WO2023119686A1 - 動力伝達機構の管理装置、動力伝達機構の管理方法及び管理システム - Google Patents

動力伝達機構の管理装置、動力伝達機構の管理方法及び管理システム Download PDF

Info

Publication number
WO2023119686A1
WO2023119686A1 PCT/JP2022/021182 JP2022021182W WO2023119686A1 WO 2023119686 A1 WO2023119686 A1 WO 2023119686A1 JP 2022021182 W JP2022021182 W JP 2022021182W WO 2023119686 A1 WO2023119686 A1 WO 2023119686A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
value
average current
unit
management device
Prior art date
Application number
PCT/JP2022/021182
Other languages
English (en)
French (fr)
Other versions
WO2023119686A9 (ja
Inventor
裕理 高野
悟 金子
見多 出口
敬典 大橋
豊 松本
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN202280066394.3A priority Critical patent/CN118475820A/zh
Priority to JP2023569039A priority patent/JPWO2023119686A1/ja
Publication of WO2023119686A1 publication Critical patent/WO2023119686A1/ja
Publication of WO2023119686A9 publication Critical patent/WO2023119686A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a power transmission mechanism management device, a power transmission mechanism management method, and a management system.
  • various industrial equipment such as injection molding machines and press machines can be mentioned as devices in which power is supplied from a power source to some load side device via a power transmission mechanism.
  • a rotating electric machine (motor) is used as a power source, and a soft and viscous material such as resin, metal fiber, or a mixture thereof is passed through an arbitrary power transmission mechanism into a predetermined mold.
  • Devices are known for obtaining arbitrary moldings by injecting into a given mold.
  • the power of an electric motor as a drive source (rotational power or horizontal power such as a linear motor may be used) is transmitted to the mold for injection molding by a power transmission mechanism as the power to inject.
  • a desired molding is obtained by injecting the member into a predetermined mold.
  • a power conversion mechanism such as a ball screw, that converts the rotational driving force of an electric motor into linear motion, and the linear power of the ball screw, which is such a power transmission mechanism, and the screw.
  • An injection shaft integral with a mating nut member is configured to press the viscous member into a predetermined mold.
  • Patent Document 1 discloses a technology for estimating the state of equipment. Specifically, a technique is disclosed in which an electric motor as a drive source and a motor control means for controlling the motor are provided, a motor control internal value of the motor control means is created, and an abnormality of the device is estimated by comparing with the value. It is a technique that can detect deterioration of equipment (load-side equipment and work parts associated with it) by monitoring internal values of motor control.
  • Patent Document 2 discloses an abnormality diagnosis device and an abnormality diagnosis method for a power transmission mechanism that transmits power from an electric motor as a drive source. More specifically, in Patent Document 2, in a configuration in which the power of an electric motor is connected to mechanical equipment as a load via a pulley belt or a gear chain, a current spectrum waveform is obtained from a value transmitted from a current detector connected to the electric motor. Based on the spectral peaks calculated from this analysis, the number of sideband waves outside the frequency band of the pulley belt and gear chain generated with rotational speed is counted to diagnose pulley belt and gear chain abnormalities. It is designed to
  • Injection molding machines, presses, and other power transmission mechanisms function as mediators between the power source and the die, which directly generate loads. Therefore, maintaining the performance of the power transmission mechanism is the final product It has a profound effect on the quality (completeness) of the molded product, and it is important to control it.
  • the power transmission mechanism abnormality diagnosis technology disclosed in Patent Document 2 detects an abnormality in the power transmission mechanism by monitoring the spectrum peak from the current spectrum waveform and the accompanying sideband waves.
  • the problem remains that the sensitivity to detect it as an abnormality is lowered.
  • abnormal values due to the deterioration of the power and power mechanism often appear only as very slight fluctuations, and are temporary during normal operation. It is difficult to distinguish whether it is current noise or a vibration caused by an abnormality, and simply monitoring the state of the current spectrum leaves a problem in the accuracy of abnormality detection.
  • the abnormal value may vary from the normal value, and it is considered possible to determine the deterioration by determining this variation as well. Therefore, a technique for detecting abnormality in the power transmission mechanism with higher precision and accuracy is desired.
  • a management device for a power transmission mechanism that transmits driving force from an electric motor to a load-side device comprising: a current acquisition unit that acquires a current value of the electric motor per unit process in which the power transmission mechanism is driven; and the unit process. is divided into a plurality of sections, and a feature amount calculation unit for calculating an average current value obtained by averaging the current values for each section; and a diagnosis unit for detecting anomalies.
  • a state quantity estimated value is calculated based on the average current value of , and an abnormality in the unit process is detected based on the state quantity estimated value.
  • a method of managing a power transmission mechanism that transmits a driving force from an electric motor to a load-side device comprising: a current acquisition step of acquiring a current value per unit process in which the power transmission mechanism is driven; An average current value calculation step of dividing into a plurality of sections and calculating an average current value by averaging the current values for each section; and an abnormality detection step of detecting an abnormality.
  • a state quantity estimated value is calculated based on the average current value of the section, and an abnormality in the unit process is detected based on the state quantity estimated value.
  • the present invention it is possible to realize a management device, a management method, and a management system capable of detecting abnormality (deterioration) of a power transmission mechanism with higher precision and accuracy.
  • FIG. 1 is a schematic diagram showing a mechanical configuration of an injection molding machine according to an embodiment to which the present invention is applied;
  • FIG. It is a mimetic diagram showing the functional composition of the injection molding machine by this embodiment.
  • 3 is a schematic diagram showing functional configurations of a motor control unit and a state estimation unit according to the embodiment;
  • FIG. 4 is a schematic diagram showing a functional configuration of a control internal value creation unit according to the embodiment;
  • FIG. It is a schematic diagram which shows the functional structure of the feature-value calculation part by this embodiment, and a calculating part. It is a schematic diagram which shows the operation
  • FIG. 4 is a schematic diagram showing normal values and abnormal values of current values when deterioration determination processing according to the present embodiment is not executed;
  • FIG. 4 is a schematic diagram showing normal values and abnormal values of current values when performing deterioration determination processing according to the present embodiment; It is a schematic diagram which shows the calculation result of the average value of the normal value of each division
  • FIG. 5 is a diagram showing distribution of average values of normal values and abnormal values in each cycle when deterioration determination processing according to the present embodiment is not executed;
  • FIG. 5 is a diagram showing distribution of average values of normal values and abnormal values in each cycle when deterioration determination processing according to the present embodiment is not executed;
  • FIG. 5 is a diagram showing distribution of average values of normal values and abnormal values in each cycle when deterioration determination processing according to the present embodiment is executed; It is a figure explaining the state quantity fluctuation
  • 4 is a flowchart for calculating a peak value, a peak value, and a difference of feature amounts according to the present embodiment.
  • 8 is a flow chart of another calculation method for calculating the peak value and the difference between the peak values of the feature quantity according to the present embodiment.
  • FIG. 4 is an explanatory diagram of a method of adopting a majority decision in calculation of a peak value, a peak value, and a difference of a feature amount according to the present embodiment
  • FIG. 4 is an explanatory diagram of a method of adopting a majority decision in calculation of a peak value, a peak value, and a difference of a feature amount according to the present embodiment
  • FIG. 4 is an explanatory diagram of a method of adopting a majority decision in calculation of a peak value, a peak value, and a difference of a feature amount according to the present embodiment
  • FIG. 10 is a flowchart illustrating a method of performing majority processing to calculate a peak value, a peak value, and a difference of feature amounts according to the present embodiment
  • 10 is an explanatory diagram considering outliers in detection of peak values and peak values of feature amounts according to the present embodiment
  • 5 is a flow chart illustrating a method of performing outlier processing for calculating a peak value and a difference between the peak values of feature quantities according to the present embodiment. It is a figure for demonstrating the detection of the abnormality occurrence position by this embodiment. It is a figure explaining the system configuration for detecting the abnormal occurrence position by this embodiment. 4 is a flow chart explaining a method for detecting an abnormality occurrence position according to the present embodiment;
  • FIG. 1 schematically shows a partial schematic configuration of an injection molding machine 1 equipped with a power transmission mechanism management device (control unit 30) to which the present invention is applied.
  • a power transmission mechanism management device control unit 30
  • an injection molding machine will be described as an example, but the present invention is not limited to this. It is applicable if it is a device that transmits to the side.
  • the injection molding machine 1 converts the rotation of a plurality of motors into linear motion to drive a single linearly moving member, and at this time, operates the plurality of motors synchronously so that the advancing positions are aligned.
  • the configuration to which the present invention can be applied includes a configuration in which a single motor supplies driving force to a plurality of power transmission mechanisms via gears, and a configuration in which a single motor supplies driving force to a single power transmission mechanism. It's okay.
  • the injection molding machine 1 pours molten resin from a hole 11 provided in a fixed mold 12B of a movable mold 12, and performs resin molding according to the shape of a gap existing between the movable mold 12A and the fixed mold 12B. can make things.
  • a mold 12 having a movable mold 12A and a fixed mold 12B is an example of a load-side device.
  • the mold includes a fixed mold 12B fixed to the housing and a movable mold 12A that moves forward and backward.
  • a motor 13 that is an electric motor, a pulley 14 fixed to the output shaft of the motor 13, a driven pulley 15, a timing belt 16 that transmits the rotation of the driving pulley 14 to the driven pulley 15, and a linear motion of the rotation of the pulley 15.
  • a ball screw mechanism 20 as a power transmission mechanism that converts and transmits power to the movable mold 12A, and a control unit 30 are provided.
  • the motor 13 has an encoder (not shown) that outputs a motor position signal S2 indicating its advancing position (corresponding to the advancing position of the ball screw mechanism 20).
  • the injection molding machine 1 drives and controls the motor 13 when the controller 30 receives the original speed command signal S0 from a host device (not shown).
  • the motor 13 When the motor 13 is driven, its rotation is transmitted to the screw shaft 17 of the ball screw mechanism 20 via the drive pulley 14, timing belt 16 and driven pulley 15, and the nut portion is screwed into these grooves via balls. 18 converts rotational force into linear motion.
  • the movable mold 12A is integrated with or mechanically coupled to the nut portion 18, and the movable mold 12A is also linearly moved according to the linear motion of the nut portion 18. As shown in FIG.
  • the movable mold 12A approaches or moves away from the fixed mold 12B.
  • resin is poured into the molded product, and after the molded product is cooled and solidified, the molded product is taken out by separating the movable mold 12A from the fixed mold 12B.
  • the control unit 30 includes, for example, a microcomputer for embedded equipment equipped with a CPU, ROM, RAM, EEPROM, various I/O interfaces, etc., and executes various functions in cooperation with programs. It's like The control unit 30 executes control of the injection molding machine 1, for example, controls the entire molding process such as plasticizing operation, injection operation, mold opening/closing operation, and ejecting operation.
  • the present invention is not limited to this embodiment, and a part thereof may be configured by an analog circuit.
  • control unit 30 will be described as a functional configuration.
  • FIG. 1 A functional block diagram of the control unit 30 is schematically shown in FIG.
  • the inverter 40 is controlled by a motor control section 41 to which a so-called vector control method is applied.
  • the motor control unit 41 acquires information such as motor current, motor voltage, rotor position information, and rotation speed from the inverter 40 or the motor 13, and based on such information, controls the motor 13 according to a command from the host controller. Create a voltage command value for driving Then, the motor control unit 41 gives the created voltage command value to the inverter 40 .
  • the external data acquisition unit 47 is composed of sensors installed in addition to the motor 13 and the inverter 40, and acquires the temperature of the device, the outside air temperature, the upper command value of the device, and the like.
  • the state estimating unit 42 calculates the feature quantity and the state quantity related to the injection molding machine 1 based on the control internal value creating unit 43 that creates the internal value of the motor control, and the internal value of the motor control created by the control internal value creating unit 43. is provided.
  • the control internal value generator 43 generates time-series data acquired by a current sensor, a voltage sensor, and a position sensor that are installed independently of the motor control unit 41 in the input unit or output unit of the motor 13, and external Based on the data acquired by the data acquisition unit 47 , an internal value for motor control, which is a state variable in the motor control unit 41 and is related to the state of the injection molding machine 1 , is created.
  • the control internal value creation unit 43 corresponds to the current acquisition unit.
  • the state calculation unit 44 has a state estimation model, and uses the state estimation model to calculate the state of the equipment system, that is, the state of the equipment itself, based on the motor control internal values created by the motor control internal value creation unit 43.
  • a state quantity indicating the state (quality, etc.) of a product manufactured by the equipment is calculated. That is, the state estimating unit 42 inputs data acquired by the sensors and the external data acquiring unit 47 described above, creates internal values for motor control created from the input data, and calculates internal values for the created motor control.
  • a state quantity calculated based on the value or information about the state of the injection molding machine 1 indicated by this state quantity (hereinafter referred to as "estimated state") is output.
  • the estimated state output from the state estimating section 42 is transmitted to an information transmitting section 45 and a motor control updating section 46, which will be described later.
  • the information transmission section 45 is also a display section.
  • the information transmitting unit 45 transmits information about the state of the injection molding machine 1, for example, a feature amount of the machine itself (determination of deterioration of the screw shaft 17, which will be described later) or a product Information about the quality and changes thereof is notified to the operator using the equipment system and the manager of the equipment system by means of display, sound, lamp, vibration, etc. As a result, it is possible to reduce the work load in grasping the timing of equipment maintenance, grasping the situation when quality changes, and adjusting the equipment.
