WO2021129110A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2021129110A1
WO2021129110A1 PCT/CN2020/123663 CN2020123663W WO2021129110A1 WO 2021129110 A1 WO2021129110 A1 WO 2021129110A1 CN 2020123663 W CN2020123663 W CN 2020123663W WO 2021129110 A1 WO2021129110 A1 WO 2021129110A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
electronic device
antenna unit
sensor chip
Prior art date
Application number
PCT/CN2020/123663
Other languages
English (en)
French (fr)
Inventor
彭伟博
缑城
王坚
苏子剑
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/789,101 priority Critical patent/US20230032019A1/en
Priority to EP20906748.7A priority patent/EP4068507A4/en
Publication of WO2021129110A1 publication Critical patent/WO2021129110A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the embodiments of the present application relate to the field of terminal technology, and more specifically, to an electronic device.
  • a capacitive sensor includes a sensor chip and a sensor chip, and can use the capacitance change between the measured object and the sensor chip to detect the proximity or distance level of the measured object.
  • the existing capacitive sensor uses the radiator of the antenna as the sensing sheet to transmit the capacitive sensing signal on the radio frequency path.
  • the lumped device such as capacitor and inductance can be connected in the path to transmit the radio frequency signal. It is isolated from the capacitive sensing signal, and then leads to the RF path and the sensor path respectively.
  • the radio frequency signal and the capacitive sensing signal are transmitted in the same channel, they interfere with each other, which affects the detection accuracy of the capacitive sensor.
  • the embodiments of the present application provide an electronic device, which can improve the detection accuracy of a sensor in the electronic device.
  • an electronic device including: a first antenna unit, the first antenna unit includes a first radiator, the first radiator is used for sending and receiving radio frequency signals; the first radiator is also used for When the measured object is approaching, the capacitance or capacitance change between the first radiator and the measured object is sensed; the electronic device further includes a sensor chip, and the sensor chip is used to obtain the capacitance or capacitance change, In order to determine the proximity of the measured object to the first radiator, the sensor chip is electrically connected to the minimum voltage point on the first radiator through a wire.
  • a wire drawn from the minimum voltage point of the radiator of the antenna unit is connected to the sensor chip, which can form a capacitive sensor system.
  • the capacitive sensing path of the capacitive sensor can be separated from the radio frequency path of the antenna unit, and the capacitive sensing current of the sensor is transmitted from the lead wire to the sensor chip, which can reduce or avoid the mutual interference between the capacitive sensing path and the radio frequency path, and improve the capacitive type.
  • the detection accuracy of the sensor is provided.
  • the capacitive sensing path of the capacitive sensor is separated from the radio frequency path of the antenna unit, there is no need to provide isolation devices such as capacitors and inductors to isolate the capacitive sensing signal from the radio frequency signal, which can simplify the structure. There is no need to transmit capacitive induced current in the radio frequency path, which also improves the flexibility of radio frequency path debugging.
  • a wire is separately drawn from the minimum voltage point on the radiator of the antenna unit, which has no effect on the performance of the antenna.
  • Leading wires from the minimum voltage point of the radiator can separate the capacitive sensing path of the capacitive sensor from the radio frequency path of the antenna unit.
  • the radio frequency path and the sensor path can be isolated without using capacitors, inductors and other isolation devices.
  • the electronic device further includes a second antenna unit having a second radiator, and the minimum voltage point on the second radiator is electrically connected to the sensor chip through a wire.
  • sexual connection wherein the wires connected to the first radiator and the second radiator are combined into one or more paths to be connected to the sensor chip.
  • the radiators of multiple antenna units are multiplexed as the sensing sheet of the capacitive sensor, the area of the sensing sheet is increased, so that the capacitance induced current can be increased, and the detection accuracy of the sensor is improved. Furthermore, compared to using the radiator of a single antenna unit as the sensing sheet, the radiator using multiple antenna units can increase the detection distance of the capacitive sensor and increase the detection sensitivity of the capacitive sensor, that is, when the measured object is away from the radiator Far away, a current can be generated in the radiator to be detected by the sensor chip.
  • the sensor chip can calculate multiple distances between the measured object and the radiator according to the multiple capacitive induction currents, or multiple The distance between the measured object and the radiator can get the finer position of the measured object.
  • the first antenna unit and the second antenna unit belong to the same antenna array.
  • the antenna array may include multiple first antenna elements and/or multiple second antenna elements.
  • the first antenna unit is any one of the following antennas: monopole antenna, dipole antenna, microstrip antenna, patch antenna, slot antenna, inverted F antenna, flat inverted F antenna, ceramic antenna.
  • the feeding mode of the first antenna unit is direct feeding or coupling feeding, where the direct feeding includes microstrip feeding and probe feeding .
  • the wire is a low-pass high-resistance wire.
  • the wire drawn from the minimum voltage point on the radiator of the antenna is a low-pass and high-resistance wire, and the radio frequency band presents high resistance, so that the high-frequency guided wave corresponding to the electromagnetic wave will not be transmitted from the wire and reach the sensor chip. .
  • a first high-pass filter circuit is provided on the path between the first radiator and the sensor chip, and the first high-pass filter circuit is used to filter out The radio frequency signal.
  • the embodiment of the present application may further provide a first high-pass filter circuit in the capacitive sensing path to filter out the radio frequency signal of the antenna unit.
  • the first radiator when the first antenna unit is a patch antenna, the first radiator includes one or more layers of conductor patches, and the wire and the layer Or a layer of conductor patches in the multilayer conductor patch are connected.
  • the wire is connected to a surface conductor patch in the one or more layers of conductor patches.
  • the surface conductor patch is used as the sensing plate of the capacitive sensor, which can reduce the influence of other conductor patches of the antenna unit.
  • the surface conductor patch is closest to the object to be measured, and the distance that can be detected is the longest. Far, the detection sensitivity of the capacitive sensor is improved.
  • a second high-pass filter circuit is connected in series on the radio frequency path of the first antenna unit, and To block the low-frequency signal corresponding to the capacitance or capacitance change.
  • a second high-pass filter circuit may be provided in the radio frequency path to block the capacitive sensing signal.
  • the first antenna unit further includes a feeder, and when the feeder and the wire are connected to the same conductor patch, the radio frequency path of the first antenna unit A second high-pass filter circuit is connected in series to block the low-frequency signal corresponding to the capacitance or capacitance change.
  • the second high-pass filter circuit is a capacitor circuit.
  • the shape of the patch antenna is any one of the following shapes: square, rectangle, triangle, and circle , Oval, H-shaped.
  • the minimum voltage point on the first radiator is located at the center of the first radiator.
  • the sensor chip and the first antenna unit are packaged as a whole.
  • the sensor chip and the first antenna unit are packaged in one body, which can reduce the volume of the device and save the internal space of the electronic device.
  • an electronic device including a first antenna unit and a sensor chip, the first antenna unit includes a first radiator and a feeder line, the feeder line is in direct contact with the first radiator or the feeder line Coupling and feeding the first radiator; the first radiator and the sensor chip are electrically connected by a wire, and the position where the wire is connected to the first radiator is on the first radiator The minimum voltage point.
  • a wire drawn from the minimum voltage point of the radiator of the antenna unit is connected to the sensor chip to form a capacitive sensor system.
  • the capacitive sensing path of the capacitive sensor can be separated from the radio frequency path of the antenna unit, and the capacitive sensing current of the sensor is transmitted from the lead wire to the sensor, which can reduce or avoid the mutual interference between the capacitive sensing path and the radio frequency path, and improve the capacitive sensor The detection accuracy.
  • the electronic device further includes a second antenna unit having a second radiator, and the minimum voltage point on the second radiator is electrically connected to the sensor chip through a wire.
  • sexual connection wherein the wires connected to the first radiator and the second radiator are combined into one or more paths to be connected to the sensor chip.
  • the first antenna unit and the second antenna unit belong to the same antenna array.
  • the first antenna unit is any one of the following antennas: monopole antenna, dipole antenna, microstrip antenna, patch antenna, slot antenna, inverted F antenna, flat inverted F antenna, ceramic antenna.
  • the wire is a low-pass high-resistance wire.
  • a first high-pass filter circuit is provided on the path between the first radiator and the sensor chip.
  • the first radiator when the first antenna unit is a patch antenna, the first radiator includes one or more layers of conductor patches, and the wire and the layer Or a layer of conductor patches in the multilayer conductor patch are connected.
  • the wire is connected to a surface conductor patch in the one or more layers of conductor patches.
  • a second high-pass filter circuit is connected in series with the radio frequency path of the first antenna unit.
  • a second high-pass filter circuit is connected in series on the radio frequency path of the first antenna unit.
  • the second high-pass filter circuit is a capacitor circuit.
  • the shape of the patch antenna is any one of the following shapes: square, rectangle, triangle, and circle , Oval, H-shaped.
  • the minimum voltage point on the first radiator is located at the center of the first radiator.
  • the sensor chip and the first antenna unit are packaged as a whole.
  • Figure 1 is a schematic structural diagram of an electronic device
  • Figure 2 is a schematic structural diagram of a capacitive sensor
  • Fig. 3 is a schematic structural diagram of a capacitive sensor arranged on an electronic device
  • Figure 4 is a schematic diagram of the structure of several microstrip antennas
  • Fig. 5 is a schematic structural diagram of a capacitive sensor provided by an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional structure diagram of a capacitive sensor provided by an embodiment of the present application.
  • FIG. 7 is a schematic top view of the capacitive sensor in FIG. 6;
  • FIG. 8 is a schematic cross-sectional structure diagram of yet another capacitive sensor provided by an embodiment of the present application.
  • FIG. 9 is a schematic circuit diagram of a capacitive sensor provided by an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional structure diagram of yet another capacitive sensor provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a structural form of an antenna unit provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a structural form of an antenna unit provided by an embodiment of the present application.
  • FIG. 13 is a schematic top view of an antenna array provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a capacitive sensor provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another capacitive sensor provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another capacitive sensor provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of yet another capacitive sensor provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of yet another capacitive sensor provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of still another capacitive sensor provided by an embodiment of the present application.
  • the electronic devices involved in the embodiments of the present application may include handheld devices, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems. It can also include cellular phones, smart phones, personal digital assistants (PDAs), computers, tablet computers, laptops, laptop computers, and smart watches. ), smart wristbands, on-board computers and other electronic devices that can communicate.
  • PDAs personal digital assistants
  • the embodiments of the present application do not impose special restrictions on the specific form of the foregoing electronic equipment.
  • the electronic equipment in the embodiments of the present application may be a terminal or a terminal device.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100.
  • the electronic device 100 includes a processor 110, a memory 120, a radio frequency unit 130, a wireless communication module 140, an input and output device 150, an audio unit 160, a power supply 170, a sensor module 180, and so on.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may be used to process communication protocols and communication data, control the electronic device 100, execute software programs, process data of the software programs, and so on.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • the different processing units may be independent devices or integrated in one or more processors.
  • the processor 110 may include one or more interfaces.
  • the interface can include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / Or Universal Serial Bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous transmitter receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the memory 120 is used to store instructions and data, and mainly includes an internal memory and an external memory card, such as a Micro SD card.
  • the internal memory may be used to store computer executable program code, the executable program code including instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by running instructions stored in the internal memory.
  • the internal memory can include a program storage area and a data storage area.
  • the storage program area can store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required by at least one function, and the like.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the electronic device 100.
  • the internal memory may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the external memory card can expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through an external memory interface to realize a data storage function, for example, storing files such as music and video in the external memory card.
  • FIG. 1 For ease of description, only one memory 120 and processor 110 are shown in FIG. 1. In an actual electronic device, there may be one or more processors and one or more memories.
  • the memory 120 may also be referred to as a storage medium or a storage device or the like.
  • the memory 120 may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the electronic device 100 can implement the wireless communication function of the electronic device 100 through the antenna 131, the antenna 141, the radio frequency unit 130, the wireless communication module 140, the modem processor, and the baseband processor.
  • the antenna 131 and the antenna 141 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 131 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna can be used in combination with a tuning switch.
  • the radio frequency unit 130 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the electronic device 100.
  • the radio frequency unit 130 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
  • LNA low noise amplifier
  • the radio frequency unit 130 can receive electromagnetic waves by the antenna 131, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the radio frequency unit 130 may also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 131.
  • at least part of the functional modules of the radio frequency unit 130 may be provided in the processor 110.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through the audio unit 160, or displays images or videos through the display screen in the input and output device 150.
  • the modem processor may be an independent device. In other embodiments, the modem processor may be independent of the processor 110 and be provided in the same device as the radio frequency unit 130 or other functional modules.
  • the wireless communication module 140 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 140 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 140 receives electromagnetic waves via the antenna 141, modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 140 may also receive a signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 141.
  • the antenna 131 of the electronic device 100 is coupled with the radio frequency unit 130, and the antenna 141 is coupled with the wireless communication module 140, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the electronic device 100 can implement audio functions, such as music playback, recording, etc., through an audio unit 160, an application processor, and peripherals (not shown in the figure) such as a speaker, a receiver, a microphone, and a headphone interface.
  • audio functions such as music playback, recording, etc.
  • peripherals not shown in the figure
  • a speaker such as a speaker, a receiver, a microphone, and a headphone interface.
  • the audio unit 160 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio unit 160 may also be used to encode and decode audio signals.
  • the audio unit 160 may be disposed in the processor 110, or part of the functional modules of the audio unit 160 may be disposed in the processor 110.
  • the input and output device 150 includes a user input device and a display device, and is mainly used to receive data input by the user and output data to the user.
  • the user input device may be used to detect user operations and generate user operation information for indicating the user operations.
  • the user input device may include, but is not limited to, a physical keyboard, function keys (such as volume control keys, switch buttons, etc.), trackball, mouse, joystick, touch screen, optical mouse (optical mouse does not display Depending on the output touch-sensitive surface, or an extension of the touch-sensitive surface formed by the touch screen), one or more of them.
  • function keys such as volume control keys, switch buttons, etc.
  • trackball such as volume control keys, switch buttons, etc.
  • mouse joystick
  • touch screen optical mouse (optical mouse does not display Depending on the output touch-sensitive surface, or an extension of the touch-sensitive surface formed by the touch screen), one or more of them.
  • the display device may be used to present visual information such as a user interface, image, or video.
  • the display device may display information input by the user or information provided to the user, various menus of electronic equipment, and the like.
  • the display device may include a display, such as a liquid crystal display (LCD), an organic light emitting diode (OLED), a cathode ray tube (cathode ray tube) display, and holographic imaging. (holographic) display or projector, etc. It should be noted that some types of electronic equipment may not have input and output devices.
  • the power supply 170 can supply power to various components of the electronic device 100, such as a battery.
  • the power supply 170 may be logically connected to the processor 110 through a power management system, so that functions such as charging, discharging, and power consumption can be managed through the power management system.
  • the sensor module 180 is used to sense the measured information, and can transform the sensed information into electrical signals or other required forms of information output according to a certain rule, so as to meet the needs of information transmission, processing, storage, display, recording and control And so on.
  • the sensor module 180 may include a pressure sensor, an angular velocity sensor (also known as a gyroscope), an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, an ambient light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, a bone conduction sensor, etc.
  • the above-mentioned sensors can be used to respond to distance values, light values, temperature values, brightness values, and pressure values, etc., to facilitate convenient operations in human-computer interaction.
  • a type of sensor used for proximity detection can be collectively referred to as a proximity sensor, such as the aforementioned distance sensor and proximity light sensor.
  • the proximity sensor can reflect the proximity or distance level of the object, and the electronic device can trigger certain actions according to the proximity of the object.
  • electronic devices can use proximity to instruct radio frequency units to adapt instantaneous radio frequency (RF) power to meet specific absorption rate (SAR) limits, and protect users of wireless devices from potential RF exposure.
  • RF radio frequency
  • SAR absorption rate
  • Specific absorption rate also known as electromagnetic wave absorption ratio, is the electromagnetic power absorbed or consumed per unit mass of human tissue.
  • a user when a user puts an electronic device near his ear to make a call, he can disable the touch screen of the electronic device according to the proximity indication, so as to prevent the user from triggering unwanted actions by touching the screen with his face or ears. It is also possible to keep the electronic device in the off-screen state to achieve the purpose of power saving.
  • the proximity sensors provided on electronic devices include inductance-based sensors, optical-based sensors, thermal-based sensors, and capacitance-based sensors.
  • Capacitive proximity sensors have the advantages of simple structure, high sensitivity, good temperature stability, good adaptability, and good dynamic performance. At present, they are widely used in the measurement of displacement, vibration, angle, acceleration and other mechanical parameters in detection technology.
  • the embodiments of the present application mainly describe a capacitive sensor (capacitive sensor) for detecting the proximity or distance level, which may also be referred to as a capacitive proximity sensor (capacitive proximity sensor), which will be described in detail below with reference to the accompanying drawings.
  • FIG. 2 shows a schematic structural diagram of a capacitive sensor.
  • the capacitive sensor 200 includes a sensor pad 210 and a sensor chip (sensor integrated circuit, sensor IC) 220, and the sensor pad 210 and the sensor chip 220 are electrically connected through a wire 230.
