WO2023120347A1 - ホットメルト性を有する硬化性シリコーン組成物、その硬化生成物、及び前記組成物を含む積層体 - Google Patents

ホットメルト性を有する硬化性シリコーン組成物、その硬化生成物、及び前記組成物を含む積層体 Download PDF

Info

Publication number
WO2023120347A1
WO2023120347A1 PCT/JP2022/046146 JP2022046146W WO2023120347A1 WO 2023120347 A1 WO2023120347 A1 WO 2023120347A1 JP 2022046146 W JP2022046146 W JP 2022046146W WO 2023120347 A1 WO2023120347 A1 WO 2023120347A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone composition
curable silicone
component
composition
sheet
Prior art date
Application number
PCT/JP2022/046146
Other languages
English (en)
French (fr)
Inventor
亮介 山崎
真一 山本
弘一 尾崎
徹 今泉
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Publication of WO2023120347A1 publication Critical patent/WO2023120347A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention has excellent curing characteristics and fluidity during heating and melting, enabling fine filling, and the composition as a whole has excellent storage stability, can be molded with a relatively large thickness, and has surface tackiness due to curing. It relates to a curable silicone composition that forms a small, relatively hard cured product, preferably a white or colored cured product. The present invention also relates to sheets/films formed by molding the curable silicone composition, laminates containing the same, methods for producing them, and uses of cured products obtained by curing the composition.
  • Curable silicone compositions are used in a wide range of industrial fields because they can be cured to form cured products with excellent heat resistance, cold resistance, electrical insulation, weather resistance, water repellency, and transparency.
  • the cured product of such a curable silicone composition of the present invention is generally resistant to discoloration compared to other organic materials, and its physical properties are less likely to deteriorate over time, making it suitable as a sealant for semiconductor devices. Are suitable.
  • the present applicant has proposed a hot-melt curable granular silicone composition and a reactive silicone composition for molding in Patent Documents 1 and 2.
  • These silicone compositions contain large amounts of inorganic fillers to achieve their properties, and their melt viscosities are relatively high.
  • Patent Document 3 discloses a transparent hot-melt curable silicone sheet using a silicone resin.
  • these compositions require an organic solvent due to their manufacturing method, and it is difficult to contain an inorganic filler.
  • inorganic filler due to its nature, all components are mixed and integrated, and it is difficult to ensure storage stability.
  • catalysts that are activated by irradiation with high-energy rays such as ultraviolet rays are sometimes used.
  • these catalysts block high-energy rays and inhibit the curing reaction, particularly in compositions such as colored fillers and pigments that strongly absorb or reflect in the ultraviolet region.
  • optical members such as reflectors and black sealants.
  • the composition is excellent in fine sealing or filling properties during heating and melting, storage stability, and moldability, and it is sufficient to use a filler or pigment that shields high-energy rays.
  • curable silicone compositions that achieve curability.
  • Patent Documents 5 to 7 the present applicants have proposed hot-melt silicone compositions (including film forms) having excellent curing properties. In terms of gender, there is still room for improvement.
  • the object of the present invention is to have a low viscosity when heated and melted, excellent fluidity and fine filling properties, excellent curing properties and storage stability, and, if necessary, sufficient to be colored white or black. It is an object of the present invention to provide a hot-melt curable silicone composition capable of ensuring curability, and a relatively hard cured product with little surface tack obtained by curing the composition. Furthermore, the present invention comprises a sheet or film comprising such a curable silicone composition, in particular, a void-free, substantially flat sheet or film having a thickness of 10 to 1000 ⁇ m, and the curable silicone composition. An object of the present invention is to provide a peelable laminate comprising a sheet or film. A further object of the present invention is to provide a semiconductor device member comprising a cured product of the curable silicone composition, a semiconductor device having the cured product, and a method for molding the cured product.
  • an organopolysiloxane resin having a curing reactive functional group and an organopolysiloxane resin having no curing reactive functional group are mixed at a specific ratio (20:80 to 90 : Organopolysiloxane resin that is solid at 25 ° C. in 10), (B) has at least two curing reactive functional groups in the molecule, and is liquid or plastic at 25 ° C.
  • C Linear or branched
  • C an organohydrogenpolysiloxane
  • D a hydrosilyl having a structure in which a hydrosilylation reaction catalyst is contained in a thermoplastic resin having a glass transition point (Tg) in the range of 110 to 200° C. microparticles containing a reaction catalyst
  • E an inorganic filler in a specific quantitative range
  • F a hydrosilylation reaction curing retarder having a boiling point of 200° C. or higher
  • the above curable silicone composition may be formed into a sheet or film having a thickness of 10 to 2000 ⁇ m, and the curable silicone composition sheet or film is a peelable laminate containing a separator. It may be a laminate laminated with a part of a substrate that is an electronic component or its precursor. Further, in the present invention, in order to develop the catalytic activity of component (D), the above-mentioned curable silicone composition is cured by heating above the glass transition point (Tg) of the thermoplastic resin to obtain a cured product , uses thereof, and laminates and the like comprising such cured products.
  • Tg glass transition point
  • the curable silicone composition has high thixotropic properties at temperatures exceeding 100° C., and has the advantage that it does not drip even when it is heat-cured in an oven or the like after being thermocompression bonded to the substrate.
  • the curable silicone composition of the present invention is heat curable, it can be mixed with a large amount of white or colored fillers or pigments without adversely affecting the curability, resulting in a white or colored cured product. and optical members and parts using it.
  • the curable silicone composition of the present invention can be suitably used as a sealant to protect substrates because it forms a relatively hard cured product with little surface tack when cured. It can also be used in double-sided adhesive applications where a relatively hard adhesive layer is required.
  • the curable silicone composition of the present invention can be produced using only a simple mixing process, and therefore can be produced efficiently. Furthermore, according to the present invention, such a curable silicone composition is in the form of a sheet or film having a thickness of 10 to 2000 ⁇ m, which does not contain voids, etc., or a combination of the curable silicone composition sheet or film and a release sheet or film. It can be provided in the form of a peelable laminate containing. Further, the sheet or film made of the curable silicone composition of the present invention, or the release laminate containing the same, can be cut into a desired size and used in the manufacturing process of electronic parts, such as semiconductor devices, as required. It can be applied to industrial production processes such as batch sealing and batch bonding to large-area substrates.
  • FIG. 1 is a diagram showing the overall configuration of a curable silicone sheet manufacturing apparatus (entire part including sheeting) used in Examples.
  • FIG. 1 is a diagram showing the overall configuration of a curable silicone sheet manufacturing apparatus (entire part including sheeting) used in Examples.
  • the softening point of the composition is between 50 and 200°C, and the composition has a melt viscosity at 150°C (preferably It has a melt viscosity of less than 1000 Pa ⁇ s) and has a flowable property. Therefore, in this specification, the curable silicone composition having hot-melt properties of the present invention is also referred to as a curable hot-melt silicone composition.
  • the atmospheric pressure refers to the atmospheric pressure in the environment where the curable silicone composition of the present invention is handled in laboratories, factories, etc., and although it is not limited to a specific pressure, it is usually from 1 atmosphere (1013.25 hPa). It refers to the atmospheric pressure within the range of minus 100 hPa to plus 100 hPa, especially 1 atmosphere (1013.25 hPa).
  • room temperature refers to the temperature of the environment where the person handling the curable silicone composition of the present invention is present. Room temperature generally refers to 0°C to 40°C, especially 15°C to 30°C, especially 18°C to 25°C.
  • the curable hot-melt silicone composition of the present invention has (A1) a weight loss rate of 2.0% by mass or less when exposed at 200° C. for 1 hour, and contains a carbon-carbon double bond in the molecule. It has a reactive functional group and contains siloxane units represented by SiO 4/2 (hereinafter referred to as "Q units") in an amount of 20 mol% or more of all siloxane units, and has hot-melt properties by itself.
  • Q units siloxane units represented by SiO 4/2
  • Main component is linear or branched organopolysiloxane containing carbon-carbon secondary bonds (component (B)), organohydrogenpolysiloxane (component (C)) as a cross-linking agent, glass transition point (Tg) hydrosilylation catalyst-containing microparticles (component (D)) having a structure in which a hydrosilylation catalyst is contained in a thermoplastic resin having a temperature in the range of 110 to 200° C., and the sum of components (A) to (D) A silicone composition heat curable using a hydrosilylation reaction containing an inorganic filler in the range of 0.01 to 100 parts by weight per 100 parts by weight.
  • the curable hot-melt silicone composition of the present invention may optionally contain a hydrosilylation reaction retarder, a so-called curing retarder. It is preferred to use a retarder at 200° C. or higher at 1013.25 hPa). Furthermore, the curable hot-melt silicone composition of the present invention may contain other additives known in the art as long as the desired properties of the present invention can be maintained.
  • the curable silicone composition according to the present invention is characterized in that the composition as a whole has hot-melt properties and is flowable under heating conditions.
  • the curable silicone composition of the present invention has a softening point of 50°C or higher and a melt viscosity at 150°C (preferably a melt viscosity of less than 200 Pa s as measured by a Koka-type flow tester described later). viscosity).
  • it is sufficient that the composition as a whole has hot-melt properties, and individual components (especially component (A)) constituting the composition do not have hot-melt properties.
  • Component (A) In order to reduce the stickiness (surface tack) on the surface of the cured product obtained by curing the present composition as much as possible, and to suppress the change in the elastic modulus of the cured product at high temperatures, the component (A) was added at 200 ° C. It is necessary that the mass reduction rate is 2.0% by mass or less when exposed for 1 hour under a low temperature environment.
  • the curable silicone composition according to the present invention has, as component (A), a curing reactive functional group containing a carbon-carbon double bond, and contains Q units in an amount of 20 mol % or more of all siloxane units.
  • component (A) a curing reactive functional group containing a carbon-carbon double bond, and contains Q units in an amount of 20 mol % or more of all siloxane units.
  • the organopolysiloxane resin further comprises R 3 SiO 1/2 , R 2 SiO 2/2 , RSiO 3/2 (R represents a monovalent organic group, especially a monovalent hydrocarbon group having 1 to 10 carbon atoms).
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • Q units in an amount of at least 20 mol %, preferably at least 40 mol %, in particular in the range of 40 to 90 mol % of all siloxane units. If the Q unit content is less than 20 mol %, the technical effects of the present invention may not be achieved even if the organopolysiloxane resin contains a large amount of other branched siloxane units (eg, RSiO 3/2 ). be.
  • Such (A) organopolysiloxane resin is (A1) has a curing reactive functional group containing a carbon-carbon double bond in the molecule, and contains Q units in an amount of 20 mol% or more of all siloxane units, and does not have hot-melt properties by itself; An organopolysiloxane resin that is solid at 25° C., and (A2) does not have a curing reactive functional group containing a carbon-carbon double bond in the molecule and contains Q units in an amount of 20 mol% or more of all siloxane units.
  • Component (A1) It is an organopolysiloxane resin mixture containing the component (A2)) at a mass ratio.
  • the curing reactivity means that the component (C) organohydrogensiloxane can undergo a hydrosilylation reaction, whereby the composition as a whole can be cured. It means a curing reactive functional group containing a carbon-carbon double bond in the molecule.
  • component (A) alone does not exhibit hot-melt properties, but when used in combination with component (B) described later within a predetermined amount ratio, the composition of the present invention as a whole exhibits hot-melt properties.
  • Organicpolysiloxane resin (A1) having a curing reactive functional group is one of the main components of the present composition, contains 20 mol% or more of the Q units, does not have hot-melt properties by itself, and has a carbon-carbon double bond in the molecule. It is an organopolysiloxane resin having curing reactive functional groups containing
  • Component (A1) must have a curing reactive group having a carbon-carbon double bond in its molecule.
  • Such curing reactive groups are hydrosilylation-reactive functional groups and can form a cured product through a hydrosilylation cross-linking reaction with component (C).
  • Such a curing reactive group may particularly be an alkenyl group, and examples thereof include alkenyl groups having 2 to 10 carbon atoms such as vinyl group and hexenyl group.
  • Component (A1) is an organopolysiloxane resin that does not have hot-melt properties by itself and is solid in the absence of a solvent.
  • “not having hot-melt properties” means that the component (A1) organopolysiloxane resin alone does not exhibit heat-melting behavior at 200°C or lower. Specifically, at 200°C or lower. It means having no softening point and no melt viscosity.
  • the functional group in the organopolysiloxane resin must be a monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly an alkyl group having 1 to 10 carbon atoms such as a methyl group.
  • the component (A1) is a functional group selected from groups and does not substantially contain an aryl group such as a phenyl group; It preferably contains no aryl groups.
  • the component (A1) contains a large amount of an aryl group such as a phenyl group as an organic group, the component itself may have hot-melt properties, and the effect of reinforcing the cured product derived from the Q unit. may decrease.
  • the functional groups bonded to silicon atoms of the organopolysiloxane resin of component (A1) are groups selected from alkenyl groups such as methyl and vinyl groups, and 70 of all silicon-bonded organic groups are From mol to 99 mol % may be methyl groups, and other silicon-bonded organic groups may be alkenyl groups such as vinyl groups.
  • component (A1) by itself does not have hot-melt properties, and is useful as a component that is particularly excellent in the resistance to coloration at high temperatures of the cured product obtained from the curable silicone composition of the present invention.
  • the organopolysiloxane resin of component (A1) may contain a small amount of hydroxyl groups or alkoxy groups.
  • Component (A1) is an organopolysiloxane resin that is solid in a solvent-free state.
  • Component (A1) is preferably (A1-1) the following average unit formula: (R 1 3 SiO 1/2 ) a (R 1 2 SiO 2/2 ) b (R 1 SiO 3/2 ) c (SiO 4/2 ) d (R 2 O 1/2) e (wherein each R 1 is independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, with the proviso that 1 to 12 mol % of all R 1 in one molecule are alkenyl groups; 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; a, b, c, d and e are numbers satisfying the following: 0.10 ⁇ a ⁇ 0.60, 0 ⁇ b ⁇ 0.70, 0 ⁇ c ⁇ 0.80, 0.20 ⁇ d ⁇ 0.65, 0 ⁇ e ⁇ 0.05, provided that 0.20 ⁇ c +
  • each R 1 is independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, such as an alkyl group such as a methyl group; an alkenyl group such as a vinyl group; an aryl group such as a phenyl group. is the base. Furthermore, 1 to 12 mol % of all R 1 in one molecule are alkenyl groups, and 2 to 10 mol % of all R 1 in one molecule are alkenyl groups, particularly preferably vinyl groups. If the alkenyl group content is less than the lower limit of the above range, the resulting cured product may have insufficient mechanical strength (hardness, etc.). On the other hand, if the alkenyl group content is equal to or less than the upper limit of the above range, the composition containing this component can achieve good hot-melt performance as a whole composition.
  • R 2 is a hydrogen atom or an alkyl group having 1-10 carbon atoms.
  • a methyl group can be exemplified as an alkyl group for R 2 .
  • the group R 2 O 1/2 containing the R 2 corresponds to the hydroxyl group or alkoxy group possessed by the organopolysiloxane resin of component (A).
  • a is a number indicating the proportion of siloxane units in the general formula: R 1 3 SiO 1/2 . a satisfies 0.1 ⁇ a ⁇ 0.60 and 0.15 ⁇ a ⁇ 0.55.
  • a is at least the lower limit of the above range, the composition containing this component can achieve good hot-melt performance as a whole composition.
  • the mechanical strength (hardness, elongation, etc.) of the cured product obtained by curing the curable silicone composition of the present invention will not be too low.
  • b is a number indicating the ratio of siloxane units of the general formula: R 1 2 SiO 2/2 . b satisfies 0 ⁇ b ⁇ 0.70 and 0 ⁇ b ⁇ 0.60. When b is equal to or less than the upper limit of the above range, the composition containing this component can achieve good hot-melt properties as a whole composition and can provide a composition with little stickiness at room temperature.
  • c is a number indicating the proportion of siloxane units in the general formula: R 3 SiO 3/2 .
  • c satisfies 0 ⁇ c ⁇ 0.80 and 0 ⁇ c ⁇ 0.75. If c is equal to or less than the upper limit of the above range, the composition containing this component can achieve good hot-melt performance as a whole composition, and can be a low-tack or tack-free composition with little stickiness at room temperature. Obtainable.
  • c may be 0 and is preferred.
  • d is a number indicating the ratio of Q units, and may be 0.20 ⁇ d ⁇ 0.65 and 0.25 ⁇ d ⁇ 0.65. If d is within the above numerical range, the composition containing this component can achieve good hot-melt performance as a whole composition, and the cured product obtained by curing the composition is relatively hard and practical can have sufficient flexibility.
  • e is a number indicating the ratio of units of the general formula: R 2 O 1/2 , and the same units mean hydroxyl groups or alkoxy groups bonded to silicon atoms that can be contained in the organopolysiloxane resin. . e satisfies 0 ⁇ e ⁇ 0.05, preferably 0 ⁇ e ⁇ 0.03. If e is equal to or less than the upper limit of the range, it is possible to obtain a material that achieves good hot-melt performance as a whole composition. In the above formula, the sum of a, b, c and d, which are sums of the siloxane units, is equal to one.
  • Component (A1) is an organopolysiloxane resin having the above characteristics, but since it is solid at room temperature, toluene, xylene, mesitylene, and the like are required to physically mix it with component (B), which will be described later.
  • Aromatic hydrocarbons such as tetrahydrofuran and dipropyl ether; silicones such as hexamethyldisiloxane, octamethyltrisiloxane, and decamethyltetrasiloxane; esters such as ethyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate. such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like.
  • the solvent used here can be efficiently removed in the steps described later.
  • Component (A2) is one of the main ingredients of the present composition, and is an organopolysiloxane resin that is solid at 25° C. and does not have hot-melt properties by itself and does not contain a curing reactive functional group.
  • component (A1) and component (B) in combination within a predetermined quantitative range, the curable silicone composition as a whole has excellent hot-melt properties and a cured product obtained by curing the curable silicone composition. It is a component for realizing the stress relaxation property.
  • Component (A2) is an organopolysiloxane resin that does not have hot-melt properties by itself and is solid in the absence of a solvent.
  • the behavior of the component (A2) when it does not have hot-melt properties and the fact that it preferably does not contain an aryl group such as a phenyl group are the same as those of the component (A1).
  • Component (A2) is an organopolysiloxane resin that is solid at 25° C. and contains Q units in an amount of 20 mol % or more of all siloxane units, but at least one carbon- It is characterized by not having a curing reactive functional group containing a carbon double bond. That is, component (A2) is characterized in that it does not contain an alkenyl group such as a vinyl group as a functional group in the organopolysiloxane resin.
  • the groups possessed by the organopolysiloxane resin of component (A2) include monovalent hydrocarbon groups having 1 to 10 carbon atoms, particularly alkyl groups having 1 to 10 carbon atoms such as methyl groups.
  • the ratio of aryl groups to all silicon-bonded organic groups may be 5 mol % or less, 2 mol % or less, and it may contain no aryl groups at all. preferable.
  • the silicon-bonded functional groups in component (A2) are alkyl groups of 1 to 10 carbon atoms, such as methyl, and 70 to 100 moles of all silicon-bonded organic groups. % may be methyl groups. Within this range, the component (A2) by itself does not exhibit hot-melt properties, and can be a component that is particularly excellent in reinforcing the cured product containing the siloxane unit represented by SiO4 /2 .
  • the organopolysiloxane resin of component (A2) may contain a small amount of hydroxyl groups or alkoxy groups.
  • Component (A2) does not have a curing reactive functional group having a carbon-carbon double bond in its molecule, and therefore does not form a cured product by itself even when combined with component (C) organohydrogenpolysiloxane. However, it has the effect of improving the hot-melt properties of the curable silicone composition of the present invention as a whole and reinforcing the cured product obtained by curing the curable silicone composition.
  • component (A1) having a curing reactive functional group in combination it is possible to adjust the heat melting properties of the resulting curable silicone composition and the physical properties of the composition after curing. can.
  • Component (A2) is an organopolysiloxane resin that is solid at 25° C. in the absence of a solvent, and is characterized by containing Q units, which are branched siloxane units, in the molecule in an amount of 20 mol % or more of all siloxane units. .
  • the organopolysiloxane of component (A2) has Q units of at least 40 mol % of all siloxane units, preferably at least 50 mol %, especially in the range of 50 to 65 mol %.
  • R 3 independently has from 1 to 10 carbon atoms and is a monovalent hydrocarbon group containing no carbon-carbon double bonds
  • R 2 is a hydrogen atom or from
  • each R 3 independently has from 1 to 10 carbon atoms and does not contain a carbon-carbon double bond, a monovalent hydrocarbon group, for example, an alkyl group such as a methyl group; A group selected from the group consisting of an aryl group such as a group; and an aralkyl group such as a benzyl group.
  • 70 mol % or more of all R 3 in one molecule is an alkyl group having 1 to 10 carbon atoms such as a methyl group, particularly a methyl group. , is particularly preferred.
  • R 3 preferably does not substantially contain an aryl group such as a phenyl group.
  • the component (A2) itself will have hot-melt properties, which may make it impossible to achieve the technical effects of the present invention.
  • the cured product obtained by curing the product may have poor coloring resistance at high temperatures.
  • R 2 is as described above, and when R 2 is an alkyl group, it can be exemplified by a methyl group.
  • f is a number indicating the proportion of siloxane units in the general formula: R 3 3 SiO 1/2 . f satisfies 0.35 ⁇ f ⁇ 0.55 and 0.40 ⁇ f ⁇ 0.50. If f is at least the lower limit of the above range, the curable silicone composition containing this component can achieve good hot-melt performance as a whole composition. On the other hand, when f is equal to or less than the upper limit of the above range, the mechanical strength (hardness, etc.) of the obtained cured product does not become too low.
  • g is a number indicating the ratio of siloxane units of the general formula: R 1 2 SiO 2/2 . g satisfies 0 ⁇ g ⁇ 0.20 and 0 ⁇ g ⁇ 0.10. If g is equal to or less than the upper limit of the range, the curable silicone composition containing this component can achieve good hot-melt properties as a whole composition, and a composition that is less sticky at room temperature can be obtained. In the present invention, g may be 0.
  • h is a number indicating the proportion of siloxane units in the general formula: R 1 SiO 3/2 . h satisfies 0 ⁇ h ⁇ 0.20 and 0 ⁇ h ⁇ 0.10. When h is equal to or less than the upper limit of the range, the curable silicone composition containing this component can achieve good hot-melt properties as a whole composition, and a composition with little stickiness at room temperature can be obtained. In the present invention, h may be 0.
  • i is a number indicating the ratio of Q units, and may be 0.45 ⁇ i ⁇ 0.65 and 0.50 ⁇ i ⁇ 0.65.
  • the curable silicone composition containing this component can achieve good hot-melt performance as a whole composition, and the mechanical strength of the cured product obtained by curing the curable silicone composition is It is possible to realize a composition which is excellent, has no stickiness as a whole, and is easy to handle.
  • j is a number indicating the ratio of units of the general formula: R 2 O 1/2 , and the same units mean hydroxyl groups or alkoxy groups bonded to silicon atoms that can be contained in the organopolysiloxane resin. j satisfies 0 ⁇ j ⁇ 0.05 and 0 ⁇ j ⁇ 0.03. If j is equal to or less than the upper limit of the above range, the curable silicone composition as a whole can achieve good hot-melt properties. In the above formula, the sum of f, g, h, and i, which is the sum of each siloxane unit, is equal to one.
  • Component (A2) is an organopolysiloxane resin having the characteristics described above, and has the same handleability as component (A1) described above. That is, since component (A2) is solid at room temperature (e.g., 25° C.), it is dissolved in the solvent or solvent mixture described above for mixing with component (B) in the same manner as component (A1), and The solvent can then be removed to prepare the curable silicone composition.
  • volatile low molecular weight components are generated in the respective production steps.
  • the volatile low molecular weight component is specifically a structure of M 4 Q, and when polymerizing an organopolysiloxane resin consisting of M units (R 3 3 SiO 1/2 ) and Q units (SiO 4/2 ) appears as a by-product in This structure has the effect of significantly lowering the hardness of the cured product obtained from the curable silicone composition of the present invention.
  • the organopolysiloxane resins of components (A1) and (A2) are produced by a polymerization reaction of raw material monomers in the presence of an organic solvent that is highly compatible with them.
  • the structure of M 4 Q has a high compatibility with the organopolysiloxane resin and is difficult to remove under drying conditions that remove organic solvents.
  • the M4Q structures could be removed by briefly exposing the organopolysiloxane resin containing them to temperatures above 200°C, curable silicone compositions containing M4Q structures could be used as semiconductors.
  • the M 4 Q structure is removed by exposing it to a high temperature after being integrally molded with a substrate such as a curable silicone composition, the volume of the cured product produced from the curable silicone composition decreases and the hardness increases significantly, resulting in a change in the dimensions of the molded product. However, warping may occur.
