WO2023053455A1 - 制御装置及び制御方法 - Google Patents
制御装置及び制御方法 Download PDFInfo
- Publication number
- WO2023053455A1 WO2023053455A1 PCT/JP2021/036495 JP2021036495W WO2023053455A1 WO 2023053455 A1 WO2023053455 A1 WO 2023053455A1 JP 2021036495 W JP2021036495 W JP 2021036495W WO 2023053455 A1 WO2023053455 A1 WO 2023053455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sine wave
- wave signal
- frequency
- amplitude
- signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 9
- 230000007423 decrease Effects 0.000 claims abstract description 13
- 238000004364 calculation method Methods 0.000 claims abstract description 7
- 238000012886 linear function Methods 0.000 claims description 31
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 abstract 2
- 238000001746 injection moulding Methods 0.000 description 32
- 230000006870 function Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 13
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000013500 data storage Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
Definitions
- the present invention relates to a control device and control method.
- a prime mover such as a motor with a speed reducer and drive parts installed. Based on the resonance point that appears in the measured frequency characteristics, determine the mechanical resonance point, stability, response, etc. of the drive unit. is analyzed to grasp the operating characteristics of the drive unit of industrial machinery.
- a frequency sweep operation hereinafter referred to as a diagnostic operation
- a diagnostic operation is performed to observe the output signal (feedback response) of a predetermined input signal that is input to the controlled object while changing its frequency over time. is done.
- Patent Literature 1 discloses measuring frequency characteristics by adding white noise including a plurality of frequencies to a controlled object in order to shorten the measurement time of frequency characteristics.
- Patent Document 2 discloses adding a sine wave signal with a phase difference to a controlled object in order to improve measurement accuracy in a high frequency region.
- Japanese Patent Application Laid-Open No. 2002-200000 discloses, as an example of utilization of frequency characteristics, automatically adjusting a velocity loop gain with good followability and responsiveness of a motor based on the frequency characteristics of gain and phase. It is known to measure and utilize the frequency characteristics obtained by the diagnostic operation in this way.
- FIG. 11 shows an example of a control signal input to the prime mover and an output signal fed back from the prime mover when performing a diagnostic operation (frequency sweep operation).
- a solid line indicates a control signal (position signal, speed signal or torque signal) input to the prime mover
- a dotted line indicates an output signal fed back from the prime mover.
- a sine wave signal with a predetermined amplitude is swept and input to the prime mover as a control signal.
- the amplitude of the sine wave signal input to the prime mover remains constant, and the frequency of the sine wave is increased from 1 Hz to 1 kHz in increments of 10 Hz over time. Vary the frequency.
- the sine wave signal input to the prime mover may be a random wave containing various frequencies (white noise) without regularity in a predetermined range, other than sweeping the frequency as described above.
- the amplitude of the sine wave signal is a constant value regardless of the frequency of the sine wave signal.
- the amplitude of the sine wave signal is small in the low frequency band of the sine wave signal, the amplitude of the output signal becomes small, the delay becomes large, and so on.
- the output response tends to be worse as shown in the following.
- the high frequency band of the sine wave signal if the amplitude of the sine wave signal is large, the output response tends to deteriorate. Therefore, in the diagnostic operation in which the amplitude of the sine wave signal as the input signal is constant, the measurement accuracy of some frequency bands (for example, high frequency bands) of the frequency characteristics obtained in the diagnostic operation is deteriorated.
- FIG. 12 shows an example of the control signal input to the prime mover and the output signal fed back from the prime mover when diagnostic operation is performed using a sine wave signal with a predetermined large amplitude.
- a solid line indicates a control signal (position signal, speed signal or torque signal) input to the prime mover
- a dotted line indicates an output signal fed back from the prime mover.
- the amplitude of the sine wave signal is sufficiently large, a good output signal is obtained in the low frequency band of the sine wave. However, in the high frequency band, the output response is degraded such that the amplitude of the output signal is reduced and the delay is increased.
- the control device synchronously switches the amplitude and frequency of a sine wave signal (for example, speed command value, etc.) related to the control of the diagnostic operation (frequency sweep operation) for obtaining frequency characteristics,
- a sine wave signal for example, speed command value, etc.
- the controller uses a piecewise linear function to step up the frequency of the sinusoidal signal from a predetermined minimum frequency to a maximum frequency, while increasing the amplitude of the sinusoidal signal as a function of frequency. A reduced sine wave signal is generated, and the frequency characteristic is measured using the generated sine wave signal.
- One aspect of the present disclosure is a control device that calculates the frequency characteristics of a prime mover that drives a drive device included in an industrial machine, comprising: a sine wave generation unit that generates a sine wave signal; a control unit for controlling the diagnostic operation of the prime mover; a data acquisition unit for acquiring at least the sine wave signal and feedback data obtained from the diagnostic operation; and a frequency characteristic of the feedback data obtained from the diagnostic operation. and a frequency characteristic calculator, wherein the sine wave generator generates a sine wave signal in which the frequency of the sine wave signal increases with time and the amplitude in the high frequency range decreases with respect to the amplitude in the low frequency range. It is a control device that
- Another aspect of the present disclosure is a control method for calculating the frequency characteristics of a prime mover that drives a drive device provided in an industrial machine, comprising the steps of: generating a sine wave signal; performing the steps of: controlling an operation; acquiring at least the sinusoidal signal and feedback data obtained from the diagnostic operation; and calculating a frequency characteristic of the feedback data obtained from the diagnostic operation;
- the step of generating the sine wave signal is a control method in which the frequency of the sine wave signal increases with the lapse of time, and the sine wave signal is generated such that the amplitude of the high frequency range decreases with respect to the amplitude of the low frequency range.
- FIG. 1 is a schematic hardware configuration diagram of a control device according to a first embodiment of the present invention
- FIG. 1 is a schematic configuration diagram of an injection molding machine
- FIG. 3 is a block diagram showing schematic functions of a control device according to the first embodiment of the present invention
- FIG. It is a figure which shows the example of a table memory
- FIG. 4 is a diagram showing another example of a sine wave signal generating means
- FIG. 4 is a diagram showing another example of a sine wave signal generating means;
- FIG. 4 is a diagram showing another example of a sine wave signal generating means;
- FIG. 1 is a schematic hardware configuration diagram of a control device according to a first embodiment of the present invention
- FIG. 1 is a schematic configuration diagram of an injection molding machine
- FIG. 3 is a block diagram showing schematic functions of a control device according to the first embodiment of the present invention
- FIG. It is
- FIG. 6 is a block diagram showing the schematic functions of a control device according to a second embodiment of the present invention. It is a figure explaining operation
- FIG. 5 is a diagram showing an example of a control signal input to a prime mover and an output signal fed back from the prime mover when performing a diagnostic operation (frequency sweep operation);
- FIG. 10 is a diagram showing an example in which the amplitude of feedback data is small in a high frequency range;
- FIG. 1 is a schematic hardware configuration diagram showing essential parts of a control device according to a first embodiment of the present invention.
- the control device 1 of the present invention can be implemented, for example, as a control device that controls an industrial machine based on a control program.
- This embodiment shows an example of a control device that controls an injection molding machine 2 as an industrial machine based on a control program.
- the CPU 11 included in the control device 1 is a processor that controls the control device 1 as a whole.
- the CPU 11 reads a system program stored in the ROM 12 via the bus 22 and controls the entire control device 1 according to the system program.
- the RAM 13 temporarily stores calculation data, display data, various data input from the outside, and the like.
- the non-volatile memory 14 is composed of, for example, a memory backed up by a battery (not shown) or an SSD (Solid State Drive), and retains the stored state even when the control device 1 is powered off.
- the nonvolatile memory 14 stores data obtained from the injection molding machine 2, control programs and data read from the external device 72 via the interface 15, control programs and data input via the input device 71, Control programs, data, and the like obtained from other devices via the network 5 are stored.
- the control program and data stored in the nonvolatile memory 14 may be developed in the RAM 13 at the time of execution/use.
