WO2019017345A1 - 状態推定装置と方法とプログラム - Google Patents

状態推定装置と方法とプログラム Download PDF

Info

Publication number
WO2019017345A1
WO2019017345A1 PCT/JP2018/026746 JP2018026746W WO2019017345A1 WO 2019017345 A1 WO2019017345 A1 WO 2019017345A1 JP 2018026746 W JP2018026746 W JP 2018026746W WO 2019017345 A1 WO2019017345 A1 WO 2019017345A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
state
facility
signal
change
Prior art date
Application number
PCT/JP2018/026746
Other languages
English (en)
French (fr)
Inventor
永典 實吉
滋 河本
暁 小路口
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/629,650 priority Critical patent/US11486915B2/en
Priority to JP2019530548A priority patent/JP6874843B2/ja
Publication of WO2019017345A1 publication Critical patent/WO2019017345A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique

Definitions

  • the present invention is based on the claim of priority of Japanese Patent Application No. 2017-139086 (filed on July 18, 2017), and the entire contents of the same application are incorporated herein by reference. It shall be.
  • the present invention relates to an apparatus, method, and program for estimating the state of equipment.
  • Equipment Electrical equipment and equipment
  • EM electro migration
  • the corrosion of the wiring pattern on the circuit board due to the EM causes deterioration of the quality of the power supply line and the signal transmission path, and eventually the normal power supply and signal transmission become difficult, and the product life may be reached. is there.
  • it may be broken before the product life of the equipment.
  • the refrigerant gas is compressed by a compressor (compressor) to become a high-temperature and high-pressure gas, and exchanges heat with outside air in a condenser (outdoor heat exchanger).
  • the refrigerant gas partially liquefied in the condenser is depressurized by the expansion valve, the heat in the room is taken away in the evaporator, and the refrigerant gas changes from liquid to gas.
  • the refrigerant gas from the evaporator is returned to the compressor again.
  • a filter is generally provided at the inlet so that dust and the like do not enter.
  • the inflow or discharge of air may be reduced due to, for example, clogging of the filter, which may lead to malfunction or failure of the equipment.
  • the maintenance interval (maintenance period) also depends on the use form of the maintenance target equipment, the environment, and the like. Therefore, it is difficult to set an appropriate interval for regular maintenance. For example, if the regular maintenance interval is short, the maintenance cost will increase, and if the interval is long, there will be problems in terms of safety.
  • the deterioration state of the equipment is predicted and estimated.
  • sensors for example, ammeters, voltmeters, electricity meters, temperature sensors, pressure sensors, vibration sensors, etc.
  • a method of determining the need for maintenance may be used.
  • the following related techniques are known as a technique for installing a sensor or the like in a facility to be monitored and monitoring the condition of the facility.
  • Patent Document 1 discloses an operation status determination device that can determine the operation status of an electrical device with high accuracy even if the voltage waveform applied to the electrical device changes.
  • This operation status determination device is applied to the waveform data of harmonic current included in the current flowing through the power supply line, the operation status information indicating the operation status of the electric device when the waveform data is generated, and the electric device.
  • Learning data in which section identification information for specifying a preset waveform data comparison target section in one AC voltage cycle of the AC voltage is associated is acquired. Then, the operation status determination device compares the waveform data of the harmonic current associated with the acquired learning data with the waveform data of the harmonic current measured by the harmonic current measurement unit in the waveform data comparison target section. To determine the operating status of the electrical equipment.
  • Patent Document 2 discloses an apparatus identification apparatus and an apparatus identification method that allow a user to properly register an apparatus and its operation mode. That is, Patent Document 2 discloses a device identification apparatus connected to a power meter that measures a current waveform of an electrical device that consumes one or a plurality of powers, and that identifies an operation mode of the electrical device from the current waveform There is. The device identification apparatus inputs, to the power meter, a measurement control unit that controls start and stop of measurement of a current waveform of the electric device, and a current waveform measured during a measurement period from the start to the stop.
  • a measurement input unit for extracting one or more waveform patterns from the input current waveform; and a pattern identification unit for classifying the waveform patterns according to the operation mode with respect to the extracted one or more waveform patterns And instructing the start and stop of measurement of the current waveform to the registration unit for registering the operation mode with respect to the classified waveform pattern and the measurement control unit, and registering the operation mode of the waveform pattern to the registration unit.
  • an instruction unit for instructing.
  • the following related techniques are known as a technique for predicting the time-dependent change of the state of equipment.
  • Patent Document 3 discloses a technique for enabling optimization without being influenced by the time-dependent component of the actual value used for optimization, and also for enabling near-future fluctuation prediction. That is, for input information given under predetermined processing conditions, variance is defined as an evaluation function that evaluates the predicted output from the simulation model and the actual value obtained from the actual processing process. After correcting the variation (dispersion or standard deviation), the near-future behavior of the processing process to be simulated is predicted by correcting the time-lapse component of the actual value with the extracted time-lapse information.
  • Non-Patent Document 1 a current flows in a trunk using one current sensor attached to a distribution board Obtain the current waveform (for example, an instantaneous waveform for each cycle), analyze the waveform with reference to the waveform database provided with current waveform information unique to each device, and estimate the power consumption of each device, and the operating state of the device It is described to determine the.
  • the current waveform for example, an instantaneous waveform for each cycle
  • a sensor that senses the state of equipment for example, detection and estimation of the deterioration state of the equipment using a power meter may be problematic in terms of accuracy and the like. That is, as will be described later, depending on the facility, the change with time (deterioration) appears as a significant difference in power value when the deterioration state considerably progresses and it becomes a failure or almost failure state. There is also a case. In this case, by monitoring the power value, it is difficult to appropriately estimate the change over time of the state of the facility with practical accuracy. And if it is going to detect the degradation state of equipment appropriately based on electric power information, a high-performance power meter and arithmetic processing will be needed.
  • Patent Document 1 discloses an operation status determination device that can determine the operation status of an electrical device with high accuracy, when attempting to estimate a time-dependent change in the status of a facility by the present technology, high-performance voltage and current are also obtained Measurement is required.
  • the state of the facility is estimated from time series data of the current consumed by the facility and the degradation state of the facility is detected and estimated, the current value of the facility fluctuates due to the fluctuation of the AC voltage applied, The condition of the equipment may change. In this case, it is difficult to correctly estimate the deterioration state of the equipment and the change with time.
  • the present invention has been made in view of the above problems, and an object thereof is a state estimation device, method, and program that can suppress an increase in cost and estimate time change of the state of equipment with practical accuracy. To provide.
  • the first means for extracting the time interval to be analyzed on the time series of the first signal based on the second signal acquired together with the first signal related to the operation of the facility there is provided a state estimation device comprising: second means for estimating a change in the state of the facility based on waveform data of the time interval of the first signal.
  • a method of estimating the state of an installation by a computer comprising: on the time series of the first signal, based on the second signal acquired in conjunction with the first signal related to the operation of the installation.
  • a method is provided for extracting a time interval to be analyzed and estimating a change in the state of the facility based on waveform data of the time interval of the first signal.
  • a process of extracting a time interval to be analyzed on the time series of the first signal based on the second signal acquired in combination with the first signal related to the operation of the facility A program is provided that causes a computer to execute a process of estimating a time change of the state of the facility based on waveform data of the time interval of one signal.
  • a semiconductor storage such as a computer readable recording medium (for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM (Electrically Erasable and Programmable ROM)) storing the above program, HDD Non-transitory computer readable recording media such as (Hard Disk Drive), CD (Compact Disc), DVD (Digital Versatile Disc) and the like are provided.
  • a computer readable recording medium for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM (Electrically Erasable and Programmable ROM)
  • HDD Non-transitory computer readable recording media such as (Hard Disk Drive), CD (Compact Disc), DVD (Digital Versatile Disc) and the like are provided.
  • FIG. 7 illustrates another example of an exemplary embodiment of the present invention. It is a figure which illustrates typically an example of a synthetic waveform of a plurality of facilities, and a separation waveform for every facility.
  • 5 is a flow diagram illustrating the operation of an exemplary embodiment of the present invention.
  • FIG. 1 illustrates an exemplary embodiment of the present invention.
  • FIG. 1 illustrates an exemplary embodiment of the present invention. It is a figure explaining the relationship between an electric power value and a time-dependent change.
  • FIG. 6 illustrates yet another exemplary embodiment of the present invention.
  • a processor comprising a communication interface in communication with the sensor and a memory (e.g. 111 in FIG. 10) together with a first signal (e.g. current flowing in the installation) relating to the operation of the installation
  • a first signal e.g. current flowing in the installation
  • a first process first means, unit of extracting a time interval to be analyzed on a time series of the first signal based on the acquired second signal (for example, a voltage applied to a facility)
  • second processing for estimating a time change of the state of the facility based on waveform data (for example, current waveform data) of the time section of the first signal.
  • the first processing (first means, unit) is performed in the case where the second signal corresponding to a certain time interval on the time series of the first signal has a predetermined value or state.
  • the time interval of the first signal may be selected as an analysis target.
  • the first process may exclude a time interval to be excluded from analysis from the time-series data of the first signal based on the second signal.
  • the time series data of the first signal may be configured to exclude a time interval corresponding to an operation mode which is not affected by a time change (time change). Good.
  • the first processing excludes, from the time series data of the first signal, a time interval corresponding to an operation mode not affected by time change (time change) based on operation history information of the facility. You may do it.
  • the second process (second means, unit) estimates a change in the state of the facility from waveform data of a first signal (current) of the facility corresponding to the time interval, and changes the state
  • the filtering process corresponding to the time constant of the time change of extraction object may be performed to estimate the time change of the state of the equipment.
  • the second processing is based on time series data of the first signal (current) of the facility corresponding to the time interval, and includes time series data of the risk degree to the failure of the facility.
  • the time series data of the degree of risk to the failure corresponding to the time interval is subjected to filtering processing corresponding to the time constant of the time change of the extraction target to estimate the time change of the state of the facility May be
  • the time interval of the current corresponding to the designated effective value or the like is extracted from the AC voltage applied to the facility, and the state of the facility is estimated from the current waveform data of the extracted time interval. Therefore, it is possible to correctly estimate changes in equipment conditions and changes over time. Therefore, according to the present invention, it is possible to suppress an increase in cost and to estimate the time change of the state of the facility with practical accuracy.
  • FIG. 1 is a diagram for explaining an exemplary embodiment of the present invention.
  • a state estimation apparatus 100 for estimating the state of equipment includes a voltage / current information acquisition unit 101, a target section extraction unit 102, a state estimation unit 103, and time change estimation.
  • a unit 104, an output unit 105, and a storage device 106 are provided.
  • the target section extraction unit 102 can correspond to the first means for executing the first process.
  • the state estimation unit 103 and the time change estimation unit 104 can correspond to the second means for executing the second process.
  • the voltage / current information acquisition unit 101 acquires, from the sensor 200, time-series data of an alternating current voltage applied to the facility 10 and an alternating current flowing through the facility 10, and stores the time series data in the storage device 106.
  • the voltage / current information acquisition unit 101 includes, for example, communication means (communication unit 101-1 in FIG. 2A), communicates with the sensor 200 (FIG. 2A) via the communication means, and measures the equipment 10 measured by the sensor 200. Time series data (digital waveform data) of voltage and current may be acquired.
  • the voltage / current information acquisition unit 101 includes a communication unit (the communication unit 101-1 in FIG. 3A), a voltage from the sensor 200 or the like connected to the main trunk of the distribution board (22 in FIG. 3A) A combined current waveform of a plurality of facilities 10 may be acquired, and current information of each facility may be acquired using a disaggregation technique.
  • a smart meter 23 in FIG.
  • the voltage / current information acquisition unit 101 acquires measurement voltage and current value information from the smart meter.
  • Equipment separation techniques may be used to separate current information for individual installations.
  • the sampling rate of the AC voltage applied to the facility 10 and the sampling rate of the current (current consumed by the facility 10) flowing through the facility 10 may or may not be the same.
  • the sampling waveform of the AC voltage applied to the facility and the waveform sampling waveform of the current may be held in correspondence with the sampling time.
