JP7315797B2 - 動力伝達機構の管理装置、動力伝達機構の管理方法 - Google Patents

動力伝達機構の管理装置、動力伝達機構の管理方法 Download PDF

Info

Publication number
JP7315797B2
JP7315797B2 JP2022533853A JP2022533853A JP7315797B2 JP 7315797 B2 JP7315797 B2 JP 7315797B2 JP 2022533853 A JP2022533853 A JP 2022533853A JP 2022533853 A JP2022533853 A JP 2022533853A JP 7315797 B2 JP7315797 B2 JP 7315797B2
Authority
JP
Japan
Prior art keywords
power transmission
transmission mechanism
management device
value
torque current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022533853A
Other languages
English (en)
Other versions
JPWO2022004417A1 (ja
Inventor
見多 出口
悟 金子
敬典 大橋
英人 高田
裕理 高野
豊 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Publication of JPWO2022004417A1 publication Critical patent/JPWO2022004417A1/ja
Application granted granted Critical
Publication of JP7315797B2 publication Critical patent/JP7315797B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、動力伝達機構の管理装置、動力伝達機構の管理方法に関する。
例えば、動力源から動力伝達機構を介して何らかの負荷側装置に動力が供給される装置として、射出成型機やプレス装置といった種々の産業機器をあげることができる。射出成型機を例として説明すれば、動力源として回転電機(モータ)を用いて、任意の動力伝達機構を介して、樹脂や金属繊維、或いはこれらの混合材といった軟粘性材料を所定の型が施された金型に射出することで、任意の成型物を得る機器が知られている。
一例として、射出成型機を上げてその構成や動作を説明する。射出成型機は、駆動源としての電動機の動力(回転力或いはリニアモータのような水平動力の場合もある。)を動力伝達機構によって射出成型用の金型へ射出する動力として伝達し、軟粘性部材を所定の型に射出することで所望する成型物を得るようになっている。より具体的な例としては、電動機の回転駆動力をボールねじといった直線運動に変換する動力変換機構と直接又は間接的に機械的に接続し、かかる動力伝達機構であるボールねじの直線動力と螺合するナット部材と一体になったが射出軸が、軟粘性部材を所定の型に押圧するように構成されている。
射出成型機やプレス装置を始め、駆動源を伴う負荷側装置全体(駆動源そのものや負荷側装置のワーク機構等)の異常を管理することは、最終成型物の品質に深く影響する重要な要素である。また、異常は機器や部品の過負荷を招来し、エネルギ効率といった環境面の課題や機器損傷による製造停止といった事業面での課題も将来するものであり、機器の異常を管理することは社会面での影響も大きい課題であるといえる。
かかる異常検知に関する技術として、特許文献1は、機器の状態を推定する技術を開示する。具体的には、駆動源として電動機及びこれを制御するモータ制御手段を備え、モータ制御手段のモータ制御内部値を作成し、これと比較することで機器の異常を推定する技術を開示する。モータ制御の内部値を監視することで、機器(負荷側装置及びそれに付随するワーク部品)の劣化を検出し得る技術である。
特許文献2は、駆動源たる電動機から動力の伝達を行う動力伝達機構の異常診断装置及びその異常診断方法を開示する。より詳細には、特許文献2は、電動機の動力をプーリベルトやギアチェーンを介して負荷としての機械設備と接続する構成において、電動機に接続された電流検出器から送信される値から電流スペクトル波形を得、これから解析により算出されたスペクトルピークに基づいて、回転速度に伴い発生するプーリベルトやギアチェーンの周波数帯以外の側帯波の個数をカウントすることで、プーリベルトやギアチェーンの異常を診断するようになっている。
射出成型機やプレス装置を始め、動力伝達機構は、動力源と金型といった負荷が直接発生する要素の仲介役として機能するものであることから、動力伝達機構の性能維持は最終成果物である成型物の品質(完成度)に深く影響し、これを管理する事は重要である。
WO2018/220751A1 WO2018/109993A1
ここで、動力伝達機構の異常(劣化)検知について考察する。負荷側装置は、負荷のかかり方が一律でない場合も多く、動力伝達機構に掛かる負荷が大となる部分や、小となる部分が混在する事も多い。即ち動力伝達機構の例として、ボールねじ、プーリベルト又はギアチェーン等が上げられるが、負荷側装置の負荷状況によって、これらで劣化が生ずる箇所には偏りが発生する。