  • the sensing sheet 210 may be a sheet-shaped conductor, such as a metal sheet.
  • the sensor chip 220 includes some logic circuits, and the sensor chip 220 can charge and discharge the sensor chip 210.
  • the sensor chip 210 is used to sense the capacitance of the sensor, such as sensing the capacitance or capacitance change between the sensor chip 210 and the measured object when the measured object approaches, and the sensor chip 220 is used to obtain the capacitive change when the measured object approaches the sensor. That is, the capacitance or capacitance change between the sensing sheet 210 and the measured object sensed by the sensing sheet 210.
  • the measured object when the measured object, such as a user's finger, approaches the sensor sheet 210, the measured object forms a capacitor with the sensor sheet 210, where the measured object serves as one plate of the capacitor, and the sensor sheet 210 serves as the other plate of the capacitor.
  • is the dielectric constant of the medium between the plates
  • S is the area directly facing the capacitor plates
  • d Is the distance between the plates.
  • the current generated by the change in the distance between the measured object and the sensing chip 210 will be transmitted to the sensor chip 220 through the wire 230, and the sensor chip 220 can be obtained according to the current change (or charge and discharge voltage, voltage change value, etc.)
  • the capacitance between the measured object and the sensing sheet 210 changes, so that the distance (or the distance change value) between the measured object and the sensing sheet 210 can be obtained.
  • the capacitive sensor 200 can obtain the distance or the distance change value between the measured object and the sensing sheet 210 through the capacitance value or the capacitance change value between the measured object and the sensing sheet 210.
  • the distance that the capacitive sensor 200 can detect has a maximum value.
  • the distance between the measured object and the sensing sheet 210 is greater than the maximum value, the current generated by the change in the distance between the measured object and the sensing sheet 210 is relatively weak.
  • the sensor chip 220 cannot detect the weak current, and thus cannot detect the distance between the measured object and the sensing sheet 210.
  • the capacitive sensor 200 can detect the existence of the measured object, and can detect the distance between the measured object and the sensing sheet 210 Or the proximity between the detected object and the sensor sheet 210 is detected. The farther the capacitive sensor 200 can detect, the higher the detection sensitivity.
  • Capacitive sensors can be used to detect metal and non-metallic substances, such as paper, liquid, glass, cloth, and so on.
  • the object to be measured can be an electrical conductor, an insulator with large dielectric loss, or an object containing water (such as a human).
  • the object under test can be grounded or ungrounded, and the embodiments of this application are not specifically limited.
  • the larger the area of the capacitor plate and the larger the capacitance the larger the current that can be generated, and the detection accuracy of the sensor chip 220 is higher.
  • the area S facing the capacitive plate in the embodiment of the present application can be regarded as the area of the sensing plate.
  • the use of a larger-area sensing sheet can increase the detection distance range of the capacitive sensor and increase the sensitivity of the capacitive sensor.
  • the internal space of the electronic device is limited, and the sensing sheet of the capacitive sensor needs to be designed and placed according to the internal space of the electronic device.
  • Fig. 3 shows a schematic structural diagram of a capacitive sensor arranged on an electronic device.
  • the electronic device 100 may include a housing 101 and various components arranged in the accommodating space of the housing 101.
  • the figure only exemplarily shows the external schematic diagram of the electronic device 100, and its interior may include One or more of the components shown in 1.
  • the capacitive sensor 200 is generally disposed at a position of the electronic device 100 close to the housing 101, such as the area shown by the dashed frame in FIG. It should be understood that the dashed box in the figure is only used to exemplarily show the approximate position of the capacitive sensor 200 in the electronic device 100, and the number and specific structure of the capacitive sensor 200, as well as the settings of other components in the electronic device 100, etc. Does not cause any restrictions.
  • one or more metal sheets can be separately set as the sensing sheet of the capacitive sensor.
  • the sensing sheet is used to sense the capacitance change caused by the object being measured close to the sensing sheet.
  • the capacitance change can be determined by the capacitive sensor.
  • the sensor chip captures in the sensor chip, and then calculates the proximity or distance level of the object through the processing of the sensor chip. It can be seen from the above description that the area of the sensing sheet in the capacitive sensor is generally set to be relatively large to detect objects at a long distance. If the metal sheet is separately provided as the sensing sheet, a larger area is also required to place the sensing sheet in the electronic device, which is not conducive to the miniaturization of the electronic device.
  • the antenna can be multiplexed, and the existing antenna radiator of the electronic device can be used as the sensing sheet of the capacitive sensor. That is to say, the antenna can be used as a radiator for transmitting and receiving electromagnetic waves, as well as a sensing sheet of a capacitive sensor.
  • the radio frequency path used for communication is connected to the feed end or ground end of the capacitive sensing path used for distance detection, so that the radio frequency path is connected to the capacitor.
  • the induction path is actually a common path, and lumped devices such as capacitors and inductors need to be connected in the path for isolation, and then lead to the radio frequency path and the sensor path respectively.
  • radio frequency signals and capacitive sensing signals will interfere with each other when they are transmitted in the same channel, which is equivalent to having capacitive sensing signals in the radio frequency path, which will limit the flexibility of radio frequency channel debugging and reduce the radio frequency performance; there are radio frequency signals in the capacitive sensing path , It will affect the detection distance (ie detection sensitivity), detection accuracy of the capacitive sensor, and even lead to false detection.
  • the embodiments of the present application provide a capacitive sensor, which can improve the detection accuracy compared with the existing capacitive sensor.
  • the relevant content involved in the present application will be briefly introduced below.
  • a wire When a wire carries an alternating current, it will radiate electromagnetic waves, and its radiation ability is related to the length and shape of the wire. If the distance between the two wires is very close, the electric field is bound between the two wires, so the radiation is very weak; when the two wires are opened, the electric field will spread in the surrounding space, and the radiation will increase. When the length of the wire is much smaller than the wavelength of the radiated electromagnetic wave, the radiation is very weak; when the length of the wire is comparable to the wavelength of the radiated electromagnetic wave, the current on the wire is greatly increased, forming stronger radiation.
  • the antenna uses the above principles to transmit and receive electromagnetic waves.
  • electromagnetic waves When electromagnetic waves are emitted, the modulated high-frequency oscillating current from the transmitter is sent to the antenna input terminal from the feeder, and the antenna converts the high-frequency current in the circuit or the guided wave on the feeder transmission line into a space high-frequency electromagnetic wave. It radiates to the surrounding space in the form of waves. After the energy of the electromagnetic wave is radiated from the transmitting antenna, it will propagate forward in all directions along the ground surface. On the contrary, when receiving electromagnetic waves, the energy of the intercepted high-frequency electromagnetic waves is converted into the energy of high-frequency current through the receiving antenna, and then sent to the receiver.
  • the antenna can also be a directional antenna, so that when electromagnetic waves are emitted, the antenna effectively converts the high-frequency current in the circuit or the guided waves on the transmission line into a certain polarized space electromagnetic wave, and emits it in the specified direction; when receiving electromagnetic waves, The electromagnetic wave of a certain polarization from a specific direction in space is effectively converted into a high-frequency current in a circuit or a guided wave on a transmission line.
  • the wire connecting the antenna and the output of the transmitter (or the input of the receiver) is called a transmission line or a feeder.
  • the effective task of the feeder is to effectively transmit signal energy or radio frequency energy.
  • the feeder should be able to transmit the signal received by the antenna to the input of the receiver with minimal loss, or transmit the signal from the transmitter to the input of the transmitting antenna with minimal loss. At the same time, it should not pick up or generate spurious interference signals. .
  • the feeder transmits a high-frequency current, which is also called a radio frequency signal in some embodiments.
  • the above-mentioned radio frequency path can be understood as a path on the feeder.
  • the polarization of the antenna is determined by the polarization of electromagnetic waves.
  • the polarization direction of an electromagnetic wave is usually described by the spatial orientation of its electric field vector, that is, at a certain position in space, viewed along the propagation direction of the electromagnetic wave, the orientation of the electric field vector in space changes with time. If the trajectory is a straight line, it is called linear polarization, if it is a circle, it is called circular polarization, and if it is an ellipse, it is called elliptical polarization.
  • the antenna emits or receives electromagnetic waves of specified polarization. For example, a vertically polarized antenna cannot receive horizontally polarized incoming waves, and vice versa; a left-handed circularly polarized antenna cannot receive right-handed circularly polarized electromagnetic waves, and vice versa.
  • linear polarization is divided into vertical polarization and horizontal polarization.
  • vertical polarization when the electric field vector of the electromagnetic wave is perpendicular to the ground, it is called vertical polarization; when it is parallel to the ground, it is called horizontal polarization.
  • the corresponding antennas are called vertically polarized antennas and horizontally polarized antennas.
  • Vertically polarized antennas and horizontally polarized antennas are also single-polarized antennas. Combine antennas with vertical polarization and horizontal polarization, or combine antennas with +45° polarization and -45° polarization, to form a dual-polarized antenna. In a dual-polarized antenna, two antennas are superimposed at a fixed angle to transmit two independent waves. Therefore, the dual-polarized antenna has two feeding points.
  • any antenna always works within a certain frequency range, and has no corresponding effect outside this frequency range.
  • the shape, size, and constituent materials of the antenna need to be designed according to the design frequency of the antenna (that is, the wavelength at which the antenna emits or receives electromagnetic waves).
  • the design frequency that is, the wavelength at which the antenna emits or receives electromagnetic waves.
  • the antenna can deliver the maximum power.
  • the working frequency deviates from the design frequency, it often causes changes in antenna parameters.
  • the relevant parameters of the antenna should not exceed the specified range. This frequency range is called the bandwidth, or the bandwidth of the antenna for short.
  • antennas can be roughly divided into two types, one is a linear antenna composed of metal wires with a radius much smaller than the wavelength, and the other is a planar antenna composed of a metal or dielectric surface with a size greater than the wavelength.
  • Wire antennas are mainly used in long, medium and short wave frequency bands. Most of the wire antennas used in mobile communications are various types of wire antennas developed based on symmetrical oscillators. Planar antennas are mainly used in centimeter or millimeter wave frequency bands, and most satellite ground stations use parabolic antennas to receive satellite signals.
  • the antennas generally used in electronic devices can include monopole antennas, dipole antennas, and quarter antennas. Wavelength antennas, microstrip antennas, patch antennas, slot antennas, inverted F antennas (IFA antennas), planar inverted F antennas (PIFA antennas), ceramic antennas, etc.
  • the microstrip antenna has a low profile, low cost, and can be made into a multifunctional and conformal antenna.
  • the microstrip antenna can be large or small in size and can be integrated into a radio device. Because it is easier to achieve miniaturization and integration, microstrip antennas have been widely used in handheld portable communication devices and electronic devices such as mobile phones.
  • a microstrip antenna is a thin dielectric plate with a metal layer attached to one side as a ground plate, and the other side can be made into a certain shape by patching or etching, using microstrip lines or coaxial lines, etc.
  • the microstrip antenna has a thin planar structure. The required resonant frequency, polarization, mode, impedance and other parameters can be obtained or adjusted by selecting a specific patch shape and feeding method or adding a load between the patch and the dielectric substrate. .
  • FIG 4 shows a schematic diagram of the structure of several microstrip antennas.
  • Microstrip antennas can be roughly divided into microstrip patch antennas, microstrip traveling wave antennas and microstrip slot antennas according to their radiating unit forms.
  • a microstrip patch antenna (MPA) (also called a patch antenna) is composed of a dielectric substrate 301, a ground plate 302 on one side of the dielectric substrate 301, and On the other side of the dielectric substrate 301, there is a conductor patch 303 of arbitrary planar geometry.
  • a feeder such as a microstrip line 304 or a coaxial line is used to feed power to excite between the conductor patch 303 and the ground plate 302.
  • the conductor patch 303 can be a regular-shaped area unit, such as a square, a circle, a rectangle, an ellipse, a pentagon, and a circular ring. , Triangle, semicircle, notched circle, ellipse ring, sector, semicircle, sector ring, etc., can also be irregular shaped area units, such as "H" shape, corner-cut square, etc. The embodiments of this application do not Make specific restrictions.
  • a microstrip traveling-wave antenna is composed of a dielectric substrate 301, a ground plate 302 on one side of the dielectric substrate 301, and a dielectric substrate 301.
  • the microstrip line 304 or TEM wave transmission line with a chain-shaped periodic structure is composed.
  • the microstrip traveling wave antenna mainly uses a certain deformation of the microstrip line 304 (such as a right-angle elbow, arc bending, etc.) to generate radiation 4(c), the microstrip slot antenna is composed of a microstrip line 304 and a slot 305 opened on the ground plate 302.
  • the microstrip slot antenna can use the slot 305 opened on the ground plate 302 to radiate, At this time, the microstrip line 304 or other feed lines on the other side of the dielectric substrate 301 are fed to it.
  • the slit 305 may be rectangular (including a wide slit or a narrow slit), circular or annular.
  • Microstrip antennas can be fed in a variety of ways, mainly including microstrip transmission line feeding, coaxial probe feeding and coupling feeding.
  • the feed line is also a conductor strip, which generally has a narrow width.
  • the center microstrip feed and the eccentric microstrip feed can be used for feeding.
  • the inner conductor of the coaxial line is connected to the radiation patch, and the outer conductor is connected to the ground.
  • the coupling feed mode can also be divided into transmission line coupling feed and small hole coupling feed.
  • the antenna radiator is multiplexed as the sensing sheet of the capacitive sensor, and the antenna can be any of the antennas described above.
  • the embodiment of the present application will take a patch antenna as an example to describe the capacitive sensor implementation solution provided by the embodiment of the present application.
  • the capacitive sensor implementation solution provided by the embodiments of the present application is not limited to being applied to patch antennas, and can also be applied to any of the antennas mentioned above.
  • the electronic device in the embodiment of the present application includes a first antenna unit, the first antenna unit includes a first radiator, and the first radiator is used to send and receive radio frequency signals.
  • the first radiator is also used as the sensing sheet of the capacitive sensor, that is, the first radiator is also used to sense the capacitance or capacitance change between the first radiator and the measured object when the measured object approaches.
  • the electronic device also includes a sensor chip, which is used to obtain the aforementioned capacitance or capacitance change to determine the proximity of the measured object to the first radiator, wherein the sensor chip and the minimum voltage point on the first radiator It is electrically connected by wires.
  • the sensor chip determines the proximity of the measured object relative to the first radiator, it can be determined that the measured object has approached the first radiator or is approaching the first radiator. For example, when the capacitance or capacitance change sensed by the first radiator exceeds the minimum detection threshold of the sensor chip, the sensor chip can determine that the measured object has approached the first radiator, that is, the sensor chip has detected the measured object. For another example, when the capacitance or capacitance change induced by the first radiator exceeds a preset threshold or increases continuously, the sensor chip can determine that the measured object is approaching the first radiator, that is, the distance between the measured object and the first radiator The distance keeps shrinking. As the proximity of the measured object relative to the first radiator changes, the electronic device can perform certain operations according to the proximity of the measured object, such as switching antenna modules, changing beam directions, and recognizing user gestures.
  • the role of the radiator of the antenna unit is to convert radio frequency signals into electromagnetic waves and transmit them to space, or to receive electromagnetic waves in space and convert them into radio frequency signals. Therefore, in the embodiments of the present application, the radiator of the antenna unit used for transmitting and receiving radio frequency signals and used for transmitting and receiving electromagnetic waves can be understood to have the same meaning.
  • the radiator of the antenna unit is multiplexed as the sensing sheet of the capacitive sensor.
  • the radiator is used to sense the capacitance or capacitance change between the measured object and the radiator. At the time, it is expressed as a "sensor piece" to distinguish the different functions of the radiator. That is, the name “radiator” is used to describe the function of the radiator to send and receive radio frequency signals, and the name “sensor sheet” is used to describe the function of the radiator's inductive capacitance or capacitance change, but both refer to the radiator of the antenna unit.
  • Fig. 5 shows a schematic structural diagram of a capacitive sensor provided by an embodiment of the present application.
  • the capacitive sensor module 420 includes a sensing sheet 421 and a sensor chip 422.
  • the antenna unit 410 includes a radiator 411 and a feeder 412.
  • the sensing sheet 421 of the capacitive sensor module 420 multiplexes the radiator 411 of the antenna unit 410, that is, the radiator 411 of the antenna unit is used as the sensing sheet 421 of the capacitive sensor.
  • the sensor chip 422 of the capacitive sensor module and the antenna unit The radiator 411 of the radiator is conducted (ie, electrically connected) through the wire 423, and the position where the wire 423 is connected to the radiator 411 is located at the minimum voltage point on the radiator 411.
  • radiode may also be referred to as “radiation unit”, “radiation sheet”, etc. in other embodiments, and the three have the same meaning.
  • the “capacitive sensor module” may also be referred to as “capacitive sensor” for short.
  • the minimum voltage point on the radiator of the antenna unit may also be the minimum electric field point or the weakest electric field point, that is, the minimum electric field point of the antenna unit is located on the physical entity of the antenna, which can also be considered as capacitive.
  • the sensor chip 422 of the sensor module and the point of the smallest electric field on the radiator 411 of the antenna unit are conducted through a wire 423.
