述第二接地点位于所述第二馈电点与所述第三馈电点之间,且所述第二接地点相较于所述第一接地点邻近所述第三馈电点设置,所述天线组件还包括:
    第三馈源,所述第三馈源电连接至所述第三馈电点,以支持所述LB频段,和/或WiFi 2.4G频段。
  17. 如权利要求16所述的天线组件,其中,所述第三馈源用于支持LB频段时,所述第三馈源用于激励起第三谐振模式,所述第三谐振模式为所述第二接地点到所述第三缝隙的1/4波长模式。
  18. 如权利要求16所述的天线组件,其中,当所述第三馈源用于支持WiFi 2.4G式时,所述第三馈源还用于在所述第二辐射体上激励起第四谐振模式及第五谐振模式,所述第四谐振模式及所述第五谐振模式用于支持WiFi 2.4G频段和蓝牙频段。
  19. 如权利要求18所述的天线组件,其中,所述第四谐振模式为所述第二接地点到所述第三缝隙的3/4波长模式;所述第五谐振模式为所述第三缝隙至所述第三接地点的1/4波长模式。
  20. 如权利要求18所述的天线组件,其中,所述天线组件还包括:
    第三辐射体,所述第三辐射体具有第四馈电点;及
    第四馈源,所述第四馈源电连接所述第四馈电点,以使得所述第三辐射体支持所述WiFi 2.4G频段和蓝牙频段。
  21. 如权利要求20所述的天线组件,其中,所述第三辐射体与所述第二辐射体对角设置,
    所述第二辐射体及所述第三辐射体均用于支持所述蓝牙频段,所述第三辐射体收发所述蓝牙频段的电磁波信号时的方向图,与所述第二辐射体收发所述蓝牙频段的电磁波信号时的方向图互补。
  22. 如权利要求21所述的天线组件,其中,所述第二辐射体包括弯折相连的第三部及第四部,所述第三部背离所述第四部的一端邻近所述第一辐射体设置;
    所述第三辐射体包括弯折相连的第五部及第六部,所述第五部相较于所述第六部邻近所述第一辐射体设置。
  23. 如权利要求22所述的天线组件,其中,所述第三辐射体与所述第一辐射体之间具有第四缝隙,所述第三辐射体具有第四接地点及第五接地点,第四接地点及第五接地点均接地,所述第四接地点相较于所述第五接地点邻近所述第一辐射体设置,所述第五接地点位于所述第四馈电点与所述第四接地点之间。
  24. 如权利要求23所述的天线组件,其中,所述第四馈电点位于所述第五部或第六部,且所述第四馈电点邻近所述第五部与所述第六部相连的拐角处设置。
  25. 如权利要求21所述的天线组件,其中,所述第三馈源用于支持蓝牙频段,且所述第四馈源用于支持蓝牙频段;所述第三馈源连接至所述第二辐射体的射频通道,与所述第四馈源连接至所述第三辐射体的射频通道不同。
  26. 如权利要求21所述的天线组件,其中,所述第三馈源用于支持蓝牙频段,且所述第四馈源用于支持蓝牙频段;所述第三馈源连接至所述第二辐射体的射频通道,与所述第四馈源连接至所述第三辐射体的射频通道相同;所述天线组件还包括切换单元,所述切换单元用于使得所述第三馈源通过所述射频通路电连接至所述第二辐射体,或者,使得所述第四馈源电通过所述射频通道电连接至所述第三辐射体。
  27. 如权利要求20所述的天线组件,其中,所述第四馈源还用于支持GPS L1频段。
  28. 如权利要求22所述的天线组件,其中,所述天线组件还包括:
    第四辐射体,所述第四辐射体与所述第六部间隔设置,以形成第五缝隙,所述第五缝隙邻近所述第五部与所述第六部弯折相连的拐角部设置;及
    第五馈源,所述第五馈源电连接至所述第四辐射体,以支持WiFi 5G频段或N78频段。
  29. 如权利要求16所述的天线组件,其中,所述第一接地端与所述第二接地端之间的距离d1满足:10mm≤d1≤120mm。
  30. 一种天线组件,其中,所述天线组件包括:
    第一辐射体,所述第一辐射体具有第一馈电点;
    第一馈源,所述第一馈源电连接至第一馈电点,以支持LB频段;
    第二辐射体,所述第二辐射体与所述第一辐射体间隔设置,所述第二辐射体具有第二馈电点;
    第二馈源,所述第二馈源电连接至所述第二馈电点,以支持MHB频段;
    耦合辐射体,所述耦合辐射体位于所述第一辐射体与所述第二辐射体之间,且所述耦合辐射体与所述第二辐射体耦合;及
    第一调谐电路,所述第一调谐电路电连接至所述第一辐射体,还电连接至所述耦合辐射体,且所述第一调谐电路还电连接至地,所述第一调谐电路用于对所述LB频段及所述MHB频段进行调谐。
  31. 如权利要求30所述的天线组件,其中,所述第一辐射体具有第一自由端、第一接地端及第一馈电点,所述第一接地端接地,所述第一馈电点位于所述第一自由端与所述第一接地端之间,所述第一馈源电连接至所述第一馈电点;