  • the motor control updating unit 46 changes the motor control unit 41, that is, the control command, control parameters, or control software, based on the estimated state output from the state estimating unit 42. For example, when the quality of the product has changed, the motor control updating unit 46 changes the motor control unit 41 so as to suppress the change in quality. As a result, the adjustment work of the injection molding machine 1 can be automated, thereby reducing the work load.
  • FIG. 3 is a block diagram schematically showing the functional configuration of the motor control section 41. As shown in FIG.
  • the command from the host controller is the position command ⁇ *, but it may be the speed (rotational speed) command ⁇ * or the torque command Trq*.
  • the block diagram of the motor control unit 41 is the block diagram on the right side of the boundary line A in FIG. It is a block diagram on the right side of line B.
  • the speed command generation unit 101 calculates the position feedback value ⁇ m actually measured by the sensor and the position command value ⁇ *.
  • a speed command ⁇ * is created and output based on the difference.
  • the torque command generation unit 102 When the speed command ⁇ * is input, the torque command generation unit 102 generates and outputs a torque command Trq* based on the difference between the speed (rotational speed) feedback value ⁇ m actually measured by a sensor and the speed command ⁇ *. do.
  • the current command generation unit 103 When the torque command Trq* is input, the current command generation unit 103 generates a current command on the dq axis in the rotating coordinate system, that is, a d-axis current command Id* and a q-axis current command Iq* based on the torque command Trq*. output.
  • the voltage command generation unit 104 calculates the difference between the d-axis current feedback value Id and the d-axis current command Id* and the q-axis current feedback values Iq and q A voltage command on the dq axis, that is, a d-axis voltage command Vd* and a q-axis voltage command Vq* are created and output based on the difference from the axis current command Iq*.
  • the d-axis current feedback value Id and the q-axis current feedback value Iq are the U-phase current feedback value Iu, the V-phase current feedback value Iv, and the W-phase current feedback value Iw of the motor actually measured by the sensor. It is obtained by 3-phase/2-phase conversion by the 2-phase converter 106 .
  • Two-phase/three-phase converter 105 receives d-axis voltage command Vd* and q-axis voltage command Vq*, converts d-axis voltage command Vd* and q-axis voltage command Vq* to U-phase voltage commands Vu*, V It converts into a phase voltage command Vv* and a W-phase voltage command Vw*, and outputs these voltage commands to inverter 40 .
  • the state estimator 42 includes a control internal value generator 46 and a state calculator 44 . Each will be described below with reference to the drawings.
  • FIG. 4 schematically shows the functional configuration of the control internal value generator 43.
  • the control internal value generator 43 is, so to speak, an inverse model of the motor controller 41 shown in FIG. That is, the control internal value generator 46 includes a speed command generator 101, a torque command generator 102, a current command generator 103, a voltage command generator 104, and a two-phase/three-phase converter in the motor controller 41 (see FIG. 3).
  • a speed command generation unit inverse model 111 a torque command generation unit inverse model 112, a current command generation unit inverse model 113, and a voltage command generation unit inverse model 114, 3 It has a phase/two-phase converter 115 and a three-phase/two-phase converter 116 .
  • the command from the host controller to the motor control unit 41 is the position command ⁇ *, but it may be the torque command Trq* or the speed command ⁇ *.
  • commands from the host controller are a torque command Trq*, a speed command ⁇ *, and a position command ⁇ *
  • the block diagram of the motor control internal value generating means 6 is shown from the boundary line C in FIG.
  • the control internal value generator 43 is obtained by a current sensor, a voltage sensor, and a position sensor that are installed independently of the motor controller 41 in the input or output section of the motor 13.
  • any one or a plurality of the motor three-phase voltage feedback values Vu, Vv, Vw, the motor three-phase current feedback values Iu, Iv, Iw, the speed feedback value ⁇ m, and the position feedback value ⁇ m which are time-series data d-axis current feedback value Id and q-axis current feedback value Iq, d-axis voltage command Vd* and q-axis voltage command Vq*, d-axis current command Id* and q-axis current command Iq*, torque command Trq* , speed command ⁇ * and position command ⁇ * are calculated.
  • ⁇ *, ⁇ m, ⁇ *, ⁇ m, Trq*, Id*, Iq*, Id, Iq, Vd*, Vq*, Vu*, Vv which are state variables of the motor control unit 41 *, Vw*, Vu, Vv, Vw, Iu, Iv, Iw, the difference between the command value and the actual measurement value, and the output values of the proportional device, integrator, and differentiator that make up the controller are the internal values of the motor control. be. That is, one or more of these motor control internal values in the motor control section 41 are created by the control internal value creation section 43 .
  • the control internal value creation unit 43 shown in FIG. It is also possible to create state variables (eg, Id*, Iq*, Id, Iq, Vd*, Vq*) that are not output. Accordingly, the present embodiment can be applied to estimation of various states of the injection molding machine 1 .
  • FIG. 5 is a block diagram schematically showing the functional configuration of the state calculator 44. As shown in FIG.
  • the state calculation unit 44 calculates the state of the injection molding machine 1, that is, the state of the device itself, based on at least one internal value for motor control created by the control internal value creation unit 43. A state quantity indicating the state (quality, etc.) of a product manufactured by the equipment is calculated. Note that the state calculation unit 44 may calculate the state quantity based on the data (device temperature, etc.) acquired by the external data acquisition unit 47 (see FIG. 2) in addition to the internal values of the motor control. Therefore, in FIGS. 5, 6A and 6B, the motor control internal values (X1 to Xn) and the data (Z1 to Zn) acquired by the external data acquisition section 47 are input to the state calculation section .
  • X1 to Xn in FIG. 5 indicate internal values of motor control
  • Z1 to Zn indicate information acquired by the external data acquisition unit 47.
  • At least one motor control internal value is input to the state calculator 44 . Further, whether or not information acquired by the external data acquisition unit 47 is input to the state calculation unit 44 and the number of inputs is arbitrary.
  • the type and number of information acquired by the internal value of motor control and the external data acquisition unit 47, which are input to the state calculation unit 44, are set according to the configuration of the state calculation unit 44 (for example, a statistical model described later). be done.
  • the state calculation unit 44 has a regression equation as a statistical model used for state quantity calculation.
  • the state calculation unit 44 calculates the state quantity using the regression equation based on the feature quantity calculation unit 121 that sets the feature quantity that will be the explanatory variable of the regression equation, and the feature quantity set by the feature quantity calculation unit 121 .
  • a calculation unit 122 for calculating (objective variable) is provided.
  • the calculation unit 122 is a diagnosis unit.
  • the feature amount calculation unit 121 inputs the internal value Xn and the information Zn, and calculates the feature amount (explanatory variable) Cn to be input to the calculation unit 122 based on the input Xn and Zn.
  • the feature amount calculation unit 121 outputs the instantaneous data of Xn and Zn as the feature amount Cn as they are without processing, or performs frequency analysis of the instantaneous data of Xn and Zn in a predetermined time interval (amplitude, phase, etc.), It outputs the effective value, average value (current average value, etc.), standard deviation, maximum value or minimum value in a predetermined time interval, overshoot amount and peak value in a predetermined time interval.
  • the number of feature values Cn may be singular or plural depending on the regression equation.
  • the feature amount calculation unit 121 may output a predetermined amount calculated from the internal value of the motor control, such as active power, reactive power, etc., as the feature amount. Also, a disturbance torque or the like estimated by a so-called observer may be used as the feature amount. It should be noted that these feature amounts may be output after being further subjected to frequency analysis, statistical calculation (average), or the like.
  • the calculation unit 122 receives the feature quantities C1 to Cn output from the feature quantity calculation unit 121, and calculates state quantity estimated values (Ya, Yb) based on the feature quantities C1 to Cn.
  • FIG. 6A schematically shows the operation of the ball screw mechanism 20 of the injection molding machine 1 and the state of deterioration.
  • Long-term use of the ball screw mechanism 20 deteriorates the groove of the screw shaft 17 .
  • the grooves of the screw shaft 17 may be uniformly deteriorated, but more often the grooves are sequentially deteriorated starting from a specific portion due to uneven usage frequency.
  • the nut portion 18 has a deteriorated portion Z at a portion closer to the rear half from the middle point of the screw shaft 17 . Since such deterioration causes instability in the opening and closing operation of the mold, it is desirable to detect it at an early stage with high accuracy.
  • FIG. 6B schematically shows how the current changes from the start position (start time) to the end position (end time) of the ball screw mechanism 20 and the like.
  • the feature quantity calculator 121 can detect deterioration of the screw shaft 17 by monitoring changes in the current value from the start position (start time) to the end position (end time).
  • the ball screw mechanism 20 divides the process from the start point to the end point into a plurality of predetermined regions, and calculates the average value of the current values in each region.
  • the maximum value of the calculated difference values of each region is extracted as a feature amount. By comparing this feature amount with a predetermined threshold value, the presence or absence of deterioration and the degree of deterioration of the screw shaft 17 are determined.
  • FIG. 7A schematically show how deterioration is determined based on region division and feature amounts in this embodiment.
  • a section of one process (unit process) related to injection from the start point to the end point is divided into arbitrary plural regions.
  • the position where the nut portion 18 is positioned on the screw shaft 17 can be detected from the rotation speed of the motor 13 .
  • the number of revolutions of the motor 13 in one process is 30, it is divided into three sections 1 to 3 of 10 revolutions each.
  • the dividing method is not limited to equality, and may be non-uniform.
  • the section in which the deterioration is expected may be divided so as to be larger (or smaller) than the other sections.
  • the feature amount calculation unit 121 and the calculation unit 122 measure the current values below the threshold (normal values) and the number of current values detected at predetermined time intervals in each section, and calculate the average of these values. Similarly, the feature amount calculation unit 121 measures the number of current values (abnormal values) larger than the threshold among the current values detected at predetermined time intervals in each section, and calculates the average value of these. After that, the feature amount calculator 121 and the calculator 122 output these results to the state estimator 42 .
  • Fig. 7B schematically shows the characteristic amount (average value) of the current in each section.
  • the average value of the abnormal values is larger than the average value of the normal values and is the largest in comparison with the other intervals.
  • the state estimation unit 42 determines that the screw shaft 17 has deteriorated, and outputs the deterioration and the deterioration position to the motor control update unit 46 and the information transmission unit 45 .
  • Figs. 8A and 8B schematically show an example of a result comparison between the case where the deterioration determination based on the feature amount is performed and the case where it is not performed.
  • FIG. 8A is an example of simply comparing current values without performing the above-described deterioration determination process. That is, the difference value between the average value of the current in the normal state (in this verification, the average value of the current for 50 processes of normal data) and the average value of the current of each sample was calculated as a feature amount and shown for each cycle. be. As shown in the figure, the difference value (difference amount) D between the average values of the normal values and the abnormal values may be very small.
  • the difference value (difference amount) D between the normal current value group and the abnormal current value group is compared with the case shown in FIG. 8A It can be seen that the difference between normal and deteriorated is expanding (that is, the deterioration detection sensitivity is increasing). That is, in the above deterioration determination, one process is first divided into a plurality of regions, and the average of normal values and abnormal values in each divided region is calculated. The degree of influence of the calculated value on the average value is higher than in the case of calculating the average value without performing the deterioration determination process (method of FIG. 8A).
  • the abnormal average value of the section with the higher average value of abnormal values is treated as the abnormal value in the one cycle (process) from each divided area that is susceptible to the influence of such a protruding value, the most abnormal value A difference between an average current value and a normal average value appears as a relatively large current value difference.
  • the fluctuation width of the current value is very small, it is possible to clearly determine whether it is normal or abnormal, thereby improving the accuracy of deterioration detection and obtaining a remarkable effect that deterioration can be detected at an early stage. be able to.
  • one step is divided into a plurality of sections, the average value of the normal value and the abnormal value in each section is calculated, and the value with the highest average of abnormal values is used for deterioration determination. Since it is targeted, deterioration detection of the power transmission mechanism can be detected with higher precision and accuracy. In particular, according to the present invention, even when the deterioration of the power transmission mechanism is small or in the initial stage, an effect of improving the accuracy and accuracy of detecting an abnormality can be expected.
  • the abnormal value may vary from the normal value, and it is considered possible to determine the deterioration by determining this variation as well. By judging the variation, it is possible to detect an abnormality in the power transmission mechanism with higher precision and accuracy.
  • FIG. 9 is a diagram for explaining fluctuations in the state quantity of the power transmission mechanism, that is, variations in abnormal values.
  • the vertical axis indicates the state quantity estimated value
  • the horizontal axis indicates the elapsed date and time.
  • the normal model is measured and the state quantity of the power transmission mechanism in the normal state is set.
  • the load is changed from low to medium
  • the load is changed from medium to high.
  • the load is changed from large to small
  • at date t4 the machine is repaired.
  • the state quantity E fluctuates and increases from date t0 to date t3, but remains within a normal fluctuation range (dispersion). From date t3 to t4, the variation range (variation) of the state quantity E is greater than the variation range (variation) for date t0 to t3, and it can be determined that an abnormality has occurred.
  • FIG. 10 is a diagram for explaining detection of peak values and peak values of feature quantities.
  • the feature amount is derived in the diagnostic interval, the peak value (positive side) and the peak value (negative side) of the feature amount are detected, and the state amount estimated value (pk-pk value ) is calculated.
