WO2023120584A1 - 人工皮革及びその製法 - Google Patents

人工皮革及びその製法 Download PDF

Info

Publication number
WO2023120584A1
WO2023120584A1 PCT/JP2022/047137 JP2022047137W WO2023120584A1 WO 2023120584 A1 WO2023120584 A1 WO 2023120584A1 JP 2022047137 W JP2022047137 W JP 2022047137W WO 2023120584 A1 WO2023120584 A1 WO 2023120584A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
artificial leather
sheet
fiber layer
scrim
Prior art date
Application number
PCT/JP2022/047137
Other languages
English (en)
French (fr)
Inventor
慶一郎 阪田
義幸 田所
挙 山本
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202280085493.6A priority Critical patent/CN118434930A/zh
Priority to JP2023569495A priority patent/JPWO2023120584A1/ja
Priority to KR1020247018247A priority patent/KR20240094012A/ko
Publication of WO2023120584A1 publication Critical patent/WO2023120584A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0013Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using multilayer webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes

Definitions

  • the present invention relates to artificial leather and its manufacturing method.
  • Artificial leather which is mainly composed of non-woven fabric formed by entangling fibers and polymeric elastic body, has excellent features such as easy care, functionality, and homogeneity, which are difficult to achieve with natural leather. , clothing, shoes, bags, interior materials, automobiles, aircraft, railcars, and other sheet covering materials and interior materials, and clothing materials such as ribbons and emblem base materials.
  • suede-like artificial leather having a raised outer surface is known for its luxurious appearance and touch. Further, compared with general suede-like artificial leather, the one with finer, shorter, and uniform raising is referred to as nubuck-like artificial leather because of its appearance, and is more preferred.
  • Patent Document 1 a woven scrim made of a heat-shrinkable polymer is used as a scrim to be inserted into artificial leather for the purpose of reinforcing mechanical strength. A method for obtaining an artificial leather that not only has a pleasing surface appearance, but also has excellent mechanical properties and shape stability is described.
  • Patent Document 2 a fiber web having a low basis weight and a highly heat-shrinkable knitting scrim made of ultrafine fibers are integrated by hydroentangling multiple times to form a dense web without generating pattern peculiarities on the surface.
  • a method for obtaining a fine artificial leather is described.
  • Patent Document 3 a laminate obtained by laminating a fiber web composed of ultrafine fibers having a single fiber fineness of 0.0001 to 0.004 dtex is integrated by entangling to achieve a nubuck-like fuzzy feel and a natural leather-like feel.
  • a method for obtaining a nubuck-like artificial leather having a fine wrinkled feeling is described.
  • artificial leather is also required to have a soft texture.
  • the looser the fiber density of the artificial leather the softer the texture tends to be obtained. Therefore, if the fiber density is excessively dense in order to obtain a nubuck-like appearance and feel, the texture tends to become hard, which is not preferable.
  • Artificial leather is also required to have abrasion resistance. In order to obtain a nubuck-like appearance and feel, it is conceivable to reduce the diameter of the fibers constituting the nonwoven fabric and increase the fiber density. A large diameter is desirable.
  • Patent Document 1 by heat shrinking an entangled sheet containing a woven scrim made of a heat-shrinkable polymer, an artificial leather that is dense as a whole including the outer surface is obtained.
  • an artificial leather having a dense outer surface is obtained by heat-shrinking an entangled sheet containing a highly heat-shrinkable knitted scrim. However, because of its dense structure as a whole, it has a paper-like or hard texture, and cannot satisfy the soft texture required for artificial leather. In addition, since the fabric weight of the fiber web is as small as 10 to 25 g/m 2 , abrasion resistance is not sufficient. In Patent Document 3, an artificial leather having a dense outer surface is obtained by forming the artificial leather into a laminate containing a fiber web composed of ultrafine fibers. However, since ultrafine fibers of 0.0001 to 0.004 dtex are used, abrasion resistance is not sufficient.
  • the problem to be solved by the present invention is to provide an artificial leather that is excellent in all of the fine nubuck-like outer surface, soft texture, and abrasion resistance. be.
  • a brushed artificial leather comprising an entangled sheet and an elastic polymer filled in the entangled sheet
  • the entangled sheet has a structure of two or more layers composed of a fiber layer (A) on the surface side of the brushed artificial leather and a scrim in contact with the fiber layer (A),
  • the average diameter of the fibers constituting the fiber layer (A) is 2.0 ⁇ m or more and 7.0 ⁇ m or less, and when the porosity is measured in the thickness direction from the surface side to the back side, the fiber layer (A)
  • ⁇ Amin (%) be the minimum porosity in the scrim
  • ⁇ Smin (%) be the minimum porosity in the scrim
  • ⁇ Smin (%) be the maximum porosity existing from the position of ⁇ Amin (%) to the position of ⁇ Smin (%)
  • the rate is ⁇ A-Smax (%)
  • an artificial leather that is excellent in all of a fine nubuck-like outer surface, a soft texture, and abrasion resistance.
  • FIG. 1 is a conceptual diagram showing a configuration example of artificial leather.
  • symbol 14 is arbitrary.
  • FIG. 2 is a schematic diagram of the porosity of artificial leather.
  • FIG. 3 is a conceptual diagram explaining how to determine the average diameter of the fibers forming the fiber layer (A).
  • FIG. 4 is an image showing a state in which each single fiber cross section within a predetermined image area is manually marked in order to obtain the single fiber cross section k neighboring distance ratio value (%) in the thickness direction cross section.
  • FIG. 5 is a conceptual diagram for explaining how to obtain the ratio value (%) of the distance near the single fiber cross section k in the cross section in the thickness direction.
  • FIG. 6 is an explanatory diagram showing sampling locations on a sample.
  • One embodiment of the present invention is a raised artificial leather comprising an entangled sheet and an elastic polymer filled in the entangled sheet,
  • the entangled sheet has a structure of two or more layers composed of a fiber layer (A) on the surface side of the brushed artificial leather and a scrim in contact with the fiber layer (A),
  • the average diameter of the fibers constituting the fiber layer (A) is 2.0 ⁇ m or more and 7.0 ⁇ m or less, and when the porosity is measured in the thickness direction from the surface side to the back side, the fiber layer (A)
  • ⁇ Amin (%) be the minimum porosity in the scrim
  • ⁇ Smin (%) be the minimum porosity in the scrim
  • ⁇ Smin (%) be the maximum porosity existing from the position of ⁇ Amin (%) to the position of ⁇ Smin (%)
  • the rate is ⁇ A-Smax (%)
  • artificial leather refers to "a special non-woven fabric (mainly a fiber layer having a random three-dimensional structure, made of polyurethane (PU) resin or similar flexible impregnated with a polymeric elastic body having
  • PU polyurethane
  • artificial leather is classified according to its appearance into “smooth” leather with grain-like appearance and "nap” leather with nubuck, suede, velor, etc. appearance.
  • the artificial leather of the present embodiment relates to one classified as "nap” (that is, a raised artificial leather having a raised appearance).
  • the raised appearance can be formed by buffing (raising) the outer surface (also referred to as front surface) of the fiber layer (A) with sandpaper or the like.
  • the outer surface of the artificial leather, the outer surface of the fiber layer (A), the outer surface of the fiber sheet, and the outer surface of the laminated sheet are the surfaces exposed to the outside when used as artificial leather.
  • the outer surface of the fiber layer (A) is raised or raised by buffing or the like.
  • Artificial leather has at least a two-layer structure composed of a fiber layer (A) and a scrim in contact with the fiber layer (A).
  • the artificial leather may be composed of three layers, for example, the fiber layer (A), the scrim, and the fiber layer (B) forming the back surface.
  • the fiber layer (A) and the fiber layer (B) can be individually designed. It is preferable in that the diameter, type, etc.
  • the fibers constituting the layer can be freely customized according to the functions and applications required for the artificial leather using the entangled sheet. For example, if ultrafine fibers are used for the fiber layer (A) and flame-retardant fibers are used for the fiber layer (B), both excellent surface quality and high flame resistance can be achieved. In addition, the three-layer structure of the fiber layer (A), the fiber layer (B), and the scrim sandwiched between them tends to increase the entanglement strength between the fiber layer (A) and the scrim. But preferred.
  • the minimum porosity ⁇ Smin in the scrim is the porosity of the largest concave peak within the scrim structure range in the porosity distribution of the artificial leather.
  • the porosity distribution of the artificial leather is calculated by CT scan analysis (described later).
  • the scrim structure range of the artificial leather is determined from the SEM image of the cross section in the thickness direction of the artificial leather (described later).
  • the minimum porosity ⁇ Smin (%) in the scrim is less than ⁇ A-Smax (%).
  • ⁇ Smin +5 ⁇ A-Smax is preferable, and ⁇ Smin +10 ⁇ A-Smax is more preferable.
  • the minimum porosity ⁇ Amin in the thickness direction of the fiber layer (A) is 40% or more and 70% or less.
  • ⁇ Amin is the porosity of the maximum concave peak in the range from the peak of the minimum porosity ⁇ Smin in the scrim to the outer surface on the fiber layer (A) side, as shown in FIG. Due to the presence of the concave peak, the fibers in the fiber layer (A) are sufficiently entangled with each other, and the abrasion resistance is improved.
  • the ⁇ Amin is 40% or more, moderate voids are generated between the fibers constituting the fiber layer (A), and the artificial leather has a soft texture.
  • ⁇ Amin is 70% or less, the fiber layer (A) becomes dense, and has a nubuck-like dense texture when touched.
  • ⁇ Amin is preferably 50% or more and 70% or less, more preferably 60% or more and 70% or less.
  • the relative position of the minimum porosity ⁇ Amin in fiber layer (A) is preferably in the range of 20% or more and 95% or less.
  • the relative position of ⁇ Amin in the fiber layer (A) of the artificial leather is determined from cross-sectional SEM images and three-dimensional images of the artificial leather (described later). The relative position can be adjusted by the energy (water pressure) given to the fibrous web (A') or laminated sheet as water flow in the hydroentanglement step.
  • the relative position is 20% or more, the fiber layer and the scrim are more integrally entangled, and separation between the fiber layer (A) and the scrim is less likely to occur. Further, when the relative position is 95% or less, the texture of the artificial leather tends to be soft.
  • the relative position is more preferably 35% or more and 90% or less, still more preferably 50% or more and 85% or less.
  • Maximum porosity ⁇ A-Smax existing from ⁇ Smin to ⁇ Amin is the porosity of the artificial leather In the distribution, it is the porosity of the maximum convex peak existing from ⁇ Smin in the scrim structure range to ⁇ Amin in the fiber layer (A).
  • the ⁇ A-Smax is 70% or more and 90% or less. When the ⁇ A-Smax is 70% or more, an appropriate gap is generated between the fiber layer (A) and the scrim, and the artificial leather has a soft texture.
  • the ⁇ A-Smax is 90% or less, there is a sufficient amount of fibers to hold the fiber layer (A) and the scrim, and the artificial leather is sufficient for use as a skin material for automobile interior materials. Wear resistant.
  • the ⁇ A-Smax is preferably 70% or more and 85% or less, more preferably 70% or more and 80% or less.
  • Fibers constituting the fiber layers constituting the artificial leather (fiber layer (A), fiber layer (B) as an optional layer, and additional layers) include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and the like. Synthetic fibers such as polyester fibers; polyamide fibers such as nylon 6, nylon 66, and nylon 12 are suitable. Among them, polyethylene terephthalate is preferable because the fiber itself does not turn yellow even when exposed to direct sunlight for a long time and has excellent color fastness in consideration of applications such as car seats that require durability. Further, from the viewpoint of reducing environmental load, chemically recycled or material recycled polyethylene terephthalate, polyethylene terephthalate using a plant-derived raw material, or the like is more preferable.
  • the average diameter of the fibers constituting the fiber layer (A) of the artificial leather is 2.0 ⁇ m or more and 7.0 ⁇ m or less.
  • the average diameter is 2.0 ⁇ m or more, moderate voids are generated between the fibers constituting the fiber layer (A) of the artificial leather, so ⁇ Amin is likely to be 60% or more.
  • ⁇ A-Smax is likely to be 70% or more because a suitable gap is generated between the fibers constituting the fiber layer (A) and the scrim through the hydroentangling step (described later).
  • the average diameter is 7.0 ⁇ m or less, the fibers constituting the fiber layer (A) of the artificial leather are more closely entangled with each other, so that ⁇ Amin tends to be 70% or less.
  • ⁇ A-Smax tends to be 80% or less.
  • the average diameter of the fibers constituting the fiber layer (A) of the artificial leather is preferably 3.0 ⁇ m or more and 6.0 ⁇ m or less, more preferably 3.0 ⁇ m or more and 5.0 ⁇ m or less.
  • Fibers that are raw materials for the fiber web that constitutes the fiber layer (fiber layer (A), optional fiber layer (B), additional fiber layer, etc.) that constitutes the artificial leather include directly spun fibers and ultrafine fibers Microfibers obtained from expressive fibers are preferred. By using directly spun fibers and ultrafine fibers extracted from ultrafine fiber-developing fibers, the fibers in the fiber layer constituting the artificial leather are easily dispersed as single fibers.
  • the fibers are preferably dispersed as single fibers.
  • ultrafine fibers such as sea-island composite fibers (for example, those using copolyester as the sea component and regular polyester as the island component, etc.), entangled with the scrim to form a fine fiber sheet.
  • the fibers obtained by chemical treatment (removing the sea component of the sea-island composite fiber by dissolving, decomposing, etc.) exist as fiber bundles in the fiber layer (A) and are not dispersed as single fibers.
  • a sea-island composite staple fiber having an island component of 24 islands/1 f corresponding to a single fiber fineness of 0.2 dtex is produced, and after forming a fiber layer (A) from the sea-island composite staple fiber, needle punching or the like is performed. to form an entangled sheet with a scrim, fill the three-dimensional entangled body with PU resin, and then dissolve or decompose the sea component to obtain a fiber having a single fiber fineness equivalent to 0.2 dtex.
  • 24 single fibers are present in the fiber layer (A) in the form of a fiber bundle (equivalent to 4.8 dtex in the converged state).
  • the term "fibers dispersed as single fibers” means that the fibers do not form fiber bundles obtained by, for example, removing the sea component of the sea-island composite fiber by dissolution, decomposition, or the like.
  • the fibrous layer (A) is composed of dispersed single fibers, the surface smoothness is excellent, and when the outer surface of the fibrous layer (A) is raised by buffing or the like, uniform raising can be obtained.
  • the adhesion rate of the PU resin is relatively low, the appearance of pilling called pilling due to friction is less likely to occur, so an artificial leather having better surface quality and abrasion resistance can be obtained.
  • the spacing between the fibers tends to be narrow and uniform, so even if the PU resin adheres in a fine form, good abrasion resistance can be obtained.
  • a method for dispersing fibers into single fibers there is a method in which ultrafine fibers produced by a direct spinning method are made into a fiber web by a papermaking method, a method in which a sea component of a fiber sheet or an entangled sheet made of a sea-island composite fiber is dissolved or dissolved.
  • the surface of the fiber bundle is subjected to water dispersion treatment after decomposing to generate ultrafine fiber bundles, thereby promoting the formation of single fibers from the fiber bundle.
  • the fibers may or may not be dispersed as single fibers.
  • the layer is also composed of fibers that are interspersed with monofilaments. Since the fibers constituting the layers other than the fiber layer (A) are dispersed as single fibers, the thickness of the artificial leather using the entangled sheet is uniform, the processing accuracy is improved, and it is preferable from the viewpoint of stabilizing the quality.
  • the basis weight of the fiber web (A') constituting the fiber layer (A) is, from the viewpoint of mechanical strength such as abrasion resistance, It is preferably 10 g/m 2 or more and 200 g/m 2 or less, more preferably 30 g/m 2 or more and 170 g/m 2 or less, and still more preferably 60 g/m 2 or more and 170 g/m 2 or less.
  • the basis weight of the scrim is preferably 20 g/m 2 or more and 150 g/m 2 or less, more preferably 20 g/m 2 or more and 130 g/m 2 or less, still more preferably, from the viewpoint of mechanical strength and entanglement between the fiber layer and the scrim. is 30 g/m 2 or more and 110 g/m 2 or less.
  • the fabric weight of the artificial leather obtained by impregnating the entangled sheet composed of the two layers of the fiber layer (A) and the scrim with the PU resin is preferably 50 g/m 2 or more and 550 g/m 2 or less, more preferably 60 g/m 2 or more and 400 g/m 2 or less, more preferably 70 g/m 2 or more and 350 g/m 2 or less.
  • the basis weight of the fiber web (A') constituting the fiber layer (A) is determined by abrasion resistance, etc. From the viewpoint of mechanical strength, it is preferably 10 g/m 2 or more and 200 g/m 2 or less, more preferably 30 g/m 2 or more and 170 g/m 2 or less, and still more preferably 60 g/m 2 or more and 170 g/m 2 or less.
  • the basis weight of the fiber web (B′) constituting the fiber layer (B) is preferably 10 g/m 2 or more and 200 g/m 2 or less, more preferably 20 g/m 2 or less, from the viewpoint of cost and ease of production. It can be 2 or more and 170 g/m 2 or less.
  • the basis weight of the scrim is preferably 20 g/m 2 or more and 150 g/m 2 or less, more preferably 20 g/m 2 or more and 130 g/m 2 or less, still more preferably, from the viewpoint of mechanical strength and entanglement between the fiber layer and the scrim. is 30 g/m 2 or more and 110 g/m 2 or less.
  • the fabric weight of the artificial leather obtained by impregnating the entangled sheet composed of the three-layer structure of the fiber layer (A), the scrim, and the fiber layer (B) with the PU resin is preferably 60 g/m 2 or more and 750 g/m 2 or less. , more preferably 80 g/m 2 or more and 570 g/m 2 or less, still more preferably 70 g/m 2 or more and 520 g/m 2 or less.
  • the k-neighborhood method is a method in which k single fiber cross sections close to an arbitrary single fiber cross section are taken up and the k-th nearest radius in the Euclidean distance is used as a decision boundary.
  • the artificial leather is present in a loose state, and the fibers on the outer surface of the artificial leather become dense, making it easy to obtain a nubuck-like artificial leather.
  • the scrim can be, for example, a woven or knitted fabric, and is preferably composed of the same polymer-based fibers as the fibers composing the fiber layer (A) from the viewpoint of the same color by dyeing.
  • the fibers that make up the fiber layer (A) are polyester-based
  • the fibers that make up the scrim are preferably polyester-based
  • the scrim can be It is preferable that the constituent fibers are also polyamide-based.
  • the scrim in the case of a knitted fabric is preferably a single knit knitted at 22 gauge or more and 28 gauge or less.
  • the scrim is a woven fabric, higher dimensional stability and strength can be achieved than a knitted fabric.
  • the texture of the woven fabric may be a plain weave, a twill weave, a satin weave, or the like, but a plain weave is preferable from the viewpoint of cost and process aspects such as entanglement.
  • the threads that make up the fabric may be monofilaments or multifilaments.
  • the single fiber fineness of the yarn is preferably 5.5 dtex or less from the viewpoint of easily obtaining a flexible artificial leather using the entangled sheet.
  • the yarn constituting the woven fabric it is preferable to use multifilament raw yarn such as polyester or polyamide, or textured yarn subjected to false twisting at a twist number of 0 to 3000 T/m.
  • the multifilament may be a usual one, for example, 33dtex/6f, 55dtex/24f, 83dtex/36f, 83dtex/72f, 110dtex/36f, 110dtex/48f, 167dtex/36f, 166dtex/48f of polyester, polyamide, etc. It is preferably used.
  • the threads that make up the woven fabric may be multifilament long fibers.