  • the sampling frequency of the sensor 200 it is not necessary to hold the sampling time of the sampling waveform of voltage and current of a predetermined time length for each sample value, and hold only sampling start time information of the sampling waveform. You may
  • voltage / current information acquisition unit together with sampling start time information (T1) of voltage and current sampled at a predetermined sampling frequency (for example, 20 KHz (Kilo Hertz)) from the sampling start time. It may be supplied to 101.
  • the voltage / current information acquisition unit 101 may store time series data of voltage and current transmitted from the sensor 200 in the storage device 106 in association with sampling start time information.
  • the voltage / current information acquisition unit 101 adjusts the phase difference ( ⁇ : power factor angle) with the voltage waveform based on, for example, the zero cross point of the AC voltage waveform data, and then adjusts the time series data of the current waveform It may be divided into a plurality of cycles.
  • the target segment extraction unit 102 extracts a time segment to be analyzed with respect to time series data of current information stored in the storage device 106 based on the voltage information acquired by the voltage / current information acquisition unit 101.
  • the time interval may be one cycle (20 ms (milli second)) of the commercial power supply or a plurality of cycles.
  • the target segment extraction unit 102 may exclude a time segment that is outside the estimation target of the time change of the state.
  • the current information is determined according to the voltage supplied to the facility. It is more critical (eg, current information is mostly determined according to the voltage), for example, when the equipment does not perform feedback operation so as to achieve the operation target value.
  • the target section extraction unit 102 may extract, for example, a time section in which the voltage waveform of one cycle of the commercial AC power supply is in a specific state among the voltage waveform data applied to the facility.
  • a specific state is, for example, a relationship (correlation function, phase relationship) with a reference waveform set in advance in which a statistical value (maximum value, average value, variance, etc.) of a voltage value is within a certain numerical value or range. It means the state where it can be judged that the numbers, covariances, etc. match.
  • the target section extraction unit 102 may select a time section having the same voltage value in the time series of the current sample values.
  • one cycle of current waveform (54, 55, when the effective value of the AC voltage is 202V, 215V, 190V (voltage waveforms 51, 52, 53; however, allowable motor voltage is 202V. ⁇ .20V)).
  • the effective value of the alternating voltage may be 202 V, 212 V, 192 V, or the like, and may be an average value of the effective values of the alternating voltage in a predetermined measurement period (for example, one hour).
  • a time interval in which the effective value of the AC voltage is 202 V may be selected.
  • the target segment extraction unit 102 extracts a time segment of the current corresponding to the selected time segment as a time segment to be analyzed.
  • target section extraction unit 102 determines the sampling time (period) May be extracted as the time interval of the state estimation target. In FIG. 5, the extraction of the time interval is similarly performed for the effective values of the AC voltage of 215 and 190V.
  • the time interval of the current extracted for analysis may be equal to or less than the measurement period (for example, one hour) of the AC voltage, and is, for example, a period of one cycle to several tens of cycles of the commercial power supply frequency It is also good.
  • representative sample values may be extracted.
  • the time interval of the current to be analyzed is almost the same as the measurement period of AC voltage (for example, 1 hour) It may be a time interval of approximately the same length.
  • the state estimation unit 103 estimates the state of the facility based on the information (for example, the feature amount (scalar or vector)) of the current waveform data of the time interval extracted by the target interval extraction unit 102.
  • the state estimation unit 103 may calculate the feature quantity of the current waveform from the waveform shape (peak value, effective value, average value, peak value, etc.) of the time domain, and the pattern of the time domain waveform is used as the feature quantity. It is also good.
  • current waveform data is subjected to Fourier transform (Fast Fourier Transform (FFT) or Discrete Fourier Transform (DFT), etc.) to transform into the frequency domain, and feature quantities are calculated based on frequency spectrum components. You may do so.
  • FFT Fast Fourier Transform
  • DFT Discrete Fourier Transform
  • the current feature May be calculated.
  • harmonic distortion (THD) or the like may be used as a feature of current.
  • HPF high-pass filter
  • the state estimation unit 103 performs machine learning, for example, on the state of the facility and current information (waveform, feature amount, etc.), and based on the current information (waveform, feature amount, etc.) of the extracted time section, the state of the facility (Change of state) may be estimated.
  • Support Vector Machine SVM
  • k-NN k-Nearest Neighbor Method
  • NN Neural Network
  • a method of clustering for example, k-means method (k-means method, etc.) may be used.
  • the state estimation unit 103 uses, for example, a model in which the state of the equipment (for example, the degree of deterioration) is quantified, and based on the state of the equipment corresponding to time-series data of current information (current waveform, feature value)
  • the equation f which approximates the condition of the facility may be obtained by this to estimate the condition (for example, the degree of deterioration) f (x N ) of the facility corresponding to the current information x N at a certain time t N.
  • the state of the equipment estimated at time t N or later is a predetermined value from the state of the equipment estimated at time t 1 to t N-1 before that (When changing by the threshold value or more, it is estimated that the state at time t N has changed. Also in this case, the change in the state of the facility may be detected by learning a threshold for determining the change in the state of the facility based on machine learning or the like.
  • the time change estimation unit 104 performs a filtering process corresponding to the time change rate (time constant) of the change of the estimation target on the estimated state (change of the state) to estimate the time change of the state.
  • the filtering process performed by the time change estimation unit 104 is time-series data of a signal value (which may be a current waveform or a feature value of the current waveform) representing the degree of deterioration of the facility (also referred to as “risk of failure”).
  • digital filter processing such as FIR (Finite Impulse Response) filter or IIR (Infinite Impulse Response) may be performed.
  • Fourier transform fast Fourier transform, discrete Fourier transform
  • processing such as cutting off (cut off) a predetermined frequency band for the frequency spectrum is performed. It may be realized by performing Fourier transform to return to the time domain.
  • the Fourier transform may be performed on time series data of current information that has a positive correlation with the degree of deterioration of the facility.
  • the output unit 105 outputs the estimation result of the temporal change of the state of the facility to the display device.
  • the output unit 105 may transmit the estimation result of the change with time of the state of the facility to a terminal, a host, and the like (not shown) via a communication interface, a network, and the like (not shown).
  • FIG. 2A is a diagram showing an example of the configuration of the sensor 200 of FIG.
  • a single-phase two-wire alternating current is illustrated for simplicity, but also in the case of a three-phase three-wire alternating current, measurement can be performed using, for example, three single-phase power meters. Alternatively, measurement based on a two-power meter method may be performed on power.
  • the sensor 200 is a voltmeter 201 (U in FIG. 2B) that measures the voltage between terminals of the facility (load 210 in FIG. 2B) and an ammeter that measures the current flowing in the facility (load 210 in FIG. 2B) It may be configured to have 204 (I in FIG. 2B).
  • the voltmeter 201 may be configured to include a step-down circuit 202 that steps down a voltage across terminals of a load (210 in FIG. 2B) and an analog-to-digital converter 203 that converts an analog output voltage of the step-down circuit 202 into a digital signal.
  • the ammeter 204 detects a current flowing in a power supply line (a power supply line connected to the load 210 in FIG. 2B), and an analog-to-digital converter 206 which converts an analog output signal from the current sensor 205 into a digital signal. It is good also as composition provided.
  • the current sensor 205 may be configured to measure, for example, the voltage between terminals of a shunt resistor (not shown) inserted in the power supply line, or the current sensor 205 may have a current transformer structure in which a coil is wound around a magnetic core or the like.
  • CT Current Transformer: for example, Zero-phase-sequence Current Transformer: ZCT) that detects the current by inserting a cable for current measurement and converting it from the detection value of the magnetic flux flowing in the magnetic core.
  • ZCT Zero-phase-sequence Current Transformer
  • the current waveform data corresponding to the voltage information is input to the communication unit 207 and transmitted to the voltage / current information acquisition unit 101.
  • the communication unit 207 may transmit the voltage information and the corresponding current waveform data to the voltage / current information acquisition unit 101 together with the measurement time information.
  • the communication unit 101-1 of the voltage / current information acquisition unit 101 communicates with the communication unit 207 of the sensor 200, receives time series data of measured voltage and current, and stores the received time series data in the storage device 106. Do. At this time, time information of voltage and current measured by the measuring instrument 200 may be stored in the storage device 106 in association with time series data of voltage and current.
  • the voltage / current information acquisition unit 101 divides the time series data of the current into one cycle of the commercial AC power supply (211 in FIG. 2B) using the zero crossing point of the time series data of the voltage waveform, and stores the storage device. It may be stored in 106. According to the present embodiment, in the sensor 200, a high-performance power meter is not required.
  • the voltage / current information acquisition unit 101 is not limited to the configuration that includes the sensor 200 or is connected to the sensor 200 as described above.
  • the voltage / current information acquisition unit 101 separates the waveform from the current waveform acquired from, for example, a smart meter or current sensor, and acquires the voltage waveform and current waveform (for example, the length is within one cycle of the commercial power supply frequency) for each facility. You may do it. Again, no sophisticated power meter is required.
  • the communication device 21 is a controller such as a factory energy management system (FEMS) / store energy management system (SEMS) / building energy management system (BEMS) / home energy management system (HEMS). It comprises, and meter reading data (a voltage waveform, an electric current waveform, etc.) of smart meter 23 is acquired from B route, for example.
  • FEMS factory energy management system
  • SEMS store energy management system
  • BEMS building energy management system
  • HEMS home energy management system
  • Meter reading data (power, current waveform, etc.) acquired by the communication device 21 from the smart meter 23 via the route B includes information on the power consumption of the entire building 20.
  • at least one branch breaker (not shown) of the distribution board 22 and a main breaker are provided with a sensor 200 for detecting, for example, voltage and current.
  • the sensor 200 may transmit voltage and current information to the communication device 21 by wireless transmission or the like.
  • the sensor 200 may wirelessly transmit voltage and current information to the communication device 21 by a Wi-SUN (Wireless Smart Utility Network) or the like.
  • the voltage / current information acquisition unit 101 includes a communication unit 101-1 and a waveform separation unit 101-2.
  • the communication unit 101-1 communicates with the communication device 21, acquires voltage and current information acquired by the sensor 200 or the smart meter 23, and separates the voltage and current waveforms specific to the facilities A to C (10A to 10C). And store them in the storage device 106.
  • FIG. 3B is a diagram illustrating current waveforms acquired by the sensor 200 installed on the distribution board 22 of FIG. 3A.
  • the waveform separation unit 101-2 generates the combined current waveform data 31 of the facilities A to C (10A to 10C), using, for example, the method of Non-Patent Document 1, etc., for each facility of the facilities A to C (10A to 10C).
  • Separate into current waveforms. 32 to 34 schematically show current waveforms separated into the facilities of facilities A to C (10A to 10C).
  • the cost can be particularly reduced as compared with the case where the facility 10 is provided with the sensor 200 (FIG. 2A).
  • the waveform separation unit 101-2 in the voltage / current information acquisition unit 101 may be disposed in the building 20 on the local side (in this case, the storage device 106 is disposed on the cloud side). Also good).
  • FIG. 4 is a diagram for explaining an example of the processing procedure of the exemplary embodiment described with reference to FIG. 1 and the like. The processing procedure of the exemplary embodiment will be described with reference to FIG.
  • the voltage / current information acquisition unit 101 of FIG. 1 acquires time-series data of voltage / current information of equipment (S1).
  • the target section extraction unit 102 in FIG. 1 selects, for example, a time section corresponding to a specific voltage state from the time series data of the current (S2).
  • the target section extraction unit 102 may extract the time section corresponding to the specific voltage state by excluding the time section corresponding to the voltage other than the specific voltage among the time series data of the current.
  • the state estimation unit 103 in FIG. 1 estimates the state of the facility based on the current waveform of the time interval selected by the target interval extraction unit 102 (S3).
  • the temporal change estimation unit 104 of FIG. 1 obtains temporal change (temporal change) of the state corresponding to the time constant to be extracted based on the time series information of the estimated state (S4).
  • the output unit 105 of FIG. 1 outputs the estimation result of the temporal change of the state of the facility (S5).
  • information for example, temperature change by a temperature sensor, vibration change by a vibration sensor, cleaning date information, aging information, etc.
  • time changes time change, aging change
  • temporal change corresponding to a desired length short-term rapid change, long-term gentle change
  • time change of the facility Information can be properly estimated.
  • the target section extraction unit 102 in FIG. 1 selects and extracts the time section to be estimated from the time series data of the current flowing in the facility based on the sample value of the AC voltage applied to the facility.
  • the state estimation unit 103 in FIG. 1 estimates the state (change of state) of the facility based on the waveform data of the current of the selected time section.
  • the time change estimation unit 104 performs a filtering process of a time constant corresponding to the time change of the extraction target on the change of the estimated state, and extracts the time change of the state.