  • the vertical axis of the graph in FIG. 10 indicates the feature amount, and the horizontal axis indicates the time interval number. Multiple circles in the graph indicate feature values for each time interval, and feature values larger than those of the normal model are shown in the upper half of the graph with positive differences, and are smaller than those of the normal model. is shown in the negative difference region in the lower half of the graph.
  • State quantity It is possible to determine whether or not an abnormality has occurred from this state quantity estimated value.
  • the "standard reference current value" used for feature amount calculation may be generated by the state estimating unit 42, or may be prepared in advance by the user as a profile. Alternatively, the user can obtain the average current value in advance and set it as the reference value.
  • FIG. 11 is a flowchart for calculating the difference between the peak value (positive side) and the peak value (negative side) of the feature amount performed by the calculation unit 122 .
  • step S1 in FIG. 11 it is determined whether or not the calculated feature amount is greater than the maximum feature amount. If the calculated feature amount is larger than the maximum feature amount, the process proceeds to step S2, the calculated feature amount is defined as the maximum feature amount, and the process proceeds to step S3. In step S1, if the calculated feature amount is less than the maximum feature amount, the process proceeds to step S3.
  • step S3 it is determined whether or not the calculated feature amount is smaller than the minimum feature amount. If the calculated feature amount is smaller than the minimum feature amount, the process proceeds to step S4, defines the calculated feature amount as the minimum feature amount, and proceeds to step S5. In step S3, if the calculated feature amount is greater than the minimum feature amount, the process proceeds to step S5.
  • step S5 the minimum feature amount is subtracted from the maximum feature amount to obtain a state quantity estimated value.
  • a management method of the present invention is a management method for a power transmission mechanism that transmits a driving force from an electric motor to a load-side device, comprising: a current acquisition step of acquiring a current value per unit process in which the power transmission mechanism is driven; An average current value calculation step of dividing a unit process into a plurality of sections and calculating an average current value by averaging the current values for each section; and an abnormality detection step of detecting an abnormality.
  • a state quantity estimated value is calculated based on the average current value of the section, and an abnormality in the unit process is detected based on the state quantity estimated value.
  • one step is divided into a plurality of intervals, the difference between the average value of the current values in each interval and the normal value is calculated, and the maximum value among these is the feature value
  • the variation (pk-pk value) of the feature quantity in multiple steps (multiple time intervals) is calculated as the state quantity estimated value, and the abnormality of the power transmission mechanism is determined based on the calculated state estimated value.
  • Example 2 Next, Example 2 of the present invention will be described.
  • Example 2 of the present invention is the same as Example 1, so illustration and detailed description are omitted.
  • the peak value and the peak value of the feature quantity are detected, and the state quantity estimated value (pk-pk value) is calculated.
  • Example 2 the average value of the feature amount in the area where the current value difference from the reference current value Io shown in the center of the vertical axis of the graph in FIG. 10 is positive is the first current value group average value ( FVave1), and the average value of the feature amount in the area where the current value difference from the reference current value Io is negative is the second current value group average value (FVave2), and the first current value group average value and the second current value group average value is calculated as the state quantity estimated value (abs(FVave1-FVave2)).
  • the state quantity estimated value (abs(FVave1-FVave2)) is used to determine abnormality.
  • FIG. 12 is a flowchart for calculating the state quantity estimated value performed by the calculation unit 122.
  • step S10 of FIG. 12 it is determined whether or not the feature amount is greater than or equal to 0, and if greater than or equal to 0, the process proceeds to step S11.
  • step S11 the first average current value group integration is performed (FVsigma1 ⁇ -FVsigma1+feature amount). Then, the process proceeds to step S12, n1+1 is set to n1, and the process proceeds to step S15.
  • step S10 if the feature amount is less than 0, proceed to step S13.
  • step S13 the second average current value group integration is performed (FVsigma2 ⁇ -FVsigma2+feature amount). Then, the process proceeds to step S14, n2+1 is set to n2, and the process proceeds to step S15.
  • step S15 it is determined whether or not n is the final value, and if it is not the final value, the process ends.
  • step S15 if n is not the final value, proceed to step S16 to derive (calculate) the first average current value group average value (FVave1 ⁇ FVsigma1/n1). Then, the process proceeds to step S17 to derive (calculate) the second average current value group average value (FVave2 ⁇ FVsigma2/n2). Then, the process proceeds to step S18, the state quantity estimated value is set to abs(FVave1-FVave2), and the process ends.
  • Example 3 of the present invention will be described.
  • Example 3 of the present invention is the same as Example 1, so illustration and detailed description are omitted.
  • the peak value (positive side) and the peak value (negative side) of the feature amount are detected, and the state quantity estimated value (pk-pk value) is calculated. be.
  • Example 3 as shown in FIG. is used as the second average current value group CL2, and the number of feature values in the first average current value group CL1 is compared with the number of feature values in the second current value group average value group CL2 (shown in FIG. 13B ).
  • the number of feature amounts in the first average current value group CL1 is greater than the number of feature amounts in the second current value group average value group CL2.
  • the feature amount of the second current value group average value group CL2 is excluded from abnormality diagnosis, and the abnormality diagnosis is performed using the feature amount of the first average current value group CL1. conduct.
  • this is an example of diagnosing an abnormality using the data of the area having the greater number of data based on the majority vote.
  • This example can be applied to the abnormality diagnosis of the power transmission mechanism in which the load fluctuation is often large and the power transmission mechanism in the transient state.
  • FIG. 14 is a flowchart for calculating the state quantity estimated value performed by the calculation unit 122.
  • the feature amount for each time interval is calculated in step S20, and the process proceeds to step S21.
  • step S21 it is determined whether or not the feature amount for all time intervals has been calculated. If not calculated, the process ends. If calculated, the process proceeds to step S22.
  • step S22 the number N1 of feature amounts in the time interval in which the feature amount is positive and the number N2 of feature amounts in the time interval in which the feature amount is negative are calculated. Then, in step S23, it is determined whether or not the number N1 is greater than the number N2. If the number N1 is greater than the number N2, the process advances to step S24 to calculate the value that maximizes the absolute value of the difference from the data group CL1 having the positive feature amount, and the process advances to step S26.
  • step S23 if the number N1 is not greater than the number N2, proceed to step S25, calculate the value that maximizes the absolute value of the difference from the data group CL2 with the negative feature amount, and proceed to step S26.
  • step S26 the state quantity estimated value is calculated, and the process ends.
  • the same effect as in the first embodiment can be obtained.
  • Example 4 of the present invention will be described.
  • Example 4 of the present invention is the same as Example 1, so illustration and detailed description are omitted.
  • the feature amount exceeding the positive threshold (vmax) in the positive difference area and the feature amount below the negative threshold (vmin) in the negative difference area are excluded as outliers.
  • the state quantity estimated value is calculated using the feature quantity that is equal to or less than the positive threshold and equal to or more than the negative threshold.
  • the abnormality detection method using the state quantity estimated value can be the same method as in the first, second, or third embodiment.
  • FIG. 16 is a flowchart for calculating the state quantity estimated value by excluding the feature quantity as an outlier, which is performed by the calculation unit 122 .
  • step S30 of FIG. 16 it is determined whether the calculated feature amount is equal to or less than the positive threshold (vmax) or equal to or greater than the negative threshold (vmin). If the calculated feature amount is equal to or less than the positive threshold (vmax) or equal to or more than the negative threshold (vmin), the process proceeds to step S31. In step S30, the process ends unless the calculated feature amount is equal to or less than the positive threshold (vmax) or equal to or greater than the negative threshold (vmin).
  • step S31 it is determined whether or not the calculated feature amount is greater than the feature amount max. If the calculated feature amount is larger than the feature amount max, the process proceeds to step S32, the calculated feature amount is defined as the maximum feature amount (feature amount max), and the process proceeds to step S33. In step S31, if the calculated feature amount is equal to or less than the feature amount max, the process proceeds to step S33.
  • step S33 it is determined whether or not the calculated feature amount is smaller than the feature amount min. If the calculated feature amount is smaller than the feature amount min, the process proceeds to step S34, the calculated feature amount is defined as the minimum feature amount (feature amount min), and the process proceeds to step S35. In step S33, if the calculated feature amount is equal to or greater than the feature amount min, the process proceeds to step S35.
  • step S35 the feature quantity min is subtracted from the feature quantity max to obtain a state quantity estimated value.
  • the same effect as in the first embodiment can be obtained.
  • the power transmission mechanism in which noise is often large, the power transmission mechanism is detected as an abnormality. It has the effect of improving the accuracy and accuracy that can be achieved.
  • Example 5 of the present invention will be described.
  • Example 5 of the present invention is the same as Example 1, so illustration and detailed description are omitted.
  • a fifth embodiment is an example in which an abnormality such as foreign matter contamination occurs in the power transmission mechanism, and the occurrence of the abnormality and the location of the abnormality can be detected.
  • Example 5 is an example applicable in addition to abnormality detection in Examples 1-4.
  • FIG. 17 is a diagram for explaining a method of detecting (extracting) an abnormality occurrence position X when an abnormality such as foreign matter is mixed in the power transmission mechanism occurs.
  • FIG. 18 is a schematic diagram showing the functional configuration of the feature amount calculation unit and the calculation unit in Example 5, in which a position acquisition unit 123 is added to the example shown in FIG.
  • the position acquisition unit 123 acquires position information per unit process in which the power transmission mechanism is driven.
  • the position acquisition unit 123 acquires the position information of the power transmission mechanism at substantially the same timing as the current acquisition unit, which is the control internal value creation unit 43 . Further, the position acquisition unit 123 outputs the position corresponding to the unit process when detecting an abnormality in the power transmission mechanism.
  • the current value will pulsate as indicated by the dashed line.
  • the voltage rises sharply and then falls in a short period of time.
  • the rising amount of the feature amount becomes the state estimation value.
  • the position at which an abnormality such as contamination with foreign matter has occurred corresponds to the point in time between the time position at which the rotation of the motor 13 starts and the time at which the motor 13 ends, at which the feature amount rises and falls.
  • the position X of the motor 13 at this time is extracted, and the corresponding position, for example, the position of the screw shaft 17 can be extracted.
  • the rotational position of the motor 13 is input to the position acquisition unit 123 .
  • the feature amount is output from the calculation unit 122 to the position acquisition unit 123, and the position acquisition unit 123 obtains the position of foreign matter on the screw shaft 17 from the rotation position of the motor 13 corresponding to the time when the feature amount rises or falls. , and transmits the information to the calculation unit 122 .
  • the calculation unit 122 outputs the state estimation value Y and the abnormality occurrence position of the screw shaft 17 to the information transmission unit 45 .
  • the information transmission unit 45 notifies the user of the occurrence of an abnormality and the position of the screw shaft 17 where the abnormality has occurred by means of a display or the like.
  • FIG. 19 is a flow chart explaining a method for detecting an abnormality occurrence position.
  • step S40 of FIG. 19 it is determined whether or not the feature amount is greater than the abnormal threshold value (positive side). If the feature amount is larger than the abnormality threshold value (positive side), in step S41, the feature amount is set as the state estimation value p, and the position Xp of the screw shaft 17 at the time of abnormality occurrence is notified, and the process proceeds to step S42. Also, in step S40, if the feature amount is not greater than the abnormality threshold value (positive side), the process proceeds to step S42.
  • step S42 it is determined whether or not the feature amount is smaller than the abnormality threshold (negative side). If the feature amount is smaller than the abnormality threshold value (negative side), in step S43, the feature amount is set to the state estimation value m, and the position Xm of the screw shaft 17 at the time of abnormality occurrence is notified, and the process is terminated. Also, in step S42, if the feature amount is not smaller than the abnormality threshold value (negative side), the process is terminated.
  • the same effect as in the first to fourth embodiments can be obtained.
  • an abnormality such as contamination of a power transmission mechanism occurs
  • the occurrence of the abnormality and the location of the abnormality can be detected. , can be notified.
  • each of the graphs shown in FIGS. 9, 10, and 15 can be displayed on the information transmission unit 45.
  • the present invention can realize a management system including the management device 30 and the power transmission mechanism described above.
  • the power transmission mechanism in the management system may comprise a drive pulley 14, a non-rotating pulley 15, a timing belt 16, a ball screw mechanism 20 and a nut 18.
  • the power transmission mechanism applied to the management system of the present invention is not limited to the above example, and can be applied to a power transmission mechanism such as a gear mechanism, for example.
  • the present invention is not limited to the various configurations and functions described above, and it goes without saying that various modifications and replacements can be made without departing from the spirit of the present invention.
  • the injection molding machine 1 is used as an application example, but the power of the motor, which is the driving source of the load-side device such as the press device and the cutting device, is transmitted to the load-side device via the power transmission mechanism. As already mentioned, it can be applied to things.
  • the deterioration determination based on the feature amount is performed for the screw shaft 17 of the ball screw mechanism 20 as the power transmission mechanism, but the timing belt 16 as the power transmission mechanism or a chain instead of this is applied to the deterioration determination. You can also
  • the ball screw mechanism 20 is applied as the power transmission mechanism, but the present invention can also be applied to a screw mechanism consisting of a screw bolt and a nut that do not use balls.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Cash Registers Or Receiving Machines (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