- Various system programs such as a well-known analysis program are pre-written in the ROM 12 .
- the interface 15 is an interface for connecting the CPU 11 of the control device 1 and an external device 72 such as a USB device. From the external device 72 side, for example, a control program and setting data used for controlling the injection molding machine 2 are read. Control programs and setting data edited in the control device 1 can be stored in the external storage means via the external device 72 .
- a PLC (Programmable Logic Controller) 16 executes a ladder program to control the injection molding machine 2 and peripheral devices of the injection molding machine 2 (for example, a mold changing device, an actuator such as a robot, and an actuator attached to the injection molding machine 2).
- a plurality of sensors 3 such as a temperature sensor and a humidity sensor, are output via the I/O unit 19 to control them. It also receives signals from various switches on an operation panel provided on the main body of the injection molding machine 2 and peripheral devices, etc., performs necessary signal processing, and then transfers the signals to the CPU 11 .
- the interface 20 is an interface for connecting the CPU of the control device 1 and the wired or wireless network 5 .
- Other industrial machines 4 such as machine tools and electrical discharge machines, fog computers 6, cloud servers 7, and the like are connected to the network 5 to exchange data with the control device 1 .
- each data read into the memory, data obtained as a result of executing the program, etc. are output via the interface 17 and displayed.
- An input device 71 composed of a keyboard, a pointing device, etc., transfers commands, data, etc. based on operations by an operator to the CPU 11 via the interface 18 .
- the axis control circuit 30 for controlling the axes provided in the injection molding machine 2 receives the axis movement command amount from the CPU 11 and outputs the axis command to the servo amplifier 40 .
- the servo amplifier 40 receives this command and drives the servo motor 50 that moves the shaft provided in the injection molding machine 2 .
- the servo motor 50 incorporates a position/velocity detector, and feeds back a position/velocity feedback signal from this position/velocity detector to the axis control circuit 30 to perform position/velocity feedback control.
- Only one axis control circuit 30, one servo amplifier 40, and one servo motor 50 are shown in the hardware configuration diagram of FIG. Only a few are provided. At least one of the servomotors 50 is connected to a predetermined shaft of the injection molding machine 2 by a belt as a power transmission section.
- FIG. 2 is a schematic configuration diagram of the injection molding machine 2.
- the injection molding machine 2 is mainly composed of a mold clamping unit 401 and an injection unit 402 .
- the mold clamping unit 401 is equipped with a movable platen 416 and a stationary platen 414 .
- a movable mold 412 is attached to the movable platen 416
- a fixed mold 411 is attached to the stationary platen 414 .
- a servomotor 50 is attached to the injection molding machine 2 .
- a ball screw (not shown) is driven via power transmission means such as a belt 420 and a pulley 422, and the movable platen 416 can be moved forward or backward toward the stationary platen 414.
- the injection unit 402 is composed of an injection cylinder 426, a hopper 436 for storing the resin material to be supplied to the injection cylinder 426, and a nozzle 440 provided at the tip of the injection cylinder 426.
- the injection unit 402 can move the injection cylinder 426 forward or backward toward the stationary platen 414 by driving a servomotor (not shown).
- the mold clamping unit 401 closes and clamps the mold by moving the movable platen 416, the injection unit 402 presses the nozzle 440 against the stationary mold 411, and then the injection cylinder. Inject resin weighed into 426 into the mold. These operations are controlled by commands from the controller 1 (not shown).
- a sensor 3 (not shown) is attached to each part of the injection molding machine 2, and various physical quantities necessary for controlling the molding operation are detected.
- detected physical quantities include motor current, voltage, torque, position, speed, acceleration, pressure in the mold, temperature of the injection cylinder 426, resin flow rate, flow velocity, vibration and sound. be.
- the detected physical quantities are sent to the controller 1 .
- each detected physical quantity is stored in the RAM 13, the nonvolatile memory 14, or the like.
- FIG. 3 is a schematic block diagram of the functions of the control device 1 according to the first embodiment of the present invention. Each function provided in the control device 1 according to the present embodiment is realized by the CPU 11 provided in the control device 1 shown in FIG.
- the control device 1 of this embodiment includes a control section 110 , a data acquisition section 120 , a frequency characteristic calculation section 130 and a sine wave generation section 150 .
- a control program 200 for controlling the servomotor 50 provided in the injection molding machine 2 is stored in advance in the RAM 13 to the nonvolatile memory 14 of the control device 1.
- Acquired data storage unit 210 as an area for storing data acquired from 3
- frequency characteristic storage unit 220 as an area for storing data indicating the frequency characteristics calculated by the frequency characteristic calculation unit 130, a prime mover and a driving device
- a table storage unit 230 is prepared in advance, which is an area in which a table in which a sine wave signal generation means is associated with a type of a speed reducer (for example, a flat belt, a V belt, a toothed belt, etc.) is stored in advance.
- a speed reducer for example, a flat belt, a V belt, a toothed belt, etc.
- the control unit 110 executes a system program read from the ROM 12 by the CPU 11 of the control device 1 shown in FIG. , and input/output processing via the interface 18 are performed.
- the control section 110 analyzes the blocks of the control program 200 and controls each section of the injection molding machine 2 based on the analysis results. For example, when a block of the control program 200 commands to drive each axis of the injection molding machine 2, the control unit 110 generates movement command data according to the command of the block, and controls the servo motor 50 to Output. For example, when a block of the control program 200 instructs to operate a peripheral device such as the sensor 3 attached to the injection molding machine 2, the control unit 110 performs a predetermined operation to operate the peripheral device. A signal is generated and output to the PLC 16 .
- control unit 110 can output general commands related to control of the injection molding machine 2 such as injection of resin to the injection molding machine 2 according to commands from blocks of the control program 200 .
- control unit 110 acquires position feedback, speed feedback, and torque feedback of the servomotor 50 and detection value data detected by the sensors 3 such as temperature sensors and humidity sensors, and outputs the data to the data acquisition unit 120 .
- the control program 200 includes a block that instructs the servomotor 50 that drives the belt 420 in advance to perform a diagnostic operation (frequency sweep operation) at a predetermined range of rotation speed (frequency). Based on the command, a sine wave signal is input to the servomotor 50 as a signal for controlling position, speed or torque.
- the control program 200 includes a block for commanding the position feedback, speed feedback, and torque feedback of the servomotor 50 during diagnostic operation as time-series data. It includes a block for instructing acquisition of detection value data by the sensor 3 at least at the end of the diagnostic operation.
- the control unit 110 uses the sine wave signal generated by the sine wave generation unit 150 as the sine wave signal used as the control signal when performing the diagnostic operation based on the control program 200 .
- the data acquisition unit 120 acquires from the injection molding machine 2 information for specifying the types of the prime mover and driving device to be diagnosed at the start of the diagnostic operation of the injection molding machine 2 . Further, the data acquisition unit 120 acquires feedback data such as position feedback, speed feedback, and torque feedback acquired from the servomotor 50 during diagnostic operation of the injection molding machine 2, and detection value data detected by the sensor 3. Stored in the acquired data storage unit 210 . Feedback data such as position feedback, velocity feedback, and torque feedback acquired by the data acquisition unit 120 is time-series data. The detection value data acquired by the data acquisition unit 120 may be data values acquired at a predetermined timing. Note that the data acquisition unit 120 may acquire data detected by the industrial machine 4 from another industrial machine 4 via the network 5 . Data input by the operator from the input device 71 or data input via the external device 72 may be obtained.
- the frequency characteristic calculator 130 calculates frequency response data (hereinafter referred to as a resonance curve) indicating the frequency characteristics of feedback data such as position feedback, speed feedback, and torque feedback acquired by the data acquisition unit 120 during diagnostic operation of the injection molding machine 2. ) is calculated.
- the resonance curve calculated by the frequency characteristic calculator 130 may be, for example, a gain curve that is curve data representing frequency-gain characteristics, or a phase curve that is curve data representing frequency-phase characteristics. Such data can be calculated by subjecting feedback data, which is time-series data, to known frequency analysis such as fast Fourier transform.