  • the feed line 412 of the antenna unit 410 and the radiator 411 may be directly fed or coupled.
  • Direct feeding means that the feeder is in direct contact with the conductor patch, such as microstrip transmission line feeding and coaxial probe feeding.
  • Coupling feeding means that there is no direct contact between the feeder and the conductor patch, such as electromagnetic coupling, slot coupling method and coplanar waveguide feeding method.
  • the shape and size of the radiator 411 are related to the working mode, working frequency, function, etc. of the antenna unit 410. In practical applications, the specific structure of the radiator 411 needs to be designed according to the parameters of the antenna unit 410.
  • the radiator of the antenna unit in the electronic device is used as a sensing sheet, and a wire is drawn from the minimum voltage point of the radiator to connect to the sensor chip to form a capacitive sensor system.
  • the capacitive sensing path of the capacitive sensor can be separated from the radio frequency path of the antenna unit, and the capacitive sensing current of the sensor is transmitted from the lead wire to the sensor, which can reduce or avoid the mutual interference between the capacitive sensing path and the radio frequency path, and improve the capacitive sensor The detection accuracy.
  • the capacitive sensing path of the capacitive sensor is separated from the RF path of the antenna unit, there is no need to install capacitors, inductors and other isolation devices to isolate the capacitive sensing signal from the RF signal, which can simplify the structure. There is no need to transmit capacitive induced current in the radio frequency path, which improves the flexibility of radio frequency path debugging.
  • FIG. 6 shows a schematic cross-sectional structure diagram of a capacitive sensor provided by an embodiment of the present application.
  • the figure shows an antenna unit 410 and a capacitive sensor module 420 included in the electronic device.
  • the antenna unit 410 can effectively radiate electromagnetic waves in a specific direction in space or can effectively receive electromagnetic waves from a specific direction in space, and realize the conversion between guided waves and free-space waves.
  • the antenna unit 410 may be connected to a front-end module (FEM) 430, and the front-end module 430 may be used to complete transmission and reception amplification of radio frequency signals, or include power detection, control, and switching functions.
  • FEM front-end module
  • the capacitive sensor module 420 can realize proximity detection, detecting the proximity or distance level of an object.
  • the antenna unit 410 includes a dielectric substrate 401, a surface conductor patch 402, a bottom conductor patch 403, a feeder 404, and the like.
  • a ground plate 405 is also included.
  • the dielectric substrate 401 includes multiple layers, which can play a supporting role.
  • the surface conductor patch 402, the bottom conductor patch 403, and the ground plate 405 are laminated in sequence, and the two are separated by a dielectric substrate 401.
  • the feed line 404 passes through the ground plate 405 and the dielectric substrate 401 to feed the surface conductor patch 402 and the bottom conductor patch 403.
  • the feeder 404 is in contact with the bottom conductor patch 403, and for the bottom conductor patch 403, it is a direct feeding mode.
  • the feed line 404 and the surface conductor patch 402 are not in direct contact, and the surface conductor patch 402 is a coupled feeding method.
  • the surface conductor patch 402 and the bottom conductor patch 403 are the radiators of the antenna unit 410.
  • the surface conductor patch 402 is the patch closest to the measured object (or the electronic device housing), and the bottom conductor patch 403 is the patch farthest from the measured object (or the electronic device housing).
  • the antenna unit 410 may include a multilayer conductor patch, and FIG. 6 only exemplarily shows two layers of conductor patches (ie, the surface conductor patch 402 and the bottom conductor patch 403). .
  • at least one layer of conductor patch may be provided between the surface conductor patch 402 and the bottom conductor patch 403, such as one layer, two layers, three layers or more.
  • the antenna unit 410 It includes three-layer, four-layer, five-layer or more conductor patches, and the multilayer conductor patches are separated by a dielectric substrate.
  • the antenna unit 410 may also include only one layer of conductor patches, for example, only the surface conductor patch 402 located on the uppermost layer of the dielectric substrate 401.
  • the conductor patch of the antenna unit 410 can be fed in other ways.
  • the feeder 404 and the bottom conductor patch 403 are separated by a dielectric substrate, so that the feeder 404 is the same as all the conductor patches. Coupled feed.
  • the antenna transmits and receives electromagnetic waves
  • an electric field is formed around the antenna, and the voltage is different at different positions on the radiator of the antenna.
  • the conductor patch is the radiator of the antenna unit
  • an electric field is formed around the surface conductor patch 402 and the bottom conductor patch 403 in the embodiment of the present application.
  • Both the surface conductor patch 402 and the bottom conductor patch 403 have a point at which the voltage is the smallest. If the voltage is the smallest point on the radiator, there is almost no current in the wire.
  • the antenna receives electromagnetic waves, after converting the electromagnetic waves into guided waves, the conduction of the guided waves is related to the electric field distribution of the antenna, and the guided waves will not be transmitted from the place where the voltage is the smallest (that is, the impedance is the smallest).
  • the point with the smallest voltage on the conductor patch can be considered as the electric field zero point (or electric field weakness).
  • the electric field zero point is the weakest point of the antenna's electric field.
  • the voltage at this point is the smallest, so that the guided wave will be stronger in the electric field. Strong locations, such as the location of the feeder, will be transmitted, and will not be transmitted from the wire leading from the point of minimum voltage.
  • the capacitive sensor module 420 includes a sensing sheet 421 and a sensor chip 422.
  • the sensing sheet 421 is the radiator of the antenna unit 410.
  • the sensing sheet 421 multiplexes the surface conductor of the antenna unit 410. ⁇ 402.
  • the sensor chip 421 and the sensor chip 422 are connected by a wire 423, where the wire 423 is connected to the sensor chip 421 (that is, the surface conductor patch 402) at a position where the voltage of the surface conductor patch 402 is the smallest point.
  • the wire drawn from the minimum voltage point of the radiator of the antenna unit is connected to the sensor chip of the capacitive sensor, and the radiator of the antenna unit is used as the sensing plate of the capacitive sensor.
  • the radiator of the antenna unit 410 includes one or more layers of conductor patches, and any one of the one or more layers of conductor patches can be multiplexed as the induction patch 421. That is, when the radiator includes one or more layers of conductor patches, the wire is connected to one of the one or more layers of conductor patches.
  • the radiator of the antenna unit 410 includes a multi-layer conductor patch
  • the conductor patch closer to the outside of the electronic device (ie, close to the object under test) among the multi-layer conductor patches can be reused as the induction patch 421. That is, among the multi-layer conductive patches, the conductive patches with a distance less than a predetermined distance from the housing of the electronic device can be reused as the induction patch 421.
  • the surface conductor patch in the multi-layer conductor patch can be multiplexed as the induction patch 421.
  • this layer The conductor patch is the surface conductor patch. That is, when the radiator includes one or more layers of conductor patches, the wires are connected to the surface conductor patches of the one or more layers of conductor patches.
  • a wire is separately drawn from the radiator of the antenna unit as the current path of the sensor, and the sensor path can be separated from the radio frequency path of the antenna unit to avoid mutual interference.
  • the surface conductor patch of the antenna unit is reused as the sensing plate of the capacitive sensor, and the antenna unit feeder and the surface conductor patch are coupled feeding, that is, only one wire is drawn from the surface conductor patch, and the feeder It is not in direct contact with the surface conductor patch. Since the RF signal is a high-frequency current, and the capacitive sensing signal is a low-frequency current, the current of the sensor cannot be coupled to the feeder, so it will not be transmitted from the RF path, but only on the wire drawn from the surface conductor patch to the sensor chip .
  • the antenna unit When the antenna unit receives electromagnetic waves, it converts the received electromagnetic waves into high-frequency current.
  • the direction of the high-frequency current is related to the electric field distribution of the radiator.
  • the minimum voltage point is the maximum current point
  • the impedance is Voltage/current, so the minimum voltage point is also the minimum impedance point.
  • the wire drawn from the minimum voltage point on the radiator of the antenna (such as the electric field zero point of the patch antenna) is a metal wire that presents high resistance to the radio frequency band, so that the high-frequency guided wave corresponding to the electromagnetic wave is not It will be transmitted from the wire to the sensor chip.
  • the sensor path can be separated from the radio frequency path, avoiding mutual interference, improving the detection accuracy of the capacitive sensor, and improving the flexibility of radio frequency path debugging.
  • the antenna unit is a patch antenna
  • using the surface conductor patch as the sensing plate of the capacitive sensor can reduce the influence of other conductor patches of the antenna unit.
  • the surface conductor patch is closest to the object to be measured, and the sensing effect is the best.
  • the detection distance is the farthest, which improves the detection sensitivity of the capacitive sensor.
  • a single wire is drawn from the minimum voltage point or the weakest point of the electric field (such as the electric field zero point) on the radiator, and it has no effect on the performance of the antenna.
  • the position of the minimum voltage point of the radiator of the antenna unit is related to the working mode of the antenna unit.
  • the shape of the antenna is determined according to the working mode of the antenna. Therefore, it can also be considered that the position of the minimum voltage point of the antenna radiator is related to the antenna The shape is related.
  • the shape of the patch antenna can be a regular pattern or a special-shaped pattern.
  • the shape of the patch antenna may be a regular shape such as a square, a rectangle, a circle, an ellipse, and an H shape.
  • the conductor patch is usually a symmetrical pattern, and the center of symmetry of the conductor patch (that is, the center of the radiator) is the electric field zero point, that is, the minimum voltage point. Therefore, in this case, the wires of the capacitive sensor can be drawn directly from the center of the conductor patch.
  • Fig. 7 shows a schematic top view of the capacitive sensor in Fig. 6. As shown in FIG. 7, the surface conductor patch 402 is square, and the lead wire 423 of the capacitive sensor is led out from the center of the surface conductor patch 402.
  • the minimum voltage point on the conductor patch needs to be determined according to the electric field distribution of the conductor patch.
  • the minimum voltage point on the radiator of the antenna unit can be determined by simulation.
  • FIG. 8 shows a schematic cross-sectional structure diagram of another capacitive sensor provided by an embodiment of the present application.
  • the capacitive sensor 420 uses the bottom conductor patch 403 of the antenna unit 410 as the sensing plate 421, so that the wire 423 used to conduct the sensor current flows from the bottom conductor patch 403. The minimum voltage point is led out and connected to the sensor chip 422.
  • the bottom conductor patch of the antenna unit is reused as the sensing plate of the capacitive sensor.
  • the feeder line and the bottom conductor patch are directly fed, and a wire is drawn from the bottom conductor patch at the same time, so that the feed line of the antenna unit and The wires of the capacitive sensor module are all connected to the same conductor patch.
  • the antenna unit when the antenna unit receives electromagnetic waves, it will convert the received electromagnetic waves into high-frequency currents.
  • the direction of the high-frequency currents is related to the electric field distribution of the radiator and will not be patched from the bottom conductor.
  • the minimum voltage point is transmitted on the lead wire, but transmitted through the feeder.
  • the wire is a metal wire with high resistance to the radio frequency band, so that the high-frequency guided wave corresponding to the electromagnetic wave will not be transmitted from the wire to the sensor chip.
  • the guided wave on the antenna unit will not be transmitted from the wire of the sensor, and the radio frequency current will not interfere with the capacitive induced current, which is beneficial to improve the detection accuracy of the capacitive sensor module.
  • the capacitive induced current can be transmitted only from the wire path, or from the wire path and the feeder path, but as long as the capacitive induced current is transmitted from the wire path to the sensor Chip, the sensor chip can detect the distance change according to the current change, so as to get the distance between the measured object and the sensor chip.
  • the capacitive sensing path is separated from the RF path, the flexibility of RF path debugging can be improved.
  • a high-pass circuit can be set on the radio frequency path to make the capacitive induction current of the sensor return to the ground after passing through the high-pass circuit .
  • Figure 9 shows a schematic circuit diagram of a capacitive sensor when it is used for proximity detection.
  • the bottom conductor patch 403 as the sensing sheet of the capacitive sensor will generate a capacitive induced current.
  • the capacitive induced current can also be transmitted from the radio frequency path shown on the right.
  • a second high-pass filter circuit is set in the radio frequency path, that is, the equivalent capacitor A shown in the figure, which is used to block the low frequency signal of the capacitive sensor module.
  • the second high-pass filter circuit provided in the radio frequency path in the embodiment of the present application can prevent the current signal sent by the sensor chip from returning directly to the ground, so that the current signal sent by the sensor chip can reach the ground.
  • the capacitive sensor can work normally only by measuring the potential difference between the peripheral circuit and the ground on the antenna (namely the sensor chip).
  • the antenna unit here can be the first antenna unit mentioned above
  • the radio frequency path of the antenna unit A second high-pass filter circuit is connected in series to block the low-frequency signal corresponding to the capacitance or capacitance change induced by the sensor chip (ie, the radiator).
  • the feeding mode of the antenna unit when the solution of the embodiment of the present application is applied to other types of antenna units, such as monopole antennas, dipole antennas, etc., when the feeding mode of the antenna unit is direct feeding, it can be connected in series on the radio frequency path of the antenna unit
  • the second high-pass filter circuit is used to block the low-frequency signal corresponding to the capacitance or capacitance change induced by the sensor chip (ie, the radiator).
  • the second high-pass filter circuit in the embodiment of the present application may be a capacitor circuit.
  • the wire 423 may be a low-pass high-resistance wire, which can pass inductive sensor signals and filter out radio frequency signals.
  • a first high-pass filter circuit can also be provided on the sensor path of the capacitive sensor module to filter out the radio frequency signal of the antenna unit. That is, a first high-pass filter circuit can be provided on the path between the radiator and the sensor chip to filter out radio frequency signals.
  • the equivalent capacitance B is set on the sensor path and then grounded, which can assist in filtering out radio frequency signals.
  • the multiplexing of the surface conductor patch and the bottom conductor patch as an inductive patch is used as an example for description.
  • the antenna unit can also be located between the surface conductor patch and the bottom conductor patch.
  • Set up multiple middle conductor patches Any one patch of the plurality of middle conductor patches can be multiplexed as an induction patch.
  • the feeder line and the lead of the capacitive sensor can be drawn from the same conductor patch, or from different conductor patches.
  • the coupled feeding mode only the wires of the capacitive sensor are drawn from the conductor patch, and the transmission paths of the radio frequency current and the sensor current are similar to the above, which is succinct and will not be repeated.
  • the antenna unit and the capacitive sensor module can be packaged together.
  • the antenna unit and the sensor chip can be packaged together.
  • the antenna unit 410 and the sensor chip 422 are packaged as a whole.
  • part of the capacitive sensor module and the antenna unit can also be packaged together, that is, the capacitive sensor module is packaged in two parts.
  • the sensing sheet 421 that is, the antenna radiator
  • the wire 423 in the capacitive sensor 420 are packaged as a whole with the antenna unit 410, and the sensor chip 422 in the capacitive sensor 420 is packaged separately.
  • the antenna unit multiplexed as the sensing sheet of the capacitive sensor can be an antenna with a stable minimum voltage point (such as a voltage zero point or an electric field zero point) of any structure.
  • a stable minimum voltage point such as a voltage zero point or an electric field zero point
  • the antenna unit may be, for example, the single-polarized antenna shown in FIGS. 6 to 10, or may be, for example, the dual-polarized antenna shown in (a) and (b) of FIG. 11, or may be, for example, the antenna shown in FIG.
  • the antenna with parasitic stubs shown in (c) may also be, for example, the wire antennas shown in (e) to (f) in FIG.
  • the antenna unit in the embodiment of the present application may also be an antenna with additional orientation, a surface antenna, a microstrip antenna, and other structural resonant antennas, etc., which will not be repeated here.
  • the minimum voltage point of the radiator of the antenna unit can be determined according to the specific shape of the antenna, the working mode, the parameters of the antenna, and the like.
  • the number of layers of the conductor patch of the patch antenna is not limited, and it can be a single-layer patch antenna as shown in (a) in Figure 12, or it can be such as
  • the double-layer patch antenna shown in (b) in FIG. 12 may also be a multi-layer, such as a three-layer, four-layer, etc., patch antenna, which will not be repeated here.
  • the radiator includes one or more layers of conductive patches, any one of the one or more layers of conductive patches can be reused as the sensing patch of the capacitive sensor.
  • different polarization directions and different layers of conductor patches can be combined to form different patch antennas, such as single-layer single-polarization patch antennas, single-layer dual-polarization patch antennas, and double-layered patch antennas. Dual-polarization patch antenna, etc.
  • the number of antenna units used for multiplexing as the sensing sheet of the capacitive sensor.
  • the radiator of a single antenna unit may be multiplexed as the sensing sheet of the capacitive sensor, or it may be The radiator of the antenna array (that is, the plurality of antenna units) is multiplexed into the sensing sheet of the capacitive sensor, or the radiator of multiple antenna arrays is multiplexed into the sensing sheet of the capacitive sensor.
  • the electronic device in the embodiment of the present application further includes a second antenna unit, the second antenna unit includes a second radiator, and the minimum voltage point on the second radiator is electrically connected to the sensor chip through a wire.
  • the first antenna unit and the second antenna unit may belong to the same antenna array, or may belong to different antenna arrays.