この点、特許文献2が開示する動力伝達機構の異常診断技術は、電流スペクトル波形からのスペクトルピークやそれに付随する側帯波を監視することで動力伝達機構の異常を検出するが、動力伝達機構の劣化が小さい場合や初期段階にある場合、異常として検出する感度が低下するという課題が残る。即ち動力伝達機構の劣化に対して単に電動機の電流スペクトルを解析したとしても、動力電力機構の劣化に起因する異常値は至極わずかな振れとしか現出しないことも多く、正常時の一時的な電流ノイズであるのか、異常に起因する振れなのかの区別は困難を要し、単なる電流スペクトルの状態を監視のみでは、異常検知の精度に課題が残るものである。
動力伝達機構の異常検知を、より精度及び確度高く検出する技術が望まれる。
上述の課題を解決するために、電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理装置であって、前記管理装置が、前記動力伝達機構が駆動する単位工程当たりの前記電動機のトルク電流値を取得し、取得した前記トルク電流値を、前記単位工程を任意の複数の区間に分割して該区間毎のトルク電流値について基準値内のトルク電流値と基準値外のトルク電流値に分類し、該基準値内のトルク電流値と前記基準値外のトルク電流値の夫々の平均値を前記区間毎に求め、前記平均値の差分がより大となる区間の基準値外のトルク電流値によって前記動力伝達機構の異常を検出するものである動力伝達機構の管理装置である。
また、他の態様としては、電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理方法であって、前記動力伝達機構が駆動する単位工程を任意の複数の区画に分割し、前記動力伝達機構が駆動する前記複数の区画毎に前記電動機のトルク電流値を取得し、前記複数の区画毎に取得した前記トルク電流値について、基準値内のトルク電流値の平均値と基準値外のトルク電流値の平均値とを求め、前記平均値の差分がより大となる区間の基準値外のトルク電流値の平均値によって前記動力伝達機構の異常を検出する処理を含む動力伝達機構の管理方法である。
本発明によれば、動力伝達機構の異常(劣化)検知を、より精度及び確度高く検出することができる。特に、本発明によれば動力伝達機構の異常(劣化)が小さい場合や初期段階にある場合であっても、異常として検出し得る精度及び確度の向上効果がある。
本発明の他の課題・構成・効果は、以下の記載から明らかになる。
本発明を適用した実施例としての射出成型機の機械的構成を示す模式図である。 実施例における射出成型機の機能的構成を示す模式図である。 実施例におけるモータ制御部及び状態推定部の機能的構成を示す模式図である。 実施例における制御内部値作成部の機能的構成を示す模式図である。 実施例における状態算出部の機能的構成を示す模式図である。 図6(a)は、ボールねじ機構の動作及び劣化箇所の様を示す模式図である。図6(b)は、ボールねじ機構が開始位置から終了位置に至るまでのトルク電流が変化する模式的図である。 図7(a)は、実施例における劣化判定処理を実行する場合のトルク電流値の正常値及び異常値を示す模式図である。図7(b)は、実施例における劣化判例処理を実行した場合の各分割区画の正常値及び異常値の平均値の演算結果を示す模式図である。 図8(a)は、実施例による劣化判例処理を実行しない場合による各サイクルの正常値と異常値の平均値の分布を示す図である。図8(b)は、実施例による劣化判例処理を実行した場合による各サイクルの正常値と異常値の平均値の分布を示す図である。 図9(a)は、特徴量を算出する区間を変化させた場合のトルク電流と部品の関係を示す図である。図9(b)は、特徴量を算出する区間を変化させた場合の各区間のトルク電流の特徴量(平均値)を模式的に示す図である。
以下に、本発明の実施例を図面を用いて説明する。
図1に、本発明を適用した動力伝達機構の管理装置(制御部30)を備える射出成形機1の部分概要構成を模式的に示す。なお、本実施例では、射出成型機を例として説明するが、本発明は、これに限定するものではなく、プレス装置や切削装置など、駆動源の駆動力を動力伝達機構を介して負荷側に伝達する装置であれば適用可能である。
まず、射出成形機1の機械的構成及び動作を説明する。射出成形機1は、複数のモータの回転を直線運動に変換して単一の直線移動部材を駆動し、このとき複数のモータを進行位置が揃うように同期して動作させるものである。なお、本発明を適用可能な構成は、単一モータでギアを介して複数の動力伝達機構に駆動力を供給する構成や、単一モータで単一の動力伝達機構に駆動力を供給する構成でもよい。
射出成形機1は、溶融した樹脂を金型12の固定金型12Bに設けられた穴11から流し込み、可動金型12Aと固定金型12Bの間に存在する隙間の形状に応じた樹脂成形物を製作することができる。
金型は、筐体に固定された固定金型12Bと、前後進する可動金型12Aを備える。モータ13と、モータ13の出力軸に固着された駆動プーリ14と、被動プーリ15と、駆動プーリ14の回転を被動プーリ15に伝達するタイミングベルト16と、プーリ15の回転を直線運動に変換して可動金型12Aに伝達する動力伝達機構としてのボールねじ機構20と 、制御部30とを備える。