- the frequency characteristic calculator 130 calculates a resonance curve for each amplitude value of the sine wave signal set for diagnostic operation.
- the frequency characteristic calculation unit 130 stores the resonance curve indicating the calculated frequency characteristics in the frequency characteristic storage unit 220 .
- the resonance curve representing the frequency characteristics stored in the frequency characteristics storage unit 220 is used to analyze the mechanical resonance point, stability, responsiveness, etc. of the drive unit of the injection molding machine 2 driven by the servomotor 50, and to grasp operating
- the sine wave generation unit 150 refers to the table storage unit 230 at the start of the diagnostic operation of the injection molding machine 2 and generates a sine wave signal suitable for the type of drive unit and prime mover of the injection molding machine 2 .
- FIG. 4 shows an example of a table for determining means for generating a sine wave signal stored in the table storage unit 230. As shown in FIG. The example of FIG. 4 is a table that associates sine wave signal generating means with the type of prime mover and the type of driving device. For example, when the type of the prime mover is a "synchronous motor" and the type of the driving device is a "driving device having a flat belt", the sine wave generator 150 refers to the table to generate the sine wave signal.
- the sine wave signal generating means is defined by, for example, a function that inputs a frequency and calculates an amplitude. This function produces a sinusoidal signal in which the amplitude of the high frequency range is smaller than the amplitude of the low frequency range. This function may be a monotonically decreasing function. Also, this function may partially include a range in which the amplitude is constant with respect to frequency variation.
- this function is a function in which the amplitude value monotonically decreases or remains constant in each section when considering a predetermined frequency section, and at the end of the low frequency side section of the adjacent section. It is desirable to have a piecewise linear function where the amplitude at the beginning of the high frequency section decreases or remains the same with respect to the amplitude.
- the sine wave signal generation means as a piecewise linear function, for example, until a predetermined frequency is reached, the signal is output as a constant amplitude value, and after reaching the predetermined frequency, that is, when the frequency reaches a predetermined frequency conversion starts. When the value is reached, it is possible to flexibly handle the output after performing a conversion that attenuates (decreases) the amplitude value based on a predetermined piecewise linear function.
- FIG. 5 shows an example of a function that can be used as a means of generating a sinusoidal signal.
- the function exemplified in FIG. 5 is a continuous piecewise linear function and can be represented by Equation 1 shown below.
- x in Equation 1 is the frequency.
- a to B are predetermined coefficients determined by the characteristics of the prime mover and drive system, and the frequency x1 is also determined by the characteristics of the prime mover and drive system. These values may be obtained in advance by performing experiments or the like using the prime mover and the driving device. Since the amplitude calculated from the piecewise linear function monotonously decreases or takes a constant value, the value of the coefficient A of the piecewise linear function shown in Equation 1 is zero or less.
- FIG. 6 shows another example of a function that can be used as a means of generating a sinusoidal signal.
- the function illustrated in FIG. 6 is a discontinuous piecewise linear function and can be represented by the following equation (2).
- x in Equation 2 is the frequency.
- D to G are predetermined coefficients determined by the characteristics of the prime mover and drive system, and the frequencies x 2 and x 3 are also determined by the characteristics of the prime mover and drive system. These values may be obtained in advance by performing experiments or the like using the prime mover and the driving device. Since the amplitude calculated from the piecewise linear function monotonically decreases or takes a constant value, the value of the coefficient D of the piecewise linear function shown in Equation 2 is zero or less.
- FIG. 7 shows another example of a function that can be used as a means of generating a sinusoidal signal.
- the function illustrated in FIG. 7 is a discontinuous piecewise linear function and can be represented by the following Equation 3.
- x in Expression 3 is the frequency.
- H to J are predetermined coefficients determined by the characteristics of the prime mover and drive system, and the frequencies x 4 and x 5 are also determined by the characteristics of the prime mover and drive system.
- the example of FIG. 7 consists in not including a monotonically decreasing function in the linear function in any partition.
- the problem of the present invention can be solved if the amplitude in the high frequency range as a whole is smaller than the amplitude in the low frequency range without including a monotonically decreasing function. That is, the values of the coefficients H to J of the piecewise linear function shown in Equation 3 have a magnitude relationship of H>I>J. These values may be obtained in advance by performing experiments or the like using the prime mover and the driving device.
- the sine wave generation unit 150 when the sine wave signal generation means is defined as a function having the frequency x as an argument, the sine wave generation unit 150 generates a sine wave signal whose frequency rises at a predetermined timing along with the passage of time. .
- the increase in the frequency x of this sinusoidal signal may monotonically increase with time.
- the timing at which the frequency of the sine wave signal rises is, for example, when the sine wave signal using the current frequency and amplitude is repeatedly generated for N predetermined cycles, the frequency of the next sine wave signal is changed. It may be raised by a predetermined increment. That is, the sine wave generator 150 may sequentially generate N pairs of frequency and amplitude of the sine wave signal.
- Increasing the number of pairs of frequency and amplitude (N) increases the execution time of the vibration operation, but improves the measurement accuracy of the frequency characteristics.
- the values of the predetermined period N and the predetermined increment related to the timing of the frequency increase are obtained in advance by conducting experiments using the prime mover and the driving device, and are stored in the table storage unit 230 as parameters of the sine wave signal generating means. It may be set for each prime mover and driving device.
- the amplitude of the sine wave signal decreases as the frequency of the sine wave signal increases with the passage of time after the start of the diagnostic operation. That is, the sine wave generator 150 can generate a sine wave signal in which the amplitude in the high frequency range is smaller than the amplitude in the low frequency range.
- the control device 1 focuses on the sine wave signal used for the diagnostic operation, and by changing the amplitude according to the change in the frequency of the sine wave signal, the frequency range from a low frequency band to a high frequency band. It becomes possible to accurately measure the frequency characteristics of a wide frequency band. In addition, since good frequency characteristics can be obtained over the entire frequency band with only one measurement, the operability of the operator is improved, and the man-hours and work load are reduced.
- the frequency characteristics were measured using the amplitude of a sine wave signal suitable for the desired frequency band within a wide band from low to high frequency bands. Therefore, when there are a plurality of desired frequency bands, it is necessary to measure a plurality of frequency characteristics with different amplitudes of sine wave signals. For example, frequency characteristics that appear in the low frequency band, such as belts, are measured using a sine wave signal with a large amplitude suitable for low frequency bands, and the characteristics (resonance point) appear in the high frequency band, such as ball screws. Frequency characteristics are measured multiple times according to the desired frequency band, such as by using a sine wave signal with small amplitude suitable for high frequency bands.
- the amplitude of a sine wave signal suitable for measuring good frequency characteristics is a different value depending on the specifications of the prime mover and the variation of the driving device such as the speed reducer driven by the prime mover.
- the amplitude of the sine wave signal for obtaining suitable frequency characteristics for each type of prime mover such as a synchronous motor, an induction motor, and a hydraulic cylinder, is different.
- characteristics such as a resonance point appear in the low frequency band of the frequency characteristics.
- the amplitude combinations are different.
- features such as a resonance point appear in the high and low frequency bands of the frequency characteristics.
- the measurement variation occurred depending on the skill of the operator.
- the control device 1 according to this embodiment, the types of prime movers and driving devices, and the piecewise linear function for calculating the amplitude of the sine wave signal are tabulated, and the sine wave signal necessary for measuring good frequency characteristics is selected without trial and error. It is possible. As a result, it is possible to reduce the work burden on the operator and to stabilize the measurement accuracy of the frequency characteristics regardless of the skill of the operator.
- FIG. 8 is a schematic block diagram of the functions of the control device 1 according to the second embodiment of the present invention. Each function provided in the control device 1 according to the present embodiment is realized by the CPU 11 provided in the control device 1 shown in FIG.
- the control device 1 of the present embodiment further includes a signal generating means creating section 160 in addition to the functions provided by the control device 1 of the first embodiment.