動力伝達機構の異常(劣化)検知を、より精度及び確度高く検出することができる管理装置を実現する。電動機13からの駆動力を負荷側装置12に伝達する動力伝達機構の管理装置30であって、管理装置30は、動力伝達機構が駆動される単位工程当たりの電動機13の電流値を取得する電流取得部と、単位工程を複数の区間に分割し、区間毎の電流値を平均した平均電流値を算出する特徴量算出部121と、異常検知をする診断部122と、を備える。診断部122は、複数の区間の平均電流値に基づき状態量推定値を算出し、状態量推定値を基に単位工程における異常検出をする。

Description

動力伝達機構の管理装置、動力伝達機構の管理方法及び管理システム
 本発明は、動力伝達機構の管理装置、動力伝達機構の管理方法及び管理システムに関する。
 例えば、動力源から動力伝達機構を介して何らかの負荷側装置に動力が供給される装置として、射出成形機やプレス装置といった種々の産業機器をあげることができる。射出成形機を例として説明すれば、動力源として回転電機(モータ)を用いて、任意の動力伝達機構を介して、樹脂や金属繊維、或いはこれらの混合材といった軟粘性材料を所定の型が施された金型に射出することで、任意の成型物を得る機器が知られている。
 一例として、射出成形機を上げてその構成や動作を説明する。射出成形機は、駆動源としての電動機の動力(回転力或いはリニアモータのような水平動力の場合もある。)を動力伝達機構によって射出成型用の金型へ射出する動力として伝達し、軟粘性部材を所定の型に射出することで所望する成型物を得るようになっている。より具体的な例としては、電動機の回転駆動力をボールねじといった直線運動に変換する動力変換機構と直接又は間接的に機械的に接続し、かかる動力伝達機構であるボールねじの直線動力と螺合するナット部材と一体になったが射出軸が、軟粘性部材を所定の型に押圧するように構成されている。
 射出成形機やプレス装置を始め、駆動源を伴う負荷側装置全体(駆動源そのものや負荷側装置のワーク機構等)の異常を管理することは、最終成型物の品質に深く影響する重要な要素である。また、異常は機器や部品の過負荷を招来し、エネルギ効率といった環境面の課題や機器損傷による製造停止といった事業面での課題も将来するものであり、機器の異常を管理することは社会面での影響も大きい課題であるといえる。
 かかる異常検知に関する技術として、特許文献1は、機器の状態を推定する技術を開示する。具体的には、駆動源として電動機及びこれを制御するモータ制御手段を備え、モータ制御手段のモータ制御内部値を作成し、これと比較することで機器の異常を推定する技術を開示する。モータ制御の内部値を監視することで、機器(負荷側装置及びそれに付随するワーク部品)の劣化を検出し得る技術である。
 更には、特許文献2は、駆動源たる電動機から動力の伝達を行う動力伝達機構の異常診断装及びその異常診断方法を開示する。より詳細には、特許文献2は、電動機の動力をプーリベルトやギアチェーンを介して負荷としての機械設備と接続する構成において、電動機に接続された電流検出器から送信される値から電流スペクトル波形を得、これから解析により算出されたスペクトルピークに基づいて、回転速度に伴い発生するプーリベルトやギアチェーンの周波数帯以外の側帯波の個数をカウントすることで、プーリベルトやギアチェーンの異常を診断するようになっている。
 射出成形機やプレス装置を始め、動力伝達機構は、動力源と金型といった負荷が直接発生する要素の仲介役として機能するものであることから、動力伝達機構の性能維持は最終成果物である成型物の品質(完成度)に深く影響し、これを管理する事は重要である。
WO2018/220751号公報 WO2018/109993国際公開
 ここで、動力伝達機構の異常(劣化)検知について考察する。負荷側装置は、負荷のかかり方が一律でない場合も多く、動力伝達機構に掛かる負荷が大となる部分や、小となる部分が混在する事も多い。即ち動力伝達機構の例として、ボールねじ、プーリベルト又はギアチェーン等が上げられるが、負荷側装置の負荷状況によって、これらで劣化が生ずる箇所には偏りが発生する。
 この点、上記特許文献2が開示する動力伝達機構の異常診断技術は、電流スペクトル波形からのスペクトルピークやそれに付随する側帯波を監視することで動力伝達機構の異常を検出するが、動力伝達機構の劣化が小さい場合や初期段階にある場合、異常として検出する感度が低下するという課題が残る。即ち動力伝達機構の劣化に対して単に電動機の電流スペクトルを解析したとしても、動力電力機構の劣化に起因する異常値は至極わずかな振れとしか現出しないことも多く、正常時の一時的な電流ノイズであるのか、異常に起因する振れなのかの区別は困難を要し、単なる電流スペクトルの状態を監視のみでは、異常検知の精度に課題が残るものである。
 また、動力伝達機構の劣化によっては、正常値に比べて異常値がばらつくことがあり、このばらつきも判定することで、劣化判定を行うことも可能であると考えられる。
  よって、動力伝達機構の異常検知を、より精度及び確度高く検出する技術が望まれる。
 上述の課題を解決するために、以下の様に構成される。
 電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理装置であって、前記動力伝達機構が駆動される単位工程当たりの前記電動機の電流値を取得する電流取得部と、前記単位工程を複数の区間に分割し、該区間毎の前記電流値を平均した平均電流値を算出する特徴量算出部と、異常検知をする診断部と、を備え、前記診断部は、複数の前記区間の前記平均電流値に基づき状態量推定値を算出し、該状態量推定値を基に前記単位工程における異常検出をする。
 また、電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理方法であって、前記動力伝達機構が駆動される単位工程当たりの電流値を取得する電流取得ステップと、前記単位工程を複数の区間に分割し、該区間毎の前記電流値を平均した平均電流値を算出する平均電流値算出ステップと、異常検知をする異常検知ステップと、を備え、前記異常検知ステップは、複数の前記区間の前記平均電流値に基づき状態量推定値を算出し、該状態量推定値を基に前記単位工程における異常検出をする。
 本発明によれば、動力伝達機構の異常(劣化)検知を、より精度及び確度高く検出することができる管理装置、管理方法及び管理システムを実現することができる。
 特に、本発明によれば動力伝達機構の異常(劣化)が小さい場合や初期段階にある場合であっても、異常として検出し得る精度及び確度の向上効果がある。
  本発明の他の課題・構成・効果は、以下の記載から明らかになる。
本発明を適用した実施形態による射出成形機の機械的構成を示す模式図である。 本実施形態による射出成形機の機能的構成を示す模式図である。 本実施形態によるモータ制御部及び状態推定部の機能的構成を示す模式図である。 本実施形態による制御内部値作成部の機能的構成を示す模式図である。 本実施形態による特徴量算出部及び演算部の機能的構成を示す模式図である。 本実施形態によるボールねじ機構の動作及び劣化箇所の様を示す模式図である。 本実施形態による劣化判定処理を実行しない場合の電流値の正常値及び異常値の様を示す模式図である。 本実施形態による劣化判定処理を実行する場合の電流値の正常値及び異常値の様を示す模式図である。 本実施形態による劣化判定処理を実行した場合の各分割区画の正常値及び異常値の平均値の演算結果を示す模式図である。 本実施形態による劣化判定処理を実行しない場合による各サイクルの正常値と異常値の平均値の分布を示す図である。 本実施形態による劣化判定処理を実行した場合による各サイクルの正常値と異常値の平均値の分布を示す図である。 動力伝達機構の状態量変動を説明する図である。 本実施形態による特徴量のピーク値とピーク値との検出を説明する図である。 本実施形態による特徴量のピーク値とピーク値と差を演算するフローチャートである。 本実施形態による特徴量のピーク値とピーク値と差を演算する他の演算方法のフローチャートである。 本実施形態による特徴量のピーク値とピーク値と差の演算における多数決を採用する方法の説明図である。 本実施形態による特徴量のピーク値とピーク値と差の演算における多数決を採用する方法の説明図である。 本実施形態による特徴量のピーク値とピーク値と差の演算における多数決を採用する方法の説明図である。 本実施形態による特徴量のピーク値とピーク値と差を演算するために多数決処理を行う方法を説明するフローチャートである。 本実施形態による特徴量のピーク値とピーク値との検出における外れ値を考慮する説明図である。 本実施形態による特徴量のピーク値とピーク値と差を演算するために外れ値処理を行う方法を説明するフローチャートである。 本実施形態による異常発生位置の検出を説明するための図である。 本実施形態による異常発生位置の検出を行うためのシステム構成を説明する図である。 本実施形態による異常発生位置の検出を行うための方法を説明するフローチャートである。
  以下に、本発明を実施するための形態について図面を用いて詳細に説明する。
 (実施例1)
 図1に、本発明を適用した動力伝達機構の管理装置(制御部30)を備える射出成形機1の部分概要構成を模式的に示す。なお、本実施形態では、射出成形機を例として説明するが、本発明は、これに限定するものではなく、プレス装置や切削装置など、駆動源の駆動力を、動力伝達機構を介して負荷側に伝達する装置であれば適用可能である。
 まず、射出成形機1の機械的構成及び動作を説明する。射出成形機1は、複数のモータの回転を直線運動に変換して単一の直線移動部材を駆動し、 このとき複数のモータを進行位置が揃うように同期して動作させるものである。なお、本発明を適用可能な構成は、単一モータでギアを介して複数の動力伝達機構に駆動力を供給する構成や、単一モータで単一の動力伝達機構に駆動力を供給する構成でもよい。
 射出成形機1は、溶融した樹脂を可動金型12の固定金型12Bに設けられた穴11から流し込み、可動金型12Aと固定金型12Bの間に存在する隙間の形状に応じた樹脂成形物を製作することができる。可動金型12Aと固定金型12Bとを有する金型12は、負荷側装置の一例である。
 金型は、筐体に固定された固定金型12Bと、前後進する可動金型12Aを備える。電動機であるモータ13と、モータ13の出力軸に固着されたプーリ14と、被動プーリ15と、駆動プーリ14の回転を被動プーリ15に伝達するタイミングベルト16と、プーリ15の回転を直線運動に変換して可動金型12Aに伝達する動力伝達機構としてのボールねじ機構20と 、制御部30とを備える。
 モータ13は、その進行位置(ボールねじ機構20の進行位置に相当)を示すモータ位置信号S2を出力するエンコーダ(不図示)を備える。射出成形機1は、図示しない上位装置から制御部30が原速度指令信号S0を受けることにより、モータ13を駆動制御するようになっている。 
 モータ13が駆動されると、その回転が駆動プーリ14、タイミング ベルト16及び被動プーリ15を介してボールねじ機構20のねじシャフト17に伝達され、これらの溝にボールを介して螺合するナット部18が回転力を直線運動に変換する。可動金型12Aは、ナット部18と一体化ないしは機械的に結合されており、ナット部18の直線運動に応じて可動金型12Aも直線移動するようになっている。この結果、可動金型12Aが固定金型12Bに対して接近したり、遠ざかったりする。可動金型12Aを固定金型12Bに接触させたのちに樹脂を流し込んで成形し、冷却して成形物が固まったあとに可動金型12Aを固定金型12Bから離すことで成形物を取り出す。