  • the statistical value (maximum value, average value, variance, etc.) of the voltage value is within a certain numerical value or range, or the relationship with the waveform as a preset reference (correlation function
  • a time interval (period) may be extracted when it can be determined that the correlation coefficient, covariance, etc. match.
  • FIG. 6 is a view for explaining an example of a temporal change of a state in a case where two air filters are clogged with an air curtain air conditioner and clogged with an object (such as a package or the like) in an air curtain.
  • open-type freezers air curtain refrigerators
  • the open surface of a showcase for displaying a product is shielded from the open air by formation of an air curtain.
  • the air cooled in the refrigerator is circulated by a fan or the like, the air sucked into the suction unit is heat-exchanged by the cooler and cooled, and the cooled air is blown out from the air curtain blowout unit into the refrigerator.
  • an air conditioner such as an air curtain refrigerator, the cooling capacity is reduced due to, for example, dust clogging of an air-cooled condenser or filter, power consumption is increased, and the facility is further damaged.
  • the open type air curtain freezer for example, when the vicinity of the air curtain blowout part is blocked by a product etc., the effect of blocking the outside air by the air curtain is reduced, and the freezing performance in the refrigerator decreases and the power consumption increases. It occurs.
  • the state of the refrigerator deterioration state
  • the state of the refrigerator is compared with a relatively gradual change over time (change over time) due to clogging of the filter, etc.
  • a filtering process with relatively small time constant ⁇ filtering process to pass high frequency band
  • a filtering process with relatively large time constant ⁇ filtering process to pass the low band
  • the horizontal axis represents time
  • the vertical axis represents the risk of failure (risk due to change with time).
  • the deterioration state gradually progresses with time due to clogging of a filter of an air-cooled condenser such as an air curtain freezer. If an object for blocking the air-cooled condenser filter is placed, the risk of failure rises rapidly at time t3. When an object blocking the filter is removed at time t4, the time transition (change over time) of the risk for the failure of the filter clogging alone is returned.
  • the degree of risk to failure on the vertical axis may be represented by digitizing the deterioration state of the equipment.
  • the risk of failure may be a signal having a positive correlation with the risk of failure (deterioration state of the facility) or the like (e.g., current flowing through the facility).
  • time change estimation unit 104 in FIG. 1 performs blocking by an object (package) by filtering processing (high-pass filter) of a cutoff frequency corresponding to blocking by an air-cooling condenser, filter clogging and object (package). It is possible to separate and extract the state change that is the cause.
  • the influence of the temporal change of the state can be appropriately estimated.
  • the exemplary embodiment by making it possible to estimate the time-dependent change of the condition of the facility, it is possible to promote measures such as appropriate preventive maintenance.
  • the time change estimation unit 104 in FIG. 1 excludes the time segment corresponding to the operation mode which is not affected by the state change such as the standby state or the power off state from the analysis target from the time series data of current ) May be.
  • the time change estimation unit 104 in FIG. The time interval of the order of is excluded from the estimation target of the time change of the state.
  • the time change estimation unit 104 of FIG. 1 corresponds to an operation mode which is not affected by time change (time change) such as a standby state or a power off state from time series data of current. It is also possible to acquire the time interval to be performed and exclude the time interval such as the standby state or the power off state from the analysis target.
  • the time change estimation unit 104 may acquire operation history information of a facility from a management server (not shown) that manages the facility.
  • FIG. 7A is a view for explaining an example of the relationship between the power value of the equipment 10 of FIG. 1 and the temporal change (temporal change).
  • the horizontal axis is the change with time (the state of the facility), and the vertical axis is the power value of the facility.
  • the time change of the power value is weak. The power value rises immediately before the failure and shows a remarkable increase when it becomes the failure.
  • FIG. 7B is a diagram for explaining the relationship between the power value of FIG. 7A and the risk of failure.
  • the horizontal axis is the power value
  • the vertical axis is the degree of risk to the equipment failure (corresponding to the vertical axis in FIG. 6).
  • "Recommendation action” of the risk level for failure indicates that maintenance action is recommended
  • “need action” indicates that maintenance is necessary.
  • FIG. 7A and FIG. 7B if the rated power of the facility is exceeded, there is a possibility that further deterioration or destruction of the product may occur in addition to the original failure.
  • the power supply to the facility is cut off (for example, cut off by a breaker at the time of detection of overcurrent of the facility, short circuit failure, etc.) or the facility itself does not operate.
  • a high-performance power meter is required to detect temporal changes such as “normal” to “failure attention” using power values. Therefore, when the power consumption information of each facility is obtained from the current waveform by the sensor 200 connected to the distribution board by the disaggregation technology described in Non-Patent Document 1 etc., a slight change in power value etc. It is considered difficult to detect.
  • estimation of the state of the equipment is performed by analyzing current information flowing through the equipment. Furthermore, in order to accurately estimate the temporal change (temporal change) of the equipment state, the change of the equipment state is estimated based on the current waveform of the time section corresponding to the specific voltage state.
  • FIG. 8A is a diagram for explaining the relationship between current information of equipment and time-dependent change.
  • the horizontal axis is change with time, and the vertical axis is (a part of or the processing value of) the current information of the equipment.
  • the current information changes (monotonously increases) at a constant rate until failure occurs.
  • a portion of the current information can correspond to a time interval of a portion of time series data of the current information. Further, as the processed value of the current information, the above-mentioned feature value can be mentioned.
  • FIG. 8B is a diagram for explaining the relationship between the current information of the facility and the risk for failure.
  • the horizontal axis represents current information (a part of the current information or a processed value), and the vertical axis represents the degree of risk to equipment failure (corresponding to the vertical axis in FIG. 6).
  • the degree of risk to failure varies from normal to corrective action to corrective action in proportion to the increase in current value.
  • the current information (a part or a processed value thereof) in the horizontal axis in FIG. 8B corresponds to a and b in FIG. 8A, respectively.
  • the state estimation unit 103 uses the current information as the risk for failure to determine the state of the facility. It may be estimated.
  • the state estimation unit 103 acquires a detailed current waveform pattern for each cycle of the commercial alternating current power supply, and sets in advance a feature amount extracted from the current waveform or a risk degree for a failure calculated from current information, As compared with FIGS. 8A and 8B, “normal”, “measure recommended”, “measure required” and the like may be detected.
  • machine learning for example, Support Vector Machine (SVM), k-nearest neighbor method) (K-Nearest Neighbor Method: k-NN method), Neural Network (Neural Network: NN), Local Outlier Factor Method (LOF method, k-Means Clustering Method: k- A method such as the Means method) may be used.
  • SVM Support Vector Machine
  • K-Nearest Neighbor Method K-Nearest Neighbor Method: k-NN method
  • Neural Network Neural Network
  • LEF method Local Outlier Factor Method
  • k-Means Clustering Method k- A method such as the Means method
  • FIGS. 8A and 8B show the relationship between current information, temporal change, and the degree of risk with respect to failure in a straight line, for the sake of simplicity of explanation.
  • the horizontal axis may be divided into a plurality of sections, and each section may be approximated by a spline curve.
  • the product failure rate or the like may be used as the risk of failure.
  • the defect rate is a predetermined value, the risk of failure is required, and when the defect rate is 1 (all products are defective), it is a failure.
  • cooling COP Coefficient Of Performance
  • risk for failure 1 ⁇ It may be a cooling COP.
  • the target section extraction unit 102 selects the time section (period) of the current based on the voltage value (effective value) or the like of the AC voltage applied to the equipment. , May use power.
  • a power value serving as a reference in an arbitrary measurement period for example, one hour
  • the target section extraction unit 102 calculates a power value corresponding to the sampling time of the current waveform, and when the calculated power value matches a reference power value (such as an average value), the time interval of the current including the sampling time (Period) may be selected as an analysis target.
  • the power may be calculated from the voltage and current information acquired by the voltage / current information acquisition unit 101, or in the sensor 200, the voltage waveform (digital value) and current acquired by the voltmeter 201 and the ammeter 204.
  • the active power may be calculated from the waveform (digital value), and the active power may be transmitted to the voltage / current information acquisition unit 101 together with the current information.
  • time-series data of voltage waveform and time-series data of risk of failure are taken as an example of time-series data of a signal for extracting a time interval (period) to be estimated.
  • a vibration sensor an acoustic sensor
  • a temperature sensor for example, it is also possible to use current sensors and temperature sensors as sensors.
  • FIG. 9 is a diagram illustrating another exemplary embodiment.
  • a sensor 200A is a current sensor, and includes an ammeter 204 and a communication unit 207 in FIG. 2A.
  • the sensor 2200B is, for example, a temperature sensor.
  • the current information acquisition unit 101A acquires current information (time series data) from the sensor 200A via the communication unit 108, and stores the current information in the storage device 106.
  • the sensing information acquisition unit 107 acquires temperature information (time series data) from the sensor 200B via the communication unit 108, and stores the temperature information in the storage device 106.
  • the storage device 106 may store current information and temperature information in association with sampling times.
  • an average value or the like is calculated from temperature information acquired in an arbitrary measurement period (for example, one hour), and a reference temperature value is set.
  • the target section extraction unit 102A refers to the temperature information corresponding to the sampling time of the current information stored in the storage device 106, and when the temperature matches the reference value (average value etc.) of the temperature, the sampling time The time interval (period) of the included current may be selected as an analysis target.
  • the senor 200B can be similarly applied by using the sensor 200B as a humidity sensor, a vibration sensor, or an air pressure sensor.
  • a computer system 110 such as a server computer includes a processor (CPU (Central Processing Unit), data processing device) 111, a semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), or A storage device 112 including at least one of an EEPROM (Electrically Erasable and Programmable ROM), an HDD (Hard Disk Drive), a CD (Compact Disc), a DVD (Digital Versatile Disc), a display device 113, and a communication interface 114. Is equipped.
  • the communication interface 114 functions as a communication unit (101-1 in FIGS.
  • the storage device 112 may be the same device as the storage device 106 of FIGS. 1 and 9.
  • a program for realizing the functions of the state estimation devices 100 and 100A of FIGS. 1 and 9 is stored in the storage device 112, and the processor 111 reads out and executes the program to obtain the state estimation device of the above embodiment. You may make it implement
  • the computer system 110 may be implemented as a cloud server that provides the state estimation service as a cloud service to clients.
  • Patent Document 1-3 and Non-Patent Document 1 described above are incorporated herein by reference.
  • modifications and adjustments of the embodiments or examples are possible based on the basic technical concept of the invention.
  • various combinations or selections of various disclosed elements are possible within the scope of the claims of the present invention. . That is, the present invention of course includes the entire disclosure including the scope of the claims, and various modifications and alterations that can be made by those skilled in the art according to the technical concept.
  • the first means is configured to select the time interval of the first signal when the second signal corresponding to a time interval on the time series of the first signal has a predetermined value or state.
  • the first means in the time series of the first signal, excludes, from the analysis target, a time interval corresponding to an operation mode which is not influenced by a change in the state of the facility. State estimation device.
  • the first means uses current and voltage information of the facility as the first and second signals, The state estimation device according to any one of appendices 1 to 3, wherein a time interval of the current of the facility operated with the specified voltage or the specified voltage range is extracted.
  • the second means calculates, based on time series data of current information of the time section, time series data of the degree of risk to a failure of the facility;
  • the time series data of the risk to the failure corresponding to the time section is subjected to filtering processing corresponding to the time constant of the time change of the state to be estimated, and the time change of the state of the facility is estimated.
  • the state estimation device according to supplementary note 4, characterized in that
  • the first means uses any one of the current of the facility as the first signal and the power, temperature, humidity, vibration, and atmospheric pressure of the facility as the second signal.
  • the state estimation device according to 2.
  • Appendix 9 A method of estimating the condition of equipment by computer, A first step of extracting a time interval to be analyzed on a time series of the first signal based on a second signal acquired in combination with the first signal related to the operation of the facility; A second step of estimating a change in the state of the facility based on waveform data of the time interval of the selected first signal; A state estimation method characterized in that.
  • time-series data of the degree of risk to the failure of the facility is calculated;
  • the time series data of the risk to the failure corresponding to the time section is subjected to filtering processing corresponding to the time constant of the time change of the state to be estimated, and the time change of the state of the facility is estimated.
  • the first step uses the current of the facility as the first signal, and the power, temperature, humidity, vibration, or atmospheric pressure of the facility as the second signal.
  • the state estimation method according to 10.