    所述第二辐射体具有第二自由端、第二接地端及第二馈电点,所述第二接地端接地,且所述第二接地端相较于所述第二自由端邻近所述第一接地端设置;
    所述耦合辐射体具有第三自由端及第四自由端,所述第三自由端与所述第一自由端间隔第一耦合缝隙,且与第一自由端耦合;所述第四自由端与所述第二自由端间隔第二耦合缝隙,且与第二自由端耦合,所述耦合辐射体具有第一连接点,所述第一接地端邻近所述第三自由端,所述第一调谐电路电连接至所述第一连接点及所述第一接地端。
  32. 如权利要求31所述的天线组件,其中,所述天线组件还包括:
    第二调谐电路,所述第二调谐电路电连接至第二馈电点及地,所述第二调谐电路用于调节MHB频段的谐振频点。
  33. 如权利要求30所述的天线组件,其中,所述第一辐射体包括弯折相连的第一部及第二部,所述第一部具有第一自由端,所述第二部具有第二接地端;
    所述第二辐射体包括弯折相连的第三部及第四部,所述第三部背离所述第四部的一端邻近所述第二部设置,所述第四部与所述第一部相对设置;
    所述耦合辐射体位于所述第二部与所述第三部之间,且所述耦合辐射体的延伸方向与所述第二部及所述第三部的排布方向一致。
  34. 如权利要求31所述的天线组件,其中,所述第二辐射体还具有第三馈电点、第一接地点及第二接地点,所述第三馈电点与所述第二馈电点间隔设置,所述第二接地点位于所述第二馈电点与所述第三馈电点之间,且所述第二接地点相较于所述第一接地点邻近所述第三馈电点设置,所述天线组件还包括:
    第三馈源,所述第三馈源电连接至所述第三馈电点,以支持所述LB频段。
  35. 如权利要求34所述的天线组件,其中,所述第三馈源还用于在所述第二辐射体上激励起第四谐振模式及第五谐振模式,所述第四谐振模式及所述第五谐振模式用于支持WiFi 2.4G频段或蓝牙频段。
  36. 如权利要求35所述的天线组件,其中,所述天线组件还包括:
    第三辐射体,所述第三辐射体具有第四馈电点;及
    第四馈源,所述第四馈源电连接所述第四馈电点,以使得所述第三辐射体支持所述WiFi 2.4G频段或蓝牙频段。
  37. 如权利要求36所述的天线组件,其中,所述第三辐射体与所述第二辐射体对角设置,
    所述第二辐射体及所述第三辐射体均用于支持所述蓝牙频段,所述第三辐射体收发所述蓝牙频段的电磁波信号时的方向图,与所述第二辐射体收发所述蓝牙频段的电磁波信号时的方向图互补。
  38. 一种电子设备,其中,所述电子设备包括第一电路板及如权利要求1-29任意一项所述的天线组件,所述天线组件中的第一馈源设置于所述第一电路板;或者,
    所述电子设备包括第一电路板、第二电路板及如权利要求30-37任意一项所述的天线组件,所述天线组件中的第一馈源设置于所述第一电路板,所述第二馈源设置于所述第二电路板。
  39. 如权利要求38所述的电子设备,其中,所述电子设备还包括中框,所述天线组件的第一辐射体形成于所述中框上。
  40. 如权利要求38所述的电子设备,其中,所述电子设备还包括:
    第一功能器件;及
    第二功能器件,所述第二功能器件与所述第一功能器件间隔设置,以形成间隙;
    所述天线组件的第一辐射体的第一接地端对应所述间隙设置。
  41. 如权利要求38所述的电子设备,其中,所述电子设备还包括弯折相连的第一边及第二边,所述第一辐射体部分对应所述第一边设置,所述第一辐射体部分对应所述第二边设置。
  42. 如权利要求41所述的电子设备,其中,所述第一边为电子设备的长边,所述第二边为电子设备的短边,所述电子设备具中轴线,所述中轴线平行于所述第一边,且贯穿所述第二边的中点,所述第一辐射体位于所述中轴线的一侧。
PCT/CN2023/104048 2022-08-29 2023-06-29 天线组件及电子设备 WO2024045856A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211041884.6A CN117673752A (zh) 2022-08-29 2022-08-29 天线组件及电子设备
CN202211041884.6 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024045856A1 true WO2024045856A1 (zh) 2024-03-07

