WO2023120131A1 - 水硬性組成物、セメント系硬化体の製造方法及びセメント系硬化体膨張抑制剤 - Google Patents

水硬性組成物、セメント系硬化体の製造方法及びセメント系硬化体膨張抑制剤 Download PDF

Info

Publication number
WO2023120131A1
WO2023120131A1 PCT/JP2022/044713 JP2022044713W WO2023120131A1 WO 2023120131 A1 WO2023120131 A1 WO 2023120131A1 JP 2022044713 W JP2022044713 W JP 2022044713W WO 2023120131 A1 WO2023120131 A1 WO 2023120131A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
hardened body
alkali
calcium chloride
calcium
Prior art date
Application number
PCT/JP2022/044713
Other languages
English (en)
French (fr)
Inventor
龍男 新見
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2023569257A priority Critical patent/JPWO2023120131A1/ja
Publication of WO2023120131A1 publication Critical patent/WO2023120131A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates to a novel hydraulic composition capable of suppressing deterioration due to expansion of hardened cementitious materials due to alkali-silica reaction.
  • Concrete is composed of cement hydrate, aggregate, and voids, and the voids contain an aqueous solution of alkali hydroxide (sodium hydroxide and potassium hydroxide).
  • alkali hydroxide sodium hydroxide and potassium hydroxide.
  • This alkalinity is a necessary property such as suppressing the corrosion of reinforcing bars in reinforced concrete, but it is known that too high an alkalinity causes an alkali-silica reaction.
  • Reactive minerals are typically amorphous silica or microcrystalline silica.
  • This alkali silicate exhibits swelling behavior when water is supplied. This reaction behavior is called an alkali-silica reaction (hereinafter sometimes abbreviated as ASR).
  • Patent Document 2 a method of reducing alkalinity in concrete and suppressing ASR by adding calcium propionate during cement kneading has been disclosed (see Patent Document 2).
  • the present inventor focused on a material that has a small effect on the hydration reaction of cement, contains a large amount of Ca, which is the main component of cement, and has high solubility.
  • the present inventors have found that calcium or calcium formate converts alkali silicate, which is a reaction product of ASR, into a non-expansive property and suppresses the expansion behavior of ASR, thereby completing the present invention.
  • the initial strength compressive strength at 1 day of age
  • the first invention is a hydraulic composition containing cement, aggregate, and calcium chloride or calcium formate as a hardened body expansion inhibitor.
  • the molar ratio of calcium chloride to the total amount of alkali in the hydraulic composition is preferably 0.15 or more.
  • the molar ratio of calcium formate to the total amount of alkali in the hydraulic composition is preferably 0.40 or more.
  • the second aspect of the present invention is a method for producing a cementitious hardened body for hardening a kneaded material containing cement, aggregate and water, characterized in that calcium chloride or calcium formate is allowed to coexist in the kneaded material.
  • This is a method for producing a hardened cementitious body in which expansion is suppressed.
  • the molar ratio of calcium chloride to the total amount of alkali in the kneaded product is preferably 0.15 or more.
  • the molar ratio of calcium formate to the total amount of alkali in the kneaded product is preferably 0.40 or more.
  • the third aspect of the present invention is a cement-based hardening body expansion inhibitor containing calcium chloride or calcium formate.
  • a cement-based hardened body when a cement-based hardened body is produced using cement mixed with a cement-based hardened body expansion inhibitor containing calcium chloride or calcium formate, expansion due to ASR is higher than that of a cement-based hardened body not mixed with a hardened body expansion inhibitor. can be suppressed.
  • the initial strength when a cement-based hardened body is produced using cement mixed with a cement-based hardened body expansion inhibitor containing calcium formate, the initial strength can also be improved.
  • known cement can be used without any particular limitation, and specific examples include general-purpose cement such as ordinary Portland cement, moderate heat Portland cement, and low heat Portland cement.
  • Mixed cement containing mixed materials such as ground granulated blast furnace slag and fly ash can also be used in the same manner.
  • Aggregate in the present invention refers to both fine aggregate and coarse aggregate.
  • the effects of the present invention are remarkably exhibited when the above-described "non-harmful" aggregates are used as the aggregates.
  • Calcium chloride as a hardening expansion inhibitor used in the hydraulic composition of the present invention is generally represented by a chemical formula of CaCl2 .
  • Calcium formate, which is used as a hardening expansion inhibitor for the hydraulic composition of the present invention is generally represented by a chemical formula of Ca(HCOOH) 2 .
  • one or both of calcium chloride and calcium formate may be used as the hardened body expansion inhibitor.
  • Calcium chloride and calcium formate can be used without limitation in powder form or liquid form.
  • the molar ratio (calcium chloride/total alkali amount) to the total alkali amount in the cement-based hardened body calculated from the total alkali amount in the material used is preferably 0.15 or more. , more preferably 0.17 or more, and still more preferably 0.30 or more.