- the signal generation means creation unit 160 creates a sine wave signal generation means based on the output signal (feedback data) detected when the diagnostic operation of the injection molding machine 2 is performed.
- the signal generating means creating unit 160 repeats the diagnostic operation while switching the combination of the frequency and amplitude of the sine wave signal, and automatically generates the sine wave signal based on the output signal obtained as a result of the diagnostic operation. may be created.
- FIG. 9 is an example showing a graph of an input signal input to the prime mover and an output signal fed back from the prime mover when diagnostic operation of the injection molding machine 2 is performed. In the graph illustrated in FIG.
- the vertical axis indicates signal amplitude and the horizontal axis indicates time.
- a solid line indicates an input signal
- a dotted line indicates an output signal.
- the amplitude of the input signal is set to a predetermined constant value Ai, and the frequency of the input signal gradually increases as time elapses.
- the amplitude of the output signal decreases as the frequency of the input signal increases.
- a piecewise linear function is calculated as a means for generating a sine wave signal such that the ratio of the amplitude of the output signal to the output signal is constant.
- a model of a typical sinusoidal signal generating means exemplified by Equations 1 to 3 is prepared in advance, and the input signal and the output signal are obtained by using a known technique such as linear approximation. can be obtained by calculating each coefficient such that the ratio of the amplitudes of is constant.
- the signal generating means generating unit 160 may automatically generate a piecewise linear function as a means for generating a sine wave signal as described above, or may allow the user to manually specify a piecewise linear function. .
- the signal generation means creation unit 160 presents the input signal and the output signal of the diagnostic operation on the display device 70 as a graph, and while viewing this, the user can generate a sine wave such as a type of piecewise linear function.
- a user interface may be provided that allows selection of signal generation means and setting of parameters such as coefficients of piecewise linear functions. In the graph of FIG.
- the vertical axis indicates signal amplitude
- the horizontal axis indicates time
- the input signal (speed signal) for the diagnostic operation is indicated by a solid line
- the output signal is indicated by a dotted line.
- the input signal in FIG. 10 is a sine wave in which the frequency of the sine wave signal increases over time and the amplitude in the high frequency range decreases with respect to the amplitude in the low frequency range based on the generation means of the sine wave signal selected by the user. 4 shows an example of a signal.
- an injection molding machine is described as an example of an industrial machine equipped with a belt. , for example, a forging press machine, a machine tool, a transfer robot, and the like, the present invention can be suitably used for other industrial machines.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
本開示による制御装置は、正弦波信号を生成する正弦波生成部と、正弦波信号を用いて原動機の診断動作を制御する制御部と、正弦波信号と、診断動作から得られるフィードバックデータを少なくとも取得するデータ取得部と、診断動作から得られる前記フィードバックデータの周波数特性を算出する周波数特性算出部と、を備え、正弦波生成部は、正弦波信号の周波数が時間経過と共に高くなり、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号を生成する。
Description
本発明は、制御装置及び制御方法に関する。
モータなどの原動機に減速機や駆動部品を組み付けた状態にて原動機の周波数特性を測定し、測定された周波数特性に現れる共振点に基づいて、駆動部の機械共振点、安定性、応答性などを解析して、産業機械の駆動部の動作特性を把握することが行われている。なお、周波数特性を測定する際には、所定の入力信号の周波数を時間と共に変化させながら制御対象に入力し、その出力信号(フィードバック応答)を観測する周波数スイープ動作(以下、診断動作と呼ぶ)が行われる。
制御対象に加える入力信号に係る技術として、入力信号を正弦波信号とすること、正弦波信号の周波数を徐々に上昇させること、正弦波信号にホワイトノイズを加えること、が公知である。例えば、特許文献1には、周波数特性の測定時間を短縮するため、複数の周波数を含むホワイトノイズを制御対象に加えて周波数特性を測定することが示されている。また、特許文献2には、高周波領域における測定精度を向上させるため、位相差を設けた正弦波信号を制御対象に加えることが示されている。更に、特許文献3には、周波数特性の活用例として、ゲインと位相の周波数特性に基づき、モータの追従性や応答性が良好な速度ループゲインを自動的に調節することが示されている。このように、診断動作によって得られる周波数特性を測定して活用することは公知である。
