WO2023124184A1 - 一种混合动力车辆的驱动装置 - Google Patents

一种混合动力车辆的驱动装置 Download PDF

Info

Publication number
WO2023124184A1
WO2023124184A1 PCT/CN2022/116685 CN2022116685W WO2023124184A1 WO 2023124184 A1 WO2023124184 A1 WO 2023124184A1 CN 2022116685 W CN2022116685 W CN 2022116685W WO 2023124184 A1 WO2023124184 A1 WO 2023124184A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
motor
gear
engine
clutch
Prior art date
Application number
PCT/CN2022/116685
Other languages
English (en)
French (fr)
Inventor
缪祺恺
何礼华
李敏
Original Assignee
上海纳铁福传动系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海纳铁福传动系统有限公司 filed Critical 上海纳铁福传动系统有限公司
Publication of WO2023124184A1 publication Critical patent/WO2023124184A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to the technical field of hybrid electric vehicles, in particular to a driving device of a hybrid electric vehicle.
  • a hybrid vehicle is equipped with an engine and an electric motor as drive sources, and is also equipped with a generator.
  • a hybrid vehicle is driven by the engine when the vehicle is running at high speed, and the power of the pure electric side (motor drive side) cannot be completely decoupled.
  • the consumption will limit the fuel consumption or power consumption of the vehicle, and if the motor is not allowed to work, the design cost of the inverter system will be too high due to the back electromotive force of the motor itself. Therefore, reducing the motor loss when the vehicle is running at high speed has become an urgent problem to be solved.
  • the technical problem to be solved by the present invention is to provide a driving device for a hybrid vehicle, which can reduce the motor loss when the vehicle runs at high speed, so as to overcome the above-mentioned defects in the prior art.
  • a driving device of a hybrid vehicle transmits the power from the engine to the half shaft of the driving wheel, and the driving device also transmits the power from the electric motor to the half shaft
  • the motor shaft and the motor intermediate shaft are arranged in parallel in the power transmission path from the motor to the half shaft.
  • the motor shaft is connected to the rotor shaft of the motor.
  • Countershaft bull gear and disconnect assembly, motor countershaft pinion meshes with differential gear of differential, differential connects half shaft, motor countershaft bull gear meshes with motor shaft gear, disconnect assembly or Disconnect power transmission between the motor countershaft bull gear and the motor countershaft pinion.
  • the disconnection assembly is a hydraulic drive assembly
  • a pump and a clutch are arranged in the power transmission path from the engine to the half shaft, the clutch connects or disconnects the power from the engine, and the pump generates the driving pressure through the power from the engine and converts the driving pressure Transmission to clutch and disconnect components.
  • the motor intermediate shaft pinion is fixed on the motor intermediate shaft
  • the motor intermediate shaft large gear is provided on the motor intermediate shaft so as to be rotatable in the circumferential direction
  • the disconnecting assembly includes an axially movable device arranged on the motor intermediate shaft small
  • the active pressure plate between the gear and the large gear of the middle shaft of the motor and the retaining spring elastically pressing in the axial direction between the small gear of the middle shaft of the motor and the driving pressure plate, the two sides of the active pressure plate are respectively connected with the small gear of the middle shaft of the motor and the
  • the large gear of the middle shaft of the electric motor is connected through splines that transmit torque, and the driving pressure generated by the pump through the power from the engine is transmitted to the active pressure plate and drives the active pressure plate to move towards the small gear of the middle shaft of the electric motor.
  • a thrust bearing is provided between the large gear of the intermediate shaft of the motor and the small gear of the intermediate shaft of the motor, and a needle bearing is provided between the large gear of the intermediate shaft of the motor and the intermediate shaft of the motor.
  • the driving pressure generated by the pump through the power from the engine is transmitted to the disconnecting assembly and the clutch through the first high-pressure pipeline and the second high-pressure pipeline, respectively.
  • the clutch has a clutch shaft
  • the pump has a pump shaft
  • the pump shaft and the clutch shaft are arranged in parallel at intervals along the horizontal direction.
  • the pump shaft is provided with a pump shaft gear
  • the pump shaft gear is connected to the clutch
  • the pump shaft gear meshes with the engine shaft gear
  • the engine shaft gear is arranged on the engine shaft
  • the engine shaft is connected to the crankshaft of the engine.
  • the clutch includes a first coupling member arranged on the clutch shaft and a second coupling member opposite to the first coupling member, the second coupling member is connected to the large gear of the clutch shaft, the large gear of the clutch shaft meshes with the gear of the pump shaft, and the clutch A clutch shaft pinion is arranged on the shaft, and the clutch shaft pinion meshes with the differential gear.
  • the driving device also transmits the power from the engine to the generator, and the rotor shaft and the half shaft of the generator are arranged in parallel at intervals along the horizontal direction.
  • an engine shaft and a generator shaft are arranged in parallel in the power transmission path from the engine to the generator, the engine shaft is connected to the crankshaft of the engine, the engine shaft is provided with an engine shaft gear, and the generator shaft is connected to the rotor shaft of the generator to generate electricity.
  • a generator shaft gear is arranged on the machine shaft, and the generator shaft gear meshes with the engine shaft gear.
  • a disconnecting assembly is provided on the intermediate shaft of the motor, and the disconnecting assembly connects or disconnects the power transmission between the large gear of the intermediate shaft of the motor and the pinion of the intermediate shaft of the motor.
  • the engine drives the half shaft to rotate to drive the vehicle to run at high speed.
  • the differential gear of the differential rotates, it drives the motor intermediate shaft pinion to rotate accordingly, and the motor intermediate shaft is disconnected through the disconnection assembly.
  • the power transmission between the gear and the motor intermediate shaft pinion can make the power transmission between the motor intermediate shaft large gear and the motor intermediate shaft pinion disconnected, only the motor intermediate shaft pinion rotates with the differential, and the motor intermediate shaft large
  • the gear no longer rotates with the differential, so the motor shaft gear, motor shaft and rotor shaft of the motor no longer follow the differential rotation, thus saving the large gear of the motor intermediate shaft, the motor shaft gear, and the motor shaft when the vehicle is running at high speed.
  • the rotating mechanical loss of the rotor shaft of the motor and the loss of the motor which further reduces the fuel consumption and power consumption of the vehicle, and can also reduce the selection requirements for the withstand voltage module of the inverter system.
  • the power transmission path from the motor to the semi-shaft can be made to work normally by disconnecting the component connecting the power transmission between the large gear of the motor intermediate shaft and the small gear of the motor intermediate shaft.
  • the drive device of the present invention can also support the non-decoupled power demand in the vehicle motion mode, without reducing the power demand in some special application scenarios.
  • FIG. 1 is a schematic structural view of a driving device for a hybrid vehicle according to an embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of a disconnection assembly in the driving device of a hybrid vehicle according to an embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
  • the left side refers to the left side of the paper of Figure 1
  • the right side refers to the right side of the paper of Figure 1
  • the front side refers to the upper side of the paper of Figure 1
  • the rear side refers to the paper of Figure 1.