  • the present M 4 Q structure also has the effect of imparting adhesiveness to the cured product obtained, it essentially has the effect of increasing the surface tackiness of the cured product.
  • the cured product is used as a sealant to protect a substrate, particularly as a sealant intended for single-sided protection, it may be necessary to reduce the tackiness of the surface as much as possible. can be a problem.
  • the adhesive layer or sealing layer for the purpose of double-sided adhesion also undergoes a significant increase in hardness, resulting in a large change in the elastic modulus. sometimes.
  • the curable silicone composition of the present invention in order to apply the curable silicone composition of the present invention to applications in which it is laminated with a substrate such as a semiconductor, it is desirable that the curable silicone composition be cured prior to the molding step of laminating with the substrate and curing the curable silicone composition. It is preferable to remove the M 4 Q structure from the organopolysiloxane resin at the raw material stage prior to preparing the silicone composition.
  • a method for removing the M 4 Q structure from the organopolysiloxane resin in the production process of the organopolysiloxane resin, after obtaining the particulate organopolysiloxane resin, it is dried in an oven or the like to obtain the M 4 Q structure.
  • Examples include a method of removing the solids and a method of removing them together with the above-described organic solvent using a twin-screw kneader, which will be described later.
  • component (A1) and component (A2) are produced in the presence of an organic solvent, and volatile components such as M 4 Q structures appear as by-products during the production process. Since the volatile components can be removed by treating the obtained crude organopolysiloxane resin at a high temperature of about 200 ° C. for a short time, the component (A1 ) and component (A2), the organic solvent and volatile components such as the M 4 Q structure can be removed at the same time. From the viewpoint of efficiently producing the curable hot-melt silicone composition of the present invention, component (B), which will be described later, is added to component (A2) or a mixture of component (A1) and component (A2) dissolved in an organic solvent.
  • a hot-melt mixture of components (A) and (B) can be obtained, which can be used for kneading with the remaining components of the curable silicone composition in the step described later.
  • component (A2) with component (B) without component (A1) to prepare a curable hot melt silicone composition having the properties desired in the present invention.
  • Component (B) is one of the main ingredients of the present curable silicone composition, and is a linear or branched organopolysiloxane that is liquid or plastic at 25° C. and has a carbon-carbon double bond It has at least two curing reactive functional groups containing in the molecule.
  • a curing-reactive linear organopolysiloxane can exhibit hot-melt properties as a whole composition by mixing with the above-mentioned solid organopolysiloxane resin of component (A).
  • Component (B) must have a curing reactive functional group having a carbon-carbon double bond in its molecule.
  • a curing reactive functional group has hydrosilylation reactivity and forms a cured product through a cross-linking reaction with other components.
  • Such curing reactive functional groups are exemplified by alkenyl groups similar to those possessed by component (A1), and in particular may be vinyl groups or hexenyl groups.
  • Component (B) is a linear or branched organopolysiloxane that is liquid or plastic at 25° C. (room temperature), and by mixing with component (A) that is solid at room temperature, the composition as a whole As a hot melt property can be expressed.
  • the chemical structure of the component (B) organopolysiloxane may be straight-chain or a small number of branched siloxane units (for example, T units represented by the general formula: R 4 SiO 3/2 (R 4 is independently monovalent hydrocarbon radicals having 1 to 10 carbon atoms) or Q units represented by SiO 4/2 ), but preferably (B1) the following structural formula: R 4 3 SiO(SiR 4 2 O) k SiR 4 3 (wherein each R 4 is independently a monovalent hydrocarbon group having from 1 to 10 carbon atoms, with the proviso that at least two of R 4 in one molecule are alkenyl groups, k is from 20 to 5 ,000) is a linear diorganopolysiloxane represented by A linear diorganopolysiloxane having one alkenyl group, particularly a vinyl group, at each end of the molecular chain is preferred.
  • T units represented by the general formula: R 4 SiO 3/2 (R 4 is independently monovalent hydrocarbon
  • each R 4 is independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, such as an alkyl group such as a methyl group; an alkenyl group such as a vinyl group; an aryl group such as a phenyl group; is a group selected from the group consisting of aralkyl groups such as Furthermore, at least two of R 4 in one molecule are exemplified by alkenyl groups and vinyl groups.
  • each R 4 may be a functional group selected from the group consisting of alkyl groups having 1 to 10 carbon atoms such as a methyl group, and alkenyl groups such as a vinyl group and a hexenyl group.
  • R4 does not substantially contain an aryl group such as a phenyl group.
  • aryl groups such as phenyl groups
  • the cured product obtained from the curable silicone composition may have poor color resistance at high temperatures.
  • both ends of the molecular chain have one alkenyl group such as a vinyl group, and the other R4 may be a methyl group.
  • k is a number from 20 to 5,000, 30 to 3,000, and 45 to 800. If k is at least the lower limit of the above range, a curable silicone composition that is less sticky at room temperature can be obtained. On the other hand, if k is equal to or less than the upper limit of the above range, the curable silicone composition as a whole can achieve good hot-melt properties.
  • the linear or branched organopolysiloxane component ( B) ranges from 10 to 100 parts by weight, may range from 10 to 70 parts by weight, and may range from 15 to 50 parts by weight. If the content of component (B) is within the above range, the resulting curable silicone composition will exhibit good hot-melt properties and the mechanical properties of the cured product obtained by curing the curable silicone composition will be excellent. The physical strength can be increased, and the stickiness of the resulting curable silicone composition at room temperature can be reduced, thereby improving the handling properties of the composition.
  • Component (C) has at least two silicon atom bonds in one molecule that can be crosslinked with the carbon-carbon double bonds contained in component (A) and component (B) above in the presence of a hydrosilylation reaction catalyst. It is an organohydrogenpolysiloxane having hydrogen atoms and is a component that cures the composition.
  • the structure of the organohydrogenpolysiloxane, which is the cross-linking agent, is not particularly limited, and may be linear, branched, cyclic, or resinous. That is, the component (C) is a hydrogen organosiloxy unit ( MH unit, R is independently a monovalent organic group) represented by HR 2 SiO 1/2 or a hydrogen organosiloxy unit represented by HRSiO 2/2 . siloxy units (D H units, R is independently a monovalent organic group).
  • the content of curing reactive functional groups containing carbon-carbon double bonds in the present composition is small, so that the curing speed and its moldability and curability are reduced.
  • organohydrogenpolysiloxanes are monoorganosiloxy units represented by RSiO 3/2 (T units, where R is a monovalent organic radical or a silicon-bonded hydrogen atom) or siloxy units represented by SiO 4/2 (Q unit) and at least two hydrogendiorganosiloxy units represented by HR 2 SiO 1/2 in the molecule (M H unit, R is independently a monovalent organic group) It may be an organohydrogenpolysiloxane resin having MH units at the molecular ends.
  • Particularly preferred organohydrogenpolysiloxanes are The following average composition formula (1), ( R43SiO1 / 2 ) a ( R52SiO2 / 2 ) b ( R5SiO3 / 2) c (SiO4 /2 ) d (R2O1 / 2)e (1)
  • each R 4 is independently a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond having 1 to 12 carbon atoms
  • each R 5 is independently a an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturation from 1 to 12, wherein at least two of all R 4 are hydrogen atoms, a, b, c, and d are 0.01 ⁇ a ⁇ 0.6, 0 ⁇ b, 0 ⁇ c ⁇ 0.9, 0 ⁇ d ⁇ 0.9, and a number that satisfies the conditions of a +
  • each R 4 is the same or different, a monovalent hydrocarbon group having 1 to 12 carbon atoms or a hydrogen atom having no aliphatic unsaturated carbon bond, provided that at least 2 One, preferably at least three, R4 are hydrogen atoms.
  • the monovalent hydrocarbon group which is R 4 other than a hydrogen atom is, for example, a group selected from the group consisting of alkyl groups such as methyl group; aryl groups such as phenyl group; and aralkyl groups such as benzyl group. From an industrial point of view, the monovalent hydrocarbon group represented by R4 may independently be a methyl group or a phenyl group.
  • R 5 is a monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated carbon bond, and is exemplified by the same monovalent hydrocarbon group as R 4 described above.
  • R 5 may be a group selected from methyl and phenyl groups.
  • Specific examples include M H MT resins, M H T resins, M H MTQ resins, M H MQ resins, M H DQ resins, and M H Q resins.
  • M, D, T, and Q represent M units, D units, T units, and Q units, respectively, and MH represents M units having a hydrogen atom.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • a methyl group and the like can be exemplified as the alkyl group for R 2 .
  • the group R 2 O 1/2 containing the R 2 corresponds to the hydroxyl group or alkoxy group possessed by the organohydrogenpolysiloxane of component (C).
  • e is a number indicating the ratio of units of the general formula: R 2 O 1/2 , and the same units mean hydroxyl groups or alkoxy groups bonded to silicon atoms that can be contained in the organopolysiloxane resin. e satisfies 0 ⁇ e ⁇ 0.05 and 0 ⁇ e ⁇ 0.03. As described above, the sum of a, b, c, and d, which are sums of the siloxane units, is equal to 1 in the above formula (1).
  • Component (C) is exemplified by organohydrogenpolysiloxane represented by the following average compositional formula (2).
  • Specific examples of this monovalent hydrocarbon group are the same as those given as specific examples of the monovalent hydrocarbon group represented by R 4 in the average composition formula (1).
  • Each R6 may be independently a group selected from a methyl group and a phenyl group.
  • Component (C) is exemplified by organohydrogenpolysiloxane represented by the following average formula (3).
  • each R 8 may be independently a group selected from a methyl group and a phenyl group, provided that 10 mol % or more of all R 8 are phenyl groups.
  • the organohydrogenpolysiloxane represented by the average composition formula (2) and the organohydrogenpolysiloxane represented by the average composition formula (3) may be used alone or in combination.
  • the content of component (C) organohydrogenpolysiloxane in the curable silicone composition of the present invention is a sufficient amount to cure the curable silicone composition.
  • the number of silicon-bonded hydrogen atoms per alkenyl group (hereinafter referred to as "SiH/Vi ratio”) is 0.5 to 20.5 to 20.5 to 20.5 to 20.5 to 20.5 to 200.5 to 20, respectively.
  • the amount may be 0, especially in the range of 1.0 to 10.
  • these organohydrogenpolysiloxanes are preferably components that are difficult to volatilize at about 100° C. under atmospheric pressure, especially under 1 atm (1013.25 hPa).
  • the temperature range of 50 to 150° C. is used under reduced pressure to obtain a void-free sheet or film. This is because it is necessary to melt-knead the components and the composition obtained therefrom, and by using the respective components of the present invention, sheets or films containing no voids or the like can be produced.
  • each component is exposed to a predetermined temperature under reduced pressure for a very short time, but if a large amount of the active component volatilizes under this kneading condition, it is impossible to obtain a composition with the properties as designed. occurs.
  • the amount of the organohydrogenpolysiloxane, which is a cross-linking agent is small relative to the total weight of the curable silicone composition, so volatilization of these components can affect the properties of the composition (curing characteristics, physical properties of the cured product, etc.). , deviates significantly from the intended value. For this reason, it is necessary to use component (C) that is difficult to volatilize.
  • the mass reduction rate after exposure to 100 ° C. for 1 hour under atmospheric pressure relative to before exposure must be 10% by mass or less. Well, depending on the use, it is preferable.
  • Component (D) is one of the characteristic constitutions of the curable silicone composition according to the present invention.
  • Hydrosilylation reaction catalyst-containing microparticles having a structure including Such a component (D) includes (D-1) microparticles in which the hydrosilylation reaction catalyst is dissolved or dispersed in the thermoplastic resin or (D-2) hydrosilylation in the shell of the thermoplastic resin. Any structure of microcapsule fine particles having a structure in which a reaction catalyst is contained as a core may be used.
  • Such a component (D) has a structure in which a hydrosilylation reaction catalyst is encapsulated or supported in a thermoplastic resin having a specific glass transition point.
  • the composition can be stably stored even if it is formed into a sheet shape or the like at a temperature below that temperature.
  • the thermoplastic resin in the component (D) is rapidly melted, the hydrosilylation reaction catalyst is activated, and a cured product can be formed.
  • Examples include platinum-based catalysts, rhodium-based catalysts, palladium-based catalysts, and non-platinum-based metal catalysts such as iron, ruthenium, and iron/cobalt in component (D).
  • System catalysts are particularly exemplified.
  • This platinum-based catalyst can be appropriately selected from known catalysts, and a platinum (zero-valent)-alkenylsiloxane complex is representative.
  • the structure of alkenylsiloxane is not limited, the stability of the complex is good. It is exemplified by 1,3-divinyl-1,1,3,3-tetramethyldisiloxane.
  • the thermoplastic resin constituting component (D) is a component that functions as a wall material that separates the catalyst from the reaction system, and has a glass transition point (Tg) in the range of 110°C to 200°C. 200°C, may range from 130 to 200°C.
  • the glass transition point of the thermoplastic resin can be measured by DSC (differential scanning calorimeter).
  • Such thermoplastic resins may be selected from epoxy resins, acrylic resins, and polycarbonate resins, and in particular, acrylic resins or polycarbonate resins having the above Tg can be exemplified.
  • the thermoplastic resin and the fine particles as the component (D) exhibit substantially the same behavior even if their softening points are within the above range.
  • the thermoplastic resin as the wall material dissolves in the process of homogeneously mixing or heat-molding the composition, resulting in a hydrosilylation reaction catalyst. is eluted, and the storage stability of the entire composition may be impaired.
  • the Tg of the thermoplastic resin exceeds the above upper limit, a high temperature exceeding 200° C. is required for reaction activity, which may deteriorate the base material and is not preferable in terms of thermal processing.
  • the average particle size of the fine particles of component (D) may be in the range of 0.1 to 500 ⁇ m, and may be in the range of 0.3 to 100 ⁇ m. This is because it is difficult to prepare fine particles with an average particle size below the lower limit of the above range. Because it does.
  • the method for preparing such component (D) is not limited, and conventionally known chemical methods such as interfacial polymerization method and in-situ polymerization method, physical and mechanical methods such as coacervation method and in-liquid drying method.
  • a method is illustrated.
  • the submerged drying method and the vapor phase drying method are preferable because microcapsule fine particles with a narrow particle size distribution can be obtained relatively easily.
  • the microparticles obtained by these methods can be used as they are. This is desirable in order to obtain a curable silicone resin composition with excellent properties.
  • the content of the platinum-based catalyst-containing thermoplastic resin fine particles is not particularly limited.
  • the amount may be 1,000 ppm. This is because if the content of the platinum-based catalyst-containing thermoplastic resin fine particles is less than the lower limit of the above range, it becomes difficult to cure sufficiently, while if the content exceeds the upper limit of the above range, the curing does not significantly improve. is.
  • Component (E) is a filler or pigment, and in the present invention, it preferably contains a white or colored filler, particularly a white or colored inorganic filler, and a wavelength conversion component such as a phosphor as a part thereof. may be included, and fine particles having other functions such as electrical conductivity and thermal conductivity may be included.
  • a white or colored filler particularly a white or colored inorganic filler
  • a wavelength conversion component such as a phosphor as a part thereof.
  • fine particles having other functions such as electrical conductivity and thermal conductivity may be included.
  • the composition according to the present invention is thermosetting in addition to hot-melt properties, white or colored fillers or pigments that shield or reflect high-energy rays such as ultraviolet rays can be used. , has the advantage of not inhibiting curing reactivity.
  • the function of the filler or pigment as component (E) is not particularly limited, but it is possible to make the resulting cured product white or colored, and to improve its mechanical strength and hardness. It can be expected to provide optical functions such as wavelength conversion, and other functions such as thermal conductivity and electrical conductivity. Examples of these components (E) include white pigments, black pigments, phosphors, metal powders and other functional fillers, and components that give white or colored cured products are particularly preferred.
  • the shape of the filler or pigment as component (E) is not particularly limited, and may be spherical, spindle-shaped, flattened, needle-shaped, amorphous, or the like.
  • the white pigment is a component that imparts whiteness to the cured product and improves light reflectivity, and the cured product obtained by curing this composition by blending this component is used as a light-reflecting material for light-emitting/optical devices. can do.
  • white pigments include metal oxides such as titanium oxide, aluminum oxide, zinc oxide, zirconium oxide, and magnesium oxide; hollow fillers such as glass balloons and glass beads; and barium sulfate, zinc sulfate, barium titanate, and aluminum nitride. , boron nitride, and antimony oxide. Titanium oxide is a preferred example because of its high light reflectance and high hiding power.
  • aluminum oxide, zinc oxide, and barium titanate are preferably exemplified because of their high light reflectance in the UV region.
  • the average particle size and shape of this white pigment are not limited, but the average particle size is preferably in the range of 0.05 to 10.0 ⁇ m, or in the range of 0.1 to 5.0 ⁇ m.
  • the white pigment may be surface-treated with a silane coupling agent, silica, aluminum oxide, or the like.
  • Black pigment is a component that can impart blackness to the cured product and can impart light shielding properties to the cured product, but it also has other functions such as conductivity, as represented by carbon black and graphene.
  • the black pigment includes carbon-based black pigments such as carbon black, graphite, activated carbon, and graphene; iron oxide, magnetite, chromium iron oxide, chromium iron nickel oxide, copper chromate, chromite, Inorganic black pigments such as manganese ferrite, nickel manganese iron oxide, composite metal oxides containing ⁇ one or more metals selected from iron, cobalt, and copper>; organic black pigments such as aniline black, cyanine black, and perylene black exemplified.
  • a phosphor is a component that is blended to convert the emission wavelength from a light source (optical semiconductor element) when a cured product is used as a wavelength conversion material.
  • the phosphor is not particularly limited, and includes oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, and oxysulfides that are widely used in light emitting diodes (LEDs). Yellow-, red-, green-, and blue-emitting phosphors made of solid phosphors and the like are exemplified.
  • the present composition may contain inorganic fillers other than those described above. Examples include reinforcing fillers such as silica, thermally conductive fillers, and conductive fillers to improve the mechanical strength of the cured product. be done.
  • component (E) is selected from low molecular weight organosilicon compounds such as silanes and silazanes, organosilicon polymers or oligomers, and other known surface treatment agents for the purpose of stably blending in the present composition. Surface treatment may be performed by more than one type. The amount of surface treatment agent to be used is not particularly limited, but is generally in the range of 0.1 to 2.0% by weight based on the total weight of component (E). Further, the component (E) may be compounded in advance with the other components (A) to (D) to form a masterbatch.
  • the content of component (E) is within the range of 0.1 to 100 parts by mass, within the range of 0.5 to 90 parts by mass, or 0.5 to 90 parts by mass, based on the total (100 parts by mass) of components (A) to (D). It may be in the range of 5 to 80 parts by mass, or in the range of 1.0 to 50 parts by mass. If the addition amount is less than the above range, a problem occurs that the coloring effect is not sufficiently obtained, and if it is more than the above range, a problem occurs that the melt viscosity of the resulting hot-melt composition is too high. When it is produced by , it becomes difficult to knead the whole uniformly, wear of the production equipment is likely to occur, and the resulting composition may lose color, or the desired color may not be obtained.
  • the curable silicone composition of the present invention may contain a curing retarder (F) from the standpoint of improving practical use and storage stability.
  • the structure of the curing retarder is not particularly limited, but it preferably has a boiling point of 200°C or higher under atmospheric pressure. This is because if a compound with a low boiling point is used as a delayed curing agent when melt-kneading the raw materials under reduced pressure in the production process of the curable silicone composition sheet described later, the composition of the present invention will harden during the production process. This is because some or all of the retarder may volatilize, making it impossible to obtain the desired curing retarding effect for the curable silicone composition.
  • the curing retarder of the present invention is not particularly limited, but examples include 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl-3-butyn-2- alkyne alcohols such as ol, 1-ethynyl-1-cyclohexanol; enyne compounds such as 3-methyl-3-pentene-1-yne and 3,5-dimethyl-3-hexene-1-yne; tetramethyltetravinylcyclo Alkenyl group-containing low molecular weight siloxane such as tetrasiloxane and tetramethyltetrahexenylcyclotetrasiloxane; alkynyloxy such as methyl-tris(1,1-dimethylpropynyloxy)silane and vinyl-tris(1,1-dimethylpropynyloxy)silane Silanes are exemplified.
  • the curing retardant in the curable silicone composition is not particularly limited, but may be in the range of 1 to 10000 ppm by mass based on the composition.
  • the composition of the present invention may contain a known adhesion-imparting agent as an optional component as long as the object of the present invention is not impaired.
  • the tackifier is not particularly limited as long as it is a component that improves the adhesiveness of the cured product obtained by curing the present composition to the substrate.
  • silane compounds such as 3-glycidoxypropyltrimethoxysilane; organosiloxane oligomers; alkylsilicates; reaction mixtures of amino group-containing organoalkoxysilanes and epoxy group-containing organoalkoxysilanes disclosed in , carbasilatrane derivatives having a silicon-bonded alkoxy group or silicon-bonded alkenyl group in one molecule; alkoxysilyl group-containing organic groups. and disilatrane derivatives such as 1,6-bis(trimethoxysilyl)hexane and the like can be suitably used, and two or more components selected from these can be used in combination.
  • the content of this adhesion-imparting agent is not limited, but it can be exemplified that it is used within the range of 0.01 to 10 parts by mass with respect to the total of 100 parts by mass of the present composition.
  • the curable hot melt silicone composition of the present invention may contain materials known in the art as additives that may be used in silicone compositions.
  • the present composition may contain, as other optional components, iron oxide (red iron oxide), cerium oxide, cerium dimethylsilanolate, fatty acid cerium salts, cerium hydroxide, heat-resistant agents such as zirconium compounds; It may contain a pigment, a flame retardant agent, and the like.
  • the composition may be used after being formed into a sheet or film.
  • a sheet or film made of the curable silicone composition of the present invention having an average thickness of 10 to 1000 ⁇ m has hot-melt properties and heat-curing properties at high temperatures, and is therefore excellent in handling workability and melting properties. It is particularly advantageous for use in compression molding and the like.
  • the composition containing all of the components (A) to (F) including the component (F) may be formed into a sheet or film.
  • Such a sheet or film-like composition is produced by making a uniform mixture of all components using a single-screw or twin-screw continuous kneader, and then passing the mixture through two rolls or the like to obtain a sheet or film of a predetermined thickness. It can be molded into a film.
  • the granular curable hot-melt silicone composition described later is obtained, and if necessary, after adding component (F), they are kneaded in a kneader to homogenize them, and then two rolls are used.
  • a sheet or film adjusted to a desired thickness may be produced through a molding machine such as.
  • the present composition utilizes component (D) as a hydrosilylation reaction catalyst, the entire composition is heated at 50° C. to a temperature of 50° C. to the temperature of the thermoplastic resin constituting component (D) in forming a sheet or film. Even if melted and kneaded within the temperature range up to the glass transition point (Tg), the catalyst remains in an inactive state, so there is an advantage that the curing reaction does not proceed substantially. For this reason, there is the advantage that a curable silicone composition sheet or film with excellent storage stability can be obtained even if melted and kneaded at a certain temperature during molding.
  • the above sheet or film-like composition may be produced using organopolysiloxane resin fine particles as raw materials (Method A). may be dispersed in an organic solvent and the hot-melt solid content after removing the organic solvent may be used as a raw material (hot-melt bulk method) (Method B).
  • the former comprises the following steps: Step 1: Mixing organopolysiloxane resin microparticles, a curing agent and optionally a functional filler; Step 2: Step of kneading the mixture obtained in Step 1 while heating and melting at a temperature of 120°C or less; Step 3: Step of laminating the heat-melted and kneaded mixture obtained in Step 2 between two films each having at least one release surface to form a laminate; Step 4: A step of stretching the mixture in the laminate obtained in step 3 between rolls to form a curable hot-melt silicone sheet having a specific film thickness. It is a manufacturing method including
  • Method B comprises the following steps: Step 1: The organic solvent is removed at a temperature of 150° C. or higher from a solution in which an organopolysiloxane resin that is solid at room temperature and optionally a chain diorganopolysiloxane are dispersed or dissolved in an organic solvent. , obtaining a hot-melt solid; Step 2: A step of adding all curing agents to the hot-melt solid content obtained in step 1, and kneading the mixture while heating and melting at a temperature of 120° C.
  • Step 3 Step of laminating the heat-melted mixture obtained in Step 2 between two films each having at least one release surface to form a laminate