  • the wires connected to the first radiator of the first antenna unit and the wires connected to the second radiator of the second antenna unit are combined into one or more paths to be connected to the sensor chip.
  • the electronic device in the embodiments of the present application is not limited to include the first antenna unit and the second antenna unit, and may also include more antenna units.
  • the radiators of these antenna units can all be used as sensing sheets to sense the radiator and the substrate. The capacitance or capacitance change between the measuring objects.
  • FIG. 13 shows a schematic top view of an antenna array provided by an embodiment of the present application.
  • the antenna array includes a plurality of antenna elements 410.
  • the antenna elements 410 may be horizontally and vertically polarized antennas as shown in (a), or as (b) ⁇ 45° polarized antenna shown in.
  • the black dot in the middle of the antenna unit 410 represents the lead-out position of the capacitive sensor, and the other two points on the antenna unit 410 represent the feeding point.
  • the antenna array may also be formed by antenna units of other structures, such as any one of the antenna structures shown in FIG. 11 or FIG. 12.
  • the radiators of some antenna elements in the antenna array can be selected as sensing sheets, or the radiators of all antenna elements in the antenna array can be used as sensing sheets.
  • the antenna array includes multiple antenna elements, and when the sensing sheet of the capacitive sensor is the radiator of multiple antenna elements in the antenna array, it can be led out from the radiator of the multiple antenna elements.
  • a wire used to transmit capacitive induced current, and the multiple wires are finally combined into a single way to connect to the sensor chip of a capacitive sensor.
  • the antenna array includes antenna elements 410a, 410b, 410c, and 410d, and wires are respectively drawn from the radiators of the four antenna elements.
  • the four antenna elements 410a, 410b, 410c, and 410d are equivalent to Connected in parallel, and finally the wires connected to the radiators of the four antenna units are combined into one and connected to a sensor chip.
  • the capacitive sensing signal processed by the sensor chip is the sum of the current signals induced by the radiators of the four antenna units. It should be understood that the capacitance sensing signal in the embodiment of the present application is a current signal.
  • the sensing sheet of the capacitive sensor is the radiator of multiple antenna units, which increases the area of the sensing sheet, thereby increasing the capacitance induced current and improving the detection accuracy of the sensor chip. Furthermore, compared to using the radiator of a single antenna unit as the sensing plate, the radiator using multiple antenna units can increase the detection distance of the capacitive sensor and improve the detection sensitivity of the capacitive sensor. Far away, a current can be generated in the sensor chip to be detected by the sensor chip.
  • the antenna array includes multiple antenna elements, and when the sensing sheet of the capacitive sensor is the radiator of the multiple antenna elements in the antenna array, it can be separated from the radiators of the multiple antenna elements.
  • Lead wires for transmitting capacitive induced currents where some wires corresponding to the antenna units are combined into one line and then connected to the sensor chip, and the wires corresponding to another part of the antenna units are combined into another line and connected to the same sensor chip.
  • the antenna array includes antenna elements 410a, 410b, 410c, and 410d, and wires are respectively drawn from the radiators of the four antenna elements.
  • the four antenna elements 410a, 410b, 410c, and 410d are equivalent to Parallel connection, where the wires connected to the radiators of the antenna units 410a and 410b are combined into one and connected to the sensor chip, and the wires connected to the radiators of the antenna units 410c and 410d are combined into one and connected to the same sensor chip .
  • the wires connected to the radiators of the multiple antenna units are connected to the sensor chip in multiple ways.
  • the capacitance sensing signal processed by the sensor chip is a multi-channel capacitance sensing signal.
  • the sensor chip has a multi-channel information processing function, and each channel of the sensor chip can separately process the capacitance sensing signal entering the channel.
  • the sensing sheet of the capacitive sensor is the radiator of multiple antenna units, which increases the area of the sensing sheet, thereby increasing the capacitance induced current and improving the detection accuracy of the sensor chip.
  • Multiplexing the radiator of multiple antenna units can increase the detection distance of the capacitive sensor and improve the detection sensitivity of the capacitive sensor.
  • the radiators of multiple antenna units ie, multiple sensing sheets
  • the sensor chip can calculate multiple distances between the measured object and the sensing sheet according to the capacitance induced currents of the multiple paths. Or the distance between multiple measured objects and the sensing sheet can get the finer position of the measured object.
  • the antenna array includes multiple antenna elements, and when the sensing sheet of the capacitive sensor is the radiator of the multiple antenna elements in the antenna array, it can be separated from the radiators of the multiple antenna elements. Lead wires for transmitting capacitive induced current, and wires corresponding to the multiple antenna units are respectively connected to the same sensor chip.
  • the antenna array includes antenna elements 410a, 410b, 410c, and 410d, and wires are respectively drawn from the radiators of the four antenna elements.
  • the radiation of the four antenna elements 410a, 410b, 410c, and 410d The body is equivalent to a parallel connection, wherein the wires drawn from the radiators of the four antenna units 410a, 410b, 410c, and 410d are respectively connected to the same sensor chip.
  • the capacitance sensing signals processed by the sensor chip are four channels of capacitance sensing signals, and the sensor chip can separately process each channel of capacitance sensing signals entering the sensor chip.
  • the sensing sheet of the capacitive sensor multiplexes the radiators of multiple antenna units, which increases the area of the sensing sheet, thereby increasing the capacitance induced current and improving the detection accuracy of the sensor chip.
  • Multiplexing the radiator of multiple antenna units can increase the detection distance of the capacitive sensor and improve the detection sensitivity of the capacitive sensor.
  • the radiator of each antenna unit is respectively connected to the sensor chip, so that the current induced by the radiator of each antenna unit is transmitted to the sensor chip, and the sensor chip can calculate the measured current according to the capacitance induced current of each channel. The distance between the object and the sensor can get the finer position of the object to be measured.
  • the antenna array includes multiple antenna elements, and when the sensing sheet of the capacitive sensor is the radiator of the multiple antenna elements in the antenna array, the radiator of each antenna element can lead to its own Corresponding sensor chip. That is, the radiator of each antenna unit in the antenna array corresponds to a sensor chip.
  • the antenna array includes antenna units 410a, 410b, 410c, and 410d, and wires are respectively drawn from the radiators of the four antenna units, and the wires of each antenna unit are respectively connected to a sensor chip.
  • the sensing sheet of the capacitive sensor can also multiplex antenna elements in multiple antenna arrays.
  • the radiators of some antenna elements in multiple antenna arrays can be selected as sensing sheets, or all of the multiple antenna arrays can be used.
  • the radiator of the antenna unit serves as an induction sheet.
  • the capacitive sensing paths of multiple antenna arrays can be combined into one path and connected to the sensor chip, can be combined into multiple paths and connected to the sensor chip, or each path can be connected to the sensor chip separately.
  • the sensing sheet of the capacitive sensor multiplexes the radiators of the antenna elements in two antenna arrays (ie, antenna array A and antenna array B), where each antenna array is separated from a plurality of antenna elements.
  • Wires are drawn from the radiator of the antenna unit, the wires of the radiator of the antenna unit in the antenna array A are combined into one and connected to the sensor chip, and the wires of the radiator of the antenna unit in the antenna array B are combined into one and connected to the sensor On the chip.
  • the conductor of the capacitive sensor can be directly drawn from the center of the conductor patch.
  • the wires drawn from the radiators of the multiple antenna elements can be connected, which has no effect on the performance of the antenna.
  • the feeders of multiple antenna units can also be connected.
  • the wires drawn from the radiators of the antenna elements in different antenna arrays can be connected, but the feeders of the antenna elements in different antenna arrays are generally not connected.
  • the feed line of the antenna unit is directly connected to the radiator, and the method of direct feeding is adopted.
  • the feeder and the radiator of the antenna unit may also have a certain distance, and a coupling feeding method is adopted.