Abstract

本発明は、コストの増大を抑制し、実用的な精度で設備の状態の時間変化を推定可能とする。状態推定装置は、設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する第1の手段と、前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の変化を推定する第2の手段を備える。

Description

状態推定装置と方法とプログラム
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2017-139086号(2017年7月18日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、設備の状態を推定する装置と方法およびプログラムに関する。
 電気設備や機器(「設備」と略記される)は、その利用に応じて時間、年月の経過とともに劣化状態が進行する。その原因の代表的なものとして、例えばエレクトロマイグレーション(Electro-Migration:EM)がある。EMにより回路基板上の配線パターン等に腐食が生じ電源ラインや信号の伝送経路の品質が低下することで、最終的には正常な電源供給や信号伝達が困難となり、製品寿命へと至る場合がある。また、設備の使用形態や環境によっては、該設備の製品寿命の前に壊れてしまう場合もある。
 冷蔵設備や空調設備等、熱交換を行う設備では、冷媒ガスは、コンプレッサ(圧縮機)で圧縮され高温高圧の気体となり、凝縮器(室外熱交換器)で外気と熱交換を行う。凝縮器で一部液化された冷媒ガスは膨張弁で減圧され蒸発器で室内の熱を奪い冷媒ガスは液体から気体に変化する。蒸発器からの冷媒ガスは再び圧縮機に戻る。これら空調設備の凝縮器(室外熱交換器)には、一般にほこり等が入り込まないように流入口にフィルタを備える。設備の電気回路や回転機械系等の劣化・故障以外に、例えばフィルタの目詰まり等によっても空気の流入量あるいは排出量が減少し、設備の動作不良、故障に至る場合もある。
 これら設備の突発的な故障の発生を回避するため、例えば定期的な保守が行われる。しかしながら、定期的な保守の場合、保守間隔(保全期間)は、保守対象の設備の使用形態や環境等にも依存している。このため、定期保守の適切な間隔の設定は難しい。例えば定期保守の間隔が短いと保守コストの増大となり、その間隔が長いと安全性の点で問題が生じる。
 そこで、設備の状態をセンサ(例えば電流計、電圧計、電力計、温度センサ、圧力センサ、振動センサ等)等を介して管理装置等でモニタすることで、設備の劣化状態を予測・推定し、保守の必要性を判断する手法が用いられる場合がある。
 監視対象の設備にセンサ等を設置して設備の状態をモニタリングする技術として、例えば以下の関連技術が知られている。
 特許文献1には、電気機器に印加される電圧波形が変化しても高い精度で電気機器の稼働状況を判別できる稼働状況判別装置が開示されている。この稼働状況判別装置は、電源供給線に流れる電流に含まれる高調波電流の波形データと、該波形データが発生するときの電気機器の稼働状況を示す稼働状況情報と、前記電気機器に印加される交流電圧の1交流電圧周期中の予め設定された波形データ比較対象区間を特定する区間特定情報と、を関連付けた学習データを取得する。そして、稼働状況判別装置は、取得した学習データに関連付けられた高調波電流の波形データと高調波電流計測部で計測した高調波電流の波形データとを波形データ比較対象区間において照合した結果を基に、電気機器の稼働状況を判別する。
 また特許文献2には、ユーザが機器及びその動作モードを適切に登録できる機器識別装置および機器識別方法が開示されている。すなわち、特許文献2には、1または複数の電力を消費する電気機器の電流波形を計測する電力計に接続され、電気機器の動作モードを、前記電流波形から識別する機器識別装置が開示されている。この機器識別装置は、前記電力計に対して、前記電気機器の電流波形の計測の開始及び停止を制御する計測制御部と、開始から停止までの計測期間中に計測された電流波形を入力する計測入力部と、入力された電流波形から、1または複数の波形パターンを抽出する波形パターン抽出部と、抽出された1または複数の波形パターンについて、動作モード別に波形パターンを分類するパターン識別部と、前記分類された波形パターンに対して動作モードを登録する登録部と、計測制御部に対して電流波形の計測の開始及び停止を指示し、前記登録部に対して波形パターンの動作モードの登録を指示する指示部と、を備える。
 さらに、設備の状態の経時変化を予測する技術として、例えば以下の関連技術が知られている。
 特許文献3には、最適化に用いる実績値の経時変化成分に影響されることなく最適化を可能にするとともに、近未来の変動予測を可能にするための技術が開示されている。すなわち、所定の処理条件下で与えられた入力情報に対して、シミュレーション・モデルからの予測出力と、現実の処理プロセスから得られる実績値とを評価する評価関数として分散を定義し、モデル誤差のバラツキ(分散あるいは標準偏差)を補正した後、実績値の経時変化成分を抽出した経時変化情報で修正することにより、模擬対象である処理プロセスの近未来の挙動を予測する。
 また、1つのセンサを用いて複数の電気機器の個々の状態を判別する関連技術として、例えば非特許文献1には、分電盤に取り付けた1つの電流センサを用いて基幹線に流れている電流波形(例えば1周期毎の瞬時波形)を取得し、各機器固有の電流波形情報を備えた波形データベースに照らして、波形解析することにより、機器ごとの消費電力を推定し、機器の動作状態を判別することが記載されている。
特開2013-044736号公報 国際公開第2013/157031号 特開平07-056608号公報
河本滋、戸泉貴裕、實吉永典、"1つのセンサーで複数機器の消費電力や利用状況を見える化する電力指紋分析技術"、NEC技報/Vol.68 No.2/ICTが拓くスマートエネルギーソリューション特集
 設備の状態をセンシングするセンサとして、例えば電力計による設備の劣化状態の検出・推定は、精度等の点で問題となる場合がある。すなわち、後述されるように、設備によっては、経時変化(劣化)が、電力値の有意差となって表れるのは、劣化状態が相当に進行し、故障、又は、ほぼ故障状態になってからという場合もある。この場合、電力値をモニタすることで、設備の状態の経時変化を、実用性のある精度で適切に推定することは困難である。そして、電力情報に基づき、設備の劣化状態を適切に検出しようとすると、高性能の電力計や演算処理が必要とされる。
 特許文献1では、高い精度で電気機器の稼働状況を判別できる稼働状況判別装置が開示されているが、本技術によって設備の状態の経時変化を推定しようとした場合、やはり高性能な電圧・電流測定が必要とされる。
 また、設備で消費される電流の時系列データから該設備の状態を推定し該設備の劣化状態を検出・推定する場合、印加される交流電圧の変動等により該設備の電流値が変動し、該設備の状態が変動する場合がある。この場合、設備の劣化状態、経時変化を正しく推定することが困難となる。
 本発明は上記課題に鑑みて創案されたものであって、その目的は、コストの増大を抑制し、実用的な精度で設備の状態の時間変化を推定可能とする状態推定装置、方法、プログラムを提供することにある。
 本発明によれば、設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する第1の手段と、前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の変化を推定する第2の手段と、を備えた状態推定装置が提供される。
 本発明によれば、コンピュータによる設備の状態を推定する方法であって、設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出し、前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の変化を推定する方法が提供される。
 本発明によれば、設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する処理と、前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の時間変化を推定する処理と、をコンピュータに実行させるプログラムが提供される。
 本発明によれば、上記プログラムを記憶したコンピュータ読み出し可能な記録媒体(例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM))等の半導体ストレージ、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等のnon-transitory computer readable recording mediumが提供される。
 本発明によれば、コストの増大を抑制し実用的な精度で設備の経時変化を推定可能としている。
本発明の例示的な一実施形態の構成の一例を例示する図である。(一部変更) 本発明の例示的な一実施形態の一例を説明する図である。 電圧計、電流計の接続を説明する図である。 本発明の例示的な一実施形態の別の例を説明する図である。 複数設備の合成波形と設備毎の分離波形の例を模式的に説明する図である。 本発明の例示的な一実施形態の動作を例示する流れ図である。 本発明の例示的な一実施形態を説明する図である。 本発明の例示的な一実施形態を説明する図である。 電力値と経時変化の関係を説明する図である。 電力値と故障に対する危険度の関係を説明する図である。 電流情報と経時変化の関係を説明する図である。 電流情報と故障に対する危険度の関係を説明する図である。 本発明の例示的な実施形態の変形例を説明する図である。 本発明の例示的なさらに別の実施形態を説明する図である。
 本発明の一形態によれば、センサと通信接続する通信インタフェースとメモリを備えたプロセッサ(例えば図10の111)は、設備の動作に関する第1の信号(例えば、設備に流れる電流)と併せて取得された第2の信号(例えば、設備に印加される電圧)に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する第1の処理(第1の手段、ユニット)と、前記第1の信号の前記時間区間の波形データ(例えば電流波形データ)に基づき、前記設備の状態の時間変化を推定する第2の処理(第2の手段、ユニット)を実行する。
 前記第1の処理(第1の手段、ユニット)は、前記第1の信号の時系列上のある時間区間に対応する前記第2の信号が予め定められた値又は状態である場合に、前記第1の信号の前記時間区間を解析対象として選択するようにしてもよい。
 前記第1の処理(第1の手段、ユニット)は、前記第2の信号に基づき、前記第1の信号の時系列データから、解析対象から外す時間区間を除くようにしてもよい。
 前記第1の処理(第1の手段、ユニット)は、前記第1の信号の時系列データから、時間変化(経時変化)の影響を受けない動作モードに対応する時間区間を除くようにしてもよい。その際、前記第1の処理は、前記設備の動作履歴情報に基づき、前記第1の信号の時系列データから、時間変化(経時変化)の影響を受けない動作モードに対応する時間区間を除外するようにしてもよい。
 前記第2の処理(第2の手段、ユニット)は、前記時間区間に対応する前記設備の第1の信号(電流)の波形データから、前記設備の状態の変化を推定し、前記状態の変化に対して、抽出対象の時間変化の時定数に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定するようにしてもよい。
 前記第2の処理(第2の手段、ユニット)は、前記時間区間に対応する前記設備の第1の信号(電流)の時系列データに基づき、前記設備の故障に対する危険度の時系列データを取得し、前記時間区間に対応する前記故障に対する危険度の時系列データに対して、抽出対象の時間変化の時定数に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定するようにしてもよい。
 本発明によれば、設備に印加される交流電圧について、指定した実効値等に対応する電流の時間区間を抽出し、該抽出された時間区間の電流波形データから、設備の状態を推定することで、設備の状態変化、経時変化を正しく推定することを可能としている。このため、本発明によれば、コストの増大を抑制し、実用的な精度で設備の状態の時間変化を推定可能としている。以下、例示的な実施形態について図面を参照して説明する。
<例示的な実施形態>
 図1は、本発明の例示的な一実施形態を説明する図である。図1を参照すると、本発明の一実施形態によれば、設備の状態を推定する状態推定装置100は、電圧/電流情報取得部101、対象区間抽出部102、状態推定部103、時間変化推定部104、出力部105、記憶装置106を備えている。
 なお、対象区間抽出部102は、上記第1の処理を実行する第1の手段に対応させることができる。状態推定部103と時間変化推定部104は、上記第2の処理を実行する第2の手段に対応させることができる。
 電圧/電流情報取得部101は、センサ200から、設備10に印加される交流電圧、設備10に流れる交流電流の時系列データを取得し、記憶装置106に記憶する。
 電圧/電流情報取得部101は、例えば通信手段(図2Aの通信部101-1)を備え、該通信手段を介してセンサ200(図2A)と通信し、センサ200で測定された設備10の電圧、電流の時系列データ(デジタル波形データ)を取得するようにしてもよい。あるいは、電圧/電流情報取得部101は、通信手段(図3Aの通信部101-1)を備え、分電盤(図3Aの22)の主幹等に接続されたセンサ200等から電圧、及び、複数の設備10に関する合成電流波形を取得し、機器分離(disaggregation)技術を用いて個々の設備の電流情報を取得するようにしてもよい。あるいは、センサ200として、家屋や、工場、店舗等の建屋のスマートメータ(図3Aの23)を利用し、電圧/電流情報取得部101は該スマートメータから計測電圧、電流値情報を取得し、機器分離技術を用いて個々の設備の電流情報を分離するようにしてもよい。
 なお、センサ200において、設備10に印加される交流電圧と、設備10に流れる電流(設備10で消費される電流)のサンプリングレートは同一であってもよいし、あるいは同一でなくてもよい。好ましくは、設備に印加される交流電圧のサンプリング波形と、電流の波形サンプリング波形を、サンプリング時刻を対応させて保持するようにしてもよい。センサ200のサンプリング周波数が既知である場合、所定時間長の電圧、電流のサンプリング波形のサンプリング時刻は個々のサンプル値に対して保持する必要はなく、サンプリング波形のサンプリング開始時刻情報のみを保持するようにしてもよい。
 センサ200では、例えば、サンプリング開始時刻から、所定のサンプリング周波数(例えば20KHz(Kilo Hertz))でサンプルした電圧、電流の時系列データを、サンプリング開始時刻情報(T1)とともに、電圧/電流情報取得部101に供給するようにしてもよい。電圧/電流情報取得部101は、センサ200から送信された電圧、電流の時系列データをサンプリング開始時刻情報に関連付けて記憶装置106に記憶するようにしてもよい。
 電圧/電流情報取得部101では、例えば交流電圧波形データのゼロクロスポイントに基づき、電圧波形との位相差(φ:力率角)を調整した上で、電流波形の時系列データを商用交流電源の複数の周期に区分するようにしてもよい。
 対象区間抽出部102は、電圧/電流情報取得部101で取得され、電圧情報に基づき、記憶装置106に記憶されている電流情報の時系列データに対して、解析対象となる時間区間を抽出する。例えば時間区間は、商用電源の1周期(20ms(milli second))であってもよく複数の周期であってもよい。その際、対象区間抽出部102は、状態の時間変化の推定対象から外れる時間区間を除外するようにしてもよい。
 一般に、環境状況(温度や湿度、気圧など)が一定である場合には、設備に供給される電圧に応じて電流情報は決定される。設備が動作目標値となるようにフィードバック運転しない場合等に、より決定的である(例えば、電圧に応じて電流情報がほとんど決定される)。
 対象区間抽出部102は、例えば設備に印加される電圧波形データのうち、商用交流電源1周期の電圧波形が特定の状態となっている時間区間を抽出するようにしてもよい。特定の状態とは、例えば電圧値の統計値(最大値、平均値、分散等)がある数値または範囲内になっている、あらかじめ設定した基準とする波形との関係性(相関関数、相関係数、共分散等)が一致していると判断できる状態をいう。
 対象区間抽出部102において、電流のサンプル値の時系列において、電圧値が同一である時間区間を選択するようにしてもよい。図5には、交流電圧の実効値が202V、215V、190V(電圧波形51、52、53、ただし、許容電動電圧は例えば202V±20V)のときの1サイクル分の電流波形(54、55、56)が模式的に示されている。交流電圧の実効値が202V、212V、192V等は、予め定められた測定期間(例えば1時間等)における交流電圧の実効値の平均値であってもよい。例えば、状態推定対象として、交流電圧の実効値が202Vである時間区間を選択してもよい。対象区間抽出部102は、選択した時間区間に対応した、電流の時間区間を、解析対象の時間区間として抽出する。
 対象区間抽出部102は、電流の時系列データにおいてあるサンプリング時刻(期間)に対応する時刻(期間)の交流電圧の実効値が202V(あるいは202V±α)である場合、当該サンプリング時刻(期間)を状態推定対象の時間区間として抽出するようにしてもよい。図5において、交流電圧の実効値が215、190Vについても同様にして時間区間の抽出が行われる。
 なお、解析対象の抽出する電流の時間区間は、交流電圧の測定期間(例えば1時間等)以下であってよく、例えば、商用電源周波数の1サイクル乃至、数十サイクルのオーダの期間であってもよい。長期間にわたる経年変化をモニタする場合、代表サンプル値を抽出するようにしてもよい。逆に短期間(例えば1時間)の範囲内での設備の状態の時間変化を解析する場合、解析対象の抽出する電流の時間区間は、交流電圧の測定期間(例えば1時間等)とほぼ同程度の長さの時間区間としてもよい。
 状態推定部103では、対象区間抽出部102で抽出された時間区間の電流波形データの情報(例えば特徴量(スカラー又はベクトル))に基づき、設備の状態を推定する。
 状態推定部103では、電流波形の特徴量を、時間領域の波形形状(ピーク値、実効値、平均値、波高値等)から算出してもよいし、時間領域の波形のパタンを特徴量としてもよい。あるいは、電流波形データをフーリエ変換(高速フーリエ変換(Fast Fourier Transform:FFT)又は離散フーリエ変換(Discrete Fourier Transform:DFT)等)して周波数領域に変換し、周波数スペクトル成分に基づき特徴量を算出するようにしてもよい。例えば基本周波数である交流電源周波数の高調波成分の振幅の2乗を加算した値、偶数次高調波成分、又は奇数次高調波成分の振幅の2乗を加算した値に基づき、電流の特徴量を算出してもよい。また、高調波歪(Total Harmonic Distortion: THD)等を電流の特徴量として用いてもよい。電源ライン等に高周波雑音を発生するインバータを備えた空調設備等に対して、状態推定部103では、高域通過フィルタ(High-pass filter: HPF)で抽出された高周波成分の周波数スペクトル成分等に基づき、電流の特徴量を算出するようにしてもよい。
 状態推定部103では、設備の状態と、電流情報(波形、特徴量等)に関して、例えば機械学習を行うことで、抽出した時間区間の電流情報(波形、特徴量等)に基づき、設備の状態(状態の変化)を推定するようにしてもよい。
 線形識別関数を用いて入力されたデータを2クラスに分類する機械学習では、例えば電流の波形や特徴量ベクトル等の入力ベクトル:x=(x1,x2,・・・,xd)(d次元とする)に対して、例えば、ある状態のとき、出力:+1(クラス1:状態1)、そうでないとき、出力:-1(クラス2:状態1以外)となるように学習する場合、
y=f(x)=sign(wx)=sign(w1x1+w2x2+…+wdxd)
(ただし、sign()は符号関数であり、引数が0以上であれば、+1、0未満であれば-1、w=(w1,w2,…,wd)はモデルパラメータ(重み)である、Tは転置演算子である。)について、
 出力がy=+1(クラス1)のデータについては、wx>0 
 出力がy=-1(クラス2)のデータについては、wx<0 
となり、教師データ(訓練データ)の入出力を再現できるように、重みwを調整する。
 なお、教師有り学習としてサポート・ベクター・マシン(Support Vector Machine:SVM)や、k-近傍法(k-Nearest Neighbor Method:k-NN法)、ニューラル・ネットワーク(Neural Network:NN)の手法を用いてもよい、また、教師なしの学習として、クラスタリング(例えばk-平均法(k-Means Clustering Method:k-Means法等)の手法を用いてもよい。
 あるいは、状態推定部103では、設備の状態(例えば劣化度)を数値化したモデルを用い、電流情報(電流波形、特徴量)の時系列データと対応する設備の状態に基づき、例えば回帰分析等により、設備の状態を近似する式fを求め、ある時刻tでの電流情報xに対応する設備の状態(例えば劣化度)f(x)を推定するようにしてもよい。
 なお、状態推定部103において、時刻tあるいはそれ以降の時刻で推定された設備の状態が、それ以前の時刻t~tN-1で推定された設備の状態から予め定められた値(閾値)以上変化しているとき、時刻tでの状態が変化したと推定されることになる。この場合も、設備の状態の変化の判定用の閾値を、機械学習等に基づき、学習することで、状態の変化を検出するようにしてもよい。
 時間変化推定部104は、推定された状態(状態の変化)に対して、推定対象の変化の時間変化率(時定数)に対応したフィルタリング処理を行い、状態の時間変化を推定する。
 なお、時定数τは、例えば指数関数特性の立ち上がり波形(振幅Y):
Figure JPOXMLDOC01-appb-I000001