図11は、診断動作(周波数スイープ動作)を行う際に原動機に入力される制御信号と、原動機からフィードバックされる出力信号の例を示している。図11では、原動機に入力される制御信号(位置信号、速度信号又はトルク信号)を実線で、原動機からフィードバックされる出力信号を点線で示している。図11に示すように、診断動作を行う際には、制御信号として、所定の振幅の正弦波信号の周波数を掃引して原動機に入力する。例えば、原動機に入力される正弦波信号の振幅は一定の値のままとして、時間が経過するにつれて、該正弦波の周波数を1Hzから1kHzの範囲で10Hz刻みで増やすといったように、正弦波信号の周波数を変化させる。このような診断動作を行わせた時に原動機からフィードバックされる出力信号の周波数特性を解析することで、原動機の動作特性を把握することができる。原動機に入力する正弦波信号は、上記のように周波数を掃引させる以外にも、所定の範囲で規則性が無い様々な周波数(ホワイトノイズ)を含んだランダム波としてもよい。
既知の入力信号として正弦波信号を掃引する診断動作では、一般的に、正弦波信号の周波数の高低に依らず、正弦波信号の振幅は一定値としている。しかしながら、ベルト等の弾性体/剛性の低い駆動部品を有する制御対象では、正弦波信号の低周波数帯において、正弦波信号の振幅が小さいと、出力信号の振幅が小さくなる、遅延が大きくなる、などのように出力応答が悪くなる傾向にある。また、正弦波信号の高周波数帯においては、正弦波信号の振幅が大きいと、出力応答が悪くなる傾向にある。そのため、入力信号としての正弦波信号の振幅を一定値とした診断動作では、その診断動作で得られる周波数特性の一部の周波数帯(例えば、高周波数帯など)の測定精度が悪くなる。
図12は、所定の大きい振幅の正弦波信号を用いて診断動作を行った場合の、原動機に入力される制御信号と、原動機からフィードバックされる出力信号の例を示している。図12では、原動機に入力される制御信号(位置信号、速度信号又はトルク信号)を実線で、原動機からフィードバックされる出力信号を点線で示している。図12の例では、正弦波信号の振幅が十分に大きいため、正弦波の低周波数帯では良好な出力信号が得られている。しかしながら、高周波数帯においては、出力信号の振幅が小さくなる、遅延が大きくなる、などのように出力応答が悪化している。
良好な周波数特性を測定するための入力信号としての正弦波信号の振幅は、モータの仕様や減速機等の駆動装置のバリエーションに依存して異なることも知られている。そのため、オペレータは測定対象を変更するたびに試行錯誤して正弦波の振幅を決定する必要がある。
そこで、オペレータに大きな労力をかけることなく良好な診断動作を行えるようにする技術が望まれている。
そこで、オペレータに大きな労力をかけることなく良好な診断動作を行えるようにする技術が望まれている。
本開示による制御装置は、周波数特性を得る診断動作(周波数スイープ動作)に関して、診断動作の制御に係る正弦波信号(例えば、速度指令値など)の振幅と周波数とを同期して切り換えることにより、上記課題を解決する。具体的には、本開示による制御装置では、区分線形関数を用いて、正弦波信号の周波数を所定の最小周波数から最大周波数まで段階的に上昇させつつ、正弦波信号の振幅を周波数に応じて低減させた正弦波信号を生成し、生成された正弦波信号を用いて周波数特性を測定する。
そして、本開示の一態様は、産業機械が備える駆動装置を駆動する原動機の周波数特性を算出する制御装置であって、正弦波信号を生成する正弦波生成部と、前記正弦波信号を用いて前記原動機の診断動作を制御する制御部と、前記正弦波信号と、前記診断動作から得られるフィードバックデータを少なくとも取得するデータ取得部と、前記診断動作から得られる前記フィードバックデータの周波数特性を算出する周波数特性算出部と、を備え、前記正弦波生成部は、前記正弦波信号の周波数が時間経過と共に高くなり、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号を生成する、制御装置である。
本開示の他の態様は、産業機械が備える駆動装置を駆動する原動機の周波数特性を算出する制御方法であって、正弦波信号を生成するステップと、前記正弦波信号を用いて前記原動機の診断動作を制御するステップと、前記正弦波信号と、前記診断動作から得られるフィードバックデータを少なくとも取得するステップと、前記診断動作から得られる前記フィードバックデータの周波数特性を算出するステップと、を実行し、前記正弦波信号を生成するステップは、前記正弦波信号の周波数が時間経過と共に高くなり、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号を生成する、制御方法である。
本開示の一態様により、幅広い周波数帯の周波数特性の測定を精度良く行うことができるようになる。また、1回の測定のみで全周波数帯に渡って良好な周波数特性を得る事ができるので、オペレータの操作性が改善され、作業工数や作業負担を軽減する。
以下、本発明の実施形態を図面と共に説明する。
図1は本発明の第1実施形態による制御装置の要部を示す概略的なハードウェア構成図である。本発明の制御装置1は、例えば制御用プログラムに基づいて産業機械を制御する制御装置として実装することができる。本実施形態では、制御用プログラムに基づいて産業機械としての射出成形機2を制御する制御装置の例を示す。
図1は本発明の第1実施形態による制御装置の要部を示す概略的なハードウェア構成図である。本発明の制御装置1は、例えば制御用プログラムに基づいて産業機械を制御する制御装置として実装することができる。本実施形態では、制御用プログラムに基づいて産業機械としての射出成形機2を制御する制御装置の例を示す。
本実施形態による制御装置1が備えるCPU11は、制御装置1を全体的に制御するプロセッサである。CPU11は、バス22を介してROM12に格納されたシステム・プログラムを読み出し、該システム・プログラムに従って制御装置1全体を制御する。RAM13には一時的な計算データや表示データ、及び外部から入力された各種データ等が一時的に格納される。
不揮発性メモリ14は、例えば図示しないバッテリでバックアップされたメモリやSSD(Solid State Drive)等で構成され、制御装置1の電源がオフされても記憶状態が保持される。不揮発性メモリ14には、射出成形機2から取得されたデータ、インタフェース15を介して外部機器72から読み込まれた制御用プログラムやデータ、入力装置71を介して入力された制御用プログラムやデータ、ネットワーク5を介して他の装置から取得された制御用プログラムやデータ等が記憶される。不揮発性メモリ14に記憶された制御用プログラムやデータは、実行時/利用時にはRAM13に展開されても良い。また、ROM12には、公知の解析プログラムなどの各種システム・プログラムがあらかじめ書き込まれている。
インタフェース15は、制御装置1のCPU11とUSB装置等の外部機器72と接続するためのインタフェースである。外部機器72側からは、例えば射出成形機2の制御に用いられる制御用プログラムや設定データ等が読み込まれる。また、制御装置1内で編集した制御用プログラムや設定データ等は、外部機器72を介して外部記憶手段に記憶させることができる。PLC(プログラマブル・ロジック・コントローラ)16は、ラダープログラムを実行して射出成形機2及び射出成形機2の周辺装置(例えば、金型交換装置や、ロボット等のアクチュエータ、射出成形機2に取付けられている温度センサや湿度センサ等の複数のセンサ3)にI/Oユニット19を介して信号を出力し制御する。また、射出成形機2の本体に配備された操作盤の各種スイッチや周辺装置等の信号を受け、必要な信号処理をした後、CPU11に渡す。
インタフェース20は、制御装置1のCPUと有線乃至無線のネットワーク5とを接続するためのインタフェースである。ネットワーク5には、工作機械や放電加工機などの他の産業機械4やフォグコンピュータ6、クラウドサーバ7等が接続され、制御装置1との間で相互にデータのやり取りを行っている。
表示装置70には、メモリ上に読み込まれた各データ、プログラム等が実行された結果として得られたデータ等がインタフェース17を介して出力されて表示される。また、キーボードやポインティングデバイス等から構成される入力装置71は、オペレータによる操作に基づく指令,データ等をインタフェース18を介してCPU11に渡す。
射出成形機2が備える軸を制御するための軸制御回路30はCPU11からの軸の移動指令量を受けて、軸の指令をサーボアンプ40に出力する。サーボアンプ40はこの指令を受けて、射出成形機2が備える軸を移動させるサーボモータ50を駆動する。サーボモータ50は位置・速度検出器を内蔵し、この位置・速度検出器からの位置・速度フィードバック信号を軸制御回路30にフィードバックし、位置・速度のフィードバック制御を行う。なお、図1のハードウェア構成図では軸制御回路30、サーボアンプ40、サーボモータ50は1つずつしか示されていないが、実際には制御対象となる射出成形機2に備えられた軸の数だけ用意される。サーボモータ50の少なくとも1つは、射出成形機2の所定の軸と動力伝達部としてのベルトで接続されている。
図2は、射出成形機2の概略構成図である。射出成形機2は、主として型締ユニット401と射出ユニット402とから構成されている。型締ユニット401には、可動プラテン416と固定プラテン414が備えられている。また、可動プラテン416には可動側金型412が、固定プラテン414には固定側金型411が取り付けられている。射出成形機2にはサーボモータ50が取り付けられている。そして、サーボモータ50を駆動させることで、ベルト420、プーリ422などの動力伝達手段を介して図示しないボールねじが駆動され、可動プラテン416を固定プラテン414方向に前進又は後退させることができる。
一方、射出ユニット402は、射出シリンダ426と、射出シリンダ426に供給する樹脂材料を溜めるホッパ436と、射出シリンダ426の先端に設けられたノズル440とから構成されている。射出ユニット402は、図示しないサーボモータを駆動させることで、射出シリンダ426を固定プラテン414方向に前進又は後退させることができる。