  • Step 4 A production method including a step of stretching the mixture in the laminate obtained in Step 3 between rolls to form a curable hot-melt silicone sheet having a specific film thickness.
  • step 2 is performed at a temperature of 120 ° C. or less to prevent softening of the component (D) and activation of the curing catalyst. It is possible to stably produce the composition.
  • step 3 and step 4 may be continuous and integrated steps, for example, the heat-melted mixture obtained in step 2 is placed between films having at least one release surface immediately below between rolls. At the same time, the film may be stretched to a specific film thickness by adjusting the gap between rolls.
  • a manufacturing method having steps in which steps 3 and 4 are substantially integrated is also included within the scope of the manufacturing method described above.
  • steps 3 and 4 the mixture obtained in step 2 is discharged or applied between two release films, and the mixture is applied between two release films, for example, between two long release films. and a laminate consisting of two release films obtained thereby and the mixture interposed between them are continuously passed between rolls to stretch and mold the mixture between the release films to a predetermined
  • the step of adjusting the film thickness and obtaining the desired laminate may be performed continuously and integrally.
  • a method in which steps 3 and 4 are integrally performed is also included in the manufacturing method described above.
  • the step of laminating the mixture after heating and melting between films is not particularly limited.
  • the second release film is brought into contact with the surface of the mixture opposite to the surface in contact with the first release film, and the first release film and the second It may be a step of interposing the mixture after heating and melting between the release films, that is, sandwiching it, or (ii) between the first release film and the second release film having a release surface from step 2 It may be a step of interposing the heat-melted mixture between the release films by discharging or applying the heat-melted mixture.
  • the first and second release films are brought close to each other by an appropriate means, such as two rolls, and the mixture from step 2 is discharged or applied to the place where the two release films are close to each other, and the mixture is applied.
  • an appropriate means such as two rolls
  • the mixture from step 2 is discharged or applied to the place where the two release films are close to each other, and the mixture is applied.
  • a method of sandwiching between two release films at the same time or almost at the same time can be exemplified. Steps 3 and 4 above may be continuous steps.
  • the present curable hot-melt silicone composition can be used in the form of a sheet or film. It can be used as a laminate having a structure in which materials are interposed. A film-like substrate provided with a release layer (generally referred to as a release film) can be peeled off from the sheet-like material when the sheet-like material made of the curable hot-melt silicone composition is used as an adhesive or sealant. can be done.
  • this laminate is also referred to as a peelable laminate.
  • the method for producing the peelable laminate described above is not particularly limited, but as an example, the following steps: Step 1: Mixing the components of the above curable hot melt silicone composition; Step 2: a step of kneading the mixture obtained in step 1 while heating and melting; Step 3: A step of laminating the heat-melted mixture obtained in step 2 between two release films having at least one release surface so that the mixture is in contact with the release surface to form a laminate. Step 4: The laminate obtained in Step 3 is pressed between rolls, and the mixture interposed between two release films is rolled to obtain a curable hot-melt silicone composition sheet or sheet having a specific film thickness. Mention may be made of a method comprising the step of forming a film.
  • step 4 rolls with cooling or temperature control capabilities may be used.
  • step 4 a step of cutting the obtained laminate containing the curable hot-melt silicone composition sheet or film may be added.
  • this release film There is no particular limitation on the thickness of this release film, and therefore, in addition to what is generally called a film, what is called a sheet is also included. However, it is referred to herein as a release film regardless of its thickness.
  • the temperature of the mixing step in step 1 is not particularly limited, but may be heated as necessary so that each component is sufficiently mixed, and the heating temperature can be, for example, 50°C or higher.
  • the sheet or film of the present invention may have a thickness of 10-1000 ⁇ m, and the sheet or film may be flat. Flat means that the thickness of the resulting sheet or film is within ⁇ 100 ⁇ m or less, preferably within ⁇ 50 ⁇ m or less, more preferably within ⁇ 30 ⁇ m or less.
  • the type of material for the base material of the release film that constitutes the release laminate is not particularly limited, but for example, a polyester film, polyolefin film, polycarbonate film, acrylic film, or the like can be used as appropriate.
  • the sheet-like substrate may be non-porous.
  • a release film is a film having a release layer formed by treating one or both sides of a film of such materials to impart release properties, such treatments being known in the art.
  • a layer having releasability provided on the surface of the release film is called a release layer.
  • the release layer enables the sheet or film made of the curable silicone composition to be easily separated from the film-like substrate. It is also called a release liner, separator, release layer or release coating layer.
  • the release layer can be formed as a release layer having a release coating capability such as a silicone-based release agent, a fluorine-based release agent, an alkyd-based release agent, or a fluorosilicone-based release agent.
  • fine physical irregularities may be formed on the surface of the film-like substrate to reduce adhesion to the curable silicone composition, or the film-like substrate may be made of the curable hot-melt silicone composition of the present invention or a cured product thereof.
  • the substrate may be made of a material that is difficult to adhere to the layer. Particularly in the laminate of the present invention, it is preferable to use a release layer obtained by curing a fluorosilicone release agent as the release layer.
  • the above-mentioned laminate is obtained by peeling off one of the two release films that constitute the laminate, and then attaching an uncured sheet or film-like member made of a curable silicone composition that is not in contact with the release film to the adherend.
  • the uncured sheet or film-like member can be peeled off from another film-like substrate, that is, a release film.
  • This curable silicone composition can be handled in the form of a sheet or film at room temperature, and is a non-flowing solid at 25°C.
  • non-flowing means that it does not deform and/or flow in the absence of external force. It does not deform and/or flow in the absence of Such non-fluidity means that, for example, the composition is substantially deformed even when the molded composition is placed on a hot plate at 25° C. and no external force is applied to the composition or a certain load is applied to the composition. and/or non-flowing. If the composition is non-flowing at 25° C., the shape retention of the composition at that temperature is good and its surface tackiness is low, so that the composition can be easily handled even in an uncured state.
  • the softening point of the present composition is preferably 100°C or less.
  • Such a softening point is high when the composition with a height of 22 mm is pressed on a hot plate with a load of 100 g weight for 10 seconds from above, and the amount of deformation of the composition is measured after the load is removed. It means the temperature at which the amount of deformation in the longitudinal direction becomes 1 mm or more.
  • melt viscosity and fluidity during heating and melting The composition tends to rapidly decrease in viscosity with increasing temperature under high temperature and pressure (i.e., in the laminate manufacturing process described above), and useful melt viscosity values for handling the composition are: Values measured under the same high temperature and high pressure conditions as when the present composition is actually used may be used. Therefore, the melt viscosity of the present composition may be measured under high pressure using a Koka flow tester (manufactured by Shimadzu Corporation) rather than using a rotational viscometer such as a rheometer. Specifically, the present composition may have a melt viscosity of 200 Pa ⁇ s or less and 150 Pa ⁇ s or less at 150°C as measured using a Koka flow tester. This is because the adhesion of the composition to the substrate after hot-melting (ie, melting by heating) and cooling to 25° C. is good.
  • the curable hot-melt silicone composition sheet obtained by the production method of the present invention is a curable silicone composition containing the above-described components (A) to (E) and optionally component (F), and has hot-melt properties.
  • the curable hot-melt silicone composition sheet of the present invention can be used as a heat-meltable pressure-sensitive adhesive, sealant, and/or adhesive.
  • the curable hot-melt silicone composition sheet has excellent moldability, gap-filling properties, and adhesive strength, and can be used as a die attach film or film adhesive. It can also be suitably used as a curable hot-melt silicone composition sheet for compression molding or press molding.
  • the curable hot-melt silicone composition sheet obtained by the manufacturing method of the present invention is placed on a desired portion of a semiconductor or the like to take advantage of the gap-filling property against irregularities and gaps.
  • a film adhesive layer is formed on and between the adherends to temporarily fix, arrange, and bond the adherends, and the curable hot-melt silicone composition layer is heated to 120° C. or higher.
  • the adherends can be adhered by heating to 150° C. or higher to cure and form a cured product of the curable silicone sheet between the adherends.
  • the release film may be peeled off after heating the curable hot-melt silicone composition sheet to form a cured product. The timing of release from the curable silicone composition or cured product obtained therefrom may be selected.
  • the curable silicone composition and its sheet/film according to the present invention have excellent fluidity at high temperatures and hot-melt properties with low viscosity in addition to storage stability. For example, even if there are fine irregularities and gaps on the adherend surface of the adherend, it fills the irregularities and gaps without gaps to form an adhesive surface with the adherend. be able to.
  • the curable hot melt silicone composition can be cured by a method including at least the following steps (I) to (III). (I) heating the present composition to 120° C. or higher to melt; (II) A step of injecting the molten curable hot-melt silicone composition obtained in step (I) into a mold, or by clamping the molten curable hot-melt silicone composition obtained in step (I) into the mold. and (III) curing the curable hot melt silicone composition injected into the mold in step (II).
  • a transfer molding machine a compression molding machine, an injection molding machine, an auxiliary ram molding machine, a slide molding machine, a double ram molding machine, or a low pressure encapsulation molding machine
  • the composition of the present invention can be suitably used for the purpose of obtaining cured products by transfer molding and compression molding.
  • step (III) the curable silicone composition injected (applied) into the mold in step (II) is cured.
  • the process can be performed at a low temperature, and is preferable, as will be described later.
  • the curable silicone composition of the present invention is prepared by exposing the composition of the present invention (or its semi-cured material) to a temperature of 120° C. or higher to activate the hydrosilylation catalyst, component (D).
  • a cured product can be formed by the progress of the hydrosilylation reaction in .
  • the curable hot-melt silicone composition of the present invention has hot-melt properties, excellent handling and curability when melted (hot-melt), and a cured product obtained by curing the composition at high temperatures. Since it is excellent in color resistance under the environment, it is useful for semiconductor members such as encapsulants for light-emitting/optical devices and light-reflecting materials, and optical semiconductors having the cured product. Furthermore, since the cured product has excellent mechanical properties, it can be used as a sealing agent for semiconductors; a sealing agent for power semiconductors such as SiC and GaN; suitable as an agent.
  • the sheet-shaped curable hot-melt silicone composition of the present invention is also suitable as a material for sealing and bonding large-area substrates using press molding, compression molding, or a vacuum laminator.
  • it is suitable for use as a sealing agent for semiconductors that use an overmolding method at the time of molding.
  • the sheet of the present composition can be used as a curable film adhesive or as a stress buffer layer between two substrates having different coefficients of linear expansion.
  • the curable hot-melt silicone composition of the present invention can be used for large-area sealing of semiconductor substrates (including wafers).
  • sheets obtained by molding the curable hot-melt silicone composition of the present invention into sheets can be used as die attach films, sealing of flexible devices, stress relaxation layers for bonding two different substrates, and the like. can. That is, the curable silicone composition of the present invention may be a sealant intended for single-sided encapsulation, or a sealant intended for double-sided encapsulation accompanied by adhesion between two substrates. and have favorable properties suitable for these applications.
  • the curable silicone composition of the present invention has hot-melt properties and fluidity at temperatures of 100° C. or higher, making it possible to measure viscosity.
  • the viscosity strongly depends on the shear (shearing force) applied during measurement, and has thixotropic properties such that the viscosity is high when the shear is low and the viscosity is low when the shear is high.
  • the viscosities at a shear rate of 1 s ⁇ 1 are 5000 Pas or less and 1000 Pas or less, respectively. When used, the viscosities at 100° C.
  • Such viscosity characteristics are advantageous in the process of temporarily pressing the curable hot-melt silicone composition onto a substrate using a vacuum laminator or a vacuum low-pressure press, followed by standing curing in an oven or the like.
  • pressure is applied instantaneously under constant temperature conditions to bond with the base material. Since pressure is applied at this time, the viscosity is reduced and the gap fill property is excellent for substrates with many unevenness.
  • no pressure is applied when the composition is left to cure in an oven or the like, even if the composition is cured at a temperature of 150° C. or higher, the viscosity is high and the composition does not sag before curing begins.
  • composition curing conditions and lamination timing As described above, the curable silicone composition of the present invention is exposed to a temperature higher than the Tg of component (D) to activate the catalyst and enable rapid curing. Therefore, it is possible to form a laminate precursor integrated with the substrate without proceeding with the curing reaction at all by bonding the component (D) to the substrate by thermocompression bonding at a temperature below the Tg of the component (D). By exposing the precursor of the laminate to a temperature equal to or higher than the Tg of component (D), the composition of the present invention can be rapidly cured.
  • the catalyst can be activated during thermocompression bonding by performing thermocompression bonding of the substrate and the composition of the present invention at a temperature equal to or higher than the Tg of the component (D), the composition can be bonded at the same time as thermocompression bonding. It is also possible to cure or cure the precursor of the obtained laminate at a lower temperature. Therefore, the process can be flexibly selected according to the structure of the device, the part to be adhered, and the like, and the curing reaction can be performed under desired conditions.
  • the curable silicone composition sheet or film of the present invention is coated on a substrate (for example, an electronic component or its precursor) by one or more means selected from vacuum laminator, vacuum press, and compression molding. ), it is possible to obtain a laminate comprising an uncured and hot-melt curable silicone composition sheet or film according to the present invention on a substrate. . If necessary, the laminate is heated above the glass transition point (Tg) of the thermoplastic resin that constitutes the component (D) while in close contact with other substrates to form fine unevenness on the substrate. After the gaps are filled with the curable silicone composition of the present invention, the curing reaction proceeds to form a laminate comprising a cured product of the composition.
  • a substrate for example, an electronic component or its precursor
  • the lamination step of adhering at least one surface of the curable silicone composition sheet or film according to the present invention to part or all of the base material by the means described above may be performed on the glass of the thermoplastic resin constituting component (D). It may be performed simultaneously with or in parallel with the step of heating to the transition point (Tg) or higher. Furthermore, when the cured product of the curable silicone composition of the present invention is used as an adhesive layer or a stress relaxation layer for two or more substrates, the process should be carried out in a state of being in close contact with the other substrates. good too.
  • the cured product of the present invention can be designed to have light-shielding or light-reflecting properties, and can be suitably used for optical applications based on these properties.
  • the cured product of the present invention has a parallel light transmittance of 50% or less, more preferably 30% or less at an optical path length of 1 mm and a wavelength of 360 nm measured according to JIS K 7105.
  • the hardness of the cured product obtained by curing the curable hot-melt silicone composition of the present invention is classified into two types according to its application.
  • the type A durometer hardness specified in JIS K 7215-1986 "Durometer hardness test method for plastics" is 40 or more. This is because if the hardness is below the above lower limit, the cured product tends to be too soft and brittle.
  • the application is substrate sealing, a type A durometer hardness of 60 or greater is preferred. This is because if the hardness is less than the above lower limit, the surface of the cured product becomes sticky, resulting in poor handleability.
  • the use of the cured product obtained by curing the curable silicone composition of the present invention is not particularly limited.
  • the composition of the present invention has hot-melt properties, exhibits excellent curability triggered by a certain temperature, has excellent moldability and mechanical properties, and the cured product has little surface tack and is relatively hard. is.
  • the cured product obtained by curing the present composition can be suitably used as a member for semiconductor devices, and is suitable as a sealing material for semiconductor elements, IC chips, etc., and as an adhesive/bonding member for conductor devices. can be used.
  • a semiconductor device comprising a member made of a cured product obtained by curing the curable silicone composition of the present invention is not particularly limited, but in particular, the composition of the present invention has light shielding or light reflecting properties. It can be suitably used for applications where it is necessary to block or reflect light in order to form a cured product having.
  • it is preferably a light-emitting semiconductor device that is a light-emitting/optical device, an optical member for a display, or a semiconductor device whose interior is preferably invisible, particularly a sealing material or an adhesive member used for these devices.
  • the curable silicone composition was tested according to the method specified in JIS K 6300-2: 2001 "Unvulcanized rubber-Physical properties-Part 2: Determination of vulcanization properties using a vibrating vulcanization tester". Curing properties were measured by vulcanization at a given temperature for 600 seconds using a meter (registered trademark) (PREMIER MDR manufactured by Alpha Technologies). Examples 1 to 4 and Comparative Examples 2 to 8 were measured at 160°C, and Examples 5 and 6 and Comparative Example 1 were measured at 120°C.
  • the measurement was performed after irradiating ultraviolet rays having a wavelength of 365 nm so that the irradiation amount was 10 J/cm 2 .
  • About 5 g of the curable hot-melt silicone composition mass was weighed, sandwiched between PET films having a thickness of 50 ⁇ m, placed on the lower die, and the measurement was started when the upper die closed.
  • the measurement was performed using an R-type die for rubber, with an amplitude angle of 0.53°, a frequency of 100 times/minute, and a maximum torque range of 230 kgf ⁇ cm.
  • the time (TS-1) required for the torque value to exceed 1 dNm was read in units of minutes.
  • [Surface tack of cured product] A cured product was prepared by vulcanizing the curable silicone composition for 10 minutes at a predetermined temperature. Examples 1 to 4 and Comparative Examples 2 to 8 were cured at 160°C, and Examples 5 and 6 and Comparative Example 1 were cured at 120°C. In addition, in Comparative Examples 2 to 4, ultraviolet rays having a wavelength of 365 nm were irradiated so that the irradiation amount was 10 J/cm 2 and then cured. A PET film was pressed against the obtained cured product, and the case where there was no sticking was evaluated as "no surface tack", and the case where there was sticking was evaluated as "surface tack”.
  • the curable silicone composition was vulcanized at a given temperature for 10 minutes to form a cured product with a thickness of 300 ⁇ m.
  • Examples 1 to 4 and Comparative Examples 2 to 8 were cured at 160°C, and Examples 5 and 6 and Comparative Example 1 were cured at 120°C.
  • ultraviolet rays having a wavelength of 365 nm were irradiated so that the irradiation amount was 10 J/cm 2 and then cured.
  • the reflectance of this cured product was measured using a UV-VIS spectrophotometer UV3100PC (manufactured by Shimadzu Corporation) to read the reflectance at a wavelength of 450 nm.
  • a hot-melt mixture of an organopolysiloxane resin and a linear organopolysiloxane was prepared by the method shown in Reference Examples 1 to 3 below.
  • Organopolysiloxane resin fine particles were prepared by the method shown in Reference Examples 4 and 5. Both preparation methods include a step of removing low-molecular-weight organopolysiloxane components, and M 4 Q structures are removed as much as possible from the resulting raw materials.
  • the obtained solution was fed to a twin-screw extruder whose maximum temperature was set to 230° C., and xylene and low-molecular-weight organopolysiloxane components were removed under vacuum conditions of ⁇ 0.08 MPa.
  • a mixture 1 was obtained.
  • Mixture 1 was received in a Zundo pail can and cooled as it was to solidify.
  • the amount of volatile components in this mixture was measured at 200° C. for 1 hour and found to be 0.7% by mass.
  • the obtained solution was fed to a twin-screw extruder whose maximum temperature was set to 230° C., and xylene and low-molecular-weight organopolysiloxane components were removed under vacuum conditions of ⁇ 0.08 MPa.
  • a transparent mixture 2 was obtained.
  • Mixture 2 was received in a pail can and cooled as it was to solidify.
  • the amount of volatile components in this mixture was measured at 200° C. for 1 hour and found to be 0.7% by mass.
  • the obtained solution was fed to a twin-screw extruder whose maximum temperature was set to 230° C., and xylene and low-molecular-weight organopolysiloxane components were removed under vacuum conditions of ⁇ 0.08 MPa.
  • a transparent mixture 3 was obtained.
  • Mixture 3 was received in a Zundo pail can and cooled as it was to solidify.
  • the amount of volatile components in this mixture was measured at 200° C. for 1 hour and found to be 0.7% by mass.
  • Examples 1 to 7 and Comparative Examples 1 to 5 white or black curable hot-melt silicone compositions were prepared according to the following procedure.
  • Comparative Examples 6 and 7 uniformly granular curable silicone compositions were prepared by putting all the components together in a small pulverizer according to the following procedure.
  • Tables 1 and 2 show the composition of each composition, the number of parts, and the SiH/Vi ratio of the entire composition. Furthermore, the softening viscosity, melt viscosity, TS-1 (initial and after aging at 40 ° C. for 1 week), TC90, and physical properties of the cured product (surface tack, reflectance and transmittance) of each composition are shown in Table 3. shown inside.
  • Examples 1 to 7 and Comparative Examples 1 to 5> The hot-melt mixtures 1-3 obtained in Reference Examples 1-3 are passed through a twin-screw extruder at 170° C. by a hot melter for pail cans (VersaPail melter manufactured by Nordson) on the line shown in FIG. Fed from 1. Next, component (E) was added from line 3-a, and components (C) and (F) were added from line 3-b at a set temperature of 150°C. Next, the (D) component diluted with the (B) component was introduced from the line 3-c at a set temperature of 80°C. The degree of vacuum in the extruder was -0.08 MPa, and degassing and melt-kneading were carried out.
  • the outlet temperature of the twin-screw extruder is 80° C., and the mixture is in the form of a semi-solid softened product. While conveying at a speed of /min, the mixture was supplied onto the release film so that the supply amount was 5 kg/hr, and the mixture was interposed between the two release films so that the release surface of the release film was in contact with the mixture. to form a laminate. Subsequently, the laminate is pressed between rolls whose temperature is controlled at 90° C., and the mixture is stretched between release films to form two curable hot-melt silicone composition sheets each having a thickness of 300 ⁇ m. A laminate interposed between the release films was formed, and then the entire laminate was cooled by air cooling.
  • the configuration of the manufacturing apparatus is shown in FIG.
  • the curable silicone compositions of Examples 1 to 7 according to the present invention have low viscosity and high fluidity when heated and melted without impairing storage stability/storage stability even when white or colored fillers are used. and was able to be rapidly cured at a high temperature above the glass transition point of the thermoplastic resin constituting component (D). Furthermore, the resulting cured silicone product has extremely low tackiness on the surface, and is expected to be suitable for use in protecting semiconductor elements and the like.
  • Comparative Example 1 since the softening point of the capsule-type catalyst used was not sufficiently high, activation of the catalyst occurred during melt-kneading performed to obtain a uniform mixture, and the resulting composition had a sufficient It did not show storage stability. Further, in Comparative Examples 2 to 4, a catalyst triggered by ultraviolet light is used, but when an inorganic filler that absorbs or reflects light in the ultraviolet region is included as in the composition of the present invention, the catalyst is used. It was found that it could not be activated and sufficient curability could not be expressed. On the other hand, in Comparative Examples 5 and 6 using a normal catalyst, an excessive curing retardant is required to ensure sufficient storage stability.
  • Hot melter 2 extruder 3-a: Powder feeder 3-b: Pump 3-c: Pump 3-d: Vacuum pump 4-a: release sheet 4-b: Release sheet 5-a: Stretching rolls (optionally with temperature control function) 5-b: Stretching rolls (optionally with temperature control function) 6: cooling roll 7: Film thickness gauge 8: Sheet cutter 9: Foreign matter inspection machine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[課題]硬化特性と加熱溶融時の流動性に優れ微細充填が可能であり、かつ、組成物全体として保存安定性に優れ、厚みのある成型が可能であり、硬化により表面タックが小さく、硬い硬化生成物を形成する硬化性シリコーン組成物およびその用途を提供する。 [解決手段](A)(A1)硬化反応性の官能基を有し、Q単位を20モル%以上含むオルガノポリシロキサン樹脂;(A2)硬化反応性の官能基を有さず、Q単位を20モル%以上含むオルガノポリシロキサン樹脂を含む固体のオルガノポリシロキサン樹脂;(B)硬化反応性の官能基を有し、直鎖状または分岐鎖状のオルガノポリシロキサン 10~100質量部;(C)オルガノハイドロジェンポリシロキサン、及び(D)Tgが110~200℃の範囲にある熱可塑性樹脂を用いたヒドロシリル化反応触媒含有微粒子を含有してなり、組成物全体としてホットメルト性を有する硬化性シリコーン組成物。