において、初期値0から0.632Y(Y(τ)=Y(1-exp(-1))≒0.632Y)に達するまでの時間t=τに対応する。
 同様に、初期値がYの指数関数特性の立ち下がり波形:
Figure JPOXMLDOC01-appb-I000002
において、初期値Y=Y(0)からY(τ)=Yexp(-1)≒0.368Yに達する時間t=τに対応する。
 設備の状態の時間変化が指数関数特性を有しない場合、上記定義を設備の状態の時間変化にそのまま適用することはできない。しかし、状態の時間変化に対応するフィルタリング処理(例えばローパスフィルタの遮断周波数fは1/(2πτ):τは時定数)に合わせて、本明細書では、設備の状態の経時変化についても、「時定数」という用語を用いる。
 時間変化推定部104が行うフィルタリング処理は、設備の劣化度(「故障に対する危険度」ともいう)を表す信号値(ただし、電流波形又は電流波形の特徴量であってもよい)の時系列データに対して、FIR(Finite Impulse Response)フィルタやIIR(Infinite Impulse Response)等のデジタルフィルタ処理を行うようにしてもよい。あるいは、時間領域の電流波形(特徴量)に対して、フーリエ変換(高速フーリエ変換、離散フーリエ変換)を行い、周波数スペクトルについて所定の周波数帯をカットオフ(遮断)する等の処理を施し、逆フーリエ変換して時間領域に戻すことで実現するようにしてもよい。設備の劣化度と正の相関を有する電流情報の時系列データに対してフーリエ変換を行うようにしてもよい。あるいは 出力部105は、設備の状態の経時変化の推定結果を表示装置に出力する。あるいは、出力部105は、不図示の通信インタフェース、ネットワーク等を介して、不図示の端末、ホスト等に、設備の状態の経時変化の推定結果を送信するようにしてもよい。
 図2Aは、図1のセンサ200の構成の一例を示す図である。なお、図2Aでは、簡単のため、単相2線式交流が例示されているが、三相3線式の交流の場合も、例えば三台の単相電力計を用いて測定できる。あるいは、電力について2電力計法に基づく測定を行うようにしてもよい。図2Aにおいて、センサ200は、設備(図2Bの負荷210)の端子間電圧を測定する電圧計201(図2BのU)と、設備(図2Bの負荷210)に流れる電流を測定する電流計204(図2BのI)を備えた構成としてもよい。電圧計201は、負荷(図2Bの210)の端子間電圧を降圧する降圧回路202と、降圧回路202のアナログ出力電圧をデジタル信号に変換するアナログデジタル変換器203を備えた構成としてもよい。電流計204は、電源ライン(図2Bの負荷210に接続する電源ライン)に流れる電流を検知する電流センサ205と、電流センサ205からのアナログ出力信号をデジタル信号に変換するアナログデジタル変換器206を備えた構成としてもよい。電流センサ205は、例えば電源ラインに挿入されたシャント抵抗(不図示)の端子間電圧を計測する構成としてもよいし、あるいは、電流センサ205は、磁気コア等にコイルを巻いた変流器構造をとり電流測定対象のケーブルを挟み込み、磁気コア中に流れる磁束の検知値から換算することにより電流を検知するCT(Current Transformer:例えば零相変流器(Zero-phase-sequence Current Transformer:ZCT)等)やホール素子等で構成してもよい。
 電圧情報と対応する電流波形データは、通信部207に入力され、電圧/電流情報取得部101に送信される。通信部207は、電圧情報と、対応する電流波形データを、測定時刻情報とともに、電圧/電流情報取得部101に送信するようにしてもよい。
 電圧/電流情報取得部101の通信部101-1は、センサ200の通信部207と通信し、測定された電圧、電流の時系列データを受信し、受信した時系列データを記憶装置106に格納する。その際、測定器200で測定した電圧、電流の時刻情報を電圧、電流の時系列データに対応させて記憶装置106に記憶するようにしてもよい。電圧/電流情報取得部101は、電圧波形の時系列データのゼロクロスポイントを利用して、電流の時系列データを、商用交流電源(図2Bの211)の1周期ごとに区分して、記憶装置106に記憶するようにしてもよい。本実施形態によれば、センサ200において、高性能な電力計は必要とされない。
 電圧/電流情報取得部101は、上記したように、センサ200に接続するか、あるいはセンサ200を含む構成に制限されるものでないことは勿論である。電圧/電流情報取得部101は、例えばスマートメータや電流センサ等から取得した電流波形から波形分離して、設備毎の電圧波形、電流波形(長さは例えば商用電源周波数の1周期以内)を取得するようにしてもよい。この場合も、高性能な電力計は必要とされない。
 図3Aは、図1のセンサ200として、分電盤の主幹ブレーカ又は分岐ブレーカに設置されたセンサ200、又は、スマートメータ23を用いて、電圧/電流情報取得部101が、電源電流波形から、各設備の電流波形に分離する例を説明する図である。図3Aを参照すると、建屋20内において、通信装置21をFEMS(Factory Energy Management System)/SEMS(Store Energy Management System)/BEMS(Building Energy Management System)/HEMS(Home Energy Management System)等のコントローラで構成し、スマートメータ23の検針データ(電圧波形、電流波形等)を例えばBルートから取得する。通信装置21がスマートメータ23からBルートで取得する検針データ(電力、電流波形等)は、建屋20全体の消費電力に関する情報を含む。また、分電盤22の少なくとも1つの分岐ブレーカ(不図示)また主幹ブレーカに、例えば電圧、電流を検出するセンサ200を備えている。センサ200から、通信装置21に無線伝送等で電圧、電流情報を送信するようにしてもよい。センサ200は、電圧、電流情報を通信装置21に、Wi-SUN(Wireless Smart Utility Network)等により無線伝送するようにしてもよい。
 電圧/電流情報取得部101は、通信部101-1と波形分離部101-2を備えている。通信部101-1は、通信装置21と通信し、センサ200又はスマートメータ23が取得した電圧、電流情報を取得し、設備A~C(10A~10C)に固有の電圧、電流波形に機器分離し、記憶装置106に記憶する。
 図3Bは、図3Aの分電盤22に設置されたセンサ200で取得された電流波形を例示する図である。波形分離部101-2は、設備A~C(10A~10C)の合成電流波形データ31から、例えば非特許文献1等の手法を用いて、設備A~C(10A~10C)の各設備の電流波形に分離する。32~34は、設備A~C(10A~10C)の各設備に分離された電流波形を模式的に表している。図3Aの構成の場合、設備10にセンサ200を備える場合(図2A)と比べて、コストを特段に削減可能としている。なお、図3Aにおいて、電圧/電流情報取得部101における波形分離部101-2は、ローカル側の建屋20等に配置する構成としてもよい(この場合、記憶装置106をクラウド側に配置する構成としてもよい)。
 図4は、図1等を参照して説明した例示的な実施形態の処理手順の一例を説明する図である。図4を参照して、例示的な実施形態の処理手順を説明する。
 図1の電圧/電流情報取得部101は、設備の電圧/電流情報の時系列データを取得する(S1)。
 図1の対象区間抽出部102は、電流の時系列データのうち、例えば、特定の電圧状態に対応する時間区間を選び出す(S2)。対象区間抽出部102は、電流の時系列データのうち、特定の電圧以外の電圧に対応する時間区間を除外することで、特定の電圧状態に対応する時間区間を取り出すようにしてもよい。
 図1の状態推定部103は、対象区間抽出部102で選択された時間区間の電流波形に基づき、設備の状態を推定する(S3)。
 図1の時間変化推定部104は、推定された状態の時系列情報に基づき、抽出対象となる時定数に対応する状態の時間変化(経時変化)を求める(S4)。
 図1の出力部105は、設備の状態の時間変化の推定結果を出力する(S5)。
 例示的な実施形態によれば、設備の状態の時間変化が微細であっても、フィルタリング等により、他の要因による時間変化と分離することで、当該時間変化を適切に推定することが可能となる。この結果、設備のメンテナンスや清掃時期の的確な把握が可能となる。
 なお、電流情報を用いる場合、さまざまな時間変化(経時変化、経年変化)に関する情報(例えば、温度センサによる温度変化、振動センサによる振動変化、あるいは清掃日時情報、経年劣化情報等)を併せて、観測するようにしてもよい。
 例示的な実施形態によれば、以下の(a)乃至(c)を行うことで、設備の状態変化に関して、所望の長さに対応した時間変化(短時間の急激な変化、長時間の緩やかな変化)に関する情報を適切に推定することができる。この結果、コストの上昇を抑えながら、実用性のある精度で時間変化の検出を可能としている。
(a)図1の対象区間抽出部102が、設備に印加される交流電圧のサンプル値等に基づき、設備に流れる電流の時系列データのうち推定対象となる時間区間を選択して取り出す。
(b)図1の状態推定部103は、選択された時間区間の電流の波形データに基づき、当該設備の状態(状態の変化)を推定する。
(c)時間変化推定部104は、推定された状態の変化に対して、抽出対象の時間変化に対応した時定数のフィルタリング処理を施し、状態の経時変化を抽出する。
 上記(a)の処理では、電圧値の統計値(最大値、平均値、分散等)がある数値または範囲内になっている、または、予め設定した基準とする波形との関係性(相関関数、相関係数、共分散等)が一致していると判断できる場合の時間区間(期間)を抽出するようにしてもよい。
 図6は、空調設備のうちエアーカーテンエアコンのフィルタ目詰まりと物体(荷物等の置物等)で塞いだ場合の2つが重畳された場合の状態の経時変化の例を説明する図である。
 例えばコンビニ、スーパー等の店舗において、商品(冷凍食品等)を陳列するショーケースの開放面をエアーカーテンの形成により外気から遮断したオープンタイプの冷凍庫(エアーカーテン冷凍機)が用いられている。庫内に冷却した空気をファン等で循環させ、吸込部に吸い込まれた空気は冷却器で熱交換されて冷却され、冷却した空気がエアーカーテン吹出部から庫内に吹き出される。エアーカーテン冷凍機等の空調設備では、例えば空冷コンデンサ・フィルタのゴミ詰まり等により、冷却能力が低下し、消費電力が増大し、さらに設備の故障の原因となる。オープンタイプのエアーカーテン冷凍庫では、例えばエアーカーテン吹出部の近傍等が商品等で塞がれると、エアーカーテンによる外気の遮断効果が低減し、庫内の冷凍性能の低下や消費電力の増大等が生じる。また、空冷コンデンサ・フィルタが物体(置物等)で塞がれた場合、冷凍機の状態(劣化状態)に、フィルタの目詰まり等による比較的緩やかな経時変化(経年変化)等と比べて、急な時間変化がある。この場合、時定数τが相対的に小さなフィルタリング処理(高域を通過させるフィルタリング処理)を、解析対象の時間区間の状態に施すことで、状態の急な時間変化を抽出することができる。また、時定数τが相対的に大きなフィルタリング処理(低域を通過させるフィルタリング処理)を施すことで、フィルタの目詰まり等による比較的緩やかな経時変化を抽出することができる。
 図6において、横軸は時間、縦軸は故障に対する危険度(経時変化による危険度)を表している。エアーカーテン冷凍庫等の空冷コンデンサのフィルタの目詰まりにより劣化状態は、時間とともになだらかに進行する。空冷コンデンサ・フィルタを塞ぐ物体が置かれた場合に、時刻t3で故障に対する危険度は急に上昇する。時刻t4でフィルタを塞いでいた物体が除かれると、フィルタ目詰まり単独の故障に対する危険度の時間推移(経時変化)に戻る。
 なお、図6において、縦軸の故障に対する危険度は、設備の劣化状態を数値化して表したものであってもよい。あるいは、故障に対する危険度は、故障に対する危険度(設備の劣化状態)と正の相関を有する信号(例えば設備に流れる電流)等であってもよい。
 図1の時間変化推定部104は、図6の時系列データに対して、空冷コンデンサ・フィルタ目詰まりの時定数τに対応したフィルタリング処理(ローパスフィルタ:遮断周波数=1/(2πτ))を施すことで、フィルタ目詰まりの進行の度合いを分離抽出することができる。
 また、図1の時間変化推定部104は、空冷コンデンサ・フィルタ目詰まり+物体(荷物)による塞ぎに対応した、カットオフ周波数のフィルタリング処理(高域通過フィルタ)により、物体(荷物)による塞ぎを原因とする状態変化を分離抽出することができる。
 空冷コンデンサ・フィルタの目詰まりは、数日~数週間程度の時間をかけてゆっくりと変化するのに対して、空冷コンデンサ・フィルタを塞ぐ物体(荷物)が置かれた、あるいは除去されたという変化は、数分~数時間程度の速い変化であり、これらは、フィルタリング処理により、明確に分離して判別することが可能である。
 エアーカーテン吹出部の近傍等が商品等で塞がれ外気の遮断能力が低下し、エアーカーテン冷凍庫の消費電流等が増大した場合にも、同様にして、フィルタ目詰まりと分離して抽出することができる。
 このように、例示的な実施形態によれば、対象とする状態の時間変化に着目することで、状態の時間変化の影響を適切に推定することができる。例示的な実施形態によれば、設備の状態の経時変化を推定可能としたことで、適切な予防保全等の対処を促すことが可能になる。
 また、図1の時間変化推定部104は、電流の時系列データから、設備がスタンバイ状態や電源オフ状態等、状態変化の影響を受けない動作モードに対応する時間区間を解析対象から除く(外す)ようにしてもよい。例えば、設備の動作時の電流が10アンペアであり、スタンバイ状態や電源オフ状態の場合の電流がミリアンペアのオーダの場合、図1の時間変化推定部104は、当該設備の電流値が0又はミリアンペアのオーダの時間区間を、状態の時間変化の推定対象から外す。
 あるいは、図1の時間変化推定部104は、設備の動作履歴情報に基づき、電流の時系列データから、スタンバイ状態や電源オフ状態等、時間変化(経時変化)の影響を受けない動作モードに対応する時間区間を取得し、当該スタンバイ状態や電源オフ状態等の時間区間を解析対象から除外するようにしてもよい。時間変化推定部104は、設備の動作履歴情報を、当該設備を管理する管理サーバ(不図示)から取得するようにしてもよい。
 図7Aは、図1の設備10の電力値と経時変化(時間変化)の関係の一例を説明する図である。横軸は経時変化(設備の状態)、縦軸は設備の電力値である。横軸の「正常」から「故障注意」では、電力値の時間変化は微弱である。電力値は、故障直前に立ち上がり、故障となると、顕著な上昇を示している。
 図7Aに示す例の場合、設備の劣化が電力値の差となって表れるのは、設備の劣化が相当に進行してからであることがわかる。電力値は、破線で囲んだ範囲では、設備の劣化の進行に対して顕著な差として現れない(電力値の変化量は少ない)。
 図7Bは、図7Aの電力値と、故障に対する危険度との関係を説明する図である。横軸は電力値、縦軸は設備の故障に対する危険度(図6の縦軸に対応する)である。故障に対する危険度の「対処推奨」は、保全の対処が推奨される状態にあり、「要対処」は保全が必要であることを表している。
 なお、図7A、図7Bにおいて、設備の定格電力を超えると、もとの故障に加えてさらなる製品の劣化・破壊等が生じる可能性がある。故障時、設備への給電は遮断されるか(例えば設備の過電流検出時や短絡故障時等にブレーカで遮断)、設備自体が動作しなくなる。
 図7Bの例では、電力値のわずかな変化に対して、「正常」から「対処推奨」、「要対処」まで急激に変化していることがわかる。このため、電力値は、故障の予兆等の検出等には向かない。