  • the feeder 404 is on the ground plate 405 away from the patch
  • a hole or slot can be opened, and the feeder 404 realizes the coupling and feeding of the surface conductor patch 402 and the bottom conductor patch 403 through the hole or slot.
  • the wire of the capacitive sensor can be drawn from the minimum voltage point of the surface conductor patch 402, or from the minimum voltage point of the bottom conductor patch 403, or from the minimum voltage point of other conductor patches. This embodiment does not Make specific restrictions. When the wire is drawn from the surface conductor patch 402, the wire can pass through the lower conductor patch or make a hole in the lower conductor patch to avoid it. It should be noted that when the electronic device includes multiple antenna units, each antenna unit of the multiple antenna units includes a feeder and a radiator, and the feeders of the multiple antenna units can be set separately from time to time, or in a certain part. They are shared, and are not limited in the embodiment of this application.
  • the wire drawn from the antenna unit radiator in the electronic device is located at the minimum voltage point on the radiator.
  • the voltage at a certain position on the radiator is not higher than a certain threshold (for example, the voltage difference between the voltage at this position and the voltage minimum point position is less than a certain threshold)
  • wires can also be drawn from this position to connect to the sensor chip, and the above effects can also be achieved.
  • the capacitive sensor implementation solution provided by the embodiments of the present application can be applied to any antenna unit, and the applied patch antennas include, but are not limited to, single patch antennas, patch antenna arrays, and package antennas (antennas in package, AIP).
  • the working frequency band of the antenna unit includes but not limited to 2G/3G/4G frequency band, cellular frequency band, wifi frequency band, Bluetooth frequency band, GPS frequency band and 5G communication frequency band, 6GHz frequency band and millimeter wave (millimeter wave, mmW) frequency band (10 to 300GHz) .
  • a patch antenna can be used as an antenna working in the millimeter wave frequency band.
  • the antenna working modes include, but are not limited to, quarter-wavelength mode, half-wavelength mode, and other high-order modes.
  • the packaged antenna AIP technology integrates the antenna in a package that carries a chip through packaging materials and processes.
  • each antenna unit may be a packaged antenna, or multiple antenna units may be packaged together. In this way, the sensor chip of the capacitive sensor can be packaged with the antenna unit.
  • the radiator of the antenna unit is reused as the sensing sheet of the capacitive sensor, which can realize the capacitive proximity detection without additional sensing sheet.
  • AIP and capacitive sensors can be integrated to compress the volume of multiple functional devices.
  • the sensor chip of the capacitive sensor can be integrated design or packaged with the mmW chip die to form a sensor in AIP (SIAIP) in a packaged antenna.
  • SIAIP AIP
  • the capacitive sensor (system) provided by the embodiments of the application can perform proximity detection, detect the proximity or distance level of the measured object, and can be further applied to electromagnetic wave energy absorption rate (SAR) detection and maximum exposure allowable value (maximum permissible exposure, MPE) detection, gesture detection, antenna beam management, antenna module switching, electronic device attitude detection, etc.
  • SAR electromagnetic wave energy absorption rate
  • MPE maximum exposure allowable value
  • the capacitive sensor system provided by the embodiment of the present application is set in an electronic device, wherein the radiator of the antenna unit in the electronic device can be used to send and receive radio frequency signals, and can also be used to sense the radiator and the radiator when the measured object approaches.
  • the capacitance or capacitance between the measured objects changes, and the signal corresponding to the capacitance or capacitance change is transmitted to the sensor chip.
  • the sensor chip can obtain the distance or proximity between the measured object and the radiator by processing the capacitive sensing signal. At this time, if the distance between the measured object and the radiator is less than the preset threshold, the electronic device can change the antenna beam direction and not transmit or receive radio frequency signals in the direction of the measured object to prevent the signal from being blocked by the measured object. Or, at this time, if the distance between the measured object and the radiator is less than the preset threshold, the electronic device can change and switch the antenna module to make the antenna module not in the direction of the measured object work to prevent the signal from being blocked by the measured object . Or, at this time, if the distance between the measured object and the radiator is less than the preset threshold, the electronic device can reduce the transmit power of the antenna to meet the SAR limit. For another example, the sensor chip can obtain the distance change between the measured object and the radiator by processing the capacitance sensing signal, and the electronic device can recognize the user's gesture or detect the posture of the electronic device according to the distance change.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Transceivers (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供了一种电子设备。该电子设备包括:第一天线单元,该第一天线单元包括第一辐射体,该第一辐射体用于收发射频信号;该第一辐射体还用于在被测对象接近时感应该第一辐射体与该被测对象之间的电容或电容变化;该电子设备还包括传感器芯片,该传感器芯片用于获取该电容或电容变化,以确定被测对象相对于第一辐射体的接近程度,其中该传感器芯片与该第一辐射体上的电压最小点通过导线电性连接。上述技术方案中从辐射体的电压最小点引出导线连接到传感器芯片,能够将传感器的电容感应通路与天线单元的射频通路分开,从而减少或避免电容感应通路与射频通路的相互干扰,提高传感器的检测精度。

Description

电子设备
本申请要求于2019年12月26日提交中国专利局、申请号为201911364753.X、申请名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,并且更具体地,涉及一种电子设备。
背景技术
随着科技不断进步,智能手机等电子设备飞速发展,电子设备的功能越来越多、性能越来越强大。隐藏在电子设备背后的传感器在提升用户交互体验方面起着重要的作用。
电容式传感器(capacitive sensor)包括感应片和传感器芯片,能够利用被测对象与感应片之间的电容变化来检测被测对象的接近程度或距离等级。
为了有效利用电子设备内的空间,现有的电容式传感器利用天线的辐射体作为感应片,使电容感应信号在射频通路上传输,在通路中连接有电容、电感等集总器件可以将射频信号和电容感应信号隔离,再分别通往射频通路和传感器通路。但射频信号和电容感应信号在同一通路中传输时会相互干扰,影响电容式传感器的检测精度。
发明内容
本申请实施例提供一种电子设备,能够提高电子设备中的传感器的检测精度。
第一方面,提供一种电子设备,包括:第一天线单元,所述第一天线单元包括第一辐射体,所述第一辐射体用于收发射频信号;所述第一辐射体还用于在被测对象接近时感应所述第一辐射体与所述被测对象之间的电容或电容变化;所述电子设备还包括传感器芯片,所述传感器芯片用于获取所述电容或电容变化,以确定所述被测对象相对于所述第一辐射体的接近程度,其中所述传感器芯片与所述第一辐射体上的电压最小点通过导线电性连接。
本申请实施例中,从天线单元的辐射体的电压最小点引出导线连接到传感器芯片,能够组成电容式传感器系统。这样能够将电容式传感器的电容感应通路与天线单元的射频通路分开,传感器的电容感应电流从引出的导线传输到传感器芯片上,能够减少或避免电容感应通路与射频通路的相互干扰,提高电容式传感器的检测精度。
另外,由于电容式传感器的电容感应通路与天线单元的射频通路分开,也无需再设置电容、电感等隔离器件对电容感应信号和射频信号进行隔离,能够简化结构。射频通路中不用传输电容感应电流,也提高了射频通路调试的灵活性。
本申请实施例中从天线单元的辐射体上的电压最小点单独引出一条导线,对天线的性能也没有影响。从辐射体的电压最小点引出导线可以实现将电容式传感器的电容感应通路与天线单元的射频通路分开,在射频通路和传感器通路中可以不用设置电容、电感等隔离 器件进行隔离。
结合第一方面,在一种可能的实现方式中,所述电子设备还包括具有第二辐射体的第二天线单元,所述第二辐射体上的电压最小点与所述传感器芯片通过导线电性连接,其中,与所述第一辐射体和所述第二辐射体相连的导线合并为一路或多路与所述传感器芯片相连。
应理解,从第一天线单元的辐射体和第二天线单元引出的导线合并为多路与传感器芯片电性连接时,每个天线单元的辐射体所感应的电流只在一路中传输到传感器芯片中。
当多个天线单元的辐射体复用为电容式传感器的感应片时,增大了感应片的面积,从而可以增大电容感应电流,提高了传感器检测精度。进一步地,相比使用单个天线单元的辐射体作为感应片,使用多个天线单元的辐射体可以增大电容式传感器的检测距离,提高电容式传感器的检测灵敏度,即在被测对象距离辐射体较远的地方就可以在辐射体中产生电流从而被传感器芯片检测到。
由于多个天线单元的辐射体(即多个感应片)分多路连接到传感器芯片,传感器芯片可以根据多路的电容感应电流分别计算出被测对象与辐射体的多个距离,或者多个被测对象与辐射体之间的距离,可以得到被测对象的较为精细的位置。
结合第一方面,在一种可能的实现方式中,所述第一天线单元和所述第二天线单元属于同一天线阵列。
第一天线单元和第二天线单元属于同一天线阵列时,便于天线阵列的封装。应理解,天线阵列中可以包括多个第一天线单元和/或多个第二天线单元。
结合第一方面,在一种可能的实现方式中,所述第一天线单元为以下天线中的任意一种:单极天线、偶极子天线、微带天线、贴片天线、缝隙天线、倒F天线、平板倒置F天线、陶瓷天线。
结合第一方面,在一种可能的实现方式中,所述第一天线单元的馈电方式为直接馈电或耦合馈电,其中,所述直接馈电包括微带馈电和探针馈电。
结合第一方面,在一种可能的实现方式中,所述导线为低通高阻线。
本申请实施例中从天线的辐射体上电压最小点引出的导线为低通高阻线,射频频段呈现高阻,这样电磁波对应的高频导行波不会从导线上传输而到达传感器芯片处。
结合第一方面,在一种可能的实现方式中,所述第一辐射体与所述传感器芯片之间的通路上设置有第一高通滤波电路,所述第一高通滤波电路用于滤除所述射频信号。
为进一步减少射频信号对电容感应信号的干扰,本申请实施例还可以在电容感应通路中设置第一高通滤波电路,以滤除天线单元的射频信号。
结合第一方面,在一种可能的实现方式中,所述第一天线单元为贴片天线时,所述第一辐射体包括一层或多层导体贴片,所述导线与所述一层或多层导体贴片中的一层导体贴片相连。
结合第一方面,在一种可能的实现方式中,所述导线与所述一层或多层导体贴片中的表层导体贴片相连。
当天线单元为贴片天线时,以表层导体贴片作为电容式传感器的感应片,能够减少天线单元其他导体贴片的影响,另外表层导体贴片最接近被测对象,能够检测到的距离最远,提高了电容式传感器的检测灵敏度。
结合第一方面,在一种可能的实现方式中,当所述第一天线单元的馈电方式为直接馈电时,所述第一天线单元的射频通路上串联有第二高通滤波电路,用于阻断所述电容或电容变化所对应的低频信号。
在直接馈电的情况下,为了进一步减少电容感应信号对射频后端的影响,本申请实施例中在射频通路中还可以设置第二高通滤波电路,以阻断电容感应信号。
结合第一方面,在一种可能的实现方式中,所述第一天线单元还包括馈线,当所述馈线与所述导线连接于同一导体贴片上时,所述第一天线单元的射频通路上串联有第二高通滤波电路,用于阻断所述电容或电容变化所对应的低频信号。
结合第一方面,在一种可能的实现方式中,所述第二高通滤波电路为电容电路。
结合第一方面,在一种可能的实现方式中,所述第一天线单元为贴片天线时,所述贴片天线的形状为以下形状中的任意一种:正方形、矩形、三角形、圆形、椭圆形、H形。
结合第一方面,在一种可能的实现方式中,所述第一天线单元的工作模式为半波长模式时,所述第一辐射体上的电压最小点位于所述第一辐射体的中心。
结合第一方面,在一种可能的实现方式中,所述传感器芯片和所述第一天线单元封装为一体。
传感器芯片和第一天线单元封装于一体,能够减少器件体积,节省电子设备内部空间。
第二方面,提供了一种电子设备,包括第一天线单元和传感器芯片,所述第一天线单元包括第一辐射体和馈线,所述馈线与所述第一辐射体直接接触或者所述馈线为所述第一辐射体耦合馈电;所述第一辐射体与所述传感器芯片通过导线电性连接,所述导线与所述第一辐射体相连的位置为所述第一辐射体上的电压最小点。
本申请实施例中,从天线单元的辐射体的电压最小点引出导线连接到传感器芯片,组成电容式传感器系统。这样能够将电容式传感器的电容感应通路与天线单元的射频通路分开,传感器的电容感应电流从引出的导线传输到传感器上,能够减少或避免电容感应通路与射频通路的相互干扰,提高电容式传感器的检测精度。
结合第二方面,在一种可能的实现方式中,所述电子设备还包括具有第二辐射体的第二天线单元,所述第二辐射体上的电压最小点与所述传感器芯片通过导线电性连接,其中,与所述第一辐射体和所述第二辐射体相连的导线合并为一路或多路与所述传感器芯片相连。
结合第二方面,在一种可能的实现方式中,所述第一天线单元和所述第二天线单元属于同一天线阵列。
结合第二方面,在一种可能的实现方式中,所述第一天线单元为以下天线中的任意一种:单极天线、偶极子天线、微带天线、贴片天线、缝隙天线、倒F天线、平板倒置F天线、陶瓷天线。
结合第二方面,在一种可能的实现方式中,所述导线为低通高阻线。
结合第二方面,在一种可能的实现方式中,所述第一辐射体与所述传感器芯片之间的通路上设置有第一高通滤波电路。
结合第二方面,在一种可能的实现方式中,所述第一天线单元为贴片天线时,所述第一辐射体包括一层或多层导体贴片,所述导线与所述一层或多层导体贴片中的一层导体贴片相连。
结合第二方面,在一种可能的实现方式中,所述导线与所述一层或多层导体贴片中的表层导体贴片相连。
结合第二方面,在一种可能的实现方式中,在所述馈线与所述第一辐射体直接接触的情况下,所述第一天线单元的射频通路上串联有第二高通滤波电路。
结合第二方面,在一种可能的实现方式中,当所述馈线与所述导线连接于同一导体贴片上时,所述第一天线单元的射频通路上串联有第二高通滤波电路。
结合第二方面,在一种可能的实现方式中,所述第二高通滤波电路为电容电路。
结合第二方面,在一种可能的实现方式中,所述第一天线单元为贴片天线时,所述贴片天线的形状为以下形状中的任意一种:正方形、矩形、三角形、圆形、椭圆形、H形。
结合第二方面,在一种可能的实现方式中,所述第一天线单元的工作模式为半波长模式时,所述第一辐射体上的电压最小点位于所述第一辐射体的中心。
结合第二方面,在一种可能的实现方式中,所述传感器芯片和所述第一天线单元封装为一体。