  • the molar ratio (calcium formate/total alkali amount) to the total alkali amount in the cement-based hardened body calculated from the total alkali amount in the material used is preferably 0.40 or more. , more preferably 0.45 or more, and still more preferably 0.50 or more.
  • the total alkali content is calculated by the following formula as an equivalent Na 2 O content using the Na 2 O content and the K 2 O content in the hardened cementitious body .
  • Total alkali content Na 2 O content + 0.658 x K 2 O content
  • the upper limit of the amount of calcium chloride used is determined, for example, by the chloride ion concentration in the hardened cementitious material calculated from the amount of chloride in the material used.
  • the upper limit of the amount of addition is the chloride ion concentration at which the chloride ion concentration becomes the steel corrosion-initiating limit chloride ion concentration.
  • the limit chloride ion concentration for steel corrosion occurrence is calculated by the following formula according to the 2018 Japan Society of Civil Engineers Standard Specifications [Maintenance and Management Edition].
  • the limit chloride ion concentration for steel generation is 1.2 kg / m 3 described in the 2007 Wood Society Standard Specifications [Maintenance and Management Edition]. It is desirable to
  • the upper limit due to the chloride ion concentration limit for steel corrosion occurrence does not apply because reinforcing steel corrosion does not occur. It is desirable that the molar ratio to the amount of alkali be 2.00 or less.
  • known water for preparing mortar and concrete can be used without particular limitation. Specifically, they are industrial water, tap water, and the like.
  • the water-cement ratio is not particularly limited as long as it is within the range used for general mortar and concrete.
  • the method for producing a cementitious hardened body by kneading (mixing) and hardening aggregates, cement, water, calcium chloride or calcium formate, and other materials to be blended as necessary is carried out in ready-mixed concrete factories and secondary concrete factories.
  • Conventional manufacturing methods in the production plant can be used without limitation.
  • calcium chloride or calcium formate may be added to the kneading system independently (alone) from other components, or may be mixed in advance with cement as a mixture and subjected to kneading. good too. Furthermore, calcium chloride or calcium formate may be kneaded together with other components at once, or may be added later to the kneaded product obtained by kneading the other components and further kneaded.
  • a mixer for kneading mortar or concrete can generally be used without limitation as the mixer used when kneading the hardened cementitious material.
  • Specific examples include pan mixers, forced twin-screw mixers, tilting mixers, mortar mixers, and hand mixers.
  • conventional curing methods in ready-mixed concrete factories and concrete secondary product factories can be used without limit as the curing method for the cement-based hardened body during and after curing.
  • Specific examples include wet curing, underwater curing, steam curing, autoclave curing, and air curing.
  • the hardened cementitious material in the present invention is obtained by mixing and hardening the above-mentioned aggregate, cement, water, calcium chloride or calcium formate, and other materials blended as necessary.
  • Mortar is a mixture of a binder such as cement, water, fine aggregate, and an admixture.
  • Concrete is a mixture of a binder such as cement, water, fine aggregate, coarse aggregate, and an admixture.
  • each method for storing concrete specimens and measuring length change in Examples and Comparative Examples is basically JIS A 1146-2007 (Aggregate alkali silica reactivity test method (mortar bar method)) conducted in accordance with
  • Comparative Example 1A shows the expansion rate when calcium chloride is not mixed as an expansion inhibitor for the hardened body, and it can be seen that the expansion is due to the influence of the reactive aggregate.
  • Comparative Example 2A shows the expansion rate when the amount of calcium chloride added is less than 0.15 in terms of molar ratio with respect to the total amount of alkali in the hardened cementitious material. I know not.
  • Examples 1A, 2A, and 3A show the expansion rates when calcium chloride is added such that the molar ratios of calcium chloride to the total alkali amount in the hardened cementitious body are 0.19, 0.38, and 0.74, respectively. , and it can be seen that the expansion is suppressed in both cases.
  • Compressive strength for one day of material age was measured as one-day strength.
  • Compressive strength was measured according to JIS R 5201 (physical test method for cement). Concrete used for the test was blended at the following mass ratio. This is a mass ratio of 1 for cement, 0.5 for water, and 3 for standard sand.
  • Comparative Example 1B shows the expansion rate when calcium formate was not mixed as an expansion inhibitor for the hardened body, and it can be seen that the expansion is due to the influence of the reactive aggregate.
  • Comparative Examples 2B, 3B, and 4B show the expansion rates when the amount of calcium formate added is less than 0.40 in terms of the molar ratio to the total amount of alkali in the cement-based hardened body, and expansion is suppressed because the molar ratio is small. I know it's not done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