  • the lower side of the surface, the upper side refers to the outer side of the paper in Figure 1
  • the lower side refers to the inner side of the paper in Figure 1.
  • the front and rear directions are also called the horizontal direction
  • the up and down directions are also called the vertical direction
  • the left and right directions are also called the is the vehicle axis.
  • the hybrid vehicle in this embodiment is equipped with an engine 2 , an electric motor 16 and a generator 8 .
  • the driving device 1 of this embodiment transmits the power from the engine 2 to the half shaft 12 of the drive wheel 13 to drive the half shaft 12 to rotate.
  • the driving device 1 of this embodiment also transmits the power from the motor 16 to the half shaft 12 to drive the half shaft 12 to rotate, and the rotor shaft 16a of the motor and the half shaft 12 are vertically spaced and arranged in parallel.
  • the driving device 1 of this embodiment also transmits the power from the engine 2 to the generator 8, and the rotor shaft 8a of the generator is arranged parallel to the half shaft 12 along the horizontal direction.
  • a motor shaft 15 and a motor intermediate shaft 14 are arranged in the power transmission path from the motor 16 to the half shaft 12 , and both the motor shaft 15 and the motor intermediate shaft 14 are arranged parallel to the half shaft 12 .
  • the motor shaft 15 is connected to the rotor shaft 16a of the motor, and the motor shaft 15 is coaxially connected to the rotor shaft 16a of the motor.
  • the motor shaft 15 is provided with a motor shaft gear 15a
  • the motor intermediate shaft 14 is provided with a motor intermediate shaft pinion 14a and a motor intermediate shaft large gear 14b
  • the motor intermediate shaft pinion 14a is in phase with the differential gear 11a of the differential 11.
  • the driving device 1 of the present embodiment transmits the power from the motor 16 to the half shaft 12 of the drive wheel 13, that is, the working principle of the power transmission path from the motor 16 to the half shaft 12 is:
  • the rotation of the rotor shaft 16a drives the motor shaft 15 to rotate
  • the motor shaft gear 15a rotates accordingly and drives the motor intermediate shaft large gear 14b to rotate
  • the rotation of the motor intermediate shaft large gear 14b drives the motor intermediate shaft 14 to rotate
  • the motor intermediate shaft pinion 14a It rotates accordingly and drives the differential gear 11 a to rotate, thereby transmitting the power from the electric motor 16 to the differential 11 and then to the axle shaft 12 through the differential 11 .
  • a disconnecting assembly 14c is provided on the motor intermediate shaft 14, and the disconnecting assembly 14c connects or disconnects the power transmission between the motor intermediate shaft large gear 14b and the motor intermediate shaft pinion 14a.
  • the engine 2 drives the half shaft 12 to rotate to drive the whole vehicle to run at high speed.
  • the differential gear 11a of the differential 11 When the differential gear 11a of the differential 11 rotates, it drives the motor intermediate shaft pinion 14a to rotate accordingly, and through the disconnection assembly 14c Disconnect the power transmission between the motor intermediate shaft gear 14b and the motor intermediate shaft pinion 14a, so that after the power transmission between the motor intermediate shaft gear 14b and the motor intermediate shaft pinion 14a is disconnected, only the motor intermediate shaft pinion 14a rotates with the differential 11, the motor intermediate shaft gear 14b no longer rotates with the differential 11, so that the motor shaft gear 15a, the motor shaft 15 and the rotor shaft 16a of the motor no longer follow the differential 11 to rotate, thus saving When the whole vehicle is running at high speed, the rotating mechanical loss of the motor intermediate shaft gear 14b, the motor shaft gear 15a, the motor shaft 15, and the rotor shaft 16a of the motor and the loss of the motor 16 are further reduced, and the fuel consumption and power consumption of the whole vehicle are further reduced.
  • the driving device 1 of this embodiment can also support the non-decoupled power demand in the vehicle sports mode, and will not reduce the power demand in some special application scenarios.
  • the disconnection assembly 14c is a hydraulic drive assembly.
  • a pump 6 and a clutch 7 are arranged in a power transmission path from the engine 2 to the half shaft 12 .
  • the clutch 7 connects or disconnects the power from the engine 2 to realize the transmission or disconnection of the power from the engine 2 to the half shaft 12 .
  • the pump 6 generates the driving pressure through the power from the engine 2 and transmits the driving pressure to the clutch 7 and the disconnecting assembly 14c.
  • the clutch 7 can be connected or disconnected according to the driving pressure from the pump 6, and the disconnecting assembly 14c can be connected or disconnected according to the driving pressure from the pump.
  • the driving pressure of 6 makes the power transmission between the motor countershaft bull gear 14b and the motor countershaft pinion 14a be in a connected or disconnected state.
  • the driving pressure generated by the pump 6 through the power from the engine 2 can be transmitted to the disconnecting assembly 14c through the first high-pressure pipeline 6a, and the driving pressure generated by the pump 6 through the power from the engine 2 can be transmitted through the second high-pressure pipeline 6b is transmitted to clutch 7.
  • the driving device 1 of this embodiment uses the pump 6 and the clutch 7 are arranged in the power transmission path from the engine 2 to the axle shaft 12, so that the pump 6 can be arranged within the length Ld of the casing 17 of the driving device 1 along the axial direction of the vehicle, that is, the pump 6 can be accommodated in the drive Therefore, there is no need to increase the layout space of the pump 6 outside the housing 17 of the drive device 1 in the axial direction of the vehicle, and the overall layout of the drive device 1 in the axial direction of the vehicle can be effectively reduced.
  • the pump 6 in the driving device 1 of the present embodiment generates driving pressure for the clutch 7 through the power from the engine 2, and when the vehicle is purely electric (only by the rotor of the motor shaft 16a rotates to drive the semi-shaft 12 to rotate), the pump 6 will not continue to rotate following the rotation of the rotor shaft 16a of the motor, and when the vehicle is running at a low speed or climbing a slope, the vehicle control system can actively control the engine 2
  • the rotation speed is used to adjust the power received by the pump 6 from the engine 2, thereby adjusting the driving pressure generated by the pump 6 by relying on this power, so that it meets the driving pressure required for the clutch 7 to be engaged, so that the power of the engine 2 can be coupled faster and It is transmitted to the half shaft 12 to improve the power performance and efficiency of the vehicle.
  • the disconnecting assembly 14c in the driving device 1 of this embodiment adopts a hydraulic drive assembly and is driven by the driving pressure generated by the pump 6 through the power from the engine 2 to make the motor intermediate shaft large gear 14b and the motor intermediate shaft pinion 14a
  • the power transmission between them is in a connected or disconnected state, which realizes the reduction of the loss of the motor 16 when the vehicle is running at high speed at the minimum cost without increasing the layout space occupied by the drive device 1 as a whole in the axial direction of the vehicle. .
  • the left and right ends of the motor intermediate shaft 14 are respectively supported on the motor intermediate shaft left bearing 14e and the motor intermediate shaft right bearing 14f, and the left end of the motor intermediate shaft 14 is provided with a locking bolt 14g .
  • the motor intermediate shaft pinion 14a is fixed on the motor intermediate shaft 14, and the motor intermediate shaft pinion 14a and the motor intermediate shaft 14 can be designed as an integral part.
  • the motor intermediate shaft gear 14b can be arranged on the motor intermediate shaft 14 in a circumferentially rotatable manner.
  • a thrust bearing 14c3 can be arranged between the motor intermediate shaft gear 14b and the motor intermediate shaft pinion 14a.