Family

ID=90071900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104048 WO2024045856A1 (zh) 2022-08-29 2023-06-29 天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN117673752A (zh)
WO (1) WO2024045856A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310622A (zh) * 2020-10-14 2021-02-02 深圳市锐尔觅移动通信有限公司 天线装置及电子设备
CN113991288A (zh) * 2021-10-20 2022-01-28 Oppo广东移动通信有限公司 天线组件、中框组件以及电子装置
WO2022068827A1 (zh) * 2020-09-30 2022-04-07 Oppo广东移动通信有限公司 天线组件和电子设备
CN114465007A (zh) * 2022-01-28 2022-05-10 Oppo广东移动通信有限公司 天线组件及移动终端
CN114649680A (zh) * 2020-12-18 2022-06-21 华为技术有限公司 一种电子设备
EP4020705A1 (en) * 2019-08-22 2022-06-29 Huawei Technologies Co., Ltd. Antenna assembly and electronic device having rollable screen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020705A1 (en) * 2019-08-22 2022-06-29 Huawei Technologies Co., Ltd. Antenna assembly and electronic device having rollable screen
WO2022068827A1 (zh) * 2020-09-30 2022-04-07 Oppo广东移动通信有限公司 天线组件和电子设备
CN112310622A (zh) * 2020-10-14 2021-02-02 深圳市锐尔觅移动通信有限公司 天线装置及电子设备
CN114649680A (zh) * 2020-12-18 2022-06-21 华为技术有限公司 一种电子设备
CN113991288A (zh) * 2021-10-20 2022-01-28 Oppo广东移动通信有限公司 天线组件、中框组件以及电子装置
CN114465007A (zh) * 2022-01-28 2022-05-10 Oppo广东移动通信有限公司 天线组件及移动终端

Also Published As

Publication number Publication date
CN117673752A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2022068827A1 (zh) 天线组件和电子设备
CN113748663B (zh) 天线和包括该天线的电子设备
WO2022142824A1 (zh) 天线系统及电子设备
WO2021023182A1 (zh) 天线模组及电子设备
US10734714B2 (en) Electronic device wide band antennas
US10673127B2 (en) Electronic device wide band antennas
US10355758B2 (en) Multi-band antennas and MIMO antenna arrays for electronic device
US7317901B2 (en) Slotted multiple band antenna
US20230318180A1 (en) Antenna Structure and Electronic Device
WO2005124924A1 (en) Compact multiband inverted-f antenna
US20100309087A1 (en) Chip antenna device
CN109802236B (zh) 天线结构及具有该天线结构的无线通信装置
KR102650820B1 (ko) 안테나 및 그것을 포함하는 전자 장치
US7642966B2 (en) Carrier and device
WO2023116353A1 (zh) 电子设备
US20230163457A1 (en) Electronic Device
WO2024078533A1 (zh) 可折叠电子设备
US20240072440A1 (en) Antenna assembly and electronic device
US20230239385A1 (en) Antenna and electronic apparatus including same
WO2023155593A1 (zh) 电子设备
CN110336112B (zh) 天线馈电单元、调谐单元与显示屏组件结合的电子设备
CN114243271A (zh) 天线装置、电路板组件及电子设备
KR101667714B1 (ko) 이동 단말기
KR20160123202A (ko) 메탈 케이스를 이용한 무선 헤드셋 안테나
WO2006013843A1 (ja) 携帯電話機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858894

Country of ref document: EP

Kind code of ref document: A1