  • the weaving density of the threads in the woven fabric is preferably 30 threads/inch or more and 150 threads/inch or less, more preferably 40 threads/inch or more and 100 threads/inch or less, in order to obtain an artificial leather that is flexible and has excellent mechanical strength.
  • the basis weight of the woven fabric is preferably 20 g/m 2 or more and 150 g/m 2 or less in order to provide good mechanical strength and appropriate feel.
  • the fiber layer (A) are determined by the entanglement with the constituent fibers of the fiber layer (A), the flexibility of the artificial leather, seam strength, Since it also contributes to mechanical properties such as tear strength, tensile strength and elongation, and stretchability, it may be appropriately selected according to the target properties and application.
  • Polyurethane (PU) resin is preferable for the elastic polymer that constitutes the artificial leather.
  • the PU resin is used in the form of a solvent-type PU resin in which the PU resin is dissolved in an organic solvent such as N,N-dimethylformamide, or a water-dispersed PU resin in which the PU resin is emulsified with an emulsifier and dispersed in water.
  • an organic solvent such as N,N-dimethylformamide
  • a water-dispersible PU resin is preferable because it does not require a water-dispersible PU resin and can reduce the environmental load. That is, since the water-dispersible PU resin can be impregnated into the entangled sheet in the form of a dispersion in which the PU resin is dispersed with a desired particle size, the particle size of the PU resin can be controlled in the entangled sheet. Good control over filling morphology.
  • a self-emulsifying PU resin containing a hydrophilic group in the PU molecule, a forced emulsifying PU resin obtained by emulsifying the PU resin with an external emulsifier, or the like can be used.
  • a cross-linking agent can be used in combination with the water-dispersible PU resin for the purpose of improving durability such as resistance to moist heat, abrasion resistance, and hydrolysis resistance. It is preferable to add a cross-linking agent in order to improve the durability during liquid jet dyeing processing, suppress the shedding of fibers, and obtain excellent surface quality.
  • the cross-linking agent may be an external cross-linking agent that is added as an additive component to the PU resin, or an internal cross-linking agent that previously introduces a reactive group capable of forming a cross-linked structure into the structure of the PU resin.
  • Water-dispersible PU resins used in artificial leather generally have a crosslinked structure to provide dyeing processing resistance, so they tend to be difficult to dissolve in organic solvents such as N,N-dimethylformamide. Therefore, for example, after the artificial leather is immersed in N,N-dimethylformamide at room temperature for 12 hours to dissolve the PU resin, when the cross section is observed with an electron microscope or the like, a resinous shape without a fiber shape is found. If the substance remains, it can be judged that the resinous substance is a water-dispersible PU resin.
  • a PU resin dispersion is used to fill the PU resin, and at that time, the average primary particle size of the PU resin in the dispersion is 0.1 ⁇ m or more. 0.8 ⁇ m or less is preferable.
  • the average primary particle size is a value obtained by measuring a PU resin dispersion with a laser diffraction particle size distribution analyzer ("LA-920" manufactured by HORIBA). By setting the average primary particle size of the PU resin to 0.1 ⁇ m or more, the force (i.e., binder force) of the fibers in the entangled sheet to be held by the PU resin is improved, resulting in excellent mechanical strength. Leather is obtained.
  • the average primary particle size of the PU resin is preferably 0.1 ⁇ m or more and 0.6 ⁇ m or less, more preferably 0.2 ⁇ m or more and 0.5 ⁇ m or less.
  • the PU resin is impregnated in the form of an impregnating liquid such as a solution (for example, solvent-soluble type) or a dispersion (for example, water-dispersed type).
  • an impregnating liquid such as a solution (for example, solvent-soluble type) or a dispersion (for example, water-dispersed type).
  • the solid content concentration of the water-dispersible PU resin dispersion can be 3 wt% or more and 35 wt% or less, more preferably 4 wt% or more and 30 wt% or less, and still more preferably 5 wt% or more and 25 wt%. % or less.
  • the impregnation liquid is prepared and the entangled sheet is impregnated such that the ratio of the PU resin to 100% by mass of the entangled sheet is 5% by mass or more and 50% by mass or less.
  • the PU resin is preferably obtained by reacting a polymer diol, an organic diisocyanate and a chain extender.
  • polymer diols examples include polycarbonate-based, polyester-based, polyether-based, silicone-based, and fluorine-based diols, and copolymers in which two or more of these are combined may also be used.
  • polycarbonate diols, polyether diols, or combinations thereof are preferably used.
  • polycarbonate-based diols, polyester-based diols, or combinations thereof are preferably used.
  • polyether diols polyester diols, or combinations thereof are preferably used.
  • Polycarbonate-based diols can be produced by transesterification reaction between alkylene glycol and carbonate, reaction between phosgene or chloroformate and alkylene glycol, and the like.
  • alkylene glycol examples include direct glycols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol and 1,10-decanediol.
  • polyester diols include polyester diols obtained by condensing various low-molecular-weight polyols and polybasic acids.
  • low molecular weight polyols examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propane, Diol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, cyclohexane One or more selected from -1,4-dimethanol can be used.
  • Adducts obtained by adding various alkylene oxides to bisphenol A can also be used.
  • polybasic acids include succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro
  • isophthalic acid can be mentioned.
  • Polyether-based diols include, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymerized diols in which these are combined.
  • the number average molecular weight of the polymer diol is preferably 500-4000. By setting the number average molecular weight to 500 or more, more preferably 1500 or more, it is possible to prevent the texture from becoming hard. Further, by setting the number average molecular weight to 4000 or less, more preferably 3000 or less, the strength of the PU resin can be maintained satisfactorily.
  • organic diisocyanates examples include aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate and xylylene diisocyanate; aromatic diisocyanates such as diphenylmethane diisocyanate and tolylene diisocyanate; may be used.
  • aromatic diisocyanates such as diphenylmethane diisocyanate and tolylene diisocyanate
  • aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, and isophorone diisocyanate are preferably used from the viewpoint of light resistance.
  • an amine-based chain extender such as ethylenediamine and methylenebisaniline, or a diol-based chain extender such as ethylene glycol can be used.
  • a polyamine obtained by reacting a polyisocyanate with water can also be used as a chain extender.
  • the impregnating liquid containing PU resin may contain stabilizers (ultraviolet absorbers, antioxidants, etc.), flame retardants, antistatic agents, pigments (carbon black, etc.), etc., if necessary.
  • Additives may be added.
  • the total amount of these additives present in the artificial leather is, for example, 0.1 to 10.0 parts by weight, or 0.2 to 8.0 parts by weight, or 0.3 to 10.0 parts by weight with respect to 100 parts by weight of the PU resin. It may be 6.0 parts by mass.
  • Such additives are distributed in the PU resin of the artificial leather.
  • the values are intended to include additives (if used).
  • An example of the method for manufacturing the artificial leather of this embodiment includes the following steps: (1) A step of forming a fiber web (A′) from fibers having an average diameter of 2.0 ⁇ m or more and 7.0 ⁇ m or less; (2) a step of pre-hydroentangling the resulting fibrous web (A') to obtain a fibrous sheet (A''); (3) Laminating at least the fiber sheet (A′′) and the scrim and integrating them by hydroentangling to obtain an entangled sheet; (4) optionally raising the outer surface of the obtained fiber sheet; (5) filling the obtained entangled sheet with an elastic polymer to obtain a sheet; (6) When the step (4) is not performed, the step of raising the outer surface of the sheet material obtained in the step (5), or the step (4) is performed, and the sheet material is further subjected to the step (4).
  • a fiber web is a sheet formed from fibers in a web forming step
  • a fiber sheet is a fiber web hydroentangled in a preliminary hydroentangling step
  • a scrim is a fiber sheet
  • optionally a fiber sheet is added.
  • a lamination sheet is obtained by laminating with a fiber web or a fiber sheet, an entangled sheet is obtained by hydroentangling the lamination sheet in the main hydroentangling process, and the entangled sheet is filled with a polymer elastomer in a polymer elastomer filling process.
  • Sheet-like products are distinguished from artificial leather by coloring the sheet-like products.
  • the fiber layer constituting the artificial leather is not limited to a single layer.
  • an artificial leather obtained using an entangled sheet having a three-layer structure composed of a fiber layer (A), a scrim in contact with the fiber layer (A), and a fiber layer (B) in contact with the scrim. consists of two layers of fabric separated by a scrim.
  • the structures are not limited to the same.
  • the fiber layer on the outer surface side with ultrafine fibers that are easy to obtain a smooth feel
  • configuring the fiber layer on the opposite side of the outer surface with flame-retardant fibers that are thick in diameter and difficult to obtain a smooth feel. it is possible to obtain an artificial leather imparted with flame retardancy while maintaining a smooth touch on the outer surface.
  • a fibrous web (A'), an optional fibrous web (B'), and Additional methods for producing fiber webs include direct-spinning methods (e.g., spunbonding and meltblowing), or methods of forming fiber webs using short fibers (e.g., carding, air-laid, etc.). and a wet method such as a papermaking method), both of which are preferably used.
  • a fibrous web produced using short fibers has small unevenness in the basis weight, is excellent in uniformity, and easily obtains uniform raising, and thus is suitable for improving the surface quality of artificial leather.
  • Fibers that are raw materials for the fiber web that constitutes the fiber layer (fiber layer (A), optional fiber layer (B), additional fiber layer, etc.) that constitutes the artificial leather include directly spun fibers and ultrafine Ultrafine fibers obtained from fiber development type fibers are preferred. By using directly spun fibers and ultrafine fibers extracted from ultrafine fiber-developing fibers, the fibers in the fiber layer constituting the artificial leather are easily dispersed as single fibers.
  • ultrafine fiber-developing fibers As means for forming the fibers of the fiber web.
  • the ultrafine fiber development type fiber is a sea-island type in which two thermoplastic resins having different solvent solubility are used as a sea component and an island component, and the sea component is dissolved and removed using a solvent or the like to make the island component ultrafine fiber.
  • fibers or exfoliation type conjugate fibers in which two components of thermoplastic resin are alternately arranged radially or in multiple layers on the fiber cross section and split into ultrafine fibers by exfoliating and splitting each component.
  • islands-in-the-sea fibers are preferably used from the viewpoint of the flexibility and texture of the sheet-like article, because by removing the sea component, appropriate voids can be provided between the island components, that is, between the fibers.
  • the islands-in-the-sea type fiber is a sea-island composite fiber that is spun by mutually arranging the sea component and the island component using a sea-island composite spinneret, or a mixture that is spun by mixing the two components of the sea component and the island component.
  • Island-in-the-sea type conjugate fibers are preferably used because fibers having a uniform fineness can be obtained, and fibers having a sufficient length can be obtained, contributing to the strength of the sheet material.
  • sea component of the sea-island type fiber polyethylene, polypropylene, polystyrene, copolymerized polyester obtained by copolymerizing sodium sulfoisophthalic acid, polyethylene glycol, or the like, polylactic acid, or the like can be used.
  • the sea removal treatment is preferably performed before the elastic polymer filling step. If the sea removal treatment is carried out before the elastic polymer filling process, the elastic polymer is in direct contact with the fibers, so that the fibers can be strongly gripped, and the abrasion resistance of the sheet material is improved.
  • the short fiber length is preferably 13 mm or more and 102 mm or less, more preferably 25 mm or more and 76 mm or less, further preferably by a dry method (carding method, airlaid method, etc.). It is 38 mm or more and 76 mm or less, preferably 1 mm or more and 30 mm or less, more preferably 2 mm or more and 25 mm or less, still more preferably 3 mm or more and 20 mm or less by a wet method (paper making method or the like).
  • the aspect ratio (L/D), which is the ratio of the length (L) to the diameter (D), of short fibers used in a wet process (paper making method, etc.) is preferably 500 or more and 2000 or less, more preferably 700-1500.
  • Such an aspect ratio ensures good dispersibility and openability of the short fibers in the slurry when the short fibers are dispersed in water to prepare the slurry, and good strength of the fiber layer.
  • the fiber length is shorter and the single fibers are easily dispersed, so that it is less likely to cause a pilling appearance due to friction, which is preferable.
  • the fiber length of short fibers with a diameter of 4 ⁇ m is preferably 2 mm or more and 8 mm or less, more preferably 3 mm or more and 6 mm or less.
  • the hydroentangling step in the manufacturing process of the artificial leather is a preparation for obtaining a fiber sheet (A′′) by hydroentangling only the fiber web (A′) constituting the fiber layer (A) of the artificial leather obtained in the web forming step.
  • a hydroentangling step is preferably included.
  • a sufficiently densified fiber sheet (A'') is obtained, and the minimum porosity ⁇ in the fiber layer (A) is Amin can be adjusted to 70% or less.
  • at least two layers of the hydroentangled fiber sheet (A′′) and a scrim are laminated, and at least two laminated layers are integrated by hydroentangling to form an entangled sheet.
  • This hydroentangling process does not require excessive water pressure to densify the outer surface of the artificial leather, so the fiber density near the boundary between the fiber layer (A) and the scrim does not become overly dense, and ⁇ Smin
  • the maximum porosity ⁇ A-Smax existing up to ⁇ Amin can be adjusted to 70% or more and 80% or less.
  • the fibrous layer (B) is formed by laminating the fibrous web (B') alone in the form of a hydroentangled fibrous sheet (B") or in the form of a fibrous web (B') without preliminary hydroentangling. That is, The fiber layer (B) laminated as a laminated sheet is in the state of a fiber sheet (B'') in which only the fiber web (B') is hydroentangled, or in the state of a fiber web (B') that is not pre-hydroentangled. , may be laminated in any state.
  • the entangled sheet also has a multi-layer structure in which the fiber layer (B) has more than the fiber layer (C), the fiber layer (B), and more than the fiber layer (C). The multilayer part may be laminated in the same way as the fiber layer (B).
  • sea-island fibers are cut into a predetermined fiber length to form staples, and a fiber web formed by carding and crosslapper is entangled by a needle punching method. , hydroentanglement treatment is preferred.
  • the water pressure on the inlet side of the nozzle hole used for the hydroentanglement treatment is preferably 1 MPa or more and 10 MPa or less.
  • the water pressure is more preferably 1.5 MPa or more and 7.5 MPa or less, still more preferably 2 MPa or more and 4.5 MPa or less.
  • the diameter of the outlet hole of the nozzle used in the hydroentanglement step is preferably 0.15 mm or more and 0.30 mm or less.
  • the diameter of the outlet hole is more preferably 0.15 mm or more and 0.25 mm or less, and still more preferably 0.15 mm or more and 0.22 mm or less.
  • circular motion of the nozzle or reciprocating motion perpendicular to the direction of the process allows the fibers to be evenly entangled and reduces water jet marks parallel to the direction of the process, thereby improving the surface quality. is preferable in terms of improvement.
  • Raising treatment can be performed to form naps on the surface of the entangled sheet or sheet-like material.
  • Raising treatment can be performed by a grinding method using sandpaper, a roll sander, or the like.
  • silicone or the like as a lubricant before the raising treatment, the raising treatment by surface grinding becomes easily possible, and the surface quality becomes very good.
  • the entangled sheet is impregnated with the elastic polymer and then dried to fill the elastic polymer.
  • the elastic polymer is preferably a water-dispersed polyurethane (PU) resin.
  • the water-dispersible PU resin is impregnated in the form of an impregnating liquid such as a dispersion.
  • the concentration of the water-dispersed PU resin in the impregnating liquid can be, for example, 3-35% by weight.
  • the impregnation liquid is prepared and the entangled sheet is impregnated so that the ratio of the PU resin to 100% by mass of the entangled sheet is 5 to 50% by mass.
  • Water-dispersible PU resins are forcibly emulsified PU resins that are forcibly dispersed and stabilized using surfactants, and PU resins that have a hydrophilic structure in the PU molecular structure, and can be dispersed in water without the presence of surfactants. It is classified as a self-emulsifying PU resin that disperses and stabilizes in Although any of them may be used in the present embodiment, it is preferable to use a forced emulsification type PU resin from the viewpoint of imparting heat-sensitive coagulability, which will be described later.
  • the concentration of the water-dispersed PU resin controls the adhesion amount of the water-dispersed PU resin, and a high concentration promotes aggregation of the PU resin. 3% by mass or more and 35% by mass or less, more preferably 4% by mass or more and 30% by mass or less, and even more preferably 5% by mass or more and 30% by mass or less. Further, as the water-dispersed PU resin dispersion, one having heat-sensitive coagulability is preferable. By using the water-dispersed PU resin dispersion having heat-sensitive coagulability, the PU resin can be applied uniformly in the thickness direction of the entangled sheet.
  • Heat-sensitive coagulability refers to the property of the PU resin dispersion to solidify when it reaches a certain temperature (heat-sensitive coagulation temperature) when it is heated.
  • a certain temperature heat-sensitive coagulation temperature
  • Heat-sensitive coagulability refers to the property of the PU resin dispersion to solidify when it reaches a certain temperature (heat-sensitive coagulation temperature) when it is heated.
  • a PU resin is applied to the entangled sheet. Dry coagulation is a practical method for coagulating water-dispersed PU resin dispersions that do not exhibit heat-sensitive coagulation in industrial production.
  • the texture of the sheet material filled with the PU resin tends to stick.
  • the thermal solidification temperature of the water-dispersed PU resin dispersion is preferably 40° C. or higher and 90° C. or lower.
  • the thermal solidification temperature is preferably 40° C. or higher, the stability of the PU resin dispersion during storage is improved, and adhesion of the PU resin to the machine during operation can be suppressed.
  • the thermal solidification temperature is set to 90° C. or less, it is possible to suppress the migration phenomenon of the PU resin in the entangled sheet.
  • a heat-sensitive coagulant may be added as appropriate to achieve the above-described heat-sensitive coagulation temperature.
  • heat-sensitive coagulants examples include inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, and calcium chloride, and radical reaction initiators such as sodium persulfate, potassium persulfate, ammonium persulfate, azobisisobutyronitrile, and benzoyl peroxide. agents.
  • inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, and calcium chloride
  • radical reaction initiators such as sodium persulfate, potassium persulfate, ammonium persulfate, azobisisobutyronitrile, and benzoyl peroxide. agents.
  • the water-dispersed PU resin dispersion can be impregnated or applied to the entangled sheet, and the PU resin can be coagulated by dry heat coagulation, wet heat coagulation, hot water coagulation, or a combination thereof.
  • the wet heat coagulation temperature should be equal to or higher than the thermal coagulation temperature of the PU resin, preferably 40° C. or higher and 200° C. or lower.
  • the wet heat solidification temperature to 40° C. or higher, more preferably 80° C. or higher, the time until the PU resin solidifies can be shortened, and the migration phenomenon can be further suppressed.