  • a needle roller bearing 14c4 is provided between the large shaft gear 14b and the intermediate shaft 14 of the motor. Through the needle bearing 14c4, there may be a speed difference between the large gear 14b of the intermediate shaft of the motor and the intermediate shaft 14 of the motor, that is, the large gear 14b of the intermediate shaft of the motor There may be a rotational speed difference with the motor countershaft pinion 14a.
  • the disconnecting assembly 14c includes a holding spring 14c1 and an active pressure plate 14c2.
  • the active pressure plate 14c2 is arranged between the motor intermediate shaft pinion gear 14a and the motor intermediate shaft large gear 14b so as to be movable in the axial direction.
  • the two sides of the active pressure plate 14c2 are respectively It is connected with the motor intermediate shaft pinion gear 14a and the motor intermediate shaft large gear 14b through the spline for torque transmission.
  • the retaining spring 14c1 elastically presses in the axial direction between the motor intermediate shaft pinion 14a and the driving pressure plate 14c2, and the retaining spring 14c1 always provides axial thrust.
  • the driving pressure generated by the pump 6 by the power from the engine 2 is transmitted to the driving platen 14c2 and drives the driving platen 14c2 to move toward the motor intermediate shaft pinion 14a.
  • the two sides of the active pressure plate 14c2 pass through the motor intermediate shaft pinion 14a and the motor intermediate shaft large gear 14b respectively by the axial thrust of the retaining spring 14c1.
  • the splines remain connected and transmit torque.
  • the disconnection assembly 14c is combined to make the power transmission between the motor countershaft bull gear 14b and the motor countershaft pinion 14a be in a connected state.
  • the driving pressure generated by the pump 6 can overcome the axial thrust of the holding spring 14c1 and drive the driving pressure plate 14c2 to move toward the motor intermediate shaft pinion 14a and compress the holding spring 14c1, so that the driving pressure plate 14c2 is separated from the motor intermediate shaft large gear 14b , the disconnection assembly 14c is disconnected, and the power transmission between the motor intermediate shaft gear 14b and the motor intermediate shaft pinion 14a is in a disconnected state.
  • 14a remains connected by splines and transmits torque, only the motor countershaft pinion 14a rotates with the differential 11.
  • the control of the driving pressure generated by the pump 6 can be realized by actively controlling the rotation speed of the engine shaft 4 by the vehicle control system, so that the disconnection component 14c can be connected or disconnected according to the needs of the vehicle motion mode.
  • the disconnect assembly 14c in the driving device 1 of this embodiment can also be designed as a normally engaged structure or a normally disconnected structure according to the performance requirements of different vehicles.
  • the disconnecting assembly 14c in the driving device 1 of this embodiment is not limited to the above-mentioned hydraulic driving assembly, and an electronic or electromagnetic driving assembly can also be used to realize the combination of the motor intermediate shaft gear 14b and the motor intermediate shaft pinion gear 14a and disconnect function.
  • the disconnection assembly 14c preferably adopts a hydraulic drive assembly to realize the coupling and disconnection functions of the motor countershaft bull gear 14b and the motor countershaft pinion 14a.
  • the clutch 7 has a clutch shaft 10
  • the pump 6 has a pump shaft 9
  • the engine shaft 4 , pump shaft 9 and clutch shaft 10 are arranged in the power transmission path from the engine 2 to the half shaft 12 , and the engine shaft 4 , pump shaft 9 and clutch shaft 10 are all arranged parallel to the half shaft 12 .
  • the pump shaft 9 and the clutch shaft 10 are arranged in parallel at intervals along the horizontal direction.
  • the pump shaft 9 is arranged on the front side of the line connecting the engine shaft 4 and the clutch shaft 10 to meet the optimization of the axial space and radial space arrangement of the vehicle.
  • the engine shaft 4 is connected to the crankshaft 2a of the engine, and the engine shaft 4 and the crankshaft 2a of the engine are preferably connected through a torque limiter 3 .
  • An engine shaft gear 4a is provided on the engine shaft 4 .
  • the pump shaft 9 is provided with a pump shaft gear 9a, the pump shaft gear 9a is connected to the clutch 7, and the pump shaft gear 9a is meshed with the engine shaft gear 4a.
  • the clutch 7 includes a first coupling member 7a fixed on the clutch shaft 10 and a second coupling member 7b opposite to the first coupling member 7a, which is realized by combining or separating the second coupling member 7b from the first coupling member 7a Clutch 7 is connected or disconnected.
  • the second coupling member 7b is connected to the clutch shaft gear 10b, the clutch shaft gear 10b meshes with the pump shaft gear 9a, the clutch shaft pinion 10a is arranged on the clutch shaft 10, and the differential speed between the clutch shaft pinion 10a and the differential 11 Mesh with gear 11a.
  • the driving device 1 of the present embodiment transmits the power from the engine 2 to the transmission principle of the half shaft 12 of the drive wheel 13, that is, the working principle of the power transmission path from the engine 2 to the half shaft 12 is:
  • the crankshaft 2a rotates to drive the engine shaft 4 to rotate
  • the engine shaft gear 4a rotates accordingly
  • the rotation of the pump shaft gear 9a drives the pump shaft 9 to rotate
  • the pump 6 generates driving pressure and passes through the second high-pressure pipeline 6b
  • the transmission is transmitted to the clutch 7, so that the first coupling member 7a and the second coupling member 7b of the clutch 7 move relative to each other to engage or disengage.
  • the pump shaft gear 9a rotating with the pump shaft 9 drives the clutch shaft large gear 10b to rotate, and the clutch shaft large gear 10b drives the second coupling member 7b to rotate, and drives the first coupling member 7a combined with it Rotate synchronously, the first coupling member 7a drives the clutch shaft 10 to rotate, the clutch shaft pinion 10a rotates accordingly and drives the differential gear 11a to rotate, thereby transmitting the power from the engine 2 to the differential 11 and passing through the differential 11 Transmission to half shaft 12.
  • an engine shaft 4 and a generator shaft 5 are arranged in the power transmission path from the engine 2 to the generator 8, and both the engine shaft 4 and the generator shaft 5 are parallel to the half shaft 12 layout.
  • the power transmission path from the engine 2 to the generator 8 and the power transmission path from the engine 2 to the half shaft 12 share the engine shaft 4 and the engine shaft gear 4 a.
  • the generator shaft 5 is connected to the rotor shaft 8a of the generator, and the generator shaft 5 is coaxially connected to the rotor shaft 8a of the generator.
  • a generator shaft gear 5a is provided on the generator shaft 5, and the generator shaft gear 5a meshes with the engine shaft gear 4a.
  • the drive device 1 of this embodiment transmits the power from the engine 2 to the generator 8, that is, the working principle of the power transmission path from the engine 2 to the generator 8 is: the crankshaft 2a of the engine rotates to drive the engine
  • the shaft 4 rotates
  • the engine shaft gear 4a rotates accordingly and drives the generator shaft gear 5a to rotate
  • the rotation of the generator shaft gear 5a drives the generator shaft 5 to rotate
  • the rotation of the generator shaft 5 drives the generator rotor shaft 8a to follow
  • the rotation of the motor transmits the power from the engine 2 to the generator 8.
  • the housing 17 of the driving device 1 of this embodiment may include a symmetrical left housing 17a and a right housing 17b, and the left housing 17a and the right housing 17b are butted at the parting surface 17c and formed on the vehicle axis. There is no arrangement space for the convex portion, constituting the inner space of the housing 17 .
  • the engine shaft 4 , the generator shaft 5 , the pump shaft 9 , the pump 6 , the clutch shaft 10 , the clutch 7 , the differential 11 , the motor intermediate shaft 14 and the motor shaft 15 are all arranged and accommodated in the inner space of the casing 17 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Gear Transmission (AREA)