1つの成形品を製造する成形サイクルでは、型締ユニット401で、可動プラテン416の移動によって型閉じ・型締めを行い、射出ユニット402で、ノズル440を固定側金型411に押し付けてから射出シリンダ426の内に計量された樹脂を金型内に射出する。これらの動作は図示しない制御装置1からの指令により制御される。
また、射出成形機2の各部には図示しないセンサ3が取り付けられており、成形動作の制御に必要な各種物理量が検出される。検出される物理量の例としては、駆動部のモータ電流、電圧、トルク、位置、速度、加速度、金型内の圧力、射出シリンダ426の温度、樹脂の流量、流速、振動や音などが例示される。検出された物理量は制御装置1に送られる。制御装置1では、検出された各物理量がRAM13や不揮発性メモリ14などに記憶される。
図3は、本発明の第1実施形態による制御装置1が備える機能を概略的なブロック図として示したものである。本実施形態による制御装置1が備える各機能は、図1に示した制御装置1が備えるCPU11がシステム・プログラムを実行し、制御装置1の各部の動作を制御することにより実現される。
本実施形態の制御装置1は、制御部110、データ取得部120、周波数特性算出部130、正弦波生成部150を備える。制御装置1のRAM13乃至不揮発性メモリ14には、予め射出成形機2が備えるサーボモータ50を制御するための制御用プログラム200が記憶されており、また、データ取得部120がサーボモータ50やセンサ3等から取得したデータを記憶するための領域として取得データ記憶部210、周波数特性算出部130が算出した周波数特性を示すデータを記憶するための領域である周波数特性記憶部220、原動機や駆動装置(例えば、平ベルト、Vベルト、歯付きベルトなどの減速機)の種類に対して正弦波信号の生成手段を関連付けたテーブルが予め記憶されている領域であるテーブル記憶部230が予め用意されている。
制御部110は、図1に示した制御装置1が備えるCPU11がROM12から読み出したシステム・プログラムを実行し、主としてCPU11によるRAM13、不揮発性メモリ14を用いた演算処理と、軸制御回路30、PLC16を用いた射出成形機2の各部の制御処理、インタフェース18を介した入出力処理が行われることで実現される。制御部110は、制御用プログラム200のブロックを解析し、その解析結果に基づいて射出成形機2の各部を制御する。制御部110は、例えば制御用プログラム200のブロックが射出成形機2の各軸を駆動させるように指令している場合には、ブロックによる指令に従って移動指令データを生成してサーボモータ50に対して出力する。また、制御部110は、例えば制御用プログラム200のブロックが射出成形機2に取り付けられたセンサ3等の周辺装置を動作させるように指令している場合には、該周辺装置を動作させる所定の信号を生成してPLC16に出力する。その他にも、制御部110は、樹脂の射出などの射出成形機2の制御に係る一般的な指令を制御用プログラム200のブロックによる指令に従って射出成形機2に対して出力することができる。一方で、制御部110は、サーボモータ50の位置フィードバック、速度フィードバック、トルクフィードバックや、温度センサや湿度センサ等のセンサ3が検出した検出値データを取得し、データ取得部120へと出力する。
制御用プログラム200は、予めベルト420を駆動するサーボモータ50を所定の範囲の回転数(周波数)で診断動作(周波数スイープ動作)させる指令をするブロックを含む。当該指令に基づいて、サーボモータ50には、位置、速度乃至トルクを制御するための信号としての正弦波信号が入力される。また、制御用プログラム200は、診断動作中のサーボモータ50の位置フィードバック、速度フィードバックやトルクフィードバックを時系列データとして取得する指令をするブロックを含み、更に、診断動作の開始時、診断動作中及び診断動作終了時の少なくともいずれかにおけるセンサ3による検出値データの取得を指令するブロックを含む。
制御部110は、制御用プログラム200に基づいて診断動作を行う際に、制御信号として用いられる正弦波信号として、正弦波生成部150により生成された正弦波信号を用いる。
データ取得部120は、射出成形機2の診断動作の開始時において、診断対象となる原動機及び駆動装置の種類を特定するための情報を射出成形機2から取得する。また、データ取得部120は、射出成形機2の診断動作時においてサーボモータ50から取得される位置フィードバック、速度フィードバック、トルクフィードバックなどのフィードバックデータや、センサ3が検出した検出値データを取得し、取得データ記憶部210に記憶する。データ取得部120が取得する位置フィードバック、速度フィードバック、トルクフィードバックなどのフィードバックデータは、時系列データである。データ取得部120が取得する検出値データは、所定のタイミングで取得されるデータ値であってよい。なお、データ取得部120は、ネットワーク5を介して他の産業機械4から当該産業機械4で検出されたデータを取得してもよい。また、オペレータが入力装置71から入力したデータや、外部機器72を介して入力されたデータを取得するようにしてもよい。
周波数特性算出部130は、射出成形機2の診断動作時において、データ取得部120が取得した位置フィードバック、速度フィードバック、トルクフィードバックなどのフィードバックデータの周波数特性を示す周波数応答データ(以下、共振曲線と呼ぶ)を算出する。周波数特性算出部130が算出する共振曲線は、例えば周波数-ゲイン特性を示す曲線データであるゲイン曲線であってよいし、周波数-位相特性を示す曲線データである位相曲線であってもよい。このようなデータは、時系列データであるフィードバックデータに対して高速フーリエ変換などの公知の周波数解析をすることで算出することができる。周波数特性算出部130は、診断動作に設定される正弦波信号の振幅値毎に共振曲線を算出する。周波数特性算出部130は、算出した周波数特性を示す共振曲線を周波数特性記憶部220に記憶する。周波数特性記憶部220に記憶された周波数特性を示す共振曲線は、サーボモータ50が駆動する射出成形機2の駆動部の機械共振点、安定性、応答性などの解析、動作特性の把握などに用いられる。
正弦波生成部150は、射出成形機2の診断動作の開始時において、テーブル記憶部230を参照して、射出成形機2の駆動部や原動機の種類に適した正弦波信号を生成する。図4は、テーブル記憶部230に記憶される正弦波信号の生成手段を決定するテーブルの例を示している。図4の例は、原動機の種類及び駆動装置の種類に対して正弦波信号の生成手段を関連付けたテーブルである。例えば、原動機の種類が「同期モータ」であって、駆動装置の種類が「平ベルトを有する駆動装置」である場合、正弦波生成部150はテーブルを参照して、正弦波信号の生成手段として「関数:f(x)」を特定する。正弦波信号の生成手段は、例えば周波数を入力して振幅を算出する関数で定義される。この関数は、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号を生成する。この関数は単調減少関数であってよい。また、この関数は部分的に周波数の変化に対して振幅が一定値である範囲を含んでいてもよい。
好適には、この関数は所定の周波数の区分を考えた際に、それぞれの区分において振幅値が単調に減少または一定値となる関数でありつつ、隣接する区分の低周波数側区分の終了時の振幅に対して高周波数側区分の開始時の振幅が減少または同じ値となる区分線形関数であることが望ましい。正弦波信号の生成手段を区分線形関数で定義することで、例えば、所定の周波数に達するまでは一定の振幅値としてそのまま出力し、所定の周波数に達した以降、即ち周波数が所定の周波数変換開始値に達したら、所定の区分線形関数に基づいて振幅値を減衰(減少)させる変換を行って出力するといった柔軟な対応が可能となる。
図5は、正弦波信号の生成手段として用いることができる関数の例を示している。図5に例示する関数は、連続した区分線形関数であり、以下に示す数1式により表すことができる。なお、数1式においてxは周波数である。また、A~Bは原動機及び駆動装置の特性によって定まる所定の係数であり、周波数x1についても原動機及び駆動装置の特性によって定まる。これらの値は、予め原動機及び駆動装置を用いて実験等を行い求めておけばよい。なお、区分線形関数より算出される振幅は単調に減少または一定値を取るため、数1式で示す区分線形関数の係数Aの値はゼロ以下である。
図6は、正弦波信号の生成手段として用いることができる関数の他の例を示している。図6に例示する関数は、不連続の区分線形関数であり、以下に示す数2式により表すことができる。なお、数2式においてxは周波数である。また、D~Gは原動機及び駆動装置の特性によって定まる所定の係数であり、周波数x2,x3についても原動機及び駆動装置の特性によって定まる。これらの値は、予め原動機及び駆動装置を用いて実験等を行い求めておけばよい。なお、区分線形関数より算出される振幅は単調に減少または一定値をとるため、数2式で示す区分線形関数の係数Dの値はゼロ以下である。
図7は、正弦波信号の生成手段として用いることができる関数の他の例を示している。図7に例示する関数は、不連続の区分線形関数であり、以下に示す数3式により表すことができる。なお、数3式においてxは周波数である。また、H~Jは原動機及び駆動装置の特性によって定まる所定の係数であり、周波数x4,x5についても原動機及び駆動装置の特性によって定まる。図7の例は、いずれの区分における線形関数にも単調減少関数を含まないことにある。このように、単調減少関数を含まなくとも、全体として高周波域における振幅が低周波域における振幅よりも小さくなっていれば本願発明の課題を解決することができる。即ち、数3式で示す区分線形関数の係数H~Jの値は、H>I>Jの大小関係を持つ。これらの値は、予め原動機及び駆動装置を用いて実験等を行い求めておけばよい。