 制御部30は、例えば、CPU、ROM、RAM、EEPROM、各種I/Oインタフ ェース等を備えた組み込み機器用のマイクロコンピュータを有して構成され、プログラムとの協働によって種々の機能を実行するようになっている。制御部30は、射出成形機1の制御を実行し、例えば、可塑化動作、射出動作、型開閉動作、エジェクト動作等の成形行程全体の制御を行う。 なお、本発明は本実施形態に限定されるものではなく、その一部をアナログ回路によって構成するものであってもよい。
 次いで、機能的構成として、制御部30について説明する。
 図2に、制御部30の機能ブロック図を模式的に示す。
 インバータ40は、いわゆるベクトル制御方式が適用されるモータ制御部41により制御される。モータ制御部41は、インバータ40或いはモータ13からモータ電流、モータ電圧、回転子の位置情報、回転数などの情報を取得し、それらの情報を基に上位コントローラからの指令に応じて、モータ13を駆動するための電圧指令値を作成する。そして、モータ制御部41は、作成した電圧指令値をインバータ40に与える。
 外部データ取得部47は、モータ13やインバータ40以外に設置されるセンサなどから構成され、機器の温度や外気温、機器の上位指令値などを取得する。
 状態推定部42は、モータ制御の内部値を作成する制御内部値作成部43と、制御内部値作成部43によって作成されるモータ制御の内部値に基づいて射出成形機1に関する特徴量や状態量を算出する状態算出部44を備える。
 制御内部値作成部43は、モータ13の入力部或いは出力部に、モータ制御部41用とは別に、独立に設置される電流センサ、電圧センサ及び位置センサによって取得される時系列データと、外部データ取得部47によって取得されるデータとに基づいて、モータ制御部41における状態変数であって射出成形機1の状態に関連するモータ制御の内部値を作成する。制御内部値作成部43は電流取得部に対応する。
 状態算出部44は、状態推定モデルを有し、状態推定モデルを用いて、モータ制御内部値作成部43によって作成されるモータ制御内部値に基づいて、機器システムの状態、すなわち機器自体の状態や機器によって製造される製造物の状態(品質など)示す状態量を算出する。即ち状態推定部42は、前述の各センサや外部データ取得部47によって取得されるデータを入力して、入力するデータから作成されるモータ制御の内部値を作成し、作成されるモータ制御の内部値に基づいて算出される状態量若しくはこの状態量が示す射出成形機1の状態に関する情報(以下、「推定状態」と記す。)を出力する。状態推定部42から出力される推定状態は、後述する情報伝達部45及びモータ制御更新部46に伝送されるようになっている。情報伝達部45は表示部でもある。
 情報伝達部45は、状態推定部42から出力される推定状態に応じて、射出成形機1の状態に関する情報、例えば、機器自体の特徴量(後述するねじシャフト17の劣化判定等)或いは製造物の品質やその変化に関する情報を、ディスプレイ、音声、ランプ、振動等により、機器システムを用いる作業員や機器システムの管理者に通知する。これにより、機器のメンテナンス時期の把握や、品質変化時の状況把握および機器調整作業などにおける、作業負荷が軽減できる。
 モータ制御更新部46は、状態推定部42から出力される推定状態に基づいて、モータ制御部41、即ち制御指令や制御パラメータ若しくは制御ソフトを変更する。例えば、製造物の品質が変化してきた場合、モータ制御更新部46は、品質の変化を抑制するようにモータ制御部41を変更する。これにより、射出成形機1の調整作業が自動化できるので、作業負荷が軽減される。
 次に、モータ制御部41、状態推定部42について、さらに詳細を説明する。
 図3は、モータ制御部41の機能構成を模式的に示すブロック図である。
 図3では、上位コントローラからの指令が、位置指令θ*であるが、速度(回転数)指令ω*やトルク指令Trq*でもよい。なお、上位コントローラからの指令が速度(回転数)指令ω*およびトルク指令Trq*である場合、モータ制御部41のブロック図は、それぞれ、図3中の境界線Aより右側のブロック図および境界線Bより右側のブロック図となる。
 図3に示すように、位置指令θ*が上位コントローラからモータ制御部41に入力されると、速度指令作成部101は、センサにより実測される位置フィードバック値θと位置指令値θ*との差分に基づいて、速度指令ω*を作成して出力する。
 トルク指令作成部102は、速度指令ω*を入力すると、センサにより実測される速度(回転数)フィードバック値ωと速度指令ω*との差分に基づいて、トルク指令Trq*を作成して出力する。
 電流指令作成部103は、トルク指令Trq*を入力すると、トルク指令Trq*に基づいて、回転座標系におけるdq軸上の電流指令即ちd軸電流指令Id*とq軸電流指令Iq*を作成して出力する。
 電圧指令作成部104は、d軸電流指令Id*とq軸電流指令Iq*を入力すると、d軸電流フィードバック値Idとd軸電流指令Id*との差分、およびq軸電流フィードバック値Iqとq軸電流指令Iq*との差分に基づいて、dq軸上の電圧指令即ちd軸電圧指令Vd*とq軸電圧指令Vq*を作成して出力する。
 ここで、d軸電流フィードバック値Idとq軸電流フィードバック値Iqは、センサにより実測されるモータのU相電流フィードバック値Iu、V相電流フィードバック値IvおよびW相電流フィードバック値Iwを、3相/2相変換部106によって3相/2相変換して得られる。
 2相/3相変換部105は、d軸電圧指令Vd*とq軸電圧指令Vq*を入力すると、d軸電圧指令Vd*およびq軸電圧指令Vq*を、U相電圧指令Vu*、V相電圧指令Vv*およびW相電圧指令Vw*に変換し、これら電圧指令をインバータ40へ出力する。
 次に、状態推定部42について説明する。
 前述のように(図2参照)、状態推定部42は、制御内部値作成部46及び状態算出部44を備える。以下、夫々について図面を用いて説明する。
 図4に、制御内部値作成部43の機能構成を模式的に示す。
  図4に示すように、制御内部値作成部43は、いわば、図3に示すモータ制御部41の逆モデルになっている。即ち制御内部値作成部46は、モータ制御部41(図3参照)における速度指令作成部101、トルク指令作成部102、電流指令作成部103、電圧指令作成部104、2相/3相変換部105及び3相/2相変換部106に対応して、それぞれ、速度指令作成部逆モデル111、トルク指令作成部逆モデル112、電流指令作成部逆モデル113、電圧指令作成部逆モデル114、3相/2相変換部115及び3相/2相変換部116を有する。
 図4では、上位コントローラからモータ制御部41への指令が、位置指令θ*であるが、トルク指令Trq*や速度指令ω*でもよい。なお、上位コントローラからの指令が、トルク指令Trq*、速度指令ω*および、位置指令θ*である場合、モータ制御内部値作成手段6のブロック図は、それぞれ、図4中の境界線Cより右側のブロック図、境界線Dより右側のブロック図および境界線Eより右側のブロック図となる。
 図4に示す構成により、制御内部値作成部43は、モータ13の入力部あるいは出力部に、モータ制御部41用とは別に、独立に設置される電流センサ、電圧センサ及び位置センサによって取得される時系列データである、モータ3相電圧フィードバック値Vu,Vv,Vwと、モータ3相電流フィードバック値Iu,Iv,Iwと、速度フィードバック値ωmと、位置フィードバック値θmのいずれか一つ或いは複数に基づいて、d軸電流フィードバック値Idとq軸電流フィードバック値Iq、d軸電圧指令Vd*とq軸電圧指令Vq*、d軸電流指令Id*とq軸電流指令Iq*、トルク指令Trq*、速度指令ω*、位置指令θ*を算出する。
 なお、本実施形態において、モータ制御部41の状態変数である、θ*,θm,ω*,ωm,Trq*,Id*,Iq*,Id,Iq,Vd*,Vq*,Vu*,Vv*,Vw*,Vu,Vv,Vw,Iu,Iv,Iw、指令値と実測値との差分、制御器を構成する比例器、積分器、微分器の出力値が、モータ制御の内部値である。即ちモータ制御部41におけるこれらのモータ制御内部値のいずれ一つ或いは複数が、制御内部値作成部43によって作成される。
 なお、本実施形態おいて、図4に示す制御内部値作成部43により、モータ制御部41の状態変数の内、モータ制御部41による処理の過程で作成されて用いられ、モータ制御部41からは出力されない状態変数(例えば、Id*,Iq*,Id,Iq,Vd*,Vq*)も作成することができる。これにより、本実施形態は、多種多様な射出成形機1の様々な状態の推定に適用することができる。
 図5は、状態算出部44の機能構成を模式的に示すブロック図である。
 上述のように、状態算出部44(図2参照)は、制御内部値作成部43によって作成される少なくとも一つのモータ制御の内部値に基づいて、射出成形機1の状態即ち機器自体の状態や機器によって製造される製造物の状態(品質など)を示す状態量を算出する。なお、状態算出部44は、モータ制御の内部値に加えて、外部データ取得部47(図2参照)で取得したデータ(機器の温度など)に基づいて状態量を算出しても良い。そこで、図5、図6Aおよび図6Bでは、モータ制御内部値(X1~Xn)および外部データ取得部47で取得されるデータ(Z1~Zn)が状態算出部44に入力されている。
 図5中のX1~Xnはモータ制御の内部値を示し、Z1~Znは外部データ取得部47で取得される情報を示す。状態算出部44は、少なくとも一つのモータ制御の内部値が入力される。また、状態算出部44に対する外部データ取得部47で取得される情報の入力の有無および入力数は任意である。
 状態算出部44に入力される、モータ制御の内部値及び外部データ取得部47で取得される情報の種類や個数は、状態算出部44の構成(例えば、後述する統計的モデル)に応じて設定される。
 なお、図5中、Xn,Zn,Cn(後述)の添え字を、便宜上、同じ「n」にしているが、この「n」は、Xn,Zn,Cnの各個数が任意であることを示しており、Xn,Zn,Cnの個数が同数であることを意味するものではない。
 図5の構成例では、状態算出部44は、状態量算出に用いる統計的モデルとして、回帰式を有する。本構成例において、状態算出部44は、回帰式の説明変数となる特徴量を設定する特徴量算出手段121と、特徴量算出部121によって設定される特徴量に基づいて、回帰式により状態量(目的変数)を算出する演算部122を備える。演算部122は診断部である。
 特徴量算出部121は、内部値Xn及び情報Znを入力し、入力したXn及びZnに基づいて、演算部122の入力とする特徴量(説明変数)Cnを算出する。特徴量算出部121は、XnやZnの瞬時データを加工せずにそのまま特徴量Cnとして出力したり、所定の時間区間においてXnやZnの瞬時データを周波数分析した結果(振幅、位相など)、所定の時間区間における実効値、平均値(電流平均値等)、標準偏差、最大値もしくは最小値、所定の時間区間におけるオーバーシュート量やピーク値を出力したりする。特徴量Cnの個数は、回帰式に応じて、単数でも良いし、複数でも良い。
 また、特徴量算出部121は、モータ制御の内部値から演算される所定量、例えば、有効電力、無効電力等を特徴量として出力しても良い。また、いわゆるオブザーバにより推定される外乱トルクなどを特徴量としても良い。なお、これらの特徴量は、さらに周波数分析や統計的計算(平均)などを施してから出力されても良い。
 演算部122は、特徴量算出部121から出力される特徴量C1~Cnを入力し、特徴量C1~Cnに基づいて状態量推定値(Ya,Yb)を算出する。
 ここで、本実施形態の特徴の一つである射出成形機1による動力伝達機構(特に、ボールネジ機構20のねじシャフト17)に関する特徴量の算出及び機器の異常判定方法について説明する。