モータ13は、その進行位置(ボールねじ機構20の進行位置に相当)を示すモータ位置信号S2を出力するエンコーダ(不図示)を備える。射出成形機1は、図示しない上位装置から制御部30が原速度指令信号S0を受けることにより、モータ13を駆動制御するようになっている。
モータ13が駆動されると、その回転が駆動プーリ14、タイミングベルト16及び被動プーリ15を介してボールねじ機構20のねじシャフト17に伝達され、これらの溝にボールを介して螺合するナット部18が回転力を直線運動に変換する。可動金型12Aは、ナット部18と一体化ないしは機械的に結合されており、ナット部18の直線運動に応じて可動金型12Aも直線移動するようになっている。この結果、可動金型12Aが固定金型12Bに対して接近したり、遠ざかったりする。可動金型12Aを固定金型12Bに接触させたのちに樹脂を流し込んで成形し、冷却して成形物が固まったあとに可動金型12Aを固定金型12Bから離すことで成形物を取り出す。
制御部30は、例えば、CPU、ROM、RAM、EEPROM、各種I/Oインタフェース等を備えた組み込み機器用のマイクロコンピュータを有して構成され、プログラムとの協働によって種々の機能を実行するようになっている。制御部30は、射出成形機1の制御を実行し、例えば、可塑化動作、射出動作、型開閉動作、エジェクト動作等の成形行程全体の制御を行う。なお、本発明は本実施例に限定されるものではなく、その一部をアナログ回路によって構成するものであってもよい。
次いで、機能的構成として、制御部30について説明する。図2に、制御部30の機能ブロック図を模式的に示す。
インバータ40は、いわゆるベクトル制御方式が適用されるモータ制御部41により制御される。モータ制御部41は、インバータ40或いはモータ13からモータ電流、モータ電圧、回転子の位置情報、回転数などの情報を取得し、それらの情報を基に上位コントローラからの指令に応じて、モータ13を駆動するための電圧指令値を作成する。そして、モータ制御部41は、作成した電圧指令値をインバータ40に与える。
外部データ取得部47は、モータ13やインバータ40以外に設置されるセンサなどから構成され、機器の温度や外気温、機器の上位指令値などを取得する。
状態推定部42は、モータ制御の内部値を作成する制御内部値作成部43と、制御内部値作成部43によって作成されるモータ制御の内部値に基づいて射出成形機1に関する特徴量や状態量を算出する状態算出部44を備える。
制御内部値作成部43は、モータ13の入力部或いは出力部に、モータ制御部41用とは別に、独立に設置される電流センサ、電圧センサ及び位置センサによって取得される時系列データと、外部データ取得部47によって取得されるデータとに基づいて、モータ制御部41における状態変数であって射出成形機1の状態に関連するモータ制御の内部値を作成する。
状態算出部44は、状態推定モデルを有し、状態推定モデルを用いて、モータ制御内部値作成手段によって作成されるモータ制御内部値に基づいて、機器システムの状態、すなわち機器自体の状態や機器によって製造される製造物の状態(品質など)示す状態量を算出する。即ち状態推定部42は、前述の各センサや外部データ取得部47によって取得されるデータを入力して、入力するデータから作成されるモータ制御の内部値を作成し、作成されるモータ制御の内部値に基づいて算出される状態量若しくはこの状態量が示す射出成形機1の状態に関する情報(以下、「推定状態」と記す。)を出力する。状態推定部42から出力される推定状態は、後述する情報伝達部45及びモータ制御更新部46に伝送されるようになっている。
情報伝達部45は、状態推定部42から出力される推定状態に応じて、射出成形機1の状態に関する情報、例えば、機器自体の特徴量(後述するねじシャフト17の劣化判定等)或いは製造物の品質やその変化に関する情報を、ディスプレイ、音声、ランプ、振動等により、機器システムを用いる作業員や機器システムの管理者に通知する。これにより、機器のメンテナンス時期の把握や、品質変化時の状況把握および機器調整作業などにおける、作業負荷が軽減できる。
モータ制御更新部46は、状態推定部42から出力される推定状態に基づいて、モータ制御部41、即ち制御指令や制御パラメータ若しくは制御ソフトを変更する。例えば、製造物の品質が変化してきた場合、モータ制御更新部46は、品質の変化を抑制するようにモータ制御部41を変更する。これにより、射出成形機1の調整作業が自動化できるので、作業負荷が軽減される。
次に、モータ制御部41、状態推定部42について、さらに詳細を説明する。図3は、モータ制御部41の機能構成を模式的に示すブロック図である。
図3では、上位コントローラからの指令が、位置指令θ*であるが、速度(回転数)指令ω*やトルク指令Trq*でもよい。なお、上位コントローラからの指令が速度(回転数)指令ω*およびトルク指令Trq*である場合、モータ制御部41のブロック図は、それぞれ、図3中の境界線Aより右側のブロック図および境界線Bより右側のブロック図となる。
図3に示すように、位置指令θ*が上位コントローラからモータ制御部41に入力されると、速度指令作成部101は、センサにより実測される位置フィードバック値θと位置指令値θ*との差分に基づいて、速度指令ω*を作成して出力する。