 また、図7Aにおいて、電力値を用いて「正常」から「故障注意」等の経時変化を検出するには、高性能な電力計が必要とされる。このため、非特許文献1等に記載された機器分離(disaggregation)技術により、分電盤に接続したセンサ200による電流波形から各設備の消費電力情報を得る場合、わずかな電力値の変化等を検出することは困難であると思料される。
 そこで、実施形態では、設備の状態(劣化の程度や異常)の推定は、設備に流れる電流情報を解析することによって行われる。さらに、設備の状態の時間変化(経時変化)を適確に推定するため、特定の電圧状態に対応した時間区間の電流波形に基づき、設備の状態の変化を推定する。
 図8Aは、設備の電流情報と経時変化の関係を説明する図である。横軸は経時変化、縦軸は設備の電流情報(の一部や加工値)である。電流情報は故障となるまで一定の割合で変化(単調増加)している。電流情報の一部は、電流情報の時系列データの一部の時間区間に対応させることができる。また電流情報の加工値として、前述した特徴量が挙げられる。
 図8Bは、設備の電流情報と故障に対する危険度との関係を説明する図である。横軸は電流情報(の一部や加工値)、縦軸は設備の故障に対する危険度(図6の縦軸に対応)である。故障に対する危険度は、電流値の増大に比例して正常から対処推奨、要対処まで変化している。図8B横軸の電流情報(の一部や加工値)のa、bは、図8Aのa、bにそれぞれ対応している。
 電流情報と経時変化、故障に対する危険度との間に、図8A、図8Bのような関係があるため、状態推定部103は、故障に対する危険度として、電流情報を用いて、設備の状態を推定してもよい。
 状態推定部103は、商用交流電源の1サイクル毎に詳細な電流波形パターンを取得し、電流波形から抽出した特徴量、又は電流情報から算出された故障に対する危険度を、予め設定された閾値(図8A、図8Bのa、b)と比較して「正常」、「対処推奨」、「要対処」等を検知するようにしてもよい。
 状態推定部103は、図8Bの「正常」、「対処推奨」、「要対処」等を検知する場合、機械学習(例えば、サポート・ベクター・マシン(Support Vector Machine:SVM)、k-近傍法(k-Nearest Neighbor Method:k-NN法)、ニューラル・ネットワーク(Neural Network:NN)、局所外れ値因子法(Local Outlier Factor Method:LOF法、k-平均法(k-Means Clustering Method:k-Means法))等の手法を用いてもよい。
 なお、図8A、図8Bは、単に説明の簡単のため、電流情報と経時変化、故障に対する危険度の関係を直線で示している。図8Bにおいて、故障に対する危険度が、図6に示すような特性の場合、横軸を複数の区間に区分し、各区間毎にスプライン曲線で近似するようにしてもよい。
 図8Bにおいて、故障に対する危険度は、設備が製品の製造設備である場合、製品の不良率等を用いてもよい。不良率が所定の値のとき故障に対する危険度は要対処となり、不良率が1(全製品が不良)のとき故障である。エアコン等の場合、冷房時の消費電力1kW(Kilowatt)あたりの冷房能力である冷房COP(Coefficient Of Performance)=冷房能力(kW)÷冷房消費電力(kW)に基づき、故障に対する危険度=1-冷房COPとしてもよい。
 上記した特許文献3では、経時変化に関する情報を、
(1)予め定義した時間特性(数式)をフィッティングによりパラメータを決定する、
(2)実測値のある範囲の平均値と最新の値との差分を経時変化成分として使用する、
の2通りの方法が示されている。
 (1)の場合、経時変化の時間特性が、作業者などの経験値などからある程度わかっている必要があり、さらに、その他の誤差要因(測定誤差など)との切り分けも困難であり、この方式で、経時変化の成分のみが抽出できているとは言い難い。
 (2)の場合、予め時間特性を知っておく必要はないものの、時間変化成分の抽出に用いる時間範囲の設定に定量性がなく、またその他の誤差要因(測定誤差など)との切り分けも困難である。この方式で経時変化の成分のみが抽出できているとは言い難い。したがって、特許文献3では、経時変化を、精度よく推定できているとはいえない。
 上記実施形態では、対象区間抽出部102が、設備に印加される交流電圧の電圧値(実効値)等に基づき、電流の時間区間(期間)を選択する例を説明したが、電圧のかわりに、電力を使用してもよい。この場合、任意の測定期間(例えば1時間など)において基準となる電力値を設定しておく(例えば平均値など)。対象区間抽出部102は、電流波形のサンプリング時刻に対応する電力値を算出し、算出された電力値が、基準電力値(平均値など)と一致する場合、当該サンプリング時刻を含む電流の時間区間(期間)と解析対象として選択するようにしてもよい。なお、電力は、電圧/電流情報取得部101で取得した電圧、電流情報から算出してもよいし、センサ200において、電圧計201、電流計204で取得された電圧波形(デジタル値)と電流波形(デジタル値)から有効電力を算出し、該有効電力を電流情報とともに、電圧/電流情報取得部101に送信するようにしてもよい。
 上記実施形態では、推定対象となる時間区間(期間)を抽出するための信号の時系列データとして、電圧波形の時系列データ、及び、故障に対する危険度の時系列データ(図6)を例に説明したが、振動センサ、音響センサ、温度センサの少なくとも一つからの情報を用いてもよいことは勿論である。例えば、センサとして、電流センサと温度センサを使用することも可能である。
 図9は、別の例示的な実施形態を説明する図である。図9において、センサ200Aは電流センサであり、図2Aの電流計204と通信部207から構成される。センサ2200Bは例えば温度センサである。電流情報取得部101Aはセンサ200Aから通信部108を介して電流情報(時系列データ)を取得し、記憶装置106に記憶する。センシング情報取得部107はセンサ200Bから通信部108を介して温度情報(時系列データ)を取得し、記憶装置106に記憶する。なお、記憶装置106には、電流情報、温度情報を、サンプリング時刻に関連付けて記憶するようにしてもよい。
 本実施形態では、任意の測定期間(例えば1時間など)において取得した温度情報から、例えば平均値などを算出し、基準となる温度値を設定しておく。対象区間抽出部102Aは、記憶装置106に記憶された電流情報のサンプリング時刻に対応する温度情報を参照し、該温度が、温度の基準値(平均値など)と一致する場合、当該サンプリング時刻を含む電流の時間区間(期間)を、解析対象として選択するようにしてもよい。
 温度以外にも、湿度、振動、気圧などについても、センサ200Bを湿度センサ、振動センサ、気圧センサとすることで、同様に適用可能である。
 なお、図1や図9の状態推定装置100、100Aは、例えば図10に示すように、コンピュータシステムに実装してもよい。図10を参照すると、サーバコンピュータ等のコンピュータシステム110は、プロセッサ(CPU(Central Processing Unit)、データ処理装置)111、半導体メモリ(例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM)等)、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等の少なくともいずれかを含む記憶装置112と、表示装置113と、通信インタフェース114を備えている。通信インタフェース114は、図1の電圧/電流情報取得部101がセンサ200で取得した電圧、電流情報を通信網を介して取得する通信部(図2、図3の101-1)として機能する。また、図9の通信部108として機能する。図1、図9の出力部105は、例えば表示装置113に状態変化の推定結果を出力する。記憶装置112は、図1、図9の記憶装置106と同一の装置であってもよい。記憶装置112に図1、図9の状態推定装置100、100Aの機能を実現するプログラムを記憶しておき、プロセッサ111が、該プログラムを読み出して実行することで、上記した実施形態の状態推定装置100、100Aを実現するようにしてもよい。コンピュータシステム110は状態推定サービスをクラウドサービスとしてクライアントに提供するクラウドサーバとして実装するようにしてもよい。
 なお、上記の特許文献1-3、非特許文献1の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 上記した実施形態は例えば以下のように付記される(ただし、以下に制限されない)。
(付記1)
 設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する第1の手段と、
 選択された前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の変化を推定する第2の手段と、
 を備えた、ことを特徴とする状態推定装置。
(付記2)
 前記第1の手段は、前記第1の信号の時系列上のある時間区間に対応する前記第2の信号が予め定められた値又は状態である場合に、前記第1の信号の前記時間区間を解析対象として選択する、ことを特徴とする付記1に記載の状態推定装置。
(付記3)
 前記第1の手段は、前記第1の信号の時系列において、前記設備の状態変化の影響を受けない動作モードに対応する時間区間を解析対象から除く、ことを特徴とする付記2に記載の状態推定装置。
(付記4)
 前記第1の手段は、前記第1、第2の信号として前記設備の電流、電圧情報を用い、
 指定値又は指定範囲の前記電圧で動作した前記設備の電流の時間区間を抽出する、ことを特徴とする付記1乃至3のいずれかに記載の状態推定装置。
(付記5)
 前記第2の手段は、前記抽出された時間区間の電流情報の時系列データから前記設備の状態の変化を推定する、ことを特徴とする付記4に記載の状態推定装置。
(付記6)
 前記第2の手段は、推定対象の状態の時間変化に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする付記1乃至4のいずれかに記載の状態推定装置。
(付記7)
 前記第2の手段は、前記時間区間の電流情報の時系列データに基づき、前記設備の故障に対する危険度の時系列データを算出し、
 前記時間区間に対応する前記故障に対する危険度の時系列データに対して、推定対象の状態の時間変化の時定数に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする付記4に記載の状態推定装置。
(付記8)
 前記第1の手段は、前記第1の信号として前記設備の電流、前記第2の信号として前記設備の電力、温度、湿度、振動、気圧のいずれかを用いる、ことを特徴とする付記1又は2に記載の状態推定装置。
(付記9)
 コンピュータによる設備の状態を推定する方法であって、
 設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する第1の工程と、
 選択された前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の変化を推定する第2の工程と、
 を含む、ことを特徴とする状態推定方法。
(付記10)
 前記第1の工程では、前記第1の信号の時系列上のある時間区間に対応する前記第2の信号が予め定められた値又は状態である場合に、前記第1の信号の前記時間区間を解析対象として選択する、ことを特徴とする付記9に記載の状態推定方法。
(付記11)
 前記第1の工程では、前記第1の信号の時系列において、前記設備の状態変化の影響を受けない動作モードに対応する時間区間を解析対象から除く、ことを特徴とする付記9に記載の状態推定方法。
(付記12)
 前記第1の工程では、前記第1、第2の信号として前記設備の電流、電圧情報を用い、
 指定値又は指定範囲の前記電圧で動作した前記設備の電流の時間区間を抽出する、ことを特徴とする付記9又は10に記載の状態推定方法。
(付記13)
 前記第2の手段は、前記抽出された時間区間の電流情報の時系列データから前記設備の状態の変化を推定する、ことを特徴とする付記12に記載の状態推定方法。
(付記14)
 前記第2の工程では、推定対象の状態の時間変化に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする付記12に記載の状態推定方法。
(付記15)
 前記第2の工程では、前記時間区間の電流情報の時系列データに基づき、前記設備の故障に対する危険度の時系列データを算出し、
 前記時間区間に対応する前記故障に対する危険度の時系列データに対して、推定対象の状態の時間変化の時定数に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする付記12に記載の状態推定方法。
(付記16)
 前記第1の工程は、前記第1の信号として前記設備の電流、前記第2の信号として前記設備の電力、温度、湿度、振動、気圧のいずれかを用いる、ことを特徴とする付記9又は10に記載の状態推定方法。
(付記17)
 設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する第1の処理と、
 選択された前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の変化を推定する第2の処理と、
 をコンピュータに実行させるプログラム(プログラムを記録した記録媒体)。
(付記18)
 前記第1の処理では、前記第1の信号の時系列上のある時間区間に対応する前記第2の信号が予め定められた値又は状態である場合に、前記第1の信号の前記時間区間を解析対象として選択する、ことを特徴とする付記17に記載のプログラム(記録媒体)。
(付記19)
 前記第1の処理では、前記第1の信号の時系列において、前記設備の状態変化の影響を受けない動作モードに対応する時間区間を解析対象から除く、ことを特徴とする付記17に記載のプログラム(記録媒体)。
(付記20)
 前記第1の処理では、前記第1、第2の信号として前記設備の電流、電圧情報を用い、
 指定値又は指定範囲の前記電圧で動作した前記設備の電流の時間区間を抽出する、ことを特徴とする付記17又は18記載のプログラム(記録媒体)。
(付記21)
 前記第2の処理では、前記抽出された時間区間の電流情報の時系列データから前記設備の状態の変化を推定する、ことを特徴とする付記20に記載のプログラム(記録媒体)。
(付記22)
 前記第2の処理では、推定対象の状態の時間変化に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする付記20に記載のプログラム(記録媒体)。
(付記23)
 前記第2の処理では、前記時間区間の電流情報の時系列データに基づき、前記設備の故障に対する危険度の時系列データを算出し、
 前記時間区間に対応する前記故障に対する危険度の時系列データに対して、推定対象の状態の時間変化の時定数に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする付記20に記載のプログラム(記録媒体)。
10、10A~10C 設備
20 建屋(家屋)
21 通信装置(FEMS/SEMS/BEMS/HEMSコントローラ)
22 分電盤
31 波形(合成波形)
32~34 波形(分離波形)
51~53 電圧波形
54~56 電流波形
23 スマートメータ
100、100A 状態推定装置
101 電圧/電流情報取得部
101A 電流情報取得部
101-1 通信部
101-2 波形分離部
102、102A 対象区間抽出部
103 状態推定部
104 時間変化推定部
105 出力部
106、112 記憶装置
107 センシング情報取得部
108 通信部
110 コンピュータシステム(装置)
111 プロセッサ
112 記憶装置
113 表示装置
114 通信インタフェース
200、200A、200B センサ(測定器)
201 電圧計
202 降圧回路
203、206 アナログデジタル変換器(ADC)
204 電流計
205 電流センサ
207 通信部
210 負荷(設備)
211 商用交流電源