Abstract

一种混合动力车辆的驱动装置,驱动装置将来自发动机(2)的动力传输至驱动轮(13)的半轴(12),驱动装置还将来自电动机(16)的动力传输至半轴(12),自电动机(16)至半轴(12)的动力传输路径中平行布置有电动机轴(15)和电动机中间轴(14),电动机轴(15)连接电动机(16)的转子轴(16a),电动机轴(15)上设有电动机轴齿轮(15a),电动机中间轴(14)上设有电动机中间轴小齿轮(14a)、电动机中间轴大齿轮(14b)和断开组件(14c),电动机中间轴小齿轮(14a)与差速器(11)的差速器齿轮(11a)相啮合,差速器(11)连接半轴(12),电动机中间轴大齿轮(14b)与电动机轴齿轮(15a)相啮合,断开组件(14c)连接或断开电动机中间轴大齿轮(14b)与电动机中间轴小齿轮(14a)间的动力传输。该混合动力车辆的驱动装置能够降低整车高速行驶时的电动机损耗,降低整车的油耗及电耗。

Description

一种混合动力车辆的驱动装置 技术领域
本发明涉及混合动力车辆技术领域,尤其涉及一种混合动力车辆的驱动装置。
背景技术
混合动力车辆配备有发动机和电动机作为驱动源,同时还配备有发电机。通常,混合动力车辆在整车高速行驶时由发动机驱动行驶,纯电动侧(电动机驱动侧)动力无法完全解耦,此时电动机由于本身外特性限制动力方面又无法发挥主导作用,电动机的高电耗会限制整车油耗或者电耗,而不让电动机工作的话又会因为电动机本身的反电动势造成逆变器系统设计成本过高。因此,降低整车高速行驶时的电动机损耗成为亟需解决的问题。
发明内容
本发明要解决的技术问题是提供一种混合动力车辆的驱动装置,能够降低整车高速行驶时的电动机损耗,以克服现有技术的上述缺陷。
为了解决上述技术问题,本发明采用如下技术方案:一种混合动力车辆的驱动装置,驱动装置将来自发动机的动力传输至驱动轮的半轴,驱动装置还将来自电动机的动力传输至半轴,自电动机至半轴的动力传输路径中平行布置有电动机轴和电动机中间轴,电动机轴连接电动机的转子轴,电动机轴上设有电动机轴齿轮,电动机中间轴上设有电动机中间轴小齿轮、电动机中间轴大齿轮和断开组件,电动机中间轴小齿轮与差速器的差速器齿轮相啮合,差速器连接半轴,电动机中间轴大齿轮与电动机轴齿轮相啮合,断开组件连接或断开电动机中间轴大齿轮与电动机中间轴小齿轮间的动力传输。
优选地,断开组件为液压驱动组件,自发动机至半轴的动力传输路径中布置有泵和离合器,离合器连接或断开来自发动机的动力,泵通过来自发动机的动力产生驱动压力并将驱动压力传输至离合器和断开组件。
优选地,电动机中间轴小齿轮固设于电动机中间轴上,电动机中间轴大齿轮可沿周向转动地设于电动机中间轴上,断开组件包括可沿轴向移动地设于电动机中间轴小齿轮与电动机中间轴大齿轮之间的主动压盘和沿轴向弹性顶压于电动机中间轴小齿轮与主动压盘之间的保持弹簧,主动压盘的两侧分别与电动机中间轴小齿轮和电动机中间轴大齿轮通过传递扭矩的 花键配合连接,泵通过来自发动机的动力产生的驱动压力传输至主动压盘并驱动主动压盘朝电动机中间轴小齿轮移动。
优选地,电动机中间轴大齿轮与电动机中间轴小齿轮之间设有推力轴承,电动机中间轴大齿轮与电动机中间轴之间设有滚针轴承。
优选地,泵通过来自发动机的动力产生的驱动压力分别经第一高压管路和第二高压管路传输至断开组件和离合器。
优选地,离合器具有离合器轴,泵具有泵轴,泵轴与离合器轴沿水平方向间隔平行布置。
优选地,泵轴上设有泵轴齿轮,泵轴齿轮连接离合器,泵轴齿轮与发动机轴齿轮相啮合,发动机轴齿轮设于发动机轴上,发动机轴连接发动机的曲轴。
优选地,离合器包括设于离合器轴上的第一结合构件和与第一结合构件相对的第二结合构件,第二结合构件连接离合器轴大齿轮,离合器轴大齿轮与泵轴齿轮相啮合,离合器轴上设有离合器轴小齿轮,离合器轴小齿轮与差速器齿轮相啮合。
优选地,驱动装置还将来自发动机的动力传输至发电机,发电机的转子轴与半轴沿水平方向间隔平行设置。
优选地,自发动机至发电机的动力传输路径中平行布置有发动机轴和发电机轴,发动机轴连接发动机的曲轴,发动机轴上设有发动机轴齿轮,发电机轴连接发电机的转子轴,发电机轴上设有发电机轴齿轮,发电机轴齿轮与发动机轴齿轮相啮合。
与现有技术相比,本发明具有显著的进步:
本发明的驱动装置中,在电动机中间轴上设有断开组件,断开组件连接或断开电动机中间轴大齿轮与电动机中间轴小齿轮间的动力传输。在整车高速行驶时,由发动机驱动半轴转动而驱动整车高速行驶,差速器的差速器齿轮转动时带动电动机中间轴小齿轮随之转动,通过断开组件断开电动机中间轴大齿轮与电动机中间轴小齿轮间的动力传输,可使得电动机中间轴大齿轮与电动机中间轴小齿轮间的动力传输断开后,仅有电动机中间轴小齿轮随差速器转动,电动机中间轴大齿轮不再跟随差速器转动,从而电动机轴齿轮、电动机轴以及电动机的转子轴亦不再跟随差速器转动,因此节省了整车高速行驶时电动机中间轴大齿轮、电动机轴齿轮、电动机轴以及电动机的转子轴的旋转机械损耗和电动机损耗,进一步降低了整车的油耗及电耗,同时也能够降低逆变器系统耐压模块的选型要求。在需要电动机驱动半轴转动以驱动整车行驶时,通过断开组件连接电动机中间轴大齿轮与电动机中间轴小齿轮间的动力传输,可使得自电动机至半轴的动力传输路径正常工作,因此本发明的驱动装置中也能够支 持整车运动模式下非解耦的动力需求,不会降低某些特殊应用场景的动力请求。
附图说明
图1是本发明实施例的混合动力车辆的驱动装置的结构示意图。
图2是本发明实施例的混合动力车辆的驱动装置中,断开组件的剖面示意图。
其中,附图标记说明如下:
1    驱动装置                     11a    差速器齿轮
2    发动机                       12     半轴
2a   发动机的曲轴                 13     驱动轮
3    扭矩限制器                   14     电动机中间轴
4    发动机轴                     14a    电动机中间轴小齿轮
4a   发动机轴齿轮                 14b    电动机中间轴大齿轮
5    发电机轴                     14c    断开组件
5a   发电机轴齿轮                 14c1   保持弹簧
6    泵                           14c2   主动压盘
6a   第一高压管路                 14c3   推力轴承
6b   第二高压管路                 14c4   滚针轴承