トルク指令作成部102は、速度指令ω*を入力すると、センサにより実測される速度(回転数)フィードバック値ωと速度指令ω*との差分に基づいて、トルク指令Trq*を作成して出力する。
電流指令作成部103は、トルク指令Trq*を入力すると、トルク指令Trq*に基づいて、回転座標系におけるdq軸上の電流指令即ちd軸電流指令Id*とq軸電流指令Iq*を作成して出力する。
電圧指令作成部104は、d軸電流指令Id*とq軸電流指令Iq*を入力すると、d軸電流フィードバック値Idとd軸電流指令Id*との差分、およびq軸電流フィードバック値Iqとq軸電流指令Iq*との差分に基づいて、dq軸上の電圧指令即ちd軸電圧指令Vd*とq軸電圧指令Vq*を作成して出力する。
ここで、d軸電流フィードバック値Idとq軸電流フィードバック値Iqは、センサにより実測されるモータのU相電流フィードバック値Iu、V相電流フィードバック値IvおよびW相電流フィードバック値Iwを、3相/2相変換部106によって3相/2相変換して得られる。
2相/3相変換部105は、d軸電圧指令Vd*とq軸電圧指令Vq*を入力すると、d軸電圧指令Vd*およびq軸電圧指令Vq*を、U相電圧指令Vu*、V相電圧指令Vv*およびW相電圧指令Vw*に変換し、これら電圧指令をインバータ40へ出力する。
次に、状態推定部42について説明する。
前述のように(図2参照)、状態推定部42は、制御内部値作成部43及び状態算出部44を備える。以下、夫々について図面を用いて説明する。
図4に、制御内部値作成部43の機能構成を模式的に示す。図4に示すように、制御内部値作成部43は、いわば、図3に示すモータ制御部41の逆モデルになっている。即ち制御内部値作成部43は、モータ制御部41(図3参照)における速度指令作成部101、トルク指令作成部102、電流指令作成部103、電圧指令作成部104、2相/3相変換部105及び3相/2相変換部106に対応して、それぞれ、速度指令作成部逆モデル111、トルク指令作成部逆モデル112、電流指令作成部逆モデル113、電圧指令作成部逆モデル114、3相/2相変換部115及び3相/2相変換部116を有する。
図4では、上位コントローラからモータ制御部41への指令が、位置指令θ*であるが、トルク指令Trq*や速度指令ω*でもよい。なお、上位コントローラからの指令が、トルク指令Trq*、速度指令ω*および、位置指令θ*である場合、モータ制御内部値作成手段6のブロック図は、それぞれ、図4中の境界線Cより右側のブロック図、境界線Dより右側のブロック図および境界線Eより右側のブロック図となる。
図4に示す構成により、制御内部値作成部43は、モータ13の入力部あるいは出力部に、モータ制御部41用とは別に、独立に設置される電流センサ、電圧センサ及び位置センサによって取得される時系列データである、モータ3相電圧フィードバック値Vu,Vv,Vwと、モータ3相電流フィードバック値Iu,Iv,Iwと、速度フィードバック値ωmと、位置フィードバック値θmのいずれか一つ或いは複数に基づいて、次のような制御内部値を算出する。そのような制御内部値としては、d軸電流フィードバック値Idとq軸電流フィードバック値Iq、d軸電圧指令Vd*とq軸電圧指令Vq*、d軸電流指令Id*とq軸電流指令Iq*、トルク指令Trq*、速度指令ω*、位置指令θ*がある。
なお、本実施例において、モータ制御部41の状態変数である、θ*,θm,ω*,ωm,Trq*,Id*,Iq*,Id,Iq,Vd*,Vq*,Vu*,Vv*,Vw*,Vu,Vv,Vw,Iu,Iv,Iw、指令値と実測値との差分、制御器を構成する比例器、積分器、微分器の出力値が、モータ制御の内部値である。即ちモータ制御部41におけるこれらのモータ制御内部値のいずれ一つ或いは複数が、制御内部値作成部43によって作成される。
なお、本実施例において、図4に示す制御内部値作成部43により、モータ制御部41の状態変数の内、モータ制御部41による処理の過程で作成されて用いられ、モータ制御部41からは出力されない状態変数(例えば、Id*,Iq*,Id,Iq,Vd*,Vq*)も作成することができる。これにより、本実施例は、多種多様な射出成型機1の様々な状態の推定に適用することができる。
図5は、状態算出部44の機能構成を模式的に示すブロック図である。上述のように、状態算出部44(図2参照)は、制御内部値作成部43によって作成される少なくとも一つのモータ制御の内部値に基づいて、射出成形機1の状態即ち機器自体の状態や機器によって製造される製造物の状態(品質など)を示す状態量を算出する。なお、状態算出部44は、モータ制御の内部値に加えて、外部データ取得部47(図2参照)で取得したデータ(機器の温度など)に基づいて状態量を算出しても良い。そこで、図5および図6では、モータ制御内部値(X1~Xn)および外部データ取得部47で取得されるデータ(Z1~Zn)が状態算出部44に入力されている。
図5中のX1~Xnはモータ制御の内部値を示し、Z1~Znは外部データ取得部47で取得される情報を示す。状態算出部44は、少なくとも一つのモータ制御の内部値が入力される。また、状態算出部44に対する外部データ取得部47で取得される情報の入力の有無および入力数は任意である。
状態算出部44に入力される、モータ制御の内部値及び外部データ取得部47で取得される情報の種類や個数は、状態算出部44の構成(例えば、後述する統計的モデル)に応じて設定される。