  • the wet heat coagulation temperature to 200° C. or less, more preferably 160° C.
  • the temperature for hot water coagulation is set to be equal to or higher than the heat-sensitive coagulation temperature of the PU resin, preferably 40 to 100°C. By setting the temperature for hot water solidification in hot water to 40° C. or higher, more preferably 80° C. or higher, the time until the PU resin solidifies can be shortened, and the migration phenomenon can be further suppressed.
  • the dry coagulation temperature and drying temperature are preferably 80 to 180°C. By setting the dry coagulation temperature and the drying temperature to 80° C. or higher, more preferably 90° C. or higher, the productivity is excellent. On the other hand, by setting the dry coagulation temperature and the drying temperature to 180° C. or less, more preferably 160° C. or less, thermal deterioration of the PU resin or PVA resin can be prevented.
  • the artificial leather is preferably dyed for the purpose of enhancing its value in terms of sensibility (that is, visual effect).
  • the dye may be selected according to the type of fibers that make up the entangled sheet.
  • disperse dyes can be used for polyester fibers, and acid dyes and metallized dyes are used for polyamide fibers. can be used, and combinations thereof can be used.
  • reduction cleaning may be performed after dyeing.
  • a dyeing method a conventional method well known to dyeing processors can be used.
  • the dyeing method it is preferable to use a jet dyeing machine, since the sheet-like material can be dyed and at the same time the sheet-like material can be softened by imparting a kneading effect.
  • the dyeing temperature is preferably 80° C. or higher and 150° C. or lower, although it depends on the type of fiber. By setting the dyeing temperature to 80° C. or higher, more preferably 110° C. or higher, the fibers can be efficiently dyed. On the other hand, by setting the dyeing temperature to 150° C. or lower, more preferably 130° C. or lower, deterioration of the PU resin can be prevented.
  • the artificial leather thus dyed is preferably subjected to soaping and, if necessary, reduction washing (ie washing in the presence of a chemical reducing agent) to remove excess dye. It is also a preferred embodiment to use a dyeing assistant during dyeing. By using a dyeing aid, the uniformity and reproducibility of dyeing can be improved. In addition, in the same bath as dyeing or after dyeing, a finishing agent treatment using a softening agent such as silicone, an antistatic agent, a water repellent, a flame retardant, a light fastness agent, an antibacterial agent, or the like can be applied.
  • a softening agent such as silicone, an antistatic agent, a water repellent, a flame retardant, a light fastness agent, an antibacterial agent, or the like can be applied.
  • the artificial leather of this embodiment can be used as a surface material for furniture, chairs, wall materials, seats in vehicles such as automobiles, trains, aircraft, ceilings, interiors, etc. Interior materials, shirts, jackets, casual Shoes, sports shoes, men's shoes, women's shoes, uppers, trims, etc., bags, belts, wallets, etc., clothing materials used for some of them, industrial materials such as wiping cloths, polishing cloths, CD curtains, etc. It can also be suitably used as
  • FIG. 6 shows sample collection locations.
  • the fiber layer (A) or the artificial leather containing the fiber layer (A) is cut out in strips (indicated by dotted lines) at two locations (sampling regions 1 and 2) in the machine direction (MD).
  • a cross section in the thickness (t) direction is prepared, and in this cross section, 5 points are selected that are substantially equal in the CD direction perpendicular to the MD direction, and the fiber layer (A) is formed by a method described later.
  • the average fiber diameter ( ⁇ m), single fiber cross section k neighborhood distance ratio value (%), and scrim structure range were determined.
  • Ten images are prepared for each of the average diameter ( ⁇ m) of the single fibers constituting the fiber layer (A), the single fiber cross section k neighborhood distance ratio value (%), and the scrim structure range.
  • Average diameter ( ⁇ m) of single fibers constituting fiber layer (A) The average diameter of the fibers constituting the fiber layer (A) is determined by scanning one of the cross sections of the fiber layer (A) of the artificial leather selected in (1-0) above with a scanning electron microscope (SEM, JEOL "JSM -5610") at a magnification of 1500, 10 fibers forming the cross section of the fiber layer (A) of the artificial leather were randomly selected, and the diameter of the cross section of the single fiber was measured. The same measurement was performed on all 10 cross sections selected in (1-0), and the arithmetic mean value of the measured values of a total of 100 fibers was taken as the average single fiber diameter.
  • SEM scanning electron microscope
  • the fiber diameter is the distance between the outer circumferences on a straight line perpendicular to the midpoint of the longest diameter of the single fiber cross section.
  • FIG. 3 is a conceptual diagram explaining how to obtain the fiber diameter.
  • the fiber diameter is defined as the distance c between the outer circumferences on a straight line b perpendicular to the midpoint p of the longest diameter a of the cross section A in the observed image.
  • the k-neighborhood method is a method in which k single fiber cross sections close to an arbitrary single fiber cross section are picked up, and the k-th closest radius in the Euclidean distance is used as a decision boundary.
  • a range of about 250 ⁇ m ⁇ about 186 ⁇ m is photographed with 640 ⁇ 480 pixels in the band under the image (in this case, 1 pixel corresponds to about 0.40 ⁇ m ⁇ about 0.40 ⁇ m).
  • whether the k 9th closest single fiber cross section exists within a radius of 20 ⁇ m from the approximate center of any single single fiber cross section.
  • the observation area is the deepest part (that is, the part closest to the scrim) of the fiber layer (A) in the cut surface of the sample that has been subjected to the conductive treatment, and the fibers that make up the scrim are observed. Observations are made with a scanning electron microscope (SEM, "JSM-5610" manufactured by JEOL).
  • SEM scanning electron microscope
  • JSM-5610 manufactured by JEOL
  • the sample is observed with the SEM with the center of the observation area set at the center of the cut surface of the sample that has been subjected to the conductive treatment in the thickness direction of the artificial leather.
  • the single fiber cross section in the SEM image can be identified by human marking as shown in FIG.
  • Step 1 In the SEM image (gray), the cross section of the fiber is circled in red (R), and then the coordinates of the cross section of the fiber are calculated.
  • Step 3 The number of cross sections with a k neighborhood distance of R or less is divided by the total number of fiber cross sections, and the k neighborhood distance ratio value in the SEM image is obtained.
  • images containing teacher data (correct label) with a red (R) round dot on the fiber cross section are used as learning data, and all are composed of convolution layers.
  • Semantic segmentation using network FCN (Fully Convolutional Networks) method Jonathan Long, Evan Shelhamer, and Trevor Darrel (2015): Fully Convolutional Networks for Semantic Segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  • Machine learning deep learning that performs class classification by level may be used to identify the position of the fiber cross section in place of manual marking.
  • the scrim structure range in the thickness direction of the artificial leather is obtained by the following method.
  • a cut surface obtained by cutting the artificial leather in the thickness direction is photographed with a scanning electron microscope (SEM, “JSM-5610” manufactured by JEOL) at a magnification of 50 to obtain an SEM image.
  • SEM scanning electron microscope
  • a line segment A is drawn along the outer surface of the fiber layer (A) side and parallel to the surface direction of the artificial leather.
  • the porosity distribution of the artificial leather is obtained by the following procedure. Prior to this, arbitrary three points of the artificial leather separated by 5 cm or more from each other were cut into a size of 10 mm x 10 mm, respectively, and used as a measurement sample. (i) Take a three-dimensional image of the artificial leather by X-ray CT. Apparatus: "High-resolution 3D X-ray microscope nano3DX” manufactured by Rigaku X-ray target: Cu X-ray tube voltage/tube current: 40 kV/30 mA Exposure time: 12 seconds/sheet Spatial resolution: 1.08 ⁇ m/pix Observation area: A range that includes the entire thickness of the cross section in the thickness direction of the sample.
  • the center point is the central portion of the thickness in the cross section in the thickness direction.
  • (ii) Rotate the photographed cylindrical three-dimensional image so that the x-axis and z-axis planes are parallel to the cross section in the thickness direction, and the x-axis and z-axis planes are parallel to the planar direction.
  • a rectangular parallelepiped range of the following size including the artificial leather is trimmed.
  • Side parallel to x-axis 1.25 mm
  • Side parallel to y-axis 1.25 mm
  • Side parallel to z-axis 1.35mm
  • a median filter is applied to the trimmed rectangular parallelepiped three-dimensional image under the condition of a radius of 2 pix.
  • a three-dimensional image from which noise has been removed is cut out every 1 pix in the thickness direction (y-axis), and each time a two-dimensional image parallel to the plane formed by the x-axis and z-axis is captured.
  • the porosity of the captured two-dimensional image is obtained by the following formula.
  • Porosity (%) (number of pixels with brightness value 0/total number of pixels) x 100
  • the above (vi) is performed on all the two-dimensional images to obtain the porosity distribution. From the porosity distribution obtained from the three-dimensional image of the artificial leather obtained by X-ray CT, each related value is obtained by the following method.
  • the artificial leather occupies the space between two points at which the porosity is 95% in the porosity distribution (that is, the distance between the two points is the thickness of the artificial leather).
  • the scrim structure range B calculated from the cross-sectional SEM image with the point on the fiber layer (A) side as the line segment A described in (1-3) and the other point as the line segment D. From ⁇ C [%], the scrim structure range in the porosity distribution is determined.
  • the minimum porosity at the maximum concave peak within the scrim structure range in the porosity distribution of the artificial leather be the minimum porosity ⁇ Smin in the scrim.
  • the porosity of the maximum concave peak in the range from the peak of the minimum porosity ⁇ Smin to the outer surface of the scrim is defined as the minimum porosity ⁇ Amin of the fiber layer (A) of the artificial leather. Further, the line segment A is 0%, the scrim structure range lower limit B is 100%, and the relative position [%] of ⁇ Amin between AB is defined as the relative position of ⁇ Amin in the fiber layer (A). (v) Let ⁇ A-Smax be the maximum porosity existing from ⁇ Smin to ⁇ Amin .
  • Scrim structure range lower limit B [%], scrim structure range upper limit C [%], ⁇ Smin , ⁇ Amin , relative position of ⁇ Amin in fiber layer (A), and ⁇ A in the porosity distribution described above -Smax is obtained as the arithmetic mean value (value rounded to the first decimal place) of the measured values of three 3D images at three arbitrary points on the sample.
  • a piece of 200 mm ⁇ 200 mm is cut from an arbitrary portion of the artificial leather and used as a measurement sample.
  • the outer surfaces of the samples were evaluated visually and sensory by 10 evaluators, 5 adult men and 5 adult women in good health, and evaluated in 5 grades according to the following evaluation criteria.
  • the average value of the evaluations by 10 evaluators (the value rounded to the first decimal place) is used as the grade of the sense of precision.
  • grades 3 to 5 are considered good (acceptable).
  • Grade 5 The nap is very dense and the appearance is very good.
  • Grade 4 A rating between grades 5 and 3.
  • Grade 3 Uniform naps are present on the whole, giving a leather-like appearance.
  • Grade 2 An evaluation between Grade 3 and Grade 1.
  • Grade 1 The raised hair is mottled and the appearance is poor.
  • the softness value 2 was measured in the same manner as described above, replacing vertex A with vertex B and vertex C with vertex D, respectively. Five samples were subjected to the same measurement, and the arithmetic average value (value rounded off to the first decimal place) of a total of 10 points was taken as the texture (stiffness value) of the sample. The feel (flexibility value) of 26 cm or less is considered good (acceptable).
  • JISL1096 woven and knitted fabric test method 8.19.5 Martindale test (abrasive cloth: "ABRASIVECLOTH1575W” manufactured by James H. Heal) is performed according to the method described in E method (Martindale method).
  • the conditions for the Martindale test are as follows. Metsuke 250 g/m2 or more: 50,000 friction times, load 12 kPa Fabric weight less than 250 g/m2: 20,000 rubbing times, load 9 kPa.
  • the worn surface of the sample after the test is visually evaluated by 5 adults who are in good health, and judged on a scale of 5 according to the following evaluation criteria. [Evaluation criteria] Grade 5: No scrim exposed on the worn surface and no pilling observed.
  • Grade 4 A rating between grades 5 and 3.
  • Grade 3 The scrim is not exposed on the worn surface, but the fiber layer is worn.
  • Grade 2 An evaluation between Grade 3 and Grade 1.
  • Grade 1 The scrim is exposed on the worn surface. The average value of the 15 points (the value rounded to the first decimal place), which is the evaluation result of the above five persons for the three samples, is taken as the abrasion resistance. Abrasion resistance grades 3 to 5 are considered good (acceptable).
  • Example 1 A polyethylene terephthalate fiber having an average single fiber diameter of 2.5 ⁇ m was produced by a melt spinning method and cut into a length of 5 mm (hereinafter, the polyethylene terephthalate fiber of a single fiber cut into a length of 5 mm is also referred to as “PET ultrafine short fiber”. say.).
  • a fibrous web (A') having a basis weight of 140 g/m 2 was produced by dispersing the PET ultrafine short fibers in water and using a papermaking method.
  • a high-speed water stream using a straight stream jet nozzle is jetted from the outer surface side to the obtained fiber web (A′) at a pressure of 4 MPa, and dried at 100° C. using an air-through type pin tenter dryer.
  • a fiber sheet (A′′) was obtained.
  • PET ultrafine short fibers are dispersed in water to produce a fiber web (B') with a basis weight of 80 g/m 2 by a papermaking method, and as a fiber layer (B) on the opposite side of the outer surface of the artificial leather.
  • a scrim plain weave fabric made of polyethylene terephthalate fibers of 166 dtex/48 f and having a basis weight of 95 g/m 2 was inserted between the fiber sheet (A′′) and the fiber web (B′) to form a laminated sheet having a three-layer structure. .
  • a high-speed water jet using a straight flow jet nozzle is jetted to the laminated sheet at a pressure of 4 MPa from the outer surface side and 3 MPa from the opposite side of the outer surface to entangle the fiber layers with the scrim.
  • they were dried at 100° C. using an air-through type pin tenter dryer to obtain an entangled sheet having a three-layer structure.
  • the outer surface of the entangled sheet was raised using #400 emery paper.
  • the entangled sheet was impregnated with a water-dispersed polyurethane resin impregnating solution having the composition shown in Table 1 below, and then dried by heating at 130°C using a pin tenter dryer, followed by hot water heated to 90°C. After being immersed in a soft cloth, the anhydrous mirabilite was extracted and removed by drying to obtain a sheet-like material filled with a water-dispersible polyurethane resin.
  • the ratio of the water-dispersible PU resin to the total mass of fibers in this sheet was 10% by mass.
  • the sheet was dyed with a blue disperse dye (“BlueFBL” manufactured by Sumitomo Chemical Co., Ltd.) having a dye concentration of 5.0% owf at 130° C. for 15 minutes using a jet dyeing machine, and was subjected to reduction washing. After that, it was dried at 100° C. for 5 minutes using a pin tenter dryer to obtain an artificial leather having a three-layer structure.
  • BlueFBL blue disperse dye manufactured by Sumitomo Chemical Co., Ltd.
  • Example 2 An artificial leather having a three-layer structure was obtained according to the method of Example 1, except that the polyethylene terephthalate fibers used in the fiber web (A') had an average single fiber diameter of 3.2 ⁇ m.
  • Example 3 An artificial leather having a three-layer structure was obtained according to the method of Example 1, except that the polyethylene terephthalate fibers used in the fiber web (A') had an average single fiber diameter of 4.5 ⁇ m.
  • Example 4 An artificial leather having a three-layer structure was obtained according to the method of Example 1, except that the polyethylene terephthalate fibers used in the fiber web (A') had an average single fiber diameter of 5.5 ⁇ m.
  • Example 5 An artificial leather having a three-layer structure was obtained according to the method of Example 1, except that the polyethylene terephthalate fibers used in the fiber web (A') had an average single fiber diameter of 6.4 ⁇ m.
  • Example 6 The average diameter of the polyethylene terephthalate fibers used in the fiber web (A′) was 4.5 ⁇ m, and the laminated sheet having a two-layer structure was used without using the fiber web (B′). An artificial leather having a two-layer structure was obtained according to the method.
  • Example 7 Polyethylene terephthalate obtained by copolymerizing 8 mol% of sodium 5-sulfoisophthalate is used as the sea component, and polyethylene terephthalate is used as the island component. A sea-island composite fiber having 16 islands/1 f and an average fiber diameter of 18 ⁇ m was obtained. The islands-in-the-sea composite fiber thus obtained was cut into a fiber length of 51 mm to form a staple, which was carded and passed through a cross wrapper to produce a fiber web (A').
  • a high-speed water jet using a straight jet nozzle was jetted from the surface side to the obtained fiber web (A') at a pressure of 4 MPa, and dried at 100°C using an air-through type pin tenter dryer. Then, it was immersed in an aqueous sodium hydroxide solution with a concentration of 10 g/L heated to a temperature of 95° C. for 25 minutes to obtain a fiber sheet (A′′) from which the sea component of the sea-island composite fiber was removed.
  • the average diameter of single fibers constituting the fiber sheet (A′′) was 4.0 ⁇ m.
  • Polyethylene terephthalate fibers with an average single fiber diameter of 2.5 ⁇ m were produced by melt spinning and cut into 5 mm lengths.
  • a fibrous web (B') having a basis weight of 80 g/m 2 was produced by dispersing the PET ultrafine short fibers in water and using a paper making method.
  • a scrim plain weave fabric made of polyethylene terephthalate fibers of 166 dtex/48 f and having a basis weight of 95 g/m 2 was inserted between the fiber sheet (A′′) and the fiber web (B′) to form a laminated sheet having a three-layer structure. .
  • the steps after the laminated sheet were performed according to the method of Example 1 to obtain an artificial leather having a three-layer structure.
  • Example 8 An artificial leather having a three-layer structure was obtained according to the method of Example 3, except that a high-speed water stream was jetted from the surface side to the fiber web (A') at a pressure of 6 MPa.
  • the ratio of the water-dispersible PU resin to the total mass of fibers in this sheet was 30% by mass.
  • the obtained sheet material was immersed in toluene heated to a temperature of 85° C. for treatment to remove the sea component of the sea-island composite fiber, polyethylene.
  • the average diameter of single fibers of the fibers constituting the sheet after sea removal was 0.2 ⁇ m.
  • the outer surface of the sheet was raised using #400 emery paper to obtain a sheet having the raised surface and a basis weight of 300 g/m ⁇ 2>.
  • the sheet material was dyed with a metal dye using a Wince dyeing machine at 60° C. for 100 minutes. Then, it was dried at 100° C. for 5 minutes using a pin tenter dryer to obtain an artificial leather having a single layer structure.
  • Table 3 below shows various physical properties of the artificial leathers obtained in Examples 1 to 8 and Comparative Examples 1 to 5.
  • the artificial leather according to the present invention is excellent in all of the dense outer surface, the soft texture, and the abrasion resistance, so it can be used as a surface material or interior of seats for interiors, automobiles, aircraft, railway vehicles, etc. It can be suitably used for materials, clothing products, and the like.
  • the artificial leather according to the present invention is an interior material having a very elegant appearance as a surface material for furniture, chairs, wall materials, seats in vehicles such as automobiles, trains, and aircraft, ceilings, and interiors.
  • MD Process direction (machine direction) CD width (horizontal) direction 11 entangled sheet 12 scrim 13 fiber layer (A) 14 fiber layer (B)