7    离合器                       14e    电动机中间轴左轴承
7a   第一结合构件                 14f    电动机中间轴右轴承
7b   第二结合构件                 14g    锁紧螺栓
8    发电机                       15     电动机轴
8a   发电机的转子轴               15a    电动机轴齿轮
9    泵轴                         16     电动机
9a   泵轴齿轮                     16a    电动机的转子轴
10   离合器轴                     17     壳体
10a  离合器轴小齿轮               17a    左壳体
10b  离合器轴大齿轮               17b    右壳体
11   差速器                       17c    分型面
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细说明。这些实施方式仅用于说明本发明,而并非对本发明的限制。
在本发明的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1和图2所示,本发明的混合动力车辆的驱动装置的一种实施例。在本发明的描述中,左侧是指图1纸面的左侧,右侧是指图1纸面的右侧,前侧是指图1纸面的上侧,后侧是指图1纸面的下侧,上侧是指图1纸面的纸外侧,下侧是指图1纸面的纸内侧,前后方向又称为水平方向,上下方向又称为竖直方向,左右方向又称为整车轴向。
参见图1,本实施例中的混合动力车辆配备有发动机2、电动机16和发电机8。本实施例的驱动装置1将来自发动机2的动力传输至驱动轮13的半轴12以驱动半轴12转动。半轴12受驱动而转动时带动驱动轮13转动,从而驱动整车行驶。本实施例的驱动装置1还将来自电动机16的动力传输至半轴12以驱动半轴12转动,电动机的转子轴16a与半轴12沿竖直方向间隔平行设置。优选地,本实施例的驱动装置1还将来自发动机2的动力传输至发电机8,发电机的转子轴8a与半轴12沿水平方向间隔平行设置。
其中,自电动机16至半轴12的动力传输路径中布置有电动机轴15和电动机中间轴14,电动机轴15和电动机中间轴14均与半轴12平行布置。电动机轴15连接电动机的转子轴16a,电动机轴15与电动机的转子轴16a同轴连接。电动机轴15上设有电动机轴齿轮15a,电动机中间轴14上设有电动机中间轴小齿轮14a和电动机中间轴大齿轮14b,电动机中间轴小齿轮14a与差速器11的差速器齿轮11a相啮合,差速器11连接半轴12,电动机中间轴大齿轮 14b与电动机轴齿轮15a相啮合。由此,本实施例的驱动装置1将来自电动机16的动力传输至驱动轮13的半轴12的传输原理,亦即自电动机16至半轴12的动力传输路径的工作原理为:由电动机的转子轴16a的转动带动电动机轴15转动,电动机轴齿轮15a随之转动并带动电动机中间轴大齿轮14b转动,由电动机中间轴大齿轮14b的转动带动电动机中间轴14转动,电动机中间轴小齿轮14a随之转动并带动差速器齿轮11a转动,从而将来自电动机16的动力传输至差速器11并经差速器11传输至半轴12。
本实施例的驱动装置1中,在电动机中间轴14上还设有断开组件14c,断开组件14c连接或断开电动机中间轴大齿轮14b与电动机中间轴小齿轮14a间的动力传输。在整车高速行驶时,由发动机2驱动半轴12转动而驱动整车高速行驶,差速器11的差速器齿轮11a转动时带动电动机中间轴小齿轮14a随之转动,通过断开组件14c断开电动机中间轴大齿轮14b与电动机中间轴小齿轮14a间的动力传输,可使得电动机中间轴大齿轮14b与电动机中间轴小齿轮14a间的动力传输断开后,仅有电动机中间轴小齿轮14a随差速器11转动,电动机中间轴大齿轮14b不再跟随差速器11转动,从而电动机轴齿轮15a、电动机轴15以及电动机的转子轴16a亦不再跟随差速器11转动,因此节省了整车高速行驶时电动机中间轴大齿轮14b、电动机轴齿轮15a、电动机轴15以及电动机的转子轴16a的旋转机械损耗和电动机16损耗,进一步降低了整车的油耗及电耗,同时也能够降低逆变器系统耐压模块的选型要求。在需要电动机16驱动半轴12转动以驱动整车行驶时,通过断开组件14c连接电动机中间轴大齿轮14b与电动机中间轴小齿轮14a间的动力传输,可使得自电动机16至半轴12的动力传输路径正常工作,因此本实施例的驱动装置1中也能够支持整车运动模式下非解耦的动力需求,不会降低某些特殊应用场景的动力请求。
本实施例中,优选地,断开组件14c为液压驱动组件。本实施例的驱动装置1中,自发动机2至半轴12的动力传输路径中布置有泵6和离合器7。离合器7连接或断开来自发动机2的动力,以实现来自发动机2的动力向半轴12的传输或断开。泵6通过来自发动机2的动力产生驱动压力并将驱动压力传输至离合器7和断开组件14c,离合器7可以根据来自泵6的驱动压力呈连接或断开状态,断开组件14c可以根据来自泵6的驱动压力使电动机中间轴大齿轮14b与电动机中间轴小齿轮14a间的动力传输呈连接或断开状态。较佳地,泵6通过来自发动机2的动力产生的驱动压力可以经第一高压管路6a传输至断开组件14c,泵6通过来自发动机2的动力产生的驱动压力可以经第二高压管路6b传输至离合器7。
相较现有技术中将泵与离合器的转动轴同轴地布置在驱动桥单元的一侧上,且泵利用来 自半轴的动力为离合器产生驱动压力,本实施例的驱动装置1将泵6和离合器7均布置在自发动机2至半轴12的动力传输路径中,使得泵6可以布置在驱动装置1的壳体17沿整车轴向的长度Ld范围内,即泵6可以收容在驱动装置1的壳体17之内,因此无需在整车轴向上于驱动装置1的壳体17外侧增加泵6的布置空间,能够有效减少驱动装置1整体在整车轴向上所占的布置空间,更好地满足整车的布置要求;同时,本实施例的驱动装置1中的泵6通过来自发动机2的动力为离合器7产生驱动压力,在整车纯电动行驶(仅由电动机的转子轴16a转动驱动半轴12转动)时,泵6不会再跟随电动机的转子轴16a的转动而继续转动,而在整车低速行驶或者爬坡时,整车控制系统可以通过主动控制发动机2的转速来调节泵6接受到的来自发动机2的动力,从而调节泵6依靠此动力产生的驱动压力,使其满足离合器7结合所需的驱动压力,因此可以使发动机2的动力更快地耦合并且传递至半轴12,提高整车的动力性能和效率。与此同时,本实施例的驱动装置1中的断开组件14c采用液压驱动组件并由泵6通过来自发动机2的动力产生的驱动压力驱动使电动机中间轴大齿轮14b与电动机中间轴小齿轮14a间的动力传输呈连接或断开状态,实现了在不增加驱动装置1整体在整车轴向上所占的布置空间的情况下,通过最小的成本实现降低整车高速行驶时的电动机16损耗。
