WO2023124742A1 - 聚丙烯树脂及其制备方法 - Google Patents

聚丙烯树脂及其制备方法 Download PDF

Info

Publication number
WO2023124742A1
WO2023124742A1 PCT/CN2022/135817 CN2022135817W WO2023124742A1 WO 2023124742 A1 WO2023124742 A1 WO 2023124742A1 CN 2022135817 W CN2022135817 W CN 2022135817W WO 2023124742 A1 WO2023124742 A1 WO 2023124742A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
polypropylene
preparation
slurry
polymerization
Prior art date
Application number
PCT/CN2022/135817
Other languages
English (en)
French (fr)
Inventor
刘强
王福善
李广全
高艳
黄安平
王霞
宋彬
宋赛楠
彭伟
叶鹏博
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111660076.3A external-priority patent/CN116410373A/zh
Priority claimed from CN202211069952.XA external-priority patent/CN117683158A/zh
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2023124742A1 publication Critical patent/WO2023124742A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Definitions

  • the invention relates to the field of polymer resins. Specifically, the invention relates to an ultra-clean polypropylene resin and a preparation method thereof, in particular, the invention relates to an ultra-clean polypropylene resin and a preparation method thereof.
  • Polypropylene is a colorless, odorless, non-toxic, translucent solid substance.
  • Polypropylene is a thermoplastic synthetic resin with excellent performance, which is a colorless and translucent thermoplastic lightweight general-purpose plastic. With chemical resistance, heat resistance, electrical insulation, high-strength mechanical properties and good high wear-resistant processing properties, etc., polypropylene has been rapidly used in machinery, automobiles, electronic appliances, construction, textiles, and packaging since its inception. It has been widely developed and applied in many fields such as agriculture, forestry, fishery and food industry. In recent years, with the rapid development of packaging, electronics, automobile and other industries, it has greatly promoted the development of the industry.
  • Polypropylene can be used to make insulating shells of household appliances and liners of washing machines, and is widely used as insulating materials for wires and cables and other electrical appliances.
  • the traditional film-making process can be used for production, the process is relatively simple, and the production cost is low.
  • Chinese patent 201310519301.0 discloses a method for producing a special material for a homopolymer polypropylene barrier film for lithium-ion batteries.
  • the present invention uses a propylene polymerization catalyst with high activity and moderate sensitivity to hydrogen adjustment.
  • the propylene polymerization activator is triethylaluminum, the amount of which is controlled below 7.0L/h, and the external electron donor adopts dicyclopentyldimethoxysilane Prepared with tetraethoxysilane at a molar ratio of 1:1-1:8, the isotacticity of the product is greater than 98%, the melt flow rate is 2.6-3.0g/10min, the ash content is 50-100ppm, and the ash content index cannot meet the requirements of high-end electrical applications requirements.
  • Chinese patent 201080045745.X discloses a catalyst component for olefin polymerization, using glycol ester type and diether type internal electron donors, and also discloses the preparation method of the catalyst component, comprising the catalyst component Catalyst and olefin polymerization process using said catalyst for the production of low ash polypropylene products.
  • the ash content of the product prepared by this technology is as low as 30ppm, but it still cannot meet the needs of high-end dry-type power electronic capacitors.
  • the purpose of the present invention is to provide a method for preparing an ultra-clean polypropylene resin.
  • Another object of the present invention is to provide an ultra-clean polypropylene resin.
  • Another object of the present invention is to provide a method for preparing polypropylene resin.
  • Another object of the present invention is to provide a polypropylene resin.
  • the present invention provides a preparation method of ultra-clean polypropylene resin, the preparation method comprising: propylene prepolymerization, liquid phase bulk polymerization, gas phase polymerization, polypropylene drying, purification and extrusion granulation ;
  • a catalyst slurry is configured, and the catalyst slurry includes a main catalyst, a cocatalyst and a solvent; then, propylene is fed into a prepolymerization reaction to obtain a prepolymer slurry;
  • the polymerization reaction is carried out in the presence of the pre-polymer slurry, co-catalyst, external electron donor and hydrogen to obtain polypropylene crude product slurry;
  • the external electron donor is 9,9-bis(formazol Oxymethyl)fluorene;
  • the polypropylene crude product slurry obtained by liquid-phase bulk polymerization enters a gas-phase fluidized bed reactor for polymerization;
  • the material at the outlet of the gas-phase fluidized bed reactor is first subjected to gas-solid separation, and the solid phase components enter the dryer for drying to obtain polypropylene powder;
  • the dried polypropylene powder is formulated into a slurry with a composite solvent, and purified by stirring; then the slurry is subjected to solid-liquid separation to obtain a polypropylene wet powder, and after drying, an ultra-clean polypropylene powder is obtained;
  • the purified ultra-clean polypropylene powder is mixed with an anti-oxidation composite auxiliary agent, and then extruded and granulated to obtain the ultra-clean polypropylene resin.
  • Propylene pre-polymerization In the pre-polymerization reactor, a catalyst slurry is arranged, and the catalyst slurry includes a main catalyst, a co-catalyst and a solvent; then, propylene is fed into the pre-polymerization reaction to obtain a pre-polymer slurry.
  • a thin layer of polypropylene is formed on the surface of the catalyst particles.
  • the mass ratio of propylene to the main catalyst is 2.5-10 kg/kg, and the mass ratio of the co-catalyst to the main catalyst is 0.027-0.075 kg/kg.
  • the prepolymerization reaction includes two stages: the first stage, the prepolymerization temperature is -5°C to 15°C, the feeding rate of propylene is 10 to 45kg/h, and the prepolymerization time is 0.5-3h; in the second stage, the pre-polymerization temperature is 5°C-35°C, and the feeding rate of propylene is 15-55kg/h, until all the propylene for pre-polymerization is fed into the pre-polymerization reactor.
  • the solvent in the catalyst slurry is selected from alkanes with 4-10 carbon atoms. More preferably, the alkane with 4 to 10 carbon atoms is selected from a mixture of one or more of butane, pentane, hexane, heptane, octane, nonane and decane; most preferably hexane.
  • the main catalyst described in the present invention is described in Chinese patent 201080045745.X, which is incorporated in the present invention; it can also be obtained commercially. That is to say, as long as the main catalyst of the present invention meets the activity requirements, the activity of the main catalyst is at least 100,000 times; the specific calculation method of the catalyst activity is the mass ratio of the polymer obtained by the catalyst to catalyze the polymerization of propylene to the catalyst per unit time .
  • the main catalyst is a ZN series catalyst, including a MgCl 2 carrier, a TiCl 4 active center and an internal electron donor; the internal electron donor is selected from the group consisting of alkyl-substituted 1,3- A combination of one or more of diethers, aryl-substituted 1,3-diethers, succinates, malonates and glycol esters.
  • the aryl group of the aryl-substituted 1,3-diether is selected from monocyclic or polycyclic C 4-16 aryl groups. More specifically, the aryl group of the aryl-substituted 1,3-diether is selected from one of cyclopentadienyl, indenyl, fluorenyl and derivatives thereof.
  • the structure of the alkyl-substituted 1,3-diether is shown in the following formula (I), and the structure of the aryl-substituted 1,3-diether is shown in the following formula (II) Or shown in formula (III):
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different, and each independently is a C 1-10 straight-chain or branched-chain alkyl group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different, each independently being methyl, ethyl, propyl, butyl, pentyl , heptyl, octyl, nonyl or decyl.
  • R 7 , R 8 , R 9 and R 10 are the same or different, each independently being a C 1-10 linear or branched chain alkyl group; more preferably, each of R 7 , R 8 , R 9 and R 10 independently are methyl, ethyl, propyl, butyl, pentyl, heptyl, octyl, nonyl or decyl.
  • the cocatalyst is an alkylaluminum compound, more preferably, the cocatalyst is selected from the group consisting of trialkylaluminum, alkylaluminoxane, trialkylaluminum and alkylaluminum A combination of halides, or a combination of one or more of trialkylaluminum and alkylaluminum hydride; most preferably triethylaluminum.
  • Liquid-phase bulk polymerization using propylene as a raw material, the polymerization reaction is carried out in the presence of the prepolymer slurry, co-catalyst, external electron donor and hydrogen to obtain a crude polypropylene product; the external electron donor is 9, 9-bis(methoxymethyl)fluorene.
  • the liquid phase bulk polymerization comprises the following steps:
  • the mass ratio of the main catalyst to propylene is 0.03-0.05 kg/t; the mass ratio of the co-catalyst to propylene is 0.015-0.0225 kg/t t; the mass ratio of the external electron donor to the co-catalyst is 0-0.015kg/kg, 0 is not included.
  • the first reaction vessel and the second reaction vessel are tank-type polymerization reactors connected in series (forming a fully mixed-flow multi-reactor series polymerization process).
  • Gas-phase polymerization The crude polypropylene product slurry obtained by liquid-phase bulk polymerization enters a gas-phase fluidized bed reactor for polymerization.
  • the polymerization temperature in the gas phase polymerization is 75-85° C.
  • the polymerization pressure is 1.5-2.0 MPa
  • the flow rate of the polypropylene powder melt at the outlet of the gas-phase fluidized bed reactor is 2.8 ⁇ 3.2g/10min, ash content less than 30ppm, isotacticity greater than 98.5%.
  • the gas-phase fluidized bed reactor outlet material is first separated from gas and solid, and the solid phase component (polypropylene powder) (the separated gas phase part enters the recovery system for recycling) enters the dryer for drying to obtain polypropylene powder. material.
  • the solid phase component enters the dryer and is dried by convective inert gas.
  • the inert gas is preferably nitrogen, and the drying temperature is preferably 100-110°C.
  • the drying temperature is 95-115°C, more preferably 100-110°C.
  • the dried polypropylene powder is prepared into a slurry using a composite solvent, and stirred for purification; then the slurry is subjected to solid-liquid separation to obtain a polypropylene wet powder, and after drying, an ultra-clean polypropylene powder is obtained.
  • the temperature of the purification is 30-150°C, and the time is 0.1-5h; more preferably, the temperature of the purification is 50-120°C, and the time is 0.5-3h.
  • the proportion of the solvent in the polypropylene wet powder is 15-35% (based on the total mass of the polypropylene powder as 100%); more preferably 15-30%.
  • the mass concentration of polypropylene powder in the prepared slurry is 10-40%.
  • the ash content of the ultra-clean polypropylene powder is less than 10 ppm.
  • the solid-liquid separation can be completed by centrifugation.
  • the composite solvent includes hydrocarbons and alkyl alcohols;
  • the hydrocarbons are preferably C 5 -C 20 n-alkanes or isoparaffins; for example, pentane, hexane , heptane, octane, nonane or decane, etc.
  • the alkyl alcohol is preferably methanol, ethanol, propanol or butanol, etc.
  • the mass ratio of the hydrocarbon substance to the alkyl alcohol is preferably (2-6):1.
  • the composite solvent is a composite solvent of hexane and ethanol with a mass ratio of 4:1.
  • Extrusion granulation Mix the purified ultra-clean polypropylene powder with anti-oxidation compound additives and then extrude granulation to obtain the ultra-clean polypropylene resin.
  • the ash content of the ultra-clean polypropylene resin obtained by extrusion granulation of the present invention is less than 20ppm.
  • the antioxidant composite auxiliary agent includes an acid scavenger, a primary antioxidant and a secondary antioxidant.
  • the acid scavenger is selected from the combination of one or more of metal stearate and hydrotalcite; preferred zinc stearate and calcium stearate; the ultra-clean polypropylene powder and acid scavenger
  • the mass ratio of the agent is (10000-100000):1.
  • the primary antioxidant is selected from tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] pentaerythritol ester, 1,3,5-tris(3,5-di tert-butyl-4-hydroxybenzyl)-S-triazine-2,4,6-(1H,3H,5H)trione, ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) Stearyl propionate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene and 1,1,3-tris( One or more combinations of 2-methyl-4-hydroxy-5-tert-butylphenyl)butane; preferably tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] pentaerythritol ester (i.
  • the mass ratio of the ultra-clean polypropylene powder to the primary antioxidant is (1000-10000):1.
  • the secondary antioxidant is selected from dilauryl thiodipropionate, dioctadecyl thiodipropionate, di(tetradecyl) thiodipropionate, trinonylphenyl phosphite, One of di(octadecyl)alkylpentaerythritol diphosphite, tris(2,4-tert-butylphenyl)phosphite and bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite A combination of one or more; preferably dilauryl thiodipropionate and tris(2,4-tert-butylphenyl) phosphite (ie antioxidant 168).
  • the mass ratio of the ultra-clean polypropylene powder to the auxiliary antioxidant is (100-10000):1.
  • the present invention provides an ultra-clean polypropylene resin prepared by the above preparation method.
  • the high-activity polypropylene catalyst is subjected to staged prepolymerization treatment, and then the prepolymer slurry is injected into two series-connected tank reactors for liquid phase bulk polymerization and a fluidized bed reactor Carry out gas-phase polymerization, use the compound solvent prepared by hydrocarbon and alcohol solvent to wash the polypropylene base material, remove the catalyst residue and amorphous polypropylene, and use low-ash long-lasting anti-oxidation composite additive to avoid impurities on the polypropylene product. secondary pollution, and realize the industrial production of ultra-clean polypropylene.
  • the present invention provides a method for preparing polypropylene resin, wherein the method comprises:
  • the purification includes adding the crude polypropylene product into the composite solvent, fully contacting the crude polypropylene product with the composite solvent at 30-120° C. to form a polypropylene slurry, and then separating the polypropylene from the composite solvent to obtain polypropylene powder.
  • the propylene powder is dried to obtain the polypropylene resin (ultra-clean polypropylene powder).
  • the proportion of the solvent is 15-35% (taking the total mass of the polypropylene powder as 100%).
  • the melt flow rate of the crude polypropylene product is 0.1-1000 g/10 min, and the molecular weight distribution is 3-15 (weight average/number average).
  • the composite solvent is at least one selected from alkyl alcohols with 1 to 10 carbon atoms and at least one selected from liquid alkanes with 5 to 20 carbon atoms at normal temperature mixed solvents.
  • the alkyl alcohol having 1 to 10 carbon atoms is selected from one or a combination of methanol, ethanol, propanol and butanol.
  • the alkanes that are liquid at normal temperature with 5-20 carbon atoms are selected from one or more of pentane, hexane, heptane, octane, nonane and decane The combination.
  • the mass ratio of the alkyl alcohol having 1-10 carbon atoms to the liquid alkane having 5-20 carbon atoms at normal temperature is 1:(2-6).
  • the mass ratio of the alkyl alcohol having 1-10 carbon atoms to the liquid alkane having 5-20 carbon atoms at normal temperature is 1:4.
  • the purification includes adding the crude polypropylene product into a composite solvent, and fully contacting the crude polypropylene product with the composite solvent at 50-100° C. to form a polypropylene slurry.
  • the full contacting includes contacting the crude polypropylene product with the composite solvent for 0.1-5 hours (the time that the slurry stays in the reaction vessel) under stirring conditions.
  • the full contacting includes contacting the crude polypropylene product with the composite solvent for 0.5-3 hours under stirring conditions.
  • the full contacting includes contacting the crude polypropylene with a complex solvent under a stirring condition of a stirring speed of 10-150 rpm.
  • the mass concentration of polypropylene in the polypropylene slurry is 10-40%.
  • the mass concentration of polypropylene in the polypropylene slurry is 15-30%.
  • the purification includes separating the polypropylene from the composite solvent by centrifugation to obtain polypropylene powder, and then drying the polypropylene powder at 95-120° C. to obtain the polypropylene resin.
  • the purification includes separating the polypropylene from the composite solvent by centrifugation to obtain polypropylene powder, and then drying the polypropylene powder at 95-115° C. to obtain the polypropylene resin.
  • the drying time is 0.5-2h.
  • the ash content of the polypropylene resin obtained by drying the polypropylene powder is less than 10 ppm.
  • the ash content of the polypropylene resin obtained by drying the polypropylene powder is 5-10 ppm.
  • the method further includes the step of mixing the obtained polypropylene resin with an anti-oxidation composite auxiliary agent, and then extruding and granulating.
  • the antioxidant complex auxiliary agent is selected from the combination of acid scavengers, primary antioxidants and secondary antioxidants.
  • the mass percent contents of acid scavenger, primary antioxidant and secondary antioxidant are 0.1-1%, 65-90%, respectively. % and 9.4 to 34.4%.
  • the acid scavenger is selected from a combination of one or more of metal stearates and hydrotalcites.
  • the metal stearate is selected from zinc stearate and/or calcium stearate.
  • the primary antioxidant is selected from the group consisting of tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] pentaerythritol ester, 1,3,5- Tris(3,5-di-tert-butyl-4-hydroxybenzyl)-S-triazine-2,4,6-(1H,3H,5H)trione, ⁇ -(3,5-di-tert-butyl -4-Hydroxyphenyl) propionate stearyl ester, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene and 1 , A combination of one or more of 1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane.
  • the primary antioxidant is selected from tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] pentaerythritol ester and 1,3,5- A combination of one or more of tris(3,5-di-tert-butyl-4-hydroxybenzyl)-S-triazine-2,4,6-(1H,3H,5H)trione.
  • the secondary antioxidant is selected from the group consisting of dilauryl thiodipropionate, dioctadecyl thiodipropionate, ditetradecyl thiodipropionate, tetradecyl thiodipropionate, Trinonylphenyl phosphate, dioctadecylpentaerythritol diphosphite, tris(2,4-tert-butylphenyl)phosphite and bis(2,4-di-tert-butylphenyl)phosphite base) one or more combinations of pentaerythritol esters.
  • the secondary antioxidant is dilauryl thiodipropionate and/or tris(2,4-tert-butylphenyl)phosphite.
  • the mass percentage content of the anti-oxidation composite auxiliary agent is 0.2% to 1%.
  • the step of polymerizing with propylene as a raw material comprises:
  • Propylene prepolymerization step including polymerizing a certain amount of propylene in the presence of a main catalyst and a cocatalyst to form a thin layer of polypropylene on the surface of catalyst particles, wherein the mass ratio of propylene to main catalyst in the prepolymerization step is 2.5-10kg/ kg, the mass ratio of the cocatalyst and the main catalyst in the prepolymerization step is 0.18 ⁇ 0.5kg/kg, and the prepolymer slurry is obtained;