Description

ホットメルト性を有する硬化性シリコーン組成物、その硬化生成物、及び前記組成物を含む積層体
 本発明は、硬化特性と加熱溶融時の流動性に優れ微細充填が可能であり、かつ、組成物全体として保存安定性に優れ、比較的厚みのある成型が可能であり、硬化により表面タックが小さく、比較的硬い硬化生成物を形成する硬化性シリコーン組成物に関するものであり、好適には、白色または有色の硬化生成物を与えるものである。また、本発明は、当該硬化性シリコーン組成物を成形してなるシート/フィルム、それを含む積層体、それらの製造方法、および当該組成物を硬化してなる硬化生成物の用途に関する。
 硬化性シリコーン組成物は、硬化して、優れた耐熱性、耐寒性、電気絶縁性、耐候性、撥水性、及び透明性を有する硬化物を形成できることから、幅広い産業分野で利用されている。特に本発明のこうした硬化性シリコーン組成物の硬化物は一般的に、他の有機材料と比較して変色しにくく、また、物理的物性の経時低下が小さいため、半導体装置の封止剤としても適している。
 本出願人は、特許文献1および特許文献2において、成型用のホットメルト性の硬化性粒状シリコーン組成物および反応性シリコーン組成物を提案している。これらのシリコーン組成物はその性状を達成するために無機充填材が多量に入っており、その溶融粘度は比較的高い。
 一方、近年では半導体装置等の小型化が進んであり、その基板構造の微細が顕著となってきている。この様な微細な構造を持った基板を封止する場合、封止時に低い粘度が必要となる。また、近年の半導体装置の大面積化に伴い、封止剤としてはフィルム状、またはシート状のものが好ましいとされる傾向がある。
 ここで、特許文献3において、シリコーン樹脂を用いた透明のホットメルト性の硬化性シリコーンシートが開示されている。しかし、これらの組成物はその製法上有機溶剤が必須となり、無機充填材を含有することが難しい。また、その性質上、全ての成分が混合され一体化したものであり、保存安定性を確保するのが難しい。さらに、これらの硬化性シリコーンシートは開示されたその生産方法のため膜厚が100μm以上のものを生産するのが難しいという問題もある。
 硬化性シリコーン組成物の保存安定性を確保するために、紫外線等の高エネルギー線照射により活性化される触媒が用いられることがあり、特許文献4には当該触媒を含有した硬化性シリコーン粘着剤が提案されている。しかしながら、これらの触媒は特に着色フィラーや顔料のように紫外線領域に強い吸収や反射がある組成物においては、高エネルギー線が遮蔽されてしまい、硬化反応が阻害され、これらの顔料やフィラーを含む着色性が求められる用途(例えば、リフレクターや黒色封止剤などの光学部材)に十分に適用することができないという問題がある。
以上のように、組成物の加熱溶融時の微細な封止乃至充填性、保存安定性、およびその成型性に優れ、かつ、高エネルギー線を遮蔽するようなフィラーまたは顔料を用いても十分な硬化性を実現するような硬化性シリコーン組成物が求められている。本件出願人らは、特許文献5~7において、優れた硬化特性を有するホットメルト性のシリコーン組成物(フィルム形態を含む)を提案しているが、特に、加熱溶融時の流動性と微細充填性において、未だ改善の余地を残している。
国際公開第2016/136243号パンフレット 国際公開第2019/078140号パンフレット 特表2017-512224号公報 特開2017-101137号公報 国際公開第2021/200643号パンフレット 国際公開第2020/203304号パンフレット 国際公開第2021/132710号パンフレット
 本発明の目的は、加熱溶融時の粘度が低く、流動性と微細充填性に優れ、硬化特性及び保存安定性に優れ、かつ、必要に応じて、白色や黒色などに着色しても十分な硬化性を確保可能なホットメルト性の硬化性シリコーン組成物、およびこれらを硬化することで得られる表面タックが少なく、比較的硬い硬化物を提供することである。さらに、本発明は、こうした硬化性シリコーン組成物からなるシート又はフィルム、特に、ボイドを含まず、実質的に平坦で膜厚が10~1000μmのシート又はフィルム、および当該硬化性シリコーン組成物からなるシート又はフィルムを含む剥離性積層体を提供することである。また、本発明のさらなる目的は、当該硬化性シリコーン組成物の硬化物からなる半導体装置用部材、当該硬化物を有する半導体装置、および、硬化物の成型方法を提供することである。
鋭意検討の結果、本発明者らは、(A)硬化反応性の官能基を有するオルガノポリシロキサン樹脂および硬化反応性の官能基を有しないオルガノポリシロキサン樹脂を特定の比率(20:80~90:10)で含む25℃において固体のオルガノポリシロキサン樹脂、(B)分子内に少なくとも2個の硬化反応性の官能基を有し、25℃において液状又は可塑性を有する直鎖状または分岐鎖状のオルガノポリシロキサン、(C)オルガノハイドロジェンポリシロキサン、(D)ガラス転移点(Tg)が110~200℃の範囲にある熱可塑性樹脂中にヒドロシリル化反応触媒が包含された構造を有する、ヒドロシリル化反応触媒含有微粒子、特定の量的範囲の(E)無機充填材を含有してなり、任意で(F)沸点が200℃以上のヒドロシリル化反応用硬化遅延剤を含有し、組成物全体としてホットメルト性を有することを特徴とする硬化性シリコーン組成物により、上記課題を解決できることを見出し、本発明を完成した。本発明において、成分(E)の少なくとも一部が白色または有色の無機充填材であることが好ましい。
上記の硬化性シリコーン組成物は、厚さが10~2000μmとなるようにシート状又はフィルム状に成形されていてよく、当該硬化性シリコーン組成物シートまたはフィルムは、セパレータを含む剥離性積層体であってよく、電子部品またはその前駆体である基材の一部と積層された積層体であってもよい。さらに、本発明は、上記の硬化性シリコーン組成物をその成分(D)の触媒活性を発現するために、熱可塑性樹脂のガラス転移点(Tg)以上に加熱することにより硬化させ、硬化生成物、その用途、および当該硬化生成物を含む積層体等を与えることができる。
 本発明の硬化性シリコーン組成物は、低粘度かつ流動性および微細充填性に優れた加熱溶融性(=ホットメルト性)を示す一方、成分(D)を構成する熱可塑性樹脂のガラス転移点(Tg)以下の温度では、ヒドロシリル化反応が抑制され、優れた保存安定性を示すが、融点以上では即硬化が可能なためオーバーモールド成型等における取扱い作業性(硬化反応のコントロールを含む)に優れる。また、当該硬化性シリコーン組成物は100℃を超える温度でのチキソ性が高く、基材に対して熱圧着を行った後、オーブン等で熱硬化を実施しても液ダレが発生しないという利点を有する。さらに、本発明の硬化性シリコーン組成物は、加熱硬化性であるため、白色または有色の充填剤または顔料を大量に配合しても硬化性に悪影響を及ぼすことなく、白色または有色の硬化生成物およびそれを用いてなる光学部材や部品を与えることができる。
加えて、本発明の硬化性シリコーン組成物は、硬化により、表面タックが少なく、比較的硬い硬化生成物を形成するため、基板を保護する封止剤として好適に使用できる。また、比較的硬い接着層が必要とされる両面接着用途にも使用できる。
本発明の硬化性シリコーン組成物は、簡便な混合工程のみで製造することができ、したがって、効率よく製造することができる。さらに、本発明により、こうした硬化性シリコーン組成物を、ボイドなどを含まない、厚みが10~2000μmのシート又はフィルム状の形態で、あるいは当該硬化性シリコーン組成物シート又はフィルムと剥離シート又はフィルムを含む剥離性積層体の形態で提供することができる。さらに本発明の硬化性シリコーン組成物からなるシート又はフィルム、あるいはそれを含む剥離性積層体は、電子部品、例えば半導体装置の製造工程等で必要に応じて、所望の大きさに裁断して使用することができ、大面積基材への一括封止や一括接着等の工業的生産工程への適用することができる。
実施例で使用した硬化性シリコーンシートの製造装置の全体構成(シート化を含む部全体)を表す図である。
 以下、本発明の実施の形態について詳細に説明する。本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本発明において、特に別段の記載がない限り、「ホットメルト性を有する」とは、組成物の軟化点が50~200℃の間にあり、組成物が150℃において溶融粘度(好適には、1000Pa・s未満の溶融粘度)を有し、流動可能な性質を有することをいう。したがって、本明細書において、本発明のホットメルト性を有する硬化性シリコーン組成物は、硬化性ホットメルトシリコーン組成物とも記す。
本発明において大気圧とは、本発明の硬化性シリコーン組成物を実験室又は工場等で取り扱う環境における大気圧をいい、特定の圧力に限定されないが、通常は、1気圧(1013.25hPa)からマイナス100hPaからプラス100hPaの範囲に入る気圧をいい、特に1気圧(1013.25hPa)をいう。
本明細書において、室温とは、本発明の硬化性シリコーン組成物を取り扱う者がいる環境の温度をいう。室温は、一般的には、0℃~40℃、特に15~30℃、とりわけ18℃~25℃をいう。
 [硬化性ホットメルトシリコーン組成物]
 本発明の硬化性ホットメルトシリコーン組成物は、(A1)200℃下で1時間暴露した時の質量減少率が2.0質量%以下であり、分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、SiO4/2で表されるシロキサン単位(以下、「Q単位」という)を全シロキサン単位の20モル%以上含有する、それ単独ではホットメルト性を有しない25℃において固体のオルガノポリシロキサン樹脂、及び(A2)200℃下で1時間暴露した時の質量減少率が2.0質量%以下であり、分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有さず、かつ、Q単位を全シロキサン単位の20モル%以上含有する、それ単独ではホットメルト性を有しない25℃において固体のオルガノポリシロキサン樹脂を、(A1):(A2)=20:80~90:10、35:65~90:10、50:50~90:10の質量比で組み合わせたもの(成分(A))及び25℃において液状の又は可塑性を有する炭素-炭素二級結合含有直鎖状または分岐鎖状のオルガノポリシロキサン(成分(B))を主成分とし、架橋剤としてオルガノハイドロジェンポリシロキサン(成分(C))、ガラス転移点(Tg)が110~200℃の範囲にある熱可塑性樹脂中にヒドロシリル化反応触媒が包含された構造を有する、ヒドロシリル化反応触媒含有微粒子(成分(D))、及び成分(A)~(D)の和100質量部に対して0.01~100質量部の範囲の無機充填材を含有するヒドロシリル化反応を用いて熱硬化可能なシリコーン組成物である。また、本発明の硬化性ホットメルトシリコーン組成物には、任意選択によってヒドロシリル化反応遅延剤いわゆる硬化遅延剤を用いてもよいが、その場合、沸点が200℃以上、特に沸点が1気圧下(1013.25hPa)で200℃以上の硬化遅延剤を使用することが好ましい。さらに、本発明の硬化性ホットメルトシリコーン組成物は、本発明が目的とする特性を維持できる範囲で、当分野で公知のその他の添加剤を添加してもよい。
[硬化性シリコーン組成物のホットメルト性および構成]
 本発明にかかる硬化性シリコーン組成物は、組成物全体としてホットメルト性を有し、加熱条件下で流動可能であることを特徴とする。特に、本発明の硬化性シリコーン組成物はその軟化点が50℃以上であり、150℃において溶融粘度(好適には、後述の高化式フローテスターにより測定される値で200Pa・s未満の溶融粘度)を有することが好ましい。なお、本発明では、組成物全体としてホットメルト性を有していればよく、当該組成物を構成する個別の成分(特に(A)成分)はホットメルト性を有しない。
[成分(A)]
 本組成物を硬化してなる硬化生成物の表面のべたつき(表面タック)を可能な限り低減し、および、高温下における硬化物の弾性率の変化を抑制するため、成分(A)の200℃下で1時間暴露した時の質量減少率が2.0質量%以下とする必要がある。
 本発明にかかる硬化性シリコーン組成物は、成分(A)として、炭素-炭素二重結合を含む硬化反応性の官能基を有し、Q単位を全シロキサン単位の20モル%以上含有する、それ単独ではホットメルト性を示さない、25℃で固体のオルガノポリシロキサン樹脂と、炭素-炭素二重結合を含む硬化反応性の官能基を有さず、Q単位を全シロキサン単位の20モル%以上含有する、それ単独ではホットメルト性を示さない、25℃で固体のオルガノポリシロキサン樹脂とを20:80~90:10、35:65~90:10、50:50~90:10の質量比の組み合わせ物を含む。当該オルガノポリシロキサン樹脂は、さらに、RSiO1/2、RSiO2/2、RSiO3/2(Rは一価有機基、特に炭素数1~10の一価炭化水素基を表す)で表されるシロキサン単位や、R1/2(Rは水素原子又は1~10個の炭素原子を有するアルキル基)で表される水酸基またはアルコキシ基を含んでもよいが、好適には、全シロキサン単位の20モル%以上、好ましくは40モル%以上、特に、40~90モル%の範囲でQ単位を含むものである。Q単位の含有量が20モル%未満では、たとえオルガノポリシロキサン樹脂がその他の分岐シロキサン単位(たとえば、RSiO3/2)を多量に含んでいても、本発明の技術的効果を達成できない場合がある。
 このような(A)オルガノポリシロキサン樹脂は、
(A1)分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、Q単位を全シロキサン単位の20モル%以上含有する、それ単独ではホットメルト性を有しない、25℃で固体のオルガノポリシロキサン樹脂、および
(A2)分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有さず、かつ、Q単位を全シロキサン単位の20モル%以上含有する、それ単独ではホットメルト性を有しない、25℃で固体のオルガノポリシロキサン樹脂
を20:80~90:10、35:65~90:10、50:50~90:10(成分(A1):成分(A2))の質量比で含むオルガノポリシロキサン樹脂混合物である。ここで、硬化反応性とは、成分(C)のオルガノハイドロジェンシロキサンとヒドロシリル化反応をすることができ、それによって組成物全体が硬化可能であることを意味し、アルケニル基、アクリロキシ基等の分子内に炭素-炭素二重結合を含む硬化反応性の官能基を意味する。
 上記の(A)成分はそれ単独ではホットメルト性を示さないが、後述する(B)成分と所定の量比の範囲内で併用することで、本発明の組成物全体としてホットメルト性を有するようにすることができる。
 [硬化反応性官能基を有するオルガノポリシロキサン樹脂(A1)]
 上記成分(A1)は、本組成物の主剤の一つであり、Q単位の20モル%以上含有し、単独ではホットメルト性を有さず、また、分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有するオルガノポリシロキサン樹脂である。
 成分(A1)は、分子内に炭素-炭素二重結合を有する硬化反応性基を有することが必要である。このような硬化反応性基は、ヒドロシリル化反応性の官能基であり、成分(C)とのヒドロシリル化架橋反応によって、硬化物を形成しうる。このような硬化反応性基は、特にアルケニル基であってよく、例えば、ビニル基、ヘキセニル基などの炭素数2~10のアルケニル基が挙げられる。
 成分(A1)は、それ単独ではホットメルト性を有さず、無溶媒の状態で固体状のオルガノポリシロキサン樹脂である。ここで、ホットメルト性を有しないとは、成分(A1)であるオルガノポリシロキサン樹脂がそれ単独では200℃以下において加熱溶融挙動を示さないということであり、具体的には、200℃以下において軟化点および溶融粘度を有さないことを意味する。成分(A1)がこのような物性を示すためには、オルガノポリシロキサン樹脂中の官能基が炭素原子数1~10の一価炭化水素基、特にメチル基等の炭素原子数1~10のアルキル基から選ばれる官能基であり、フェニル基等のアリール基を実質的に含まないこと、例えば全ケイ素結合有機基に占めるアリール基の割合が5モル%以下、2モル%以下であってよく、アリール基を全く含まないことが好ましい。成分(A1)が有機基としてフェニル基等のアリール基を大量に含む場合、当該成分はそれ単独でホットメルト性となる場合があり、かつ、Q単位に由来する硬化生成物物を補強する効果が低下する場合がある。
 好適には、成分(A1)のオルガノポリシロキサン樹脂のケイ素原子に結合した官能基は、メチル基およびビニル基等のアルケニル基から選ばれる基であり、全てのケイ素原子に結合した有機基の70モル~99モル%がメチル基であってよい、その他のケイ素原子に結合した有機基がビニル基等のアルケニル基であってよい。かかる範囲において、成分(A1)はそれ単独ではホットメルト性ではなく、本発明の硬化性シリコーン組成物から得られる硬化物の高温下における耐着色性等に特に優れた成分として有用である。なお、当該成分(A1)のオルガノポリシロキサン樹脂は、少量の水酸基またはアルコキシ基を含んでいてもよい。
 成分(A1)は、無溶媒の状態で固体状のオルガノポリシロキサン樹脂であり、好適には、成分(A1)は、
(A1-1)下記平均単位式:
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2)e
 (式中、各Rは独立して1~10個の炭素原子を有する一価炭化水素基であり、但し1分子中の全Rの1~12モル%がアルケニル基であり;各Rは水素原子又は1~10個の炭素原子を有するアルキル基であり;a、b、c、d及びeは、以下を満たす数である:0.10≦a≦0.60、0≦b≦0.70、0≦c≦0.80、0.20≦d≦0.65、0≦e≦0.05、但し、0.20≦c+d、かつa+b+c+d=1)
で表される、それ単独ではホットメルト性を有しない、25℃で固体のオルガノポリシロキサン樹脂である。
 上記の平均単位式において、各Rは独立して1~10個の炭素原子を有する一価炭化水素基、例えば、メチル基等のアルキル基;ビニル基等のアルケニル基;フェニル基等のアリール基である。更に、1分子中の全Rの1~12モル%がアルケニル基であり、1分子中の全Rの2~10モル%がアルケニル基、特に好ましくはビニル基である。アルケニル基の含有量が前記範囲の下限未満では、得られる硬化物の機械的強度(硬度等)が不十分となる場合がある。他方、アルケニル基の含有量が前記範囲の上限以下であれば、本成分を含む組成物が、組成物全体として良好なホットメルト性能を実現できる。
 上記式中、Rは水素原子又は1~10個の炭素原子を有するアルキル基である。Rのアルキル基として、メチル基が例示できる。当該Rを含む基R1/2は、成分(A)のオルガノポリシロキサン樹脂が有する水酸基又はアルコキシ基に該当する。
 上記式中、aは一般式:R SiO1/2のシロキサン単位の割合を示す数である。aは、0.1≦a≦0.60、0.15≦a≦0.55を満たす。aが前記の範囲の下限以上であれば、本成分を含む組成物が、組成物全体として良好なホットメルト性能を実現できる。他方、aが前記範囲の上限以下であれば、本発明の硬化性シリコーン組成物を硬化させて得られる硬化物の機械的強度(硬度、伸び率等)が低くなりすぎない。
 上記式中、bは一般式:R SiO2/2のシロキサン単位の割合を示す数である。bは、0≦b≦0.70、0≦b≦0.60を満たす。bが前記の範囲の上限以下であれば、本成分を含む組成物が、組成物全体として良好なホットメルト性能を実現でき、かつ室温にてべたつきの少ない組成物を得ることができる。
 上記式中、cは、一般式:RSiO3/2のシロキサン単位の割合を示す数である。cは、0≦c≦0.80、0≦c≦0.75を満たす。cが前記の範囲の上限以下であれば、本成分を含む組成物が、組成物全体として良好なホットメルト性能を実現でき、かつ室温にてべたつきの少ない、低タック又はタックフリーの組成物を得ることができる。本発明において、cは0であってよく、かつ好ましい。
 上記式中、dは、Q単位の割合を示す数であり、0.20≦d≦0.65、0.25≦d≦0.65であってよい。dが前記の数値範囲内であれば、本成分を含む組成物が、組成物全体として良好なホットメルト性能を実現でき、組成物を硬化させて得られる硬化物が比較的硬く、かつ、実用上十分な柔軟性を有することができる。
 上記式中、eは一般式:R1/2の単位の割合を示す数であり、同単位はオルガノポリシロキサン樹脂中に含まれうる、ケイ素原子に結合した水酸基またはアルコキシ基を意味する。eは、0≦e≦0.05であり、好ましくは0≦e≦0.03を満たす。eが範囲の上限以下であれば、組成物全体として良好なホットメルト性能を実現する材料を得ることができる。なお、上記式中、各シロキサン単位の総和であるa、b、c及びdの合計は1に等しい。
 成分(A1)は、上記の特徴を有するオルガノポリシロキサン樹脂であるが、室温においては固体であるため、後述する成分(B)と物理的に混合するためにはトルエン、キシレン、及びメシチレン等の芳香族炭化水素;テトラヒドロフラン及びジプロピルエーテル等のエーテル類;ヘキサメチルジシロキサン、オクタメチルトリシロキサン、及びデカメチルテトラシロキサン等のシリコーン類;酢酸エチル、酢酸ブチル、及び酢酸プロピレングリコールモノメチルエーテル等のエステル類;アセトン、メチルエチルケトン、及びメチルイソブチルケトン等のケトン類などからなる群から選択される溶剤又は溶剤混合物に溶かした状態で使用してよい。ここで使用する溶剤は、後述する工程において効率良く除去することが可能である。
 [成分(A2)]
 成分(A2)は、本組成物の主剤の一つであり、それ単独ではホットメルト性を有しない、硬化反応性の官能基を含有しない、25℃において固体のオルガノポリシロキサン樹脂であり、前記の成分(A1)および成分(B)と所定の量的範囲内で併用することで、硬化性シリコーン組成物全体としてのホットメルト性および硬化性シリコーン組成物を硬化させて得られる硬化物の優れた応力緩和性を実現するための成分である。
 成分(A2)は、それ単独ではホットメルト性を有さず、無溶媒の状態で固体状のオルガノポリシロキサン樹脂である。ホットメルト性を有しない場合の成分(A2)の挙動、フェニル基等のアリール基を含まないことが好ましいことは、成分(A1)と同様である。
 成分(A2)は、成分(A1)同様に25℃において固体状であり、Q単位を全シロキサン単位の20モル%以上含有するオルガノポリシロキサン樹脂であるが、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有しないことを特徴とする。すなわち、成分(A2)はオルガノポリシロキサン樹脂中の官能基としてビニル基等のアルケニル基を含まないことを特徴とする。成分(A2)のオルガノポリシロキサン樹脂が有する基としては炭素原子数1~10の一価炭化水素基、特にメチル基等の炭素原子数1~10のアルキル基が挙げられ、このオルガノポリシロキサン樹脂はフェニル基等のアリール基を実質的に含まないこと、例えば全ケイ素結合有機基に占めるアリール基の割合が5モル%以下、2モル%以下であってよく、アリール基を全く含まないことが好ましい。
 好適には、成分(A2)中のケイ素原子に結合した官能基は、メチル基等の炭素原子数1~10のアルキル基であり、全てのケイ素原子に結合した有機基の70モル~100モル%がメチル基であってよい。かかる範囲において、成分(A2)はそれ単独ではホットメルト性を示さず、かつ、SiO4/2で表されるシロキサン単位を含む硬化物の補強効果に特に優れる成分であることができる。なお、当該成分(A2)のオルガノポリシロキサン樹脂は、少量の水酸基またはアルコキシ基を含んでいてもよい。
 成分(A2)は、分子内に炭素-炭素二重結合を有する硬化反応性官能基を有しないので、それ自体では、成分(C)のオルガノハイドロジェンポリシロキサンと組み合わせても硬化物を形成しないが、本発明の硬化性シリコーン組成物全体としてのホットメルト性の改善や硬化性シリコーン組成物を硬化して得られる硬化物に対する補強効果を有する。また、必要に応じて、硬化反応性官能基を有する成分(A1)と併用することで、得られる硬化性シリコーン組成物の加熱溶融特性、及び組成物の硬化後の物性などを調節することができる。
 成分(A2)は、無溶媒の状態で25℃において固体状のオルガノポリシロキサン樹脂であり、分子内に分岐シロキサン単位であるQ単位を全シロキサン単位の20モル%以上含有することを特徴とする。好適には、成分(A2)のオルガノポリシロキサンは、Q単位が、全シロキサン単位の40モル%以上であり、50モル%以上、特に、50~65モル%の範囲である。
 好適には、成分(A2)は、(A2-1)下記平均単位式:
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2)j
(式中、各Rは独立して1~10個の炭素原子を有し、炭素-炭素二重結合を含まない一価炭化水素基;Rは水素原子又は1~10個の炭素原子を有するアルキル基であり;f、g、h、i及びjは、以下を満たす数である:0.35≦f≦0.55、0≦g≦0.20、0≦h≦0.20、0.45≦i≦0.65、0≦j≦0.05、かつf+g+h+i=1)
で表される、それ単独ではホットメルト性を有しないオルガノポリシロキサン樹脂である。
 上記の平均単位式において、各Rは独立して1~10個の炭素原子を有し、炭素-炭素二重結合を含まない一価炭化水素基、例えば、メチル基等のアルキル基;フェニル基等のアリール基;ベンジル基等のアラルキル基からなる群から選択される基である。ここで、1分子中の全Rの70モル%以上がメチル基等の炭素原子数1~10のアルキル基、特にメチル基であることが、工業生産上および発明の技術的効果の見地から、特に好ましい。一方、Rはフェニル基等のアリール基を実質的に含まないことが好ましい。フェニル基等のアリール基を大量に含む場合、成分(A2)自体がホットメルト性を有することになって、本発明の技術的効果を達成できなくなる場合があるほか、本発明の硬化性シリコーン組成物を硬化して得られる硬化物の高温下での耐着色性が悪化する場合がある。
 上記式中、Rは上述したとおりであるが、Rがアルキル基である場合、メチル基が例示できる。
 上記式中、fは、一般式:R SiO1/2のシロキサン単位の割合を示す数である。fは、0.35≦f≦0.55、0.40≦f≦0.50を満たす。fが前記範囲の下限以上であれば、本成分を含む硬化性シリコーン組成物が、組成物全体として良好なホットメルト性能を実現できる。他方、fが前記範囲の上限以下であれば、得られる硬化物の機械的強度(硬度等)が低くなりすぎない。
 上記式中、gは、一般式:R SiO2/2のシロキサン単位の割合を示す数である。gは、0≦g≦0.20、0≦g≦0.10を満たす。gが範囲の上限以下であれば、本成分を含む硬化性シリコーン組成物が、組成物全体として良好なホットメルト性能を実現でき、かつ室温にてべたつきの少ない組成物を得ることができる。本発明において、gは0であってよい。
 上記式中、hは、一般式:RSiO3/2のシロキサン単位の割合を示す数である。hは、0≦h≦0.20、0≦h≦0.10を満たす。hが範囲の上限以下であれば、本成分を含む硬化性シリコーン組成物が、組成物全体として良好なホットメルト性能を実現でき、かつ室温にてべたつきの少ない組成物を得ることができる。本発明において、hは0であってよい。
 上記式中、iは、Q単位の割合を示す数であり、0.45≦i≦0.65、0.50≦i≦0.65であってよい。iが当該数値範囲内において、本成分を含む硬化性シリコーン組成物が、組成物全体として良好なホットメルト性能を実現でき、硬化性シリコーン組成物を硬化させて得られる硬化物の機械的強度に優れ、かつ、組成物全体としてべたつきのない、取扱作業性の良好な組成物が実現できる。
 上記式中、jは一般式:R1/2の単位の割合を示す数であり、同単位はオルガノポリシロキサン樹脂中に含まれうるケイ素原子に結合した水酸基またはアルコキシ基を意味する。jは、0≦j≦0.05、0≦j≦0.03を満たす。jが前記の範囲の上限以下であれば、硬化性シリコーン組成物全体として良好なホットメルト性能を実現できる。なお、上記式中、各シロキサン単位の総和であるf、g、h、及びiの合計は1に等しい。
 成分(A2)は、上記の特徴を有するオルガノポリシロキサン樹脂であり、取り扱い性に関しては前述の成分(A1)と同様である。すなわち、成分(A2)は室温(例えば25℃)において固体であるため、成分(A1)と同様、成分(B)と混合するためには上述した溶剤又は溶剤混合物に溶かした状態で使用し、その後、溶媒を除去して硬化性シリコーン組成物を調製できる。
 [成分(A)における揮発性の低分子量成分の除去]
 成分(A1)や成分(A2)については、それぞれの生産工程において、揮発性の低分子量成分が生成する。揮発性低分子量成分は、具体的にはMQの構造体であり、Mユニット(R SiO1/2)とQユニット(SiO4/2)からなるオルガノポリシロキサン樹脂を重合するときに副生成物として現れる。本構造体は、本発明の硬化性シリコーン組成物から得られる硬化物の硬度を著しく下げる効果がある。成分(A1)及び成分(A2)のオルガノポリシロキサン樹脂はこれらと相溶性の高い有機溶剤の存在下で原料モノマーの重合反応によって製造され、その有機溶剤を減圧乾燥等により取り除くことで固体状のオルガノポリシロキサン樹脂を得ることができるが、MQの構造体はオルガノポリシロキサン樹脂との相容性が高く、有機溶剤を取り除くような乾燥条件では除去することは困難である。MQ構造体はそれを含むオルガノポリシロキサン樹脂を200℃以上の温度に短時間暴露することによって除去できる事は知られていたが、MQ構造体を含む硬化性シリコーン組成物を半導体等の基材と一体成型した後に、高温に暴露してMQ構造体を除去すると、硬化性シリコーン組成物から生じる硬化物の体積減少並びに顕著な硬度上昇が起こり、成型物の寸法が変化し、反りなどが発生してしまうおそれがある。さらに、本MQ構造体は得られる硬化物に粘着性を付与する効果も併せ持っているため、本質的に硬化物の表面タック性を上げる効果がある。硬化物の使用用途が基板を保護する封止剤、特に片面保護を目的とする封止剤である場合、表面のタック性をできるだけ低減する必要がある場合があり、MQ構造体の存在が問題となることがある。また、本MQ構造体が組成物または硬化物中に多量に残存していると、両面接着を目的とする接着層または封止層においても顕著な硬度上昇が起き、弾性率が大きく変化する場合がある。このため、本発明の硬化性シリコーン組成物を半導体等の基材と積層させる用途に適用するためには基材と積層して硬化性シリコーン組成物を硬化させる成型工程の前、できれば、硬化性シリコーン組成物を調製する前の原料の時点でオルガノポリシロキサン樹脂からMQ構造体を除去しておくことが好ましい。