なお、図5中、Xn,Zn,Cn(後述)の添え字を、便宜上、同じ「n」にしているが、この「n」は、Xn,Zn,Cnの各個数が任意であることを示しており、Xn,Zn,Cnの個数が同数であることを意味するものではない。
図5の構成例では、状態算出部44は、モータ制御内部値X1~Xn、外部データZ1~Znに基づいて診断に用いる特徴量を算出する特徴量算出部121と、特徴量C1~Cnに基づいて、機器の劣化状態や製品の品質などの状態を診断する診断部122とで構成されている。診断部122では、統計的モデルや機械学習モデルを用いて状態を診断している。特徴量算出部121は、XnやZnの瞬時データを加工せずにそのまま特徴量Cnとして出力したり、所定の時間区間においてXnやZnの瞬時データを周波数分析した結果(振幅、位相など)、所定の時間区間における実効値、平均値、標準偏差、最大値もしくは最小値、所定の時間区間におけるオーバーシュート量やピーク値を出力したりする。特徴量Cnの個数は、単数でも良いし、複数でも良い。
また、特徴量算出部121は、モータ制御の内部値から演算される所定量、例えば、有効電力、無効電力等を特徴量として出力しても良い。また、いわゆるオブザーバにより推定される外乱トルクなどを特徴量としても良い。なお、これらの特徴量は、さらに周波数分析や統計的計算(平均)などを施してから出力されても良い。
診断部122は、特徴量算出部121から出力される特徴量C1~Cnを入力し、特徴量C1~Cnに基づいて状態量推定値Y1~Ynを算出する。
ここで、本実施例の特徴の一つである射出成形機1による動力伝達機構(特に、ボールねじ機構20のねじシャフト17)に関する特徴量の算出及び機器の異常判定方法について説明する。
図6(a)は、射出成形機1のボールねじ機構20の動作と劣化箇所の様を模式的に示す。ボールねじ機構20が長期にわたり使用されることで、ねじシャフト17の溝などが摩耗する。このとき、ねじシャフト17の溝は一律に劣化する場合もあるが、使用頻度の偏りによって特定の箇所から順次劣化する事の方が多い。例えば、図6(a)の場合は、部品としてのナット部18がねじシャフト17の中間地点から後半寄りの部分で劣化Zが生じた様を示す。かかる劣化は金型開閉動作の不安定を招来する為、早期に精度よく検出することが望ましい。
図6(b)は、ボールねじ機構20等が開始位置から終了位置に至るまでのトルク電流(q軸電流)が変化する様を模式的に示す。先ず、ねじシャフト17の回転により開始位置からナット部18が射出方向に移動すると、射出の応力に伴いトルク電流が上昇する。そして、その後ナット部18が位置Xに至った段階で、トルク電流が凸状(点線)に上昇する。これは、ねじシャフト17の劣化箇所Zにより、正常時よりも多くの摩擦が生じ、その分ボールねじ機構20を駆動するためのモータトルクが増加するためである。
このように特徴量算出部121は、開始位置から終了位置までのトルク電流値の変化を監視することによりねじシャフト17の劣化を検出することができる。
しかしながら、例えば劣化が初期の段階にある場合等やトルク電流値のノイズ等の振れは、通常、トルク電流の変化が顕著に判定し難いという課題がある。即ちこれらは正常なトルク電流値との差分が僅少となるからである。
そこで、本実施例では、ボールねじ機構20が、開始地点から終了地点までに至る工程を所定の複数の領域に分割し、各領域におけるトルク電流値(q軸電流フィードバック値Iq)の平均値を算出する。あらかじめ正常状態と定義したときのトルク電流の平均値と、診断時のトルク電流の平均値との差分値を各領域ごとに算出する。その後、算出した各領域の差分値の最大値を特徴量として抽出する。この特徴量と、あらかじめ定めた閾値とを比較することで、ねじシャフト17の劣化の有無や劣化度合を判定するようになっている。
図7(a)および図7(b)に、本実施例の領域分割及び特徴量に基づく劣化判定の様を模式的に示す。図7(a)は、トルク電流とナット部18の位置の関係を示す図である。図7(a)に示すように、開始地点から終了地点に至るまでの射出に関する1工程の区間を任意の複数の領域に分割する。例えば、本実施例のように射出成形機1の場合、モータ13の回転数により、ナット部18がねじシャフト17上で位置する場所を検出することができる。例えば、1工程におけるモータの回転数が30回転であるとすると、10回転毎の3つの区間1~3に分割する。なお、分割方法は均等に限らず不均等であってもよい。例えば、予め劣化部分が経験則や実験等からある程度予測される場合には、当該劣化が予想される区間を他の区間より大きく(或いは小さく)するように分割するようにしてもよい。
特徴量算出部121は、各区間において所定時間間隔で検出されるトルク電流値の内、閾値以下(正常値)のトルク電流値及び数を測り、これの平均を算出する。同様に、特徴量算出部121は、各区間において所定時間間隔で検出されるトルク電流値の内、閾値よりも大きい(異常値)トルク電流値及び数を測り、これの平均値を算出する。その後、特徴量算出部121は、正常のトルク電流値の平均値と異常のトルク電流値の平均値の差分値を各領域で算出し、各領域の差分値の最大値を特徴量として抽出する。これらの結果を状態推定部42の診断部122に出力する。