附图说明
图1是一种电子设备的示意性结构图;
图2是一种电容式传感器的示意性结构图;
图3是电容式传感器设置于电子设备上的示意性结构图;
图4是几种微带天线的结构形式示意图;
图5是本申请实施例提供的电容式传感器的示意性结构图;
图6是本申请实施例提供的一种电容式传感器的示意性剖面结构图;
图7是图6中的电容式传感器的示意性俯视图;
图8是本申请实施例提供的又一种电容式传感器的示意性剖面结构图;
图9是本申请实施例提供的电容式传感器的电路示意图;
图10是本申请实施例提供的又一种电容式传感器的示意性剖面结构图;
图11是本申请实施例提供的天线单元的结构形式示意图;
图12是本申请实施例提供的天线单元的结构形式示意图;
图13是本申请实施例提供的天线阵列的示意性俯视图;
图14是本申请实施例提供的一种电容式传感器的示意性结构图;
图15是本申请实施例提供的另一种电容式传感器的示意性结构图;
图16是本申请实施例提供的另一种电容式传感器的示意性结构图;
图17是本申请实施例提供的又一种电容式传感器的示意性结构图;
图18是本申请实施例提供的又一种电容式传感器的示意性结构图;
图19是本申请实施例提供的再一种电容式传感器的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请实施例中所涉及的电子设备可以包括手持设备、车载设备、可穿戴设备、计算 设备或连接到无线调制解调器的其它处理设备。还可以包括蜂窝电话(cellular phone)、智能手机(smart phone)、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、手提电脑、膝上型电脑(laptop computer)、智能手表(smart watch)、智能手环(smart wristband)、车载电脑以及其他能够进行通信的电子设备。本申请实施例对上述电子设备的具体形式不做特殊限制,在一些实施例中,本申请实施例中的电子设备可为终端或终端设备。
示例性的,图1示出了电子设备100的结构示意图。如图1示,电子设备100包括处理器110、存储器120、射频单元130、无线通信模块140、输入输出装置150、音频单元160、电源170和传感器模块180等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以用于对通信协议以及通信数据进行处理,以及对电子设备100进行控制,执行软件程序,处理软件程序的数据等。处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
存储器120用于存储指令和数据,主要包括内部存储器和外部存储卡例如Micro SD卡等。内部存储器可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。外部存储卡可以实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口与处理器110通信,实现数据存储功能,例如将音乐,视频等文件保存在外部存储卡中。
为便于说明,图1中仅示出了一个存储器120和处理器110。在实际的电子设备中,可以存在一个或多个处理器和一个或多个存储器。存储器120也可以称为存储介质或者存 储设备等。存储器120可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
电子设备100可以通过天线131,天线141,射频单元130,无线通信模块140,调制解调处理器以及基带处理器等实现电子设备100的无线通信功能。
天线131和天线141用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线131复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
射频单元130可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。射频单元130可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。当有数据发送到电子设备时,射频单元130可以由天线131接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。当需要发送数据时,射频单元130还可以对经调制解调处理器调制后的信号放大,经天线131转为电磁波辐射出去。在一些实施例中,射频单元130的至少部分功能模块可以被设置于处理器110中。在一些实施例中,射频单元130的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频单元160输出声音信号,或通过输入输出装置150中的显示屏显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与射频单元130或其他功能模块设置在同一个器件中。
无线通信模块140可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块140可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块140经由天线141接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块140还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线141转为电磁波辐射出去。
在一些实施例中,电子设备100的天线131和射频单元130耦合,天线141和无线通信模块140耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite  system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100可以通过音频单元160、应用处理器以及外设(图中未示出)例如扬声器、受话器、麦克风、耳机接口等实现音频功能,例如音乐播放,录音等。
音频单元160用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频单元160还可以用于对音频信号编码和解码。在一些实施例中,音频单元160可以设置于处理器110中,或将音频单元160的部分功能模块设置于处理器110中。
输入输出装置150,包括用户输入装置和显示装置,主要用于接收用户输入的数据以及对用户输出数据。
用户输入装置可以用于检测用户操作,并生成用于指示该用户操作的用户操作信息。作为示例而非限定,该用户输入装置可包括但不限于物理键盘、功能键(例如音量控制键、开关按键等)、轨迹球、鼠标、操作杆、触摸屏、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。例如触摸屏、显示屏,键盘等。
显示装置可以用于呈现用户界面、图像或视频等可视化信息,例如显示装置可以显示由用户输入的信息或提供给用户的信息以及电子设备设备的各种菜单等。作为示例而非限定,该显示装置可包括显示器,如液晶显示器(liquid crystal display,LCD)、有机电激发光显示器(organic light emitting diode,OLED)、阴极射线管(cathode ray tube)显示器、全息成像(holographic)显示器或投影(projector)等。需要说明的是,有些种类的电子设备可以不具有输入输出装置。
电源170可以给电子设备100各个元器件供电,比如电池。可选地,电源170可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
传感器模块180用于感应被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器模块180可以包括压力传感器、角速度传感器(又称陀螺仪)、气压传感器、磁传感器、加速度传感器、距离传感器、接近光传感器、环境光传感器、指纹传感器、温度传感器、触摸传感器、骨传导传感器等,以上所述传感器可以用于反应距离值、光线值、温度值、亮度值和压力值等,以方便在人机交互中实现便捷操作。
随着科技不断进步,智能手机等电子设备飞速发展,对于用户来说最直观的变化,就是电子设备的功能越来越多、性能越来越强大。虽然说处理器强大的性能与整合性让电子设备例如智能手机获得更强的运算能力,但是在提升用户交互体验方面,却是隐藏在电子设备背后的传感器在起着重要的作用。
在电子设备上众多的传感器中,有一类传感器是用于进行接近度检测的,这类传感器可以统称为接近传感器,例如上述所提及的距离传感器、接近光传感器等。接近传感器可以反应物体的靠近程度或距离等级,电子设备可以根据物体的接近程度触发一定动作。例如,电子设备可以使用接近度来指示射频单元适配瞬时射频(radio frequency,RF)功率,以符合比吸收率(specific absorption rate,SAR)限制,保护使用无线设备的用户免受RF 暴露的潜在的有害影响。比吸收率,也称电磁波吸收比值,其意义为单位质量的人体组织所吸收或消耗的电磁功率。再如,当用户将电子设备放在耳边用于接打电话时,可以根据接近度指示禁用电子设备的触控屏,避免用户可能通过脸或耳朵触碰屏幕而触发不需要的动作,另外也可以使电子设备处于息屏状态以达到省电的目的。
根据工作原理的不同,电子设备上设置的接近传感器包括基于电感的传感器、基于光学的传感器、基于热的传感器和基于电容的传感器。电容式接近传感器具有结构简单、灵敏度高、温度稳定性好、适应性好、动态性能好等优点,目前在检测技术中广泛应用于位移、振动、角度、加速度等机械参数的测量中。本申请实施例主要描述用于检测接近程度或距离等级的电容式传感器(capacitive sensor),也可以称为电容式接近传感器(capacitive proximity sensor),以下将结合附图进行详细介绍。
图2示出了一种电容式传感器的示意性结构图。如图2所示,电容式传感器200包括感应片(sensor pad)210和传感器芯片(sensor integrated circuit,sensor IC)220,感应片210与传感器芯片220之间通过导线230电性连接。感应片210可以为片状导体,例如金属片等。传感器芯片220中包括一些逻辑电路,传感器芯片220可以对感应片210进行充放电。感应片210用于感应传感器的电容性,例如感应被测对象接近时感应片210与被测对象之间的电容或电容变化,传感器芯片220用于获取被测对象靠近传感器时的容性变化,即感应片210所感应的感应片210与被测对象之间的电容或电容变化。
具体而言,当被测对象例如用户手指靠近感应片210时,被测对象与感应片210形成电容,其中被测对象作为电容的一个极板,感应片210作为电容的另一个极板。电容器所带电量与两板间电势差之比叫电容,用字母C来表示,即C=Q/U,其中Q为电容极板上带的电荷量,U为两板间电势差。将被测对象与感应片210所形成的电容近似为平行板电容器,则电容为C=εS/d,其中ε为极板间介质的介电常数,S为电容极板的正对面积,d为极板间的距离。在S、ε不变的情况下,当被测对象与感应片210之间的距离发生变化例如被测对象不断靠近感应片210时,被测对象与感应片210所形成的电容器的电容C发生变化。由于C=Q/U,在U不变的情况下,电容器所带电量发生变化,从而产生电流。因被测对象与感应片210之间距离变化而产生的电流会通过导线230传到传感器芯片220中,传感器芯片220根据产生的电流变化(或者是充放电电压、电压变化值等)可以得到被测对象与感应片210之间的电容变化,从而可以得到被测对象与感应片210之间的距离(或距离变化值)。简而言之,电容式传感器200可以通过被测对象与感应片210之间的电容值或电容变化值得到被测对象与感应片210之间的距离或距离变化值。
电容式传感器200能够检测的距离具有一个最大值,当被测对象与感应片210之间的距离大于该最大值时,因被测对象与感应片210之间距离变化而产生的电流比较微弱,传感器芯片220检测不到该微弱的电流,也就无法检测出被测对象与感应片210之间的距离。换句话说,当被测对象与感应片210之间的距离小于或等于该最大值时,电容式传感器200才能检测到被测对象的存在,并能检测到被测对象与感应片210之间的距离或者检测到被测对象与感应片210之间的靠近程度。电容式传感器200能够检测到的距离越远,检测的灵敏度越高。
电容式传感器可以用于检测金属及非金属物质,比如纸,液体,玻璃,布等等。被测对象可以是导电体、介质损耗较大的绝缘体或含水(例如人)的物体等。另外被测对象可 以是接地的,也可以是不接地的,本申请实施例均不作具体限定。
通过上述电容计算公式C=εS/d可以知道,影响电容的因素除了极板间距离d(即被测对象与感应片之间的距离)外,还有电容极板的正对面积S。如果电容极板的正对面积较小的话,电容式传感器能够检测到的被测对象的最大距离很小。因此为增大电容式传感器能够检测的距离范围,可以增大电容极板的面积,这样在同等电容的情况下,电容极板的面积越大,极板间距离也越大,这样电容式传感器能够检测到的被测对象的距离的最大值增大,检测的距离越远,灵敏度越高。当然在同等距离下,电容极板的面积越大,电容越大,能够产生的电流也越大,传感器芯片220检测精度更高。由于被测对象的面积可能远大于电容式传感器中的感应片的面积,因此本申请实施例中电容极板的正对面积S可以认为是感应片的面积。使用较大面积的感应片,能够增大电容式传感器检测的距离范围,提高电容式传感器的灵敏度。但电子设备内部空间有限,电容式传感器的感应片需要根据电子设备的内部空间进行相应的设计和放置。
图3示出了电容式传感器设置于电子设备上的示意性结构图。如图3所示,电子设备100可以包括外壳101和设置于外壳101的容纳空间中的各种元器件,图中仅示例性的示出了电子设备100的外部示意图,其内部可以包括如图1中所示的元器件的一种或多种。
为满足电容式传感器200的检测距离的功能要求,如图3所示,电容式传感器200一般设置于电子设备100的靠近外壳101的位置,例如图3中虚线框所示的区域。应理解,图中虚线框仅用于示例性示出电容式传感器200在电子设备100中的大概位置,对电容式传感器200的设置数量、具体结构以及电子设备100中的其他元器件的设置等不造成任何限定。
在设置电容式传感器时,可以单独设置一个或多个金属片作为电容式传感器的感应片,该感应片用来感应被测对象靠近感应片时造成的电容变化,该电容变化可以由电容式传感器中的传感器芯片捕获,进而通过传感器芯片的处理计算出物体的靠近程度或距离等级。从上述描述可知,电容式传感器中的感应片的面积一般设置的比较大,才能检测到距离较远的物体。若单独设置金属片作为感应片,电子设备中也需要较大的面积来放置感应片,不利于电子设备的小型化。
因此,在一些解决方案中,可以将天线复用,利用电子设备已有的天线辐射体作为电容式传感器的感应片。即天线既可以作为发射接收电磁波的辐射体,又可以作为电容式传感器的感应片。现有方案中,利用天线作为感应片时,用于通信的射频通路与用于检测距离的电容感应通路的馈电(feed)端相接或接地(ground)端相接,这样射频通路与电容感应通路实际是共通路,需要在通路中连接电容、电感等集总器件进行隔离,再分别通往射频通路和传感器通路。然而射频信号和电容感应信号在同一通路中传输时会相互干扰,相当于在射频通路中有电容感应信号,会限制射频通路调试的灵活性,使射频性能下降;在电容感应通路中有射频信号,会影响电容式传感器的检测距离(即检测灵敏度)、检测精度,甚至导致误检测等。
本申请实施例提供一种电容式传感器,相比现有电容式传感器能够提高检测精度。为更好的理解本申请实施例,下面先对本申请所涉及的相关内容做简要介绍。
当导线载有交变电流时,会辐射电磁波,其辐射能力与导线的长短和形状有关。若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,电场就散 播在周围空间,因而辐射增强。当导线的长度远小于辐射电磁波的波长,辐射很微弱;当导线的长度可与辐射的电磁波波长相比拟时,导线上的电流就大大增加,形成较强的辐射。
天线即是利用上述原理进行电磁波的发射和接收。当发射电磁波时,来自发信机的、已调制的高频振荡电流由馈线送到天线输入端,天线将电路中的高频电流或馈电传输线上的导行波转换为空间高频电磁波,以波的形式向周围空间辐射。电磁波的能量从发信天线辐射出去以后,将沿地表面所有方向向前传播。反之在接收电磁波时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。天线也可以是定向天线,这样发射电磁波时天线将电路中的高频电流或传输线上的导行波有效地转换成某种极化的空间电磁波,向规定的方向发射出去;接收电磁波时,则将来自空间特定方向的某种极化的电磁波有效地转换为电路中的高频电流或传输线上的导行波。
连接天线和发射机输出端(或接收机的输入端)的导线称为传输线或馈线。馈线的有效任务是有效地传输信号能量或射频能量。馈线应能将天线接收的信号以最小的损耗传送到接收机输入端,或将发射机发出的信号以最小的损耗传送到发射天线的输入端,同时它本身不应拾取或产生杂散干扰信号。馈线中传输的是高频电流,在一些实施例中也称为射频信号。上文所述的射频通路即可以理解为是馈线上的通路。
天线的极化是以电磁波的极化来确定的。电磁波的极化方向通常是以其电场矢量的空间指向来描述的,即在空间某位置上,沿电磁波的传播方向看去,其电场矢量在空间的取向随时间变化所描绘出的轨迹。如果这个轨迹是一条直线,则称为线极化,如果是一个圆,则称为圆极化,如果是一个椭圆,则称为椭圆极化。天线发射或接收的是规定极化的电磁波。例如一个垂直极化的天线,不能接收水平极化的来波,反之亦然;一个左旋圆极化的天线不能接收右旋圆极化的电磁波,反之亦然。
若以地面为参考面,线极化又分为垂直极化和水平极化。在其最大辐射方向上,电磁波的电场矢量垂直于地面时,称为垂直极化;平行于地面时,称为水平极化。相应的天线称之为垂直极化天线和水平极化天线。垂直极化天线和水平极化天线也是单极化天线。把垂直极化和水平极化两种极化的天线组合在一起,或者,把+45°极化和-45°极化两种极化的天线组合在一起,就构成了双极化天线。双极化天线中,两个天线按照固定角度叠加在一起,传输两个独立的波,因而双极化天线有两个馈电点。
任何天线总是在一定频率范围内工作的,在这个频率范围之外就没有相应的作用了。在实际应用中,天线的形状、尺寸及构成材料等需要根据天线的设计频率(即天线发射或接收电磁波的波长)进行相应设计。工作在中心频率(即设计频率)时天线所能输送的功功率最大,当工作频率偏离设计频率时,往往要引起天线参数的变化。当工作频率变化时,天线的有关参数不应超出规定的范围,这一频率范围称为频带宽度,简称为天线的带宽。
按结构形式的不同,天线大体可以分为两类,一类是半径远小于波长的金属导线构成的线状天线,一类是尺寸大于波长的金属或介质面构成的面状天线。线状天线主要用于长、中、短波频段,移动通信使用的多是以对称振子为基础而发展的各种型式的线天线。面状天线主要用于厘米或毫米波频段,卫星地面站接收卫星信号大多用抛物面天线。
不同的天线有不同的属性,一般需要根据实际需要决定使用何种天线。总的来说,天线的工作效率与天线的体积有关,同时天线的大小与天线的波长有关。在电子设备例如手机中设置天线时,天线的尺寸大小、重量、性能、安装难易等都受到限制,一般应用于电 子设备上的天线可以包括单极天线、偶极子天线、四分之一波长天线、微带天线、贴片天线、缝隙天线、倒F天线(inverted F antenna,IFA天线)、平板倒置F天线(planar inverted F antenna,PIFA天线)、陶瓷天线等。
其中,微带天线(microstrip antenna)低剖面、低成本并可制成多功能、可共形的天线,微带天线尺寸可大可小,可集成到无线电设备内部。因更便于实现小型化和集成化,微带天线在手持便携通信设备、电子设备例如手机上得到了广泛的应用。
微带天线是在一种薄的介质板上一面附上某种金属层作为接地板,另一面用贴片或蚀刻的方法可制成某种需要的形状,利用微带线或者同轴线等馈电方式馈电的天线形式。微带天线具有薄的平面结构,通过选择特定的贴片形状和馈电方式或在贴片和介质基片间加负载可以获得或调整所需的谐振频率、极化、模式、阻抗等各参量。
图4示出了几种微带天线的结构形式示意图。微带天线按照其辐射单元形式大致可以分为微带贴片天线、微带行波天线和微带缝隙天线。参考图4中的(a),微带贴片天线(microstrip patch antenna,MPA)(也可称贴片天线(patch antenna)是由介质基片301、在介质基片301一面的接地板302和在介质基片301另一面上有任意平面几何形状的导体贴片303所构成。通常利用微带线304或同轴线一类馈线馈电,使在导体贴片303与接地板302之间激励起射频电磁场,并通过导体贴片303四周与接地板302间的缝隙向外辐射。导体贴片303可以是规则形状的面积单元,例如正方形、圆形、矩形、椭圆形、五角形、圆环形、三角形、半圆形、缺口圆形、椭圆环、扇形、半圆环、扇形环等,也可以是不规则的异形面积单元,例如“H”形状、切角正方形等,本申请实施例不做具体限定。参考图4中的(b),微带行波天线(microstrip traveling-wave antenna,MTA)是由介质基片301、在介质基片301一面的接地板302和在介质基片301另一面上的呈链形周期结构的微带线304或TEM波传输线组成。微带行波天线主要是利用微带线304的某种形变(如直角弯头、弧形弯曲等)来产生辐射。参考图4中的(c),微带缝隙天线是由微带线304和开在接地板302上的缝隙305组成。微带缝隙天线可利用开在接地板302上的缝隙305来辐射,此时由介质基片301另一侧的微带线304或其他馈线对其馈电。缝隙305可以是矩形的(包括宽缝或窄缝)、圆形或环形的。
微带天线可以多种馈电方式,主要有微带传输线馈电、同轴探针馈电和耦合馈电。微带线馈电方式中,馈线也是一导体带,一般具有较窄的宽度,馈电时可以有中心微带馈电和偏心微带馈电。同轴线探针馈电方式中,同轴线的内导体接到辐射贴片上,外导体接到地面上。耦合馈电方式还可以分传输线耦合馈电和小孔耦合馈电。
本申请实施例以天线辐射体复用为电容式传感器的感应片,天线可以为上文所述的任意一种天线。为方便描述,本申请实施例将以贴片天线为例描述本申请实施例提供的电容式传感器实现方案。但应理解,本申请实施例提供的电容式传感器实现方案不限于应用于贴片天线,还可以应用于上文提到的任意一种天线上。