  • Polymerization step including using propylene as a raw material, and performing a polymerization reaction in the presence of the prepolymer slurry, a cocatalyst, an external electron donor and hydrogen to obtain a crude polypropylene product.
  • the propylene prepolymerization step comprises: in the presence of a main catalyst and a cocatalyst, feeding propylene at a rate of 10 to 45 kg/h, polymerizing at -5°C to 15°C for 0.5 to 3 hours; and then Feed propylene at 15-55kg/h, and polymerize at 5°C-35°C until all remaining propylene is added to the prepolymerization reactor.
  • the propylene prepolymerization step comprises: in the presence of a main catalyst and a cocatalyst, feeding propylene at a rate of 10 to 45 kg/h, polymerizing at -5°C to 15°C for 0.5 to 3 hours; and then Feed propylene at 15-55kg/h, polymerize at 5°C-35°C for 1-4h.
  • the propylene prepolymerization step comprises adding the procatalyst to linear or branched alkanes with 4 to 10 carbon atoms, and the mass concentration of the procatalyst in the alkane solution is 0.1 ⁇ 3%, then add propylene to carry out polymerization reaction with co-catalyst.
  • the prepolymerization step obtains the prepolymer slurry
  • a certain amount of alkane with 4 to 10 carbon atoms is added to dilute the prepolymer slurry, and the diluted prepolymer slurry is polymerized
  • the mass concentration of the substance is 0.01-5.5%.
  • the alkane having 4 to 10 carbon atoms is selected from one or more of butane, pentane, hexane, heptane, octane, nonane and decane the mix of.
  • the mass ratio of the main catalyst to the propylene added in the polymerization step is 0.03-0.05 kg/t; the mass ratio of the co-catalyst added in the polymerization step to the propylene added in the polymerization step is 0.1-0.15 kg/t t; the mass ratio of the external electron donor to the co-catalyst added in the polymerization step is 0-0.1 kg/kg.
  • the mass ratio of the co-catalyst added in the polymerization step to the main catalyst is 3.2-3.6 kg/kg.
  • the polymerization step comprises:
  • Liquid phase bulk polymerization step including using propylene as a raw material, in the presence of the prepolymer slurry, cocatalyst, external electron donor and hydrogen, at a temperature of 65°C to 75°C and a pressure of 2.5 to 3.5MPa. phase bulk polymerization;
  • Gas-phase polymerization step including performing gas-phase polymerization on the slurry obtained by liquid-phase bulk polymerization at a temperature of 75° C. to 85° C. and a pressure of 1.5 to 2.0 MPa to obtain a crude polypropylene product.
  • the propylene raw material in the liquid phase bulk polymerization step is refined propylene.
  • the refined propylene has a water content of 5-10 mg/kg, a carbon monoxide content of 0.1-0.5 mL/m 3 , and a carbon dioxide content of 0.1-0.5 mL/m 3 .
  • the liquid phase bulk polymerization step includes adding propylene, prepolymer slurry, cocatalyst, external electron donor and hydrogen into the first reaction vessel, at a temperature of 60°C to 75°C , carry out the polymerization reaction under the pressure of 2.5 ⁇ 3.5MPa, the flow velocity of the reaction slurry (obtained polypropylene powder melt) at the outlet of the first reaction vessel is 4.0 ⁇ 4.5g/10min, and the hydrogen concentration in the first reaction vessel is 1000 ⁇ 3000ppm; then the reaction slurry is added to the second reaction vessel, and hydrogen gas is passed into it, and at a temperature of 60°C to 75°C, the polymerization reaction is carried out under a pressure of 2.5 to 3.5MPa, and the reaction slurry at the outlet of the second reaction vessel (the obtained poly The flow rate of propylene powder melt) is 3.5-4.5g/10min, and the hydrogen concentration in the second reaction vessel is 1000-2000ppm.
  • the liquid phase bulk polymerization step comprises adding propylene, prepolymer slurry, cocatalyst, external electron donor and hydrogen into the first reaction vessel at a temperature of 70°C and a pressure of 3.0 Polymerization is carried out under the MPa, the flow rate of the reaction slurry (polypropylene powder melt obtained) at the outlet of the first reaction vessel is 4.5g/10min, and the hydrogen concentration in the first reaction vessel is 2890ppm; then the reaction slurry is added to the second reaction vessel Two reaction vessels, and pass into hydrogen, under the temperature 64 °C, carry out polymerization reaction under the pressure 2.6MPa, the reaction slurry (obtained polypropylene powder melt) material flow rate of the second reaction vessel outlet is 4.5g/10min, the first The hydrogen concentration in the second reaction vessel was 1300 ppm.
  • the liquid phase bulk polymerization step comprises adding propylene, prepolymer slurry, cocatalyst, external electron donor and hydrogen into the first reaction vessel at a temperature of 70°C and a pressure of 3.0 Carry out polymerization reaction (liquid level is 49%) under MPa, the flow velocity of the reaction slurry (the polypropylene powder melt that obtains) of the first reaction vessel outlet is 4.5g/10min, prepolymer slurry feeding amount 14.0kg/ h, propylene feed rate 5.7t/h, triethylaluminum feed rate 0.8kg/h, cyclohexylmethyldimethoxysilane feed rate 0.07kg/h, hydrogen feed rate 4.9Nm 2 /h,
  • the hydrogen concentration in the first reaction vessel is 2890ppm; then the reaction slurry is added to the second reaction vessel, and hydrogen gas is introduced, the hydrogen gas feed rate is 2.0Nm 2 /h, and the polymerization reaction is carried out at
  • the first reaction vessel and the second reaction vessel are connected in series (forming a fully mixed flow multi-reactor series polymerization process).
  • gas phase polymerization is carried out in a gas phase fluidized bed reactor.
  • the flow rate of the polypropylene powder melt at the outlet of the gas phase polymerization reactor is 2.8-3.2 g/10 min.
  • the gas-phase polymerization step includes performing gas-phase polymerization on the slurry obtained by liquid-phase bulk polymerization at a temperature of 80° C. and a pressure of 1.8 MPa to obtain a crude polypropylene product.
  • the ash content of the crude polypropylene product obtained by gas phase polymerization is less than 30 ppm.
  • the ash content of the crude polypropylene product obtained by gas phase polymerization is not greater than 30 ppm.
  • the ash content of the crude polypropylene product obtained by gas phase polymerization is 10-30 ppm.
  • the step of polymerizing with propylene as a raw material further includes the step of drying the solid content obtained after the polymerization reaction at 95° C. to 115° C., so as to obtain a crude polypropylene product.
  • the solid component obtained after the polymerization reaction is dried at 105°C.
  • drying in the step of polymerizing with propylene as a raw material is drying in a dryer using convective inert gas.
  • the inert gas is nitrogen.
  • the drying temperature in the step of polymerizing with propylene as a raw material is 100-110°C.
  • the step of using propylene as a raw material to polymerize further includes the step of separating the reaction slurry obtained after the polymerization reaction from gas to solid to obtain a solid component.
  • wherein the step of polymerizing with propylene as a raw material is to use a cyclone separator for gas-solid separation.
  • the main catalyst has relatively high catalytic activity.
  • the catalytic activity of the main catalyst is 80,000 to 120,000 times.
  • the catalyst activity is the mass ratio of polypropylene produced per unit time to catalyst consumed.
  • the main catalyst is a Z-N series catalyst
  • the cocatalyst is an alkylaluminum compound
  • the external electron donor is selected from cyclohexyldimethoxymethylsilane, p-dicyclopentyldimethylsilane One or more combinations of oxysilane, diisopropyldimethoxysilane and diisobutyldimethoxysilane.
  • the ZN series catalyst is supported by MgCl 2 , and the active center is TiCl 4 , and is selected from alkyl-substituted 1,3-diethers, aryl-substituted 1,3-diethers
  • the active center is TiCl 4 , and is selected from alkyl-substituted 1,3-diethers, aryl-substituted 1,3-diethers
  • One of ethers, succinic acid esters and malonic acid esters is a combination of one or more catalysts for internal electron donors.
  • the aryl group of the aryl-substituted 1,3-diether is selected from monocyclic or polycyclic C 4-16 aryl groups.
  • the aryl group of the aryl-substituted 1,3-diether is selected from one of cyclopentadienyl, indenyl, fluorenyl and derivatives thereof.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different, and each independently is a C 1-10 straight-chain or branched-chain alkyl group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different, each independently being methyl, ethyl, propyl, butyl, pentyl, Heptyl, octyl, nonyl or decyl.
  • R 7 , R 8 , R 9 and R 10 are the same or different, each independently being a C 1-10 straight chain or branched chain alkyl group;
  • R 7 , R 8 , R 9 and R 10 are the same or different, each independently being methyl, ethyl, propyl, butyl, pentyl, heptyl, octyl, Nonyl or Decyl.
  • the Z-N series catalyst is Beijing Aoda HA-R catalyst.
  • the alkylaluminum compound is selected from trialkylaluminum, alkylaluminoxane, a combination of trialkylaluminum and alkylaluminum halide, or a combination of trialkylaluminum and alkyl A combination of one or more of the combinations of aluminum hydrides.
  • the alkyl group of the alkylaluminum compound is a C 1-10 straight chain or branched chain alkyl group.
  • the alkyl group of the alkylaluminum compound is methyl, ethyl, propyl, butyl, pentyl, heptyl, octyl, nonyl or decyl.
  • the propyl group, butyl group, pentyl group, heptyl group, octyl group, nonyl group and decyl group of the present invention may be the linear structure of the above groups, or various branched chain isomers.
  • alkylaluminum compound is triethylaluminum
  • the preparation method of described polypropylene resin comprises:
  • Propylene pre-polymerization the main catalyst is mixed and diluted with alkanes with 4 to 10 carbon atoms at first, and the mass concentration of the diluted slurry is 0.1 to 3%. Stir in the container to stir the materials evenly, and carry out two stages of prepolymerization reaction; the first stage prepolymerization temperature is -5 °C ⁇ 15 °C, the amount of propylene added is 10 ⁇ 45kg/h, and the prepolymerization time is 0.5 ⁇ 3h; The temperature of the two-stage prepolymerization is 5°C to 35°C, the amount of propylene added is 15 to 55kg/h, and all the remaining propylene is added to the prepolymerization reactor (prepolymerization tank) after prepolymerization.
  • Extrusion granulation the anti-oxidation compound additive and the purified polypropylene powder are simultaneously added to a twin-screw extruder for extrusion granulation to obtain a polypropylene resin.
  • the propylene polymerization of the present invention uses two tank reactors in series for liquid phase bulk polymerization and one fluidized bed reactor for gas phase polymerization, and then uses a compound solvent prepared by hydrocarbon and alcohol solvents to wash the polypropylene base. materials, remove catalyst residues and amorphous polypropylene, use anti-oxidation compound additives to avoid secondary pollution of polypropylene products by impurities, and realize industrial production of ultra-clean polypropylene.
  • the present invention also provides the polypropylene resin prepared by any one of the above-mentioned preparation methods.
  • the ash content of the polypropylene resin obtained after extrusion granulation is not greater than 30 ppm.
  • the ash content of the polypropylene resin is 10-30ppm.
  • the ash content of the polypropylene resin is 15-30 ppm.
  • the melt flow rate of the polypropylene resin obtained after extrusion granulation is 3.0-3.1 g/10 min.
  • the present invention provides a polypropylene resin and a preparation method thereof.
  • Method of the present invention has following advantage:
  • the present invention can effectively activate the catalytic active sites inside the highly active catalyst particles through two-step prepolymerization, thereby improving the catalyst activity.
  • the polypropylene produced by the present invention has lower ash content, and the product has good The electrical performance can meet the requirements of high-end capacitors.
  • the present invention can form a polypropylene segment wrapping layer around the titanium active center through two-step prepolymerization, thereby improving the mechanical strength of the catalyst particle.
  • the polypropylene produced by the present invention has less fine powder content, which is more conducive to industry The device operates stably.
  • the bulk polymerization plus deep purification process used in the present invention uses organic composite solvents to remove metal impurities and polypropylene oligomers, and the resin products produced have lower ash content and higher isotacticity, which can meet the requirements of high-end capacitors.
  • Propylene provided by Lanzhou Petrochemical Company; Catalyst, provided by Beijing Aoda Catalyst Factory; Triethylaluminum, provided by Yingkou Xiangyang Catalyst Factory; Cyclohexylmethyldimethoxysilane, provided by Shandong Lujing Chemical Technology Co., Ltd.; Hydrogen, Lanzhou Provided by petrochemical companies.
  • Polymer melt index measured according to GB/T 3682-2000.
  • Polymer isotacticity measured according to GB/T 2412-2008.
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 10kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to below -5°C, and prepolymerize for 1h; in the second stage of prepolymerization , adjust the feeding rate of propylene to 15kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 5°C, and pre-polymerize until all 100kg of propylene is consumed to obtain a propylene pre-polymer slurry, and transfer the above-mentioned pre-polymer slurry to Storage tank spare.
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 45kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 15°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 55kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 35°C, and the prepolymerization is completed until 100kg of propylene is consumed to obtain the propylene prepolymer slurry, which is transferred to the storage tank spare.
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 25kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 5°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 30kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 12°C, and the prepolymerization is completed until 100kg of propylene is consumed to obtain the propylene prepolymer slurry, which is transferred to the storage tank spare.
  • 550kg hexane and 7kg triethylaluminum are added to the catalyst preparation tank, wherein the mass concentration of triethylaluminum solution is 15%, add 34.5kg of titanium metal catalyst (Beijing Aoda HA-R catalyst) with magnesium chloride as the carrier, stir To form a uniform suspension, use frozen brine to lower the temperature of the preparation tank to below 5°C, then add 1400kg of fresh hexane to adjust the concentration of the catalyst slurry, and turn on the stirring to 80r/min.
  • titanium metal catalyst Beijing Aoda HA-R catalyst
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 30kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 8°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 30kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 15°C, the prepolymerization is completed until 100kg of propylene is consumed, and the propylene prepolymer slurry is obtained, and the above prepolymer slurry is transferred to the storage tank spare.
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 30kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 10°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 40kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 20°C, the prepolymerization is completed until 100kg of propylene is consumed, and the propylene prepolymer slurry is obtained, and the above prepolymer slurry is transferred to the storage tank spare.
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 35kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 12°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 40kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 18°C, and the prepolymerization is completed until 100kg of propylene is consumed to obtain the propylene prepolymer slurry, and the above prepolymer slurry is transferred to the storage tank spare.
  • the gas-phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas-phase propylene automatic feeding valve, adjust the propylene feeding rate to 25kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 14°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 30kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to below 20°C, the prepolymerization is completed until 100kg of propylene is consumed, and the propylene prepolymer slurry is obtained, and the above prepolymer slurry is transferred to the storage tank. Cans spare.
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 25kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 9°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 30kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 16°C, and the prepolymerization is completed until 100kg of propylene is consumed to obtain the propylene prepolymer slurry, and the above prepolymer slurry is transferred to the storage tank spare.
  • the catalyst slurries prepared in Examples 1-1 to 1-8 above were respectively used in the preparation of polypropylene in Comparative Examples 1 to 8, and suitable catalyst slurries were further screened out.
  • the catalyst slurry, propylene, co-catalyst, external electron donor and appropriate amount of hydrogen are added to the first tank reactor for liquid phase bulk polymerization.
  • the gas phase propylene is refluxed into the reactor through the tank top condenser.
  • the polymerization temperature is 70°C and the polymerization pressure is It is 3.0MPa, and liquid level is 49%.
  • the catalyst slurry feed rate prepared by embodiment 1-2 is 14.0kg/h, the propylene feed rate is 5.7t/h, the triethylaluminum feed rate is 0.8kg/h, and the cyclohexyl
  • the feeding amount of methyldimethoxysilane is 0.07kg/h
  • the feeding amount of hydrogen is 4.9Nm 2 /h
  • the hydrogen concentration is 2890ppm.
  • the flow rate of the reaction slurry at the outlet is 4.5t/h.
  • the slurry at the outlet of the first tank reactor enters the second tank reactor for polymerization reaction.
  • the temperature of the second tank reactor is 64°C
  • the polymerization pressure is 2.6MPa
  • the liquid level is 44%.
  • Hydrogen the hydrogen feed rate is 2.0Nm 2 /h
  • the hydrogen concentration is 1300ppm.
  • the flow rate of the reaction slurry at the outlet is 4.5t/h.
  • the slurry at the outlet of the second tank reactor enters the gas phase fluidized bed reactor for polymerization reaction, the polymerization temperature is 80° C., the polymerization pressure is 1.8 MPa, and the material level is 51%.
  • the material at the outlet of the gas-phase fluidized bed reactor first enters the cyclone separator for gas-solid separation of the material, and the separated solid-phase polypropylene powder enters the dryer and is dried with convective inert gas at a drying temperature of 105°C.
  • the polypropylene powder After the polypropylene powder is dried with inert gas, it is transported to the polymer deep purification tank, and a certain amount of composite solvent (hexane and ethanol composite solvent, mass ratio of 4:1) is added to form a polymer powder slurry with a concentration of 10 %, under certain process conditions (stirring speed 50rpm; slurry feeding speed 20t/h), polymer deep purification is carried out, the purification temperature is 30°C, and the purification time is 0.1h.