上記のように、周波数xを引数とする関数として正弦波信号の生成手段を定義する場合、正弦波生成部150は、時間の推移と共に予め定めたタイミングで周波数が上昇する正弦波信号を生成する。この正弦波信号の周波数xの上昇は、時間と共に単調増加するようにしてもよい。また、正弦波信号の周波数が上昇するタイミングは、例えば、現在の周波数と振幅を用いた正弦波信号を予め定めた所定の周期N個分を繰り返して生成したら、次の正弦波信号の周波数を予め定めた所定の増分だけ上昇するようにしてもよい。即ち、正弦波生成部150は、正弦波信号の周波数と振幅の組をN個ずつ順次生成してもよい。周波数と振幅の組の数(N個)を大きくすると、振動動作の実行時間が延びるが、周波数特性の測定精度を向上できる。周波数が上昇するタイミングに係る所定の周期Nと所定の増分の値については、予め原動機及び駆動装置を用いて実験等を行い求めておき、正弦波信号の生成手段のパラメータとしてテーブル記憶部230に原動機及び駆動装置毎に設定するようにしてもよい。これにより、診断動作を開始してからの時間の経過と共に、正弦波信号の周波数が高くなるにつれて該正弦波信号の振幅は小さくなる。即ち、正弦波生成部150は、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号を生成することができる。
上記構成を備えた本実施形態による制御装置1は、診断動作に用いる正弦波信号に着目し、正弦波信号の周波数の変化にあわせて振幅を変化させることによって、低周波数帯から高周波数帯までの幅広い周波数帯の周波数特性の測定を精度良く行うことができるようになる。また、1回の測定のみで全周波数帯に渡って良好な周波数特性を得る事ができるので、オペレータの操作性が改善され、作業工数や作業負担を軽減する。
従来は、低周波数帯から高周波数帯までの広帯域の内で、所望する周波数帯に適した正弦波信号の振幅を用いて周波数特性を測定していた。そのため、所望する周波数帯が複数ある場合は、正弦波信号の振幅が異なる複数の周波数特性の測定を行う必要があった。例えば、ベルトなど低周波数帯に特徴(共振点)が現れる周波数特性は低周波数帯に適した振幅が大きい正弦波信号を用いて測定し、ボールねじなど高周波数帯に特徴(共振点)が現れる周波数特性は高周波数帯に適した振幅が小さい正弦波信号を用いて測定するなど、所望する周波数帯に合せて複数回の測定を行っていた。
また、良好な周波数特性を測定するための適切な正弦波信号の振幅は、原動機の仕様や、原動機が駆動する減速機等の駆動装置のバリエーションに依存して異なる値となる。例えば、原動機に関しては、同期モータ、誘導モータ、油圧シリンダなど、原動機の種類毎に適した周波数特性を得るための正弦波信号の振幅は異なる。また、ベルトを備えた駆動装置の場合、周波数特性の低周波数帯に共振点などの特徴が現れるが、ベルトの材質、形状、剛性、弾性の差異に応じて、良好な正弦波信号の周波数と振幅の組合せは異なる。ボールねじを備えた駆動装置の場合、周波数特性の高低周波数帯に共振点などの特徴が現れる。従来は、オペレータが実験を繰り返すことで振幅を決定していたので、オペレータの技量に依存して測定バラツキが生じていた。
本実施形態による制御装置1、原動機や駆動装置の種類と正弦波信号の振幅を算出する区分線形関数とをテーブル化し、良好な周波数特性の測定に必要な正弦波信号を試行錯誤することなく選定可能としている。これにより、オペレータの作業負担を軽減すること、オペレータの技量に依らず周波数特性の測定精度を安定化すること、が実現できる。
図8は、本発明の第2実施形態による制御装置1が備える機能を概略的なブロック図として示したものである。本実施形態による制御装置1が備える各機能は、図1に示した制御装置1が備えるCPU11がシステム・プログラムを実行し、制御装置1の各部の動作を制御することにより実現される。
本実施形態の制御装置1は、第1実施形態による制御装置1が備える機能に加えて、更に信号生成手段作成部160を備える。
信号生成手段作成部160は、射出成形機2の診断動作を行った際に検出される出力信号(フィードバックデータ)に基づいて正弦波信号の生成手段を作成する。信号生成手段作成部160は、正弦波信号の周波数と振幅の組合せを切り換えながら、診断動作を繰り返し行い、その診断動作の結果として得られた出力信号に基づいて自動的に正弦波信号の生成手段を作成するようにしてもよい。図9は、射出成形機2の診断動作を行った際の原動機に入力される入力信号と、原動機からフィードバックされる出力信号のグラフを示した例である。図9に例示するグラフでは、縦軸を信号の振幅、横軸を時間で示している。また、実線は入力信号、点線は出力信号を示している。この診断動作では、入力信号の振幅は所定の一定値Aiとし、時間が経過するにつれて入力信号の周波数が漸増するようにしている。図9の例では、入力信号の周波数が高くなるにつれて、出力信号の振幅が小さくなっていることがわかる。このような場合において、信号生成手段作成部160は、複数の所定の周波数fi(i=1,2,...)における入力信号の振幅Aiと出力信号の振幅Aofiに基づいて、入力信号と出力信号の振幅の比が一定となるような、正弦波信号の生成手段としての区分線形関数を算出する。区分線形関数は、例えば数1式~数3式に例示される典型的な正弦波信号の生成手段のひな型をあらかじめ用意しておき、線形近似等の公知の手法を用いて入力信号と出力信号の振幅の比が一定となるような各係数を算出することで求めることができる。
信号生成手段作成部160は、射出成形機2の診断動作を行った際に検出される出力信号(フィードバックデータ)に基づいて正弦波信号の生成手段を作成する。信号生成手段作成部160は、正弦波信号の周波数と振幅の組合せを切り換えながら、診断動作を繰り返し行い、その診断動作の結果として得られた出力信号に基づいて自動的に正弦波信号の生成手段を作成するようにしてもよい。図9は、射出成形機2の診断動作を行った際の原動機に入力される入力信号と、原動機からフィードバックされる出力信号のグラフを示した例である。図9に例示するグラフでは、縦軸を信号の振幅、横軸を時間で示している。また、実線は入力信号、点線は出力信号を示している。この診断動作では、入力信号の振幅は所定の一定値Aiとし、時間が経過するにつれて入力信号の周波数が漸増するようにしている。図9の例では、入力信号の周波数が高くなるにつれて、出力信号の振幅が小さくなっていることがわかる。このような場合において、信号生成手段作成部160は、複数の所定の周波数fi(i=1,2,...)における入力信号の振幅Aiと出力信号の振幅Aofiに基づいて、入力信号と出力信号の振幅の比が一定となるような、正弦波信号の生成手段としての区分線形関数を算出する。区分線形関数は、例えば数1式~数3式に例示される典型的な正弦波信号の生成手段のひな型をあらかじめ用意しておき、線形近似等の公知の手法を用いて入力信号と出力信号の振幅の比が一定となるような各係数を算出することで求めることができる。
信号生成手段作成部160は、上記したように自動的に正弦波信号の生成手段として区分線形関数を作成するようにしてもよいが、ユーザにより手動で区分線形関数を指示できるようにしてもよい。例えば図10に例示するように、信号生成手段作成部160は、表示装置70に診断動作の入力信号と出力信号をグラフとして提示し、これを見ながらユーザが区分線形関数の種類などの正弦波信号の生成手段の選択や、区分線形関数の係数などの各パラメータの設定を行えるようなユーザインタフェースを提供してもよい。図10のグラフは、縦軸を信号の振幅、横軸を時間で示し、診断動作の入力信号(速度信号)を実線で、出力信号を点線で示している。図10の入力信号は、ユーザが選択した正弦波信号の生成手段に基づき、正弦波信号の周波数は時間経過と共に高くなり、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号の例を示している。
以上、本発明の実施形態について説明したが、本発明は上述した実施の形態の例のみに限定されることなく、適宜の変更を加えることにより様々な態様で実施することができる。
上記した実施形態では、ベルトを備えた産業機械として射出成形機を例として説明しているが、ベルトやボールねじなどの動力伝達機構を用いて動力を伝達する構成を備えた産業機械であれば、例えば鍛造プレス機、工作機械、搬送ロボットなど、他の産業機械に対して本願発明を用いても好適に動作する。
上記した実施形態では、ベルトを備えた産業機械として射出成形機を例として説明しているが、ベルトやボールねじなどの動力伝達機構を用いて動力を伝達する構成を備えた産業機械であれば、例えば鍛造プレス機、工作機械、搬送ロボットなど、他の産業機械に対して本願発明を用いても好適に動作する。
1 制御装置
2 射出成形機
3 センサ
4 産業機械
5 ネットワーク
6 フォグコンピュータ
7 クラウドサーバ
11 CPU
12 ROM
13 RAM
14 不揮発性メモリ
15,17,18,20 インタフェース
22 バス
70 表示装置
71 入力装置
72 外部機器
110 制御部
120 データ取得部
130 周波数特性算出部
150 正弦波生成部
160 信号生成手段作成部
200 制御用プログラム
210 取得データ記憶部
220 周波数特性記憶部
230 テーブル記憶部
401 型締ユニット
402 射出ユニット
411 固定側金型
412 可動側金型
414 固定プラテン
416 可動プラテン
420 ベルト
422 プーリ
426 射出シリンダ
436 ホッパ
440 ノズル
2 射出成形機
3 センサ
4 産業機械
5 ネットワーク
6 フォグコンピュータ
7 クラウドサーバ
11 CPU
12 ROM
13 RAM
14 不揮発性メモリ
15,17,18,20 インタフェース
22 バス
70 表示装置
71 入力装置
72 外部機器
110 制御部