セメント系硬化体におけるアルカリシリカ反応の反応生成物であるアルカリケイ酸塩を非膨張性に変質させ、アルカリシリカ反応による膨張挙動を抑制させることが可能な水硬性組成物及びその硬化体を提供することを目的とするものであり、かかる水硬性組成物及び硬化体は、セメント、骨材、及び硬化体膨張抑制剤としての塩化カルシウム又はギ酸カルシウムを含む。

Description

水硬性組成物、セメント系硬化体の製造方法及びセメント系硬化体膨張抑制剤
 本発明は、アルカリシリカ反応によるセメント系硬化体の膨張による劣化を抑制することが可能な新規の水硬性組成物に関する。
 コンクリートはセメント水和物、骨材および空隙によって構成され、空隙には水酸化アルカリ(水酸化ナトリウムや水酸化カリウム)の水溶液が存在する。このアルカリ性は、鉄筋コンクリート中の鉄筋の腐食を抑制するなど必要な性質ではあるが、あまりにアルカリ性が高すぎると、アルカリシリカ反応を引き起こすことが知られている。
 骨材には岩石などの鉱物を砕いて得られる砕石が主に使用されており、その骨材が反応性骨材(コンクリート中の水酸化アルカリと反応しやすい状態にある準安定な反応性鉱物を有害量含む岩石と定義される。反応性鉱物は非晶質シリカまたは微結晶シリカが代表例である。通常は、JIS A 5308付属書に従った区分で「アルカリシリカ反応性試験の結果が“無害でない”と判定されたもの」が相当する。)であると、空隙中の水酸化アルカリと反応してアルカリ珪酸塩を生成する。このアルカリ珪酸塩は水が供給されると膨張挙動を示す。この反応挙動をアルカリシリカ反応(以下、ASRと略することもある。)と呼んでいる。
 ASRの抑制対策として、1986年に当時の建設省から以下の3つの対策が提示され、現在でも用いられている。(1)コンクリート中のアルカリ量抑制、(2)混合セメントの使用、(3)安全な骨材の使用。
 また、ASRに起因する劣化に対しては古くから対策研究がなされ、そのうちの有効な方法として、リチウム塩をASR抑制剤としてコンクリートへ配合混練すると、ASRによる膨張が抑制されることが報告されており、現在では亜硝酸リチウムを主成分としたものが工業的使用のレベルにまで至っている(特許文献1参照)。セメント系硬化体にリチウムを混合した場合、ASRの反応生成物であるアルカリケイ酸塩のアルカリ塩とLiが置換され、非膨張性を示すとされている。
 また、安価なASR抑制剤として、プロピオン酸カルシウムをセメント混練時に配合することにより、コンクリート中のアルカリ性を低減してASRを抑制する方法が開示されている(特許文献2参照)。
特開平7-061852号公報 特開2007-169144号公報
 しかしながら、前記建設省提示の対策を用いても劣化事例が報告されており、コンクリートの耐久性において現在でも重要な課題となっている。コンクリート中のアルカリ量を抑制したとしても、反応性の高い骨材が使用される場合はASRが発生する。また、コンクリート構造物に使用される骨材は、事前にモルタルバー法(JIS A 1146-2007)及び/または化学法(JIS A 1145-2017)による骨材のアルカリシリカ反応性試験を実施して、非反応性と判定された砕石のみが骨材に使われているのが実情であるが、ASRを起こす可能性のある骨材は国内に広く分布しており、骨材の品質管理が十分でない場合は無害でない骨材が使用される恐れがある。さらに、混合セメントでは、混合材の混合率が比較的高い範囲でASR抑制効果が高くなることから、流通している混合セメントの混合率では必ずしもASRが抑制されるとは限らない。
 リチウム塩を用いる抑制対策については、実用には高価すぎることが問題であること、リチウムは極めて希少な資源であるためにセメントに添加するような利用においては安定供給の点で難があることといった問題があった。また、プロピオン酸カルシウムについては、セメント混練時に練り混ぜ水によりプロピオン酸カルシウムが溶解し、有機系物質であるプロピオン酸の影響によりセメントの水和が遅れるため、コンクリートの凝結時間や初期強度発現に影響を及ぼすことに課題があった。
 本発明者は、上記課題を解決すべく、セメントの水和反応に及ぼす影響が小さく、セメントの主成分であるCaを多く含み、溶解度の高い材料に着目し、鋭意研究を行なった結果、塩化カルシウム又はギ酸カルシウムが、ASRの反応生成物であるアルカリケイ酸塩を非膨張性に変質させ、ASRの膨張挙動を抑制させることを見いだし、本発明を完成した。また、ギ酸カルシウムを用いた場合には、初期強度(材齢1日における圧縮強度)を向上させることができることを見いだした。