  • the deeply purified polymer slurry is centrifuged to obtain a polymer wet powder, and the solvent in the wet powder accounts for 25%, and then undergoes a multi-stage drying (drying temperature 105°C) process to remove volatile organic compounds. Then it is transported to the extrusion granulation unit to obtain ultra-clean polypropylene resin for capacitor film.
  • antioxidant 1010 is 2000mg/kg, 168 is 1000mg/kg, calcium stearate is 80mg/kg
  • dried polypropylene powder into the twin-screw extruder at the same time Extrude and granulate (granulation temperature is 225° C., screw speed is 120 rpm) to obtain ultra-clean polypropylene resin for capacitor film.
  • the preparation process is the same as in Example 2.
  • the polypropylene powder is dried by inert gas and transported to the advanced polymer purification tank, and a certain amount of composite solvent (hexane and ethanol composite solvent, mass ratio of 4:1) is added to form a polymer powder slurry , the concentration of the slurry is 30%, the deep purification of the polymer is carried out under certain process conditions, the purification temperature is 70°C, and the purification time is 3h.
  • the deeply purified polymer slurry is centrifuged to obtain a polymer wet powder, and the solvent in the wet powder accounts for 25%, and then undergoes a multi-stage drying (drying temperature 105°C) process to remove volatile organic compounds. Then it is transported to the extrusion granulation unit to obtain ultra-clean polypropylene resin for capacitor film.
  • the preparation process is the same as in Example 2.
  • the polypropylene powder is dried by inert gas and transported to the advanced polymer purification tank, and a certain amount of composite solvent (hexane and ethanol composite solvent, mass ratio of 4:1) is added to form a polymer powder slurry , the concentration of the slurry is 40%, the deep purification of the polymer is carried out under certain process conditions, the purification temperature is 120°C, and the purification time is 5h.
  • the deeply purified polymer slurry is centrifuged to obtain a polymer wet powder, and the solvent in the wet powder accounts for 25%, and then undergoes a multi-stage drying (drying temperature 105°C) process to remove volatile organic compounds. Then it is transported to the extrusion granulation unit to obtain ultra-clean polypropylene resin for capacitor film.
  • the preparation process is the same as in Example 2.
  • the polypropylene powder is dried by inert gas and transported to the advanced polymer purification tank, and a certain amount of composite solvent (hexane and ethanol composite solvent, mass ratio of 4:1) is added to form a polymer powder slurry , the concentration of the slurry is 35%, the deep purification of the polymer is carried out under certain process conditions, the purification temperature is 60°C, and the purification time is 1h.
  • the deeply purified polymer slurry is centrifuged to obtain a polymer wet powder, and the solvent in the wet powder accounts for 25%, and then undergoes a multi-stage drying (drying temperature 105°C) process to remove volatile organic compounds. Then it is transported to the extrusion granulation unit to obtain ultra-clean polypropylene resin for capacitor film.
  • the preparation process is the same as in Example 2.
  • the polypropylene powder is dried by inert gas and transported to the advanced polymer purification tank, and a certain amount of composite solvent (hexane and ethanol composite solvent, mass ratio of 4:1) is added to form a polymer powder slurry , the concentration of the slurry is 40%, the deep purification of the polymer is carried out under certain process conditions, the purification temperature is 60°C, and the purification time is 1h.
  • the deeply purified polymer slurry is centrifuged to obtain a polymer wet powder, and the solvent in the wet powder accounts for 25%, and then undergoes a multi-stage drying (drying temperature 105°C) process to remove volatile organic compounds. Then it is transported to the extrusion granulation unit to obtain ultra-clean polypropylene resin for capacitor film.
  • the preparation process is the same as in Example 2.
  • a low-ash long-acting antioxidant compound additive antioxidant 1010 is 5000mg/kg, 168 is 1600mg/kg, calcium stearate is 40mg/kg
  • antioxidant 1010 is 5000mg/kg
  • 168 is 1600mg/kg
  • calcium stearate is 40mg/kg
  • the granulation temperature is 225° C., and the screw speed is 120 rpm
  • the screw speed is 120 rpm
  • the preparation process is the same as in Example 2.
  • antioxidant 1010 is 10000mg/kg, 168 is 1200mg/kg, calcium stearate is 30mg/kg
  • antioxidant 1010 is 10000mg/kg, 168 is 1200mg/kg, calcium stearate is 30mg/kg
  • the granulation temperature is 225° C., and the screw speed is 120 rpm
  • the properties of the polypropylene resins prepared in Examples 2 to 8 above were measured, and the results are shown in Table 1.
  • Example 2 3.1 20 99.0
  • Example 3 3.1 twenty one 99.2
  • Example 4 3.0 19 99.2
  • Example 5 3.1 25 99.3
  • Example 6 3.0 29 99.3
  • Example 7 3.1 twenty two 99.0
  • Example 8 3.1 twenty three 99.0
  • the first stage of prepolymerization open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 10kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to below -5°C, and prepolymerize for 1h; in the second stage of prepolymerization , adjust the feeding rate of propylene to 15kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 5°C, and pre-polymerize until all 100kg of propylene is consumed to obtain a propylene prepolymer slurry, and transfer the above propylene prepolymer slurry to to storage tanks.
  • the slurry at the outlet of the first tank reactor enters the second tank reactor for polymerization reaction.
  • the temperature of the second tank reactor is 64°C
  • the polymerization pressure is 2.6MPa
  • the liquid level is 44%.
  • Hydrogen the hydrogen feed rate is 2.0Nm 2 /h
  • the hydrogen concentration is 1300ppm.
  • the flow rate of the reaction slurry at the outlet is 4.5t/h.
  • the slurry at the outlet of the second tank reactor enters the gas phase fluidized bed reactor for polymerization reaction, the polymerization temperature is 80° C., the polymerization pressure is 1.8 MPa, and the material level is 51%.
  • the material at the outlet of the gas-phase fluidized bed reactor first enters the cyclone separator for gas-solid separation of the material, and the separated solid-phase polypropylene powder enters the dryer and is dried with convective nitrogen gas at a drying temperature of 105°C.
  • the polypropylene powder After the polypropylene powder is dried with inert gas, it is transported to the polymer deep purification tank, and a certain amount of composite solvent (hexane and ethanol composite solvent, mass ratio is 4:1) is added to form a polymer powder slurry with a concentration of 30 %, under certain process conditions (stirring speed 50rpm, slurry feeding speed 20t/h), polymer deep purification is carried out, the purification temperature is 60°C, and the purification time is 0.5h.
  • the deeply purified polymer slurry is centrifuged to obtain a polymer wet powder, and the solvent in the wet powder accounts for 25%, and then undergoes a multi-stage drying (drying temperature 105°C) process to remove volatile organic compounds. Then it is transported to the extrusion granulation unit to obtain ultra-clean polypropylene resin for capacitor film.
  • antioxidant 1010 is 2000mg/kg, 168 is 1000mg/kg, calcium stearate is 80mg/kg
  • dried polypropylene powder into the twin-screw extruder at the same time Extrude and granulate (granulation temperature is 225° C., screw speed is 120 rpm) to obtain ultra-clean polypropylene resin for capacitor film.
  • the difference is: 400kg of hexane and 7kg of triethylaluminum solution are added to the catalyst preparation tank, and 30kg of titanium metal catalyst (Beijing Aoda HA-R catalyst) with magnesium chloride as the carrier is added, and stirred to form a uniform suspension.
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 45kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 15°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 55kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 35°C, and the prepolymerization is completed until 100kg of propylene is consumed to obtain the propylene prepolymer slurry, which is transferred to the storage tank spare.
  • the difference is: add 500kg of hexane and 7kg of triethylaluminum solution to the catalyst preparation tank, add 32.5kg of titanium metal catalyst (Beijing Aoda HA-R catalyst) with magnesium chloride as the carrier, and stir to form a uniform suspension , use frozen brine to reduce the temperature of the preparation tank to below 5°C, then add 700kg of fresh hexane to adjust the concentration of the catalyst slurry, and turn on the stirring to 80r/min.
  • titanium metal catalyst Beijing Aoda HA-R catalyst
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 25kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 5°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 30kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 12°C, and the prepolymerization is completed until 100kg of propylene is consumed to obtain the propylene prepolymer slurry, which is transferred to the storage tank spare.
  • the difference is: add 550kg of hexane and 7kg of triethylaluminum solution to the catalyst preparation tank, add 34.5kg of titanium metal catalyst (Beijing Aoda HA-R catalyst) with magnesium chloride as the carrier, and stir to form a uniform suspension , use frozen brine to reduce the temperature of the preparation tank to below 5°C, then add 1400kg of fresh hexane to adjust the concentration of the catalyst slurry, and turn on the stirring to 80r/min.
  • titanium metal catalyst Beijing Aoda HA-R catalyst
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 30kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 8°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 30kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 15°C, the prepolymerization is completed until 100kg of propylene is consumed, and the propylene prepolymer slurry is obtained, and the above prepolymer slurry is transferred to the storage tank spare.
  • the difference is: add 500kg of hexane and 7kg of triethylaluminum solution to the catalyst preparation tank, add 35.5kg of titanium metal catalyst (Beijing Aoda HA-R catalyst) with magnesium chloride as the carrier, and stir to form a uniform suspension , use frozen brine to reduce the temperature of the preparation tank to below 5°C, then add 1400kg of fresh hexane to adjust the concentration of the catalyst slurry, and turn on the stirring to 80r/min.
  • titanium metal catalyst Beijing Aoda HA-R catalyst
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 30kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 10°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 40kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 20°C, the prepolymerization is completed until 100kg of propylene is consumed, and the propylene prepolymer slurry is obtained, and the above prepolymer slurry is transferred to the storage tank spare.
  • the difference is: add 600kg of hexane and 7kg of triethylaluminum solution to the catalyst preparation tank, add 34.5kg of titanium metal catalyst (Beijing Aoda HA-R catalyst) with magnesium chloride as the carrier, and stir to form a uniform suspension , use frozen brine to reduce the temperature of the preparation tank to below 5°C, then add 1400kg of fresh hexane to adjust the concentration of the catalyst slurry, and turn on the stirring to 80r/min.
  • titanium metal catalyst Beijing Aoda HA-R catalyst
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 35kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 12°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 40kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 18°C, and the prepolymerization is completed until 100kg of propylene is consumed to obtain the propylene prepolymer slurry, and the above prepolymer slurry is transferred to the storage tank spare.
  • the difference is: add 500kg of hexane and 7.2kg of triethylaluminum solution to the catalyst preparation tank, add 36kg of titanium metal catalyst (Beijing Aoda HA-R catalyst) with magnesium chloride as the carrier, and stir to form a uniform suspension , use frozen brine to reduce the temperature of the preparation tank to below 5°C, then add 1400kg of fresh hexane to adjust the concentration of the catalyst slurry, and turn on the stirring to 80r/min.
  • titanium metal catalyst Beijing Aoda HA-R catalyst
  • the gas-phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas-phase propylene automatic feeding valve, adjust the propylene feeding rate to 25kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 14°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 30kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to below 20°C, the prepolymerization is completed until 100kg of propylene is consumed, and the propylene prepolymer slurry is obtained, and the above prepolymer slurry is transferred to the storage tank. Cans spare.
  • the difference is: 550kg of hexane and 5kg of triethylaluminum solution are added to the catalyst preparation tank, and 10kg of titanium metal catalyst (Beijing Aoda HA-R catalyst) with magnesium chloride as a carrier is added, stirred to form a uniform suspension, Use frozen brine to reduce the temperature of the preparation tank to below 5°C, then add 1400kg of fresh hexane to adjust the concentration of the catalyst slurry, and turn on the stirring to 80r/min.
  • titanium metal catalyst Beijing Aoda HA-R catalyst
  • the gas phase propylene automatic feeding valve In the first stage of prepolymerization, open the gas phase propylene automatic feeding valve, adjust the propylene feeding rate to 25kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 9°C, and prepolymerize for 1h; in the second stage of prepolymerization, adjust The feeding rate of propylene is 30kg/h, the stirring is turned on to 40r/min, the temperature of the preparation tank is lowered to 16°C, and the prepolymerization is completed until 100kg of propylene is consumed to obtain the propylene prepolymer slurry, and the above prepolymer slurry is transferred to the storage tank spare.
  • Example 9 3.0 25 0.35
  • Example 10 3.1 27 0.45
  • Example 11 3.0 twenty three 0.49
  • Example 12 3.0 26 0.43
  • Example 13 2.9 twenty four 0.39
  • Example 14 2.9 27 0.40
  • Example 15 3.1 twenty three 0.41
  • Example 16 3.0 twenty two 0.42
  • the catalyst slurry, propylene, co-catalyst, external electron donor and appropriate amount of hydrogen are added to the first tank reactor for liquid phase bulk polymerization.
  • the gas phase propylene is refluxed into the reactor through the tank top condenser.
  • the polymerization temperature is 70°C and the polymerization pressure is It is 3.0MPa, liquid level is 49%, the feed rate of the catalyst slurry prepared in embodiment 1-1 is 15.0kg/h, the feed rate of propylene is 5.7t/h, the feed rate of triethylaluminum is 0.8kg/h, cyclohexyl
  • the feeding amount of methyldimethoxysilane is 0.07kg/h, the feeding amount of hydrogen is 4.9Nm 2 /h, and the concentration of hydrogen is 1000ppm.
  • the slurry at the outlet of the first tank reactor enters the second tank reactor for polymerization reaction.
  • the temperature of the second tank reactor is 64°C
  • the polymerization pressure is 2.6MPa
  • the liquid level is 44%.
  • Hydrogen the hydrogen feed rate is 2.0Nm 2 /h
  • the hydrogen concentration is 1300ppm.
  • the slurry at the outlet of the second tank reactor enters the gas phase fluidized bed reactor for polymerization reaction, the polymerization temperature is 80° C., the polymerization pressure is 1.8 MPa, and the material level is 51%.
  • the material at the outlet of the gas-phase fluidized bed reactor first enters the cyclone separator for gas-solid separation of the material, and the separated solid-phase polypropylene powder enters the dryer and is dried with convective inert gas at a drying temperature of 105°C.
  • a low-ash long-acting anti-oxidation composite auxiliary agent and dried polypropylene powder are simultaneously added to a twin-screw extruder for extrusion and granulation to obtain ultra-clean polypropylene resin for capacitor film.
  • the catalyst slurry prepared in Example 1-2 is selected, the feed rate of the first tank reactor catalyst slurry is 11.0kg/h, the feed rate of propylene is 5.7t/h, and the feed rate of triethylaluminum is 0.57kg/h. h, the hydrogen feed rate is 4.9Nm 2 /h, and the hydrogen concentration is 3000ppm.
  • the difference is that the catalyst slurry prepared in Examples 1-3 is selected, and the feed rate is 14.5kg/h.
  • the difference is that the catalyst slurry prepared in Examples 1-4 is selected, and the feed rate is 16.2kg/h.
  • the difference is that the catalyst slurry prepared in Examples 1-5 is selected, and the feed rate is 16.3kg/h.
  • the difference is that the catalyst slurry prepared in Examples 1-6 is selected, and the feed rate is 16.0 kg/h.
  • the difference is that the catalyst slurry prepared in Examples 1-7 is selected, and the feed rate is 15.8kg/h.
  • the difference is that the catalyst slurry prepared in Examples 1-8 is selected, and the feed rate is 15.6kg/h.
  • the gas-phase propylene automatic feeding valve In the first stage of pre-polymerization, open the gas-phase propylene automatic feeding valve, adjust the propylene feeding rate to 15kg/h, turn on the stirring to 40r/min, lower the temperature of the preparation tank to 5°C, and pre-polymerize until 100kg of propylene is completely consumed to obtain propylene pre-polymerization Material slurry, the above-mentioned propylene prepolymer slurry is transferred to the storage tank for standby.
  • the slurry at the outlet of the first tank reactor enters the second tank reactor for polymerization reaction.
  • the temperature of the second tank reactor is 64°C
  • the polymerization pressure is 2.6MPa
  • the liquid level is 44%.
  • Hydrogen the hydrogen feed rate is 2.0Nm 2 /h
  • the hydrogen concentration is 1300ppm.
  • the flow rate of the reaction slurry at the outlet is 4.5t/h.
  • the slurry at the outlet of the second tank reactor enters the gas phase fluidized bed reactor for polymerization reaction, the polymerization temperature is 80° C., the polymerization pressure is 1.8 MPa, and the material level is 51%.
  • the material at the outlet of the gas-phase fluidized bed reactor first enters the cyclone separator for gas-solid separation of the material, and the separated solid-phase polypropylene powder enters the dryer and is dried with convective nitrogen at a drying temperature of 105°C.
  • the polypropylene powder After the polypropylene powder is dried with nitrogen, it is transported to the polymer deep purification tank, and a certain amount of composite solvent (hexane and ethanol composite solvent, the mass ratio is 4:1) is added to form a polymer powder slurry with a concentration of 30%.
  • a certain amount of composite solvent hexane and ethanol composite solvent, the mass ratio is 4:1
  • the deep purification of polymer is carried out, the purification temperature is 60°C, and the purification time is 0.5h.
  • the deeply purified polymer slurry is centrifuged to obtain a polymer wet powder, and the solvent in the wet powder accounts for 25%, and then undergoes a multi-stage drying (drying temperature 105°C) process to remove volatile organic compounds. Then it is transported to the extrusion granulation unit to obtain ultra-clean polypropylene resin for capacitor film.
  • antioxidant 1010 is 2000mg/kg, 168 is 1000mg/kg, calcium stearate is 80mg/kg
  • dried polypropylene powder into the twin-screw extruder at the same time Extrude and granulate (granulation temperature is 225° C., screw speed is 120 rpm) to obtain ultra-clean polypropylene resin for capacitor film.
  • the preparation process was the same as Comparative Example 9 except for lack of propylene prepolymerization.
  • the feed rate of propylene prepolymer slurry is 15.0kg/h.
  • the feed rate of propylene prepolymer slurry is 16.0kg/h.
  • the feed rate of propylene prepolymer slurry is 17.0kg/h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