120 データ取得部
130 周波数特性算出部
150 正弦波生成部
160 信号生成手段作成部
200 制御用プログラム
210 取得データ記憶部
220 周波数特性記憶部
230 テーブル記憶部
401 型締ユニット
402 射出ユニット
411 固定側金型
412 可動側金型
414 固定プラテン
416 可動プラテン
420 ベルト
422 プーリ
426 射出シリンダ
436 ホッパ
440 ノズル
Claims (9)
- 産業機械が備える駆動装置を駆動する原動機の周波数特性を算出する制御装置であって、
正弦波信号を生成する正弦波生成部と、
前記正弦波信号を用いて前記原動機の診断動作を制御する制御部と、
前記正弦波信号と、前記診断動作から得られるフィードバックデータを少なくとも取得するデータ取得部と、
前記診断動作から得られる前記フィードバックデータの周波数特性を算出する周波数特性算出部と、
を備え、
前記正弦波生成部は、前記正弦波信号の周波数が時間経過と共に高くなり、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号を生成する、
制御装置。 - 前記正弦波生成部は、前記正弦波信号の周波数に対して区分線形関数または不連続区分線形関数のいずれかを用いて振幅を算出し、算出した前記振幅と前記周波数とを対応づけた正弦波信号を生成する、
請求項1に記載の制御装置。 - 前記駆動装置の種類または前記原動機の種類と正弦波信号の生成手段とを対応づけたテーブルを記憶するテーブル記憶部を更にさらに備え、
前記正弦波生成部は、前記テーブル記憶部を参照し、前記産業機械の原動機または駆動装置の種類に基づいて正弦波信号の生成手段を特定し、特定した正弦波信号の生成手段を用いて正弦波信号を生成する、
請求項1または2に記載の制御装置。 - 前記正弦波生成部は、前記周波数が周波数変換開始値に達して以降に、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号を生成する、
請求項1~3のいずれか1つに記載の制御装置。 - 前記区分線形関数または前記不連続区分線形関数に含まれるそれぞれの区分毎の線形関数の傾きをゼロ以下とする、
請求項2に記載の制御装置。 - 前記周波数特性算出部が算出した周波数特性を示すデータに基づいて、前記正弦波信号に対する前記フィードバックデータの振幅の比が一定となる区分線形関数または不連続区分線形関数を正弦波信号の生成手段として算出する信号生成手段作成部を更に備える、
請求項2に記載の制御装置。 - 前記正弦波生成部は、周波数に対して区分線形関数または不連続区分線形関数を用いて振幅を算出し、算出した振幅と周波数とを対応づけた正弦波信号を所定の周期だけ繰り返して生成する、
請求項2のいずれか1つに記載の制御装置。 - オペレータが区分線形関数または不連続区分線形関数を指示するためのユーザインタフェースを提供する信号生成手段作成部を更に備える、
請求項2に記載の制御装置。 - 産業機械が備える駆動装置を駆動する原動機の周波数特性を算出する制御方法であって、
正弦波信号を生成するステップと、
前記正弦波信号を用いて前記原動機の診断動作を制御するステップと、
前記正弦波信号と、前記診断動作から得られるフィードバックデータを少なくとも取得するステップと、
前記診断動作から得られる前記フィードバックデータの周波数特性を算出するステップと、
を実行し、
前記正弦波信号を生成するステップは、前記正弦波信号の周波数が時間経過と共に高くなり、低周波数域の振幅に対して高周波数域の振幅が小さくなる正弦波信号を生成する、
制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/036495 WO2023053455A1 (ja) | 2021-10-01 | 2021-10-01 | 制御装置及び制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/036495 WO2023053455A1 (ja) | 2021-10-01 | 2021-10-01 | 制御装置及び制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053455A1 true WO2023053455A1 (ja) | 2023-04-06 |
Family
ID=85782114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/036495 WO2023053455A1 (ja) | 2021-10-01 | 2021-10-01 | 制御装置及び制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023053455A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003316402A (ja) * | 2002-04-24 | 2003-11-07 | Mitsubishi Electric Corp | 周波数特性同定方法および駆動制御装置 |
JP3818371B2 (ja) * | 2000-04-20 | 2006-09-06 | 株式会社安川電機 | 電動機制御装置 |
JP2006333570A (ja) * | 2005-05-24 | 2006-12-07 | Hitachi Industrial Equipment Systems Co Ltd | 電動機制御装置の機械系パラメータ推定方法及びシステム |
-
2021
- 2021-10-01 WO PCT/JP2021/036495 patent/WO2023053455A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3818371B2 (ja) * | 2000-04-20 | 2006-09-06 | 株式会社安川電機 | 電動機制御装置 |
JP2003316402A (ja) * | 2002-04-24 | 2003-11-07 | Mitsubishi Electric Corp | 周波数特性同定方法および駆動制御装置 |
JP2006333570A (ja) * | 2005-05-24 | 2006-12-07 | Hitachi Industrial Equipment Systems Co Ltd | 電動機制御装置の機械系パラメータ推定方法及びシステム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2262431C (en) | Auto-tuned, adaptive process controlled, injection molding machine | |
EP1283593B1 (en) | Motor controller | |
US6861814B2 (en) | Control parameter automatic adjustment apparatus | |
US20050214407A1 (en) | Mold clamping force adjustment device of toggle type injection molding machine | |
CN103038048A (zh) | 注塑成型机的控制装置及控制方法 | |
CN106292550B (zh) | 具有在线优化控制增益的功能的伺服控制装置 | |
US20130063068A1 (en) | Motor control device | |
CN102893515A (zh) | 马达控制装置 | |
US10908594B2 (en) | Numerical controller | |
CN112629731B (zh) | 诊断装置以及机器学习装置 | |
WO2023053455A1 (ja) | 制御装置及び制御方法 | |
JP2010193687A (ja) | 電動機制御装置の選定装置、電動機制御装置の選定方法および該機能を有するコンピュータプログラムおよび記憶媒体 | |
JP7315797B2 (ja) | 動力伝達機構の管理装置、動力伝達機構の管理方法 | |
CN114050756A (zh) | 超声内镜电机不同负载下的匀速转动控制方法及控制系统 | |
WO2023053453A1 (ja) | 制御装置及び制御方法 | |
CN110053042B (zh) | 机器人控制装置 | |
JP2021143941A (ja) | 制御装置 | |
JPH0616246B2 (ja) | 位置決め制御装置 | |
JP3761429B2 (ja) | 射出成形機を用いた樹脂評価方法及び装置 | |
CN113992113B (zh) | 电机的负载惯量的确定方法和装置、电机组件和存储介质 | |
JP2023051179A (ja) | システム制御装置 | |
US11146191B2 (en) | Simulation device, simulation method, and simulation program for a motor control device | |
JP2660636B2 (ja) | 射出成形機の射出制御方法 | |
JP3466772B2 (ja) | 射出成形機の射出圧力制御方法 | |
CN108693841B (zh) | 制造系统以及制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21959489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21959489 Country of ref document: EP Kind code of ref document: A1 |