図7(b)に、各区間のトルク電流の特徴量(平均値)とナット部の位置を模式的に示す。同図において、区間3では、正常値の平均値よりも異常値(劣化値)の平均値が大きく、且つ他の区間1や区間2との比較で、区間3の平均値の差分値が最大となることがわかる。状態推定部42の診断部122は、区間3における特徴量を劣化の閾値と比較してねじシャフト17が劣化していることを判定する。そして、診断部122は、区間3の異常値のトルク電流の平均値といった劣化の状態量推定値及び劣化位置(区間3)の状態量推定値をモータ制御更新部46及び情報伝達部45に出力する。
図8(a)と図8(b)を使って、トルク電流の特徴量に基づく劣化判定を実施する場合と、劣化判定を実施しない場合とでの結果比較の一例を模式的に示す。同図において、横軸は計測サンプル数を示し、縦軸は、各サンプルにおける特徴量(トルク電流の平均値の差分値)を示す。
図8(a)は、上述の劣化判定処理をせずに単にトルク電流値の比較を行う場合の例である。即ち正常時のトルク電流の平均値(本検証では正常データのサンプルN個分のトルク電流の平均値)と、各サンプルのトルク電流の平均値との差分値を特徴量として計算し、サイクル毎に示したものである。同図に示すように、正常値と異常値の平均値の差分値Dは僅少な場合がある。
これに対して図8(b)に示す、上記劣化判定処理を実施した場合では、正常なトルク電流値群と、異常なトルク電流値群の差分値Dが増加し、正常と劣化の差異が拡大(すなわち、劣化の検出感度が増加)していることがわかる。即ち上記劣化判定は、先ず1工程を複数の領域に分割し、この各分割区画での正常値と異常値の平均を算出することから、平均値を算出する上でのサンプル数が少なく、突出した値が平均値に影響する度合いが劣化判定処理を実施しないで平均値を算出する場合(図8(a)の方式)よりも高くなる。
そして、そのように突出した値の影響を受けやすい各分割領域の中から更に異常値の平均値が高い区間の異常平均値を当該1サイクル(工程)での異常値として扱うため、最も異常であるトルク電流値の平均値と正常平均値との差分が相対的に大きな電流値差として表れることとなる。つまり、トルク電流値の振れ幅が僅少な場合であっても明確に正常と異常の判定ができ、劣化検出の精度が向上し又劣化の早期段階での検出も可能となるという顕著な効果を得ることができる。
以上、本実施例によれば、1工程を複数に分割し、夫々の区間の正常値と異常値の平均値を算出し、これらの中で最も異常値平均が高い値を劣化判定の対象とすることから、動力伝達機構の劣化検知をより精度及び確度高く検出することができる。特に、本発明によれば動力伝達機構の劣化が小さい場合や初期段階にある場合であっても、異常として検出し得る精度及び確度の向上効果が期待できる。
また、図9(a)は、特徴量を算出する区間を変化させた場合のトルク電流とナット部18の位置関係を示す図である。図9(b)は、特徴量を算出する区間を変化させた場合の各区間のトルク電流の特徴量(平均値)とナット部18の位置を模式的に示す図である。
図9(a)に示すように、特徴量を算出する区間を変化させることで、異常検出する感度を向上させることも可能となる。特徴量を算出する区間(1区間の時間幅や、1区間の移動量)を細分化することで、正常時と劣化時のトルク電流の差分値が大きくなるため、診断の感度は向上する。
逆に、特徴量を算出する区間を拡大すると、正常時と劣化時のトルク電流の差分値は小さくなるものの、計測ノイズなどの外れ量の影響を受けにくくなり、診断結果は安定する。以上に示す方法を適用することで、診断対象の劣化状態や診断対象の駆動条件(部品の移動速度や移動量など)に応じて検出精度や検出感度を調整することが可能となる。
なお、本発明は上記種々の構成や機能に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変更や置換ができるのは言うまでもない。例えば、上記実施例では、射出成形機1を適用例としたが、プレス装置や切削装置など、駆動源であるモータの動力を動力伝達機構を介して負荷側機器に伝達するものに適用できることは既に述べた通りである。
また、上記実施例では、動力伝達機構としてボールねじ機構20のねじシャフト17について特徴量に基づく劣化判定を行ったが、動力伝達機構としてタイミングベルト16やこれに変えてチェーン等の劣化判定に適用することもできる。
また、上記実施例では、動力伝達機構としてボールねじ機構20を適用したが、本発明はボールを介さないスクリューボルトとナットからなるねじ機構に適用することもできる。
1…射出成形機、12…金型、13…モータ、14…駆動プーリ、15…被動プーリ、16…タイミングベルト、17…ねじシャフト、18…ナット部、20…ボールねじ機構、30…制御部(管理装置)、40…インバータ、41…モータ制御部、42…状態推定部、43…制御内部値作成部、44…状態算出部、45…情報伝達部、46…モータ制御更新部、47…外部データ取得部、101…速度指令作成部、102…トルク指令作成部、103…電流指令作成部、104…電圧指令作成部、105…2相/3相変換部、106…3相/2相変換部、111…速度指令作成部逆モデル、112…トルク指令作成部逆モデル、113…電流指令作成部逆モデル、114…電圧指令作成部逆モデル、115…3相/2相変換部115、3相/2相変換部、121…特徴量算出部、122…診断部