聚丙烯树脂及其制备方法,所述方法包括:丙烯预聚合、液相本体聚合、气相聚合、聚丙烯干燥、纯化和挤压造粒;该方法首先将丙烯进行预聚合处理,然后将预聚合物浆料注入两台串联的釜式反应器进行液相本体聚合和一台流化床反应器进行气相聚合,利用烃类和醇类溶剂制备的复配溶剂洗涤聚丙烯基料,脱除催化剂残留物和无定型聚丙烯,采用低灰分长效抗氧复合剂以避免杂质对聚丙烯产品的二次污染,实现超净聚丙烯工业化生产。

Description

[根据细则37.2由ISA制定的发明名称] 聚丙烯树脂及其制备方法 技术领域
本发明涉及聚合物树脂领域,具体的说,本发明涉及一种超洁净聚丙烯树脂及其制备方法,特别是,本发明涉及一种超净聚丙烯树脂及其制备方法。
背景技术
聚丙烯简称PP,是一种无色、无臭、无毒、半透明固体物质。聚丙烯是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等,这使得聚丙烯自问世以来,便迅速在机械、汽车、电子电器、建筑、纺织、包装、农林渔业和食品工业等众多领域得到广泛的开发应用。近年来,随着包装、电子、汽车等工业的快速发展,极大地促进了工业的发展。
聚丙烯可用于制作家用电器的绝缘外壳及洗衣机内胆,普遍用于电线电缆和其他电器的绝缘材料。在制备阻隔性薄膜时,可采用传统的制膜工艺进行生产,工艺较为简单,生产的成本较低。
中国专利201310519301.0公开了一种锂离子电池均聚聚丙烯阻隔膜专用料生产方法。本发明使用高活性、氢调敏感性适中的丙烯聚合催化剂,丙烯聚合活化剂为三乙基铝,其加入量控制在7.0L/h以下,外给电子体采用双环戊基二甲氧基硅烷和四乙氧基硅烷按1:1-1:8摩尔比配制,产品等规度大于98%,熔体流动速率2.6~3.0g/10min,灰分50~100ppm,灰分指标不能满足高端电气应用领域的要求。
中国专利201080045745.X公开了一种用于烯烃聚合的催化剂组分,采用二醇酯型和二醚型内给电子体,还公开了所述催化剂组分的制备方法,包含该催化剂组分的催化剂和使用所述催化剂的烯烃聚合方法,用于制备低灰分聚丙烯产品。该技术制备的产品灰分低至30ppm,但仍然无法满足高端干式电力电子电容器的需求。
发明内容
针对上述现有技术存在的单纯使用高活性催化剂直接聚合造成的产品灰分仍较高的问题,本发明的目的在于提供一种超洁净聚丙烯树脂的制备方法。
本发明的另一目的在于提供一种超洁净聚丙烯树脂。
本发明的再一目的在于提供一种聚丙烯树脂的制备方法。
本发明的又一目的在于提供一种聚丙烯树脂。
为达上述目的,一方面,本发明提供了一种超洁净聚丙烯树脂的制备方法,该制备方法包括:丙烯预聚合、液相本体聚合、气相聚合、聚丙烯干燥、纯化和挤压造粒;
丙烯预聚合:
在预聚反应器中,配置催化剂浆料,所述催化剂浆料包括主催化剂、助催化剂和溶剂;然后通入丙烯进行预聚合反应,得到预聚合物浆料;
液相本体聚合:
以丙烯为原料,在所述预聚合物浆料、助催化剂、外给电子体和氢气存在下进行聚合反应得到聚丙烯粗产品浆料;所述外给电子体为9,9-二(甲氧基甲基)芴;
气相聚合:
液相本体聚合得到的聚丙烯粗产品浆料进入气相流化床反应器进行聚合反应;
聚丙烯干燥:
气相流化床反应器出口物料首先进行气固分离,固相成分进入干燥器进行干燥得到聚丙烯粉料;
纯化:
将干燥后的聚丙烯粉料使用复合溶剂配置成浆液,搅拌进行纯化;然后将浆液进行固液分离,得到聚丙烯湿粉料,干燥后得到超洁净聚丙烯粉料;
挤压造粒:
将纯化后的超洁净聚丙烯粉料与抗氧化复合助剂混合后挤压造粒,得到所述超洁净聚丙烯树脂。
以下针对丙烯预聚合、液相本体聚合、气相聚合、聚丙烯干燥、纯化和挤压造粒每一过程进行详细说明:
一、丙烯预聚合:在预聚反应器中,配置催化剂浆料,所述催化剂浆料包括主催化剂、助催化剂和溶剂;然后通入丙烯进行预聚合反应,得到预聚合物浆料。
预聚合过程中,在催化剂颗粒表面形成聚丙烯薄层。
优选地,预聚合过程中,丙烯与主催化剂的质量比为2.5~10kg/kg,助催化剂与主催化剂的质量比为0.027~0.075kg/kg。
根据本发明一些具体实施方案,优选地,所述预聚合反应包括两个阶段:第一阶段, 预聚合温度为-5℃~15℃,丙烯加料速率为10~45kg/h,预聚合时间为0.5~3h;第二阶段,预聚合温度为5℃~35℃,丙烯加料速率为15~55kg/h,直至预聚合用丙烯全部加入预聚反应器。
根据本发明一些具体实施方案,优选地,所述催化剂浆料中的溶剂选自碳原子数为4~10的烷烃。更优选地,所述碳原子数为4~10的烷烃选自丁烷、戊烷、己烷、庚烷、辛烷、壬烷和癸烷中的一种或多种的混合;最优选为己烷。
本发明所述的主催化剂在中国专利201080045745.X中进行了叙述,本发明一并引入;也可以通过市售获得。也就是说,只要本发明的主催化剂满足活性要求即可,所述的主催化剂的活性至少10万倍;催化剂活性具体的计算方法是单位时间内催化剂催化丙烯聚合所得聚合物与催化剂的质量比。
根据本发明一些具体实施方案,优选地,所述主催化剂为Z-N系列催化剂,包括MgCl 2载体、TiCl 4活性中心和内给电子体;所述内给电子体选自烷基取代1,3-二醚类、芳基取代1,3-二醚类、丁二酸酯类、丙二酸酯类和二醇酯类中的一种或多种的组合。
根据本发明一些具体实施方案,优选地,所述芳基取代1,3-二醚类的芳基选自单环或多环的C 4-16芳基。更具体的,所述芳基取代1,3-二醚类的芳基选自环戊二烯基、茚基、芴基及其衍生物中的一种。
根据本发明一些具体实施方案,优选地,所述烷基取代1,3-二醚类的结构如下式(I)所示,芳基取代1,3-二醚类的结构如下式(II)或式(III)所示:
Figure PCTCN2022135817-appb-000001
其中,R 1、R 2、R 3、R 4、R 5、R 6相同或不同,各自独立的为C 1-10的直链或支链烷基。
根据本发明一些具体实施方案,优选地,R 1、R 2、R 3、R 4、R 5、R 6相同或不同,各自独立的为甲基、乙基、丙基、丁基、戊基、庚基、辛基、壬基或癸基。
根据本发明一些具体实施方案,优选地,所述丁二酸酯类和丙二酸酯的结构分别如下式(IV)和式(V)所示:
Figure PCTCN2022135817-appb-000002
其中,R 7、R 8、R 9和R 10相同或不同,各自独立的为C 1-10的直链或支链烷基;更优选地,R 7、R 8、R 9和R 10各自独立的为甲基、乙基、丙基、丁基、戊基、庚基、辛基、壬基或癸基。
根据本发明一些具体实施方案,优选地,所述助催化剂为烷基铝化合物,更优选地,所述助催化剂选自三烷基铝、烷基铝氧烷、三烷基铝与烷基铝卤化物的组合、或者三烷基铝与烷基铝氢化物的组合中的一种或多种的组合;最优选为三乙基铝。
二、液相本体聚合:以丙烯为原料,在所述预聚合物浆料、助催化剂、外给电子体和氢气存在下进行聚合反应得到聚丙烯粗产品;所述外给电子体为9,9-二(甲氧基甲基)芴。
根据本发明一些具体实施方案,优选地,所述液相本体聚合包括以下步骤:
将丙烯、预聚合物浆料、助催化剂、外给电子体和氢气加入第一反应容器,在温度60℃~75℃下,压力2.5~3.5MPa下进行聚合反应;第一反应容器出口的反应浆料(得到的聚丙烯粉料熔体)流动速率为4.0~4.5g/10min;第一反应容器中的氢气浓度为1000~3000ppm;然后将反应浆料加入第二反应容器,并通入氢气,在温度60℃~75℃下,压力2.5~3.5MPa下进行聚合反应,第二反应容器出口的反应浆料(得到的聚丙烯粉料熔体)流动速率为3.5~4.5g/10min,第二反应容器中的氢气浓度为1000~2000ppm。
根据本发明一些具体实施方案,优选地,所述液相本体聚合过程中,所述主催化剂与丙烯的质量比为0.03~0.05kg/t;助催化剂与丙烯的质量比为0.015~0.0225kg/t;外给电子体与助催化剂的质量比为0~0.015kg/kg,不包括0。
根据本发明一些具体实施方案,优选地,第一反应容器和第二反应容器均为釜式聚合反应器,为串联连接(形成全混流多反应器串联聚合工艺)。
三、气相聚合:液相本体聚合得到的聚丙烯粗产品浆料进入气相流化床反应器进行聚合反应。
根据本发明一些具体实施方案,优选地,气相聚合中所述聚合的温度为75~85℃,聚合压力为1.5~2.0MPa,气相流化床反应器出口聚丙烯粉料熔体流动速率为2.8~3.2g/10min,灰分小于30ppm,等规度大于98.5%。
四、聚丙烯干燥:气相流化床反应器出口物料首先进行气固分离,固相成分(聚丙 烯粉料)(分离出来的气相部分进入回收系统回收利用)进入干燥器进行干燥得到聚丙烯粉料。
根据本发明一些具体实施方案,优选地,所述固相成分进入干燥器被对流的惰性气体干燥。所述惰性气体优选氮气,干燥温度优选100-110℃。
根据本发明一些具体实施方案,优选地,所述干燥的温度为95~115℃,更优选为100-110℃。
五、纯化:将干燥后的聚丙烯粉料使用复合溶剂配置成浆液,搅拌进行纯化;然后将浆液进行固液分离,得到聚丙烯湿粉料,干燥后得到超洁净聚丙烯粉料。
根据本发明一些具体实施方案,优选地,所述纯化的温度为30~150℃,时间为0.1~5h;更优选地,所述纯化的温度为50-120℃,时间为0.5~3h。
根据本发明一些具体实施方案,优选地,所述聚丙烯湿粉料中溶剂占比为15~35%(以聚丙烯粉料总质量为100%);更优选为15-30%。
根据本发明一些具体实施方案,优选地,所述纯化过程中,配置成的浆液中聚丙烯粉料的质量浓度为10~40%。
根据本发明一些具体实施方案,优选地,所述超洁净聚丙烯粉料的灰分小于10ppm。
根据本发明一些具体实施方案,优选地,所述固液分离可以通过离心完成。
根据本发明一些具体实施方案,优选地,所述复合溶剂包括烃类物质和烷基醇;所述烃类物质优选C 5-C 20的正构烷烃或异构烷烃;例如戊烷、己烷、庚烷、辛烷、壬烷或癸烷等;所述烷基醇优选甲醇、乙醇、丙醇或丁醇等。所述烃类物质和烷基醇的质量比优选为(2-6):1。
更优选地,所述复合溶剂为己烷和乙醇的复合溶剂,质量比为4:1。
六、挤压造粒:将纯化后的超洁净聚丙烯粉料与抗氧化复合助剂混合后挤压造粒,得到所述超洁净聚丙烯树脂。
本发明挤压造粒所得到的超洁净聚丙烯树脂的灰分小于20ppm。
根据本发明一些具体实施方案,优选地,抗氧化复合助剂包括除酸剂、主抗氧剂和辅抗氧剂。
优选地,所述除酸剂选自金属硬脂酸盐和水滑石中的一种或多种的组合;优选硬酯酸锌和硬酯酸钙;所述超洁净聚丙烯粉料与除酸剂的质量比为(10000-100000):1。
优选地,所述主抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-S-三嗪-2,4,6-(1H,3H,5H)三酮、β-(3,5-二叔丁基-4-羟基苯基) 丙酸十八醇酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯和1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷中的一种或多种的组合;优选四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(即抗氧剂1010)和1,3,5-三(3,5-二叔丁基-4-羟基苄基)-S-三嗪-2,4,6-(1H,3H,5H)三酮。
优选地,所述超洁净聚丙烯粉料与主抗氧剂的质量比为(1000-10000):1。
优选地,所述辅抗氧剂选自硫代二丙酸二月桂酯、硫代二丙酸双十八酯、硫代二丙酸二(十四)酯、亚磷酸三壬基苯酯、二亚磷酸二(十八)烷基季戊四醇酯、亚磷酸三(2,4-叔丁基苯基)酯和二亚磷酸双(2,4-二叔丁基苯基)季戊四醇酯中的一种或多种的组合;优选硫代二丙酸二月桂酯和亚磷酸三(2,4-叔丁基苯基)酯(即抗氧化剂168)。
优选地,所述超洁净聚丙烯粉料与辅抗氧剂的质量比为(100-10000):1。
另一方面,本发明提供一种由以上制备方法制备得到的超洁净聚丙烯树脂。
本发明的制备方法中,首先将高活性聚丙烯催化剂进行分段预聚合处理,然后将预聚合物浆料注入两台串联的釜式反应器进行液相本体聚合和一台流化床反应器进行气相聚合,利用烃类和醇类溶剂制备的复配溶剂洗涤聚丙烯基料,脱除催化剂残留物和无定型聚丙烯,采用低灰分长效抗氧复合助剂避免杂质对聚丙烯产品二次污染,实现超净聚丙烯工业化生产。
再一方面,本发明提供了一种聚丙烯树脂的制备方法,其中,所述方法包括:
以丙烯为原料进行聚合得到聚丙烯粗产品的步骤;以及
将得到的聚丙烯粗产品进行纯化得到所述聚丙烯树脂的步骤;
所述纯化包括将聚丙烯粗品加入复合溶剂中,在30~120℃下将聚丙烯粗品与复合溶剂进行充分接触形成聚丙烯浆液,然后将聚丙烯与复合溶剂分离得到聚丙烯粉料,将聚丙烯粉料干燥得到所述聚丙烯树脂(超净聚丙烯粉料)。
将聚丙烯与复合溶剂分离得到的聚丙烯粉料中,溶剂占比为15-35%(以聚丙烯粉料总质量为100%)。
根据本发明一些具体实施方案,其中,所述聚丙烯粗产品的熔体流动速率为0.1~1000g/10min,分子量分布为3-15(重均/数均)。
根据本发明一些具体实施方案,其中,所述复合溶剂为至少一种选自碳原子数为1~10的烷基醇和至少一种选自碳原子数为5~20的常温下为液态的烷烃的混合溶剂。
根据本发明一些具体实施方案,其中,所述碳原子数为1~10的烷基醇选自甲醇、乙醇、丙醇和丁醇中的一种或多种的组合。
根据本发明一些具体实施方案,其中,碳原子数为5-20的常温下为液态的烷烃选自戊烷、己烷、庚烷、辛烷、壬烷和癸烷中的一种或多种的组合。
根据本发明一些具体实施方案,其中,碳原子数为1~10的烷基醇和碳原子数为5~20的常温下为液态的烷烃的质量比为1:(2-6)。
根据本发明一些具体实施方案,其中,碳原子数为1~10的烷基醇和碳原子数为5~20的常温下为液态的烷烃的质量比为1:4。
根据本发明一些具体实施方案,其中,所述纯化包括将聚丙烯粗品加入复合溶剂中,在50~100℃下将聚丙烯粗品与复合溶剂进行充分接触形成聚丙烯浆液。
根据本发明一些具体实施方案,其中,所述充分接触包括在搅拌条件下,将聚丙烯粗品与复合溶剂接触0.1~5h(浆液停留在反应容器中的时间)。
根据本发明一些具体实施方案,其中,所述充分接触包括在搅拌条件下,将聚丙烯粗品与复合溶剂接触0.5~3h。
根据本发明一些具体实施方案,其中,所述充分接触包括在搅拌速度10-150rpm的搅拌条件下,将聚丙烯粗品与复合溶剂接触。
根据本发明一些具体实施方案,其中,聚丙烯浆液中的聚丙烯质量浓度为10~40%。
根据本发明一些具体实施方案,其中,聚丙烯浆液中的聚丙烯质量浓度为15~30%。
根据本发明一些具体实施方案,其中,所述纯化包括利用离心将聚丙烯与复合溶剂分离得到聚丙烯粉料,然后在95~120℃下将聚丙烯粉料干燥得到所述聚丙烯树脂。
根据本发明一些具体实施方案,其中,所述纯化包括利用离心将聚丙烯与复合溶剂分离得到聚丙烯粉料,然后在95~115℃下将聚丙烯粉料干燥得到所述聚丙烯树脂。
根据本发明一些具体实施方案,其中,干燥的时间为0.5-2h。
根据本发明一些具体实施方案,其中,将聚丙烯粉料干燥得到的聚丙烯树脂灰分小于10ppm。
根据本发明一些具体实施方案,其中,将聚丙烯粉料干燥得到的聚丙烯树脂灰分为5~10ppm。
根据本发明一些具体实施方案,其中,所述方法还包括将得到的所述聚丙烯树脂与抗氧化复合助剂混合后挤压造粒的步骤。
根据本发明一些具体实施方案,其中,所述抗氧化复合助剂选自除酸剂、主抗氧化剂和辅抗氧化剂中的组合。
根据本发明一些具体实施方案,其中,以所述抗氧化复合助剂总质量为100%计,除 酸剂、主抗氧化剂和辅抗氧化剂的质量百分比含量分别为0.1~1%、65~90%和9.4~34.4%。
根据本发明一些具体实施方案,其中,所述除酸剂选自金属硬脂酸盐和水滑石中的一种或多种的组合。
根据本发明一些具体实施方案,其中,所述金属硬脂酸盐选自硬脂酸锌和/或硬脂酸钙。
根据本发明一些具体实施方案,其中,所述主抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-S-三嗪-2,4,6-(1H,3H,5H)三酮、β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯和1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷中的一种或多种的组合。
根据本发明一些具体实施方案,其中,所述主抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯和1,3,5-三(3,5-二叔丁基-4-羟基苄基)-S-三嗪-2,4,6-(1H,3H,5H)三酮中的一种或多种的组合。
根据本发明一些具体实施方案,其中,所述辅抗氧剂选自硫代二丙酸二月桂酯、硫代二丙酸双十八酯、硫代二丙酸二(十四)酯、亚磷酸三壬基苯酯、二亚磷酸二(十八)烷基季戊四醇酯、亚磷酸三(2,4-叔丁基苯基)酯和二亚磷酸双(2,4-二叔丁基苯基)季戊四醇酯中的一种或多种的组合。
根据本发明一些具体实施方案,其中,所述辅抗氧剂为硫代二丙酸二月桂酯和/或亚磷酸三(2,4-叔丁基苯基)酯。
根据本发明一些具体实施方案,其中,以得到的聚丙烯树脂质量为100%计,抗氧化复合助剂的质量百分含量为0.2%~1%。
根据本发明一些具体实施方案,其中,以丙烯为原料进行聚合的步骤包括:
丙烯预聚合步骤:包括将一定量的丙烯在主催化剂和助催化剂存在下进行聚合反应以在催化剂颗粒表面形成聚丙烯薄层,其中预聚合步骤的丙烯与主催化剂的质量比为2.5~10kg/kg,预聚合步骤的助催化剂与主催化剂的质量比为0.18~0.5kg/kg,并得到预聚合物浆料;
聚合步骤:包括以丙烯为原料,在所述预聚合物浆料、助催化剂、外给电子体和氢气存在下进行聚合反应得到聚丙烯粗产品。
根据本发明一些具体实施方案,其中,丙烯预聚合步骤包括:在主催化剂和助催化剂存在下,以10~45kg/h通入丙烯,在-5℃~15℃下聚合0.5~3h;然后再以15~55kg/h通入丙烯,在5℃~35℃下聚合,直至剩余丙烯全部加入预聚反应器。
根据本发明一些具体实施方案,其中,丙烯预聚合步骤包括:在主催化剂和助催化剂存在下,以10~45kg/h通入丙烯,在-5℃~15℃下聚合0.5~3h;然后再以15~55kg/h通入丙烯,在5℃~35℃下聚合1~4h。
根据本发明一些具体实施方案,其中,丙烯预聚合步骤包括将主催化剂加入碳原子数为4~10的直链或支链烷烃中,主催化剂在所述的烷烃的溶液中的质量浓度为0.1~3%,再加入丙烯在和助催化剂进行聚合反应。
根据本发明一些具体实施方案,其中,预聚合步骤的反应热通过冷冻水撤除。
根据本发明一些具体实施方案,其中,预聚合步骤得到预聚合物浆料后,再加入一定量碳原子数为4~10的烷烃稀释预聚合物浆料,稀释后预聚合物浆料中聚合物的质量浓度为0.01~5.5%。
根据本发明一些具体实施方案,其中,所述碳原子数为4~10的烷烃选自丁烷、戊烷、己烷、庚烷、辛烷、壬烷和癸烷中的一种或多种的混合。
根据本发明一些具体实施方案,其中,主催化剂与聚合步骤加入的丙烯的质量比为0.03~0.05kg/t;聚合步骤加入的助催化剂与聚合步骤加入的丙烯的质量比为0.1~0.15kg/t;外给电子体与聚合步骤加入的助催化剂的质量比为0~0.1kg/kg。