优选地,参见图2,本实施例中,电动机中间轴14的左右两端分别支承在电动机中间轴左轴承14e和电动机中间轴右轴承14f上,电动机中间轴14的左端设有锁紧螺栓14g。电动机中间轴小齿轮14a固设于电动机中间轴14上,电动机中间轴小齿轮14a与电动机中间轴14可以设计成整体件。电动机中间轴大齿轮14b可沿周向转动地设于电动机中间轴14上,较佳地,可以在电动机中间轴大齿轮14b与电动机中间轴小齿轮14a之间设有推力轴承14c3,在电动机中间轴大齿轮14b与电动机中间轴14之间设有滚针轴承14c4,通过滚针轴承14c4使得电动机中间轴大齿轮14b与电动机中间轴14之间可以存在转速差,即使得电动机中间轴大齿轮14b与电动机中间轴小齿轮14a之间可以存在转速差。断开组件14c包括保持弹簧14c1和主动压盘14c2,主动压盘14c2可沿轴向移动地设于电动机中间轴小齿轮14a与电动机中间轴大齿轮14b之间,主动压盘14c2的两侧分别与电动机中间轴小齿轮14a和电动机中间轴大齿轮14b通过传递扭矩的花键配合连接。保持弹簧14c1沿轴向弹性顶压于电动机中间轴小齿轮14a与主动压盘14c2之间,保持弹簧14c1始终提供轴向推力。泵6通过来自发动机2的动力产生的驱动压力传输至主动压盘14c2并驱动主动压盘14c2朝电动机中间轴小齿轮14a移动。当泵6产生的驱动压力不能克服保持弹簧14c1的轴向推力时,由保持弹簧14c1的轴向推力使主动压盘14c2的两侧分别与电动机中间轴小齿轮14a和电动机中间轴大齿轮14b通 过花键保持连接并传递扭矩,此时,断开组件14c结合,使电动机中间轴大齿轮14b与电动机中间轴小齿轮14a间的动力传输呈连接状态。当泵6产生的驱动压力能够克服保持弹簧14c1的轴向推力并驱动主动压盘14c2朝电动机中间轴小齿轮14a移动而压缩保持弹簧14c1,使得主动压盘14c2与电动机中间轴大齿轮14b分开时,断开组件14c断开,电动机中间轴大齿轮14b与电动机中间轴小齿轮14a间的动力传输呈断开状态,此时保持弹簧14c1的轴向推力使主动压盘14c2与电动机中间轴小齿轮14a通过花键保持连接并传递扭矩,仅有电动机中间轴小齿轮14a随差速器11转动。泵6产生的驱动压力的大小控制可以通过整车控制系统主动控制发动机轴4的转速来实现,因此可以根据整车运动模式需要实现断开组件14c结合或断开。
当然,本实施例的驱动装置1中的断开组件14c也可以根据不同车辆的性能使用要求设计成常结合结构或常断开结构。此外,本实施例的驱动装置1中的断开组件14c也不局限于上述液压驱动组件,也可以使用电子或电磁式驱动组件来实现电动机中间轴大齿轮14b与电动机中间轴小齿轮14a的结合和断开功能。但是从成本考虑,对于使用液压离合器模块的混合动力车辆而言,断开组件14c优选采用液压驱动组件来实现电动机中间轴大齿轮14b与电动机中间轴小齿轮14a的结合和断开功能。
参见图1,本实施例的驱动装置1中,离合器7具有离合器轴10,泵6具有泵轴9。自发动机2至半轴12的动力传输路径中布置有发动机轴4、泵轴9和离合器轴10,发动机轴4、泵轴9和离合器轴10均与半轴12平行布置。本实施例中,优选地,泵轴9与离合器轴10沿水平方向间隔平行布置。最佳地,泵轴9布置在发动机轴4与离合器轴10连线的前侧,以满足整车轴向空间及径向空间布置的最优化。
本实施例中,发动机轴4连接发动机的曲轴2a,发动机轴4与发动机的曲轴2a之间优选通过扭矩限制器3相连接。发动机轴4上设有发动机轴齿轮4a。泵轴9上设有泵轴齿轮9a,泵轴齿轮9a连接离合器7,泵轴齿轮9a与发动机轴齿轮4a相啮合。
进一步,离合器7包括固设于离合器轴10上的第一结合构件7a和与第一结合构件7a相对的第二结合构件7b,通过第二结合构件7b与第一结合构件7a的结合或分离实现离合器7连接或断开。第二结合构件7b连接离合器轴大齿轮10b,离合器轴大齿轮10b与泵轴齿轮9a相啮合,离合器轴10上设有离合器轴小齿轮10a,离合器轴小齿轮10a与差速器11的差速器齿轮11a相啮合。
由此,本实施例的驱动装置1将来自发动机2的动力传输至驱动轮13的半轴12的传输 原理,亦即自发动机2至半轴12的动力传输路径的工作原理为:由发动机的曲轴2a转动带动发动机轴4转动,发动机轴齿轮4a随之转动,带动泵轴齿轮9a转动,由泵轴齿轮9a的转动带动泵轴9转动,泵6产生驱动压力并经第二高压管路6b传输至离合器7,使离合器7的第一结合构件7a与第二结合构件7b发生相对运动而结合或断开。当泵6产生的驱动压力满足离合器7的第一结合构件7a与第二结合构件7b结合所需的驱动压力要求时,第一结合构件7a与第二结合构件7b结合,离合器7呈连接状态;反之,离合器7呈断开状态。当离合器7连接时,由随泵轴9转动的泵轴齿轮9a带动离合器轴大齿轮10b转动,由离合器轴大齿轮10b驱动第二结合构件7b转动,并带动与之结合的第一结合构件7a同步转动,第一结合构件7a带动离合器轴10转动,离合器轴小齿轮10a随之转动并带动差速器齿轮11a转动,从而将来自发动机2的动力传输至差速器11并经差速器11传输至半轴12。
参见图1,本实施例的驱动装置1中,自发动机2至发电机8的动力传输路径中布置有发动机轴4和发电机轴5,发动机轴4和发电机轴5均与半轴12平行布置。自发动机2至发电机8的动力传输路径与自发动机2至半轴12的动力传输路径共用发动机轴4和发动机轴齿轮4a。发电机轴5连接发电机的转子轴8a,发电机轴5与发电机的转子轴8a同轴连接。发电机轴5上设有发电机轴齿轮5a,发电机轴齿轮5a与发动机轴齿轮4a相啮合。
由此,本实施例的驱动装置1将来自发动机2的动力传输至发电机8的传输原理,亦即发动机2至发电机8的动力传输路径的工作原理为:由发动机的曲轴2a转动带动发动机轴4转动,发动机轴齿轮4a随之转动并带动发电机轴齿轮5a转动,由发电机轴齿轮5a的转动带动发电机轴5转动,由发电机轴5的转动带动发电机的转子轴8a随之转动,从而将来自发动机2的动力传输至发电机8。
本实施例的驱动装置1的壳体17可以包括相对称的左壳体17a和右壳体17b,左壳体17a和右壳体17b在分型面17c处相对接形成在整车轴向上不存在外凸部分的布置空间,构成壳体17的内部空间。发动机轴4、发电机轴5、泵轴9、泵6、离合器轴10、离合器7、差速器11、电动机中间轴14和电动机轴15均布置收容在壳体17的内部空间中。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (10)