 図6Aは、射出成形機1のボールネジ機構20の動作と劣化箇所の様を模式的に示す。ボールネジ機構20が長期にわたり使用されることで、ねじシャフト17の溝が劣化する。このとき、ねじシャフト17の溝は一律に劣化する場合もあるが、使用頻度の偏りによって特定の箇所から順次劣化する事の方が多い。例えば、図6Aの場合は、ナット部18がねじシャフト17の中間地点から後半寄りの部分で劣化箇所Zが生じた様を示す。かかる劣化は金型開閉動作の不安定を招来する為、早期に精度よく検出することが望ましい。
 図6Bは、ボールねじ機構20等が開始位置(開始時間)から終了位置(終了時間)に至るまでの電流が変化する様を模式的に示す。先ず、ねじシャフト17の回転により開始位置(開始時間)からナット部18が射出方向に移動すると、射出の応力に伴い電流が上昇する。そして、その後ナット部18が位置(経過時間)Xに至った段階で、電流が凸状(点線)に上昇する。これは、ねじシャフト17の劣化箇所Zにより、正常時よりも多くの摩擦が生じ、その分ボールねじ機構20を駆動するためのモータトルクが増加するためである。
 このように特徴量算出部121は、開始位置(開始時間)から終了位置(終了時間)までの電流値の変化を監視することによりねじシャフト17の劣化を検出することができる。
 しかしながら、例えば劣化が初期の段階にある場合等や電流値のノイズ等の振れは、通常、電流の変化が顕著に判定し難いという課題がある。即ちこれらは正常な電流値との差分が僅少となるからである。
   そこで、本実施形態では、ボールねじ機構20が、開始地点から終了地点までに至る工程を所定の複数の領域に分割し、各領域における電流値の平均値を算出する。あらかじめ正常状態と定義したときの電流の平均値と、診断時の電流の平均値との差分値を領域ごとに算出する。その後、算出した各領域の差分値の最大値を特徴量として抽出する。この特徴量と、あらかじめ定めた閾値とを比較することで、ねじシャフト17の劣化の有無や劣化度合を判定するようになっている。
 図7A及び図7Bに、本実施形態の領域分割及び特徴量に基づく劣化判定の様を模式的に示す。図7Aにおいて、開始点から終了点に至るまでの射出に関する1工程(単位工程)の区間を任意の複数の領域に分割する。例えば、本実施形態のように射出成形機1の場合、モータ13の回転数により、ナット部18がねじシャフト17上で位置する場所を検出することができる。例えば、1工程におけるモータ13の回転数が30回転であるとすると、10回転毎の3つの区間1~3に分割する。なお、分割方法は均等に限らず不均等であってもよい。例えば、予め劣化部分が経験則や実験等からある程度予測される場合には、当該劣化が予想される区間を他の区間より大きく(或いは小さく)するように分割するようにしてもよい。
 特徴量算出部121及び演算部122は、各区間において所定時間間隔で検出される電流値の内、閾値以下(正常値)の電流値及び数を測り、これの平均を算出する。同様に、特徴量算出部121は、各区間において所定時間間隔で検出される電流値の内、閾値よりも大きい(異常値)電流値及び数を測り、これの平均値を算出する。その後、特徴量算出部121及び演算部122は、これらの結果を状態推定部42に出力する。
  図7Bに、各区間の電流の特徴量(平均値)を模式的に示す。同図において、区間3では、正常値の平均値よりも異常値の平均値が大きく且つ他の区間との比較で最大となることがわかる。状態推定部42は、ねじシャフト17が劣化していることを判定し、劣化及び劣化位置をモータ制御更新部46及び情報伝達部45に出力する。
 図8Aおよび図8Bに、かかる特徴量に基づく劣化判定を実施する場合と、しない場合とでの結果比較の一例を模式的に示す。図8Aおよび図8Bにおいて、横軸はサンプル数(=正常と劣化で各50工程分のデータを使用)を示し、縦軸は、各サンプルにおける特徴量(電流の平均値の差分値)を示す。
 図8Aは、上述の劣化判定処理をせずに単に電流値の比較を行う場合の例である。即ち正常時の電流の平均値(本検証では正常データ50工程分の電流の平均値)と、各サンプルの電流の平均値との差分値を特徴量として計算し、サイクル毎に示したものである。同図に示すように、正常値と異常値の平均値の差分値(差分量)Dは僅少な場合がある。
 これに対して、図8Bに示す、上記劣化判定処理を実施した場合では、正常な電流値群と、異常な電流値群の差分値(差分量)Dが、図8Aに示した場合と比較して増加し、正常と劣化の差異が拡大(すなわち、劣化の検出感度が増加)していることがわかる。即ち上記劣化判定は、先ず1工程を複数の領域に分割し、この各分割区画での正常値と異常値の平均を算出することから、平均値を算出する上でのサンプル数が少なく、突出した値が平均値に影響する度合いが劣化判定処理を実施しないで平均値を算出する場合(図8Aの方式)よりも高くなる。そして、そのように突出した値の影響を受けやすい各分割領域の中から更に異常値の平均値が高い区間の異常平均値を当該1サイクル(工程)での異常値として扱うため、最も異常である電流値の平均値と正常平均値との差分が相対的に大きな電流値差として表れることとなる。つまり、電流値の振れ幅が僅少な場合であっても明確に正常と異常の判定ができ、劣化検出の精度が向上し又劣化の早期段階での検出も可能となるという顕著な効果を得ることができる。
 このように、本実施形態によれば、1工程を複数に分割し、夫々の区間の正常値と異常値の平均値を算出し、これらの中で最も異常値平均が高い値を劣化判定の対象とすることから、動力伝達機構の劣化検知をより精度及び確度高く検出することができる。特に、本発明によれば動力伝達機構の劣化が小さい場合や初期段階にある場合であっても、異常として検出し得る精度及び確度の向上効果が期待できる。
 ここで、動力伝達機構の劣化によっては、正常値に比べて異常値がばらつくことがあり、このばらつきも判定することで、劣化判定を行うことも可能であると考えられる。
  上記ばらつきを判定することによって、動力伝達機構の異常検知を、より精度及び確度高く検出することができる。
 図9は、動力伝達機構の状態量変動つまり、異常値のばらつきを説明する図である。図9において、縦軸は状態量推定値を示し、横軸は経過日時を示す。図9において、日時t0において、正常モデルを測定し、正常な状態の動力伝達機構の状態量を設定する。日時t1にて負荷を小から中に変更し、日時t2にて負荷を中から大に変更する。そして、日時t3にて負荷を大から小に変更し、日時t4にて機械を修理している。
 この場合、状態量Eは、日時t0から日時t3に向かって、変動しながら、増加しているが、通常の変動幅(ばらつき)で推移している。日時t3からt4については、状態量Eの変動幅(ばらつき)が日時t0~t3の変動幅(ばらつき)より大きく、異常が発生していると判断することができる。
 図10は、特徴量のピーク値とピーク値との検出を説明する図である。図10において、電流データの時間変化について、診断区間に特徴量を導出し、特徴量のピーク値(正側)とピーク値(負側)とを検出し、状態量推定値(pk-pk値)を算出する。図10のグラフの縦軸は特徴量を示し、横軸は、時間区間番号を示す。グラフ中の複数の丸印は、各時間区間の特徴量を示し、正常モデルの特徴量より大の特徴量は、グラフの上方半分に差分正の領域に示され、正常モデルの特徴量より小の特徴量は、グラフの下方半分の差分負の領域に示されている。
 差分正の領域の最大値の特徴量であるpk1(最大平均電流値)と、差分負の領域の最小値の特徴量であるpk2(最小平均電流値)との差(絶対値)を状態量推定値とし、この状態量推定値から、異常が発生しているか否かを判定することができる。
 なお、特徴量算出に使用する「基準となる基準電流値」は、状態推定部42で生成してもよいし、予め使用者が、プロファイルとして用意していてもよい。また、予め使用者が、平均電流値を求めておいて基準値として設定することも可能である。
 図11は、演算部122にて行われる特徴量のピーク値(正側)とピーク値(負側)と差を演算するフローチャートである。図11において、初期値はn=0のときの値であり、特徴量max及び特徴量minの値は0である。
 図11のステップS1において、算出した特徴量が最大の特徴量より大か否かを判定する。算出した特徴量が最大の特徴量より大であれば、ステップS2に進み、算出した特徴量を最大の特徴量として定義し、ステップS3に進む。ステップS1において、算出した特徴量が最大の特徴量より以下であれば、ステップS3に進む。
 ステップS3において、算出した特徴量が最小の特徴量より小か否かを判定する。算出した特徴量が最小の特徴量より小であれば、ステップS4に進み、算出した特徴量を最小の特徴量として定義し、ステップS5に進む。ステップS3において、算出した特徴量が最小の特徴量より大であれば、ステップS5に進む。
 ステップS5において、最大の特徴量から最小の特徴量を減算し、状態量推定値とする。
 得られた状態量推定値を予め定めた正常状態量推定値と比較して、異常発生の判定を行うことができる。異常発生の判定は、演算部122で行い、その結果を情報伝達部45に表示することができる。また、図9に示したグラフや図10に示した状態量推定値と日時との関係を示すグラフを情報伝達部45に表示することも可能である。また、平均電流値や特徴量を情報伝達部45に表示することも可能である。この場合、測定したデータを全て表示してもよいし、全て表示するのではなく、指定した日数間隔をあけて表示することも可能である。例えば、毎日データを測定していても、表示は1週間ごとのデータを表示する。また、1日に複数回測定した状態量推定値を平均してその日の状態量推定値として表示することも可能である。
 本発明の管理方法は、電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理方法であって、動力伝達機構が駆動される単位工程当たりの電流値を取得する電流取得ステップと、単位工程を複数の区間に分割し、区間毎の電流値を平均した平均電流値を算出する平均電流値算出ステップと、異常検知をする異常検知ステップと、を備え、異常検知ステップは、複数の区間の平均電流値に基づき状態量推定値を算出し、状態量推定値を基に単位工程における異常検出をする。
 本発明の実施例1によれば、1工程(時間区間)を複数に分割し、夫々の区間の電流値の平均値と正常値との差分を算出し、これらの中の最大値を特徴量として、複数工程(複数時間区間)における特徴量のばらつき(pk-pk値)を状態量推定値として算出し、算出し状態推定値に基いて、動力伝達機構の異常を判定している。
 よって、動力伝達機構の異常(劣化)検知を、より精度及び確度高く検出することができる管理装置および管理方法を実現することができる。特に、本発明によれば動力伝達機構の異常(劣化)が小さい場合や初期段階にある場合であっても、異常として検出し得る精度及び確度の向上効果がある。
 (実施例2)
 次に、本発明の実施例2について説明する。
 本発明の実施例2の全体構成は、実施例1と同様であるので、図示および詳細な説明は省略する。
 上述した実施例1においては、図10に示したように、特徴量のピーク値とピーク値とを検出し、状態量推定値(pk-pk値)を算出する構成である。
 これに対して、実施例2においては、図10のグラフの縦軸の中央に示した基準電流値Ioとの電流値差分正の領域の特徴量の平均値を第1電流値群平均値(FVave1)とし、基準電流値Ioとの電流値差分負の領域の特徴量の平均値を第2電流値群平均値(FVave2)として、第1電流値群平均値と第2電流値群平均値との差の絶対値を状態量推定値(abs(FVave1-FVave2))として算出する。
 そして、状態量推定値(abs(FVave1-FVave2))を用いて、異常の判定を行う。
 図12は、演算部122にて行われる状態量推定値を演算するフローチャートである。図12において、初期値はn=0のときの値であり、n1=n2=0、FVsigma1=0、FVsigma2=0である。