其中可以理解的是,当外给电子体与助催化剂的质量比为0时,表示可以不添加外给电子体。
根据本发明一些具体实施方案,其中,聚合步骤加入的助催化剂与主催化剂的质量比为3.2~3.6kg/kg。
根据本发明一些具体实施方案,其中,所述聚合步骤包括:
液相本体聚合步骤:包括以丙烯为原料,在所述预聚合物浆料、助催化剂、外给电子体和氢气存在下,在温度65℃~75℃下,压力2.5~3.5MPa下进行液相本体聚合;
气相聚合步骤:包括将液相本体聚合得到的浆料在温度75℃~85℃下,压力1.5~2.0MPa下进行气相聚合得到聚丙烯粗产品。
根据本发明一些具体实施方案,其中,液相本体聚合步骤中的丙烯原料为精制丙烯。
根据本发明一些具体实施方案,其中,所述精制丙烯水含量为5~10mg/kg,一氧化碳含量0.1~0.5mL/m 3,二氧化碳含量0.1~0.5mL/m 3
根据本发明一些具体实施方案,其中,所述液相本体聚合步骤包括将丙烯、预聚合物浆料、助催化剂、外给电子体和氢气加入第一反应容器,在温度60℃~75℃下,压力2.5~3.5MPa下进行聚合反应,第一反应容器出口的反应浆料(得到的聚丙烯粉料熔体) 流速为4.0~4.5g/10min,第一反应容器中的氢气浓度为1000~3000ppm;然后将反应浆料加入第二反应容器,并通入氢气,在温度60℃~75℃下,压力2.5~3.5MPa下进行聚合反应,第二反应容器出口的反应浆料(得到的聚丙烯粉料熔体)流速为3.5~4.5g/10min,第二反应容器中的氢气浓度为1000~2000ppm。
根据本发明一些具体实施方案,其中,所述液相本体聚合步骤包括将丙烯、预聚合物浆料、助催化剂、外给电子体和氢气加入第一反应容器,在温度70℃下,压力3.0MPa下进行聚合反应,第一反应容器出口的反应浆料(得到的聚丙烯粉料熔体)流速为4.5g/10min,第一反应容器中的氢气浓度为2890ppm;然后将反应浆料加入第二反应容器,并通入氢气,在温度64℃下,压力2.6MPa下进行聚合反应,第二反应容器出口的反应浆(得到的聚丙烯粉料熔体)料流速为4.5g/10min,第二反应容器中的氢气浓度为1300ppm。
根据本发明一些具体实施方案,其中,所述液相本体聚合步骤包括将丙烯、预聚合物浆料、助催化剂、外给电子体和氢气加入第一反应容器,在温度70℃下,压力3.0MPa下进行聚合反应(液位为49%),第一反应容器出口的反应浆料(得到的聚丙烯粉料熔体)流速为4.5g/10min,预聚合物浆料进料量14.0kg/h,丙烯进料量5.7t/h,三乙基铝进料量0.8kg/h,环己基甲基二甲氧基硅烷进料量0.07kg/h,氢气进料量4.9Nm 2/h,第一反应容器中的氢气浓度为2890ppm;然后将反应浆料加入第二反应容器,并通入氢气,氢气进料量2.0Nm 2/h,在温度64℃下,压力2.6MPa下进行聚合反应(液位为44%),第二反应容器出口的反应浆料(得到的聚丙烯粉料熔体)流速为4.5g/10min,第二反应容器中的氢气浓度为1300ppm。
根据本发明一些具体实施方案,其中,第一反应容器和第二反应容器为串联连接(形成全混流多反应器串联聚合工艺)。
根据本发明一些具体实施方案,其中,所述气相聚合是在气相流化床反应器中进行。
根据本发明一些具体实施方案,其中,经过气相聚合得到聚丙烯粉料熔体,所述聚丙烯粉料熔体在气相聚合的反应器出口的流速为2.8~3.2g/10min。
根据本发明一些具体实施方案,其中,气相聚合步骤包括将液相本体聚合得到的浆料在温度80℃下,压力1.8MPa下进行气相聚合得到聚丙烯粗产品。
根据本发明一些具体实施方案,其中,气相聚合得到的聚丙烯粗品灰分小于30ppm。
根据本发明一些具体实施方案,其中,气相聚合得到的聚丙烯粗品灰分不大于30ppm。
根据本发明一些具体实施方案,其中,气相聚合得到的聚丙烯粗品灰分为10-30ppm。
根据本发明一些具体实施方案,其中,以丙烯为原料进行聚合的步骤还包括将聚合反应后得到的固体成分在95℃~115℃下进行干燥的步骤,从而得到聚丙烯粗产品。
根据本发明一些具体实施方案,其中,聚合反应后得到的固体成分是在105℃下进行干燥。
根据本发明一些具体实施方案,其中,以丙烯为原料进行聚合的步骤中的干燥是在干燥器中利用对流的惰性气体干燥。
根据本发明一些具体实施方案,其中,所述惰性气体为氮气。
根据本发明一些具体实施方案,其中,以丙烯为原料进行聚合的步骤中的干燥的温度为100-110℃。
根据本发明一些具体实施方案,其中,以丙烯为原料进行聚合的步骤还包括将聚合反应后得到的反应浆液进行气固分离从而得到固体成分的步骤。
根据本发明一些具体实施方案,其中,以丙烯为原料进行聚合的步骤是利用旋风分离器进行气固分离。
根据本发明一些具体实施方案,其中,所述主催化剂具有较高催化活性。
根据本发明一些具体实施方案,其中,所述主催化剂的催化活性为8~12万倍。
所述催化剂活性为单位时间内生产的聚丙烯与消耗催化剂的质量比。
根据本发明一些具体实施方案,其中,所述主催化剂为Z-N系列催化剂;助催化剂为烷基铝化合物;外给电子体选自环己基二甲氧基甲基硅烷、对二环戊基二甲氧基硅烷、二异丙基二甲氧基硅烷和二异丁基二甲氧基硅烷中的一种或多种的组合。
根据本发明一些具体实施方案,其中,所述Z-N系列催化剂为以MgCl 2为载体,TiCl 4为活性中心,以选自烷基取代1,3-二醚类、芳基取代1,3-二醚类、丁二酸酯类和丙二酸酯中的一种为内给电子体的催化剂中的一种或多种的组合。
根据本发明一些具体实施方案,其中,所述芳基取代1,3-二醚类的芳基选自单环或多环的C 4-16芳基。
根据本发明一些具体实施方案,其中,所述芳基取代1,3-二醚类的芳基选自环戊二烯基、茚基、芴基及其衍生物中的一种。
根据本发明一些具体实施方案,其中,烷基取代1,3-二醚类结构为如下式(I)所示,芳基取代1,3-二醚类结构为如下式(II)或式(III)所示:
Figure PCTCN2022135817-appb-000003
其中,R 1、R 2、R 3、R 4、R 5、R 6相同或不同,各自独立的为C 1-10的直链或支链烷基。
根据本发明一些具体实施方案,其中,R 1、R 2、R 3、R 4、R 5、R 6相同或不同,各自独立的为甲基、乙基、丙基、丁基、戊基、庚基、辛基、壬基或癸基。
根据本发明一些具体实施方案,其中,所述丁二酸酯类和丙二酸酯的结构分别如下式(IV)和式(V)所示:
Figure PCTCN2022135817-appb-000004
其中,R 7、R 8、R 9和R 10相同或不同,各自独立的为C 1-10的直链或支链烷基;
根据本发明一些具体实施方案,其中,R 7、R 8、R 9和R 10相同或不同,各自独立的为甲基、乙基、丙基、丁基、戊基、庚基、辛基、壬基或癸基。
根据本发明一些具体实施方案,其中,所述Z-N系列催化剂为北京奥达HA-R催化剂。
根据本发明一些具体实施方案,其中,所述烷基铝化合物选自三烷基铝、烷基铝氧烷、三烷基铝与烷基铝卤化物的组合、或者三烷基铝与烷基铝氢化物的组合中的一种或多种的组合。
根据本发明一些具体实施方案,其中,所述烷基铝化合物的烷基为C 1-10的直链或支链烷基。
根据本发明一些具体实施方案,其中,所述烷基铝化合物的烷基为甲基、乙基、丙基、丁基、戊基、庚基、辛基、壬基或癸基。
本发明的丙基、丁基、戊基、庚基、辛基、壬基和癸基可以是上述基团的直链结构,也可以是各种支链异构体。
根据本发明一些具体实施方案,其中,所述烷基铝化合物为三乙基铝。
根据本发明一些具体实施方案,其中,所述聚丙烯树脂的制备方法包括:
(1)丙烯预聚合:主催化剂首先与碳原子数为4~10的烷烃混合稀释,稀释后浆液质量浓度为0.1~3%,然后将助催化剂和丙烯送入预聚反应器中并通过反应器内搅拌将 物料搅拌均匀,进行两个阶段的预聚合反应;第一阶段预聚合温度为-5℃~15℃,丙烯加入量为10~45kg/h,预聚合时间为0.5~3h;第二阶段预聚合温度为5℃~35℃,丙烯加入量为15~55kg/h,预聚合至剩余丙烯全部加入预聚反应器(预聚釜)。
(2)液相本体聚合:将丙烯、预聚合物浆料、助催化剂、外给电子体和适量氢气加入第一反应器(釜式聚合反应器)进行液相本体聚合,聚合温度为60~75℃,聚合压力为2.5~3.5MPa,第一反应器出口聚丙烯粉料熔体流动速率为4.0~4.5g/10min;主催化剂与丙烯的质量比为0.03~0.05kg/t;助催化剂与丙烯的质量比为0.1~0.15kg/t;外给电子体与助催化剂的质量比为0~0.1kg/kg;在第一反应器加入氢气,氢气浓度为1000~3000ppm;第一反应器的浆料进入第二反应器(釜式聚合反应器)进行聚合反应,聚合温度为60~75℃,聚合压力为2.5~3.5MPa,第二反应器出口聚丙烯粉料熔体流动速率为3.5~4.0g/10min;在第二釜式聚合反应器加入氢气,氢气浓度为1000~2000ppm;
(3)气相聚合:第二反应器的浆料进入气相流化床反应器进行聚合反应,聚合温度为75~85℃,聚合压力为1.5~2.0MPa,气相流化床反应器出口聚丙烯粉料熔体流动速率为2.8~3.2g/10min;
(4)聚丙烯干燥:气相流化床反应器出口物料首先进入旋风分离器进行物料气固分离,固相成分(聚丙烯粉料)(分离出来的气相部分进入回收系统回收利用)进入干燥器被对流的惰性气体干燥,干燥温度为95~115℃左右;
(5)聚丙烯纯化:将干燥后的固相成分输送(利用输送风)至纯化罐,并加入一定量复合溶剂形成聚合物粉料浆液,浆液浓度为10~40%,在30~120℃下,将聚合物粉料与复合溶剂充分接触0.1~5h;
(6)挤压造粒:将抗氧化复合助剂与纯化后的聚丙烯粉料同时加入到双螺杆挤出机进行挤压造粒,得到聚丙烯树脂。
综上,本发明的丙烯聚合采用两台釜式反应器串联进行液相本体聚合和一台流化床反应器进行气相聚合,然后利用烃类和醇类溶剂制备的复配溶剂洗涤聚丙烯基料,脱除催化剂残留物和无定型聚丙烯,采用抗氧化复合助剂避免杂质对聚丙烯产品二次污染,实现超净聚丙烯工业化生产。
又一方面,本发明还提供了上述任意一项所述的制备方法制备得到的聚丙烯树脂。
根据本发明一些具体实施方案,其中,经过挤压造粒后得到的聚丙烯树脂的灰分不大于30ppm。
根据本发明一些具体实施方案,其中,所述聚丙烯树脂的灰分为10-30ppm。
根据本发明一些具体实施方案,其中,所述聚丙烯树脂的灰分为15-30ppm。
根据本发明一些具体实施方案,其中,经过挤压造粒后得到的聚丙烯树脂的熔体流动速率为3.0-3.1g/10min。
综上所述,本发明提供了一种聚丙烯树脂及其制备方法。本发明的方法具有如下优点:
(1)本发明通过两步预聚合能够有效激活高活性催化剂颗粒内部催化活性点位,从而提高催化剂活性,与现有技术相比,本发明生产的聚丙烯具有更低的灰分,产品具有良好的电气性能,能够满足高端电容器的要求。
(2)本发明通过两步预聚合能够在钛活性中心周围形成聚丙烯链段包裹层,从而提高催化剂颗粒的机械强度,本发明生产的聚丙烯具有较少的细粉含量,更有利于工业装置稳定运行。
(3)本发明采用的本体聚合加深度纯化工艺利用有机复合溶剂脱除金属杂质和聚丙烯低聚物,生产的树脂产品具有更低灰分、更高等规度,能够满足高端电容器的要求。
具体实施方式
以下结合实施例详细说明本发明的技术方案,但本发明的保护范围包括但是不限于此。
原料或设备来源:
丙烯,兰州石化公司提供;催化剂,北京奥达催化剂厂提供;三乙基铝,营口市向阳催化剂厂提供;环己基甲基二甲氧基硅烷,山东鲁晶化工科技有限公司提供;氢气,兰州石化公司提供。
评价分析方法:
1、聚合物熔融指数:按照GB/T 3682-2000测定。
2、聚合物等规度:按照GB/T 2412-2008测定。
3、聚合物灰分:按照GB/T 9345.1-2008测试。
具体实施例:
实施例1-1
丙烯预聚合物浆料的制备
将500kg己烷和7kg三乙基铝加入至催化剂配制罐,其中三乙基铝溶液质量浓度为 15%,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)25kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1500kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为10kg/h,搅拌开启至40r/min,配制罐温度降低至-5℃以下,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为15kg/h,搅拌开启至40r/min,配制罐温度降低至5℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例1-2
丙烯预聚合物浆料的制备
将400kg己烷和7kg三乙基铝加入至催化剂配制罐,其中三乙基铝溶液质量浓度为15%,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)30kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为45kg/h,搅拌开启至40r/min,配制罐温度降低至15℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为55kg/h,搅拌开启至40r/min,配制罐温度降低至35℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例1-3
丙烯预聚合物浆料的制备
将500kg己烷和7kg三乙基铝加入至催化剂配制罐,其中三乙基铝溶液质量浓度为15%,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)32.5kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入700kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为25kg/h,搅拌开启至40r/min,配制罐温度降低至5℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至12℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例1-4
丙烯预聚合物浆料的制备
将550kg己烷和7kg三乙基铝加入至催化剂配制罐,其中三乙基铝溶液质量浓度为 15%,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)34.5kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至8℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至15℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例1-5
丙烯预聚合物浆料的制备
将500kg己烷和7kg三乙基铝加入至催化剂配制罐,其中三乙基铝溶液质量浓度为15%,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)35.5kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至10℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为40kg/h,搅拌开启至40r/min,配制罐温度降低至20℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例1-6
丙烯预聚合物浆料的制备
将600kg己烷和7kg三乙基铝加入至催化剂配制罐,其中三乙基铝溶液质量浓度为15%,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)34.5kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为35kg/h,搅拌开启至40r/min,配制罐温度降低至12℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为40kg/h,搅拌开启至40r/min,配制罐温度降低至18℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例1-7
丙烯预聚合物浆料的制备
将500kg己烷和7.2kg三乙基铝加入至催化剂配制罐,其中三乙基铝溶液质量浓度 为15%,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)36kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为25kg/h,搅拌开启至40r/min,配制罐温度降低至14℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至20℃以下,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例1-8
丙烯预聚合物浆料的制备
将550kg己烷和5kg三乙基铝加入至催化剂配制罐,其中三乙基铝溶液质量浓度为15%,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)10kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为25kg/h,搅拌开启至40r/min,配制罐温度降低至9℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至16℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
将上述实施例1-1~实施例1-8制备的催化剂浆液分别用于对比例1~对比例8聚丙烯制备,进一步筛选出适宜的催化剂浆液。
实施例2
聚丙烯制备方法
液相本体聚合反应
将催化剂浆液、丙烯、助催化剂、外给电子体和适量氢气加入第一釜式反应器进行液相本体聚合,气相丙烯经过釜顶冷凝器回流至反应釜内,聚合温度为70℃,聚合压力为3.0MPa,液位为49%,实施例1-2制备的催化剂浆液进料量14.0kg/h,丙烯进料量5.7t/h,三乙基铝进料量0.8kg/h,环己基甲基二甲氧基硅烷进料量0.07kg/h,氢气进料量4.9Nm 2/h,氢气浓度为2890ppm。出口的反应浆料流速为4.5t/h。
第一釜式反应器出口浆料进入第二釜式反应器进行聚合反应,第二聚合釜温度为64℃,聚合压力为2.6MPa,液位为44%,在第二釜式聚合反应器加入氢气,氢气进料量2.0Nm 2/h,氢气浓度为1300ppm。出口的反应浆料流速为4.5t/h。
气相聚合反应
第二釜式反应器出口浆料进入气相流化床反应器进行聚合反应,聚合温度为80℃,聚合压力为1.8MPa,料位为51%。
聚丙烯干燥
气相流化床反应器出口物料首先进入旋风分离器进行物料气固分离,分离出来的固相聚丙烯粉料进入干燥器内,用对流的惰性气体干燥,干燥温度为105℃。