 MQ構造体をオルガノポリシロキサン樹脂から除去する方法としては、オルガノポリシロキサン樹脂の製造工程において、粒子状のオルガノポリシロキサン樹脂を得た後に、それをオーブンなどで乾燥してMQ構造体を取り除く方法や後述する二軸混錬機にて前述した有機溶剤と一緒に取り除く方法などが挙げられる。
 より具体的には、成分(A1)や成分(A2)は有機溶剤の存在下で製造され、製造工程中にMQ構造体等の揮発成分は副生成物として現れる。得られた粗原料であるオルガノポリシロキサン樹脂を、200℃程度の高温で短時間処理することで揮発成分は除去できるので、200℃以上の温度に設定した二軸混錬機などで成分(A1)や成分(A2)から有機溶剤とMQ構造体等の揮発成分とを同時に除去することが可能である。本発明の硬化性ホットメルトシリコーン組成物を効率的に生産するという観点から、有機溶剤に溶解した成分(A2)もしくは成分(A1)と成分(A2)の混合物に、後述する成分(B)を添加して液体の状態で混合したものを200℃以上に設定した二軸押出機にフィードし、有機溶剤と一緒にMQ構造体等の揮発成分を取り除くという工程を行うことが好ましい。この方法によりホットメルト性の成分(A)と成分(B)の混合物を得ることができ、これを後述する工程において、硬化性シリコーン組成物を構成する残りの成分との混錬に使用できる。
 [成分(A)における成分(A1)と成分(A2)の質量比]
 本組成物全体としてホットメルト性を有するようにするために、成分(A2)、または成分(A1)と成分(A2)の混合物を、後述の成分(B)と所定の比率で混ぜ合わせる必要があるが、成分(A1)と成分(A2)の比率は20:80~90:10の範囲であってよく、35:65~90:10の範囲、50:50~90:10であってよい。成分(A2)は、それ自体は硬化反応性官能基を有さないので硬化性を有しないが、本組成物においては成分(A2)を成分(A1)と組み合わせて使用することで、本硬化性組成物を硬化させて得られる硬化物の貯蔵弾性率、損失弾性率、及びこれらの比から計算されるtanδをある程度調節することが可能であり、それによって硬化物の好適な弾性率、柔軟性、及び応力緩和性を達成することが可能である。また、成分(A1)なしに成分(A2)を成分(B)と組み合わせても、本発明において所望する特性の硬化性ホットメルトシリコーン組成物を調製することができる。
 [成分(B)]
 成分(B)は、本硬化性シリコーン組成物の主剤の一つであり、25℃において液状の又は可塑性を有する直鎖状または分岐鎖状のオルガノポリシロキサンであって、炭素-炭素二重結合を含む硬化反応性の官能基を、分子内に少なくとも2個有するものである。このような硬化反応性の鎖状オルガノポリシロキサンは、前述の成分(A)の固体状オルガノポリシロキサン樹脂と混合することで、組成物全体としてホットメルト特性を発現できる。
 成分(B)は、分子内に炭素-炭素二重結合を有する硬化反応性官能基を有することが必要である。このような硬化反応性官能基は、ヒドロシリル化反応性を有しており、他の成分との架橋反応によって、硬化物を形成する。このような硬化反応性官能基は、成分(A1)が有するものと同様のアルケニル基が例示され、特にビニル基またはヘキセニル基であってよい。
 成分(B)は、25℃(室温)において液状の又は可塑性を有する直鎖状または分岐鎖状のオルガノポリシロキサンであり、室温で固体状の成分(A)と混合することで、組成物全体としてホットメルト特性を発現することができる。成分(B)のオルガノポリシロキサンの化学構造は、直鎖状であっても、あるいは少数の分岐のシロキサン単位(例えば、一般式:RSiO3/2で表されるT単位(Rは独立して1~10個の炭素原子を有する一価炭化水素基)またはSiO4/2で表されるQ単位)を有する分岐鎖状のオルガノポリシロキサンであってもよいが、好適には、
(B1)下記構造式:
 R SiO(SiR O)SiR
 (式中、各Rは独立して1~10個の炭素原子を有する一価炭化水素基であり、但し1分子中のRの少なくとも2個はアルケニル基であり、kは20~5,000の数である)
で表される直鎖状ジオルガノポリシロキサンである。好適には、分子鎖両末端に各々1個ずつアルケニル基、特にビニル基を有する直鎖状ジオルガノポリシロキサンが好ましい。
 上記式中、各Rは独立して1~10個の炭素原子を有する一価炭化水素基、例えばメチル基等のアルキル基;ビニル基等のアルケニル基;フェニル基等のアリール基;ベンジル基等のアラルキル基からなる群から選択される基である。更に、1分子中のRの少なくとも2個がアルケニル基、ビニル基が例示される。また、各Rは、メチル基等の炭素原子数1~10のアルキル基、並びにビニル基及びヘキセニル基等のアルケニル基からなる群から選ばれる官能基であってよく、全てのRのうち、1分子あたり少なくとも2個がアルケニル基であり、残りのRがメチル基であってよい。なお、発明の技術的効果の観点から、Rはフェニル基等のアリール基を実質的に含まないことが好ましい。フェニル基等のアリール基を大量に含む場合、硬化性シリコーン組成物から得られる硬化物の高温下での耐着色性が悪化する場合がある。特に好適には、分子鎖両末端に一つずつビニル基等のアルケニル基を有し、他のRがメチル基であってよい。
 上記式中、kは、20~5,000、30~3,000、45~800の数である。kが前記の範囲の下限以上であれば、室温でべたつきの少ない硬化性シリコーン組成物を得ることができる。他方、kが前記の範囲の上限以下であれば、硬化性シリコーン組成物全体として良好なホットメルト性能を実現できる。
 ここで、組成物全体としてホットメルト性を示すようにするためには、オルガノポリシロキサン樹脂である成分(A)100質量部に対し、直鎖状または分岐鎖状のオルガノポリシロキサンである成分(B)は、10~100質量部の範囲であり、10~70質量部の範囲、15~50質量部の範囲であってよい。成分(B)の含有量が前記の範囲内であれば、得られる硬化性シリコーン組成物は、良好なホットメルト性を示し、かつ、硬化性シリコーン組成物を硬化させて得られる硬化物の機械的強度を増大することができ、かつ、得られる硬化性シリコーン組成物の室温でのべたつきを低減することができ、それによって組成物の取扱作業性が改善される。
 [成分(C)]
 成分(C)は、上記の成分(A)および成分(B)に含まれる炭素-炭素二重結合とヒドロシリル化反応用触媒の存在下で架橋可能な一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンであり、組成物を硬化させる成分である。
架橋剤であるオルガノハイドロジェンポリシロキサンの構造は特に限定されず、直鎖状、分岐鎖状、環状または樹脂状であってよい。すなわち、(C)成分は、HRSiO1/2で表されるハイドロジェンオルガノシロキシ単位(M単位、Rは独立に一価有機基)や、HRSiO2/2で表されるハイドロジェンオルガのシロキシ単位(D単位、Rは独立に一価有機基)を有するオルガノハイドロジェンポリシロキサンであってよい。
一方、本硬化性シリコーン組成物を成形工程に使用する場合、本組成物中の炭素-炭素二重結合を含む硬化反応性官能基の含有量が少ないので、硬化速度およびその成形性および硬化性の見地から、オルガノハイドロジェンポリシロキサンはRSiO3/2で表されるモノオルガノシロキシ単位(T単位、Rは一価有機基又はケイ素原子結合水素原子)またはSiO4/2で表されるシロキシ単位(Q単位)である分岐単位を含み、かつ、分子内に少なくとも2個のHRSiO1/2で表されるハイドロジェンジオルガノシロキシ単位(M単位、Rは独立に一価有機基)を有する、分子末端にM単位を有するオルガノハイドロジェンポリシロキサン樹脂であってよい。
特に好適なオルガノハイドロジェンポリシロキサンは、
下記平均組成式(1)、
(R SiO1/2a(R SiO2/2b(RSiO3/2c(SiO4/2d(R1/2)e(1)
(式中、Rはそれぞれ独立に水素原子又は炭素数1~12の脂肪族不飽和結合を含まない非置換の又は置換された一価炭化水素基であり、Rはそれぞれ独立に炭素数1~12の脂肪族不飽和結合を含まない非置換の又は置換された一価炭化水素基であり、全R中少なくとも2個は水素原子であり、a、b、c、及びdは、0.01≦a≦0.6、0≦b、0≦c≦0.9、0≦d≦0.9、及び、a+b+c+d=1かつc+d≧0.2の条件を満たす数である。)
で表されるオルガノハイドロジェンポリシロキサンである。なお、任意で、このオルガノハイドロジェンポリシロキサンは、大気圧下で100℃に1時間暴露した後の暴露前に対する質量減少率が10質量%以下であるという特徴を有するものであってもよい。
 上記式中、各Rはそれぞれ同じか又は異なる、脂肪族不飽和炭素結合を有さない炭素原子数1~12の一価炭化水素基もしくは水素原子であり、但し、一分子中、少なくとも2個、好ましくは少なくとも3個のRは水素原子である。水素原子以外のRである一価炭化水素基は、例えば、メチル基等のアルキル基;フェニル基等のアリール基;ベンジル基等のアラルキル基からなる群から選択される基である。工業的見地からは、Rが表す一価炭化水素基は、独立に、メチル基またはフェニル基であってよい。
 式中、Rは脂肪族不飽和炭素結合を有さない炭素原子数1~12の一価炭化水素基であり、上述したRの一価炭化水素基と同様の基が例示される。Rは、メチル基及びフェニル基から選択される基であってよい。
 式中、a、b、c、及びdは以下の条件:0.01≦a≦0.6、0≦b、0≦c≦0.9、0≦d≦0.9、及び、a+b+c+d=1かつc+d≧0.2、を満たす数である。具体的な例としては、MMT樹脂、MT樹脂、MMTQ樹脂、MMQ樹脂、MDQ樹脂、及びMQ樹脂等が挙げられる。前記樹脂の表記中、M、D、T、QはそれぞれM単位、D単位、T単位、及びQ単位を表し、Mは水素原子を有するM単位を表す。
 上記式(1)中、Rは水素原子又は1~10個の炭素原子を有するアルキル基である。Rのアルキル基として、メチル基等が例示できる。当該Rを含む基R1/2は、成分(C)のオルガノハイドロジェンポリシロキサンが有する水酸基又はアルコキシ基に該当する。
 上記式中、eは一般式:R1/2の単位の割合を示す数であり、同単位はオルガノポリシロキサン樹脂中に含まれうるケイ素原子に結合した水酸基またはアルコキシ基を意味する。eは、0≦e≦0.05、0≦e≦0.03を満たす。なお、上述のとおり、上記式(1)中、各シロキサン単位の総和であるa、b、c、及びdの合計は1に等しい。
 成分(C)は下記平均組成式(2)で表されるオルガノハイドロジェンポリシロキサンが例示される。
  (HR SiO1/2(R SiO2/2(SiO4/2 (2)
 式(2)中、Rはそれぞれ独立に炭素数1~12の脂肪族不飽和結合を含まない非置換の又は置換された一価炭化水素基であり、f、g、及びhは、0.01≦f≦0.6、0≦g≦0.9、0.2≦h≦0.9、及びf+g+h=1の条件を満たす数である。
 この一価炭化水素基の具体例は、上記平均組成式(1)においてRが表す一価炭化水素基の具体例として示したものと同じである。Rは、それぞれ独立に、メチル基及びフェニル基から選択される基であってよい。
 また、成分(C)は下記平均式(3)で表されるオルガノハイドロジェンポリシロキサンが例示される。
  (HR SiO1/2(R SiO2/2(RSiO3/2 (3)
 式(3)中、R及びRはそれぞれ独立に炭素数1~12の脂肪族不飽和結合を含まない非置換の又は置換された一価炭化水素基であり、全てのRのうち10モル%以上はアリール基であり、かつ、i、j、及びkは、0.01≦i≦0.6、0≦j≦0.9、0.2≦k≦0.9、及び、i+j+k=1の条件を満たす数である。
 この一価炭化水素基の具体例は、上記平均組成式(1)においてRが表す一価炭化水素基の具体例として示したものと同じである。Rは、全てのRのうち10モル%以上がフェニル基であることを条件として、それぞれ独立に、メチル基及びフェニル基から選択される基であってよい。
 上記平均組成式(2)で表されるオルガノハイドロジェンポリシロキサンと平均組成式(3)で表されるオルガノハイドロジェンポリシロキサンは、それぞれ単独で用いても、併用してもよい。
 本発明の硬化性シリコーン組成物中の成分(C)のオルガノハイドロジェンポリシロキサンの含有量は、硬化性シリコーン組成物を硬化させるのに十分な量であり、成分(A)と成分(B)中の炭素-炭素二重結合を含む硬化反応性官能基(例えば、ビニル基等のアルケニル基)に対して、成分(C)のオルガノハイドロジェンポリシロキサン中の珪素原子結合水素原子の量が、硬化性シリコーン組成物全体に含まれるケイ素原子に結合したアルケニル基に対してアルケニル基1個当りのケイ素原子結合水素原子の数(以下、「SiH/Vi比」という)が0.5~20.0個となる量、特に1.0~10個の範囲となる量であってよい。
[揮発性成分の除去]
 一方で、これらのオルガノハイドロジェンポリシロキサンはどの様な構造のものであっても、大気圧下、特に1気圧(1013.25hPa)下で100℃程度では揮発しにくい成分であることが好ましい。これは後述する本発明の硬化性ホットメルトシリコーンシート又はフィルムの生産工程において、ボイド等を含有しないシート又はフィルムを得るためには減圧下50~150℃の温度範囲で硬化性シリコーン組成物の各成分、さらにそれから得られる組成物を溶融混錬することが必要だからであり、本発明の各成分を用いることによって、ボイド等を含まないシート又はフィルムを製造できる。各成分が減圧下所定の温度にさらされるのはごく短時間であるが、この混錬条件下で有効成分が多量に揮発してしまうと設計通りの特性の組成物を得ることができないという問題が生じる。特に、架橋剤であるオルガノハイドロジェンポリシロキサンは、硬化性シリコーン組成物の全質量に対して添加量が少ないのでそれらの成分の揮発により組成物の特性(硬化特性、硬化物の物性等)が、意図した値から大きく変わってしまう。このため、成分(C)は揮発しにくいものを使用する必要があり、具体的には大気圧下で100℃に1時間暴露した後の暴露前に対する質量減少率が10質量%以下であってよく、用途に応じては、好ましい。
 [成分(D)]
 成分(D)は、本発明に係る硬化性シリコーン組成物の特徴的な構成の一つであり、ガラス転移点(Tg)が110~200℃の範囲にある熱可塑性樹脂中にヒドロシリル化反応触媒が包含された構造を有する、ヒドロシリル化反応触媒含有微粒子である。このような成分(D)は、(D-1)ヒドロシリル化反応触媒が前記の熱可塑性樹脂の中に溶解または分散している微粒子あるいは(D-2)熱可塑性樹脂の殻の中にヒドロシリル化反応触媒が核として含有されている構造のマイクロカプセル微粒子のいずれの構造であってもよい。かかる成分(D)は、ヒドロシリル化反応触媒が、特定のガラス転移点を有する熱可塑性樹脂中に封入乃至担持された構造を有するため、当該ガラス転移点未満の温度で加熱しても、ヒドロシリル化反応触媒が不活性な状態を維持し、硬化反応が抑制されるため、組成物を当該温度未満でシート状等に成形しても安定に保存することができる。他方、当該ガラス転移点を超える温度で加熱することにより、速やかに成分(D)中の熱可塑性樹脂が融解してヒドロシリル化反応触媒が活性化され、硬化生成物を形成することができる。
成分(D)中の白金系触媒、ロジウム系触媒、パラジウム系触媒、さらに鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒が例示されるが、本組成物の硬化を著しく促進できることから白金系触媒が特に例示される。この白金系触媒は公知のものから適宜選択することができるが白金(0価)-アルケニルシロキサン錯体が代表的であり、アルケニルシロキサンの構造は限定するものではないがその錯体の安定性が良好であることから1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが例示される。
成分(D)を構成する熱可塑性樹脂は、上記触媒を反応系から隔離する壁材として機能する成分であり、そのガラス転移点(Tg)が110℃~200℃の範囲が例示され、120~200℃、130~200℃の範囲であってよい。ここで、熱可塑性樹脂のガラス転移点はDSC(デファレンシャル・スキャンニング・カロリメーター)により測定することができる。このような熱可塑性樹脂は、エポキシ樹脂、アクリル樹脂、並びにポリカーボネート樹脂から選ばれてよく、特に、上記のTgを有するアクリル樹脂またはポリカーボネート樹脂が例示できる。なお、当該熱可塑性樹脂および成分(D)である微粒子は、その軟化点が上記範囲にあるものであっても、ほぼ同様の挙動を示すものである。
本発明において、成分(D)を構成する熱可塑性樹脂のTgが前記下限未満では、本組成物を均一混合乃至加熱成型する工程で、壁材である熱可塑性樹脂が溶解し、ヒドロシリル化反応触媒が溶出してしまい、組成物全体の保存安定性が損なわれる場合がある。他方、熱可塑性樹脂のTgが前記上限を超えると、反応活性に200℃を超える高温が必要になるため、基材が劣化したり、熱プロセス上好ましくない場合がある。
成分(D)である微粒子の平均粒子径は、0.1~500μmの範囲内であってよく、0.3~100μmの範囲内であってよい。これは、平均粒子径が上記範囲の下限未満である微粒子を調製することが困難であるからであり、一方、上記範囲の上限を超えると、硬化性シリコーンレジン組成物中への分散性が低下するからである。
 このような成分(D)を調製する方法は限定されず、従来公知の界面重合法やin-situ重合法などの化学的方法、コアセルベーション法や液中乾燥法などの物理的・機械的方法が例示される。特に、狭い粒径分布のマイクロカプセル微粒子が比較的容易に得られることから、液中乾燥法と気相乾燥法が望ましい。これらの方法によって得られた微粒子は、そのまま用いることもできるが、これをメタノールや低分子シロキサン等の公知の洗浄溶剤によって洗浄してその表面に付着した白金系触媒を除去することが、貯蔵安定性に優れた硬化性シリコーンレジン組成物を得るためには望ましい。
 本組成物において、白金系触媒含有熱可塑性樹脂微粒子の含有量は特に限定されないが、本組成物に対して微粒子中の白金金属が質量単位で0.1~2,000ppmとなる量、1~1,000ppmとなる量であってよい。これは、白金系触媒含有熱可塑性樹脂微粒子の含有量が上記範囲の下限未満であると、十分に硬化しにくくなるからであり、一方、上記範囲の上限を超えても硬化は著しく向上しないからである。
 [成分(E)]
(E)成分は、充填材または顔料であり、本発明においては白色または有色の充填材、特に、白色または有色の無機充填材を含むことが好ましく、その一部として蛍光体等の波長変換成分を含んでもよく、導電性、熱伝導性等のその他の機能を有する微粒子を含んでもよい。特に、本発明にかかる組成物は、ホットメルト性に加えて熱硬化性であるため、紫外線等の高エネルギー線を遮蔽乃至反射してしまうような白色乃至有色の充填剤または顔料を用いても、硬化反応性を阻害しないという利点がある。
成分(E)である充填材または顔料の機能は特に制限されるものではないが、得られる硬化生成物を白色または着色することが可能である他、その機械的強度や硬度を向上することも期待でき、波長変換等の光学的機能、熱伝導性や電気伝導性等のその他の機能を付与するものであってよい。これらの成分(E)としては、白色顔料、黒色顔料、蛍光体、金属粉やその他の機能性フィラーが例示され、特に、白色または着色した硬化生成物を与える成分であることが好ましい。なお、成分(E)である充填材または顔料の形状は特に制限されるものではなく、球状、紡錘状、扁平状、針状、不定形等であってよい。
白色顔料は硬化物に白色度を付与し、光反射性を向上させること成分であり、当該成分の配合により本組成物を硬化させてなる硬化物を発光/光学デバイス用の光反射材として利用することができる。この白色顔料としては、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム等の金属酸化物;ガラスバルーン、ガラスビーズ等の中空フィラー;その他、硫酸バリウム、硫酸亜鉛、チタン酸バリウム、窒化アルミニウム、ボロンナイトライド、酸化アンチモンが例示される。光反射率と隠蔽性が高いことから、酸化チタンが好ましく例示される。また、UV領域の光反射率が高いことから、酸化アルミニウム、酸化亜鉛、チタン酸バリウムが好ましく例示される。この白色顔料の平均粒径や形状は限定されないが、平均粒径は0.05~10.0μmの範囲内、あるいは0.1~5.0μmの範囲内であることが好ましく例示される。また、この白色顔料をシランカップリング剤、シリカ、酸化アルミニウム等で表面処理してもよい。
黒色顔料は硬化物に黒色度を付与し、硬化物に光遮蔽性を付与することができる成分であるが、カーボンブラックやグラフェンに代表されるように導電性等のその他の機能を併有してもよいことは言うまでもない。この黒色顔料には、より具体的には、カーボンブラック、黒鉛、活性炭、グラフェン等の炭素系黒色顔料;酸化鉄、マグネタイト、クロム鉄酸化物、クロム鉄ニッケル酸化物、クロム酸銅、クロム鉄鉱、マンガンフェライト、ニッケルマンガン鉄酸化物、<鉄、コバルト、銅から選ばれる1種類以上の金属>を含む複合金属酸化物等の無機黒色顔料;アニリンブラック、シアニンブラック、ペリレンブラック等の有機黒色顔料が例示される。
蛍光体は、硬化物を波長変換材料に用いる場合に、光源(光半導体素子)からの発光波長を変換するために配合される成分である。この蛍光体としては、特に制限はなく、発光ダイオード(LED)に広く利用されている、酸化物系蛍光体、酸窒化物系蛍光体、窒化物系蛍光体、硫化物系蛍光体、酸硫化物系蛍光体等からなる黄色、赤色、緑色、および青色発光蛍光体が例示される。
本組成物は前記以外の無機充填剤を含んでいても良く、例えば硬化物の機械的強度を改善するためにシリカなどに代表される補強性フィラー、熱伝導性フィラー、導電性フィラーなどが挙げられる。さらに、成分(E)は、本組成物中に安定的に配合する目的等で、シラン、シラザン等の低分子量有機ケイ素化合物、有機ケイ素ポリマー又はオリゴマー、その他の公知の表面処理剤から選ばれる1種類以上により表面処理が成されていてもよい。表面処理剤の使用量は特に制限されないが、成分(E)全体の質量に対して、0.1~2.0質量%の範囲が一般的である。さらに、成分(E)は、その他の成分(A)~(D)と事前にコンパウンドすることにより、マスターバッチ化した状態で配合してもよい。
成分(E)の含有量は(A)~(D)成分の総和(100質量部)に対して0.1~100質量部の範囲内、0.5~90質量部の範囲内、0.5~80質量部の範囲内、あるいは1.0~50質量部の範囲内であってよい。前記範囲以下の添加量であると着色効果が十分に出ないという問題が発生し、前記範囲以上であると得られるホットメルト性組成物の溶融粘度が高すぎるという問題が発生すると同時に後述の方法により生産したときに、全体を均一に混錬しにくくなったり、製造装置の摩耗が発生しやすくなり、得られる組成物に色落ちが発生したり、狙った色味を出せない場合がある。
 本発明の硬化性シリコーン組成物は、上記の成分(A)~(E)に加えて、実用上および保存安定性をさらに向上させる見地から、硬化遅延剤(F)を含有してもよい。
 硬化遅延剤の構造は特に限定されないが、その沸点が大気圧下で200℃以上であることが好ましい。これは、後述する硬化性シリコーン組成物シートの生産工程において減圧下で原料を溶融混錬する際に、沸点が低い化合物を遅延硬化剤として使用すると、本発明の組成物の生産工程中に硬化遅延剤の一部又は全部が揮発してしまい、硬化性シリコーン組成物に対する目標とした硬化遅延効果が得られなくなるおそれがあるからである。
 本発明の硬化遅延剤は特に限定されないが、例えば、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール、1-エチニル-1-シクロヘキサノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;テトラメチルテトラビニルシクロテトラシロキサン、テトラメチルテトラヘキセニルシクロテトラシロキサン等のアルケニル基含有低分子量シロキサン;メチル-トリス(1,1-ジメチルプロピニルオキシ)シラン、ビニル-トリス(1,1-ジメチルプロピニルオキシ)シラン等のアルキニルオキシシランが例示される。これらのうち、大気圧下で沸点が200℃以上の化合物(例えば、ビニル-トリス(1,1-ジメチルプロピニルオキシ)シラン等)を用いることが特に好ましい。硬化性シリコーン組成物中の硬化遅延剤の含有量は特に限定されないが、組成物に対して、質量単位で、1~10000ppmの範囲内であってよい。
[接着付与剤]
また、本発明の組成物には、本発明の目的を損なわない限り、その他任意の成分として、公知の接着性付与剤を含有してもよい。接着付与剤は、本組成物を硬化させてなる硬化生成物の基材に対する接着性を改善する成分である限り、特に制限されないが、一例として、本件出願人が、国際特許出願(PCT/JP2020/ 12027)において好適に例示している成分である、3-グリシドキシプロピルトリメトキシシラン等のシラン化合物;オルガノシロキサンオリゴマー;アルキルシリケート;特公昭52-8854号公報や特開平10-195085号公報に開示されたアミノ基含有オルガノアルコキシシランとエポキシ基含有オルガノアルコキシシランとの反応混合物;1分子中にケイ素原子結合アルコキシ基またはケイ素原子結合アルケニル基を有するカルバシラトラン誘導体;アルコキシシリル基含有有機基を有するシラトラン誘導体;1,6-ビス(トリメトキシシリル)ヘキサン等のジシラアルカン化合物などが好適に利用でき、これらから選ばれる2種類以上の成分を組み合わせて用いてもよい。この接着性付与剤の含有量は限定されないが、本組成物の合計100質量部に対して0.01~10質量部の範囲内で使用することが例示できる。
 [その他の添加剤]
 本発明の硬化性ホットメルトシリコーン組成物には、上述した成分に加えて、シリコーン組成物に用いてもよい添加剤として当分野で公知の材料を添加してもよい。例えば、本組成物には、その他任意の成分として、酸化鉄(ベンガラ)、酸化セリウム、セリウムジメチルシラノレート、脂肪酸セリウム塩、水酸化セリウム、ジルコニウム化合物等の耐熱剤;その他、染料、白色以外の顔料、難燃性付与剤等を含有してもよい。
[シートまたはフィルム]
 本組成物はシート又はフィルム状に成形して使用してもよい。例えば、平均厚みが10~1000μmの本発明の硬化性シリコーン組成物からなるシート又はフィルムは、ホットメルト性を有し、かつ高温下で加熱硬化性を有するので、取扱作業性および溶融特性に優れており、特にコンプレッション成型等に用いるのに有利である。この場合、成分(F)を含めて、成分(A)~(F)の全てを含有する組成物をシート又はフィルム状に成形してよい。
 この様なシート又はフィルム状の組成物は、全成分を一軸または二軸の連続混練機を使用して均一な混合物とした後に、その混合物を2本ロールなどに通して所定の厚みのシート又はフィルムに成形することができる。また、後述の粒状の硬化性ホットメルトシリコーン組成物を一旦得てから、必要な場合には成分(F)を添加した後に、それらを混錬機で混錬して均一にしてから2本ロールなどの成型機を通して、所望の厚みに調節されたシート又はフィルムを製造してもよい。
 特に、本組成物は、成分(D)をヒドロシリル化反応触媒として利用しているので、シート又はフィルム状の成型にあたり、組成物全体を50℃~その成分(D)を構成する熱可塑性樹脂のガラス転移点(Tg)までの温度範囲内で溶融混錬しても、触媒が不活性な状態を保つため、硬化反応が実質的に進行しないという利点を有する。このため、成型時にある程度の温度で溶融混錬しても、保存安定性に優れた硬化性シリコーン組成物シートまたはフィルムを得ることができる利点がある。
 上記のシート又はフィルム状の組成物は、オルガノポリシロキサン樹脂微粒子を原料として製造してもよく(方法A)、室温で固体状のオルガノポリシロキサン樹脂、および、任意で鎖状のジオルガノポリシロキサンを有機溶剤中に分散させ、有機溶剤を除去した後のホットメルト性の固形分を原料として製造(ホットメルトバルク法)してもよい(方法B)。
 具体的には、前者(方法A)は以下の工程:
 工程1:オルガノポリシロキサン樹脂微粒子、硬化剤および任意選択により場合によっては機能性フィラーを混合する工程;
 工程2:工程1で得た混合物を、120℃以下の温度で加熱溶融しながら混練する工程;
 工程3:工程2で得た加熱溶融し混錬した後の混合物を、それぞれが少なくとも1の剥離面を備えた2枚のフィルム間に積層して積層体を形成する工程;
 工程4:工程3で得た積層体中の混合物をロール間で延伸し、特定の膜厚を有する硬化性ホットメルトシリコーンシートを成型する工程、
を含む製造方法である。
 一方、後者(方法B)は、以下の工程:
 工程1:有機溶剤中に、室温で固体状のオルガノポリシロキサン樹脂、および、任意で鎖状のジオルガノポリシロキサンを分散乃至溶解させた溶液から、150℃以上の温度で有機溶剤の除去を行い、ホットメルト性の固形分を得る工程;
 工程2:工程1で得たホットメルト性の固形分に、すべての硬化剤を加えた後、その混合物を120℃以下の温度で加熱溶融しながら混練する工程;
 工程3:工程2で得た加熱溶融後の混合物を、それぞれが少なくとも1の剥離面を備えた2枚のフィルム間に積層して積層体を形成する工程;
 工程4:工程3で得た積層体中の混合物をロール間で延伸し、特定の膜厚を有する硬化性ホットメルトシリコーンシートを成型する工程
を含む製造方法である。
 なお、いずれの製造方法(方法Aまたは方法B)においても、工程2の混練ステップは120℃以下の温度で実施することで、(D)成分が軟化して硬化触媒が活性化するのを防ぐことができ、安定的に組成物を生産することができる。また、工程3および工程4は連続的かつ一体化した工程であってよく、例えば、工程2で得た加熱溶融後の混合物は、ロール間の直下において、少なくとも1の剥離面を備えたフィルム間に吐出乃至塗布されることで積層され、それと同時にロール間の間隙調整により、特定の膜厚に延伸成型されてもよい。このように、工程3および工程4が実質的に統合された工程を有する製造方法も、上記の製造方法の範囲内に含まれる。
 すなわち、工程3及び工程4は、工程2で得た混合物を2枚の剥離フィルムの間へ吐出乃至塗布して2枚の剥離フィルム間、例えば2枚の長尺の剥離フィルム間に前記の混合物を挟む工程と、それによって得られる2枚の剥離フィルム及びそれらの間に介装された前記の混合物からなる積層体を続けてロール間に通して剥離フィルム間の混合物を延伸成型し、所定の膜厚に調節して、目的とする積層体を得る工程とを連続して一体的に行ってもよい。このような工程3と工程4を一体的に行う方法も上述した製造方法に含まれる。
 また、上記の方法Aまたは方法Bにおける工程3において、加熱溶融後の混合物をフィルム間に積層する工程は特に制限されず、(i) 剥離面を備えた第一の剥離フィルム上に工程2からの加熱溶融後の混合物を吐出乃至塗布した後、同混合物の第一の剥離フィルムと接する面とは反対側の面に対して第二の剥離フィルムを接触させて第一の剥離フィルムと第二の剥離フィルム間に加熱溶融後の混合物を介装する、すなわち挟む工程であってもよく、あるいは(ii) 剥離面を備えた第一の剥離フィルムおよび第二の剥離フィルム間に工程2からの加熱溶融後の混合物を吐出乃至塗布することで、両剥離フィルム間に加熱溶融後の混合物を介装する工程であってもよい。(ii)は、第一及び第二の剥離フィルムを適切な手段、たとえば2ロールなどにより接近させ、2つの剥離フィルムが接近した箇所に工程2からの混合物を吐出乃至塗工して、混合物を同時乃至ほぼ同時に2枚の剥離フィルム間の間隙に挟む方法が例示できる。上記工程3及び4は、連続的な工程であってよい。
 なお、これらの製造方法については、本出願人らは日本国への特願2019-167832、日本国への特願2019-167833、およびこれらの優先権主張出願(国際特許出願含む)において硬化性シリコーンシートの製造方法およびそれに用いる製造装置等のプロセス全体を提案しており、本発明においても、硬化性ホットメルトシリコーン組成物のシート化またはフィルム化にあたり、当該方法および製造装置を適用することができる。
 [硬化性ホットメルトシリコーン組成物を含む積層体およびフィルム接着剤/封止剤としてのその使用]
 本硬化性ホットメルトシリコーン組成物はシート又はフィルム状にして使用することができ、特に、剥離層を備える2枚のフィルム状基材間に、上記の硬化性ホットメルトシリコーン組成物からなるシート状材料が介装された構造を有する積層体として使用可能である。この剥離層を備えたフィルム状基材(一般に剥離フィルムという)は、硬化性ホットメルトシリコーン組成物からなるシート状材料を接着剤あるいは封止剤等として用いるときに、シート状材料から剥離することができる。以下では、この積層体を剥離性積層体ともいう。
 上述した剥離性積層体の製造方法は特に制限されないが、一例として、以下の工程:
 工程1:上記の硬化性ホットメルトシリコーン組成物の構成成分を混合する工程、
 工程2:工程1で得た混合物を、加熱溶融しながら混練する工程、
 工程3:工程2で得た加熱溶融後の混合物を、少なくとも1の剥離面を備えた2つの剥離フィルム間に、前記の混合物が剥離面と接するように積層して積層体を形成する工程、
 工程4:工程3で得た積層体をロール間で加圧し、2つの剥離フィルムの間に介装された上記混合物を圧延して、特定の膜厚を有する硬化性ホットメルトシリコーン組成物シート又はフィルムを形成する工程
を含む方法を挙げることができる。さらに、任意選択により工程4において、冷却又は温度調節機能を有するロールを使用してもよい。また、工程4の後に、得られた硬化性ホットメルトシリコーン組成物シート又はフィルムを含む積層体を裁断する工程を加えてもよい。
 なおこの剥離フィルムの厚さは特に制限がなく、したがって、一般的にフィルムとよばれるものに加えてシートとよばれるものも含まれる。しかし、本明細書では、その厚さに関係なく剥離フィルムという。
 上記工程1の混合工程の温度は特に限定されないが、各成分が十分に混合されるように、必要に応じて加熱してもよく、加熱温度は例えば50℃以上であることができる。
 本発明の剥離性積層体から剥離フィルムを剥離することによって、硬化性ホットメルトシリコーン組成物からなるシート又はフィルムが得られる。したがって、本発明はそのようなシート又はフィルムも提供する。本発明のシート又はフィルムはその厚さが10~1000μmであってよく、シート又はフィルムが平坦であってよい。平坦とは、得られたシート又はフィルムの厚さが±100μm以下の範囲内、好ましくは、±50μm以下の範囲内、さらに好ましくは±30μm以下の範囲内であることを意味する。
 剥離性積層体を構成する剥離フィルムの基材の材料の種類は特には限定されないが、例えば、ポリエステルフィルム、ポリオレフィンフィルム、ポリカーボネートフィルム、又はアクリルフィルム等を適宜使用することができる。シート状基材は非多孔性であってよい。剥離フィルムはそのような材料からなるフィルムの片面又は両面に剥離性を付与する処理をすることによって形成される剥離層を有するフィルムであって、そのような処理は当分野で公知である。
 剥離フィルム表面に付与された剥離性を有する層を剥離層というが、剥離層は、硬化性シリコーン組成物からなるシート又はフィルムを、フィルム状基材から容易に剥離することができるようにするための構成であり、剥離ライナー、セパレーター、離型層或いは剥離コーティング層と呼ばれることもある。好適には、剥離層は、シリコーン系剥離剤、フッ素系剥離剤、アルキド系剥離剤、又は、フルオロシリコーン系剥離剤等の剥離コーティング能を有する剥離層として形成することができる。あるいはフィルム状基材表面に物理的に微細な凹凸を形成させて硬化性シリコーン組成物との密着力を低下させてもよく、又は本発明の硬化性ホットメルトシリコーン組成物又はその硬化物からなる層と付着しにくい材料からなる基材であってもよい。特に本発明の積層体においては、剥離層として、フルオロシリコーン系剥離剤を硬化させてなる剥離層の使用が好ましい。
 上記の積層体は、例えば、積層体を構成する2枚の剥離フィルムの一方を剥離した後、剥離フィルムと接していない硬化性シリコーン組成物からなる未硬化のシート又はフィルム状部材を被着体に適用した後、当該未硬化状態のシート又はフィルム状部材を、もう一つのフィルム状基材、すなわち剥離フィルムから剥離するようにして使用することができる。
 本硬化性シリコーン組成物は、室温において、シート状又はフィルム状の形態で取り扱うことができ、25℃において非流動性の固体である。ここで、非流動性とは、外力がない状態で変形及び/又は流動しないことを意味し、好適には、本硬化シリコーン組成物は、ペレットまたはタブレット等に成形した場合に、25℃かつ外力がない状態で変形及び/又は流動しないものである。このような非流動性は、例えば、25℃のホットプレート上に成形した本組成物を置き、組成物に対して外力がない状態または一定の加重をかけても、実質的に組成物が変形及び/又は流動しないことにより評価可能である。25℃において非流動性であると、該温度での組成物の形状保持性が良好で、その表面粘着性が低いので、組成物が未硬化状態でも容易に取り扱うことができる。
 また、本組成物の軟化点は100℃以下であることが好ましい。このような軟化点は、ホットプレート上で、高さ22mmの組成物を100グラム重の荷重で上から10秒間押し続け、荷重を取り除いた後、組成物の変形量を測定したときに、高さ方向の変形量が1mm以上となる温度を意味する。
[加熱溶融時の粘度および流動性]
 本組成物は高温・高圧下で(すなわち例えば上述した積層体の製造工程において)温度の上昇とともに急激に粘度が低下する傾向があり、組成物を取り扱うための有用な溶融粘度の値としては、実際に本組成物を使用するときの条件と同様の高温・高圧下で測定した値を用いてよい。従って、本組成物の溶融粘度はレオメーターなどの回転粘度計で測定するよりも高化式フローテスター(島津製作所(株)製)を用いて高圧下測定してよい。具体的には本組成物は、高化式フローテスターを使用して測定して150℃の溶融粘度が200Pa・s以下、150Pa・s以下であってよい。これは、本組成物をホットメルト後(すなわち加熱して溶融した後)、25℃に冷却した後の基材に対する本組成物の密着性が良好だからである。
[硬化性ホットメルトシリコーン組成物シート]
 本発明の製造方法により得られる硬化性ホットメルトシリコーン組成物シートは、上述した成分(A)~(E)及び場合によっては成分(F)を含む硬化性シリコーン組成物であり、かつホットメルト性を有する。本発明の硬化性ホットメルトシリコーン組成物シートは、加熱溶融性を有する粘着材、封止剤、及び/又は接着剤等として使用することができる。特に、当該硬化性ホットメルトシリコーン組成物シートは、成形性、ギャップフィル性、及び粘着力に優れ、ダイアタッチフィルムやフィルム接着剤として使用することができる。また、コンプレッション成型用またはプレス成型用の硬化性ホットメルトシリコーン組成物シートとしても好適に使用することができる。
 具体的には、本発明の製造方法により得られた硬化性ホットメルトシリコーン組成物シートを剥離フィルムから剥がした後に、半導体等の所望の部位に配置し、凹凸や間隙に対するギャップフィル性を生かしたフィルム接着層を被着体上及び被着体間に形成して、被着体間の仮固定、配置、及び、貼り合わせを行い、さらに、当該硬化性ホットメルトシリコーン組成物層を120℃以上、150℃以上に加熱して硬化させ、被着体間に当該硬化性シリコーンシートの硬化物を形成することによって被着体を接着させることができる。なお、剥離フィルムは、硬化性ホットメルトシリコーン組成物シートを加熱して硬化物を形成させてから剥離してもよく、当該硬化性シリコーン組成物シートの用途および使用方法に応じて、剥離フィルムを硬化性シリコーン組成物又はそれから得られる硬化物から剥離するタイミングを選択してよい。
 本発明にかかる硬化性シリコーン組成物およびそのシート/フィルムは保存安定性に加えて、高温下で流動性に優れかつ低粘度となるホットメルト性を有するため、最終硬化前に、当該シートを加熱することで、柔軟化乃至流動化し、例えば、被着体の被着面に微細な凹凸や間隙あっても、隙間なくその凹凸や間隙を充填して、被着体との接着面を形成することができる。
 [硬化物の形成方法]
 本硬化性ホットメルトシリコーン組成物は、少なくとも次の工程(I)~(III)を含む方法により硬化させることができる。
 (I)本組成物を120℃以上に加熱して、溶融する工程;
 (II)前記工程(I)で得られた溶融した硬化性ホットメルトシリコーン組成物を金型に注入する工程、又は型締めにより金型に前記工程(I)で得られた溶融した硬化性ホットメルトシリコーン組成物を行き渡らせる工程;および
 (III)前記工程(II)で金型に注入した硬化性ホットメルトシリコーン組成物を硬化させる工程。
 上記工程において、トランスファー成型機、コンプレッション成型機、インジェクション成型機、補助ラム式成型機、スライド式成型器、二重ラム式成型機、または低圧封入用成型機等を用いることができる。特に、本発明の組成物は、トランスファー成型およびコンプレッション成型により硬化物を得る目的で好適に利用できる。
 最後に、工程(III)において、工程(II)で金型に注入(適用)した硬化性シリコーン組成物を硬化させる。当該工程は、後述するように、低温で行うことができ、かつ、好ましい。
本発明の硬化性シリコーン組成物は、本発明の組成物(又はその半硬化物)を120℃以上の温度に暴露することで、(D)成分であるヒドロシリル化触媒を活性化せしめ、組成物におけるヒドロシリル化反応が進行することで、硬化物を形成することができる。また、(D)成分の性質上、一度その軟化温度以上に暴露されて触媒が活性化すれば、100℃程度の低温で硬化物を得ることも可能である。
 [組成物の用途]
 本発明の硬化性ホットメルトシリコーン組成物は、ホットメルト性を有し、溶融(ホットメルト)時の取扱い作業性および硬化性に優れ、かつ、本組成物を硬化させて得られる硬化物の高温下での耐着色性に優れることから、発光/光学デバイス用の封止材、光反射材等の半導体用部材および当該硬化物を有する光半導体に有用に用いられる。さらに、当該硬化物は機械的特性に優れているので、半導体用の封止剤;SiC、GaN等のパワー半導体用の封止剤;電気・電子用の接着剤、ポッティング剤、保護剤、コーティング剤として好適である。また、シート形状にした本発明の硬化性ホットメルトシリコーン組成物は、プレス成型、コンプレッション成型、あるいは真空ラミネーターなどを用いて大面積の基板の封止や接着するための材料として好適である。特に、成型時にオーバーモールド成型法を用いる半導体用の封止剤として用いることが好適である。さらに、本組成物をシート状にしたものは硬化性のフィルム接着剤や線膨張係数の違う2種類の基材の間の応力の緩衝層として使用する事ができる。
 また、本発明の硬化性ホットメルトシリコーン組成物、特に、シート状である硬化性ホットメルトシリコーン組成物は、半導体基板(ウェハ含む)の大面積封止に利用できる。さらに、本発明の硬化性ホットメルトシリコーン組成物をシート状に成型してなるシートは、ダイアタッチフィルム、フレキシブルデバイスの封止、二つの違う基材を接着する応力緩和層等に使用することができる。すなわち、本発明の硬化性シリコーン組成物は、片面封止を目的とする封止剤であってもよく、二つの基材間の接着を伴う、両面封止を目的とする封止剤であってもよく、かつ、これらの用途に適した好ましい特性を備える。
 [組成物の高温での粘度特性(チキソ性)]
 本発明の硬化性シリコーン組成物はホットメルト性を有し、100℃以上の温度では流動性を有し、粘度を測定することが可能である。また、その粘度は測定時に加えられるシェア(剪断力)に強く依存し、低シェアでは粘度は高く、高シェアでは粘度は低くなるというチキソ性を有する。具体的にはレオメーターにより測定される100℃と150℃において、シェアレート1s-1での粘度はそれぞれ5000Pas以下と1000Pas以下であり、2.5MPaの圧力で極限シェアレートと考えられるフローテスターを用いた時の100℃と150℃での粘度はそれぞれ500Pas以下と200Pas以下となる。この様な粘度特性は、硬化性ホットメルトシリコーン組成物を基板に対して真空ラミネーターや真空低圧プレスなどで仮圧着した後、オーブンなどで静置硬化させる工程において有利である。つまり、仮圧着時は一定の温度条件で瞬間的に圧力を加えて基材と圧着させるが、この時は圧力が加えられるので、粘度が下がり、凹凸が多い基板などへのギャップフィル性に優れる一方、その後オーブンなどで静置硬化させる時には圧力はかからないので、150℃以上の温度にて硬化しても、粘度は高いので硬化が始まるまでに組成物の液ダレは起こらないという特性を示す。
 [組成物の硬化条件および積層のタイミング]
 本発明の硬化性シリコーン組成物は、上述のように、(D)成分のTgよりも高温に暴露することで触媒が活性化し速やかな硬化が可能な状態となる。よって、(D)成分のTg以下で熱圧着などにより基材と接着させることで、硬化反応を一切進めることなく、基材と一体化した積層体の前駆体を形成することが可能である。当該積層体の前駆体を(D)成分のTg以上の温度に暴露することで、本発明の組成物を速やかに硬化させることできる。また、基材と本発明の組成物を熱圧着させる時の温度を(D)成分のTg以上で実施することで熱圧着時に触媒を活性化することができるので、熱圧着と同時に組成物を硬化させたり、得られた積層体の前駆体をより低温で硬化させることも可能となる。このため、装置の構造および接着部分等に応じて、柔軟に工程を選択することができ、かつ、所望の条件で硬化反応を行うことができる。
一例として、真空ラミネーター、真空プレス、およびコンプレッション成形から選ばれる一以上の手段により、本発明にかかる硬化性シリコーン組成物シートまたはフィルムの少なくとも一方の面を基材(例えば、電子部品またはその前駆体である)の一部または全部と密着させることにより、基材上に、未硬化かつホットメルト性を備えた本発明にかかる硬化性シリコーン組成物シートまたはフィルムを備えた積層体を得ることができる。当該積層体は、必要に応じて、その他の基材と密着した状態で成分(D)を構成する熱可塑性樹脂のガラス転移点(Tg)以上に加熱することにより、基材上の微細な凹凸や間隙に本発明にかかる硬化性シリコーン組成物が充填された後に硬化反応が進行し、当該組成物の硬化生成物を備えた積層体が形成される。
さらに、前記の手段により本発明にかかる硬化性シリコーン組成物シートまたはフィルムの少なくとも一方の面を基材の一部または全部と密着させる積層工程を、成分(D)を構成する熱可塑性樹脂のガラス転移点(Tg)以上に加熱する工程と同時または並行して行ってもよい。さらに、本発明にかかる硬化性シリコーン組成物からなる硬化生成物を二以上の基材の接着層乃至応力緩和層に用いる場合には、当該工程を、その他の基材と密着した状態で行ってもよい。
[硬化物の光遮蔽性]
前記の成分(E)の選択により、本発明の硬化生成物は光遮蔽性または光反射性を有するように設計可能であり、これらに準ずる光学用途に好適に使用することができる。本発明の硬化物は、JIS K 7105に準じて測定された光路長1mm、360nmの波長での平行光透過率が50%以下であり、より好ましくは30%以下である。
 [硬化物の硬度]
 本発明の硬化性ホットメルトシリコーン組成物を硬化させて得られる硬化物の好適な硬さはその用途により二つに分類され、本発明の硬化性ホットメルトシリコーン組成物シートの両面で被着体と接着させる場合は、JIS K 7215-1986「プラスチックのデュロメータ硬さ試験方法」に規定のタイプAデュロメータ硬さが40以上であることが好ましい。これは硬度が上記下限以下であると、硬化物が柔らかすぎてもろくなる傾向にあるからである。一方で、その用途が基板の封止である場合、タイプAデュロメータ硬さが60以上であることが好ましい。これは、硬度が上記下限以下であると、硬化物の表面がべたつきを帯びてハンドリング性が低下するためである。
 [硬化物の用途]
 本発明の硬化性シリコーン組成物を硬化させて得られる硬化物の用途は特に制限されない。本発明の組成物は、ホットメルト性を有し、一定の温度をトリガーとして優れた硬化性を示し、成形性、機械的物性に優れ、かつ、硬化物は表面タックが少なく、比較的硬いものである。このため、本組成物を硬化してなる硬化物は、半導体装置用部材として好適に利用することができ、半導体素子やICチップ等の封止材、導体装置の接着剤・結合部材として好適に用いることができる。
 本発明の硬化性シリコーン組成物を硬化して得られる硬化物からな部材を備えた半導体装置は特に制限されるものではないが、特に、本発明の組成物は光遮蔽性または光反射性を有する硬化物を形成するため光を遮るまたは反射させる必要がある用途に好適に使用できる。例えば、発光/光学デバイスである発光半導体装置、ディスプレイ用光学部材、又は内部が見えない方が好ましい半導体装置、特に、これらの装置等に用いる封止材または接着部材であることが好ましい。
 本発明の硬化性シリコーン組成物およびその製造方法を実施例と比較例により、以下において詳細に説明する。なお、以下の記載において 平均単位式中のMe、Vi、Phは、それぞれメチル基、ビニル基、フェニル基を表す。また、各実施例、比較例の硬化性シリコーン組成物について、その軟化点、硬化性、及び保存安定性を以下の方法で測定した。結果を表1に示した。
[軟化点]
 硬化性シリコーン組成物をφ14mm×22mmの円柱状のペレットに成型した。このペレットを25℃~100℃に設定したホットプレート上に置き、100グラム重の荷重で上から10秒間押し続け、荷重を取り除いた後、該ペレットの変形量を測定した。高さ方向の変形量が1mm以上となった温度を軟化点とした。
[150℃での溶融粘度]
硬化性シリコーン組成物の150℃での溶融粘度は高化式フローテスターCFT-500EX(株式会社島津製作所製)により、2.5MPaの加圧下、出口ノズル直径1.0mmのノズルを用いて測定した。
[硬化特性]
 硬化性シリコーン組成物を、JIS K 6300-2:2001「未加硫ゴム-物理特性-第2部:振動式加硫試験機による加硫特性の求め方」で規定される方法に従い、キュラストメーター(登録商標)(アルファテクノロジーズ社製のPREMIERMDR)を用いて、所定の温度において600秒間加硫して硬化特性を測定した。実施例1~4及び比較例2~8は160℃にて測定を行い、実施例5,6及び比較例1は120℃にて測定を行った。また、比較例2~4に関しては波長365nmの紫外線を照射量が10J/cmのなるように照射してから測定を行った。なお、測定は、硬化性ホットメルトシリコーン組成物の塊を約5g計量し、厚みが50μmのPETフィルムで挟んだ後、下側ダイスに載せ、上側ダイスが閉まった時点を測定開始とした。なお、ゴム用R型ダイスを用い、振幅角度は0.53°、振動数は100回/分、トルクレンジを最大の230kgf・cmにして測定した。測定結果としてトルク値1dNmを超えるまでに必要とする時間(TS-1)を分の単位で読み取った。また、最大トルクの90%に達するまでの時間(TC-90)を分の単位で読み取り初期硬化がほぼ終了するまでの時間の目安とした。
[保存安定性]
 硬化性シリコーン組成物を40℃のオーブンにて1週間エージングし、前記の方法にて、硬化特性を測定し、TS-1の値を読み取った。
 [硬化物の表面タック]
 硬化性シリコーン組成物を所定の温度において10分間加硫して硬化物を作成した。実施例1~4及び比較例2~8は160℃にて、実施例5,6及び比較例1は120℃にて硬化した。また、比較例2~4に関しては波長365nmの紫外線を照射量が10J/cmのなるように照射してから硬化させた。得られた硬化物にPETフィルムを押し当てて張り付きが全くなかったものを「表面タックなし」、張り付きがあったものを「表面タックあり」と評価した。
 [硬化物の反射率]
 硬化性シリコーン組成物を所定の温度において10分間加硫して300μm厚の硬化物を作成した。実施例1~4及び比較例2~8は160℃にて、実施例5,6及び比較例1は120℃にて硬化した。また、比較例2~4に関しては波長365nmの紫外線を照射量が10J/cmのなるように照射してから硬化させた。この硬化物の反射率を、UV-VIS分光光度計UV3100PC(島津製作所製)を用いて測定し、波長450nmにおける反射率を読み取った。
 [硬化物の透過率]
 硬化性シリコーン組成物を所定の温度において10分間加硫して300μm厚の硬化物を作成した。実施例1~4及び比較例2~8は160℃にて、実施例5,6及び比較例1は120℃にて硬化した。また、比較例2~4に関しては波長365nmの紫外線を照射量が10J/cmのなるように照射してから硬化させた。この硬化物の透過率を、UV-VIS分光光度計UV3100PC(島津製作所製)を用いて測定し、波長450nmにおける透過率を読み取った。
 以下、参考例1~3に示す方法で、オルガノポリシロキサン樹脂と直鎖状のオルガノポリシロキサンとのホットメルト性を有する混合物を調製した。また参考例4及び5に示す方法でオルガノポリシロキサン樹脂微粒子を調整した。なお、どちらの調整方法においても低分子量のオルガノポリシロキサン成分を除去する工程が入っており、得られる原料からはMQ構造体が可能な限り除去されている。
 [参考例1:ホットメルト性の混合物1]
 25℃において白色固体状で、平均単位式:
 (MeViSiO1/2)0.05(MeSiO1/2)0.39(SiO4/2)0.56(HO1/2)0.02
で表されるオルガノポリシロキサン樹脂(ビニル基の含有量=1.9質量%) 2.40kg、
 25℃において白色固体状で、平均単位式:
 (MeSiO1/2)0.44(SiO4/2)0.56(HO1/2)0.02
で表されるオルガノポリシロキサン樹脂(ビニル基の含有量=0質量%) 4.46kg、式:
 ViMeSiO(MeSiO)800SiViMe
で表される、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.09質量%) 2.69kg、
をペール缶内でスリーワンモーターを用いて4.00kgのキシレンに溶解した。得られた溶液を、最高到達温度を230℃に設定した二軸押出機にフィードし、真空度-0.08MPaの条件でキシレン及び低分子量のオルガノポリシロキサン成分の除去を行ったところ、ホットメルト性の混合物1が得られた。混合物1をずん胴ペール缶に受けてそのまま冷却し固体化させた。この混合物の揮発成分量を200℃×1時間の条件で測定したところ0.7質量%であった。
 [参考例2:ホットメルト性の混合物2]
 25℃において白色固体状で、平均単位式:
 (MeViSiO1/2)0.05(MeSiO1/2)0.39(SiO4/2)0.56(HO1/2)0.02
で表されるオルガノポリシロキサン樹脂(ビニル基の含有量=1.9質量%) 3.09kg、
 25℃において白色固体状で、平均単位式:
 (MeSiO1/2)0.44(SiO4/2)0.56(HO1/2)0.02
で表されるオルガノポリシロキサン樹脂(ビニル基の含有量=0質量%) 3.77kg、及び、式:
 ViMeSiO(MeSiO)800SiViMe
で表される、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.09質量%) 2.69kg、
をペール缶内でスリーワンモーターを用いて4.00kgのキシレンに溶解した。得られた溶液を、最高到達温度を230℃に設定した二軸押出機にフィードし、真空度-0.08MPaの条件でキシレン及び低分子量のオルガノポリシロキサン成分の除去を行ったところ、ホットメルト性の透明な混合物2が得られた。混合物2をずん胴ペール缶に受けそのまま冷却し固体化させた。この混合物の揮発成分量を200℃×1時間の条件で測定したところ0.7質量%であった。
 [参考例3:ホットメルト性の混合物3]
 25℃において白色固体状で、平均単位式:
 (MeViSiO1/2)0.05(MeSiO1/2)0.39(SiO4/2)0.56(HO1/2)0.02
で表されるオルガノポリシロキサン樹脂(ビニル基の含有量=1.9質量%) 3.76kg、
 25℃において白色固体状で、平均単位式:
 (MeSiO1/2)0.44(SiO4/2)0.56(HO1/2)0.02
で表されるオルガノポリシロキサン樹脂(ビニル基の含有量=0質量%) 3.08kg、式:
 ViMeSiO(MeSiO)800SiViMe
で表される、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.09質量%) 2.56kg、
をペール缶内でスリーワンモーターを用いて4.00kgのキシレンに溶解した。得られた溶液を、最高到達温度を230℃に設定した二軸押出機にフィードし、真空度-0.08MPaの条件でキシレン及び低分子量のオルガノポリシロキサン成分の除去を行ったところ、ホットメルト性の透明な混合物3が得られた。混合物3をずん胴ペール缶に受けそのまま冷却し固体化させた。この混合物の揮発成分量を200℃×1時間の条件で測定したところ0.7質量%であった。
[参考例4:シリコーン微粒子(1´)]
平均単位式:
(MeViSiO1/2)0.05(MeSiO1/2)0.39(SiO4/2)0.56(HO1/2)0.02
で表される樹脂状オルガノポリシロキサンの55質量%-キシレン溶液を50℃のスプレードライによりキシレンを除去しながら微粒子化して、真球状の非ホットメルト性シリコーン微粒子(1)を調製した。この微粒子を光学顕微鏡で観測したところ、粒子径が5~10μmであり、平均粒子径は6.5μmであった。
 得られたシリコーン微粒子(1)を120℃のオーブンにて1週間エージングすることで、MQ成分を除去した真球状の非ホットメルト性シリコーン微粒子(1´)を得た。当該微粒子の揮発成分量を200℃×1時間の条件で測定したところ0.6wt%であった。
[参考例5:シリコーン微粒子(2´)]
 平均単位式:
(MeSiO1/2)0.44(SiO4/2)0.56(HO1/2)0.02
で表される樹脂状オルガノポリシロキサンの55質量%-キシレン溶液を50℃のスプレードライによりキシレンを除去しながら微粒子化して、真球状の非ホットメルト性シリコーン微粒子(2)を調製した。この微粒子を光学顕微鏡で観測したところ、粒子径が5~10μmであり、平均粒子径は6.5μmであった。
 得られたシリコーン微粒子(2)を120℃のオーブンにて1週間エージングすることで、MQ成分を除去した真球状の非ホットメルト性シリコーン微粒子(2´)を得た。当該微粒子の揮発成分量を200℃×1時間の条件で測定したところ0.7wt%であった。
[実施例1~6,比較例1~7]
本願実施例および比較例においては、(A)成分および(B)成分を含む混合物(a+b)成分として上記の参考例の各成分を用いるほか、以下の成分を用いた。
(b)分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン
ViMeSiO(MeSiO)800SiViMe(ビニル基の含有量=0.09質量%)
(C)SiHシロキサン
(c-1)(PhSiO3/2)0.4(HMeSiO1/2)0.6(SiH基の含有量=0.6質量%)
(c-2)(HMeSiO1/2)0.52(MeSiO2/20.15(SiO4/2)0.33 (SiH基の含有量=0.79質量%)
(D)ヒドロシリル化反応触媒含有微粒子
(d-1)Pt(0価)の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体を白金の含有量として4000ppm含む熱可塑性ポリカーボネート樹脂微粒子(熱可塑性樹脂のTg=145℃)
(d-2)Pt(0価)の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体を白金の含有量として4000ppm含む熱可塑性アクリル樹脂微粒子(熱可塑性樹脂のTg=115℃)

(d’)Pt(0価)の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体を白金の含有量として400ppm含有する平均単位式:
[(CH3)2SiO2/2]0.22(C6H5SiO3/2)0.78
で表される熱可塑性シリコーンレジンの微粒子(Tg=100℃)
(d’’)(メチルシクロペンタジエニル)トリメチル白金(IV)
(d’’’)Pt(0価)の1,3-ジビニルテトラメチルジシロキサン錯体の1,3-ジビニルテトラメチルジシロキサン溶液
(E)充填材または顔料
(e1)平均粒子径0.5μmの酸化チタン(堺化学工業製のSX-3103)
(e2)平均粒子径35nmのカーボンブラック(デンカ社製のデンカブラックプレス品)
(e3)平均粒子径0.44μmのアルミナ(住友化学製のAES-12)
(e4)平均粒子径3.0μmのアルミナ(住友化学製のAL-M73A)
(e5)平均粒子径37.4μmのアルミナ(新日鉄住金マテリアルズ(株)マイクロンカンパニー製のAZ35-125)
(F)硬化遅延剤
(f)メチルトリス-1,1-ジメチル-2-プロピニロキシシラン
実施例1~7,比較例1~5について、以下に示す手順で、白色又は黒色の硬化性ホットメルト性シリコーン組成物を調製した。一方、比較例6と7は以下の手順で全ての成分を小型粉砕機に一括投入することにより、均一な粒状の硬化性シリコーン組成物を調製した。各組成物の構成、部数および組成物全体のSiH/Vi比を表1、表2中に示す。さらに、各組成物の軟化粘度、溶融粘度、TS-1(初期及び40℃にて1週間エージング後)、TC90、硬化物の物性値(表面タック、反射率および透過率)の値を表3中に示す。
<実施例1~7及び比較例1~5>
 参考例1~3で得られたホットメルト性の混合物1~3を、ずん胴ペール缶用のホットメルター(ノードソン社製のVersaPailメルター)により170℃にて二軸押出機に図1に示すライン1からフィードした。
 次に、(E)成分をライン3-aから、(C)成分と(F)成分をライン3-bから、150℃の設定温度で投入した。次いで、(B)成分で薄めた(D)成分をライン3-cから設定温度80℃で投入した。押出機内の真空度は-0.08MPaで、脱気溶融混練を行った。
 二軸押出機の出口温度は80℃とし、混合物は半固体状の軟化物の形態であり、幅330mm、125μm厚の剥離フィルム(株式会社タカラインコーポレーション社製、FL2-01)を1.0m/分の速度で搬送しながら、供給量5kg/hrとなるように、剥離フィルム上に混合物を供給し、混合物を2枚の剥離フィルム間に剥離フィルムの剥離面が混合物と接するように介装して積層体とした。続いて、当該積層体を、90℃に温度制御されたロール間で加圧して前記の混合物を剥離フィルムの間で延伸することで、厚さ300μmの硬化性ホットメルトシリコーン組成物シートが2枚の剥離フィルム間に介装された積層体を形成させ、続いて空冷により積層体全体を冷却した。当該製造装置の構成を、図1に示す。
<比較例6,7>
参考例4及び5で得られた真球状の非ホットメルト性シリコーン微粒子(1‘)又は(2‘)、(B)成分、(C)成分、(D)成分、(E)成分、(F)成分を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な白色の硬化性粒状シリコーン組成物を調製した。次に、得られた粒状のシリコーン組成物を90℃に設定したブラベンダーに投入し50rpmで3分間溶融混練を行い、均一に混合された組成物を得た。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

*実施例1~6及び比較例1~6において少量の(B)成分は(D)成分を希釈するために使用した。
Figure JPOXMLDOC01-appb-T000003

[総括]
 本発明にかかる実施例1~7の硬化性シリコーン組成物は、白色または有色の充填材を使用しても、保存安定性/貯蔵安定性を損なうことなく、加熱溶融時に低粘度かつ高い流動性を示し、かつ、成分(D)を構成する熱可塑性樹脂のガラス転移点以上の高温下では速やかに硬化することが可能であった。さらに得られるシリコーン硬化物は表面にタック性が極めて少ないため、半導体素子等を保護する用途に好適に使用できることが期待される。
一方で、比較例1では使用するカプセル型触媒の軟化点が十分に高くないため、均一な混合物を得るために行う溶融混練中に触媒の活性化が発生し、得られた組成物は十分な貯蔵安定性を示さなかった。また、比較例2~4に関しては紫外線をトリガーとする触媒を使用しているが、本発明の組成物の様に紫外線領域の光を吸収又は反射する無機充填剤を含んでいる場合、触媒を活性化できず十分な硬化性を発現できないことが分かった。一方で、通常の触媒を使用した比較例5や6では十分な貯蔵安定性を確保するためには過剰な硬化遅延剤が必要であり、比較例5のように大量に硬化遅延剤を用いると硬化性を阻害し、比較例6においては硬化自体は可能であるが、初期のts-1が150℃で2分を超える、比較的硬化速度が遅い組成であるにもかかわらず、40℃で1週間保管するだけでts-1が実施例に比べて急減しており、得られた組成物のポットライフを確保するのが難しいことが判明した。さらには比較例7や8の様に無機充填材の添加量が多すぎると組成物の溶融粘度が高くなりすぎるため、特に細かい間隙や凹凸に対する充填性が不十分となることが懸念されると同時に生産時に摩耗が起こりやすくターゲットの色味が出せない懸念があることが分かった。
1:ホットメルター
2:押出機
3-a:粉体フィーダー
3-b:ポンプ
3-c:ポンプ
3-d:真空ポンプ
4-a:剥離シート
4-b:剥離シート
5-a:延伸ロール(任意で温度調節機能をさらに備えてもよい)
5-b:延伸ロール(任意で温度調節機能をさらに備えてもよい)
6:冷却ロール
7:膜厚計
8:シートカッター
9:異物検査機

Claims (15)

  1.  (A)200℃下で1時間暴露した時の質量減少率が2.0質量%以下である、下記の(A1)成分および(A2)成分を20:80~90:10の質量比で含むオルガノポリシロキサン樹脂 100質量部
     (A1)分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の20モル%以上含有する、それ単独ではホットメルト性を有しない25℃において固体のオルガノポリシロキサン樹脂、
     (A2)分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有さず、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の20モル%以上含有する、それ単独ではホットメルト性を有しない25℃において固体のオルガノポリシロキサン樹脂、
    (B)炭素-炭素二重結合を含む硬化反応性の官能基を、分子内に少なくとも2個有し、25℃において液状の又は可塑性を有する直鎖状または分岐鎖状のオルガノポリシロキサン 10~100質量部、
    (C)分子内に少なくとも2個のケイ素結合水素原子を有するオルガノハイドロジェンポリシロキサン:組成物全体に含まれるケイ素原子に結合したアルケニル基1個当りのケイ素原子に結合した水素原子の数が0.5~20.0個となる量、
    (D)ガラス転移点(Tg)が110~200℃の範囲にある熱可塑性樹脂中にヒドロシリル化反応触媒が包含された構造を有する、ヒドロシリル化反応触媒含有微粒子:微粒子中の白金金属が質量単位で0.1~2,000ppmとなる量、
    (E)充填材または顔料
    を含有してなり、成分(E)の量が成分(A)~(D)の和100質量部に対して0.01~100質量部の範囲、かつ組成物全体としてホットメルト性を有することを特徴とする硬化性シリコーン組成物。
  2. さらに、(F)大気圧下で沸点が200℃以上のヒドロシリル化反応用硬化遅延剤:組成物の総質量に基づいて1~5000ppmとなる量 
    を含有する、請求項1に記載の硬化性シリコーン組成物。
  3. 成分(E)の少なくとも一部が白色または有色の無機充填材である、請求項1または請求項2に記載の硬化性シリコーン組成物。
  4.  前記成分(A1)が、(A1-1)下記平均単位式:
    (R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2)e
     (式中、各Rは独立して1~10個の炭素原子を有する一価炭化水素基であり、但し1分子中の全てのRのうち1~12モル%がアルケニル基であり;各Rは水素原子又は1~10個の炭素原子を有するアルキル基であり;a、b、c、d及びeは、以下を満たす数である:0.10≦a≦0.60、0≦b≦0.70、0≦c≦0.80、0≦d≦0.65、0≦e≦0.05、但し、c+d>0.20、かつa+b+c+d=1)
    で表される、それ単独ではホットメルト性を有しないオルガノポリシロキサン樹脂であり、
     前記成分(A2)が、(A2-1)下記平均単位式:
    (R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2)j
     (式中、各Rは独立して1~10個の炭素原子を有し、炭素-炭素二重結合を含まない一価炭化水素基;Rは水素原子又は1~10個の炭素原子を有するアルキル基であり;f、g、h、i及びjは、以下を満たす数である:0.35≦f≦0.55、0≦g≦0.20、0≦h≦0.20、0.45≦i≦0.65、0≦j≦0.05、かつf+g+h+i=1)
    で表される、それ単独ではホットメルト性を有しないオルガノポリシロキサン樹脂であり、
     前記成分(B)が、(B1)下記構造式:
     R SiO(SiR O)SiR
     (式中、各Rは独立して1~10個の炭素原子を有する一価炭化水素基であり、但し1分子中のRの少なくとも2個はアルケニル基であり、kは20~5,000の数である)
    で表される直鎖状ジオルガノポリシロキサンである、
    請求項1~3のいずれか一項に記載の硬化性シリコーン組成物。
  5. 請求項1~4のいずれか一項に記載の硬化性シリコーン組成物が、厚さが10~2000μmとなるようにシート状又はフィルム状に成形された、硬化性シリコーン組成物シートまたはフィルム。
  6. 請求項5に記載の硬化性シリコーン組成物シートまたはフィルムからなる、シート又はフィルム状接着剤。
  7. 請求項5に記載の硬化性シリコーン組成物シートまたはフィルムと、
    当該シート又はフィルムの片面または両面に貼付され、当該硬化性シリコーン組成物からなるシート又はフィルムに対向する剥離面を備えたシート又はフィルム状基材とを有し、硬化性シリコーン組成物シートまたはフィルムが、剥離面を備えたシート又はフィルム状基材から剥離可能である、剥離性積層体。
  8. 電子部品またはその前駆体である基材と、前記基材の表面の一部又は全部に請求項5に記載の硬化性シリコーン組成物シートまたはフィルムの少なくとも一方の面が密着して形成された硬化性シリコーン組成物層とを有し、かつ前記硬化性シリコーン組成物が未硬化の状態にある積層体。
  9. 請求項1~4のいずれか一項に記載の硬化性シリコーン組成物を、その(D)成分を構成する熱可塑性樹脂のガラス転移点(Tg)以上に加熱することで硬化させてなる、硬化生成物。
  10. 請求項9に記載の硬化生成物の、半導体装置用部材または光半導体装置用部材としての使用。
  11. 請求項9に記載の硬化生成物を備えた、半導体装置または光半導体装置。
  12. 組成物全体を、50℃~その成分(D)を構成する熱可塑性樹脂のガラス転移点(Tg)までの温度範囲内で溶融混錬し、厚さが10~2000μmとなるようにシート状又はフィルム状に成形する工程を含む、請求項5に記載の硬化性シリコーン組成物シートまたはフィルムの製造方法。
  13. 真空ラミネーター、真空プレス、およびコンプレッション成形から選ばれる一以上の手段により、請求項5に記載の硬化性シリコーン組成物シートまたはフィルムの少なくとも一方の面を電子部品またはその前駆体である基材の一部または全部と密着させることを特徴とする、請求項8に記載の積層体の製造方法。
  14. 請求項8に記載の積層体を成分(D)を構成する熱可塑性樹脂のガラス転移点(Tg)以上に加熱することにより、未硬化の硬化性シリコーン組成物を硬化させる工程を含む、請求項9に記載の硬化生成物を含む積層体の製造方法。
  15. 真空ラミネーター、真空プレス、およびコンプレッション成形から選ばれる一以上の手段により、請求項5に記載の硬化性シリコーン組成物シートまたはフィルムの少なくとも一方の面を電子部品またはその前駆体である基材の一部または全部と密着させ、かつ、成分(D)を構成する熱可塑性樹脂のガラス転移点(Tg)以上に加熱して、当該硬化性シリコーン組成物シートまたはフィルムを硬化させながら積層体を形成する工程を含む、請求項9に記載の硬化生成物を含む積層体の製造方法。
PCT/JP2022/046146 2021-12-21 2022-12-15 ホットメルト性を有する硬化性シリコーン組成物、その硬化生成物、及び前記組成物を含む積層体 WO2023120347A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021207389 2021-12-21
JP2021-207389 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120347A1 true WO2023120347A1 (ja) 2023-06-29

Family

ID=86902553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046146 WO2023120347A1 (ja) 2021-12-21 2022-12-15 ホットメルト性を有する硬化性シリコーン組成物、その硬化生成物、及び前記組成物を含む積層体

Country Status (2)

Country Link
TW (1) TW202330794A (ja)
WO (1) WO2023120347A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138055A1 (ja) * 2018-12-25 2020-07-02 ダウ・東レ株式会社 硬化反応性シリコーン粘着剤組成物及びその硬化物並びにそれらの用途
WO2020203304A1 (ja) * 2019-03-29 2020-10-08 ダウ・東レ株式会社 硬化性シリコーン組成物、その硬化物、およびその製造方法
JP2021107149A (ja) * 2019-12-27 2021-07-29 ダウ・東レ株式会社 積層体及びそれからなる電子部品
JP2021108319A (ja) * 2019-12-27 2021-07-29 ダウ・東レ株式会社 電子装置用基板の封止方法及び封止された電子装置用基板
WO2022004463A1 (ja) * 2020-06-30 2022-01-06 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物およびその使用
WO2022138336A1 (ja) * 2020-12-25 2022-06-30 ダウ・東レ株式会社 硬化性シリコーン組成物、その硬化物および積層体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138055A1 (ja) * 2018-12-25 2020-07-02 ダウ・東レ株式会社 硬化反応性シリコーン粘着剤組成物及びその硬化物並びにそれらの用途
WO2020203304A1 (ja) * 2019-03-29 2020-10-08 ダウ・東レ株式会社 硬化性シリコーン組成物、その硬化物、およびその製造方法
JP2021107149A (ja) * 2019-12-27 2021-07-29 ダウ・東レ株式会社 積層体及びそれからなる電子部品
JP2021108319A (ja) * 2019-12-27 2021-07-29 ダウ・東レ株式会社 電子装置用基板の封止方法及び封止された電子装置用基板
WO2022004463A1 (ja) * 2020-06-30 2022-01-06 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物およびその使用
WO2022138336A1 (ja) * 2020-12-25 2022-06-30 ダウ・東レ株式会社 硬化性シリコーン組成物、その硬化物および積層体

Also Published As

Publication number Publication date
TW202330794A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN113330071B (zh) 固化性有机硅组合物、其固化物及其制造方法
WO2020203304A1 (ja) 硬化性シリコーン組成物、その硬化物、およびその製造方法
WO2021132710A1 (ja) 硬化性ホットメルトシリコーン組成物、その硬化物、及び前記組成物又は硬化物を含む積層体
WO2020203307A1 (ja) 硬化性シリコーン組成物、その硬化物、およびその製造方法
WO2020138410A1 (ja) 硬化性シリコーン組成物、その硬化物、およびその製造方法
JP7450388B2 (ja) 電子装置用基板の封止方法及び封止された電子装置用基板
WO2022138336A1 (ja) 硬化性シリコーン組成物、その硬化物および積層体
WO2020138408A1 (ja) ホットメルト性を有する硬化性シリコーンシートの製造方法
WO2020203305A1 (ja) 硬化性シリコーン組成物、その硬化物、およびその製造方法
WO2020203306A1 (ja) 硬化性シリコーン組成物、その硬化物、およびその製造方法
WO2021200643A1 (ja) 硬化性ホットメルトシリコーン組成物、その硬化物、及び前記組成物又は硬化物を含む積層体
WO2023120347A1 (ja) ホットメルト性を有する硬化性シリコーン組成物、その硬化生成物、及び前記組成物を含む積層体
JP2021107149A (ja) 積層体及びそれからなる電子部品
WO2024090403A1 (ja) 半導体製造用導電性ピラーモジュール前駆体、半導体製造用導電性ピラーモジュール、半導体または半導体前駆体、並びにその製造方法
JPWO2020138411A1 (ja) トランスファー成型用硬化性シリコーン組成物、その硬化物、およびその製造方法
TWI833869B (zh) 固化性聚矽氧組成物、其固化物及其製造方法
WO2022138335A1 (ja) 積層体の製造方法
WO2023032735A1 (ja) 硬化性シリコーン組成物、その硬化物、およびその製造方法
TW202239869A (zh) 硬化性熱熔聚矽氧組成物、其硬化物、及含有該組成物或硬化物之積層體
WO2023032734A1 (ja) 硬化性シリコーン組成物、その硬化物、およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569358

Country of ref document: JP

Kind code of ref document: A