 図12のステップS10において、特徴量が0より以上か否かを判定し、0より以上であれば、ステップS11に進む。ステップS11において、第1平均電流値群積算を行う(FVsigma1←FVsigma1+特徴量)。そして、ステップS12に進み、n1+1をn1とし、ステップS15に進む。
 ステップS10において、特徴量が0未満であれば、ステップS13に進む。ステップS13において、第2平均電流値群積算を行う(FVsigma2←FVsigma2+特徴量)。そして、ステップS14に進み、n2+1をn2とし、ステップS15に進む。
 ステップS15において、nが最終値か否かを判定し、最終値でなければ、処理は終了する。
 ステップS15において、nが最終値でなければ、ステップS16に進み、第1平均電流値群平均値導出(算出)を行う(FVave1←FVsigma1/n1)。そして、ステップS17に進み、第2平均電流値群平均値導出(算出)を行う(FVave2←FVsigma2/n2)。そして、ステップS18に進み、状態量推定値をabs(FVave1-FVave2)とし、処理を終了する。
 本発明の実施例2においても、実施例1と同様な効果を得ることができる。
 (実施例3)
 次に、本発明の実施例3について、説明する。
 本発明の実施例3の全体構成は、実施例1と同様であるので、図示および詳細な説明は省略する。
 実施例1においては、図10に示したように、特徴量のピーク値(正側)とピーク値(負側)とを検出し、状態量推定値(pk-pk値)を算出する構成である。
 これに対して、実施例3においては、図13Aに示すように、基準電流値Ioとの差分正の領域の第1平均電流群CL1とし、基準電流値Ioとの差分負の領域の特徴量の平均値を第2平均電流値群CL2として、第1平均電流値群CL1の特徴量の数と、第2電流値群平均値群CL2の特徴量の数とを比較する(図13Bに示す)。図13Bに示した例では、第1平均電流値群CL1の特徴量の数の方が、第2電流値群平均値群CL2の特徴量の数より多い。この場合は、図13Cに示すように、第2電流値群平均値群CL2の特徴量は、異常の診断から除外し、第1平均電流値群CL1の特徴量を使用して異常の診断を行う。つまり、多数決により、データが多数の方の領域のデータを使用して異常の診断を行う例である。この例は、負荷変動が大であることが多い動力伝達機構や過渡状態における動力伝達機構の異常診断に適用することができる。
 図14は、演算部122にて行われる状態量推定値を演算するフローチャートである。図14において、ステップS20で時間区間ごとの特徴量を算出し、ステップS21に進む。ステップS21において、全時間区間の特徴量を算出済みか否かについて判定し、算出済みでなければ処理は終了し、算出済みであれば、ステップS22に進む。
 ステップS22において、特徴量が正の時間区間における特徴量の数N1と特徴量が負の時間区間における特徴量の数N2を算出する。そして、ステップS23において、数N1は数N2より大か否かを判定する。数N1が数N2より大であれば、ステップS24に進み、特徴量が正のデータ群CL1から差分の絶対値が最大となる値を算出し、ステップS26に進む。
 ステップS23において、数N1が数N2より大でなければ、ステップS25に進み、特徴量が負のデータ群CL2から差分の絶対値が最大となる値を算出し、ステップS26に進む。
 ステップS26において、状態量推定値を算出し、処理を終了する。
 本発明の実施例3においても、実施例1と同様な効果を得ることができる他、負荷変動が大であることが多い動力伝達機構や過渡状態における動力伝達機構の異常診断(異常検出)において、異常として検出し得る精度及び確度の向上効果がある。
 (実施例4)
 次に、本発明の実施例4について説明する。
 本発明の実施例4の全体構成は、実施例1と同様であるので、図示および詳細な説明は省略する。
 実施例4においては、図15に示すように、差分正の領域における正の閾値(vmax)を超える特徴量及び差分負の領域における負の閾値(vmin)未満の特徴量を外れ値として除外して、正の閾値以下であり、負の閾値以上の特徴量を使用して状態量推定値を算出する。状態量推定値を用いた異常の検出方法は、実施例1、実施例2または実施例3と同様な方法とすることができる。
 図16は、演算部122にて行われる、特徴量を外れ値として除外して状態量推定値を演算するフローチャートである。図16において、初期値はn=0のときの値であり、特徴量max及び特徴量minの値は0である。
 図16のステップS30において、算出した特徴量が、正の閾値(vmax)以下であるか、または負の閾値(vmin)以上であるか否かを判定する。算出した特徴量が正の閾値(vmax)以下または負の閾値(vmin)以上であれば、ステップS31に進む。ステップS30において、算出した特徴量が正の閾値(vmax)以下または負の閾値(vmin)以上でなければ処理は終了する。
 ステップS31において、算出した特徴量が特徴量maxより大か否かを判定する。算出した特徴量が特徴量maxより大であれば、ステップS32に進み、算出した特徴量を最大の特徴量(特徴量max)として定義し、ステップS33に進む。ステップS31において、算出した特徴量が特徴量max以下であれば、ステップS33に進む。
 ステップS33において、算出した特徴量が特徴量minより小か否かを判定する。算出した特徴量が特徴量minより小であれば、ステップS34に進み、算出した特徴量を最小の特徴量(特徴量min)として定義し、ステップS35に進む。ステップS33において、算出した特徴量が特徴量min以上であれば、ステップS35に進む。
 ステップS35において、特徴量maxから特徴量minを減算し、状態量推定値とする。
 本発明の実施例4においても、実施例1と同様な効果を得ることができる他、ノイズが大であることが多い動力伝達機構における動力伝達機構の異常診断(異常検出)において、異常として検出し得る精度及び確度の向上効果がある。
 (実施例5)
 次に、本発明の実施例5について説明する。
 本発明の実施例5の全体構成は、実施例1と同様であるので、図示および詳細な説明は省略する。
 実施例5は、動力伝達機構に異物混入等の異常が発生し、その異常の発生や異常個所を検出することが可能な例である。実施例5は、実施例1~4における異常検出に加えて、適用可能な例である。
 図17は、動力伝達機構に異物が混入した場合等の異常時が発生した場合の異常発生位置Xを検出(抽出)する方法を説明する図である。図18は、実施例5における特徴量算出部及び演算部の機能的構成を示す模式図であり、図5に示した例に位置取得部123が追加されている。位置取得部123は、動力伝達機構が駆動される単位工程当たりの位置情報を取得する。位置取得部123は、制御内部値作成部43である電流取得部と略同一のタイミングで動力伝達機構の位置情報を取得する。また、位置取得部123は、動力伝達機構の異常を検出した際に単位工程に対応する位置を出力する。
 図17において、異常診断の開始から診断終了までの時間内で、電流値は正常時には、実線で示すように、傾斜状に立ち上がり、一定値となった後には、一定値を維持し、傾斜状に立ち下がる。
 異常診断の開始から診断終了までの時間内で、異物混入等の異常が発生した場合は、電流値は、破線で示すように、脈動するこの場合、特徴量も、異常時の電流波形と同様に、異物混入等の異常が発生した場合は破線で示すように、急激に上昇した後に短時間で立ち下がる。特徴量の立ち上がり量が状態推定値となる。そして、異物混入等の異常が発生した位置は、モータ13の回転開始の時間位置と終了時間の間の、特徴量が立ち上がり立ち下がった時点に対応する。このときのモータ13の位置Xを抽出し、それに対応する位置、例えば、ねじシャフト17の位置を抽出することができる。
 図18に示すように、位置取得部123にモータ13の回転位置が入力される。演算部122から位置取得部123に特徴量が出力され、位置取得部123は、特徴量が立ち上がったか、もしくは立ち下がった時点に対応するモータ13の回転位置から、ねじシャフト17の異物混入位置等の異常位置を取得し、その情報を演算部122に伝達する。演算部122は、状態推定値Yと併せてねじシャフト17の異常発生位置を情報伝達部45に出力する。情報伝達部45は、異常が発生したこと及びねじシャフト17の異常発生位置を表示等により使用者に報知する。
 図19は、異常発生位置の検出を行うための方法を説明するフローチャートである。
 図19のステップS40において、特徴量が異常閾値(正側)より大か否かを判定する。特徴量が異常閾値(正側)より大の場合は、ステップS41において、特徴量を状態推定値pとして、異常発生時のねじシャフト17の位置Xpを発報し、ステップS42に進む。また、ステップS40において、特徴量が異常閾値(正側)より大ではない場合は、ステップS42に進む。
 ステップS42において、特徴量が異常閾値(負側)より小か否かを判定する。特徴量が異常閾値(負側)より小の場合は、ステップS43において、特徴量を状態推定値mとして、異常発生時のねじシャフト17の位置Xmを発報し、処理を終了する。また、ステップS42において、特徴量が異常閾値(負側)より小ではない場合も処理を終了する。
 本発明の実施例5においても、実施例1~4と同様な効果を得ることができる他、動力伝達機構に異物混入等の異常が発生した場合に、その異常の発生や異常個所を検出し、発報することが可能である。
 なお、上述した実施例1~4において、図9、図10及び図15に示したグラフのそれぞれを情報伝達部45に表示することができる。
 また、本発明は、上述した管理装置30と、動力伝達機構とを備える管理システムを実現することができる。管理システムにおける動力伝達機構は、駆動プーリ14と、非道プーリ15と、タイミングベルト16と、ボールねじ機構20と、ナット18とを備えるものとすることができる。ただし、本発明の管理システムに適用される動力伝達機構は、上記例に限定されることはなく、例えば、歯車機構等の動力伝達機構にも適用可能である。
 また、本発明は上記種々の構成や機能に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変更や置換ができるのは言うまでもない。例えば、上記実施形態では、射出成形機1を適用例としたが、プレス装置や切削装置などの負荷側装置の駆動源であるモータの動力を、動力伝達機構を介して負荷側機器に伝達するものに適用できることは既に述べた通りである。
 また、上記実施形態では、動力伝達機構としてボールねじ機構20のねじシャフト17について特徴量に基づく劣化判定を行ったが、動力伝達機構としてタイミングベルト16やこれに変えてチェーン等の劣化判定に適用することもできる。
 また、上記実施形態では、動力伝達機構としてボールねじ機構20を適用したが、本発明はボールを介さないスクリューボルトとナットからなるねじ機構に適用することもできる。
 1・・・射出成形機、11・・・射出軸、12・・・金型、13・・・モータ、14・・・プーリ、15・・・被動プーリ、16・・・タイミングベルト、17・・・ねじシャフト、18・・・ナット部、20・・・ボールねじ機構、30・・・制御部(管理装置)、40・・・インバータ、41・・・モータ制御部、42・・・状態推定部、43・・・制御内部値作成部、44・・・状態算出部、45・・・情報伝達部、46・・・モータ制御更新部、47・・・外部データ取得部、101・・・速度指令作成部、102・・・トルク指令作成部、103・・・電流指令作成部、104・・・電圧指令作成部、105・・・2相/3相変換部、106・・・3相/2相変換部、111・・・速度指令作成部逆モデル、112・・・トルク指令作成部逆モデル、113・・・電流指令作成部逆モデル、114・・・電圧指令作成部逆モデル、115・・・3相/2相変換部115、3相/2相変換部、121・・・特徴量算出部、122・・・演算部(診断部)、123・・・位置取得部、Io・・・基準電流値