聚丙烯纯化
聚丙烯粉料经过惰性气体干燥后被输送至聚合物深度纯化罐,并加入一定量复合溶剂(己烷和乙醇复合溶剂,质量比为4:1)形成聚合物粉料浆液,浆液浓度为10%,在一定工艺条件(搅拌速度50rpm;浆液进料速度20t/h)下进行聚合物深度纯化,纯化温度为30℃,纯化时间为0.1h。深度纯化后的聚合物浆液经过离心分离得到聚合物湿粉料,湿粉料中溶剂占比为25%,再经过多级干燥(干燥温度105℃)工艺,脱除挥发性有机化合物。然后被输送至挤压造粒单元,得到电容膜超净聚丙烯树脂。
挤压造粒
将一种低灰分长效抗氧复合助剂(抗氧化剂1010是2000mg/kg,168是1000mg/kg,硬脂酸钙是80mg/kg)与干燥后的聚丙烯粉料同时加入到双螺杆挤出机进行挤压造粒(造粒温度是225℃,螺杆转速是120rpm),得到电容膜超净聚丙烯树脂。
实施例3
制备工艺同实施例2。
所不同的是:聚丙烯粉料经过惰性气体干燥后被输送至聚合物深度纯化罐,并加入一定量复合溶剂(己烷和乙醇复合溶剂,质量比为4:1)形成聚合物粉料浆液,浆液浓度为30%,在一定工艺条件下进行聚合物深度纯化,纯化温度为70℃,纯化时间为3h。深度纯化后的聚合物浆液经过离心分离得到聚合物湿粉料,湿粉料中溶剂占比为25%,再经过多级干燥(干燥温度105℃)工艺,脱除挥发性有机化合物。然后被输送至挤压造粒单元,得到电容膜超净聚丙烯树脂。
实施例4
制备工艺同实施例2。
所不同的是:聚丙烯粉料经过惰性气体干燥后被输送至聚合物深度纯化罐,并加入一定量复合溶剂(己烷和乙醇复合溶剂,质量比为4:1)形成聚合物粉料浆液,浆液浓度为40%,在一定工艺条件下进行聚合物深度纯化,纯化温度为120℃,纯化时间为5h。 深度纯化后的聚合物浆液经过离心分离得到聚合物湿粉料,湿粉料中溶剂占比为25%,再经过多级干燥(干燥温度105℃)工艺,脱除挥发性有机化合物。然后被输送至挤压造粒单元,得到电容膜超净聚丙烯树脂。
实施例5
制备工艺同实施例2。
所不同的是:聚丙烯粉料经过惰性气体干燥后被输送至聚合物深度纯化罐,并加入一定量复合溶剂(己烷和乙醇复合溶剂,质量比为4:1)形成聚合物粉料浆液,浆液浓度为35%,在一定工艺条件下进行聚合物深度纯化,纯化温度为60℃,纯化时间为1h。深度纯化后的聚合物浆液经过离心分离得到聚合物湿粉料,湿粉料中溶剂占比为25%,再经过多级干燥(干燥温度105℃)工艺,脱除挥发性有机化合物。然后被输送至挤压造粒单元,得到电容膜超净聚丙烯树脂。
实施例6
制备工艺同实施例2。
所不同的是:聚丙烯粉料经过惰性气体干燥后被输送至聚合物深度纯化罐,并加入一定量复合溶剂(己烷和乙醇复合溶剂,质量比为4:1)形成聚合物粉料浆液,浆液浓度为40%,在一定工艺条件下进行聚合物深度纯化,纯化温度为60℃,纯化时间为1h。深度纯化后的聚合物浆液经过离心分离得到聚合物湿粉料,湿粉料中溶剂占比为25%,再经过多级干燥(干燥温度105℃)工艺,脱除挥发性有机化合物。然后被输送至挤压造粒单元,得到电容膜超净聚丙烯树脂。
实施例7
制备工艺同实施例2。
所不同的是:将一种低灰分长效抗氧复合助剂(抗氧化剂1010是5000mg/kg,168是1600mg/kg,硬脂酸钙是40mg/kg)与干燥后的聚丙烯粉料同时加入到双螺杆挤出机进行挤压造粒(造粒温度是225℃,螺杆转速是120rpm),得到电容膜超净聚丙烯树脂。
实施例8
制备工艺同实施例2。
所不同的是:将一种低灰分长效抗氧复合助剂(抗氧化剂1010是10000mg/kg,168是1200mg/kg,硬脂酸钙是30mg/kg)与干燥后的聚丙烯粉料同时加入到双螺杆挤出机进行挤压造粒(造粒温度是225℃,螺杆转速是120rpm),得到电容膜超净聚丙烯树脂。对 上述实施例2~实施例8制备的聚丙烯树脂进行性能测定,结果如表1所示。
表1聚丙烯树脂性能
  熔体流动速率/g/10min 灰分/ppm 等规度/%
实施例2 3.1 20 99.0
实施例3 3.1 21 99.2
实施例4 3.0 19 99.2
实施例5 3.1 25 99.3
实施例6 3.0 29 99.3
实施例7 3.1 22 99.0
实施例8 3.1 23 99.0
实施例9
丙烯预聚合:
将500kg己烷和7kg三乙基铝溶液(于己烷溶剂中,质量浓度为15%)加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)25kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1500kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为10kg/h,搅拌开启至40r/min,配制罐温度降低至-5℃以下,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为15kg/h,搅拌开启至40r/min,配制罐温度降低至5℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述丙烯预聚合物浆料转移至储罐备用。
液相本体聚合:
将丙烯预聚合物浆料、丙烯、助催化剂、外给电子体和适量氢气加入第一釜式反应器进行液相本体聚合,气相丙烯经过釜顶冷凝器回流至反应釜内,聚合温度为70℃,聚合压力为3.0MPa,液位为49%,预聚合物浆液进料量14.0kg/h,丙烯进料量5.7t/h,三乙基铝溶液进料量0.8kg/h,9,9-二(甲氧基甲基)芴进料量0.07kg/h,氢气进料量4.9Nm 2/h,氢气浓度为2890ppm。出口的反应浆料流速为4.5t/h。
第一釜式反应器出口浆料进入第二釜式反应器进行聚合反应,第二聚合釜温度为 64℃,聚合压力为2.6MPa,液位为44%,在第二釜式聚合反应器加入氢气,氢气进料量2.0Nm 2/h,氢气浓度为1300ppm。出口的反应浆料流速为4.5t/h。
气相聚合:
第二釜式反应器出口浆料进入气相流化床反应器进行聚合反应,聚合温度为80℃,聚合压力为1.8MPa,料位为51%。
聚丙烯干燥:
气相流化床反应器出口物料首先进入旋风分离器进行物料气固分离,分离出来的固相聚丙烯粉料进入干燥器内,用对流的氮气气体干燥,干燥温度为105℃。
纯化:
聚丙烯粉料经过惰性气体干燥后被输送至聚合物深度纯化罐,并加入一定量复合溶剂(己烷和乙醇复合溶剂,质量比为4:1)形成聚合物粉料浆液,浆液浓度为30%,在一定工艺条件(搅拌速度50rpm,浆液进料速度20t/h)下进行聚合物深度纯化,纯化温度为60℃,纯化时间为0.5h。深度纯化后的聚合物浆液经过离心分离得到聚合物湿粉料,湿粉料中溶剂占比为25%,再经过多级干燥(干燥温度105℃)工艺,脱除挥发性有机化合物。然后被输送至挤压造粒单元,得到电容膜超净聚丙烯树脂。
挤压造粒:
将一种低灰分长效抗氧复合助剂(抗氧化剂1010是2000mg/kg,168是1000mg/kg,硬脂酸钙是80mg/kg)与干燥后的聚丙烯粉料同时加入到双螺杆挤出机进行挤压造粒(造粒温度是225℃,螺杆转速是120rpm),得到电容膜超净聚丙烯树脂。
实施例10
制备工艺同实施例9。
所不同的是:将400kg己烷和7kg三乙基铝溶液加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)30kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为45kg/h,搅拌开启至40r/min,配制罐温度降低至15℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为55kg/h,搅拌开启至40r/min,配制罐温度降低至35℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例11
制备工艺同实施例9。
所不同的是:将500kg己烷和7kg三乙基铝溶液加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)32.5kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入700kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为25kg/h,搅拌开启至40r/min,配制罐温度降低至5℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至12℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例12
制备工艺同实施例9。
所不同的是:将550kg己烷和7kg三乙基铝溶液加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)34.5kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至8℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至15℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例13
制备工艺同实施例9。
所不同的是:将500kg己烷和7kg三乙基铝溶液加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)35.5kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至10℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为40kg/h,搅拌开启至40r/min,配制罐温度降低至20℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例14
制备工艺同实施例9。
所不同的是:将600kg己烷和7kg三乙基铝溶液加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)34.5kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为35kg/h,搅拌开启至40r/min,配制罐温度降低至12℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为40kg/h,搅拌开启至40r/min,配制罐温度降低至18℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例15
制备工艺同实施例9。
所不同的是:将500kg己烷和7.2kg三乙基铝溶液加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)36kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为25kg/h,搅拌开启至40r/min,配制罐温度降低至14℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至20℃以下,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
实施例16
制备工艺同实施例9。
所不同的是:将550kg己烷和5kg三乙基铝溶液加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)10kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1400kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为25kg/h,搅拌开启至40r/min,配制罐温度降低至9℃,预聚合1h;在预聚合第二阶段,调整丙烯加料速率为30kg/h,搅拌开启至40r/min,配制罐温度降低至16℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述预聚合物浆料转移至储罐备用。
对上述实施例9~实施例16制备的聚丙烯树脂进行性能测定,结果如表2所示。
表2聚丙烯树脂性能
  熔体流动速率/g/10min 灰分/ppm 细粉率(<125μm)/wt%
实施例9 3.0 25 0.35
实施例10 3.1 27 0.45
实施例11 3.0 23 0.49
实施例12 3.0 26 0.43
实施例13 2.9 24 0.39
实施例14 2.9 27 0.40
实施例15 3.1 23 0.41
实施例16 3.0 22 0.42
对比例1
聚丙烯制备方法
液相本体聚合反应
将催化剂浆液、丙烯、助催化剂、外给电子体和适量氢气加入第一釜式反应器进行液相本体聚合,气相丙烯经过釜顶冷凝器回流至反应釜内,聚合温度为70℃,聚合压力为3.0MPa,液位为49%,实施例1-1制备的催化剂浆液进料量15.0kg/h,丙烯进料量5.7t/h,三乙基铝进料量0.8kg/h,环己基甲基二甲氧基硅烷进料量0.07kg/h,氢气进料量4.9Nm 2/h,氢气浓度为1000ppm。
第一釜式反应器出口浆料进入第二釜式反应器进行聚合反应,第二聚合釜温度为64℃,聚合压力为2.6MPa,液位为44%,在第二釜式聚合反应器加入氢气,氢气进料量2.0Nm 2/h,氢气浓度为1300ppm。
气相聚合反应
第二釜式反应器出口浆料进入气相流化床反应器进行聚合反应,聚合温度为80℃,聚合压力为1.8MPa,料位为51%。
聚丙烯干燥
气相流化床反应器出口物料首先进入旋风分离器进行物料气固分离,分离出来的固相聚丙烯粉料进入干燥器内,用对流的惰性气体干燥,干燥温度为105℃。
挤压造粒
将一种低灰分长效抗氧复合助剂与干燥后的聚丙烯粉料同时加入到双螺杆挤出机进行挤压造粒,得到电容膜超净聚丙烯树脂。
对比例2
制备工艺同对比例1。
所不同的是选用实施例1-2制备的催化剂浆液,第一釜式反应器催化剂浆液进料量11.0kg/h,丙烯进料量5.7t/h,三乙基铝进料量0.57kg/h,氢气进料量4.9Nm 2/h,氢气浓度为3000ppm。
对比例3
制备工艺同对比例1。
所不同的是选用实施例1-3制备的催化剂浆液,进料量14.5kg/h。
对比例4
制备工艺同对比例1。
所不同的是选用实施例1-4制备的催化剂浆液,进料量16.2kg/h。
对比例5
制备工艺同对比例1。
所不同的是选用实施例1-5制备的催化剂浆液,进料量16.3kg/h。
对比例6
制备工艺同对比例1。
所不同的是选用实施例1-6制备的催化剂浆液,进料量16.0kg/h。
对比例7
制备工艺同对比例1。
所不同的是选用实施例1-7制备的催化剂浆液,进料量15.8kg/h。
对比例8
制备工艺同对比例1。
所不同的是选用实施例1-8制备的催化剂浆液,进料量15.6kg/h。
对上述对比例1~对比例8制备的聚丙烯树脂进行性能测定,结果如表3所示。
表3聚丙烯树脂性能
   熔体流动速率/g/10min 灰分/ppm 等规度/%
对比例1 3.0 38 98.4
对比例2 3.1 30 98.3
对比例3 3.0 36 98.2
对比例4 3.0 40 98.1
对比例5 2.9 45 98.2
对比例6 2.9 42 98.0
对比例7 3.1 39 98.3
对比例8 3.0 37 98.1
对比例9
丙烯预聚合:
将500kg己烷和7kg三乙基铝溶液加入至催化剂配制罐,加入以氯化镁为载体的钛金属催化剂(北京奥达HA-R催化剂)25kg,搅拌形成均匀的悬浊液,用冷冻盐水将配制罐温度降低至5℃以下,再加入1500kg新鲜己烷调节催化剂浆液浓度,搅拌开启至80r/min。在预聚合第一阶段,打开气相丙烯自动加料阀门,调整丙烯加料速率为15kg/h,搅拌开启至40r/min,配制罐温度降低至5℃,预聚合至100kg丙烯全部消耗,得到丙烯预聚合物浆料,将上述丙烯预聚合物浆料转移至储罐备用。
液相本体聚合:
将丙烯预聚合物浆料、丙烯、助催化剂、外给电子体和适量氢气加入第一釜式反应器进行液相本体聚合,气相丙烯经过釜顶冷凝器回流至反应釜内,聚合温度为70℃,聚合压力为3.0MPa,液位为49%,丙烯预聚合物浆料进料量14.0kg/h,丙烯进料量5.7t/h,三乙基铝进料量0.8kg/h,9,9-二(甲氧基甲基)芴进料量0.07kg/h,氢气进料量4.9Nm 2/h,氢气浓度为2890ppm。出口的反应浆料流速为4.5t/h。
第一釜式反应器出口浆料进入第二釜式反应器进行聚合反应,第二聚合釜温度为64℃,聚合压力为2.6MPa,液位为44%,在第二釜式聚合反应器加入氢气,氢气进料量2.0Nm 2/h,氢气浓度为1300ppm。出口的反应浆料流速为4.5t/h。
气相聚合:
第二釜式反应器出口浆料进入气相流化床反应器进行聚合反应,聚合温度为80℃,聚合压力为1.8MPa,料位为51%。
聚丙烯干燥:
气相流化床反应器出口物料首先进入旋风分离器进行物料气固分离,分离出来的固相聚丙烯粉料进入干燥器内,用对流的氮气干燥,干燥温度为105℃。
聚丙烯纯化:
聚丙烯粉料经过氮气干燥后被输送至聚合物深度纯化罐,并加入一定量复合溶剂(己烷和乙醇复合溶剂,质量比为4:1)形成聚合物粉料浆液,浆液浓度为30%,在一定工艺条件(搅拌速度50rpm;浆液进料速度20t/h)下进行聚合物深度纯化,纯化温度为60℃,纯化时间为0.5h。深度纯化后的聚合物浆液经过离心分离得到聚合物湿粉料,湿粉料中溶剂占比为25%,再经过多级干燥(干燥温度105℃)工艺,脱除挥发性有机化合物。然后被输送至挤压造粒单元,得到电容膜超净聚丙烯树脂。
挤压造粒:
将一种低灰分长效抗氧复合助剂(抗氧化剂1010是2000mg/kg,168是1000mg/kg,硬脂酸钙是80mg/kg)与干燥后的聚丙烯粉料同时加入到双螺杆挤出机进行挤压造粒(造粒温度是225℃,螺杆转速是120rpm),得到电容膜超净聚丙烯树脂。
对比例10
制备工艺除缺少丙烯预聚外与对比例9相同。
对比例11
制备工艺同对比例10。
所不同的是:丙烯预聚合物浆料进料量15.0kg/h。
对比例12
制备工艺同对比例10。
所不同的是:丙烯预聚合物浆料进料量16.0kg/h。
对比例13
制备工艺同对比例10。
所不同的是:丙烯预聚合物浆料进料量17.0kg/h。
对上述对比例9~对比例13制备的聚丙烯树脂进行性能测定,结果如表4所示。
表4聚丙烯树脂性能
  熔体流动速率/g/10min 灰分/ppm 细粉率(<125μm)/%
对比例1 3.1 28 1.5
对比例2 3.1 30 3.0
对比例3 3.1 33 2.9
对比例4 3.0 35 3.2
对比例5 3.1 34 3.0
由表2和表4可知,在液相本体聚合之前,通过增加丙烯预聚合工艺流程,制备的聚丙烯树脂灰分明显降低,改善了树脂的电气性能,同时聚丙烯粉料细粉率明显下降,更有利于装置稳定运行。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (38)