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

緻密感のあるヌバック調の外表面、柔軟な風合い、耐摩耗性のいずれにも優れる人工皮革を提供する。本発明は、絡合シートと該絡合シートに充填された高分子弾性体とを含む起毛調人工皮革であって、該絡合シートが、該起毛調人工皮革の表面側の繊維層(A)と、該繊維層(A)に接するスクリムから構成された2層以上の構造を有し、該繊維層(A)を構成する繊維の平均直径が2.0μm以上7.0μm以下であり、かつ、厚み方向に空隙率を測定するとき、繊維層(A)における最小空隙率を、εAmin(%)とし、スクリムにおける最小空隙率を、εSmin(%)とし、該εAmin(%)の位置から該εSmin(%)の位置までに存在する最大空隙率を、εA-Smax(%)とするとき、40≦εAmin≦70、70≦εA-Smax≦90、εSmin(%)<εA-Smax(%)を満たすことを特徴とする、起毛調人工皮革、及びその製法に関する。

Description

人工皮革及びその製法
 本発明は、人工皮革及びその製法に関する。
 繊維を交絡することによって形成される不織布と高分子弾性体を主材として構成される人工皮革は、イージーケア、機能性、均質性等、天然皮革では実現が難しい優れた特徴を有しており、衣類、靴、鞄、更に、インテリア用、自動車用、航空機用、鉄道車両用等のシートの表皮材及び内装材、リボン、ワッペン基材等の服飾材、等に好適に用いられている。
 人工皮革の中でも、外表面が起毛処理されたスエード調人工皮革は、高級感のある外観と触感が特徴として知られている。さらに、一般のスエード調人工皮革に比べ、より起毛が緻密、短毛、且つ均一なものは、その外観からヌバック調人工皮革と称され、より好まれている。
 以下の特許文献1では、機械強度を補強する目的で人工皮革に挿入されるスクリムとして熱収縮性ポリマーからなる織物スクリムを用い、製造工程にて熱収縮工程を経ることで、構造が緻密で高級感のある表面外観を有しているだけでなく、機械的物性や形態安定性に優れた人工皮革を得る方法について述べられている。
 以下の特許文献2では、極細繊維で構成される低目付の繊維ウェブと熱収縮性の高い編物スクリムとを複数回の水流交絡により一体化することで、表面に柄グセを発生させず、緻密な人工皮革を得る方法について述べられている。
 以下の特許文献3では、単繊維繊度が0.0001~0.004dtexの極細繊維で構成される繊維ウェブを積層した積層体を交絡により一体化することで、ヌバック調の毛羽感と天然皮革調の微細なシワ感を併せ持つヌバック調人工皮革を得る方法について述べられている。
特開2019-112744号公報 特開2009-185430号公報 特開2007-204863号公報
 しかしながら、人工皮革には柔軟な風合いも求められる。人工皮革の繊維密度を疎にするほど柔軟な風合いが得られる傾向にあるため、ヌバックのような外観と触感を得るために繊維密度を過度に緻密にすると、風合いは硬くなり易く好ましくない。
 また、人工皮革には耐摩耗性も求められる。ヌバックのような外観と触感を得るために、不織布を構成する繊維を細径化し繊維密度を緻密にすることも考えられるが、高い耐摩耗性を具備するためには、不織布を構成する繊維の直径が大きいことが望ましい。
 特許文献1では、熱収縮性ポリマーからなる織物スクリムを含む絡合シートを熱収縮させることで、外表面を含む全体が緻密な人工皮革を得ている。しかしながら、全体が緻密な構造であるためペーパーライクもしくは硬い風合いとなり、人工皮革として求められる柔軟な風合いを満足できない。
 特許文献2では、熱収縮性の高い編物スクリムを含む絡合シートを熱収縮させることで、外表面が緻密な人工皮革を得ている。しかしながら、全体が緻密な構造であるためペーパーライクもしくは硬い風合いとなり、人工皮革として求められる柔軟な風合いを満足できない。加えて、前記繊維ウェブの目付は10~25g/m2と極めて小さいため、耐摩耗性が十分でない。
 特許文献3では、人工皮革を極細繊維で構成される繊維ウェブを含む積層体とすることで、外表面が緻密な人工皮革を得ている。しかしながら、0.0001~0.004dtexの極細繊維を用いているため、耐摩耗性が十分ではない。
 これらの従来技術の問題点に鑑み、本発明が解決しようとする課題は、緻密感のあるヌバック調の外表面、柔軟な風合い、及び耐摩耗性のいずれにも優れる人工皮革を提供することである。
 前記課題を解決すべく本発明者らは鋭意研究し実験を重ねた結果、以下の特徴を有する人工皮革であれば該課題を解決しうることを予想外に見出し、本発明を完成するに至ったものである。
 すなわち、本発明は以下のとおりのものである。
 [1]絡合シートと該絡合シートに充填された高分子弾性体とを含む起毛調人工皮革であって、
 該絡合シートが、該起毛調人工皮革の表面側の繊維層(A)と、該繊維層(A)に接するスクリムから構成された2層以上の構造を有し、
 該繊維層(A)を構成する繊維の平均直径が2.0μm以上7.0μm以下であり、かつ、表面側から裏面側に向かって厚み方向に空隙率を測定するとき、繊維層(A)における最小空隙率を、εAmin(%)とし、スクリムにおける最小空隙率を、εSmin(%)とし、該εAmin(%)の位置から該εSmin(%)の位置までに存在する最大空隙率を、εA-Smax(%)とするとき、以下の式(1)乃至(3):
   40≦εAmin≦70...式(1)
   70≦εA-Smax≦90...式(2)
   εSmin<εA-Smax...式(3)
を満たすことを特徴とする、起毛調人工皮革。
 [2]前記繊維層(A)のk近傍距離割合値が10%以上80%以下である、前記[1]に記載の人工皮革。
 [3]前記繊維層(A)の厚み方向において、該繊維層(A)の表面の相対位置を0%、該繊維層(A)とスクリムの境界の相対位置を100%としたとき、該繊維層(A)における最小空隙率であるεAminの相対位置が20%以上95%以下の範囲である、前記[1]又は[2]に記載の人工皮革。
 [4]前記高分子弾性体が水分散型ポリウレタンである、前記[1]~[3]のいずれかに記載の人工皮革。
 [5]前記絡合シートがポリエステル繊維から構成される、前記[1]~[4]のいずれかに記載の人工皮革。
 [6]前記絡合シートが、繊維層(A)と、該繊維層(A)に接するスクリムと、該スクリムに接する繊維層(B)から構成された3層の構造を有する、前記[1]~[5]のいずれかに記載の人工皮革。
 [7]以下の工程:
 (1)平均直径2.0μm以上7.0μm以下の繊維から繊維ウェブ(A′)を形成する工程;
 (2)得られた繊維ウェブ(A′)を予備水流交絡して、繊維シート(A″)を得る工程;
 (3)少なくとも繊維シート(A″)とスクリムを積層し、本水流交絡により一体化して絡合シートを得る工程;
 (4)場合により、得られた繊維シートの外表面を起毛処理する工程;
 (5)得られた絡合シートに高分子弾性体を充填して、シート状物を得る工程;
 (6)前記工程(4)を実施しなかった場合、前記工程(5)で得られたシート状物の外表面を起毛する工程、もしくは前記工程(4)を実施し、さらにシート状物の外表面を起毛処理する工程;及び
 (7)得られたシート状物を染色する工程;
を含む、前記[1]~[6]のいずれかに記載の起毛調人工皮革の製造方法。
 [8]前記工程(2)における予備水流交絡の水圧が、2MPa以上4.5MPa以下である、前記[7]に記載の方法。
 本発明によれば、緻密感のあるヌバック調の外表面、柔軟な風合い、及び耐摩耗性のいずれにも優れる人工皮革を製造することができる。
図1は、人工皮革の構成例を示す概念図である。尚、符号14の繊維層(B)は任意である。 図2は、人工皮革の空隙率の概略図である。 図3は、繊維層(A)を構成する繊維の平均直径の求め方を説明する概念図である。 図4は、厚み方向断面における単繊維断面k近傍距離割合値(%)を求めるために、所定画像領域内の各単繊維断面を人でマーキングした状態を示す画像である。 図5は、厚み方向断面における単繊維断面k近傍距離割合値(%)の求め方を説明するための概念図である。 図6は、サンプルに採取箇所を示す説明図である。
 以下、本発明の実施形態について、詳細に説明するが、本発明は実施形態に限定されるものではない。また、本開示の各種値は、特記がない限り、本開示の実施例の項に記載される方法又はこれと同等であることが当業者に理解される方法で得られる値である。
<人工皮革>
 本発明の一の実施形態は、絡合シートと該絡合シートに充填された高分子弾性体とを含む起毛調人工皮革であって、
 該絡合シートが、該起毛調人工皮革の表面側の繊維層(A)と、該繊維層(A)に接するスクリムから構成された2層以上の構造を有し、
 該繊維層(A)を構成する繊維の平均直径が2.0μm以上7.0μm以下であり、かつ、表面側から裏面側に向かって厚み方向に空隙率を測定するとき、繊維層(A)における最小空隙率を、εAmin(%)とし、スクリムにおける最小空隙率を、εSmin(%)とし、該εAmin(%)の位置から該εSmin(%)の位置までに存在する最大空隙率を、εA-Smax(%)とするとき、以下の式(1)乃至(3):
   40≦εAmin≦70...式(1)
   70≦εA-Smax≦90...式(2)
   εSmin<εA-Smax...式(3)
を満たすことを特徴とする、起毛調人工皮革である。
 本明細書中、「人工皮革」とは、家庭用品品質表示法に準じ「基材に特殊不織布(ランダム三次元立体構造を有する繊維層を主とし、ポリウレタン(PU)樹脂又はそれに類する可撓性を有する高分子弾性体を含浸させたもの)を用いているもの」である。また、JIS-6601の定義では、人工皮革は、その外観によって、革の銀面様外観を持つ「スムーズ」と、革のヌバック、スエード、ベロア等の外観を持つ「ナップ」に分類されるが、本実施形態の人工皮革は「ナップ」に分類されるもの(すなわち、起毛調外観を有する起毛調人工皮革)に関するものである。起毛調外観は、繊維層(A)の外表面(表(おもて)面ともいう)をサンドペーパー等でバフィング処理(起毛処理)することにより形成することができる。尚、本明細書中、人工皮革の外表面、繊維層(A)の外表面、繊維シートの外表面、及び積層シートの外表面とは、人工皮革として使用される際に外部に露出する表面(例えば、椅子用途の場合は人体と接触する側の表面)である。一態様において、起毛調人工皮革の場合には、繊維層(A)の外表面が、バフィング加工等により起毛又は立毛されている。
 人工皮革は、少なくとも、繊維層(A)と、該繊維層(A)に接するスクリムで構成された2層以上の構造を有する。人工皮革がスクリムを含む2層以上の構造を有することによって、人工皮革の機械物性、特に引裂強度や引張強度を高められる。人工皮革は、例えば、繊維層(A)とスクリムに加えて、裏面を構成する繊維層(B)との3層で構成されてもよい。繊維層(A)と、繊維層(B)と、これらに挟まれたスクリムとの3層構造にすれば、繊維層(A)と繊維層(B)とをそれぞれ個別に設計できるので、これらの層を構成する繊維の直径、種類等を、絡合シートを用いた人工皮革に要求される機能及び用途に合わせて自由にカスタマイズできる点で好ましい。例えば、繊維層(A)に極細繊維を、繊維層(B)に難燃繊維をそれぞれ使用すれば、優れた表面品位と高い難燃性とを両立できる。また、繊維層(A)と、繊維層(B)と、これらに挟まれたスクリムとの3層構造にすることによって、繊維層(A)とスクリムとの間の交絡強度が高くなりやすい点でも好ましい。
[スクリムにおける最小空隙率εSmin
 図2に示すように、スクリムにおける最小空隙率εSminは、人工皮革の空隙率分布におけるスクリム構造範囲内の最大凹ピークの空隙率である。人工皮革の空隙率分布は、CTスキャンによる解析(後述)によって算出される。人工皮革のスクリム構造範囲は、人工皮革の厚み方向断面のSEM画像から決定する(後述)。スクリムにおける最小空隙率εSmin(%)は、εA-Smax(%)未満である。εSmin+5≦εA-Smaxが好ましく、より好ましくはεSmin+10≦εA-Smaxである。
[繊維層(A)における最小空隙率εAmin
 繊維層(A)の厚み方向における最小空隙率εAminは40%以上70%以下である。εAminとは、図2に示す通り、スクリムにおける最小空隙率εSminのピークから繊維層(A)側の外表面までの範囲における最大凹ピークの空隙率である。前記凹ピークがあることで、繊維層(A)内の繊維同士が十分に交絡し、耐摩耗性が向上する。さらに、前記εAminが40%以上であることで、繊維層(A)を構成する繊維間に適度な空隙が生じ、人工皮革は柔軟な風合いを有する。また、εAminが70%以下であることで、繊維層(A)が緻密になり、触れた際の風合いがヌバック調の緻密感を有する。εAminは、好ましくは50%以上70%以下、より好ましくは60%以上70%以下である。
[繊維層(A)における最小空隙率εAminの相対位置]
 繊維層(A)の厚み方向において、繊維層(A)の表面の相対位置を0%、繊維層(A)とスクリムとの境界の相対位置を100%としたとき、繊維層(A)における最小空隙率εAminの相対位置は、20%以上95%以下の範囲が好ましい。人工皮革の繊維層(A)におけるεAminの相対位置は、人工皮革の断面SEM画像及び3次元画像から決定する(後述)。前記相対位置は、水流交絡工程で繊維ウェブ(A′)又は積層シートに水流として与えられるエネルギー(水圧)で調整できる。前記相対位置が20%以上であることで、繊維層とスクリムがより一体的に交絡され、繊維層(A)とスクリムとの剥離が生じにくい。また、前記相対位置が95%以下であることで、人工皮革の風合いが柔軟になり易い。前記相対位置は、より好ましくは35%以上90%以下、さらに好ましくは50%以上85%以下である。
[εSminからεAminまでに存在する最大空隙率εA-Smax
 εSminからεAminまでに存在する最大空隙率εA-Smax(εAmin(%)の位置からεSmin(%)の位置までに存在する最大空隙率)(%)は、人工皮革の空隙率分布において、スクリム構造範囲内のεSminから繊維層(A)内のεAminまでに存在する最大凸ピークの空隙率である。前記εA-Smaxは、70%以上90%以下である。前記εA-Smaxが70%以上であることで、繊維層(A)とスクリムの間に適度な空隙が生じ、人工皮革は柔軟な風合いを有する。また、前記εA-Smaxが90%以下であることで、繊維層(A)とスクリムとを把持する十分な量の繊維が存在し、人工皮革は自動車内装材の表皮材用途などとして十分な耐摩耗性を有する。前記εA-Smaxは、好ましくは70%以上85%以下、より好ましくは70%以上80%以下である。
[繊維層を構成する繊維]
 人工皮革を構成する繊維層(繊維層(A)、並びに任意の層としての繊維層(B)及び追加の層)を構成する繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系繊維;ナイロン6、ナイロン66、ナイロン12等のボリアミド系繊維;等の合成繊維が好適である。その中でも、カーシート分野等の耐久性が要求される用途を考慮すると、直射日光に長時間曝露しても繊維自身が黄変等せず、染色堅牢度に優れる点で、ポリエチレンテレフタレートが好ましい。また、環境負荷を低減するという観点から、ケミカルリサイクル若しくはマテリアルリサイクルされたポリエチレンテレフタレート、又は植物由来原料を使ったポリエチレンテレフタレート等が更に好ましい。
 人工皮革の繊維層(A)を構成する繊維の平均直径は2.0μm以上7.0μm以下である。平均直径が2.0μm以上であることで、人工皮革の繊維層(A)を構成する繊維間に適度な空隙が生じるため、εAminが60%以上になり易い。加えて、本水流交絡工程(後述)を経て前記繊維層(A)を構成する繊維とスクリムとの間に適度な空隙が生じるため、εA-Smaxが70%以上になり易い。また、平均直径が7.0μm以下であることで、人工皮革の繊維層(A)を構成する繊維同士がより緻密に交絡されるため、εAminが70%以下になり易い。加えて、本水流交絡工程(後述)を経て前記繊維層(A)を構成する繊維とスクリムがより緻密に交絡されるため、εA-Smaxが80%以下になり易い。人工皮革の繊維層(A)を構成する繊維の平均直径は、好ましくは3.0μm以上6.0μm以下、より好ましくは3.0μm以上5.0μm以下である。
 人工皮革を構成する繊維層(繊維層(A)、任意の繊維層(B)及び追加の繊維層等)を構成する繊維ウェブの原料となる繊維としては、直接紡糸された繊維、及び極細繊維発現型繊維から取り出した極細繊維が好ましい。直接紡糸された繊維、及び極細繊維発現型繊維から取り出した極細繊維を使用することで、人工皮革を構成する繊維層における繊維が単繊維分散し易い。
 少なくとも繊維層(A)において、繊維は単繊維分散していることが好ましい。例えば、海島型複合繊維(例えば、共重合ポリエステルを海成分、レギュラーポリエステルを島成分に用いたもの等)等の極細繊維発現型繊維を使用し、スクリムとの絡合シートとした後で細繊化処理(海島型複合繊維の海成分を溶解、分解等によって除去)することによって得られる繊維は、繊維層(A)中では繊維束として存在することになり、単繊維分散していない。一例として、島成分が単繊維繊度0.2dtex相当で24島/1fである海島型複合短繊維を作製し、該海島型複合短繊維で繊維層(A)を形成した後、ニードルパンチ処理等でスクリムとの絡合シートを形成し、該三次元交絡体にPU樹脂を充填した後、海成分を溶解又は分解することで、単繊維繊度が0.2dtex相当の繊維が得られる。この場合、単繊維が24本収束した繊維束の状態(収束状態では4.8dtex相当)で繊維層(A)に存在することになる。