Claims (15)

  1.  設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する第1の手段と、
     前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の変化を推定する第2の手段と、
     を備えた、ことを特徴とする状態推定装置。
  2.  前記第1の手段は、前記第1の信号の時系列上のある時間区間に対応する前記第2の信号が予め定められた値又は状態である場合に、前記第1の信号の前記時間区間を解析対象として選択する、ことを特徴とする請求項1に記載の状態推定装置。
  3.  前記第1の手段は、さらに、前記第1の信号の時系列において、前記設備の状態変化の影響を受けない動作モードに対応する時間区間を解析対象から除く、ことを特徴とする請求項2に記載の状態推定装置。
  4.  前記第1の手段は、前記第1、第2の信号として前記設備の電流、電圧をそれぞれ用い、指定値又は指定範囲の前記電圧で動作する前記設備の電流の時間区間を抽出する、ことを特徴とする請求項1乃至3のいずれか1項に記載の状態推定装置。
  5.  前記第2の手段は、推定対象の状態の時間変化に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする請求項1乃至4のいずれか1項に記載の状態推定装置。
  6.  前記第2の手段は、前記時間区間の電流情報の時系列データに基づき、前記設備の故障に対する危険度の時系列データを算出し、
     前記時間区間に対応する前記故障に対する危険度の時系列データに対して、推定対象の状態の時間変化の時定数に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする請求項4に記載の状態推定装置。
  7.  前記第1の手段は、前記第1の信号として前記設備の電流、前記第2の信号として前記設備の電力、温度、湿度、振動、気圧のいずれかを用いる、ことを特徴とする請求項2に記載の状態推定装置。
  8.  コンピュータによる設備の状態を推定する方法であって、
     設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出し、
     前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の変化を推定する、ことを特徴とする状態推定方法。
  9.  前記第1の信号の時系列上のある時間区間に対応する前記第2の信号が予め定められた値又は状態である場合に、前記第1の信号の前記時間区間を解析対象として選択する、ことを特徴とする請求項8に記載の状態推定方法。
  10.  前記第1の信号の時系列において、前記設備の状態変化の影響を受けない動作モードに対応する時間区間を解析対象から除く、ことを特徴とする請求項9に記載の状態推定方法。
  11.  前記第1、第2の信号として前記設備で測定した交流の電流、電圧を用い、指定値又は指定範囲の前記電圧で動作する前記設備の電流の時間区間を抽出する、ことを特徴とする請求項9又は10に記載の状態推定方法。
  12.  推定対象の時間変化の時定数に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする請求項8乃至11のいずれか1項に記載の状態推定方法。
  13.  前記抽出された時間区間に対応する前記設備の電流情報の時系列データに基づき、前記設備の故障に対する危険度の時系列データを算出し、
     前記抽出された時間区間に対応する前記故障に対する危険度の時系列データに対して、
    抽出対象の時間変化の時定数に対応するフィルタリング処理を施し、前記設備の状態の時間変化を推定する、ことを特徴とする請求項11に記載の状態推定方法。
  14.  設備の動作に関する第1の信号と併せて取得された第2の信号に基づき、前記第1の信号の時系列上で解析対象の時間区間を抽出する処理と、
     前記第1の信号の前記時間区間の波形データに基づき、前記設備の状態の時間変化を推定する処理と、
     をコンピュータに実行させるプログラム。
  15.  請求項14記載のプログラムを記録した記録媒体。
PCT/JP2018/026746 2017-07-18 2018-07-17 状態推定装置と方法とプログラム WO2019017345A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/629,650 US11486915B2 (en) 2017-07-18 2018-07-17 State estimation apparatus, method, and program
JP2019530548A JP6874843B2 (ja) 2017-07-18 2018-07-17 状態推定装置と方法とプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-139086 2017-07-18
JP2017139086 2017-07-18