  1. 一种超洁净聚丙烯树脂的制备方法,其特征在于,该制备方法包括:丙烯预聚合、液相本体聚合、气相聚合、聚丙烯干燥、纯化和挤压造粒;
    丙烯预聚合:
    在预聚反应器中,配置催化剂浆料,所述催化剂浆料包括主催化剂、助催化剂和溶剂;然后通入丙烯进行预聚合反应,得到预聚合物浆料;
    液相本体聚合:
    以丙烯为原料,在所述预聚合物浆料、助催化剂、外给电子体和氢气存在下进行聚合反应得到聚丙烯粗产品浆料;所述外给电子体为9,9-二(甲氧基甲基)芴;
    气相聚合:
    液相本体聚合得到的聚丙烯粗产品浆料进入气相流化床反应器进行聚合反应;
    聚丙烯干燥:
    气相流化床反应器出口物料首先进行气固分离,固相成分进入干燥器进行干燥得到聚丙烯粉料;
    纯化:
    将干燥后的聚丙烯粉料使用复合溶剂配置成浆液,搅拌进行纯化;然后将浆液进行固液分离,得到聚丙烯湿粉料,干燥后得到超洁净聚丙烯粉料;
    挤压造粒:
    将纯化后的超洁净聚丙烯粉料与抗氧化复合助剂混合后挤压造粒,得到所述超洁净聚丙烯树脂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述预聚合反应包括两个阶段:第一阶段,预聚合温度为-5℃~15℃,丙烯加料速率为10~45kg/h,预聚合时间为0.5~3h;第二阶段,预聚合温度为5℃~35℃,丙烯加料速率为15~55kg/h,直至预聚合用丙烯全部加入预聚反应器。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述丙烯预聚合过程中,丙烯与主催化剂的质量比为2.5~10kg/kg,助催化剂与主催化剂的质量比为0.027~0.075kg/kg。
  4. 根据权利要求1所述的制备方法,其特征在于,所述催化剂浆料中的溶剂选自丁烷、戊烷、己烷、庚烷、辛烷、壬烷和癸烷中的一种或多种的混合。
  5. 根据权利要求1所述的制备方法,其特征在于,所述主催化剂为Z-N系列催化剂,包括MgCl 2载体、TiCl 4活性中心和内给电子体;所述内给电子体选自烷基取代1,3-二醚类、芳基取代1,3-二醚类、丁二酸酯类、丙二酸酯类和二醇酯类中的一种或多种的组合。
  6. 根据权利要求1所述的制备方法,其特征在于,所述助催化剂为烷基铝化合物。
  7. 根据权利要求1所述的制备方法,其特征在于,所述液相本体聚合包括以下步骤:
    将丙烯、预聚合物浆料、助催化剂、外给电子体和氢气加入第一反应容器,在温度60℃~75℃下,压力2.5~3.5MPa下进行聚合反应;第一反应容器出口的反应浆料流动速率为4.0~4.5g/10min;第一反应容器中的氢气浓度为1000~3000ppm;然后将反应浆料加入第二反应容器,并通入氢气,在温度60℃~75℃下,压力2.5~3.5MPa下进行聚合反应,第二反应容器出口的反应浆料流动速率为3.5~4.5g/10min,第二反应容器中的氢气浓度为1000~2000ppm。
  8. 根据权利要求1或7所述的制备方法,其特征在于,所述液相本体聚合过程中,所述主催化剂与丙烯的质量比为0.03~0.05kg/t;助催化剂与丙烯的质量比为0.015~0.0225kg/t;外给电子体与助催化剂的质量比为0~0.015kg/kg,不包括0。
  9. 根据权利要求1所述的制备方法,其特征在于,所述气相聚合过程中,所述聚合的温度为75~85℃,聚合压力为1.5~2.0MPa,气相流化床反应器出口聚丙烯粉料熔体流动速率为2.8~3.2g/10min,灰分小于30ppm,等规度大于98.5%。
  10. 根据权利要求1所述的制备方法,其特征在于,所述聚丙烯干燥过程中,所述固相成分进入干燥器被对流的氮气干燥;所述干燥的温度为100-110℃。
  11. 根据权利要求1所述的制备方法,其特征在于,所述纯化的温度为30~150℃,时间为0.1~5h。
  12. 根据权利要求1所述的制备方法,其特征在于,所述聚丙烯湿粉料中溶剂占比为15~35%,以聚丙烯粉料总质量为100%。
  13. 根据权利要求1所述的制备方法,其特征在于,所述纯化过程中,配置成的浆液中聚丙烯粉料的质量浓度为10~40%。
  14. 根据权利要求1所述的制备方法,其特征在于,所述超洁净聚丙烯粉料的灰分小于10ppm。
  15. 根据权利要求1所述的制备方法,其特征在于,所述复合溶剂包括烃类物质和烷基醇;所述烃类物质选自戊烷、己烷、庚烷、辛烷、壬烷或癸烷;所述烷基醇选自甲醇、乙醇、丙醇或丁醇;所述烃类物质和烷基醇的质量比为(2-6):1。
  16. 根据权利要求1所述的制备方法,其特征在于,所述挤压造粒所得到的所述超洁净聚丙烯树脂的灰分小于20ppm。
  17. 根据权利要求1所述的制备方法,其特征在于,抗氧化复合助剂包括除酸剂、主抗氧剂和辅抗氧剂;
    所述除酸剂选自金属硬脂酸盐和水滑石中的一种或多种的组合;所述超洁净聚丙烯粉料与除酸剂的质量比为(10000-100000):1;
    所述主抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-S-三嗪-2,4,6-(1H,3H,5H)三酮、β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯和1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷中的一种或多种的组合;所述超洁净聚丙烯粉料与主抗氧剂的质量比为(1000-10000):1;
    所述辅抗氧剂选自硫代二丙酸二月桂酯、硫代二丙酸双十八酯、硫代二丙酸二(十四)酯、亚磷酸三壬基苯酯、二亚磷酸二(十八)烷基季戊四醇酯、亚磷酸三(2,4-叔丁基苯基)酯和二亚磷酸双(2,4-二叔丁基苯基)季戊四醇酯中的一种或多种的组合;所述超洁净聚丙烯粉料与辅抗氧剂的质量比为(100-10000):1。
  18. 权利要求1~17任意一项所述的制备方法制备得到的超洁净聚丙烯树脂。
  19. 一种聚丙烯树脂的制备方法,其中,所述方法包括:
    以丙烯为原料进行聚合得到聚丙烯粗产品的步骤;以及
    将得到的聚丙烯粗产品进行纯化得到所述聚丙烯树脂的步骤;
    所述纯化包括将聚丙烯粗品加入复合溶剂中,在30-120℃下将聚丙烯粗品与复合溶剂进行充分接触形成聚丙烯浆液,然后将聚丙烯与复合溶剂分离得到聚丙烯粉料,将聚丙烯粉料干燥得到所述聚丙烯树脂。
  20. 根据权利要求19所述的制备方法,其中,所述复合溶剂为至少一种选自碳原子数为1~10的烷基醇和至少一种选自碳原子数为5~20的常温下为液态的烷烃的混合溶剂。
  21. 根据权利要求19或20所述的制备方法,其中,所述充分接触包括在搅拌条件下,将聚丙烯粗品与复合溶剂接触0.1~5h。
  22. 根据权利要求19~21任意一项所述的制备方法,其中,聚丙烯浆液中的聚丙烯质量浓度为10-40%。
  23. 根据权利要求19~22任意一项所述的制备方法,其中,所述纯化包括利用离心将聚丙烯与复合溶剂分离得到聚丙烯粉料,然后在95~120℃下将聚丙烯粉料干燥得到所述聚丙烯树脂。
  24. 根据权利要求19~23任意一项所述的制备方法,其中,所述方法还包括将得到的所述聚丙烯树脂与抗氧化复合助剂混合后挤压造粒的步骤。
  25. 根据权利要求24所述的制备方法,其中,所述抗氧化复合助剂选自除酸剂、主抗氧化剂和辅抗氧化剂中的组合;所述除酸剂选自金属硬脂酸盐和水滑石中的一种或多种的组合;所述主抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-S-三嗪-2,4,6-(1H,3H,5H)三酮、β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯和1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷中的一种或多种的组合;辅抗氧剂选自硫代二丙酸二月桂酯、硫代二丙酸双十八酯、硫代二丙酸二(十四)酯、亚磷酸三壬基苯酯、二亚磷酸二(十八)烷基季戊四醇酯、亚磷酸三(2,4-叔丁基苯基)酯和二亚磷酸双(2,4-二叔丁基苯基)季戊四醇酯中的一种或多种的组合;以所述抗氧化复合助剂总质量为100%计,除酸剂、主抗氧化剂和辅抗氧化剂的质量百分比含量分别为0.1~1%、65~90%和9.4~34.4%。
  26. 根据权利要求24或25所述的制备方法,其中,以得到的聚丙烯树脂质量为100%计,抗氧化复合助剂的质量百分含量为0.2%~1%。
  27. 根据权利要求19~26任意一项所述的制备方法,其中,以丙烯为原料进行聚合的步骤包括:
    丙烯预聚合步骤:包括将一定量的丙烯在主催化剂和助催化剂存在下进行聚合反应以在催化剂颗粒表面形成聚丙烯薄层,并得到预聚合物浆料,其中预聚合步骤的丙烯与主催化剂的质量比为2.5~10kg/kg,预聚合步骤的助催化剂与主催化剂的质量比为0.18~0.5kg/kg;
    聚合步骤:包括以丙烯为原料,在所述预聚合物浆料、助催化剂、外给电子体和氢气存在下进行聚合反应得到聚丙烯粗产品。
  28. 根据权利要求27所述的制备方法,其中,丙烯预聚合步骤包括:在主催化剂和 助催化剂存在下,以10~45kg/h通入丙烯,在-5℃~15℃下聚合0.5~3h;然后再以15-55kg/h通入丙烯,在5℃~35℃下聚合,直至剩余丙烯全部加入预聚反应器。
  29. 根据权利要求19或28所述的制备方法,其中,丙烯预聚合步骤包括将主催化剂加入碳原子数为4~10的直链或支链烷烃中,主催化剂在所述的烷烃的溶液中的质量浓度为0.1~3%,再加入丙烯和助催化剂进行聚合反应。
  30. 根据权利要求27~29任意一项所述的制备方法,其中,主催化剂与聚合步骤加入的丙烯的质量比为0.03~0.05kg/t;聚合步骤加入的助催化剂与聚合步骤加入的丙烯的质量比为0.1~0.15kg/t;外给电子体与聚合步骤加入的助催化剂的质量比为0~0.1kg/kg。
  31. 根据权利要求27~30任意一项所述的制备方法,其中,所述聚合步骤包括:
    液相本体聚合步骤:包括以丙烯为原料,在所述预聚合物浆料、助催化剂、外给电子体和氢气存在下,在温度60℃~75℃下,压力2.5~3.5MPa下进行液相本体聚合;
    气相聚合步骤:包括将液相本体聚合得到的浆料在温度75℃~85℃下,压力1.5~2.0MPa下进行气相聚合得到聚丙烯粗产品。
  32. 根据权利要求31所述的制备方法,其中,所述液相本体聚合步骤包括将丙烯、预聚合物浆料、助催化剂、外给电子体和氢气加入第一反应容器,在温度60℃~75℃下,压力2.5~3.5MPa下进行聚合反应,第一反应容器出口的反应浆料流速为4.0~4.5g/10min,第一反应容器中的氢气浓度为1000~3000ppm;然后将反应浆料加入第二反应容器,并通入氢气,在温度60℃~75℃下,压力2.5~3.5MPa下进行聚合反应,第二反应容器出口的反应浆料流速为3.5-4.5g/10min,第二反应容器中的氢气浓度为1000~2000ppm。
  33. 根据权利要求19~32任意一项所述的制备方法,其中,以丙烯为原料进行聚合的步骤还包括将聚合反应后得到的固体成分在95℃-115℃下进行干燥的步骤,从而得到聚丙烯粗产品。
  34. 根据权利要求19~33任意一项所述的制备方法,其中,所述主催化剂为Z-N系列催化剂;助催化剂为烷基铝化合物;外给电子体选自环己基二甲氧基甲基硅烷、对二环戊基二甲氧基硅烷、二异丙基二甲氧基硅烷和二异丁基二甲氧基硅烷中的一种或多种的组合。
  35. 根据权利要求34所述的制备方法,其中,所述Z-N系列催化剂为以MgCl 2为载体,TiCl 4为活性中心,以选自烷基取代1,3-二醚类、芳基取代1,3-二醚类、丁二酸酯类 和丙二酸酯中的一种为内给电子体的催化剂中的一种或多种的组合。
  36. 根据权利要求34所述的制备方法,其中,所述烷基铝化合物选自三烷基铝、烷基铝氧烷、三烷基铝与烷基铝卤化物的组合、或者三烷基铝与烷基铝氢化物的组合中的一种或多种的组合。
  37. 权利要求19~36任意一项所述的制备方法制备得到的聚丙烯树脂。
  38. 根据权利要求37所述的聚丙烯树脂,其中,所述聚丙烯树脂为与抗氧化复合助剂混合后挤压造粒得到的聚丙烯树脂,其灰分不大于30ppm。
PCT/CN2022/135817 2021-12-30 2022-12-01 聚丙烯树脂及其制备方法 WO2023124742A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111660076.3 2021-12-30
CN202111660076.3A CN116410373A (zh) 2021-12-30 2021-12-30 一种聚丙烯树脂及其制备方法
CN202211069952.XA CN117683158A (zh) 2022-09-02 2022-09-02 一种超洁净聚丙烯树脂及其制备方法
CN202211069952.X 2022-09-02