 本明細書中、繊維が「単繊維分散している」とは、繊維が、例えば、海島型複合繊維の海成分を溶解、分解等によって除去することによって得られる繊維束を形成していないことを意味する。繊維層(A)が、単繊維分散している繊維から構成されている場合、表面平滑性に優れ、例えば繊維層(A)の外表面をバフィング加工等によって起毛処理する際に均質な起毛が得られ易く、且つ、PU樹脂の付着率が比較的少ない場合でも、摩擦によってピリングと呼ばれる毛玉状の外観が生じ難いため、より優れた表面品位と耐摩耗性とを有する人工皮革が得られる。また、繊維が単繊維分散している場合、繊維間隔が狭く均一になり易いため、PU樹脂が微細な形態で付着していても、良好な耐摩耗性が得られる。繊維を単繊維分散させる方法としては、直接紡糸法により製造された極細繊維を抄造法により繊維ウェブ化する方法、海島型複合繊維で作製された繊維シート又は絡合シートの海成分を、溶解又は分解して極細繊維束を発生させた後に、繊維束面に水流分散処理を施すことで、繊維束の単繊維化を促進する方法等が挙げられる。
 絡合シートを構成する繊維層のうち、繊維層(A)以外の繊維層においては、繊維が単繊維分散していてもしていなくてもよいが、好ましい態様においては、繊維層(A)以外の層も単繊維分散している繊維で構成されている。繊維層(A)以外の層を構成する繊維が単繊維分散していることにより、絡合シートを用いる人工皮革の厚みが均質となり加工精度が向上し、品質を安定化させるという観点から好ましい。
 絡合シートが繊維層(A)、及びスクリムの2層で構成される場合、繊維層(A)を構成する繊維ウェブ(A′)の目付は、耐摩耗性等の機械強度の観点から、好ましくは10g/m2以上200g/m2以下、より好ましくは30g/m2以上170g/m2以下、更に好ましくは60g/m2以上170g/m2以下である。スクリムの目付は、機械強度、及び繊維層とスクリムとの交絡性の観点から、好ましくは20g/m2以上150g/m2以下、より好ましくは20g/m2以上130g/m2以下、更に好ましくは30g/m2以上110g/m2以下である。繊維層(A)、及びスクリムの2層で構成される絡合シートにPU樹脂を含浸させた人工皮革の目付は、好ましくは50g/m2以上550g/m2以下、より好ましくは60g/m2以上400g/m2以下、更に好ましくは70g/m2以上350g/m2以下である。
 絡合シートが繊維層(A)、スクリム、及び繊維層(B)の3層構造で構成される場合、繊維層(A)を構成する繊維ウェブ(A′)の目付は、耐摩耗性等の機械強度の観点から、好ましくは10g/m2以上200g/m2以下、より好ましくは30g/m2以上170g/m2以下、更に好ましくは60g/m2以上170g/m2以下である。また、繊維層(B)を構成する繊維ウェブ(B′)の目付は、コスト及び製造のしやすさの観点から、好ましくは10g/m2以上200g/m2以下、より好ましくは20g/m2以上170g/m2以下とすることができる。スクリムの目付は、機械強度、及び繊維層とスクリムとの交絡性の観点から、好ましくは20g/m2以上150g/m2以下、より好ましくは20g/m2以上130g/m2以下、更に好ましくは30g/m2以上110g/m2以下である。繊維層(A)、スクリム、及び繊維層(B)の3層構造で構成される絡合シートにPU樹脂を含浸させた人工皮革の目付は、好ましくは60g/m2以上750g/m2以下、より好ましくは80g/m2以上570g/m2以下、更に好ましくは70g/m2以上520g/m2以下である。
[k近傍距離割合値]
 人工皮革の厚み方向断面における繊維層(A)を構成する単繊維断面の間のk近傍距離割合値(k=9、半径r=20μm)は、10%以上80%以下が好ましい。k近傍距離割合値(k=9、半径r=20μm)は、単繊維の密集度合いを指標する。
 測定方法は後述するが、k近傍法とは、任意の1つの単繊維断面に近いk個の単繊維断面を取り上げ、ユークリッド距離においてk番目に近い半径を決定境界とする手法であり、本実施形態においては、SEM画像を撮影し、任意の1つの単繊維断面の略中心から半径20μmの距離内にk=9番目に近い単繊維断面が存在しているか否かを決定する。1つのSEM画像内の全ての単繊維断面について、該存在の有無を求め、単繊維断面k=9近傍距離割合値(%)を以下の式で求める:
   単繊維断面(k=9)近傍距離割合値(%)={(単繊維断面の略中心から半径20μmの距離内にk=9番目に近い単繊維断面が存在している単繊維断面の個数)/(1つのSEM画像内の単繊維断面の全数)}×100。
 人工皮革の厚み方向断面における繊維層(A)を構成する単繊維断面の間のk近傍距離割合値(k=9、半径r=20μm)が10%以上であれば、単繊維が適度に凝集している状態で存在し、人工皮革の外表面の繊維が緻密になり、ヌバック調の人工皮革が得られ易い。他方、k近傍距離割合値(k=9、半径r=20μm)が80%以下であれば、単繊維が適度に分散しており、繊維同士が十分に交絡されるため、十分な耐摩耗性を得られ易い。k近傍距離割合値(k=9、半径r=20μm)は、20%以上70%以下がより好ましく、30%以上60%以下がさらに好ましい。
[スクリム]
 スクリムは、例えば、織編物であることができ、染色による同色性の点から、繊維層(A)を構成する繊維と同じポリマー系の繊維で構成されることが好ましい。例えば、繊維層(A)を構成する繊維がポリエステル系であれば、スクリムを構成する繊維もポリエステル系であることが好ましく、繊維層(A)を構成する繊維がポリアミド系であれば、スクリムを構成する繊維もポリアミド系であることが好ましい。編物の場合のスクリムは、22ゲージ以上28ゲージ以下で編み上げたシングルニットが好ましい。スクリムが織物の場合、編物よりも高い寸法安定性及び強度が実現できる。織物の組織は、平織、綾織、朱子織等であってよいが、コスト面、及び交絡性等の工程面から、平織が好ましい。
 織物を構成する糸条は、モノフィラメントでもマルチフィラメントでもよい。糸条の単繊維繊度は、絡合シートを用いた柔軟な人工皮革が得られ易い点で5.5dtex以下が好ましい。織物を構成する糸条の形態としては、ポリエステル、ポリアミド等のマルチフィラメントの生糸、又は仮撚り加工を施した加工糸等に撚数0~3000T/mで撚りを施したものが好ましい。該マルチフィラメントは通常のものでよく、例えば、ポリエステル、ポリアミド等の33dtex/6f、55dtex/24f、83dtex/36f、83dtex/72f、110dtex/36f、110dtex/48f、167dtex/36f、166dtex/48f等が好ましく用いられる。織物を構成する糸条は、マルチフィラメントの長繊維であってよい。織物における糸条の織密度は、柔軟で且つ機械強度に優れる人工皮革を得る点で、30本/インチ以上150本/インチ以下が好ましく、更に好ましくは40本/インチ以上100本/インチ以下である。良好な機械強度と適度な風合いとを具備するためには、織物の目付は20g/m2以上150g/m2以下が好ましい。尚、織物における仮撚り加工の有無、撚数、マルチフィラメントの単繊維繊度、織密度等は、繊維層(A)の構成繊維との交絡性、人工皮革の柔軟性に加え、縫目強力、引裂強力、引張強伸度、伸縮性等の機械物性にも寄与するため、目標とする物性及び用途に応じて適宜選択すればよい。
[高分子弾性体]
 人工皮革を構成する高分子弾性体は、ポリウレタン(PU)樹脂が好ましい。また、PU樹脂は、PU樹脂をN,N-ジメチルホルムアミド等の有機溶媒で溶解した溶剤型PU樹脂、PU樹脂を乳化剤で乳化させて水中へ分散させた水分散型PU樹脂等の形態で使用できるが、本実施形態では、PU樹脂を微細な形態で絡合シートに充填し易く、少量の付着でも風合い及び機械物性等の人工皮革としての要求性能が得られ易く、且つ、有機溶媒を使用する必要がなく環境負荷を低減できる点から、水分散型PU樹脂が好ましい。すなわち、水分散型PU樹脂は、PU樹脂が所望の粒子径で分散した分散液の形態で絡合シートに含浸させることができるため、当該粒子径の制御によってPU樹脂の絡合シート中での充填形態を良好に制御できる。
 水分散型PU樹脂としては、PU分子内に親水基を含有する自己乳化型PU樹脂、外部乳化剤でPU樹脂を乳化させた強制乳化型PU樹脂等を使用することができる。
 水分散型PU樹脂には、耐湿熱性、耐摩耗性、耐加水分解性等の耐久性を向上させる目的で架橋剤を併用することができる。液流染色加工時の耐久性を向上させ、繊維の脱落を抑制し、優れた表面品位を得るために、架橋剤を添加することが好ましい。架橋剤は、PU樹脂に対し、添加成分として添加する外部架橋剤でもよく、また、PU樹脂構造内に予め架橋構造を採ることができる反応基を導入する内部架橋剤でもよい。
 人工皮革に使用される水分散型PU樹脂は、一般的には染色加工耐性を具備させるために架橋構造をとっているため、N,N-ジメチルホルムアミド等の有機溶剤に溶け難い傾向にある。そのため、例えば、人工皮革をN,N-ジメチルホルムアミドに室温で12時間浸漬させて、PU樹脂の溶解処理を行った後、電子顕微鏡等で断面を観察した際に、繊維形状を有しない樹脂状物が残存していれば、該樹脂状物は水分散型PU樹脂であると判断できる。
 人工皮革に求められる柔軟性や均質性の観点から、PU樹脂分散液を用いてPU樹脂の充填を行い、かつその際に該分散液中のPU樹脂の平均一次粒子径を0.1μm以上0.8μm以下とすることが好ましい。尚、平均一次粒子径は、PU樹脂分散液のレーザー型回折式粒度分布測定装置(HORIBA製「LA-920」)による測定で得られる値である。PU樹脂の平均一次粒子径を0.1μm以上とすることで、絡合シート中の繊維同士をPU樹脂によって把持する力(すなわち、バインダー力)を良好にすることによって優れた機械強度を有する人工皮革が得られる。また、PU樹脂の平均一次粒子径を0.8μm以下とすることで、PU樹脂が凝集又は粗大化することを抑制し、断面PU樹脂面積率の標準偏差を25以下に制御できる点で有利である。PU樹脂分散液中のPU樹脂の平均一次粒子径を0.1μm以上0.8μm以下とすることで、人工皮革(特にその表層)を構成する繊維同士が把持される点が多くなり、柔軟な風合い(剛軟値)、及び優れた機械強度(耐摩耗性等)が得られる。PU樹脂の平均一次粒子径は好ましくは0.1μm以上0.6μm以下であり、さらに好ましくは0.2μm以上0.5μm以下である。
[PU樹脂分散液の固形分濃度]
 前述の通り、PU樹脂は、溶液(例えば、溶剤溶解型の場合)、分散液(例えば、水分散型の場合)等の含浸液の形態で含浸される。例えば、水分散型PU樹脂分散液の固形分濃度は、3重量%以上35重量%以下であることができ、より好ましくは4質量%以上30質量%以下、さらに好ましくは5質量%以上25質量%以下である。一態様において、絡合シート100質量%に対するPU樹脂の比率が5質量%以上50質量%以下となるように含浸液の調製及び絡合シートへの含浸を行う。
 PU樹脂としては、ポリマージオールと有機ジイソシアネートと鎖伸長剤との反応により得られるものが好ましい。
 ポリマージオールとしては、例えば、ポリカーボネート系、ポリエステル系、ポリエーテル系、シリコーン系、フッ素系等のジオールを採用することができ、これらの2種以上を組み合わせた共重合体を用いてもよい。耐加水分解性の観点からは、ポリカーボネート系若しくはポリエーテル系又はこれらの組み合わせのジオールが好ましく用いられる。また、耐光性及び耐熱性の観点からは、ポリカーボネート系、ポリエステル系、又はこれらの組み合わせのジオールが好ましく用いられる。さらに、コスト競争力の観点からは、ポリエーテル系、ポリエステル系、又はこれらの組み合わせのジオールが好ましく用いられる。
 ポリカーボネート系ジオールは、アルキレングリコールと炭酸エステルとのエステル交換反応、ホスゲン又はクロル蟻酸エステルとアルキレングリコールとの反応等によって製造することができる。
 アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール等の直鎖アルキレングリコール;ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール等の分岐アルキレングリコール;1,4-シクロヘキサンジオール等の脂環族ジオール;ビスフェノールA等の芳香族ジオール;等が挙げられ、これらを1種又は2種以上の組み合わせで使用できる。
 ポリエステル系ジオールとしては、各種低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルジオールを挙げることができる。
 低分子量ポリオールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノールから選ばれる一種又は二種以上を使用することができる。また、ビスフェノールAに各種アルキレンオキサイドを付加させた付加物も使用可能である。
 また、多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、及びヘキサヒドロイソフタル酸からなる群から選ばれる一種又は二種以上が挙げられる。
 ポリエーテル系ジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、又はそれらを組み合わせた共重合ジオールを挙げることができる。
 ポリマージオールの数平均分子量は、500~4000であることが好ましい。数平均分子量を500以上、より好ましくは1500以上とすることにより、風合いが硬くなることを防ぐことができる。また、数平均分子量を4000以下、より好ましくは3000以下とすることにより、PU樹脂の強度を良好に維持することができる。
 有機ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート等の脂肪族系ジイソシアネート;ジフェニルメタンジイソシアネート、トリレンジイソシアネート等の芳香族系ジイソシアネート;が挙げられ、またこれらを組み合わせて用いてもよい。中でも、耐光性の観点から、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソフォロンジイソシアネート等の脂肪族系ジイソシアネートが好ましく用いられる。
 鎖伸長剤としては、エチレンジアミン及びメチレンビスアニリン等のアミン系の鎖伸長剤、又はエチレングリコール等のジオール系の鎖伸長剤を用いることができる。また、ポリイソシアネートと水とを反応させて得られるポリアミンを鎖伸長剤として用いることもできる。
 PU樹脂(例えば、水分散型PU樹脂)を含む含浸液には、必要に応じて安定剤(紫外線吸収剤、酸化防止剤等)、難燃剤、帯電防止剤、顔料(カーボンブラック等)等の添加剤を添加してよい。人工皮革中に存在するこれら添加剤の総量は、PU樹脂100質量部に対して、例えば、0.1~10.0質量部、又は0.2~8.0質量部、又は0.3~6.0質量部であってよい。尚、このような添加剤は、人工皮革のPU樹脂中に分布することになる。本開示において、PU樹脂のサイズ及び絡合シートに対する質量比率について言及するときの値は添加剤(用いる場合)も含んでの値を意図する。
<人工皮革の製造方法>
 以下、本実施形態の人工皮革の製造方法一例を説明する。
 本実施形態の人工皮革の製造方法一例は、以下の工程:
 (1)平均直径2.0μm以上7.0μm以下の繊維から繊維ウェブ(A′)を形成する工程;
 (2)得られた繊維ウェブ(A′)を予備水流交絡して、繊維シート(A″)を得る工程;
 (3)少なくとも繊維シート(A″)とスクリムを積層し、本水流交絡により一体化して絡合シートを得る工程;
 (4)場合により、得られた繊維シートの外表面を起毛処理する工程;
 (5)得られた絡合シートに高分子弾性体を充填して、シート状物を得る工程;
 (6)前記工程(4)を実施しなかった場合、前記工程(5)で得られたシート状物の外表面を起毛処理する工程、もしくは前記工程(4)を実施し、さらにシート状物の外表面を起毛処理する工程;及び
 (7)得られたシート状物を染色する工程;
を含む、前記起毛調人工皮革の製造方法であることができる。
 人工皮革の製造方法一例として、上記の順にプロセスを実施する。以下、順番に各工程を説明する。
 尚、本明細書中では、繊維をウェブ形成工程にてシート状に形成したものを繊維ウェブ、繊維ウェブを予備水流交絡工程にて水流交絡したものを繊維シート、繊維シートをスクリム及び任意で追加する繊維ウェブまたは繊維シートと積層したものを積層シート、積層シートを本水流交絡工程にて水流交絡したものを絡合シート、絡合シートに高分子弾性体充填工程にて高分子弾性体を充填したものをシート状物、シート状物を着色加工したものを人工皮革と区別する。尚、人工皮革を構成する繊維層は、単一であることに限定されない。例えば、繊維層(A)と、該繊維層(A)に接するスクリムと、該スクリムに接する繊維層(B)で構成された3層の構造を有する絡合シートを用いて得られた人工皮革は、スクリムを隔てた2層の繊維層で構成される。また、人工皮革が2層以上の繊維層を含む場合は、それらの構成が同一であることに限定されない。例えば、滑らかな触感が得られやすい極細繊維で外表面側の繊維層を構成し、直径が太く滑らかな触感が得られ難い難燃繊維で外表面の逆面側の繊維層を構成することで、外表面の滑らかな触感を維持しつつ難燃性が付与された人工皮革を得ることができる。
[ウェブ形成工程]