 なお、特許文献2に示されるように、塩化カルシウムは、ASRを抑制するためのアルカリ性低減剤としての効果が十分でないため(例えば表1の比較例3)、セメント系硬化体の膨張を抑制できないと考えられていたが、本発明者らは、改めて異なる観点から見直しを行った結果、塩化カルシウムが、ASRの反応生成物であるアルカリケイ酸塩を非膨張性に変質させ、硬化体の膨張を抑制することを見いだした。
 すなわち、第一の本発明は、セメント、骨材、及び硬化体膨張抑制剤としての塩化カルシウム又はギ酸カルシウムを含む水硬性組成物である。第一の本発明においては、塩化カルシウムの水硬性組成物中の総アルカリ量に対するモル比が0.15以上であることが好ましい。また、ギ酸カルシウムの水硬性組成物中の総アルカリ量に対するモル比が0.40以上であることが好ましい。
 また第二の本発明は、セメントと骨材と水とを含む混練物を硬化させるセメント系硬化体の製造方法であって、前記混練物に塩化カルシウム又はギ酸カルシウムを共存させることを特徴とする膨張が抑制されたセメント系硬化体の製造方法である。第二の本発明においては、塩化カルシウムの混練物中の総アルカリ量に対するモル比を0.15以上とすることが好ましい。また、ギ酸カルシウムの混練物中の総アルカリ量に対するモル比を0.40以上とすることが好ましい。
 さらに、第三の本発明は、塩化カルシウム又はギ酸カルシウムを含むセメント系硬化体膨張抑制剤である。
 本発明によれば、塩化カルシウム又はギ酸カルシウムを含むセメント系硬化体膨張抑制剤を混合したセメントを用いてセメント系硬化体を製造した場合、硬化体膨張抑制剤を混合しないものよりもASRによる膨張を抑制することが可能となる。また、ギ酸カルシウムを含むセメント系硬化体膨張抑制剤を混合したセメントを用いてセメント系硬化体を製造した場合には、初期強度も向上せることが可能となる。
 本発明で使用するセメントとしては、公知のセメントが特に制限なく使用でき、具体的には普通ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の汎用的なセメントが挙げられる。また、セメントに高炉スラグ微粉末やフライアッシュ等の混合材を含む混合セメントも同様に使用できる。
 本発明における骨材は、細骨材、粗骨材の双方を指す。当該骨材としては、前記した“無害でない”骨材を使用する際に、本発明の効果が顕著に発揮される。
 本発明の水硬性組成物に用いる硬化体膨張抑制剤としての塩化カルシウムは、一般的に化学式でCaClと表記される。
 また、本発明の水硬性組成物に用いる硬化体膨張抑制剤としてのギ酸カルシウムは、一般的に化学式でCa(HCОО)と表記される。
 本発明においては、硬化体膨張抑制剤として、塩化カルシウム及びギ酸カルシウムの一方を用いてもよいし、両者を用いてもよい。
 塩化カルシウム及びギ酸カルシウムは、粉末状のものまたは液体状のものが限定されることなく使用できる。
 本発明における塩化カルシウムの使用量は、使用材料中の総アルカリ量から算出されるセメント系硬化体中の総アルカリ量に対するモル比(塩化カルシウム/総アルカリ量)が好ましくは0.15以上であり、より好ましくは0.17以上であり、さらに好ましくは0.30以上である。
 また、本発明におけるギ酸カルシウムの使用量は、使用材料中の総アルカリ量から算出されるセメント系硬化体中の総アルカリ量に対するモル比(ギ酸カルシウム/総アルカリ量)が好ましくは0.40以上であり、より好ましくは0.45以上であり、さらに好ましくは0.50以上である。
 なお、本発明において総アルカリ量はセメント系硬化体中のNaO量およびKO量を用いた等価NaO量として以下の式で算出される。
  総アルカリ量=NaO量+0.658×KO量
 本発明において、塩化カルシウムの使用量の上限は、例えば、使用材料中の塩化物量から算出されるセメント系硬化体中の塩化物イオン濃度により決定する。鉄筋コンクリートにおいて、塩化物イオン濃度が鋼材腐食発生限界塩化物イオン濃度以上になると鋼材腐食が発生する。そのため、塩化物イオン濃度が鋼材腐食発生限界塩化物イオン濃度となる添加量が上限となる。なお、鋼材腐食発生限界塩化物イオン濃度は、2018年制定土木学会標準示方書[維持管理編]により下記の式で算出される。