Publications (1)

Publication Number Publication Date
WO2023124742A1 true WO2023124742A1 (zh) 2023-07-06

Family

ID=86997581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135817 WO2023124742A1 (zh) 2021-12-30 2022-12-01 聚丙烯树脂及其制备方法

Country Status (1)

Country Link
WO (1) WO2023124742A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219329A (ja) * 2009-03-17 2010-09-30 Prime Polymer Co Ltd フィルムコンデンサ用ポリプロピレンフィルムの製造方法
CN101896511A (zh) * 2007-12-14 2010-11-24 道达尔石油化学产品研究弗吕公司 制造具有低灰分含量的双模态聚丙烯的方法
CN102040690A (zh) * 2009-10-20 2011-05-04 中国石油化工股份有限公司 一种低灰分聚丙烯的制备方法
KR101300346B1 (ko) * 2012-05-08 2013-08-28 삼성토탈 주식회사 고순도의 폴리프로필렌 수지 및 이의 제조방법
JP2014195110A (ja) * 2014-05-26 2014-10-09 Prime Polymer Co Ltd フィルムコンデンサ用ポリプロピレンフィルムの製造方法
CN104761814A (zh) * 2015-03-30 2015-07-08 青岛科技大学 一种聚烯烃合金的制备方法
CN108137833A (zh) * 2015-10-16 2018-06-08 博里利斯股份公司 由丙烯聚合物组合物制成的双轴取向膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086568A1 (en) * 2007-04-24 2011-04-14 Total Petrochemicals Research Feluy Spunbond nonwovens made from high-crystallinity propylene polymer
CN101896511A (zh) * 2007-12-14 2010-11-24 道达尔石油化学产品研究弗吕公司 制造具有低灰分含量的双模态聚丙烯的方法
JP2010219329A (ja) * 2009-03-17 2010-09-30 Prime Polymer Co Ltd フィルムコンデンサ用ポリプロピレンフィルムの製造方法
CN102040690A (zh) * 2009-10-20 2011-05-04 中国石油化工股份有限公司 一种低灰分聚丙烯的制备方法
KR101300346B1 (ko) * 2012-05-08 2013-08-28 삼성토탈 주식회사 고순도의 폴리프로필렌 수지 및 이의 제조방법
JP2014195110A (ja) * 2014-05-26 2014-10-09 Prime Polymer Co Ltd フィルムコンデンサ用ポリプロピレンフィルムの製造方法
CN104761814A (zh) * 2015-03-30 2015-07-08 青岛科技大学 一种聚烯烃合金的制备方法
CN108137833A (zh) * 2015-10-16 2018-06-08 博里利斯股份公司 由丙烯聚合物组合物制成的双轴取向膜

Similar Documents

Publication Publication Date Title
EP3241864A1 (en) Flame retardant, composite flame retardant, flame retardant antistatic composition and flame resistant method
CA1070898A (en) Process for the preparation of polyethylene in accordance with the high pressure, high temperature processes which use a catalyst of the ziegler type
CN101421318B (zh) 具有低灰分含量的丙烯聚合物的制造方法
CN111295399B (zh) 基于丙烯的抗冲共聚物及生产方法和设备
CA2198177C (en) High-molecular-weight polypropylene having a broad molecular-weight distribution
CN102030841A (zh) 一种丙烯气相聚合方法
PL188615B1 (pl) Sposób wytwarzania wielkocząsteczkowej mieszanki reaktorowej zawierającej wielkocząsteczkowy kopolimer etylen/propylen i małocząsteczkowy polipropylen
CN113845613B (zh) 一种高纯度超高分子量聚乙烯树脂及其生产工艺
CN113637105B (zh) 一种低晶点低黄色指数san树脂的制备方法
CN212532823U (zh) 三元共聚聚丙烯的生产装置
WO2023124742A1 (zh) 聚丙烯树脂及其制备方法
CN111635470B (zh) 一种高熔指聚丙烯树脂及其制备方法
CN116410373A (zh) 一种聚丙烯树脂及其制备方法
CN117683158A (zh) 一种超洁净聚丙烯树脂及其制备方法
CN102453282A (zh) 一种聚丙烯组合物及其制备方法
Zahedi et al. New penta-ether as the internal donor in the MgCl 2-supported Ziegler-Natta catalysts for propylene polymerization
JP3973248B2 (ja) コンデンサー絶縁フィルム
CN112457436A (zh) 一种高熔指聚丙烯及其制备方法
CN112876591A (zh) 一种电池隔膜用聚丙烯树脂的工业化生产方法
CN113817083B (zh) 一种温度敏感型超高分子量聚乙烯催化剂、制备方法及其应用
CN115260347B (zh) 一种高等规度聚丙烯的生产系统及方法
JP3618130B2 (ja) ポリプロピレン延伸フィルム
CN114316110B (zh) 丙烯-丁烯无规共聚物的生产系统和制备方法
CN114181466A (zh) 制备双峰聚丙烯的方法及系统
CN115558195B (zh) 一种兼具高流动性、刚性的高抗冲共聚聚丙烯及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913997

Country of ref document: EP

Kind code of ref document: A1