 人工皮革を構成する各繊維層(繊維層(A)、任意の繊維層(B)、及び追加の繊維層等)を構成する繊維ウェブ(A′)、任意の繊維ウェブ(B′)、及び追加の繊維ウェブ等の製造方法としては、紡糸直結型の方法(例えば、スパンボンド法及びメルトブローン法)、又は、短繊維を用いて繊維ウェブを形成する方法(例えば、カーディング法、エアレイド法等の乾式法、及び、抄造法等の湿式法)が挙げられ、いずれも好適に用いる。とりわけ、短繊維を用いて製造される繊維ウェブは、目付斑が小さく均一性に優れ、且つ、均一な起毛が得られ易いため、人工皮革の表面品位を向上させる点で好適である。
 人工皮革を構成する繊維層(繊維層(A)、任意の繊維層(B)、及び追加の繊維層等)を構成する繊維ウェブの原料となる繊維としては、直接紡糸された繊維、及び極細繊維発現型繊維から取り出した極細繊維が好ましい。直接紡糸された繊維、及び極細繊維発現型繊維から取り出した極細繊維を使用することで、人工皮革を構成する繊維層における繊維が単繊維分散し易い。
 短繊維として、海島(SIF)短繊維を使用する場合、繊維ウェブの繊維を形成する手段は、極細繊維発現型繊維を用いることが好ましい。極細繊維発現型繊維を用いることにより、繊維束が絡合した形態を安定して得ることができる。
 極細繊維発現型繊維としては、溶剤溶解性の異なる2成分の熱可塑性樹脂を海成分と島成分とし、海成分を、溶剤などを用いて溶解除去することによって島成分を極細繊維とする海島型繊維や、2成分の熱可塑性樹脂を繊維断面に放射状又は多層状に交互に配置し、各成分を剥離分割することによって極細繊維に割繊する剥離型複合繊維などを採用することができる。なかでも、海島型繊維は、海成分を除去することによって島成分間、すなわち繊維間に適度な空隙を付与することができるので、シート状物の柔軟性や風合いの観点からも好ましく用いられる。
 海島型繊維には、海島型複合用口金を用い、海成分と島成分の2成分を相互配列して紡糸する海島型複合繊維や、海成分と島成分の2成分を混合して紡糸する混合紡糸繊維などがある。均一な繊度の繊維が得られる点、また、充分な長さの繊維が得られシート状物の強度にも資する点からは、海島型複合繊維が好ましく用いられる。
 海島型繊維の海成分としては、ポリエチレン、ポリプロピレン、ポリスチレン、ナトリウムスルホイソフタル酸やポリエチレングリコールなどを共重合した共重合ポリエステルおよびポリ乳酸などを用いることができる。なかでも、環境配慮の観点から、有機溶剤を使用せずに分解可能なアルカリ分解性のナトリウムスルホイソフタル酸やポリエチレングリコールなどを共重合した共重合ポリエステルやポリ乳酸が好ましい。
 海島型繊維を用いた場合の脱海処理は、高分子弾性体充填工程の前が好ましい。高分子弾性体充填工程の前に脱海処理を行えば、繊維に直接高分子弾性体が密着する構造となって繊維を強く把持できることから、シート状物の耐摩耗性が良好となる。
 短繊維(ステープル)を用いた方法を選択する場合の短繊維長は、乾式法(カーディング法、エアレイド法等)で、好ましくは13mm以上102mm以下、より好ましくは25mm以上76mm以下、更に好ましくは38mm以上76mm以下であり、湿式法(抄造法等)で、好ましくは1mm以上30mm以下、より好ましくは2mm以上25mm以下、更に好ましくは3mm以上20mm以下である。例えば、湿式法(抄造法等)に用いられる短繊維の、長さ(L)と直径(D)との比であるアスペクト比(L/D)は、好ましくは500以上2000以下、より好ましくは700~1500である。このようなアスペクト比は、短繊維を水中に分散してスラリーを調製する際の該スラリー中での短繊維の分散性及び開繊性が良好であること、繊維層強度が良好であること、乾式法と較べて繊維長が短く且つ単繊維分散し易いため、摩擦によってピリングと呼ばれる毛玉状の外観になり難いこと、から好ましい。例えば、直径4μmの短繊維の繊維長は、好ましくは2mm以上8mm以下、より好ましくは3mm以上6mm以下である。
[水流交絡工程]
 人工皮革の製造工程における水流交絡工程は、ウェブ形成工程で得られた人工皮革の繊維層(A)を構成する繊維ウェブ(A′)のみを水流交絡して繊維シート(A″)を得る予備水流交絡工程と、予備水流交絡処理された該繊維シート(A″)とスクリムとの少なくとも2層を積層し、積層した少なくとも2層の積層シートを水流交絡により一体化して絡合シートを得る本水流交絡工程を含むことが好ましい。人工皮革の繊維層(A)を構成する繊維ウェブ(A′)のみを水流交絡することで、十分に緻密化した繊維シート(A″)が得られ、繊維層(A)における最小空隙率εAminを70%以下に調整できる。また、水流交絡処理された該繊維シート(A″)とスクリムとの少なくとも2層を積層し、積層した少なくとも2槽を水流交絡により一体化して絡合シートを得る本水流交絡工程は、人工皮革における外表面を緻密化するための過剰な水圧を必要としないため、繊維層(A)とスクリムとの境界近傍の繊維密度が過密にならず、εSminからεAminまでに存在する最大空隙率εA-Smaxを70%以上80%以下に調整できる。
 尚、絡合シートが繊維層(A)と、該繊維層(A)に接するスクリムと、該スクリムに接する繊維層(B)で構成された3層の構造を有する場合、積層シートとして積層する繊維層(B)は、繊維ウェブ(B′)のみを水流交絡した繊維シート(B″)の状態で、あるいは、予備水流交絡を施さない繊維ウェブ(B′)の状態で積層させる。すなわち、積層シートとして積層する繊維層(B)は、繊維ウェブ(B′)のみを水流交絡した繊維シート(B″)の状態で、又は、予備水流交絡を施さない繊維ウェブ(B′)の状態の、いずれの状態で積層してもよい。また、絡合シートが繊維層(B)に加え、繊維層(B)側に繊維層(C)以上を有する多層構造の場合も、繊維層(B)、及び繊維層(C)以上からなる多層部は、繊維層(B)と同じ考え方で積層してもよい。
 交絡の方法としては、海島型繊維を所定の繊維長にカットしてステープルとし、カード及びクロスラパーを通じて形成した繊維ウェブを、ニードルパンチ法により交絡させる方法を採用することができるが、一態様においては、水流交絡処理が好ましい。
 水流交絡処理に用いるノズル孔流入側における水圧は、1MPa以上10MPa以下が好ましい。水圧を1MPa以上にすることによって、繊維を十分に交絡し易く、他方、水圧を10MPa以下にすることによって、処理後の交絡体の交絡面に残る水流痕を目立たなくし易い。水圧は、より好ましくは1.5MPa以上7.5MPa以下、さらに好ましくは2MPa以上4.5MPa以下である。
 前記水流交絡工程で用いるノズルの吐出口孔径は0.15mm以上0.30mm以下が好ましい。吐出口孔径を0.15mm以上とすることによって、繊維を十分に交絡する水量を吐出することができる。また、吐出口孔径を0.30mm以下とすることによって、処理後の交絡体の交絡面に残る水流痕を目立たなくすることができる。吐出口孔径は、より好ましくは0.15mm以上0.25mm以下、さらに好ましくは0.15mm以上0.22mm以下である。
 前記水流交絡工程では、ノズルを円運動させること又は工程進行方向に対して直角に往復運動させることは、ムラなく繊維を交絡でき、且つ、工程進行方向に平行な水流痕が少なくなり、表面品位が向上する点で好ましい。
[起毛処理工程]
 絡合シート又はシート状物の表面に立毛を形成するために、起毛処理を行うことができる。起毛処理は、サンドペーパーやロールサンダーなどを用いて、研削する方法などにより施すことができる。また、起毛処理の前に滑剤としてシリコーン等を付与することは、表面研削による起毛処理が容易に可能となり、表面品位が非常に良好となる。
[高分子弾性体充填工程]
 この工程では、絡合シートに高分子弾性体を含浸後、乾燥させることにより、高分子弾性体を充填する。一態様において、前記高分子弾性体としては、水分散型ポリウレタン(PU)樹脂が好ましい。前記水分散型PU樹脂は、分散液等の含浸液の形態で含浸される。含浸液中の水分散型PU樹脂の濃度は、例えば、3~35質量%であることができる。一態様において、絡合シート100質量%に対するPU樹脂の比率が5~50質量%となるように含浸液の調製及び絡合シートへの含浸を行う。
 水分散型PU樹脂は、界面活性剤を用いて強制的に分散・安定化させる強制乳化型PU樹脂と、PU分子構造中に親水性構造を有し、界面活性剤が存在しなくても水中に分散・安定化する自己乳化型PU樹脂に分類される。本実施形態ではいずれを用いてもよいが、後述する感熱凝固性を付与する観点から、強制乳化型PU樹脂を用いることが好ましい。
 水分散型PU樹脂の濃度(水分散型PU樹脂分散液に対するPU樹脂の含有量)は、水分散型PU樹脂の付着量を制御する点、そして、高濃度であるとPU樹脂の凝集が促進される点から、3質量%以上35質量%以下が好ましく、より好ましくは4質量%以上30質量%以下、さらに好ましくは5質量%以上30質量%以下である。
 また、水分散型PU樹脂分散液としては、感熱凝固性を有するものが好ましい。感熱凝固性を有する水分散型PU樹脂分散液を用いることにより、絡合シートの厚み方向に均一にPU樹脂を付与することができる。感熱凝固性とは、PU樹脂分散液を加熱した際に、ある温度(感熱凝固温度)に達するとPU樹脂分散液の流動性が減少し、凝固する性質のことを言う。PU樹脂が充填されたシート状物の製造においてはPU樹脂分散液を絡合シートに付与後、それを乾熱凝固、湿熱凝固、熱水凝固、あるいはこれらの組み合わせにより凝固させ、乾燥することにより絡合シートにPU樹脂を付与する。感熱凝固性を示さない水分散型PU樹脂分散液を凝固させる方法としては乾式凝固が工業的な生産において現実的であるが、その場合、シート状物の表層にPU樹脂が集中するマイグレーション現象が発生し、PU樹脂が充填されたシート状物の風合いは固着する傾向にある。
 水分散型PU樹脂分散液の感熱凝固温度は、40℃以上90℃以下であることが好ましい。感熱凝固温度を40℃以上とすることにより、PU樹脂分散液の貯蔵時の安定性が良好となり、操業時のマシンへのPU樹脂の付着等を抑制することができる。また、感熱凝固温度を90℃以下とすることにより、絡合シート中でのPU樹脂のマイグレーション現象を抑制することができる。
 感熱凝固温度を前記のとおりとするために、適宜、感熱凝固剤を添加してもよい。感熱凝固剤としては、例えば、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、塩化カルシウム等の無機塩や過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、アゾビスイソブチロニトリル、過酸化ベンゾイル等のラジカル反応開始剤が挙げられる。
 水分散型PU樹脂分散液を、絡合シートに含浸、塗布等し、乾熱凝固、湿熱凝固、熱水凝固、あるいはこれらの組み合わせによりPU樹脂を凝固させることができる。湿熱凝固の温度は、PU樹脂の感熱凝固温度以上とし、40℃以上200℃以下であることが好ましい。湿熱凝固の温度を40℃以上、より好ましくは80℃以上とすることにより、PU樹脂の凝固までの時間を短くしてマイグレーション現象をより抑制することができる。他方、湿熱凝固の温度を200℃以下、より好ましくは160℃以下とすることにより、PU樹脂やPVA樹脂の熱劣化を防ぐことができる。熱水凝固の温度は、PU樹脂の感熱凝固温度以上とし、40以上100℃以下とすることが好ましい。熱水中での熱水凝固の温度を40℃以上、より好ましくは80℃以上とすることにより、PU樹脂の凝固までの時間を短くしてマイグレーション現象をより抑制することができる。乾式凝固温度、及び乾燥温度は、80以上180℃以下であることが好ましい。乾式凝固温度、及び乾燥温度を80℃以上、より好ましくは90℃以上とすることにより、生産性に優れる。他方、乾式凝固温度、及び乾燥温度を180℃以下、より好ましくは160℃以下とすることにより、PU樹脂やPVA樹脂の熱劣化を防ぐことができる。
[染色工程]
 人工皮革は、感性面の価値(すなわち視覚効果)を高める目的で、染色処理されていることが好ましい。染料は、絡合シートを構成する繊維の種類にあわせて選択すればよく、例えば、ポリエステル系繊維であれば分散染料を用いることができ、ポリアミド系繊維であれば酸性染料や含金染料を用いることができ、更にそれらの組み合わせを用いることができる。分散染料で染色した場合は、染色後に還元洗浄を行ってもよい。染色方法としては、染色加工業者に良く知られた通常の方法を用いることができる。染色方法としては、シート状物を染色すると同時に揉み効果を与えてシート状物を柔軟化することができることから、液流染色機を用いることが好ましい。染色温度は、繊維の種類にもよるが、80℃以上150℃以下であることが好ましい。染色温度を80℃以上、より好ましくは110℃以上とすることにより、繊維への染着を効率良く行わせることができる。他方、染色温度を150℃以下、より好ましくは130℃以下とすることにより、PU樹脂の劣化を防ぐことができる。
 このようにして染色された人工皮革には、ソーピング、及び必要に応じて還元洗浄(すなわち化学的還元剤の存在下での洗浄)を実施し、余剰染料を除去することが好ましい。また、染色時に染色助剤を使用することも好ましい態様である。染色助剤を用いることにより、染色の均一性や再現性を向上させることができる。また、染色と同浴又は染色後に、シリコーン等の柔軟剤、帯電防止剤、撥水剤、難燃剤、耐光剤、抗菌剤等を用いた仕上げ剤処理を施すことができる。
 本実施形態の人工皮革は、家具、椅子、壁材、自動車、電車、航空機などの車輛室内における座席、天井、内装などの表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴、婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、それらの一部に使用した衣料用資材、ワイピングクロス、研磨布、CDカーテン等の工業用資材としても好適に用いることができる。
 以下、本発明を実施例、比較例に基づいて具体的に説明するが、実施例は本発明の範囲を限定するものではない。実施例及び比較例に係る人工皮革サンプルについて、各物性、品位等を以下の手順、方法で評価した。
(1-0)サンプルの採取箇所
 図6にサンプルの採取箇所を示す。
 まず、繊維層(A)又は該繊維層(A)を含む人工皮革の機械方向(MD)における2箇所(サンプリング領域1、2)を帯状(点線で示す)に切り出す。各サンプリング領域において、厚み(t)方向断面を作製し、この断面において、MD方向に直交するCD方向において略均等な5箇所を選定し、後述する方法で、繊維層(A)を構成する単繊維の平均直径(μm)、単繊維断面k近傍距離割合値(%)、及びスクリム構造範囲を求めた。繊維層(A)を構成する単繊維の平均直径(μm)、単繊維断面k近傍距離割合値(%)、及びスクリム構造範囲を求めるために用いる各画像は、それぞれ、10枚用意する。
(1-1)繊維層(A)を構成する単繊維の平均直径(μm)
 繊維層(A)を構成する繊維の平均直径は、上記(1-0)で選定した人工皮革の繊維層(A)の断面のうち1つを、走査型電子顕微鏡(SEM、JEOL製「JSM-5610」)を用いて倍率1500倍で撮影し、人工皮革の繊維層(A)の断面をなす繊維をランダムに10本選び、単繊維の断面の直径を測定した。(1-0)で選定した10箇所の断面全てで同様の測定を行い、計100本の繊維の測定値の算術平均値を単繊維の平均直径とした。
 単繊維の断面の観察形状が円形ではない場合は、単繊維断面の最長径の中点に直交する直線上の外周間距離を繊維直径とする。
 図3は、繊維直径の求め方を説明する概念図である。例えば、図3のように繊維の断面Aが楕円形である場合、観察像における断面Aの最長径aの中点pに直交する直線b上の外周間距離cを繊維直径とする。
(1-2)単繊維断面k近傍距離割合値(%)
 k近傍法とは、任意の1つの単繊維断面に近いk個の単繊維断面を取り上げ、ユークリッド距離においてk番目に近い半径を決定境界とする手法である。
 本実施形態においては、1つのSEM画像において、画像下の帯込みで640×480pixelで約250μm×約186μm範囲を撮影し(この場合、1pixelは約0.40μm×約0.40μmに相当する)、任意の1つの単繊維断面の略中心から半径20μmの距離内にk=9番目に近い単繊維断面が存在しているか否かを求める。1つのSEM画像内の全ての単繊維断面について、存在の有無を求め、単繊維断面k=9近傍距離割合値(%)を以下の式で求める:
   単繊維断面(k=9)近傍距離割合値(%)={(単繊維断面の略中心から半径20μmの距離内にk=9番目に近い単繊維断面が存在している単繊維断面の個数)/(1つのSEM画像内の単繊維断面の全数)}×100。
 単繊維断面k=9近傍距離割合値は、(1-0)で選定した10箇所におけるSEM画像10枚の測定値の算術平均値として求める。
 尚、サンプルがスクリムを有する場合、導電処理済みのサンプルの上記切断面における繊維層(A)の最深部(すなわち、最もスクリム側の部分)を観察領域とし、且つ、スクリムを構成する繊維を観察対象外として、走査型電子顕微鏡(SEM、JEOL製「JSM-5610」)で観察する。サンプルがスクリムを有しない場合には、導電処理済みのサンプルの上記切断面における人工皮革厚み方向の中央部を観察領域の中心点とし、前記SEMで観察する。
 SEM画像内の単繊維断面は、図4に示すように、人によりマーキングを行うことで、その存在を同定することができる。具体的な手順は以下のとおりである:
[手順1]
 SEM画像(グレー)において、繊維断面に赤色(R)の丸点を付けた後、繊維の断面の座標を算出する。
<詳細な方法>
 (i)OpenCV (Python用のcv2モジュール)を用いて画像を読み込む。
 (ii)RGBのRが220以上、かつ、G、Bが100以下のピクセルを抽出する。