Publications (1)

Publication Number Publication Date
WO2019017345A1 true WO2019017345A1 (ja) 2019-01-24

Family

ID=65015180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026746 WO2019017345A1 (ja) 2017-07-18 2018-07-17 状態推定装置と方法とプログラム

Country Status (3)

Country Link
US (1) US11486915B2 (ja)
JP (1) JP6874843B2 (ja)
WO (1) WO2019017345A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504365A (zh) * 2019-01-31 2020-08-07 住友重机械工业株式会社 诊断系统
JP2020177000A (ja) * 2019-04-23 2020-10-29 株式会社日立製作所 モニタリングシステム、漏洩検知方法
WO2022004417A1 (ja) * 2020-07-01 2022-01-06 株式会社日立産機システム 動力伝達機構の管理装置、動力伝達機構の管理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113925523B (zh) * 2020-06-29 2024-03-26 通用电气精准医疗有限责任公司 医疗成像系统的状态检测方法和装置以及ct成像系统检测

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222117A (ja) * 1993-01-21 1994-08-12 Fujikura Ltd モータの劣化検出方法
JPH0695059B2 (ja) * 1988-08-16 1994-11-24 川崎製鉄株式会社 電動機電流による機械設備の診断方法
JP2001012245A (ja) * 1999-06-30 2001-01-16 Honda Motor Co Ltd 電動熱交換器の故障判定装置
US20130311113A1 (en) * 2012-05-21 2013-11-21 General Electric Company Prognostics and life estimation of electrical machines
JP2015021901A (ja) * 2013-07-22 2015-02-02 株式会社神戸製鋼所 回転機械の診断装置
JP2016057102A (ja) * 2014-09-08 2016-04-21 オムロン株式会社 モニタリング装置、モニタリングシステム、およびモニタリング方法
JP6144404B1 (ja) * 2016-12-27 2017-06-07 川崎重工業株式会社 減速機の故障診断装置及び故障診断方法並びに前記故障診断装置を備える機械装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134503A (en) 1979-04-06 1980-10-20 Nec Corp Absorptive isolator for unneeded wave
JPH0756608A (ja) 1993-08-17 1995-03-03 Kawasaki Steel Corp 信号処理方法
US6774601B2 (en) * 2001-06-11 2004-08-10 Predictive Systems Engineering, Ltd. System and method for predicting mechanical failures in machinery driven by an induction motor
JP2006266844A (ja) 2005-03-23 2006-10-05 Fuji Xerox Co Ltd 故障検知装置
US8405339B2 (en) * 2010-07-01 2013-03-26 Eaton Corporation System and method for detecting fault in an AC machine
JP5328858B2 (ja) 2011-08-26 2013-10-30 三菱電機株式会社 稼働状況判別装置、稼働状況判別プログラム、稼働状況判別方法、波形パターン学習装置、波形パターン学習プログラム、及び波形パターン学習方法
JP5914640B2 (ja) 2012-04-16 2016-05-11 日立アプライアンス株式会社 機器識別装置および機器識別装置の登録方法
JP2016173782A (ja) 2015-03-18 2016-09-29 エヌ・ティ・ティ・コミュニケーションズ株式会社 故障予測システム、故障予測方法、故障予測装置、学習装置、故障予測プログラム及び学習プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695059B2 (ja) * 1988-08-16 1994-11-24 川崎製鉄株式会社 電動機電流による機械設備の診断方法
JPH06222117A (ja) * 1993-01-21 1994-08-12 Fujikura Ltd モータの劣化検出方法
JP2001012245A (ja) * 1999-06-30 2001-01-16 Honda Motor Co Ltd 電動熱交換器の故障判定装置
US20130311113A1 (en) * 2012-05-21 2013-11-21 General Electric Company Prognostics and life estimation of electrical machines
JP2015021901A (ja) * 2013-07-22 2015-02-02 株式会社神戸製鋼所 回転機械の診断装置
JP2016057102A (ja) * 2014-09-08 2016-04-21 オムロン株式会社 モニタリング装置、モニタリングシステム、およびモニタリング方法
JP6144404B1 (ja) * 2016-12-27 2017-06-07 川崎重工業株式会社 減速機の故障診断装置及び故障診断方法並びに前記故障診断装置を備える機械装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504365A (zh) * 2019-01-31 2020-08-07 住友重机械工业株式会社 诊断系统
JP2020122762A (ja) * 2019-01-31 2020-08-13 住友重機械工業株式会社 診断システム
JP7280703B2 (ja) 2019-01-31 2023-05-24 住友重機械工業株式会社 診断システム
JP2020177000A (ja) * 2019-04-23 2020-10-29 株式会社日立製作所 モニタリングシステム、漏洩検知方法
JP7126474B2 (ja) 2019-04-23 2022-08-26 株式会社日立製作所 モニタリングシステム、漏洩検知方法
WO2022004417A1 (ja) * 2020-07-01 2022-01-06 株式会社日立産機システム 動力伝達機構の管理装置、動力伝達機構の管理方法
TWI772085B (zh) * 2020-07-01 2022-07-21 日商日立產機系統股份有限公司 動力傳遞機構之管理裝置及動力傳遞機構之管理方法
JP7315797B2 (ja) 2020-07-01 2023-07-26 株式会社日立産機システム 動力伝達機構の管理装置、動力伝達機構の管理方法

Also Published As

Publication number Publication date
US20200166552A1 (en) 2020-05-28
JPWO2019017345A1 (ja) 2020-06-18
JP6874843B2 (ja) 2021-05-19
US11486915B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2018101363A1 (ja) 状態推定装置と方法とプログラム
US11841153B2 (en) Thermostat with integrated submetering and control
JP6874843B2 (ja) 状態推定装置と方法とプログラム
US9442150B2 (en) System and method for monitoring and controlling a transformer
EP2474832B1 (en) Method and system for monitoring transformer health
CN109073704A (zh) 用于局部放电的趋势函数
TW201333484A (zh) 設備異常的偵測裝置與方法
TW201534937A (zh) 絕緣檢測器及電氣機器
US20110241695A1 (en) Methods and systems for monitoring capacitor banks
JP2001154726A (ja) 流体充填電気装置の知能型解析システム及び方法
CN111758036A (zh) 用于监测运行中的电力设备的运行状态的系统和方法
KR101934089B1 (ko) 실시간 전력 소비 패턴을 분석하여 획득되는 통전 및 단전 모티프 정보를 이용하여 비침습 방식으로 회로 내의 복수의 전력 기기의 거동을 분석하고 개별 기기의 소비 전력을 모니터링하는 장치 및 방법
CN108805399B (zh) 用于识别配电网区段中的故障事件的方法
JP2019020278A (ja) 回転機システムの診断装置、電力変換装置、回転機システム、および回転機システムの診断方法
JP7020539B2 (ja) 状態推定装置と方法とプログラム
CN111830438B (zh) 一种变压器故障检测方法及变压器
CN109785181B (zh) 确定负载参数额定值的方法和确定电力设备状况的方法
US20100094473A1 (en) System For Detecting Load Loss Following An Electrical Power Disturbance
US20220360076A1 (en) Systems and methods for automatically characterizing disturbances in an electrical system
KR101600698B1 (ko) 전력용 변압기 수명 예측 시스템 및 방법
KR101549754B1 (ko) 가변속 냉동시스템의 고장진단방법
JP2007026134A (ja) 異常判定装置
JP2018088052A (ja) 管理装置と方法及びプログラム
Jensen et al. Remaining useful life estimation of stator insulation using particle filter
Aburaghiega et al. On-line Condition Monitoring of Power Transformer Health Status Enforced by Temperature and Electrical Signatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835399

Country of ref document: EP

Kind code of ref document: A1