Claims (14)

  1. 電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理装置であって、
    前記管理装置が、
    前記動力伝達機構が駆動する単位工程当たりの前記電動機のトルク電流値を取得し、
    取得した前記トルク電流値を、前記単位工程を任意の複数の区間に分割して該区間毎のトルク電流値について基準値内のトルク電流値と基準値外のトルク電流値に分類し、
    該基準値内のトルク電流値と前記基準値外のトルク電流値の夫々の平均値を前記区間毎に求め、
    前記平均値の差分がより大となる区間の前記基準値外のトルク電流値によって前記動力伝達機構の異常を検出する動力伝達機構の管理装置。
  2. 請求項1に記載の動力伝達機構の管理装置であって、
    前記管理装置が、
    前記平均値の差分がより大となる区間の前記基準値外のトルク電流値によって、前記動力伝達機構の前記単位工程当たりの異常を検出する動力伝達機構の管理装置。
  3. 請求項1に記載の動力伝達機構の管理装置であって、
    前記管理装置が、
    前記単位工程を、均等に複数の区間に分割する動力伝達機構の管理装置。
  4. 請求項1に記載の動力伝達機構の管理装置であって、
    前記管理装置が、
    前記単位工程を、不均等に複数の区間に分割する動力伝達機構の管理装置。
  5. 請求項1に記載の動力伝達機構の管理装置であって、
    前記管理装置が、
    検出した前記動力伝達機構の異常を外部報知する動力伝達機構の管理装置。
  6. 請求項1に記載の動力伝達機構の管理装置であって、
    前記動力伝達機構が、前記電動機の駆動力を直線運動として前記負荷側装置に伝達する動力伝達機構の管理装置。
  7. 請求項1に記載の動力伝達機構の管理装置であって、
    前記動力伝達機構が、ねじと該ねじと螺合するボルトを備える動力伝達機構の管理装置。
  8. 請求項1に記載の動力伝達機構の管理装置であって、
    前記動力伝達機構が、ボールねじ機構である動力伝達機構の管理装置。
  9. 請求項1に記載の動力伝達機構の管理装置であって、
    前記負荷側装置が、射出成形機、プレス装置及び切削装置のいずれか一である動力伝達機構の管理装置。
  10. 電動機からの駆動力を負荷側装置に伝達する動力伝達機構の管理方法であって、
    前記動力伝達機構が駆動する単位工程を任意の複数の区画に分割し、
    前記動力伝達機構が駆動する前記複数の区画毎に前記電動機のトルク電流値を取得し、
    前記複数の区画毎に取得した前記トルク電流値について、基準値内のトルク電流値の平均値と基準値外のトルク電流値の平均値とを求め、
    前記平均値の差分がより大となる区間の前記基準値外のトルク電流値の平均値によって前記動力伝達機構の異常を検出する処理を含む動力伝達機構の管理方法。
  11. 請求項10に記載の動力伝達機構の管理方法であって、
    前記平均値の差分がより大となる区間の前記基準値外のトルク電流値の平均値によって、前記動力伝達機構の前記単位工程当たりの異常を検出する処理を含む動力伝達機構の管理方法。
  12. 請求項10に記載の動力伝達機構の管理方法であって、
    前記単位工程を、均等に複数の区間に分割する処理を含む動力伝達機構の管理方法。
  13. 請求項10に記載の動力伝達機構の管理方法であって、
    前記単位工程を、不均等に複数の区間に分割する処理を含む動力伝達機構の管理方法。
  14. 請求項10に記載の動力伝達機構の管理方法であって、
    検出した前記動力伝達機構の異常を外部報知する処理を含む動力伝達機構の管理方法。
JP2022533853A 2020-07-01 2021-06-17 動力伝達機構の管理装置、動力伝達機構の管理方法 Active JP7315797B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020114048 2020-07-01
JP2020114048 2020-07-01
PCT/JP2021/023125 WO2022004417A1 (ja) 2020-07-01 2021-06-17 動力伝達機構の管理装置、動力伝達機構の管理方法