 (iii)ノイズ処理のため、検出された丸点の膨張処理(cv2.dilateをiteration=2で)と収縮処理(cv2.erodeをiteration=2で)を行う。
 (iv)ノイズ処理された画像をcv2.connectedComponentsWithStatsで処理し、得られる4つの結果のうち3番目の結果である検出された丸点の重心座標を得る。
 (v)上記の重心座標を繊維断面位置とする。
 (vi)更に、座標上の特定位置間距離を算出する。繊維断面Aと繊維断面Bの座標を(Ax, Ay)、(Bx, By)としたとき、2つの距離Rは、R=√((Ax-Bx)2+(Ay-By)2)で計算される。
[手順2]
 全ての繊維断面について、k番目に近い繊維断面までのユークリッド距離(k近傍距離:行列距離)を算出する。
<詳細な方法>
 (i)繊維断面Aと他の断面の座標の距離を計算する。
 (ii)計算した距離を昇順に並べる。
 (iii)並べた距離k番目をk近傍距離とする。
[手順3]
 k近傍距離がR以下の断面の数を全繊維断面数で割り、そのSEM画像におけるk近傍距離割合値とする。
 尚、SEM画像数が多数になる場合には、繊維断面に赤色(R)の丸点を付けた教師データ(正解ラベル)を含む画像を学習データとして用いて、すべてが畳み込み層から構成されるネットワークFCN(Fully Convolutional Networks)手法(Jonathan Long, Evan Shelhamer, and Trevor Darrel (2015): Fully Convolutional Networks for Semantic Segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)を用いたセマンティック・セグメンテーションによりピクセルレベルでクラス分類を行う機械学習(深層学習)により、人によるマーキングを代替して、繊維断面の位置を特定してもよい。
(1-3)スクリム構造範囲の決定
 人工皮革の厚み方向におけるスクリム構造範囲は、以下の方法で得る。
 (i)人工皮革を厚み方向に切断して得られる切断面を、走査型電子顕微鏡(SEM、JEOL製「JSM-5610」)を用いて倍率50倍で撮影して、SEM画像を得る。
 (ii)繊維層(A)側の外表面に沿い、かつ、人工皮革の面方向に平行な線分Aを作図する。
 (iii)繊維層(A)と逆側の表面に沿い、かつ、人工皮革の面方向に平行な線分Dを作図する。
 (iv)スクリムを構成する糸束に接し、かつ、人工皮革の面方向に平行な線分2本で、かつ、該線分2本間の距離が最も遠い線分2本を作図する。前記線分2本のうち、線分Aに近い方を線分B、もう一方を線分Cとする。線分A-線分D間距離において、線分Aを0[%]、線分Dを100[%]としたときの線分C及び線分Dの相対位置を、それぞれB[%]及びC[%]とする。
 (v)相対位置B[%]及びC[%]はそれぞれ、(1-0)で選定した10箇所におけるSEM画像10枚の測定値の算術平均値として求める。
 (vi)スクリム構造範囲は、人工皮革の厚みに対してスクリムが占める範囲である。従って、相対位置の範囲B~C[%]がスクリム構造範囲である。
[人工皮革の空隙率分布]
 人工皮革の空隙率分布は以下の手順で求める。これに先立ち、相互に5cm以上離れた人工皮革の任意の3箇所を、それぞれ10mm×10mmの大きさに切り取り、測定サンプルとして用いる。
 (i)X線CTにより人工皮革の3次元画像を撮影する。
   装置:リガク製「高分解能3DX線顕微鏡nanо3DX」
   X線ターゲット:Cu
   X線管電圧/管電流:40kV/30mA
   露光時間:12秒/枚
   空間解像度:1.08μm/pix
   観察領域:サンプルの厚み方向断面における厚みがすべて入る範囲とする。その中心点は、厚み方向断面における厚みの中央部とする。
 (ii)撮影した円柱形の3次元画像を、x軸およびz軸からなる面が厚み方向断面と平行に、x軸およびz軸からなる面が平面方向と平行になるよう、回転させる。次に、回転させた3次元画像から、人工皮革を含む下記の大きさの直方体の範囲をトリミングする。
   x軸に平行な辺:1.25mm
   y軸に平行な辺:1.25mm
   z軸に平行な辺:1.35mm
 (iii)トリミングした直方体の3次元画像に対し、medianフィルターを半径2pixの条件で実施する。 (iv)medianフィルターを実施した3次元画像に対し、Otsu法を適用して領域を分割する。画素の輝度値を空気(繊維間空隙部)が0、人工皮革を構成する繊維およびポリウレタンが255となるように設定する。
 (v)領域を分割した3次元画像のうち、輝度値255の画素に対して、画像処理方法のsegmentationを実施し、一つながりの輝度値255の部分の画素数(pix)が10000以下の構造はノイズとして除去する。
 (vi)ノイズを除去した3次元画像を、厚み方向(y軸)に1pix毎で切り出し、その都度、x軸およびz軸からなる面に平行な2次元画像を撮像する。撮像した2次元画像の空隙率を次式で求める。
   空隙率(%)=(輝度値0の画素数/全画素数)×100
 (vii)上記(vi)をすべての前記2次元画像に対して実施し、空隙率分布を求める。
 尚、X線CTによる人工皮革の3次元画像から得られた前記空隙率分布より、以下の方法で関連する各値を求める。
 (i)前記空隙率分布における空隙率95%の位置2点間を人工皮革が占める(つまり、前記2点間距離を人工皮革の厚みとする)とする。
 (ii)前記2点のうち、繊維層(A)側の点を、(1-3)で述べた線分A、もう1点を線分Dとして、断面SEM画像から算出したスクリム構造範囲B~C[%]から、前記空隙率分布におけるスクリム構造範囲を決定する。
 (iii)人工皮革の空隙率分布におけるスクリム構造範囲内の最大凹ピークにおける最小空隙率を、スクリムにおける最小空隙率εSminとする。
 (iv)スクリムにおける最小空隙率εSminにおけるピークから外表面までの範囲における最大凹ピークの空隙率を、人工皮革の繊維層(A)における最小空隙率εAminとする。また、前記線分Aを0%、スクリム構造範囲下限Bを100%として、前記A-B間におけるεAminの相対位置[%]を、繊維層(A)におけるεAminの相対位置とする。
 (v)εSminからεAminまでに存在する最大空隙率を、εA-Smaxとする。
 (vi)前述の、空隙率分布におけるスクリム構造範囲下限B[%]、該スクリム構造範囲上限C[%]、εSmin、εAmin、繊維層(A)におけるεAminの相対位置、及びεA-Smaxは、サンプルの任意の3箇所における3次元画像3枚の測定値の算術平均値(小数点第一位を四捨五入した値)として求める。
[緻密感]
 人工皮革の任意の1箇所を、200mm×200mmの大きさに切り取り、測定サンプルとして用いる。前記サンプルの外表面について、健康状態の良好な成人男性及び成人女性各5名ずつ、計10名を評価者として、目視及び官能評価によって下記評価基準で5段階評価した。10名の評価者の評価の平均値(小数点第一位を四捨五入した値)を緻密感の等級とする。緻密感は、3~5級を良好(合格)とする。
[評価基準]
  5級:起毛が非常に緻密であり、外観は非常に良好である。
  4級:5級と3級の間の評価である。
  3級:全体的に均一な起毛が存在し、皮革の様な外観である。
  2級:3級と1級の間の評価である。
  1級:起毛がまだらであり、外観は粗悪である。
[風合い(剛軟値)の算出]
 人工皮革の任意の1箇所を、200mm×200mmの大きさに切り取り、測定サンプルとして用いる。前記測定サンプルを水平面上に置き、正方形の頂点をA、B、C、Dとして、対角線で対面する頂点Aと頂点Cとを重ね合わせた。頂点Aを水平面に置き、頂点Cを頂点Aに重ね合わせた。次いで、頂点Cを、測定サンプルに接触させた状態で対角線ACに沿って頂点Aから徐々に遠ざけてゆき、頂点Cが測定サンプル面から離れた点を点Eとし、点Eと頂点Cとの距離を柔軟値1とした。頂点Aを頂点Bに、頂点Cを頂点Dにそれぞれ置き換えて上記と同様の手順で柔軟値2を測定した。同様の測定を5枚のサンプルについて行い、計10点の算術平均値(小数点第一位を四捨五入した値)をサンプルの風合い(剛軟値)とした。風合い(剛軟値)は、26cm以下を良好(合格)とする。
[耐摩耗性の評価]
 JISL1096織物および編物の生地試験方法 8.19.5 E法(マーチンデール法)に記載の方法に則り、マーチンデール試験(摩耗布:JamesH.Heal製「ABRASIVECLOTH1575W」)を実施する。なお、マーチンデール試験の条件は以下とする。
  目付250g/m2以上:摩擦回数50千回、荷重12kPa
  目付250g/m2未満:摩擦回数20千回、荷重9kPa。
 次に、試験後のサンプルの摩耗面について、健康状態の良好な成人5名を評価者として、目視評価によって下記の評価基準で5段階に判定する。
[評価基準]
  5級:摩耗面でスクリムが露出せず、ピリングも見られない。
  4級:5級と3級の間の評価である。
  3級:摩耗面でスクリムが露出していないが、繊維層が摩耗している。
  2級:3級と1級の間の評価である。
  1級:摩耗面でスクリムが露出している。
 尚、3枚のサンプルについての前記5名の評価結果である15点の平均値(小数点第一位を四捨五入した値)を耐摩耗性とする。耐摩耗性は、3~5級を良好(合格)とする。
[実施例1]
 単繊維の平均直径が2.5μmのポリエチレンテレフタレート繊維を溶融紡糸法により製造し、長さ5mmに切断した(以下、長さ5mmに切断した単繊維のポリエチレンテレフタレート繊維を「PET極細短繊維」ともいう。)。該PET極細短繊維を水中に分散させ抄造法により目付140g/m2の繊維ウェブ(A′)を製造した。得られた繊維ウェブ(A′)に対して、直進流噴射ノズルを用いた高速水流を、外表面側から4MPaの圧力で水流噴射し、エアースルー式のピンテンター乾燥機を用いて100℃で乾燥して、繊維シート(A″)を得た。
 同様の方法にて、PET極細短繊維を水中に分散させ抄造法により目付80g/m2の繊維ウェブ(B′)を製造し、人工皮革の外表面の逆面側の繊維層(B)として用いた。
 繊維シート(A″)と繊維ウェブ(B′)の中間に、166dtex/48fのポリエチレンテレフタレート繊維からなる目付95g/m2のスクリム(平織物)を挿入し、3層構造からなる積層シートとした。
 次いで、該積層シートに対して、直進流噴射ノズルを用いた高速水流を、外表面側から4MPa、外表面の逆面側から3MPaの圧力で水流噴射し、繊維層をスクリムに絡合させて交絡一体化した後に、エアースルー式のピンテンター乾燥機を用いて100℃で乾燥して、3層構造からなる絡合シートを得た。
 次に、該絡合シートの外表面を、#400のエメリペーパーを用いて起毛処理した。
 続いて、以下の表1に示す組成の水分散型ポリウレタン樹脂含浸液を前記絡合シートに含浸し、次いで、ピンテンター乾燥機を用いて130℃で加熱乾燥した後、90℃に加熱した熱水に浸漬した状態で柔布した後、乾燥することで無水芒硝を抽出、除去し、水分散型ポリウレタン樹脂が充填されたシート状物を得た。このシート状物の繊維総質量に対する水分散型PU樹脂の比率は10質量%であった。
 次いで、該シート状物を染料濃度5.0%owfのブルー分散染料(住友化学株式会社製「BlueFBL」)で液流染色機を用いて130℃で15分間染色し、還元洗浄を行った。その後ピンテンター乾燥機を用いて100℃で5分間乾燥し、3層構造からなる人工皮革を得た。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 繊維ウェブ(A′)に用いたポリエチレンテレフタレート繊維の単繊維の平均直径が3.2μmである他は、実施例1の方法に従い3層構造からなる人工皮革を得た。
[実施例3]
 繊維ウェブ(A′)に用いたポリエチレンテレフタレート繊維の単繊維の平均直径が4.5μmである他は、実施例1の方法に従い3層構造からなる人工皮革を得た。
[実施例4]
 繊維ウェブ(A′)に用いたポリエチレンテレフタレート繊維の単繊維の平均直径が5.5μmである他は、実施例1の方法に従い3層構造からなる人工皮革を得た。
[実施例5]
 繊維ウェブ(A′)に用いたポリエチレンテレフタレート繊維の単繊維の平均直径が6.4μmである他は、実施例1の方法に従い3層構造からなる人工皮革を得た。
[実施例6]
 繊維ウェブ(A′)に用いたポリエチレンテレフタレート繊維の単繊維の平均直径が4.5μmであり、繊維ウェブ(B′)を用いず2層構造からなる積層シートとした他は、実施例1の方法に従い2層構造からなる人工皮革を得た。
[実施例7]
 海成分として、5-スルホイソフタル酸ナトリウムを8モル%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分が20質量%で島成分が80質量%の複合比率で、島数16島/1f、平均繊維径が18μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カード及びクロスラッパーを通して繊維ウェブ(A′)を製造した。得られた繊維ウェブ(A′)に対して、直進流噴射ノズルを用いた高速水流を、表面側から4MPaの圧力で水流噴射し、エアースルー式のピンテンター乾燥機を用いて100℃で乾燥し、次いで、 95℃の温度に加熱した濃度10g/Lの水酸化ナトリウム水溶液に浸漬して25分間処理を行い、海島型複合繊維の海成分が除去された繊維シート(A″)を得た。該繊維シート(A″)を構成する繊維の単繊維の平均直径は4.0μmであった。
 単繊維の平均直径が2.5μmのポリエチレンテレフタレート繊維を溶融紡糸法により製造し、長さ5mmに切断した。該PET極細短繊維を水中に分散させ抄造法により目付80g/m2の繊維ウェブ(B′)を製造した。
 繊維シート(A″)と繊維ウェブ(B′)の中間に、166dtex/48fのポリエチレンテレフタレート繊維からなる目付95g/m2のスクリム(平織物)を挿入し、3層構造からなる積層シートとした。
 積層シート以降の工程は、実施例1の方法に従い3層構造からなる人工皮革を得た。
[実施例8]
 繊維ウェブ(A′)に対して、高速水流を表面側から6MPaの圧力で水流噴射した他は、実施例3の方法に従い3層構造からなる人工皮革を得た。
[比較例1]
 繊維ウェブ(A′)に用いたポリエチレンテレフタレート繊維の単繊維の平均直径が1.0μmである他は、実施例1の方法に従い3層構造からなる人工皮革を得た。
[比較例2]
 繊維ウェブ(A′)に用いたポリエチレンテレフタレート繊維の単繊維の平均直径が7.2μmである他は、実施例1の方法に従い3層構造からなる人工皮革を得た。
[比較例3]
 繊維ウェブ(A′)に対する直進流噴射ノズルを用いた高速水流及び乾燥を実施しなかった、すなわち、繊維シート(A″)に替えて繊維ウェブ(A′)を含む3層構造からなる積層シートを用いた他は、実施例3の方法に従い3層構造からなる人工皮革を得た。
[比較例4]
 海成分としてポリエチレンを用い、島成分としてナイロン-6を用い、海成分が50質量%で島成分が50質量%の複合比率で海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットして平均繊度が4dtexのステープルとし、カード及びクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により繊維シートを得た。
 次いで、以下の表2に示す水分散型ポリウレタン樹脂含浸液を前記繊維シートに含浸し、100℃で5分間湿熱凝固させ、ピンテンター乾燥機を用いて130℃~150℃で2~6分間で熱風乾燥させ、シート状物を得た。このシート状物の繊維総質量に対する水分散型PU樹脂の比率は30質量%であった。
 得られた該シート状物を、85℃の温度に加熱したトルエンに浸漬して処理を行い、海島型複合繊維の海成分であるポリエチレンを除去する脱海処理を行った。脱海後のシート状物を構成する繊維の単繊維の平均直径は0.2μmであった。
 次いで、該シート状物の外表面を#400のエメリペーパーを用いて起毛処理し、起毛された該表面を有する目付300g/m2のシート状物を得た。
 次いで、該シート状物を含金染料でウィンス染色機を用いて60℃で100分間染色した。その後ピンテンター乾燥機を用いて100℃で5分間乾燥し、単層構造の人工皮革を得た。
Figure JPOXMLDOC01-appb-T000002
[比較例5]
 脱海後のシート状物を構成する繊維の単繊維の平均直径が2.6μmとなるよう調整した他は、比較例4の方法に従い、単層構造の人工皮革を得た。
 実施例1~8、比較例1~5で得られた人工皮革の各種物性等を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明に係る人工皮革は、緻密感のある外表面、柔軟な風合い、および耐摩耗性のいずれにも優れるため、インテリア用、自動車用、航空機用、鉄道車両用等のシートの表皮材又は内装材等、服飾製品等に好適に利用可能である。具体的には、本発明に係る人工皮革は、家具、椅子、壁材、自動車、電車、航空機などの車輛室内における座席、天井、内装などの表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴、婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、それらの一部に使用した衣料用資材、ワイピングクロス、研磨布、CDカーテン等の工業用資材として好適に利用可能である。
 MD 工程進行方向(機械方向)
 CD 幅(ヨコ)方向
 11 絡合シート
 12 スクリム
 13 繊維層(A)
 14 繊維層(B)