也就是说,本申请实施例中的电子设备包括第一天线单元,第一天线单元包括第一辐射体,第一辐射体用于收发射频信号。第一辐射体还用做电容式传感器的感应片,即第一辐射体还用于在被测对象接近时感应第一辐射体与被测对象之间的电容或电容变化。电子设备还包括传感器芯片,传感器芯片用于获取上述电容或电容变化,以确定所述被测对象相对于所述第一辐射体的接近程度,其中传感器芯片与第一辐射体上的电压最小点通过导 线电性连接。传感器芯片确定被测对象相对于第一辐射体的接近程度时,可以确定被测对象已经接近第一辐射体,或者正在接近第一辐射体。例如当第一辐射体所感应的电容或电容变化超过传感器芯片的最低检测阈值时,传感器芯片可以确定被测对象已经接近第一辐射体,即传感器芯片检测到了被测对象。又如当第一辐射体所感应的电容或电容变化超过预设阈值或者不断增大时,传感器芯片可以确定被测对象正在接近第一辐射体,即被测对象与第一辐射体之间的距离不断缩短。随着被测对象相对于第一辐射体的接近程度的变化,电子设备可以根据被测对象的接近程度执行某些操作,例如切换天线模块、改变波束方向、识别用户手势等。
应理解,天线单元的辐射体作用是将射频信号转换为电磁波向空间发射,也可以接收空间中的电磁波并转换为射频信号。因此本申请实施例中天线单元的辐射体用于收发射频信号和用于收发电磁波可以理解为具有相同含义。
本申请实施例中天线单元的辐射体复用为电容式传感器的感应片,为了方便理解,本申请实施例中,在描述辐射体用于感应被测对象与辐射体之间的电容或电容变化时,以“感应片”来表述,以区分辐射体的不同作用。即名称“辐射体”用来描述辐射体的收发射频信号的作用,名称“感应片”用来描述辐射体的感应电容或电容变化的作用,但二者均指的是天线单元的辐射体。
图5示出了本申请实施例提供的电容式传感器的示意性结构图。
如图5所示,电容式传感器模组420包括感应片421和传感器芯片422。天线单元410包括辐射体411和馈线412。电容式传感器模组420的感应片421复用天线单元410的辐射体411,即天线单元的辐射体411作为电容式传感器的感应片421,其中,电容式传感器模组的传感器芯片422与天线单元的辐射体411通过导线423相导通(即电性连接),导线423与辐射体411相连的位置位于辐射体411上的电压最小点。
需要说明的是,本申请实施例中,“辐射体”在其他一些实施例中也可以称为“辐射单元”、“辐射片”等,三者具有相同的含义。在一些其他实施例中,也可以将“电容式传感器模组”简称为“电容式传感器”。
应理解,在一些实施例中,天线单元的辐射体上的电压最小点也可以是电场最小点或电场最弱点,也就是天线单元的电场最小点位于天线物理实体上,这样也可以认为电容式传感器模组的传感器芯片422与天线单元的辐射体411上电场最小点通过导线423相导通。
天线单元410的馈线412与辐射体411之间可以是直接馈电,也可以是耦合馈电。直接馈电是馈线直接与导体贴片相接触,例如微带传输线馈电和同轴探针馈电。耦合馈电是馈线与导体贴片无直接接触,例如电磁耦合、缝隙耦合法和共面波导馈电法等。辐射体411的形状、尺寸与天线单元410的工作模式、工作频率、功能等相关,在实际应用中,辐射体411的具体结构形式需要根据天线单元410的参数进行相应的设计。
本申请实施例提供的电容式传感器中,将电子设备内的天线单元的辐射体作为感应片,从辐射体的电压最小点引出导线连接到传感器芯片,组成电容式传感器系统。这样能够将电容式传感器的电容感应通路与天线单元的射频通路分开,传感器的电容感应电流从引出的导线传输到传感器上,能够减少或避免电容感应通路与射频通路的相互干扰,提高电容式传感器的检测精度。另外,由于电容式传感器的电容感应通路与天线单元的射频通 路分开,也无需再设置电容、电感等隔离器件对电容感应信号和射频信号进行隔离,能够简化结构。射频通路中不用传输电容感应电流,提高了射频通路调试的灵活性。
下面以贴片天线为例进行详细描述。图6示出了本申请实施例提供的一种电容式传感器的示意性剖面结构图。
如图6所示,图中示出了电子设备所包括的天线单元410和电容式传感器模组420。天线单元410能够有效地向空间某特定方向辐射电磁波或能够有效地接收空间某特定方向来的电磁波,实现导行波和自由空间波的转换。天线单元410可与前端模块(front-end modules,FEM)430相连,前端模块430可用于完成射频信号的发送放大以及接收放大,或者包含功率检测、控制和开关的作用。电容式传感器模组420能够实现接近检测,检测物体的靠近程度或距离等级。
本申请以贴片天线为例。示例性的,参考图6,天线单元410包括介质基片401、表层导体贴片402、底层导体贴片403、馈线404等。可选地,还包括接地板405。介质基片401包括多层,可以起到支撑的作用。表层导体贴片402、底层导体贴片403和接地板405依次层叠,两两之间通过介质基片401相隔。馈线404穿过接地板405和介质基片401为表层导体贴片402和底层导体贴片403进行馈电。馈线404与底层导体贴片403相接触,对底层导体贴片403来说为直接馈电方式。馈线404与表层导体贴片402不直接接触,对表层导体贴片402来说为耦合馈电方式。这里表层导体贴片402和底层导体贴片403即天线单元410的辐射体。表层导体贴片402为距离被测对象(或者电子设备外壳)最近的贴片,底层导体贴片403为距离被测对象(或者电子设备外壳)最远的贴片。
应理解,以贴片天线为例,天线单元410可以包括多层导体贴片,图6中仅示例性的示出了两层导体贴片(即表层导体贴片402和底层导体贴片403)。在其他一些实施例中,表层导体贴片402与底层导体贴片403之间还可以设置至少一层导体贴片,例如一层、两层、三层或者更多层,相应的,天线单元410包括三层、四层、五层或更多层的导体贴片,该多层导体贴片之间通过介质基片相隔。在另外一些实施例中,天线单元410也可以只包括一层导体贴片,例如只包括位于介质基片401最上面的表层导体贴片402。
本申请实施例中,天线单元410的导体贴片的馈电方式还可以有其他方式,例如馈线404与底层导体贴片403之间通过介质基片相隔,这样馈线404于所有导体贴片都是耦合馈电。
天线在发射和接收电磁波时,天线周围会形成电场,天线的辐射体上不同的位置电压不同。以贴片天线为例,导体贴片为天线单元的辐射体,本申请实施例中的表层导体贴片402和底层导体贴片403周围形成有电场。表层导体贴片402和底层导体贴片403上均具有一个电压最小的点,从辐射体上电压最小点引线的话,导线中几乎没有电流。这是因为天线在接收电磁波时,将电磁波转换为导行波后,导行波的传导与天线的电场分布有关,导行波不会从电压最小(即阻抗最小)的地方进行传输。对贴片天线来说,导体贴片上电压最小的点可以认为是电场零点(或称电场弱点),电场零点是天线的电场最弱点,该点的电压最小,这样导行波会在电场较强的位置例如馈线所在位置进行传输,而不会从电压最小点所引出的导线上传输。
因此本申请实施例中,参考图6,电容式传感器模组420包括感应片421和传感器芯片422,感应片421为天线单元410的辐射体,例如感应片421复用天线单元410的表层 导体贴片402。感应片421与传感器芯片422通过导线423相连,其中导线423连接感应片421(即表层导体贴片402)的位置为表层导体贴片402的电压最小点。换句话说,本申请实施例中从天线单元的辐射体的电压最小点引出导线连接至电容式传感器的传感器芯片上,以天线单元的辐射体作为电容式传感器的感应片。
在本申请其他一些实施例中,天线单元410的辐射体包括一层或多层导体贴片,一层或多层导体贴片中的任意一层导体贴片可以复用为感应片421。即,辐射体包括一层或多层导体贴片时,导线与一层或多层导体贴片中的一层导体贴片相连。
优选地,天线单元410的辐射体包括多层导体贴片时,多层导体贴片中更靠近电子设备外部(即靠近被测对象)的导体贴片可以复用为感应片421。即多层导体贴片中,相距电子设备外壳的距离小于预设距离的导体贴片可以复用为感应片421。
优选地,天线单元410的辐射体包括多层导体贴片时,多层导体贴片中的表层导体贴片可以复用为感应片421,当然辐射体包括一层导体贴片时,该一层导体贴片即表层导体贴片。即,辐射体包括一层或多层导体贴片时,导线与一层或多层导体贴片中的表层导体贴片相连。
从天线单元的辐射体上单独引出一条导线作为传感器的电流通路,传感器通路可以与天线单元的射频通路相隔开,避免了相互干扰。本申请实施例中复用天线单元的表层导体贴片作为电容式传感器的感应片,天线单元馈线与表层导体贴片为耦合馈电,也就是说,表层导体贴片上只引出一条导线,馈线与表层导体贴片不直接接触。由于射频信号为高频电流,电容感应信号为低频电流,传感器的电流不能耦合到馈线上,也就不会从射频通路传送,而只在从表层导体贴片引出的导线上传送到传感器芯片上。而对于射频信号来说,天线单元在接收电磁波时,会将接收到的电磁波转换为高频电流,该高频电流的走向和辐射体的电场分布有关,电压最小点是电流最大点,阻抗为电压/电流,所以电压最小点也是阻抗最小点,例如电场零点的位置其阻抗为电压/电流=0,因此射频信号不会从表层导体贴片的电压最小点(例如电场零点)所引出的导线上传送,而是通过耦合从馈线中传送。另外,本申请实施例中从天线的辐射体上电压最小点(例如贴片天线的电场零点)引出的导线为对射频频段呈现高阻的金属线,这样电磁波对应的高频导行波也不会从导线上传输而到达传感器芯片处。
通过上述实现方式能够使传感器通路与射频通路相隔开,避免了相互干扰,提高电容式传感器的检测精度,还能提升射频通路调试的灵活性。另外也不用设置电感或电容来进行滤波隔离,简化了电容式传感器的结构设计。当天线单元为贴片天线时,以表层导体贴片作为电容式传感器的感应片,能够减少天线单元其他导体贴片的影响,另外表层导体贴片最接近被测对象,感应效果最好,能够检测到的距离最远,提高了电容式传感器的检测灵敏度。在没有设置共通路的现有天线单元基础上,从辐射体上的电压最小点或电场最弱点(例如电场零点)单独引出一条导线,对天线的性能也没有影响。
本申请实施例中,天线单元的辐射体的电压最小点位置与天线单元的工作模式相关,天线的形状是根据天线的工作模式确定的,因此也可以认为天线辐射体的电压最小点位置与天线的形状相关。
天线单元为贴片天线时,贴片天线的形状可以为规则图形或者异形图形。示例性的,贴片天线的形状可以为正方形、矩形、圆形、椭圆形、H形等规则形状。若天线单元的工 作模式为半波长模式时,导体贴片通常为对称图形,则导体贴片的对称中心(即辐射体的中心)即为电场零点,即电压最小点。因此,这种情况下,可以直接从导体贴片的中心引出电容式传感器的导线。图7示出了图6中的电容式传感器的示意性俯视图。如图7所示,表层导体贴片402为正方形,电容式传感器的导线423从表层导体贴片402的中心引出。
应理解,当导体贴片的形状为不规则形状时,导体贴片上的电压最小点需要根据导体贴片的电场分布相应确定。示例性的,天线单元的辐射体上的电压最小点可以通过仿真确定。
图8示出了本申请实施例提供的又一种电容式传感器的示意性剖面结构图。与图6所示的电容式传感器不同的是,电容式传感器420是以天线单元410的底层导体贴片403作为感应片421,这样用于导通传感器电流的导线423从底层导体贴片403上的电压最小点引出并连接到传感器芯片422。
在这种情况下,复用天线单元的底层导体贴片作为电容式传感器的感应片,馈线与底层导体贴片为直接馈电,底层导体贴片上同时引出一条导线,这样天线单元的馈线与电容式传感器模组的导线均与同一导体贴片相连。如上所述,对于射频信号来说,天线单元在接收电磁波时,会将接收到的电磁波转换为高频电流,该高频电流的走向和辐射体的电场分布有关,不会从底层导体贴片的电压最小点所引出的导线上传送,而是通过馈线传送。另外导线为对射频频段呈现高阻的金属线,这样电磁波对应的高频导行波也不会从导线上传输而到达传感器芯片处。天线单元上的导行波不会从传感器的导线上传输,射频电流不会对电容感应电流产生干扰,有利于提高电容式传感器模组的检测精度。
另一方面,单独引出导线用于传输电容感应电流后,电容感应电流可以只从导线通路中传输,也可以从导线通路和馈线通路中传输,但只要有电容感应电流从导线通路中传输到传感器芯片,传感器芯片就能够根据电流变化来检测距离变化,从而得到被测对象与感应片之间的距离。同时,由于电容感应通路与射频通路分开,能够提高射频通路调试的灵活性。
当传感器的电容感应电流从射频通路中传输时,为了避免可能出现的传感器的电容感应电流对射频电路的干扰,可以在射频通路上设置高通电路,使传感器的电容感应电流通过高通电路后回地。图9示出了电容式传感器在做接近检测时的电路示意图。
如图9所示,底层导体贴片403与被测对象的距离发生变化时,底层导体贴片403作为电容式传感器的感应片会产生电容感应电流。电容感应电流除了可以从左侧所示的导线423上传送并到达传感器芯片外,还可以从右侧所示射频通路中传输。为了避免传感器的电容感应电流对射频电路的干扰,在射频通路中设置了第二高通滤波电路,即图中所示的等效电容A,用于阻断电容式传感器模组的低频信号。在第二高通滤波电路后面接一个回地的大电感,这样高频的射频电流能够通过第二高通滤波电路继续在馈线上传送,而传感器的电容感应电流信号通过第二高通滤波电路后回地,而不会影响后端射频电路。由于传感器芯片也会有电流传送到天线上,本申请实施例中在射频通路中设置的第二高通滤波电路可以使传感器芯片发出的电流信号不直接回地,这样传感器芯片发出的电流信号才能到达天线(即感应片)上,以测量外围电路和地之间的电势差,电容式传感器才能正常工作。
也就是说,天线单元(这里可以为上文中所述的第一天线单元)为贴片天线时,天线单元的馈线和电容式传感器的导线连接于同一导体贴片上时,天线单元的射频通路上串联 有第二高通滤波电路,用于阻断感应片(即辐射体)所感应的电容或电容变化所对应的低频信号。
应理解,本申请实施例的方案应用于其他类型的天线单元例如单极天线、偶极子天线等时,当天线单元的馈电方式为直接馈电时,可以在天线单元的射频通路上串联第二高通滤波电路,用于阻断感应片(即辐射体)所感应的电容或电容变化所对应的低频信号。
本申请实施例中的第二高通滤波电路可以为电容电路。
本申请实施例中导线423可以为低通高阻线,可以使电感传感器信号通过,把射频信号滤除。可选地,还可以在电容式传感器模组的传感器通路上设置第一高通滤波电路,用于滤除天线单元的射频信号。即,可以在辐射体与传感器芯片之间的通路上设置第一高通滤波电路,用以滤除射频信号。示例性地,如图9所示,在传感器通路上设置等效电容B后接地,可以辅助滤除射频信号。
上述实施例中分别以表层导体贴片和底层导体贴片复用为感应片为例进行描述,在本申请其他实施例中,天线单元中在表层导体贴片和底层导体贴片之间还可以设置多个中间导体贴片。该多个中间导体贴片中的任意一个贴片均可以复用为感应片。对于中间导体贴片作为感应片的情况,在直接馈电方式中馈线与电容式传感器的导线可以从同一导体贴片上引出,也可以从不同导体贴片上引出,在耦合馈电方式中,则只有电容式传感器的导线从导体贴片上引出,射频电流和传感器电流的传输通路与上述类似,为简洁,不再赘述。
还应理解,当选择贴片天线的其他导体贴片(即表层导体贴片和底层导体贴片之外的贴片)或者选择其他结构形式的天线的辐射体作为电容式传感器的感应片时,导线的引出方式和电容感应电流的传输通路与图6或图8类似,具体可参考上文描述,在此不再赘述。
本申请实施例中,由于天线的辐射体复用为电容式传感器的感应片,因此天线单元和电容式传感器模组可以封装在一起,实际上就是天线单元与传感器芯片可以封装在一起。例如图8中虚线框所示,天线单元410与传感器芯片422封装为一体。在其他一些实施例中,也可以将电容式传感器模组的部分与天线单元封装在一起,也就是电容式传感器模组分成两部分封装。如图10中所示,电容式传感器420中的感应片421(即天线辐射体)和导线423同天线单元410封装成一体,电容式传感器420中的传感器芯片422单独封装。
本申请实施例中,复用为电容式传感器的感应片的天线单元可以是任意结构形式的具有稳定的电压最小点(例如电压零点或电场零点)的天线,本申请实施例对天线单元的极化方向、贴片层数、天线单元个数均不作特殊限定。例如天线单元可以例如图6至图10中所示的单极化天线,也可以是例如图11中的(a)和(b)所示的双极化天线,还可以是例如图11中的(c)所示的带有寄生枝节的天线,还可以是例如图11中的(e)至(f)所示的线天线,如单极天线、偶极子天线、环天线等。应理解,本申请实施例中的天线单元还可以是增加引向的天线、面天线、微带天线以及其他结构形式的谐振天线等,在此不再一一赘述。当天线单元为上述结构的天线时,天线单元的辐射体的电压最小点可以根据天线的具体形状、工作模式、天线的参数等确定。
本申请实施例中的天线单元为贴片天线时,不限定贴片天线的导体贴片的层数,可以是如图12中的(a)所示的单层贴片天线,也可以是如图12中的(b)所示的双层贴片天线,还可以是多层例如三层、四层等贴片天线,在此不再一一赘述。当辐射体包括一层或多层导体贴片时,一层或多层导体贴片中的任意一层导体贴片可以复用为电容式传感器的 感应片。
应理解,本申请实施例中不同极化方向与不同层数导体贴片可以组合形成不同的贴片天线,例如形成单层单极化贴片天线、单层双极化贴片天线、双层双极化贴片天线等。
本申请实施例中,对于用于复用为电容式传感器的感应片的天线单元个数不做具体限定,可以是以单个天线单元的辐射体复用为电容式传感器的感应片,也可以是天线阵列(即包括多个天线单元)的辐射体复用为电容式传感器的感应片,还可以是多个天线阵列的辐射体复用为电容式传感器的感应片。
也就是说,本申请实施例中的电子设备还包括第二天线单元,第二天线单元包括第二辐射体,第二辐射体上的电压最小点与传感器芯片通过导线电性连接。其中,第一天线单元和第二天线单元可以属于同一天线阵列,也可以属于不同的天线阵列。与第一天线单元的第一辐射体相连的导线和与第二天线单元的第二辐射体相连的导线合并为一路或多路与传感器芯片相连。
应理解,本申请实施例中的电子设备不限于包括第一天线单元和第二天线单元,还可以包括更多的天线单元,这些天线单元的辐射体均可以作为感应片来感应辐射体与被测对象之间的电容或电容变化。
图13示出了本申请实施例提供的天线阵列的示意性俯视图。如图13中的(a)和(b)所示,天线阵列包括多个天线单元410,天线单元410可以是如(a)中所示的水平垂直极化天线,也可以是如(b)中所示的±45°极化天线。天线单元410中间的黑色圆点表示电容式传感器的导线引出位置,天线单元410上另外两个点表示馈电点。应理解,构成天线阵列的也可以是其他结构形式的天线单元,例如图11或图12中示出的任意一种天线结构。
当电容式传感器的感应片复用天线阵列中的天线单元时,可以选择天线阵列中的部分天线单元的辐射体作为感应片,也可以使用天线阵列中的所有天线单元的辐射体作为感应片。
在一种可能的实现方式中,天线阵列包括多个天线单元,电容式传感器的感应片为天线阵列中的多个天线单元的辐射体时,可以分别从该多个天线单元的辐射体上引出用于传输电容感应电流的导线,该多个导线最后合并为一路连接到一个电容式传感器的传感器芯片上。
示例性的,如图14所示,天线阵列包括天线单元410a、410b、410c、410d,分别从四个天线单元的辐射体上引出导线,该四个天线单元410a、410b、410c、410d相当于并联,最后与四个天线单元的辐射体相连的导线合并为一路后连接到一个传感器芯片上。其中,传感器芯片处理的电容感应信号是四个天线单元的辐射体所感应的电流信号之和。应理解,本申请实施例中的电容感应信号即为电流信号。
电容式传感器的感应片为多个天线单元的辐射体,增大了感应片的面积,从而可以增大电容感应电流,传感器芯片检测精度提高。进一步地,相比使用单个天线单元的辐射体作为感应片,使用多个天线单元的辐射体可以增大电容式传感器的检测距离,提高电容式传感器的检测灵敏度,即在被测对象距离感应片较远的地方就可以在感应片中产生电流从而被传感器芯片检测到。
在另一种可能的实现方式中,天线阵列包括多个天线单元,电容式传感器的感应片为天线阵列中的多个天线单元的辐射体时,可以分别从该多个天线单元的辐射体上引出用于 传输电容感应电流的导线,其中部分天线单元对应的导线合并为一路后连接到传感器芯片上,另外一部分天线单元对应的导线合并为另一路后连接到同一个传感器芯片上。
示例性的,如图15所示,天线阵列包括天线单元410a、410b、410c、410d,分别从四个天线单元的辐射体上引出导线,该四个天线单元410a、410b、410c、410d相当于并联,其中分别与天线单元410a和410b的辐射体相连的导线合并为一路后连接到传感器芯片上,分别与天线单元410c和410d的辐射体相连的导线合并为一路后连接到同一个传感器芯片上。也就说,与多个天线单元的辐射体相连的导线分多路连接到传感器芯片。其中,传感器芯片处理的电容感应信号为多路电容感应信号,例如传感器芯片具有多路信息处理功能,传感器芯片的每一路可以单独处理进入该路的电容感应信号。
电容式传感器的感应片为多个天线单元的辐射体,增大了感应片的面积,从而可以增大电容感应电流,传感器芯片检测精度提高。复用多个天线单元的辐射体可以增大电容式传感器的检测距离,提高电容式传感器的检测灵敏度。进一步地,由于多个天线单元的辐射体(即多个感应片)分多路连接到传感器芯片,传感器芯片可以根据多路的电容感应电流分别计算出被测对象与感应片的多个距离,或者多个被测对象与感应片之间的距离,可以得到被测对象的较为精细的位置。
在又一种可能的实现方式中,天线阵列包括多个天线单元,电容式传感器的感应片为天线阵列中的多个天线单元的辐射体时,可以分别从该多个天线单元的辐射体上引出用于传输电容感应电流的导线,该多个天线单元对应的导线分别连接到同一个传感器芯片上。
示例性的,如图16所示,天线阵列包括天线单元410a、410b、410c、410d,分别从四个天线单元的辐射体上引出导线,该四个天线单元410a、410b、410c、410d的辐射体相当于并联,其中该四个天线单元410a、410b、410c、410d的辐射体所引出的导线分别连接到同一个传感器芯片上。其中,传感器芯片处理的电容感应信号为四路电容感应信号,传感器芯片可以单独处理进入传感器芯片的每一路的电容感应信号。
电容式传感器的感应片复用多个天线单元的辐射体,增大了感应片的面积,从而可以增大电容感应电流,传感器芯片检测精度提高。复用多个天线单元的辐射体可以增大电容式传感器的检测距离,提高电容式传感器的检测灵敏度。进一步地,每个天线单元的辐射体分别连接传感器芯片,这样每个天线单元的辐射体所感应的电流分别传输到传感器芯片上,传感器芯片可以根据每个通路的电容感应电流分别计算出被测对象与感应片的距离,可以得到被测对象的更为精细的位置。
在又一种可能的实现方式中,天线阵列包括多个天线单元,电容式传感器的感应片为天线阵列中的多个天线单元的辐射体时,每个天线单元的辐射体可以引出导线到各自对应的传感器芯片上。即天线阵列中的多个天线单元中的每个天线单元的辐射体都对应一个传感器芯片。
示例性的,如图17所示,天线阵列包括天线单元410a、410b、410c、410d,分别从四个天线单元的辐射体上引出导线,每个天线单元的导线分别连接一个传感器芯片。