Publications (2)

Publication Number Publication Date
JPWO2022004417A1 JPWO2022004417A1 (ja) 2022-01-06
JP7315797B2 true JP7315797B2 (ja) 2023-07-26

Family

ID=79316137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022533853A Active JP7315797B2 (ja) 2020-07-01 2021-06-17 動力伝達機構の管理装置、動力伝達機構の管理方法

Country Status (5)

Country Link
EP (1) EP4177692A1 (ja)
JP (1) JP7315797B2 (ja)
CN (1) CN115667870A (ja)
TW (1) TWI772085B (ja)
WO (1) WO2022004417A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545228B (zh) * 2022-01-26 2022-11-22 图湃(北京)医疗科技有限公司 基于电机电流反馈的oct系统滚珠丝杠磨损状态监测方法
JPWO2023248373A1 (ja) * 2022-06-22 2023-12-28

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017345A1 (ja) 2017-07-18 2019-01-24 日本電気株式会社 状態推定装置と方法とプログラム
WO2019186909A1 (ja) 2018-03-29 2019-10-03 株式会社日立製作所 診断装置および診断方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525736B2 (ja) * 1998-04-28 2004-05-10 日産自動車株式会社 モータを駆動源とした機械の診断装置
FR2900745B1 (fr) * 2006-05-05 2008-10-10 Eurocopter France Procede et dispositif de diagnostic d'un mecanisme
JP5185677B2 (ja) * 2008-03-31 2013-04-17 三菱重工業株式会社 自動調芯嵌合クラッチを用いた駆動力伝達機構における軸ズレ量検知方法
WO2017213183A1 (ja) * 2016-06-07 2017-12-14 三菱電機株式会社 異常診断装置及び異常診断方法
JP6628905B2 (ja) 2016-12-15 2020-01-15 三菱電機株式会社 動力伝達機構の異常診断装置および動力伝達機構の異常診断方法
JP6899897B2 (ja) 2017-05-31 2021-07-07 株式会社日立製作所 状態監視装置、並びに機器システム
CN111386453B (zh) * 2017-11-22 2023-02-17 川崎重工业株式会社 机械装置的老化诊断装置、以及机械装置的老化诊断方法
WO2020039661A1 (ja) * 2018-08-23 2020-02-27 三菱電機株式会社 異常診断装置
JP7117659B2 (ja) * 2018-09-05 2022-08-15 パナソニックIpマネジメント株式会社 電動工具システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017345A1 (ja) 2017-07-18 2019-01-24 日本電気株式会社 状態推定装置と方法とプログラム
WO2019186909A1 (ja) 2018-03-29 2019-10-03 株式会社日立製作所 診断装置および診断方法

Also Published As

Publication number Publication date
WO2022004417A1 (ja) 2022-01-06
EP4177692A1 (en) 2023-05-10
TW202202956A (zh) 2022-01-16
JPWO2022004417A1 (ja) 2022-01-06
CN115667870A (zh) 2023-01-31
TWI772085B (zh) 2022-07-21

Similar Documents

Publication Publication Date Title
JP7315797B2 (ja) 動力伝達機構の管理装置、動力伝達機構の管理方法
US11314241B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP6899897B2 (ja) 状態監視装置、並びに機器システム
US11150636B2 (en) State determination device and state determination method
CN105099321A (zh) 电机控制装置
JP6867358B2 (ja) 状態判定装置及び状態判定方法
JP2009279891A (ja) 射出成形機の異常検出装置
CN100453297C (zh) 成型机及其控制方法
CN110077028B (zh) 伺服压力机全闭环非线性预测控制方法与系统
JP2009166465A (ja) 成形機
WO2023119686A1 (ja) 動力伝達機構の管理装置、動力伝達機構の管理方法及び管理システム
TWI839828B (zh) 動力傳達機構之管理裝置、動力傳達機構之管理方法及管理系統
US20200101651A1 (en) State determination device and state determination method
JP7091345B2 (ja) 射出成形機のための信号処理方法
CN110235354B (zh) 电动机电力转换装置和使用该电动机电力转换装置的电动机电力转换系统
US7075263B2 (en) Multi-axis motor control device resonance frequency detection device
JP4068493B2 (ja) 射出成形機の監視装置及び監視方法
CN107150431B (zh) 注塑机控制系统及方法
WO2023026416A1 (ja) 状態判定装置及び状態判定方法
WO2023053455A1 (ja) 制御装置及び制御方法
WO2023026411A1 (ja) 状態判定装置及び状態判定方法
WO2023053453A1 (ja) 制御装置及び制御方法
CN113458606B (zh) 一种基于激光的金属表面硬化系统的速度跟随方法
WO2023026419A1 (ja) 制御装置及び制御方法
JPH11267899A (ja) サーボプレスの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230713

R150 Certificate of patent or registration of utility model

Ref document number: 7315797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150