Claims (8)

  1.  絡合シートと該絡合シートに充填された高分子弾性体とを含む起毛調人工皮革であって、
     該絡合シートが、該起毛調人工皮革の表面側の繊維層(A)と、該繊維層(A)に接するスクリムから構成された2層以上の構造を有し、
     該繊維層(A)を構成する繊維の平均直径が2.0μm以上7.0μm以下であり、かつ、表面側から裏面側に向かって厚み方向に空隙率を測定するとき、繊維層(A)における最小空隙率を、εAmin(%)とし、スクリムにおける最小空隙率を、εSmin(%)とし、該εAmin(%)の位置から該εSmin(%)の位置までに存在する最大空隙率を、εA-Smax(%)とするとき、以下の式(1)乃至(3):
       40≦εAmin≦70...式(1)
       70≦εA-Smax≦90...式(2)
       εSmin<εA-Smax...式(3)
    を満たすことを特徴とする、起毛調人工皮革。
  2.  前記繊維層(A)のk近傍距離割合値が10%以上80%以下である、請求項1に記載の人工皮革。
  3.  前記繊維層(A)の厚み方向において、該繊維層(A)の表面の相対位置を0%、該繊維層(A)とスクリムの境界の相対位置を100%としたとき、該繊維層(A)における最小空隙率であるεAminの相対位置が20%以上95%以下の範囲である、請求項1又は2に記載の人工皮革。
  4.  前記高分子弾性体が水分散型ポリウレタンである、請求項1又は2に記載の人工皮革。
  5.  前記絡合シートがポリエステル繊維から構成される、請求項1又は2に記載の人工皮革。
  6.  前記絡合シートが、繊維層(A)と、該繊維層(A)に接するスクリムと、該スクリムに接する繊維層(B)から構成された3層の構造を有する、請求項1又は2に記載の人工皮革。
  7.  以下の工程:
     (1)平均直径2.0μm以上7.0μm以下の繊維から繊維ウェブ(A′)を形成する工程;
     (2)得られた繊維ウェブ(A′)を予備水流交絡して、繊維シート(A″)を得る工程;
     (3)少なくとも繊維シート(A″)とスクリムを積層し、本水流交絡により一体化して絡合シートを得る工程;
     (4)場合により、得られた繊維シートの外表面を起毛処理する工程;
     (5)得られた絡合シートに高分子弾性体を充填して、シート状物を得る工程;
     (6)前記工程(4)を実施しなかった場合、前記工程(5)で得られたシート状物の外表面を起毛処理する工程、もしくは前記工程(4)を実施し、さらにシート状物の外表面を起毛処理する工程;及び
     (7)得られたシート状物を染色する工程;
    を含む、請求項1又は2に記載の起毛調人工皮革の製造方法。
  8.  前記工程(2)における予備水流交絡の水圧が、2MPa以上4.5MPa以下である、請求項7に記載の方法。
PCT/JP2022/047137 2021-12-24 2022-12-21 人工皮革及びその製法 WO2023120584A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280085493.6A CN118434930A (zh) 2021-12-24 2022-12-21 人工皮革及其制法
JP2023569495A JPWO2023120584A1 (ja) 2021-12-24 2022-12-21
KR1020247018247A KR20240094012A (ko) 2021-12-24 2022-12-21 인공 피혁 및 그 제법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021211134 2021-12-24
JP2021-211134 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023120584A1 true WO2023120584A1 (ja) 2023-06-29

Family

ID=86902648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047137 WO2023120584A1 (ja) 2021-12-24 2022-12-21 人工皮革及びその製法

Country Status (4)

Country Link
JP (1) JPWO2023120584A1 (ja)
KR (1) KR20240094012A (ja)
CN (1) CN118434930A (ja)
WO (1) WO2023120584A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191374A (en) * 1981-05-19 1982-11-25 Mitsubishi Rayon Co Production of leather like sheet structure
JPH04316653A (ja) * 1991-04-12 1992-11-09 Mitsubishi Paper Mills Ltd 不織布およびその製造法
JP2007204863A (ja) 2006-01-31 2007-08-16 Kuraray Co Ltd ヌバック調人工皮革の製造方法
WO2008013206A1 (fr) * 2006-07-27 2008-01-31 Tradik Co., Ltd. Cuir synthétique, base à utiliser dans le cuir et procédés pour leur production
JP2009185430A (ja) 2008-02-08 2009-08-20 Mitsubishi Rayon Co Ltd 人工皮革基体の製造方法
JP2019112744A (ja) 2017-12-25 2019-07-11 東レ株式会社 人工皮革とその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191374A (en) * 1981-05-19 1982-11-25 Mitsubishi Rayon Co Production of leather like sheet structure
JPH04316653A (ja) * 1991-04-12 1992-11-09 Mitsubishi Paper Mills Ltd 不織布およびその製造法
JP2007204863A (ja) 2006-01-31 2007-08-16 Kuraray Co Ltd ヌバック調人工皮革の製造方法
WO2008013206A1 (fr) * 2006-07-27 2008-01-31 Tradik Co., Ltd. Cuir synthétique, base à utiliser dans le cuir et procédés pour leur production
JP2009185430A (ja) 2008-02-08 2009-08-20 Mitsubishi Rayon Co Ltd 人工皮革基体の製造方法
JP2019112744A (ja) 2017-12-25 2019-07-11 東レ株式会社 人工皮革とその製造方法

Also Published As

Publication number Publication date
CN118434930A (zh) 2024-08-02
KR20240094012A (ko) 2024-06-24
JPWO2023120584A1 (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
CN107849806B (zh) 皮革样布帛
JP7165199B2 (ja) 人工皮革、及び、その製造方法
JP7282908B2 (ja) 人工皮革及びその製法
KR102255796B1 (ko) 인공 피혁과 그의 제조 방법
KR102337556B1 (ko) 시트상물 및 그의 제조 방법
EP3816342B1 (en) Artificial leather and production method therefor
WO2020003866A1 (ja) シート状物およびその製造方法
JP6613764B2 (ja) 人工皮革およびその製造方法
EP3816343B1 (en) Artificial leather and production method therefor
WO2023120584A1 (ja) 人工皮革及びその製法
CN113597485B (zh) 片状物
JP2022038822A (ja) 繊維シート及び該繊維シートを用いた人工皮革の製造方法
EP4455399A1 (en) Artificial leather and method for manufacturing same
WO2024004475A1 (ja) 人工皮革及びその製法
JP7156559B1 (ja) 人工皮革
JP2024099270A (ja) 人工皮革及びその製法
WO2023189269A1 (ja) 人工皮革およびその製造方法、複合人工皮革
JP2023065062A (ja) 人工皮革及びその製法
JP2022048994A (ja) 人工皮革
CN118679291A (zh) 人造皮革及其制造方法、复合人造皮革
JP2024128360A (ja) 人工皮革およびその製造方法ならびに乗物用内装材
JP2024052600A (ja) 人工皮革
JP2022147992A (ja) 人工皮革
JP2023037422A (ja) ヌバック調人工皮革

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022911286

Country of ref document: EP

Effective date: 20240724