Claims (13)

  1.  電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理装置であって、
     該管理装置は、
     前記動力伝達機構が駆動される単位工程当たりの前記電動機の電流値を取得する電流取得部と、
     前記単位工程を複数の区間に分割し、該区間毎の前記電流値を平均した平均電流値を算出する特徴量算出部と、
     異常検知をする診断部と、
     を備え、前記診断部は、複数の前記区間の前記平均電流値に基づき状態量推定値を算出し、該状態量推定値を基に前記単位工程における異常検出をする管理装置。
  2.  請求項1に記載の管理装置において、
     前記診断部は、基準となる基準電流値と前記区間毎の前記平均電流値との差を特徴量として算出し、前記区間毎の前記特徴量のうち、前記単位工程における最大平均電流値である特徴量と、該最大平均電流値と最も電流値の差がある平均電流値を最小平均電流値である特徴量として、前記最大平均電流値である特徴量と前記最小平均電流値である特徴量との差の絶対値を前記状態量推定値として算出する管理装置。
  3.  請求項1記載の管理装置において、
     前記診断部は、基準となる基準電流値と前記区間毎の前記平均電流値との差を特徴量として算出し、前記基準電流値よりも電流値が大きい第1平均電流値群と、前記基準電流値よりも電流値が小さい第2平均電流値群とに分類し、前記第1平均電流値群の前記特徴量の平均値と前記第2平均電流値群の前記特徴量との差の絶対値を前記状態量推定値として算出する管理装置。
  4.  請求項1記載の管理装置において、
     前記診断部は、基準となる基準電流値と前記区間毎の前記平均電流値との差分が正値となる第1平均電流値群と、前記差分が負値となる第2平均電流値群とに分類し、前記第1平均電流値群の前記特徴量の数と、前記第2平均電流値群の前記特徴量の数とを比較して、前記特徴量の数が大きい平均電流値群の中で、前記基準電流値との差の絶対値が最も大きい値を前記状態量推定値として算出する管理装置。
  5.  請求項1記載の管理装置において、
     前記平均電流値は、前記区間毎に定めた正の閾値以下であり、負の閾値以上である管理装置。
  6.  請求項1に記載の管理装置において、
     前記動力伝達機構が駆動される単位工程当たりの電流値を取得する位置取得部をさらに備え、
     前記位置取得部は、前記電流取得部と同一のタイミングで位置情報を取得し、前記動力伝達機構の異常を検出した際に前記単位工程に対応する位置を出力する管理装置。
  7.  請求項1に記載の管理装置において、
     前記平均電流値を表示する表示部をさらに備える管理装置。
  8.  請求項1に記載の管理装置において、
     前記状態量推定値と日時との関係を示すグラフを表示する表示部をさらに備える管理装置。
  9.  請求項8に記載の管理装置において、
     指定された日数間隔をあけて前記表示部に前記状態量推定値を表示する管理装置。
  10.  請求項8に記載の管理装置において、
     1日に複数回測定した前記状態量推定値を平均して、その日の前記状態量推定値として前記表示部に表示する管理装置。
  11.  電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理方法であって、
     該管理方法は、
     前記動力伝達機構が駆動される単位工程当たりの電流値を取得する電流取得ステップと、
     前記単位工程を複数の区間に分割し、該区間毎の前記電流値を平均した平均電流値を算出する平均電流値算出ステップと、
     異常検知をする異常検知ステップと、
     を備え、
     前記異常検知ステップは、複数の前記区間の前記平均電流値に基づき状態量推定値を算出し、該状態量推定値を基に前記単位工程における異常検出をする管理方法。
  12.  請求項11に記載の管理方法において、
     前記異常検知ステップは、基準となる基準電流値と前記区間毎の前記平均電流値と、を比較して最も差の大きい平均電流値を特徴量として算出し、前記区間毎の前記特徴量のうち、前記単位工程における最大平均電流値である特徴量と、該最大平均電流値と最も電流値の差がある平均電流値を最小平均電流値である特徴量として、前記最大平均電流値である特徴量と前記最小平均電流値である特徴量との差の絶対値を前記状態量推定値として算出する管理方法。
  13.  請求項1~請求項10のうちのいずれか1つに記載の管理装置と、前記動力伝達機構とを備える管理システム。
PCT/JP2022/021182 2021-12-24 2022-05-24 動力伝達機構の管理装置、動力伝達機構の管理方法及び管理システム WO2023119686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280066394.3A CN118475820A (zh) 2021-12-24 2022-05-24 动力传递机构的管理装置、动力传递机构的管理方法和管理系统
JP2023569039A JPWO2023119686A1 (ja) 2021-12-24 2022-05-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-210040 2021-12-24
JP2021210040 2021-12-24

Publications (2)

Publication Number Publication Date
WO2023119686A1 true WO2023119686A1 (ja) 2023-06-29
WO2023119686A9 WO2023119686A9 (ja) 2024-07-11

Family

ID=86901790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021182 WO2023119686A1 (ja) 2021-12-24 2022-05-24 動力伝達機構の管理装置、動力伝達機構の管理方法及び管理システム

Country Status (4)

Country Link
JP (1) JPWO2023119686A1 (ja)
CN (1) CN118475820A (ja)
TW (1) TWI839828B (ja)
WO (1) WO2023119686A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146057A (ja) * 1994-11-18 1996-06-07 Toa Denpa Kogyo Kk 絶縁抵抗の測定方法
JPH11326147A (ja) * 1998-05-12 1999-11-26 Nippon Steel Corp ローラーテーブルの設備診断方法及び設備診断装置
JP2002285974A (ja) * 2001-03-23 2002-10-03 Toshiba Corp 半導体製造装置、真空ポンプの寿命予測方法及び真空ポンプの修理タイミング決定方法
JP2009045510A (ja) * 2007-08-13 2009-03-05 Toshiba Corp 水処理プラントの運転支援システム及び方法
JP2017175775A (ja) * 2016-03-23 2017-09-28 株式会社デンソー 電子制御装置
WO2018109993A1 (ja) 2016-12-15 2018-06-21 三菱電機株式会社 動力伝達機構の異常診断装置および動力伝達機構の異常診断方法
JP2019123006A (ja) * 2018-01-19 2019-07-25 住友重機械工業株式会社 プレス装置及びプレス装置の診断方法
JP2021136779A (ja) * 2020-02-27 2021-09-13 Ntn株式会社 電動アクチュエータ
WO2021234889A1 (ja) * 2020-05-21 2021-11-25 三菱電機株式会社 電動機制御装置および電動パワーステアリング装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967245B2 (ja) * 2002-09-30 2007-08-29 株式会社東芝 回転機の寿命予測方法及び回転機を有する製造装置
US8075499B2 (en) * 2007-05-18 2011-12-13 Vaidhi Nathan Abnormal motion detector and monitor
JP2013045325A (ja) * 2011-08-25 2013-03-04 Hitachi Ltd 制御システムの制御装置及びエレベータシステム
EP3336634B1 (en) * 2016-12-14 2020-02-26 ABB Schweiz AG Computer system and method for monitoring the status of a technical system
CN106771929A (zh) * 2017-01-13 2017-05-31 国家电网公司 一种gis设备取消例行停电试验的状态试验方法
WO2018158910A1 (ja) * 2017-03-02 2018-09-07 株式会社日立製作所 診断装置および診断方法
WO2018220751A1 (ja) * 2017-05-31 2018-12-06 株式会社日立製作所 状態監視装置、並びに機器システム
JP7403213B2 (ja) * 2017-10-31 2023-12-22 株式会社荏原製作所 研磨装置、及び研磨方法
JP7194069B2 (ja) * 2019-04-18 2022-12-21 株式会社日立産機システム 監視装置、および監視方法
JP7371512B2 (ja) * 2019-09-10 2023-10-31 オムロン株式会社 診断装置、方法、及びプログラム
JP7275008B2 (ja) * 2019-11-14 2023-05-17 株式会社日立製作所 診断装置、モータ駆動装置および診断方法
US11604456B2 (en) * 2020-03-11 2023-03-14 Ford Global Technologies, Llc System for monitoring machining processes of a computer numerical control machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146057A (ja) * 1994-11-18 1996-06-07 Toa Denpa Kogyo Kk 絶縁抵抗の測定方法
JPH11326147A (ja) * 1998-05-12 1999-11-26 Nippon Steel Corp ローラーテーブルの設備診断方法及び設備診断装置
JP2002285974A (ja) * 2001-03-23 2002-10-03 Toshiba Corp 半導体製造装置、真空ポンプの寿命予測方法及び真空ポンプの修理タイミング決定方法
JP2009045510A (ja) * 2007-08-13 2009-03-05 Toshiba Corp 水処理プラントの運転支援システム及び方法
JP2017175775A (ja) * 2016-03-23 2017-09-28 株式会社デンソー 電子制御装置
WO2018109993A1 (ja) 2016-12-15 2018-06-21 三菱電機株式会社 動力伝達機構の異常診断装置および動力伝達機構の異常診断方法
JP2019123006A (ja) * 2018-01-19 2019-07-25 住友重機械工業株式会社 プレス装置及びプレス装置の診断方法
JP2021136779A (ja) * 2020-02-27 2021-09-13 Ntn株式会社 電動アクチュエータ
WO2021234889A1 (ja) * 2020-05-21 2021-11-25 三菱電機株式会社 電動機制御装置および電動パワーステアリング装置

Also Published As

Publication number Publication date
TWI839828B (zh) 2024-04-21
WO2023119686A9 (ja) 2024-07-11
TW202326327A (zh) 2023-07-01
JPWO2023119686A1 (ja) 2023-06-29
CN118475820A (zh) 2024-08-09

Similar Documents

Publication Publication Date Title
JP7315797B2 (ja) 動力伝達機構の管理装置、動力伝達機構の管理方法
KR101489116B1 (ko) 구동 기계의 부하 특성 추정 장치
US8636495B2 (en) Abnormality detector for an injection molding machine
JP6899897B2 (ja) 状態監視装置、並びに機器システム
JP2009279891A (ja) 射出成形機の異常検出装置
JP6773738B2 (ja) 状態判定装置及び状態判定方法
CN102398354B (zh) 注射成型机及电力用半导体元件消耗度监控系统
JP5121471B2 (ja) 成形機
WO2023119686A1 (ja) 動力伝達機構の管理装置、動力伝達機構の管理方法及び管理システム
CN100453297C (zh) 成型机及其控制方法
EP4455818A1 (en) Management device for power transmission mechanism, management method for power transmission mechanism, and management system
JP4929026B2 (ja) 射出成形機の圧力制御装置及び圧力制御方法
JP2021066057A (ja) 射出成形機管理装置及び射出成形機
WO2022075181A1 (ja) 状態判定装置及び状態判定方法
JP5815451B2 (ja) 周波数特性の管理機能を有する射出成形機の管理装置
JP4066403B2 (ja) 電動サーボプレスのスライド駆動モータの制御方法及びその制御装置
JP6004315B2 (ja) 圧力制御装置及び圧力制御方法
WO2023026416A1 (ja) 状態判定装置及び状態判定方法
WO2023053453A1 (ja) 制御装置及び制御方法
JP4068493B2 (ja) 射出成形機の監視装置及び監視方法
WO2023026411A1 (ja) 状態判定装置及び状態判定方法
JP5073562B2 (ja) 射出成形機の圧力異常検出装置
WO2024004106A1 (ja) 判定システム及び方法
JP6068174B2 (ja) 射出成形機のリアプラテン調整装置
JP4568261B2 (ja) 電動射出成形機の動力伝達手段の異常検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910417

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569039

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18696100

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022910417

Country of ref document: EP

Effective date: 20240724