(a)普通ポルトランドセメントを用いた場合
  Clim = -3.0(W/C)+3.4
(b)高炉セメントB種相当、フライアッシュセメントB種相当を用いた場合
  Clim = -2.6(W/C)+3.1
(c)低熱ポルトランドセメント、早強ポルトランドセメントを用いた場合
  Clim = -2.2(W/C)+2.6
(d)シリカフュームを用いた場合
  Clim = 1.20
 ここに、Clim:鋼材腐食発生限界塩化物イオン濃度(kg/m
    W/C:水セメント比(0.30≦W/C≦0.55)
 また、上記セメント種類や水セメント比の範囲外となる場合の鋼材発生限界塩化物イオン濃度は、2007年制定木学会標準示方書[維持管理編]に記載の1.2kg/mを上限とすることが望ましい。
 なお、本発明において無筋コンクリートに適用する場合は、鉄筋腐食が発生しないため鋼材腐食発生限界塩化物イオン濃度による上限は適用されないが、膨張抑制効果が十分に得られる範囲として、塩化カルシウムの総アルカリ量に対するモル比が2.00以下となることが望ましい。
 また、本発明において、ギ酸カルシウムの使用量は、増加しても悪影響はほぼないが、過剰な添加はコストアップになるため、ギ酸カルシウムの添加量はギ酸カルシウムの総アルカリ量に対するモル比が1.30以下となることが望ましい。
 本発明のセメント系硬化体の製造方法において使用する水は、モルタルやコンクリートの調製用として公知の水が特に制限なく使用できる。具体的には、工業用水、水道水等である。
 本発明のセメント系硬化体の製造方法においては、上記した骨材、セメント、水、及び硬化体膨張抑制剤としての塩化カルシウム又はギ酸カルシウムの他に、本発明の効果を阻害しない範囲で、一般的にモルタルやコンクリートの調製に際して混合される公知の添加剤であるAE減水剤、高性能減水剤、高性能AE減水剤、空気量調整剤、凝結促進剤を添加配合しても構わない。
 本発明のセメント系硬化体の製造方法において、水セメント比は一般的なモルタルやコンクリートで使用される範囲であれば特に制限されない。
 本発明において、骨材、セメント、水、塩化カルシウム又はギ酸カルシウム、及び必要に応じて配合するその他材料を混練(混合)、硬化させるセメント系硬化体の製造方法は、生コンクリート工場やコンクリート二次製品工場における従来の製造方法が特に際限なく使用できる。
 ここで、混練物を得るに際し、塩化カルシウム又はギ酸カルシウムは他の成分とは独立して(単独で)混練系に添加してもよいし、セメントと予め混合した混合物としておいて混練に供してもよい。さらに、塩化カルシウム又はギ酸カルシウムは他の成分と同時に一括で混練しても良いし、他の成分を混練して得た混練物に対して、後から加えてさらに混練しても構わない。
 本発明において、セメント系硬化体を混錬する際に使用するミキサーは、一般的にモルタルやコンクリートを混錬するミキサーが制限なく使用できる。具体的には、パン型ミキサー、強制二軸ミキサー、傾動ミキサー、モルタルミキサー、ハンドミキサー等が挙げられる。
 本発明において、硬化時や硬化後のセメント系硬化体の養生方法は、生コンクリート工場やコンクリート二次製品工場における従来の養生方法が特に際限なく使用できる。具体的には、湿潤養生、水中養生、蒸気養生、オートクレープ養生、気中養生等が挙げられる。
 本発明におけるセメント系硬化体は、上記した骨材、セメント、水、塩化カルシウム又はギ酸カルシウム、及び必要に応じて配合するその他材料を混合・硬化させたものであるが、一般的にはモルタルあるいはコンクリートとされる。なお、モルタルはセメント等の結合材、水、細骨材、混和剤の混練物であり、コンクリートはセメント等の結合材、水、細骨材、粗骨材、混和剤の混練物である。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、実施例および比較例におけるコンクリート供試体の貯蔵、長さ変化の測定の各方法については、基本的にはJIS A 1146-2007(骨材のアルカリシリカ反応性試験方法(モルタルバー法))に準拠して実施した。
 (比較例1A、2A及び実施例1A~3A)
 (1)配合