  1. 一种混合动力车辆的驱动装置,所述驱动装置将来自发动机(2)的动力传输至驱动轮(13)的半轴(12),所述驱动装置还将来自电动机(16)的动力传输至所述半轴(12),其特征在于,自所述电动机(16)至所述半轴(12)的动力传输路径中平行布置有电动机轴(15)和电动机中间轴(14),所述电动机轴(15)连接电动机的转子轴(16a),所述电动机轴(15)上设有电动机轴齿轮(15a),所述电动机中间轴(14)上设有电动机中间轴小齿轮(14a)、电动机中间轴大齿轮(14b)和断开组件(14c),所述电动机中间轴小齿轮(14a)与差速器(11)的差速器齿轮(11a)相啮合,所述差速器(11)连接所述半轴(12),所述电动机中间轴大齿轮(14b)与所述电动机轴齿轮(15a)相啮合,所述断开组件(14c)连接或断开所述电动机中间轴大齿轮(14b)与所述电动机中间轴小齿轮(14a)间的动力传输。
  2. 根据权利要求1所述的混合动力车辆的驱动装置,其特征在于,所述断开组件(14c)为液压驱动组件,自所述发动机(2)至所述半轴(12)的动力传输路径中布置有泵(6)和离合器(7),所述离合器(7)连接或断开来自所述发动机(2)的动力,所述泵(6)通过来自所述发动机(2)的动力产生驱动压力并将所述驱动压力传输至所述离合器(7)和所述断开组件(14c)。
  3. 根据权利要求2所述的混合动力车辆的驱动装置,其特征在于,所述电动机中间轴小齿轮(14a)固设于所述电动机中间轴(14)上,所述电动机中间轴大齿轮(14b)可沿周向转动地设于所述电动机中间轴(14)上,所述断开组件(14c)包括可沿轴向移动地设于所述电动机中间轴小齿轮(14a)与所述电动机中间轴大齿轮(14b)之间的主动压盘(14c2)和沿轴向弹性顶压于所述电动机中间轴小齿轮(14a)与所述主动压盘(14c2)之间的保持弹簧(14c1),所述主动压盘(14c2)的两侧分别与所述电动机中间轴小齿轮(14a)和所述电动机中间轴大齿轮(14b)通过传递扭矩的花键配合连接,所述泵(6)通过来自所述发动机(2)的动力产生的驱动压力传输至所述主动压盘(14c2)并驱动所述主动压盘(14c2)朝所述电动机中间轴小齿轮(14a)移动。
  4. 根据权利要求3所述的混合动力车辆的驱动装置,其特征在于,所述电动机中间轴大齿轮(14b)与所述电动机中间轴小齿轮(14a)之间设有推力轴承(14c3),所述电动机中间轴大齿轮(14b)与所述电动机中间轴(14)之间设有滚针轴承(14c4)。
  5. 根据权利要求2所述的混合动力车辆的驱动装置,其特征在于,所述泵(6)通过来自所述发动机(2)的动力产生的驱动压力分别经第一高压管路(6a)和第二高压管路(6b) 传输至所述断开组件(14c)和所述离合器(7)。
  6. 根据权利要求2所述的混合动力车辆的驱动装置,其特征在于,所述离合器(7)具有离合器轴(10),所述泵(6)具有泵轴(9),所述泵轴(9)与所述离合器轴(10)沿水平方向间隔平行布置。
  7. 根据权利要求6所述的混合动力车辆的驱动装置,其特征在于,所述泵轴(9)上设有泵轴齿轮(9a),所述泵轴齿轮(9a)连接所述离合器(7),所述泵轴齿轮(9a)与发动机轴齿轮(4a)相啮合,所述发动机轴齿轮(4a)设于发动机轴(4)上,所述发动机轴(4)连接发动机的曲轴(2a)。
  8. 根据权利要求7所述的混合动力车辆的驱动装置,其特征在于,所述离合器(7)包括设于所述离合器轴(10)上的第一结合构件(7a)和与所述第一结合构件(7a)相对的第二结合构件(7b),所述第二结合构件(7b)连接离合器轴大齿轮(10b),所述离合器轴大齿轮(10b)与所述泵轴齿轮(9a)相啮合,所述离合器轴(10)上设有离合器轴小齿轮(10a),所述离合器轴小齿轮(10a)与所述差速器齿轮(11a)相啮合。
  9. 根据权利要求1所述的混合动力车辆的驱动装置,其特征在于,所述驱动装置还将来自发动机(2)的动力传输至发电机(8),发电机的转子轴(8a)与所述半轴(12)沿水平方向间隔平行设置。
  10. 根据权利要求9所述的混合动力车辆的驱动装置,其特征在于,自所述发动机(2)至所述发电机(8)的动力传输路径中平行布置有发动机轴(4)和发电机轴(5),所述发动机轴(4)连接发动机的曲轴(2a),所述发动机轴(4)上设有发动机轴齿轮(4a),所述发电机轴(5)连接发电机的转子轴(8a),所述发电机轴(5)上设有发电机轴齿轮(5a),所述发电机轴齿轮(5a)与所述发动机轴齿轮(4a)相啮合。
PCT/CN2022/116685 2021-12-30 2022-09-02 一种混合动力车辆的驱动装置 WO2023124184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111654686.2 2021-12-30
CN202111654686.2A CN114228472B (zh) 2021-12-30 2021-12-30 一种混合动力车辆的驱动装置