当然,电容式传感器的感应片也可以复用多个天线阵列中的天线单元,例如可以选择多个天线阵列中的部分天线单元的辐射体作为感应片,也可以使用多个天线阵列中的所有天线单元的辐射体作为感应片。
在一种可能的实现方式中,多个天线阵列的电容感应通路可以合并成一路连接到传感 器芯片上,可以合并为多路连接到传感器芯片上,也可以每一路分别连接到传感器芯片上。
示例性,如图18所示,电容式传感器的感应片复用两个天线阵列(即天线阵列A和天线阵列B)中的天线单元的辐射体,其中在每个天线阵列中分别从多个天线单元的辐射体上引出导线,天线阵列A中的天线单元的辐射体的导线合并为一路后连接到传感器芯片上,天线阵列B中的天线单元的辐射体的导线合并为一路后连接到传感器芯片上。
应理解,上文中所述的天线阵列包括半波长模式的贴片天线时,可以直接从导体贴片的中心引出电容式传感器的导线。
还应理解,对于同一天线阵列中的多个天线单元来说,从多个天线单元的辐射体引出的导线可以相连,对天线的性能没有影响。多个天线单元的馈线也可以相连。但对于多个天线阵列来说,从不同天线阵列中的天线单元的辐射体引出的导线可以相连,但不同天线阵列中的天线单元的馈线一般不相连。
上文中天线单元的馈线直接与辐射体相连,采用直接馈电的方式。本申请实施例中,天线单元的馈线和辐射体也可以具有一定间距,采用耦合馈电的方式。示例性的,仍以贴片天线为例,如图19所示,天线单元中的表层导体贴片402、底层导体贴片403和接地板405依次层叠,馈线404在接地板405上远离贴片的一侧,接地板405上可以开孔或开槽,馈线404通过孔或槽实现对表层导体贴片402和底层导体贴片403的耦合馈电。电容式传感器的导线可以从表层导体贴片402的电压最小点引出,也可以从底层导体贴片403的电压最小点引出,还可以从其他导体贴片的电压最小点引出,本申请实施例不做具体限定。当从表层导体贴片402引出导线时,导线可以穿过下层导体贴片或者在下层导体贴片上开孔避让。需要说明的是,当电子设备包括多个天线单元时,多个天线单元中的每个天线单元包括馈线和辐射体,该多个天线单元的馈线可以时分开设置的,也可以是在某部分是共用的,本申请实施例不做限定。
本申请实施例中,从电子设备中的天线单元辐射体上引出的导线位于辐射体上的电压最小点,在一些其他实施例中,当辐射体上某位置的电压不高于一定阈值时(例如该位置的电压与电压最小点位置的电压差值小于某阈值),也可以从该位置引出导线连接到传感器芯片,也可以实现上述效果。
本申请实施例提供的电容式传感器实现方案可以应用于任何天线单元,其中应用的贴片天线包括但不限于单贴片天线、贴片天线阵列、封装天线(antennas in package,AIP)。天线单元的工作频段包括但不限于2G/3G/4G频段、蜂窝频段、wifi频段、蓝牙频段、GPS频段及5G通信的频段以及6GHz频段及毫米波(millimeter wave,mmW)频段(10到300GHz)。一般而言,工作在毫米波频段的天线可以采用贴片天线。天线工作模式包括但不限于四分之一波长模式、半波长模式及其他高次模式。封装天线AIP技术是通过封装材料与工艺将天线集成在携带芯片的封装内。当电子设备包括至少一个天线单元时,每个天线单元可以为一个封装天线,或者多个天线单元可以封装在一起。这样电容式传感器的传感器芯片可以与天线单元封装在一起。
本申请实施例中复用天线单元的辐射体作为电容式传感器的感应片,可以实现不额外增加感应片的电容式接近检测。特别在毫米波频段有AIP的场景下,可以集成AIP和电容式传感器,压缩多个功能器件的体积。电容式传感器的传感器芯片可以和mmW芯片裸片(die)集成设计或封装,形成封装天线中的传感器(sensor in AIP,SIAIP)。
本申请实施例提供的电容式传感器(系统)可以进行接近度检测,检测被测对象的靠近程度或距离等级,进一步可以应用于电磁波能量吸收比(specific absorption rate,SAR)检测、最大暴露允许值(maximum permissible exposure,MPE)检测、手势检测、天线波束管理、天线模块切换、电子设备姿态检测等方面。例如,本申请实施例提供的电容式传感器系统设置于电子设备内,其中电子设备内的天线单元的辐射体既可以用于收发射频信号,也可以用于在被测对象接近时感应辐射体与被测对象之间的电容或电容变化,并将该电容或电容变化对应的信号传送到传感器芯片中。传感器芯片通过对电容感应信号的处理可以获取被测对象与辐射体之间的距离或者接近程度。此时若被测对象与辐射体的距离少于预设阈值,那么电子设备可以改变天线的波束方向,不在被测对象所在的方向上发射或接收射频信号,以防止信号被被测对象遮挡。或者,此时若被测对象与辐射体的距离少于预设阈值,那么电子设备可以改变切换天线模块,使不在被测对象所在的方向上的天线模块工作,以防止信号被被测对象遮挡。或者,此时若被测对象与辐射体的距离少于预设阈值,那么电子设备可以减小天线的发射功率,以满足SAR限制。又如,传感器芯片通过对电容感应信号的处理可以获取被测对象相对辐射体之间的距离变化,电子设备可以根据该距离变化来对用户手势进行识别或者对电子设备的姿态进行检测等等。
应理解,本申请实施例的部分附图中辐射体上标识有圆圈代表导线的截面,圆圈中的×表示电流流向,本申请实施例即表示电流从辐射体向传感器芯片方向流。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种电子设备,其特征在于,包括:
    第一天线单元,所述第一天线单元包括第一辐射体,所述第一辐射体用于收发射频信号;
    所述第一辐射体还用于:
    在被测对象接近时感应所述第一辐射体与所述被测对象之间的电容或电容变化;
    所述电子设备还包括传感器芯片,所述传感器芯片用于获取所述电容或电容变化,以确定所述被测对象相对于所述第一辐射体的接近程度,其中所述传感器芯片与所述第一辐射体上的电压最小点通过导线电性连接。
  2. 根据权利要求1所述的电子设备,其特征在于,所述电子设备还包括具有第二辐射体的第二天线单元,所述第二辐射体上的电压最小点与所述传感器芯片通过导线电性连接,其中,与所述第一辐射体和所述第二辐射体相连的导线合并为一路或多路与所述传感器芯片相连。
  3. 根据权利要求2所述的电子设备,其特征在于,所述第一天线单元和所述第二天线单元属于同一天线阵列。
  4. 根据权利要求1至3中任一项所述的电子设备,其特征在于,所述第一天线单元为以下天线中的任意一种:
    单极天线、偶极子天线、微带天线、贴片天线、缝隙天线、倒F天线、平板倒置F天线、陶瓷天线。
  5. 根据权利要求1至4中任一项所述的电子设备,其特征在于,所述第一天线单元的馈电方式为直接馈电或耦合馈电,其中,所述直接馈电包括微带馈电和探针馈电。
  6. 根据权利要求1至5中任一项所述的电子设备,其特征在于,所述导线为低通高阻线。
  7. 根据权利要求1至6中任一项所述的电子设备,其特征在于,所述第一辐射体与所述传感器芯片之间的通路上设置有第一高通滤波电路,所述第一高通滤波电路用于滤除所述射频信号。
  8. 根据权利要求1至7中任一项所述的电子设备,其特征在于,所述第一天线单元为贴片天线时,所述第一辐射体包括一层或多层导体贴片,所述导线与所述一层或多层导体贴片中的一层导体贴片相连。
  9. 根据权利要求8所述的电子设备,其特征在于,所述导线与所述一层或多层导体贴片中的表层导体贴片相连。
  10. 根据权利要求1至9中任一项所述的电子设备,其特征在于,当所述第一天线单元的馈电方式为直接馈电时,所述第一天线单元的射频通路上串联有第二高通滤波电路,用于阻断所述电容或电容变化所对应的低频信号。
  11. 根据权利要求8或9所述的电子设备,其特征在于,所述第一天线单元还包括馈线,当所述馈线与所述导线连接于同一导体贴片上时,所述第一天线单元的射频通路上串联有第二高通滤波电路,用于阻断所述电容或电容变化所对应的低频信号。
  12. 根据权利要求10或11所述的电子设备,其特征在于,所述第二高通滤波电路为电容电路。
  13. 根据权利要求1至12中任一项所述的电子设备,其特征在于,所述第一天线单元为贴片天线时,所述贴片天线的形状为以下形状中的任意一种:
    正方形、矩形、三角形、圆形、椭圆形、H形。
  14. 根据权利要求13所述的电子设备,其特征在于,所述第一天线单元的工作模式为半波长模式时,所述第一辐射体上的电压最小点位于所述第一辐射体的中心。
  15. 根据权利要求1至14中任一项所述的电子设备,其特征在于,所述传感器芯片和所述第一天线单元封装为一体。
  16. 一种电子设备,其特征在于,包括:第一天线单元和传感器芯片,
    所述第一天线单元包括第一辐射体和馈线,所述馈线与所述第一辐射体直接接触或者所述馈线为所述第一辐射体耦合馈电;
    所述第一辐射体与所述传感器芯片通过导线电性连接,所述导线与所述第一辐射体相连的位置为所述第一辐射体上的电压最小点。
  17. 根据权利要求16所述的电子设备,其特征在于,所述电子设备还包括具有第二辐射体的第二天线单元,所述第二辐射体上的电压最小点与所述传感器芯片通过导线电性连接,其中,与所述第一辐射体和所述第二辐射体相连的导线合并为一路或多路与所述传感器芯片相连。
  18. 根据权利要求17所述的电子设备,其特征在于,所述第一天线单元和所述第二天线单元属于同一天线阵列。
  19. 根据权利要求16至18中任一项所述的电子设备,其特征在于,所述第一天线单元为以下天线中的任意一种:
    单极天线、偶极子天线、微带天线、贴片天线、缝隙天线、倒F天线、平板倒置F天线、陶瓷天线。
  20. 根据权利要求16至19中任一项所述的电子设备,其特征在于,所述导线为低通高阻线。
  21. 根据权利要求16至20中任一项所述的电子设备,其特征在于,所述第一辐射体与所述传感器芯片之间的通路上设置有第一高通滤波电路。
  22. 根据权利要求16至21中任一项所述的电子设备,其特征在于,所述第一天线单元为贴片天线时,所述第一辐射体包括一层或多层导体贴片,所述导线与所述一层或多层导体贴片中的一层导体贴片相连。
  23. 根据权利要求22所述的电子设备,其特征在于,所述导线与所述一层或多层导体贴片中的表层导体贴片相连。
  24. 根据权利要求16至23中任一项所述的电子设备,其特征在于,在所述馈线与所述第一辐射体直接接触的情况下,所述第一天线单元的射频通路上串联有第二高通滤波电路。
  25. 根据权利要求22或23所述的电子设备,其特征在于,当所述馈线与所述导线连接于同一导体贴片上时,所述第一天线单元的射频通路上串联有第二高通滤波电路。
  26. 根据权利要求24或25所述的电子设备,其特征在于,所述第二高通滤波电路为 电容电路。
  27. 根据权利要求16至26中任一项所述的电子设备,其特征在于,所述第一天线单元为贴片天线时,所述贴片天线的形状为以下形状中的任意一种:
    正方形、矩形、三角形、圆形、椭圆形、H形。
  28. 根据权利要求27所述的电子设备,其特征在于,所述第一天线单元的工作模式为半波长模式时,所述第一辐射体上的电压最小点位于所述第一辐射体的中心。
  29. 根据权利要求16至28中任一项所述的电子设备,其特征在于,所述传感器芯片和所述第一天线单元封装为一体。
PCT/CN2020/123663 2019-12-26 2020-10-26 电子设备 WO2021129110A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/789,101 US20230032019A1 (en) 2019-12-26 2020-10-26 Electronic device
EP20906748.7A EP4068507A4 (en) 2019-12-26 2020-10-26 ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911364753.X 2019-12-26
CN201911364753.XA CN113054403B (zh) 2019-12-26 2019-12-26 电子设备

Publications (1)

Publication Number Publication Date
WO2021129110A1 true WO2021129110A1 (zh) 2021-07-01

Family

ID=76505896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123663 WO2021129110A1 (zh) 2019-12-26 2020-10-26 电子设备

Country Status (4)

Country Link
US (1) US20230032019A1 (zh)
EP (1) EP4068507A4 (zh)
CN (1) CN113054403B (zh)
WO (1) WO2021129110A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659322A (zh) * 2021-07-26 2021-11-16 西安理工大学 一种基于四分之一模的波束可重构基片集成波导天线
CN114156637A (zh) * 2021-11-15 2022-03-08 之江实验室 一种基于石墨的宽频带全向可穿戴天线及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115548670A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 天线结构、天线模组、芯片与电子设备
CN114221678B (zh) * 2022-01-11 2023-11-21 Oppo广东移动通信有限公司 近场通信芯片、无线通信设备以及比吸收率检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138794A (zh) * 2011-11-28 2013-06-05 启碁科技股份有限公司 射频装置及无线通信装置
US20150200447A1 (en) * 2014-01-14 2015-07-16 Luxshare-Ict Co., Ltd. Antenna structure with proximity sensor
CN106094984A (zh) * 2016-05-31 2016-11-09 合肥联宝信息技术有限公司 一种智能设备的距离感应装置及智能设备
CN107547101A (zh) * 2017-08-25 2018-01-05 惠州Tcl移动通信有限公司 一种共用射频天线的移动终端
CN107548145A (zh) * 2017-06-27 2018-01-05 西安易朴通讯技术有限公司 天线装置、移动终端及天线调节方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120788B2 (ja) * 2008-10-16 2013-01-16 Toto株式会社 電波センサ
US8577289B2 (en) * 2011-02-17 2013-11-05 Apple Inc. Antenna with integrated proximity sensor for proximity-based radio-frequency power control
CN103998944B (zh) * 2011-12-23 2017-02-22 德克斯科技有限公司 故障检测系统
TWI497825B (zh) * 2013-04-19 2015-08-21 Wistron Neweb Corp 射頻裝置及無線通訊裝置
TWM460421U (zh) * 2013-05-07 2013-08-21 Pegatron Corp 具近接感測功能的天線模組
CN203799390U (zh) * 2014-03-27 2014-08-27 成都费恩格尔微电子技术有限公司 一种射频式微电容指纹采集芯片
CN104269605A (zh) * 2014-09-22 2015-01-07 联想(北京)有限公司 一种电子设备
CN204947096U (zh) * 2015-08-18 2016-01-06 普尔思(苏州)无线通讯产品有限公司 一种集成近距离感应芯片的天线结构
TW201711272A (zh) * 2015-09-11 2017-03-16 耀登科技股份有限公司 接近感測型天線裝置及其天線結構
US10203407B2 (en) * 2015-11-19 2019-02-12 Htc Corporation Illumination device and detection method thereof
CN105552538B (zh) * 2015-12-17 2018-06-19 电子科技大学 一种二维大角度扫描平面相控阵天线
CN108281791B (zh) * 2017-01-05 2020-12-08 深圳富泰宏精密工业有限公司 电子装置
KR102372187B1 (ko) * 2017-11-24 2022-03-08 삼성전자주식회사 센싱 전극을 포함하는 통신 장치를 포함하는 전자 장치
CN108540157A (zh) * 2018-04-02 2018-09-14 上海安费诺永亿通讯电子有限公司 一种接近传感器以及无线终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138794A (zh) * 2011-11-28 2013-06-05 启碁科技股份有限公司 射频装置及无线通信装置
US20150200447A1 (en) * 2014-01-14 2015-07-16 Luxshare-Ict Co., Ltd. Antenna structure with proximity sensor
CN106094984A (zh) * 2016-05-31 2016-11-09 合肥联宝信息技术有限公司 一种智能设备的距离感应装置及智能设备
CN107548145A (zh) * 2017-06-27 2018-01-05 西安易朴通讯技术有限公司 天线装置、移动终端及天线调节方法
CN107547101A (zh) * 2017-08-25 2018-01-05 惠州Tcl移动通信有限公司 一种共用射频天线的移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068507A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659322A (zh) * 2021-07-26 2021-11-16 西安理工大学 一种基于四分之一模的波束可重构基片集成波导天线
CN113659322B (zh) * 2021-07-26 2024-04-19 西安理工大学 一种基于四分之一模的波束可重构基片集成波导天线
CN114156637A (zh) * 2021-11-15 2022-03-08 之江实验室 一种基于石墨的宽频带全向可穿戴天线及其制备方法
CN114156637B (zh) * 2021-11-15 2023-09-29 之江实验室 一种基于石墨的宽频带全向可穿戴天线及其制备方法

Also Published As

Publication number Publication date
EP4068507A4 (en) 2022-12-21
US20230032019A1 (en) 2023-02-02
EP4068507A1 (en) 2022-10-05
CN113054403B (zh) 2022-06-10
CN113054403A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2021129110A1 (zh) 电子设备
CN108511905B (zh) 天线系统和移动终端
US10069192B2 (en) Portable communication device
US11736139B2 (en) Electronic device and antenna switching method thereof
US9905908B2 (en) Antenna structure with proximity sensor
US11398670B2 (en) Dual polarized antenna and electronic device including the same
WO2022142824A1 (zh) 天线系统及电子设备
CN111491051B (zh) 移动终端
EP3709438B1 (en) Antenna and electronic device including the same
KR102663550B1 (ko) 안테나 모듈을 포함하는 전자 장치
EP3734761B1 (en) Loop type antenna and electronic device including same
KR20200130028A (ko) 이중 대역 안테나 및 그것을 포함하는 전자 장치
US20120098708A1 (en) Electronic apparatus and antenna unit
CN103428314A (zh) 一种调整移动终端辐射方向的方法及移动终端
US9496603B2 (en) Electronic apparatus
US11817916B2 (en) Systems and methods for establishing reliable wireless links
WO2022142820A1 (zh) 天线组件及电子设备
CN111509403A (zh) 阵列天线和电子设备
CN215869770U (zh) 天线组件及电子设备
EP4164061A1 (en) Dual polarization antenna and electronic device including same
CN108199140B (zh) 遥控器
JP2019134200A (ja) 情報処理装置、電子機器、及び情報処理システム
WO2023125225A1 (zh) 电子设备及其控制方法
CN112350057B (zh) 具有多频带天线的电子设备
WO2023109439A1 (zh) 天线组件、电子设备及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020906748

Country of ref document: EP

Effective date: 20220630

NENP Non-entry into the national phase

Ref country code: DE