 試験に供したコンクリートは下記の質量比で配合した。これは、質量比でセメントが2、水が1、細骨材が3、粗骨材が3となる量である。使用したセメントは普通ポルトランドセメント(NC)であり、JIS R 5204「セメントの蛍光X線分析方法」に準じてNaO量およびKO量を測定した結果、等価NaO量で表される総アルカリ量が0.55質量%であったため、ASRを促進させるために使用材料中の総アルカリ量から算出されるセメント系硬化体中の総アルカリ量がセメントに対して3.0質量%(セメント系硬化体1kgあたり0.18mоl)となるように、NaClを配合全体の外割で加えている。細骨材として標準砂を使用した。反応性骨材は粗骨材として安山岩系の天然砕石を使用した。
 NC          456.8g
 細骨材         685.2g
 粗骨材(反応性骨材)  685.2g
 水           228.4g
 NaCl         21.1g
 (2)混練
 混練はホバートミキサーを用いて行った。セメント、塩化カルシウム、細骨材及びNaClをミキサーに投入し、30秒間混合した。なお、塩化カルシウムはセメントに対する割合が表1に示す割合となる量を外割で配合した。次に、水を投入して30秒間混練した後20秒間休止した。休止の間に、練り鉢及びパドルに付着したモルタルをさじによってかき落とした。その後、120秒間練り混ぜた。モルタル混練後に粗骨材を投入し、さじによって十分混練した。
 (3)成型
 40×40×160mmの型枠を使用した。混練終了後のコンクリートを直ちに型枠に打ち込んだ。打ち込みは2層詰めとし、コンクリートを型枠の1/2ずつ詰め、突き棒を用いてその端が5mm入る程度に、供試体1体当たり各層につき約15回突き固めた。最後に供試体をいためないように余盛部分を注意して削り取り、上面を平滑にした。
 (4)初期養生
 成型後、混練から24時間はガラス板で混練物を覆い、水分が蒸発しないようにして20℃中で保存した。
 (5)膨張率の測定
 24時間経過後に脱型した供試体を、温度40℃、湿度95%以上の恒温恒湿室で56日間保管した。測定日前日に温度20℃、湿度60%の恒温恒湿室で養生し、測定した長さ変化から膨張率を算出した。
 (6)測定方法
 長さ変化の測定は、JIS A 1129-3(ダイヤルゲージ方法)により行った。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1Aは、硬化体膨張抑制剤として塩化カルシウムを混合しなかった場合の膨張率であり、反応性骨材の影響により膨張していることがわかる。
 比較例2Aは、塩化カルシムの添加量をセメント系硬化体中の総アルカリ量に対してモル比で0.15未満とした場合の膨張率であり、モル比が小さいために膨張を抑制できていないことがわかる。
 実施例1A、2A、3Aは、塩化カルシウムのセメント系硬化体中の総アルカリ量に対するモル比がそれぞれ0.19、0.38および0.74となるように塩化カルシウムを添加した場合の膨張率であり、いずれも膨張が抑制されていることがわかる。
 (比較例1B~4B及び実施例1B~3B)
 塩化カルシウムをギ酸カルシウムに変更する以外は上記比較例1A、2A及び実施例1A~3Aと同様に、(1)~(6)の操作を行った。これに加えて、下記(7)圧縮強さの測定を行った。
 (7)圧縮強さの測定
 1日強度として材齢1日の圧縮強さを測定した。圧縮強さの測定は、JIS R 5201(セメントの物理試験方法)により行った。試験に供したコンクリートは下記の質量比で配合した。これは、質量比でセメントが1、水が0.5、標準砂が3となる量である。
 NC           450.0g
 標準砂         1350.0g
 水            225.0g
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例1Bは、硬化体膨張抑制剤としてギ酸カルシウムを混合しなかった場合の膨張率であり、反応性骨材の影響により膨張していることがわかる。
 比較例2B、3B、4Bは、ギ酸カルシウムの添加量をセメント系硬化体中の総アルカリ量に対するモル比で0.40未満とした場合の膨張率であり、モル比が小さいために膨張を抑制できていないことがわかる。
 実施例1B、2B、3Bは、ギ酸カルシウムのセメント系硬化体中の総アルカリ量に対するモル比がそれぞれ0.53、0.71および1.06となるようにギ酸カルシウムを添加した場合の膨張率であり、いずれも膨張が抑制されていることがわかる。また、1日強度が比較例1より増加していることがわかる。