Publications (1)

Publication Number Publication Date
WO2023124184A1 true WO2023124184A1 (zh) 2023-07-06

Family

ID=80744892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116685 WO2023124184A1 (zh) 2021-12-30 2022-09-02 一种混合动力车辆的驱动装置

Country Status (2)

Country Link
CN (1) CN114228472B (zh)
WO (1) WO2023124184A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228472B (zh) * 2021-12-30 2024-02-20 上海纳铁福传动系统有限公司 一种混合动力车辆的驱动装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213720A (ja) * 2007-03-06 2008-09-18 Hino Motors Ltd ハイブリッド自動車
CN103448528A (zh) * 2013-08-09 2013-12-18 浙江吉利汽车研究院有限公司 混合动力耦合装置
CN103879274A (zh) * 2014-03-31 2014-06-25 长城汽车股份有限公司 一种并联式混合动力汽车的传动结构和混合动力汽车
DE102015221780A1 (de) * 2015-11-06 2017-05-11 Bayerische Motoren Werke Aktiengesellschaft Getriebeanordnung
CN206926506U (zh) * 2017-04-14 2018-01-26 重庆青山工业有限责任公司 一种并联式混合动力汽车动力总成
CN111746262A (zh) * 2019-03-27 2020-10-09 舍弗勒技术股份两合公司 混合动力变速器
CN114228472A (zh) * 2021-12-30 2022-03-25 上海纳铁福传动系统有限公司 一种混合动力车辆的驱动装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226170B2 (ja) * 1998-11-13 2009-02-18 株式会社ユタカ技研 小型車両用伝動装置
US6386067B1 (en) * 1999-11-11 2002-05-14 Yutaka Giken Co., Ltd. Transmitting system for small-sized vehicle
JP4636651B2 (ja) * 2000-04-07 2011-02-23 Gknドライブラインジャパン株式会社 動力伝達装置
JP6724578B2 (ja) * 2016-06-13 2020-07-15 三菱自動車工業株式会社 トランスアクスル装置
CN106347097B (zh) * 2016-09-22 2019-03-29 西华大学 混合动力车辆的动力传动装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213720A (ja) * 2007-03-06 2008-09-18 Hino Motors Ltd ハイブリッド自動車
CN103448528A (zh) * 2013-08-09 2013-12-18 浙江吉利汽车研究院有限公司 混合动力耦合装置
CN103879274A (zh) * 2014-03-31 2014-06-25 长城汽车股份有限公司 一种并联式混合动力汽车的传动结构和混合动力汽车
DE102015221780A1 (de) * 2015-11-06 2017-05-11 Bayerische Motoren Werke Aktiengesellschaft Getriebeanordnung
CN206926506U (zh) * 2017-04-14 2018-01-26 重庆青山工业有限责任公司 一种并联式混合动力汽车动力总成
CN111746262A (zh) * 2019-03-27 2020-10-09 舍弗勒技术股份两合公司 混合动力变速器
CN114228472A (zh) * 2021-12-30 2022-03-25 上海纳铁福传动系统有限公司 一种混合动力车辆的驱动装置

Also Published As

Publication number Publication date
CN114228472B (zh) 2024-02-20
CN114228472A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN111674255B (zh) 一种混合动力车辆的驱动装置及混合动力车辆
WO2022012314A1 (zh) 后驱混合动力车辆的驱动系统
WO2023124184A1 (zh) 一种混合动力车辆的驱动装置
CN111791694A (zh) 同轴式两挡驱动系统
CN103770610A (zh) 电动车动力总成
CN112549938A (zh) 一种双电机驱动桥系统及其工作方法
CN110758083A (zh) 一种新能源车辆动力系统及其控制方法
CN113958668B (zh) 一种履带车辆用三模式混合动力无级变速装置
US11890928B2 (en) Electric powertrain for a vehicle
CN215621354U (zh) 一种带脱开的同轴集成式双电机附庸双速比电驱动总成
CN113335046B (zh) 一种四电机四离合两级双速比电动车动力总成
CN110758082B (zh) 一种新能源车辆动力耦合装置及其控制方法
CN113119702A (zh) 一种纯电动汽车电驱动系统
CN114248615B (zh) 混合动力车辆的驱动装置
CN110758081B (zh) 一种新能源车辆动力系统的动力耦合装置及其控制方法
CN215705629U (zh) 一种带脱开的双电机双速比电驱动总成装置及电动汽车
CN221067777U (zh) 一种电驱单级减速轴系结构、电驱动总成及车辆
CN214607059U (zh) 一种双电机混合动力传动系统
CN221233469U (zh) 动力传动系统和车辆
US11919399B2 (en) Hybrid power system
CN221188116U (zh) 动力传动系统和车辆
CN216374156U (zh) 一种变速器及车辆
WO2023232061A1 (zh) 离合器总成、动力机构及车辆
CN217022173U (zh) 传动系统及车辆
CN221188115U (zh) 动力传动系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913463

Country of ref document: EP

Kind code of ref document: A1