 

Claims (7)

  1.  セメント、骨材、及び硬化体膨張抑制剤としての塩化カルシウム又はギ酸カルシウムを含む水硬性組成物。
  2.  硬化体膨張抑制剤として塩化カルシウムを含み、該塩化カルシウムの水硬性組成物中の総アルカリ量に対するモル比が0.15以上であることを特徴とする請求項1記載の水硬性組成物。
  3.  硬化体膨張抑制剤としてギ酸カルシウムを含み、該ギ酸カルシウムの水硬性組成物中の総アルカリ量に対するモル比が0.40以上であることを特徴とする請求項1記載の水硬性組成物。
  4.  セメントと骨材と水とを含む混練物を硬化させるセメント系硬化体の製造方法であって、前記混練物に塩化カルシウム又はギ酸カルシウムを共存させることを特徴とする膨張が抑制されたセメント系硬化体の製造方法。
  5.  前記混練物に塩化カルシウムを共存させ、該塩化カルシウムの混練物中の総アルカリ量に対するモル比を0.15以上とすることを特徴とする請求項4記載のセメント系硬化体の製造方法。
  6.  前記混練物にギ酸カルシウムを共存させ、該ギ酸カルシウムの混練物中の総アルカリ量に対するモル比を0.40以上とすることを特徴とする請求項4記載のセメント系硬化体の製造方法。
  7.  塩化カルシウム又はギ酸カルシウムを含むセメント系硬化体膨張抑制剤。

     
PCT/JP2022/044713 2021-12-24 2022-12-05 水硬性組成物、セメント系硬化体の製造方法及びセメント系硬化体膨張抑制剤 WO2023120131A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023569257A JPWO2023120131A1 (ja) 2021-12-24 2022-12-05

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021210645 2021-12-24
JP2021-210645 2021-12-24
JP2022-033120 2022-03-04
JP2022033120 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023120131A1 true WO2023120131A1 (ja) 2023-06-29

Family

ID=86902177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044713 WO2023120131A1 (ja) 2021-12-24 2022-12-05 水硬性組成物、セメント系硬化体の製造方法及びセメント系硬化体膨張抑制剤

Country Status (2)

Country Link
JP (1) JPWO2023120131A1 (ja)
WO (1) WO2023120131A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129350A (ja) * 1997-07-07 1999-02-02 Inax Corp 乾式タイル張施工用目地材
US20060042518A1 (en) * 2004-08-27 2006-03-02 Brown Paul W Methods of reducing hydroxyl ions in concrete pore solutions
JP2009263195A (ja) * 2008-04-30 2009-11-12 Mitsubishi Rayon Co Ltd セメントモルタル組成物、セメントモルタル組成物の施工方法および壁体
JP2013170112A (ja) * 2012-02-22 2013-09-02 Ube Industries Ltd 耐酸水硬性組成物、モルタル組成物及びモルタル硬化体
US20200369568A1 (en) * 2017-08-14 2020-11-26 The Regents Of The University Of California Mitigation of alkali-silica reaction in concrete using readily-soluble chemical additives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129350A (ja) * 1997-07-07 1999-02-02 Inax Corp 乾式タイル張施工用目地材
US20060042518A1 (en) * 2004-08-27 2006-03-02 Brown Paul W Methods of reducing hydroxyl ions in concrete pore solutions
JP2009263195A (ja) * 2008-04-30 2009-11-12 Mitsubishi Rayon Co Ltd セメントモルタル組成物、セメントモルタル組成物の施工方法および壁体
JP2013170112A (ja) * 2012-02-22 2013-09-02 Ube Industries Ltd 耐酸水硬性組成物、モルタル組成物及びモルタル硬化体
US20200369568A1 (en) * 2017-08-14 2020-11-26 The Regents Of The University Of California Mitigation of alkali-silica reaction in concrete using readily-soluble chemical additives

Also Published As

Publication number Publication date
JPWO2023120131A1 (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
JPS581068B2 (ja) コンクリ−ト混合物またはモルタル混合物
JP2001302324A (ja) 可塑性注入材
JP3733449B2 (ja) 低アルカリ性水硬性材料
JP2023090942A (ja) 水硬性組成物
JP6985177B2 (ja) 水硬性組成物及びコンクリート
JP5345821B2 (ja) セメント混和材及びセメント組成物
JP3096470B2 (ja) 急硬性aeコンクリート組成物
JP6764702B2 (ja) 水硬性組成物
WO2023120131A1 (ja) 水硬性組成物、セメント系硬化体の製造方法及びセメント系硬化体膨張抑制剤
KR100519605B1 (ko) 내산성 단면복구 모르타르의 제조방법 및 조성물
KR100561233B1 (ko) 수밀성 무기질 균열저감제가 함유된 레미콘 조성물
US11845695B2 (en) Accelerator for mineral binder compositions
JPH10236860A (ja) 耐硫酸性セメント組成物
JP4157546B2 (ja) 急硬性セメントコンクリート及び急結性セメントコンクリート
JP7465676B2 (ja) セメント系硬化体の製造方法
Memis et al. Some durability properties of alkali activated materials (AAM) produced with ceramic powder and micro calcite
JP7461264B2 (ja) 生コンクリートの製造方法
JP2006062888A (ja) 急硬性混和材及び急硬性セメント組成物
JP4809516B2 (ja) 即時脱型コンクリート製品の製造方法
JP4338884B2 (ja) セメント混和材及びセメント組成物
JP2000264712A (ja) 急硬性セメントコンクリート及び急結性セメントコンクリート
JP4791231B2 (ja) 耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体およびその製造方法
JPH02302352A (ja) 速硬型セルフレベリング性床材用組成物
JP2002087867A (ja) セメント材料の製造方法
JPH05163050A (ja) セメント混和材及びセメント組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569257

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE