WO2023116881A1 - 向外科器械输出驱动信号的设备 - Google Patents

向外科器械输出驱动信号的设备 Download PDF

Info

Publication number
WO2023116881A1
WO2023116881A1 PCT/CN2022/141414 CN2022141414W WO2023116881A1 WO 2023116881 A1 WO2023116881 A1 WO 2023116881A1 CN 2022141414 W CN2022141414 W CN 2022141414W WO 2023116881 A1 WO2023116881 A1 WO 2023116881A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
ultrasonic
energy circuit
power
frequency electric
Prior art date
Application number
PCT/CN2022/141414
Other languages
English (en)
French (fr)
Inventor
徐汪洋
冯庆宇
施亦平
赵东东
Original Assignee
青岛迈博思医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛迈博思医疗科技有限公司 filed Critical 青岛迈博思医疗科技有限公司
Publication of WO2023116881A1 publication Critical patent/WO2023116881A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320082Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00755Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting

Definitions

  • the present disclosure relates to ultrasonic electrosurgical systems for performing surgical procedures, and more particularly, to an apparatus for outputting drive signals to surgical instruments.
  • Ultrasonic surgical instruments referred to as ultrasonic knife
  • high-frequency electrosurgical instruments referred to as electric knife
  • Ultrasonic knife has good cutting performance, but poor coagulation performance in surgical operation.
  • the electric knife is divided into monopolar electric knife and bipolar electric knife.
  • the bipolar electric knife has good coagulation performance, but poor cutting performance in surgical operations.
  • Ultrasonic electrosurgical units, ultrasonic electrosurgical units, monopolar electrosurgical units or bipolar electrosurgical units are used in surgical operations as needed, and several of these surgical instruments are often used in one operation.
  • the output devices that drive these surgical instruments are all independent devices. These output devices not only occupy the limited equipment space in the operating room, but also have a lot of inconvenience in controlling these output devices during use, and even affect the surgical effect. .
  • a separate ultrasonic output device drives an ultrasonic knife
  • a separate high-frequency electrical output device drives a monopolar electrosurgical unit or a bipolar electrosurgical unit
  • an ultrasonic output device and a high-frequency electrical output device are combined
  • the ultrasonic drive signal and high-frequency electric drive signal output by the device are superimposed single-channel signals, which require a special ultrasonic converter. Only the transducer is used to separate the signal to drive the ultrasonic electrosurgical knife, and the ultrasonic transducer is a vulnerable part, which will undoubtedly increase the application cost.
  • an embodiment of the present disclosure provides an apparatus for outputting a driving signal to a surgical instrument.
  • One aspect of the present disclosure provides a device for outputting driving signals to surgical instruments, which includes a housing, and the housing is equipped with: a power module, including a power module and a power circuit board, for providing power; a main board; ultrasonic energy A circuit board, connected to the main board, for generating ultrasonic drive signals; and a high-frequency electric energy circuit board, connected with the main board, for generating high-frequency electric drive signals; wherein, the ultrasonic energy circuit board and the The projection of the high-frequency electric energy circuit board on the bottom surface of the housing at least partially overlaps, and a shielding unit is provided outside the ultrasonic energy circuit board and/or the high-frequency electric energy circuit board.
  • an ultrasonic frequency adjustment module and an ultrasonic power adjustment module are arranged on the ultrasonic energy circuit board.
  • the high-frequency electric energy circuit board is provided with a high-frequency electric frequency adjustment module and a high-frequency electric power adjustment module.
  • the main board is configured to perform adaptive control on the ultrasonic driving signal and the high-frequency electric driving signal, so as to adaptively adjust at least one of the following output parameters: the power of the ultrasonic driving signal, The frequency of the ultrasonic drive signal, the power of the high-frequency electrical drive signal, and the frequency of the high-frequency electrical drive signal.
  • the ultrasonic energy circuit board is provided with an ultrasonic signal acquisition circuit, including a first filtering module, a first differential amplification module, a second filtering module, a first automatic gain control module, and a first analog-to-digital conversion module for collecting and processing signals in the connection circuit between the ultrasonic energy circuit board and the surgical instrument to obtain an ultrasonic feedback signal, which is provided to the main board, and the ultrasonic feedback signal includes an ultrasonic voltage feedback signal and an ultrasonic current feedback signal.
  • an ultrasonic signal acquisition circuit including a first filtering module, a first differential amplification module, a second filtering module, a first automatic gain control module, and a first analog-to-digital conversion module for collecting and processing signals in the connection circuit between the ultrasonic energy circuit board and the surgical instrument to obtain an ultrasonic feedback signal, which is provided to the main board, and the ultrasonic feedback signal includes an ultrasonic voltage feedback signal and an ultrasonic current feedback signal.
  • the high-frequency power circuit board is provided with a high-frequency power acquisition circuit, including a third filter module, a second differential amplifier module, a fourth filter module, a second automatic gain control module, and a second mode
  • the digital conversion module is used to collect and process the signal in the connection circuit between the high-frequency electric energy circuit board and the surgical instrument to obtain a high-frequency electric feedback signal, and provide the high-frequency electric feedback signal to the main board, so that
  • the high-frequency electrical feedback signal includes a high-frequency voltage feedback signal and a high-frequency current feedback signal.
  • the main board is configured to control the output parameter based on the ultrasonic feedback signal and the high-frequency electrical feedback signal.
  • the main board is further configured to obtain acoustic impedance based on the ultrasonic feedback signal, obtain electrical impedance based on the high-frequency electrical feedback signal, and match the acoustic impedance and/or electrical impedance with impedance data to determine tissue type, determining the power of the ultrasound drive signal and the power of the high frequency electrical drive signal based on the tissue type.
  • the main board is further configured to obtain a first phase difference based on the ultrasonic voltage feedback signal and the ultrasonic current feedback signal; obtain a first phase difference based on the high-frequency voltage feedback signal and the high-frequency current feedback signal Two phase differences; determining the power of the ultrasonic driving signal and the power of the high frequency electrical driving signal based on the tissue type, the first phase difference and the second phase difference.
  • the main board is configured to determine a cutting stage based on the ultrasonic feedback signal and/or the high-frequency electrical feedback signal, and determine the power of the ultrasonic driving signal and the high-frequency electric feedback signal based on the cutting stage The power of the electrical drive signal.
  • the ultrasonic energy circuit board includes a first grid area and a first application area
  • the high-frequency electric energy circuit board includes a second grid area and a second application area
  • the first grid area area and the second grid power area are located on a side close to the main board.
  • the ultrasonic energy circuit board is provided with at least one first component spanning the first grid area and the first application area, and the first component is located on the first grid At the position between the pins of the area and the pins of the first application area, the ultrasonic energy circuit board is provided with a first gap.
  • At least one second component straddling the second grid area and the second application area is provided on the high-frequency electric energy circuit board, and the second component is located in the second At a position between the pins of the grid power area and the pins of the second application area, a second gap is provided on the high-frequency power circuit board.
  • the distance between any two of the ultrasonic energy circuit board, the high-frequency electric energy circuit board, the main board, the power module and the power circuit board is not less than 10 millimeters.
  • the distance between each of the ultrasonic energy circuit board, the high-frequency electric energy circuit board, the main board, the power module and the power circuit board and the housing is not less than 10 mm.
  • the first shielding unit is a first shielding case arranged outside the ultrasonic energy circuit board, and the distance between the ultrasonic energy circuit board and the side wall of the first shielding case is not less than 10 mm.
  • the second shielding unit is a second shielding case arranged outside the high-frequency electric energy circuit board, and the side wall between the high-frequency electric energy circuit board and the second shielding case The distance is not less than 10 mm.
  • the housing is provided with a display screen, and the housing is provided with interfaces, including a positive interface of a monopolar electrosurgical unit, a negative interface of a monopolar electrosurgical unit, a bipolar electrosurgical unit interface and an ultrasonic electrosurgical interface one or more of.
  • an insulating plate with a width of not less than 30 mm is disposed inside the housing at a position between the interface and the display screen.
  • the device includes a speaker, which is arranged under the main board and fixed on the housing through an adapter plate, a closed space is formed between the end surface of the speaker and the surface of the housing, and the housing There is a sound hole at the bottom.
  • the device further includes a data interface and a download board, the download board is connected to the main board and the data interface, and is configured to receive the upgrade data imported from the data interface, and upgrade the Data transfer to the motherboard.
  • the power supply module further includes a backup battery disposed under the power supply circuit board.
  • the ultrasonic energy circuit board and the high-frequency electric energy circuit board are stacked, and at least one of the ultrasonic energy circuit board and the high-frequency electric energy circuit board is isolated by the shielding unit, effectively controlling the high
  • the interference of the frequency electric energy circuit board on the ultrasonic energy circuit board can be packaged in one output device, which can drive ultrasonic surgical instruments and high-frequency electrosurgical instruments at the same time, saving equipment space and helping to reduce costs , is also user-friendly.
  • Fig. 1 schematically shows a perspective view of a device for outputting a driving signal to a surgical instrument according to an embodiment of the present disclosure
  • Fig. 2 schematically shows a front view of a device for outputting drive signals to a surgical instrument according to an embodiment of the present disclosure
  • Fig. 3 schematically shows a rear view of an apparatus for outputting drive signals to surgical instruments according to an embodiment of the present disclosure
  • Fig. 4 schematically shows a bottom view of a device for outputting drive signals to a surgical instrument according to an embodiment of the present disclosure
  • Fig. 5 schematically shows a first cross-sectional view of a device for outputting a driving signal to a surgical instrument according to an embodiment of the present disclosure
  • FIG. 6 schematically illustrates a top view of the interior of a device for outputting drive signals to surgical instruments according to an embodiment of the present disclosure
  • Fig. 7 schematically shows a structural diagram of the rear part of the display screen of a device for outputting driving signals to surgical instruments according to an embodiment of the present disclosure
  • Fig. 8 schematically shows a second cross-sectional view of a device for outputting a driving signal to a surgical instrument according to an embodiment of the present disclosure
  • Fig. 9 schematically shows a partial enlarged view of the second cross-sectional view at the speaker according to an embodiment of the present disclosure.
  • FIGS. 1 to 9 schematically illustrate a schematic view of a device 100 for outputting a driving signal to a surgical instrument according to an embodiment of the present disclosure.
  • a device 100 according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 9 .
  • the device 100 for providing output drive signals to surgical instruments includes a housing, and the housing is provided with a power module, a main board 123 , an ultrasonic energy circuit board 124 and a high-frequency electric energy circuit board.
  • the power module includes a power module 121 and a power circuit board 122 , wherein the power circuit board 122 is a PWR (Power Supply) board, and its functions include but are not limited to voltage adjustment and filtering.
  • the power module is used to provide stable power to the system.
  • a power interface 119 may be provided on the housing for supplying power to the power module 121 .
  • the power module can also include a backup battery, for example, disposed under the power circuit board 122, so that in an emergency, the operation can be continued with the backup battery, reducing the risk of surgery.
  • the ultrasonic energy circuit board 124 is connected to the main board 123 for generating ultrasonic driving signals.
  • a shielding unit may be provided outside the ultrasonic energy circuit board 124 , such as a first shielding case 125 as shown in FIG. 5 . It should be noted that, in order to clearly illustrate the ultrasonic energy circuit board 124 , the top surface of the first shielding case 125 is hidden in FIG. 5 .
  • the ultrasonic energy circuit board 124 can convert the power frequency alternating current into an ultrasonic electrical signal matched with the ultrasonic transducer, drive the ultrasonic transducer to convert electrical energy into mechanical energy, and drive the blade of the ultrasonic knife to vibrate.
  • the operating frequency of the ultrasonic knife used in surgery is 20 ⁇ 100kHz, with 55.5kHz being the most common.
  • the frequency of the signal output by the ultrasonic energy circuit board 124 in the embodiment of the present disclosure is also within this range.
  • the high-frequency electric energy circuit board is connected to the main board 123 for generating high-frequency electric driving signals.
  • a shielding unit may be provided outside the high-frequency electric energy circuit board, such as the second shielding case 126 as shown in FIG. 5 .
  • the frequency range of high-frequency electrosurgical instruments used in surgery is between 0.3 ⁇ 5MHz.
  • the "high frequency” referred to in this disclosure also refers to the frequency between 0.3 ⁇ 5MHz.
  • the high-frequency electric energy circuit in the embodiment of this disclosure The frequency of the driving signal output by the board is also within this range.
  • the ultrasonic energy circuit board 124 and the high-frequency electric energy circuit board can be stacked, so that the ultrasonic energy circuit board 124 and the high-frequency electric energy circuit board are on the bottom surface of the housing.
  • the projections at least partially overlap.
  • the ultrasonic energy circuit board 124 is placed above the high-frequency electric energy circuit board, and a first shielding case 125 and a second shielding case 126 may be respectively provided outside the two circuit boards.
  • the first shielding cover 125 and the second shielding cover 126 are metal materials, to isolate the interference between the ultrasonic energy circuit board 124 and the high-frequency electric energy circuit board, and the ultrasonic energy circuit board 124 and the high-frequency electric energy circuit board and the outside interference.
  • the shielding unit may also be implemented as a magnetic bead or a magnetic ring.
  • magnetic beads can be arranged on the input line of the ultrasonic energy circuit board 124 and connected in series in the line to reduce unstable components in the input signal, thereby at least partially shielding the external interference to the ultrasonic energy circuit board 124 .
  • a magnetic ring can be provided so that the input line of the ultrasonic energy circuit board 124 passes through the magnetic ring, which can also reduce unstable components in the input signal, thereby at least partially shielding the external interference to the ultrasonic energy circuit board 124 .
  • a similar shielding process can be done for high-frequency electric energy panels.
  • the shielding unit in the embodiments of the present disclosure may also be realized by using a combination of more than two kinds of shielding case, magnetic bead or magnetic ring.
  • the ultrasonic energy circuit board and the high-frequency electric energy circuit board are stacked, and at least one of the ultrasonic energy circuit board and the high-frequency electric energy circuit board is isolated by the shielding unit, effectively controlling the high
  • the interference of the frequency electric energy circuit board on the ultrasonic energy circuit board can be packaged in one output device, which can drive ultrasonic surgical instruments and high-frequency electrosurgical instruments at the same time, saving equipment space and helping to reduce costs , is also user-friendly.
  • the housing can be designed in various ways.
  • the housing may include a U-shaped base 111 , a back plate 116 , a top cover 112 and a front cover 113 .
  • the housing can be made of aluminum alloy to reduce the impact of the device on the outside and the interference of the external environment on the device.
  • the size of the housing can meet the ratio of length, width and height of 1 ⁇ 3:1 ⁇ 3:1, such as about 2:2:1, so that the device 100 can be stably placed on the device table .
  • the height of the casing may be 150-350mm, and the size of the overall device may be, for example, 450mm ⁇ 400mm ⁇ 200mm, which is light and portable.
  • the distance between any two of the ultrasonic energy circuit board 124, the high-frequency electric energy circuit board, the main board 123, the power supply module 121 and the power supply circuit board 122 is not less than the first preset value; the ultrasonic energy circuit The distance between each of the board 124, the high-frequency electric energy circuit board, the main board 123, the power module 121 and the power circuit board 122 and the housing is not less than the second preset value; the ultrasonic energy circuit board 124 and the first shielding case The distance between the side walls of 125 is not less than a third preset value; the distance between the high-frequency electric energy circuit board and the side walls of the second shielding case 126 is not less than a fourth preset value.
  • the above-mentioned first preset value, second preset value, third preset value and fourth preset value may all be set to 10 mm, preferably 12 mm, for example.
  • the ultrasonic energy circuit board 124 includes a first grid area and a first application area
  • the high-frequency electric energy circuit board includes a second grid area and a second application area
  • the first grid area and the second grid area The electrical area is located on a side close to the main board 123 .
  • the first grid area or the second grid area is an area connected to the power module.
  • the first application area or the second application area is the area connected to the output of the device.
  • the voltage in the application area is greater than the voltage in the grid power area.
  • the ultrasonic energy circuit board 124 is provided with at least one first component spanning the first grid power area and the first application area, and the pins of the first component located in the first grid power area and the pins located in the first application area At the position between the pins of the region, a first gap is provided on the ultrasonic energy circuit board 124 .
  • the electrical gap between the pins of the first component located in the first grid area and the pins located in the first application area has met the design requirements, and the embodiment of the present disclosure provides a first gap between the two pins,
  • the creepage distance can be further increased to reduce the risk of dielectric polarization.
  • the above-mentioned two pins are the two closest pins on the ultrasonic energy circuit board 124. Under the condition of ensuring the safety of the above-mentioned two pins, other pins in the first network power area and other pins in the first application area Between must also be safe.
  • At least one second component spanning the second grid area and the second application area is provided on the high-frequency electric energy circuit board, and the pins of the second component located in the second grid area
  • a second gap is provided on the high-frequency electric energy circuit board at a position between the pins in the second application area.
  • the electrical gap between the pins of the second component located in the second network power area and the pins located in the second application area has met the design requirements, and the embodiment of the present disclosure provides a second gap between the two pins,
  • the creepage distance can be further increased to reduce the risk of dielectric polarization.
  • the above two pins are the two closest pins on the high-frequency power circuit board. Under the condition of ensuring the safety of the above two pins, the other pins in the second network power area and other pins in the second application area It must be safe between the feet.
  • the ultrasonic energy circuit board 124 is provided with an ultrasonic frequency adjustment module and an ultrasonic power adjustment module for adjusting the frequency and power of the signal output by the ultrasonic signal generator.
  • the high-frequency electric energy circuit board is provided with a high-frequency electric frequency adjustment module and a high-frequency electric power adjustment module, which are used to adjust the frequency and power of the signal output by the high-frequency electric signal generator.
  • the main board 123 can be used to adaptively control the ultrasonic driving signal and the high-frequency electric driving signal, so as to adaptively adjust at least one of the following: the power of the ultrasonic driving signal, the frequency of the ultrasonic driving signal, the high-frequency The power of the electric drive signal and the frequency of the high frequency electric drive signal.
  • the device 100 can collect and process ultrasonic driving signals and high-frequency electric driving signals, for example, collect and process them through the dedicated circuits on the ultrasonic energy circuit board 124 and the high-frequency electric energy circuit board, and transmit the obtained signals to 123 on the motherboard.
  • the main board 123 can determine an adjustment parameter based on the signal, and control the output of the ultrasonic energy circuit board 124 and the high-frequency electric energy circuit board based on the adjustment parameter.
  • the vibration of the ultrasonic knife rod can realize the cutting function
  • the high-frequency electric energy applied by the electric jaw can assist in blood coagulation.
  • the signal power driving the ultrasonic knife When an increase in impedance is detected, the signal power driving the ultrasonic knife also increases Increase, thereby accelerating the vibration of the ultrasonic knife rod, when the impedance becomes larger, the signal power applied to the electric jaw also increases, which can improve the efficiency of blood coagulation or evaporation of water, so that the use of ultrasonic electric knife can speed up the cutting process and reduce bleeding, and obtain more good surgical results.
  • the signal power driving the ultrasonic knife can be increased to speed up the cutting, while the signal power applied to the electric jaws remains at an appropriate level. To evaporate the moisture in the tissue and assist in cutting.
  • the operation process can be better matched, which is beneficial to achieve the operation effect with excellent coagulation effect and cutting performance.
  • the ultrasonic energy circuit board is provided with an ultrasonic signal acquisition circuit, including a first filtering module, a first differential amplification module, a second filtering module, a first automatic gain control module, and a first analog-to-digital conversion module for collecting and processing signals in the connection circuit between the ultrasonic energy circuit board and the surgical instrument to obtain an ultrasonic feedback signal, which is provided to the main board, and the ultrasonic feedback signal includes an ultrasonic voltage feedback signal and an ultrasonic current feedback signal.
  • an ultrasonic signal acquisition circuit including a first filtering module, a first differential amplification module, a second filtering module, a first automatic gain control module, and a first analog-to-digital conversion module for collecting and processing signals in the connection circuit between the ultrasonic energy circuit board and the surgical instrument to obtain an ultrasonic feedback signal, which is provided to the main board, and the ultrasonic feedback signal includes an ultrasonic voltage feedback signal and an ultrasonic current feedback signal.
  • the first filtering module is used for primary filtering of the collected ultrasonic signal; the first differential amplification module is used for differential amplification of the signal after primary filtering; the second filtering module is used for differential amplification of the signal after differential amplification. secondary filtering; the first automatic gain control module is used for performing gain control on the signal after the secondary filtering to facilitate digital sampling; the first analog-to-digital conversion module is used for digital conversion of the processed signal.
  • the high-frequency power circuit board is provided with a high-frequency power acquisition circuit, including a third filter module, a second differential amplifier module, a fourth filter module, a second automatic gain control module, and a second mode
  • the digital conversion module is used to collect and process the signal in the connection circuit between the high-frequency electric energy circuit board and the surgical instrument to obtain a high-frequency electric feedback signal, and provide the high-frequency electric feedback signal to the main board, so that
  • the high-frequency electrical feedback signal includes a high-frequency voltage feedback signal and a high-frequency current feedback signal.
  • the third filtering module is used for primary filtering of the collected high-frequency electrical signal; the second differential amplification module is used for differential amplification of the signal after primary filtering; the fourth filtering module is used for differentially amplifying the signal
  • the signal is subjected to secondary filtering; the second automatic gain control module is used to perform gain control on the secondary filtered signal to facilitate digital sampling; the second analog-to-digital conversion module is used to digitally convert the processed signal.
  • the main board 123 is used to control the output parameters based on the ultrasonic feedback signal and the high-frequency electrical feedback signal, so as to better match the operation process and help achieve the operation effect with excellent coagulation effect and cutting performance; at the same time
  • the ultrasonic feedback signal and the high-frequency electrical feedback signal are acquired through separate acquisition and processing circuits so that the main board 123 can adaptively control the signals. This structure can reduce the interference between the ultrasonic signal and the high-frequency signal.
  • the main board 123 is also used to obtain acoustic impedance based on the ultrasonic feedback signal, obtain electrical impedance based on the high-frequency electrical feedback signal, and determine the acoustic impedance and/or electrical impedance by matching the impedance data.
  • tissue type, the power of the ultrasonic drive signal and the power of the high frequency electrical drive signal are determined based on the tissue type.
  • the impedance R US (t) in the ultrasonic circuit referred to as acoustic impedance
  • the impedance R ES (t) in the high-frequency circuit referred to as the electrical impedance.
  • the acoustic impedance, electrical impedance are related to the load circuit, ie to the impedance characteristics of the tissue being cut.
  • the type of cut tissue can be identified by detecting the acoustic impedance and/or electrical impedance during the surgical cutting process, or its variation law, as a basis for adjusting the power of the driving signal, so as to realize the adaptive adjustment of the power of the driving signal. Get better surgical results.
  • a time window for identifying tissue types can be set in the initial stage of cutting, and the detected acoustic impedance and/or electrical impedance can be compared with the impedance characteristic values of different types of tissue, and the tissue type with the highest matching degree is the identified tissue type . Due to the difference in physical properties of different tissues, there will also be impedance differences during cutting. Through the processing and analysis of experimental data and empirical data, the different acoustic impedance and/or electrical impedance of different types of tissues in the initial stage of cutting can be obtained. These results can be stored and used to match tissue types.
  • the identified tissue type is numbered as type 1, which corresponds to the power P1(n+1) of the ultrasonic driving signal and the power P2(n+1 ) and the acoustic impedance R US (n) and electrical impedance R ES (n) of the previous moment are respectively:
  • f1, f2, f3, f4 are functions, such as empirical functions or trained neural network models;
  • R US (n), R ES (n) are the acoustic impedance and electrical impedance at time n, respectively.
  • the main board 123 is also configured to obtain a first phase difference based on the ultrasonic voltage feedback signal and the ultrasonic current feedback signal; obtain a second phase difference based on the high-frequency voltage feedback signal and the high-frequency current feedback signal. phase difference; determining the power of the ultrasound drive signal and the power of the high frequency electrical drive signal based on the tissue type, the first phase difference and the second phase difference.
  • the signal power applied to the load circuit can be precisely adjusted.
  • the phase difference ⁇ between the voltage signal and the current signal is not zero, the actual signal power will decrease.
  • the signal power output by the energy source needs to be increased, so as to ensure that the signal power actually loaded on the surgical instrument meets the requirements .
  • the main board 123 can also control the duration of the output signals of the ultrasonic energy circuit board and the high-frequency electric energy circuit board.
  • the ultrasonic electrosurgical knife is used for surgical cutting, within a certain period of time, the ultrasonic energy circuit board is controlled to output the driving signal, while the high-frequency electric energy circuit board does not output. At this time, the ultrasonic electrosurgical unit only performs the cutting function of the "ultrasonic knife". In another period of time, the high-frequency electric energy circuit board is controlled to output the driving signal, while the ultrasonic energy circuit board does not output. At this time, the ultrasonic electrosurgical unit only performs the coagulation function of the "electrosurgical unit", which also helps to obtain better surgical results. .
  • the main board 123 is configured to determine the cutting stage based on the ultrasonic feedback signal and/or the high-frequency electrical feedback signal, and determine the power of the ultrasonic driving signal and the high-frequency electrical feedback signal based on the cutting stage. The power of the driving signal.
  • the cutting process can be divided into a cutting initial stage, a cutting progress stage, and a cutting end stage. Adjusting the drive signal power at each stage to suit the cutting process can be beneficial to cutting. For example, in the initial stage of cutting, the ultrasonic knife should start working quickly. At this time, the power to drive the ultrasonic knife can be output at a high value, while the power of the electric knife only needs to be at a low value; Cutting and synchronous coagulation are required.
  • the respective advantages of the ultrasonic knife and the electric knife should be used, so the driving signal power is output at 50% of the total power of each; at the end of the cutting stage, the cutting is about to be completed, and the advantages of the fast cutting of the ultrasonic knife are fully utilized.
  • the signal power driving the ultrasonic knife is also output at a higher value, while the signal power driving the electric knife only needs a lower value.
  • the cutting stage can be determined by the acoustic impedance and/or electrical impedance, so that an adapted ultrasonic driving signal and a high-frequency electric driving signal are output at different cutting stages.
  • the stage of cutting will also be expressed by the impedance characteristics of the tissue. For example, at the beginning of cutting, the impedance first increases and then decreases, which is the initial stage of cutting, and then there is a relatively long-term and constant stage, which is cutting. During the progressive phase, the impedance increases rapidly towards the end phase of the final cut.
  • the acoustic impedance or electrical impedance when it is detected that the acoustic impedance or electrical impedance first decreases and then stabilizes within the set time window, it can be identified as entering the cutting progress stage, and it is detected that the acoustic impedance or electrical impedance presents a rapid increase within the set time window. An upward trend is identified as entering the final stage of cutting.
  • the signal power driving the ultrasonic knife and the electric knife can be output proportionally according to the set value of the ultrasonic power and the high-frequency electric power;
  • the power can be adaptively adjusted according to the acoustic impedance and/or electrical impedance; at the final stage of cutting, the power of the driving signal is still proportionally output according to the set value of ultrasonic power and high-frequency electric power. This can improve power adaptation efficiency and achieve better surgical results.
  • a display screen 114 is provided on the casing, and the device 100 also includes a display circuit board 127 , which is arranged behind the display screen 114 for processing
  • the display signal causes the display 114 to display information. Through the display screen, the user can understand the state of the device 100 more intuitively.
  • the distance between the display circuit board 127 and any one of the main board 123, ultrasonic energy circuit board 124, high-frequency electric energy circuit board, power module 121 and power supply circuit board 122 is not less than 10 mm or 12 mm , thereby reducing the interference between circuits.
  • physical keys and/or virtual keys may be provided on the casing.
  • a physical switch key may be provided on the front cover 113 to activate or deactivate the device 100 .
  • the display screen of the front cover 113 can be a touch screen, and one or more virtual keys can be set to realize various control functions, such as power gear setting, working mode selection, and the like.
  • a control signal may also be transmitted to the device 100 through an interface as an input of the device.
  • the housing is provided with an interface 115, including a positive interface 1151 of a monopolar electrosurgical unit, a negative interface 1152 of a monopolar electrosurgical unit, a interface 1153 of a bipolar electrosurgical unit, and an ultrasonic electrosurgical unit One or more of the interfaces 1154.
  • the positive interface 1151 and the negative interface 1152 of the monopolar electrosurgical unit can be used to connect to the monopolar electrosurgical unit to provide high-frequency electric driving signals to it.
  • the power module, Components such as the main board and the high-frequency electric energy circuit board work, and the ultrasonic energy circuit board does not need to work.
  • the bipolar electric knife interface 1153 can be used to connect to the bipolar electric knife to provide it with high-frequency electric drive signals.
  • the power module, main board and high-frequency electric energy circuit board The components work, the ultrasonic energy circuit board can not work.
  • the ultrasonic electrosurgical interface 1154 can be used to connect to the ultrasonic electrosurgical unit to provide ultrasonic driving signals and/or high-frequency electrical driving signals.
  • Components such as circuit boards and high-frequency electric energy are working.
  • the high-frequency electric energy circuit board may not work.
  • the device 100 can be connected to one of the monopolar electric knife or the bipolar electric knife at the same time, so as to drive one of the monopolar electric knife or the bipolar electric knife to work simultaneously with the ultrasonic knife .
  • the device is provided with multiple interfaces, which can support multiple application modes and meet the needs of surgery.
  • an insulating plate 129 with a width of not less than 30 mm is provided on the inner side of the casing at a position between the interface and the display screen 114 .
  • the wider the width of the insulating plate 129 the better, so as to increase the insulating area and increase the creepage distance between the front interface 115, the display screen 114 and the display circuit board 127 , so as to reduce the impact of the current at the interface on the display function and ensure electrical safety characteristics.
  • the device 100 also includes a data interface 118, which can be arranged on the rear side of the housing, such as a USB interface or a network port, etc.; a download board 128, connected with the main board 123 and the data
  • the interface 118 is connected and configured to receive the upgrade data from the data interface 118 and transmit the upgrade data to the main board 123 .
  • the device 100 usually has high privacy requirements, it is not suitable to maintain and update the program on the main board 123 through the network. Therefore, the device 100 can be provided with a data interface 118. When maintenance and update are required, it can be connected through a cable.
  • the upgrade data is imported into the device 100 .
  • the setting of the download board is not only beneficial to the import of the upgrade data, but also can play a better role in fixing the line.
  • a plurality of fans 1171 and 1172 may be provided on the casing, for example, may be provided on a backplane.
  • the directions of the two fans in the plurality of fans are opposite, including at least one fan blowing inward and one fan blowing outward, forming a stable air flow, thereby effectively improving the heat dissipation efficiency of the device.
  • the device 100 further includes speakers 1301 and 1302 , which are arranged under the main board 123 and fixed on the housing through adapter plates 1311 and 1312 .
  • An airtight space is formed between the surface of the housing and the surface of the housing, and a sound hole 120 is provided at the bottom of the housing.
  • the adapter plate 1311 is fixed on the bottom surface of the casing, and matches with the sound outlet 120 .
  • the speaker 1301 is fixed on the adapter board 1311 .
  • the adapter plate 1311 is provided with a reserved hole which is similar in size to the sound-emitting end surface of the speaker 1301 .
  • the sound-emitting end surface of the speaker 1301 is opposite to the sound-emitting hole of the casing through the reserved hole, so that the sound emitted by the speaker 1301 can be emitted from the sound-emitting hole 120 .
  • the setting of the speaker 1302 may be similar to that of the speaker 1301, which will not be repeated here.
  • the material of the adapter plate may be aluminum alloy.
  • the adapter plate not only plays a role of fixing, but also plays a role of gathering sound, which can improve the sound playing effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

一种向外科器械输出驱动信号的设备,该设备包括壳体,壳体内设有:电源模组,包括电源模块(121)和电源电路板(122),用于提供电源;主板(123);超声能量电路板(124),与主板(123)连接,用于产生超声驱动信号;以及高频电能量电路板,与主板(123)连接,用于产生高频电驱动信号;其中,超声能量电路板(124)和高频电能量电路板在壳体底面上的投影至少部分地重叠,超声能量电路板(124)和/或高频电能量电路板外部设有屏蔽单元。该技术方案有效控制了高频电能量电路板对超声能量电路板的干扰,从而能够将两者封装在一台输出设备中,该设备可同时驱动超声外科器械和高频电外科器械,节省了设备空间,有利于降低成本,也便于用户使用。

Description

向外科器械输出驱动信号的设备 技术领域
本公开涉及用于执行外科手术的超声电外科系统,更具体地,涉及一种向外科器械输出驱动信号的设备。
背景技术
超声外科器械(简称超声刀)和高频电外科器械(简称电刀)均可用于外科手术。超声刀具有较好的切割性能,但在外科手术中的凝血性能较差。电刀根据工作模式分为单极电刀和双极电刀,双极电刀具有很好的凝血性能,但是在外科手术中的切割性能较差。在超声刀的端部执行器上设置电极后,可实现超声刀和双极电刀的功效,这种多功能的超声外科器械被称为“超声电刀”。
技术问题
外科手术中根据需要会用到超声电刀、超声刀、单极电刀或者双极电刀,在一次手术中往往会用到其中的几种外科器械。现阶段,驱动这些外科器械的输出设备都是独立的设备,这些输出设备不仅占用了手术室有限的设备空间,在使用时,控制这些输出设备也存在着诸多的不便,甚至会影响到手术效果。比如单独的超声输出设备驱动超声刀,单独的高频电输出设备驱动单极电刀或者双极电刀,而驱动超声电刀时,有将一台超声输出设备和一台高频电输出设备通过线缆连接起来的使用方式,也有通过一台具备双能量源的设备来驱动的方式,但是该设备输出的超声驱动信号和高频电驱动信号是叠加的单路信号,需要特殊的超声换能器来分离信号才能驱动超声电刀,而超声换能器是易损部件,这种方式无疑会增加应用成本。
技术解决方案
为了解决相关技术中的问题,本公开实施例提供了一种向外科器械输出驱动信号的设备。
本公开的一个方面提供了一种向外科器械输出驱动信号的设备,包括壳体,所述壳体内设有:电源模组,包括电源模块和电源电路板,用于提供电源;主板;超声能量电路板,与所述主板连接,用于产生超声驱动信号;以及高频电能量电路板,与所述主板连接,用于产生高频电驱动信号;其中,所述超声能量电路板和所述高频电能量电路板在所述壳体底面上的投影至少部分地重叠,所述超声能量电路板和/或所述高频电能量电路板外部设有屏蔽单元。
根据本公开实施例,所述超声能量电路板上设有超声频率调节模块和超声功率调节模块。
根据本公开实施例,所述高频电能量电路板上设有高频电频率调节模块和高频电功率调节模块。
根据本公开实施例,所述主板用于对所述超声驱动信号和所述高频电驱动信号进行自适应控制,以便自适应地调整以下至少一种输出参数:所述超声驱动信号的功率、所述超声驱动信号的频率、所述高频电驱动信号的功率以及所述高频电驱动信号的频率。
根据本公开实施例,所述超声能量电路板上设有超声信号采集电路,包括第一滤波模块、第一差分放大模块、第二滤波模块、第一自动增益控制模块以及第一模数转换模块,用于采集并处理超声能量电路板与外科器械的连接电路中的信号,以得到超声反馈信号,将所述超声反馈信号提供给所述主板,所述超声反馈信号包括超声电压反馈信号和超声电流反馈信号。
根据本公开实施例,所述高频电能量电路板上设有高频电采集电路,包括第三滤波模块、第二差分放大模块、第四滤波模块、第二自动增益控制模块以及第二模数转换模块,用于采集并处理高频电能量电路板与所述外科器械的连接电路中的信号,以得到高频电反馈信号,将所述高频电反馈信号提供给所述主板,所述高频电反馈信号包括高频电压反馈信号和高频电流反馈信号。
根据本公开实施例,所述主板用于基于所述超声反馈信号和所述高频电反馈信号控制所述输出参数。
根据本公开实施例,所述主板还用于基于所述超声反馈信号获得声阻抗,基于所述高频电反馈信号获得电阻抗,将所述声阻抗和/或电阻抗与阻抗数据匹配确定组织类型,基于所述组织类型确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
根据本公开实施例,所述主板还用于基于所述超声电压反馈信号和所述超声电流反馈信号获得第一相位差;基于所述高频电压反馈信号和所述高频电流反馈信号获得第二相位差;基于所述组织类型、所述第一相位差以及所述第二相位差确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
根据本公开实施例,所述主板用于基于所述超声反馈信号和/或所述高频电反馈信号确定切割阶段,并基于所述切割阶段确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
根据本公开实施例,所述超声能量电路板包括第一网电区和第一应用区,所述高频电能量电路板包括第二网电区和第二应用区,所述第一网电区和所述第二网电区位于靠近所述主板的一侧。
根据本公开实施例,所述超声能量电路板上设有至少一个跨越所述第一网电区和所述第一应用区的第一元件,在所述第一元件位于所述第一网电区的引脚和位于所述第一应用区的引脚之间的位置,所述超声能量电路板上设有第一缝隙。
根据本公开实施例,所述高频电能量电路板上设有至少一个跨越所述第二网电区和所述第二应用区的第二元件,在所述第二元件位于所述第二网电区的引脚和位于所述第二应用区的引脚之间的位置,所述高频电能量电路板上设有第二缝隙。
根据本公开实施例,所述超声能量电路板、高频电能量电路板、主板、电源模块和电源电路板中的任意两者之间的距离不小于10毫米。
根据本公开实施例,所述超声能量电路板、高频电能量电路板、主板、电源模块和电源电路板中的每一个与所述壳体之间的距离不小于10毫米。
根据本公开实施例,所述第一屏蔽单元为设置在所述超声能量电路板外部的第一屏蔽罩,所述超声能量电路板与所述第一屏蔽罩的侧壁之间的距离不小于10毫米。
根据本公开实施例,所述第二屏蔽单元为设置在所述高频电能量电路板外部的第二屏蔽罩,所述高频电能量电路板与所述第二屏蔽罩的侧壁之间的距离不小于10毫米。
根据本公开实施例,所述壳体上设有显示屏,所述壳体上设有接口,包括单极电刀正极接口、单极电刀负极接口、双极电刀接口和超声电刀接口中的一种或多种。
根据本公开实施例,在所述壳体的内侧,在所述接口与所述显示屏之间的位置,设置有宽度不小于30毫米的绝缘板。
根据本公开实施例,所述设备包括扬声器,设置于所述主板的下方,通过转接板固定在所述壳体上,所述扬声器端面和壳体表面之间形成密闭空间,所述壳体的底部设有出声孔。
根据本公开实施例,所述设备还包括数据接口和下载板,所述下载板与所述主板和所述数据接口连接,被配置为接收从所述数据接口传入的升级数据,并将升级数据传输至所述主板。
根据本公开实施例,所述电源模组还包括备用电池,设置在所述电源电路板的下方。
有益效果
根据本公开实施例的技术方案,通过超声能量电路板和高频电能量电路板叠置设置,并通过屏蔽单元隔离超声能量电路板和高频电能量电路板中的至少一个,有效控制了高频电能量电路板对超声能量电路板的干扰,从而能够将两者封装在一台输出设备中,该设备可同时驱动超声外科器械和高频电外科器械,节省了设备空间,有利于降低成本,也便于用户使用。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本公开的其它特征、目的和优点将变得更加明显。在附图中:
图1示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备的立体图;
图2示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备的正视图;
图3示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备的后视图;
图4示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备的仰视图;
图5示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备的剖视图一;
图6示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备内部的俯视图;
图7示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备的显示屏后部的结构示意图;
图8示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备的剖视图二;以及
图9示意性示出了根据本公开实施例的剖视图二在扬声器处的局部放大图。
本发明的实施方式
下文中,将参考附图详细描述本公开的示例性实施例,以使本领域技术人员可容易地实现它们。此外,为了清楚起见,在附图中省略了与描述示例性实施例无关的部分。
在本公开中,应理解,诸如“包括”或“具有”等的术语旨在指示本说明书中所公开的特征、数字、步骤、行为、部件、部分或其组合的存在,并且不欲排除一个或多个其他特征、数字、步骤、行为、部件、部分或其组合存在或被添加的可能性。
在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。在使用类似于“A、B或C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B或C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。
另外还需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
图1~图9示意性示出了根据本公开实施例的向外科器械输出驱动信号的设备100的示意图。下面将结合图1~图9对本公开实施例的设备100进行描述。
如图5和图6所示,该向外科器械提输出驱动信号的设备100包括壳体,所述壳体内设有电源模组、主板123、超声能量电路板124以及高频电能量电路板。
电源模组包括电源模块121和电源电路板122,其中,电源电路板122即PWR(Power Supply)板,其功能包括但不限于电压调整、滤波等。电源模组用于向系统提供稳定的电源。
根据本公开实施例,如图3所示,壳体上可以设有电源接口119,用于向电源模块121供电。在本公开的一些实施方式中,电源模组还可以包括备用电池,例如设置在电源电路板122的下方,从而在紧急情况下,可以通过备用电池继续完成手术,降低手术风险。
超声能量电路板124与主板123连接,用于产生超声驱动信号,所述超声能量电路板124外部可以设有屏蔽单元,例如如图5所示的第一屏蔽罩125。需要说明的是,为了清楚地示意超声能量电路板124,图5隐去了第一屏蔽罩125的顶面。超声能量电路板124可将工频交流电转换成与超声换能器相匹配的超声电信号,驱动超声换能器将电能转换为机械能,带动超声刀的刀杆振动。外科使用的超声刀的工作频率是20~100kHz,以55.5kHz最为常见。本公开实施例中的超声能量电路板124输出的信号频率也在此范围内。
高频电能量电路板与主板123连接,用于产生高频电驱动信号,所述高频电能量电路板外部可以设有屏蔽单元,例如如图5所示的第二屏蔽罩126。外科使用的高频电外科器械的频率范围在0.3~5MHz之间,本公开所称的“高频”也是指介于0.3~5MHz之间的频率,本公开实施例中的高频电能量电路板输出的驱动信号的频率也在此范围内。
根据本公开实施例,所述超声能量电路板124和所述高频电能量电路板可以叠置设置,从而超声能量电路板124和所述高频电能量电路板在所述壳体底面上的投影至少部分地重叠。如图5所示,超声能量电路板124置于高频电能量电路板的上方,两个电路板外可以分别设有第一屏蔽罩125和第二屏蔽罩126。其中,第一屏蔽罩125和第二屏蔽罩126为金属材质,以隔离超声能量电路板124和高频电能量电路板之间的干扰,以及超声能量电路板124和高频电能量电路板与外界的干扰。
根据本公开实施例,屏蔽单元还可以实现为磁珠或磁环。例如,可以在超声能量电路板124的输入线路上设置磁珠,串联在线路中,以减少输入信号中的不稳定成分,从而至少部分地屏蔽外部对超声能量电路板124的干扰。或者,可以设置磁环,使超声能量电路板124的输入线路穿过磁环,同样可以减少输入信号中的不稳定成分,从而至少部分地屏蔽外部对超声能量电路板124的干扰。类似地,可以对高频电能量板做类似的屏蔽处理。当然,本公开实施例的屏蔽单元也可以采用屏蔽罩、磁珠或磁环中的两种以上的组合方式实现。
根据本公开实施例的技术方案,通过超声能量电路板和高频电能量电路板叠置设置,并通过屏蔽单元隔离超声能量电路板和高频电能量电路板中的至少一个,有效控制了高频电能量电路板对超声能量电路板的干扰,从而能够将两者封装在一台输出设备中,该设备可同时驱动超声外科器械和高频电外科器械,节省了设备空间,有利于降低成本,也便于用户使用。
壳体可以有多种设计方式。在本公开的一些实施例中,如图1~图5所示,该壳体可以包括U型底座111、背板116、顶盖112以及前盖113。壳体可以采用铝合金材质,以降低设备对外界的影响以及外界环境对设备的干扰。
根据本公开实施例,壳体的尺寸可以满足长、宽、高的比例为1~3:1~3:1,例如约为2:2:1,从而设备100可以稳定的放置在设备台上。壳体的高度可以为150~350mm,总体设备的尺寸例如可以是450mm×400mm×200mm,轻巧便携。
根据本公开实施例,超声能量电路板124、高频电能量电路板、主板123、电源模块121和电源电路板122中的任意两者之间的距离不小于第一预设值;超声能量电路板124、高频电能量电路板、主板123、电源模块121和电源电路板122中的每一个与壳体之间的距离不小于第二预设值;超声能量电路板124与第一屏蔽罩125的侧壁之间的距离不小于第三预设值;高频电能量电路板与第二屏蔽罩126的侧壁之间的距离不小于第四预设值。上述第一预设值、第二预设值、第三预设值和第四预设值例如可以均设置为10毫米,优选设置为12毫米。
根据本公开实施例的技术方案,各个电路板之间、电路板与壳体之间、能量电路板(超声能量电路板、高频电能量电路板)与屏蔽罩之间均留有一定间隔,可以降低电路之间的干扰。
根据本公开实施例,超声能量电路板124包括第一网电区和第一应用区,高频电能量电路板包括第二网电区和第二应用区,第一网电区和第二网电区位于靠近主板123的一侧。
根据本公开实施例,第一网电区或第二网电区是与电源模组连接的区域。第一应用区或第二应用区是与设备输出端连接的区域。在超声能量电路板或高频电能量电路板中的任意一块电路板上,应用区的电压大于网电区的电压。通过将两个网电区设置在同一方向,可以减少应用区的高电压部分对网电区的低电压部分的干扰,同时,两个应用区设置在远离主板的一侧,也可以减少应用区对主板的干扰。
根据本公开实施例,超声能量电路板124上设有至少一个跨越第一网电区和第一应用区的第一元件,在第一元件位于第一网电区的引脚和位于第一应用区的引脚之间的位置,超声能量电路板124上设有第一缝隙。该第一元件其位于第一网电区的引脚和位于第一应用区的引脚之间的电气间隙已满足设计要求,本公开实施例在该两个引脚之间设置第一缝隙,可以进一步增大爬电距离,减小介质电极化的风险。上述两个引脚是超声能量电路板124上距离最近的两个引脚,在保证上述两个引脚安全的情况下,第一网电区的其他引脚与第一应用区的其他引脚之间必然也是安全的。
根据本公开实施例,高频电能量电路板上设有至少一个跨越所述第二网电区和所述第二应用区的第二元件,在第二元件位于第二网电区的引脚和位于第二应用区的引脚之间的位置,高频电能量电路板上设有第二缝隙。该第二元件其位于第二网电区的引脚和位于第二应用区的引脚之间的电气间隙已满足设计要求,本公开实施例在该两个引脚之间设置第二缝隙,可以进一步增大爬电距离,减小介质电极化的风险。上述两个引脚是高频电能量电路板上距离最近的两个引脚,在保证上述两个引脚安全的情况下,第二网电区的其他引脚与第二应用区的其他引脚之间必然也是安全的。
根据本公开实施例,超声能量电路板124上设有超声频率调节模块和超声功率调节模块,用于调节超声信号发生器输出的信号的频率和功率。高频电能量电路板上设有高频电频率调节模块和高频电功率调节模块,用于调节高频电信号发生器输出的信号的频率和功率。主板123可以用于对超声驱动信号和高频电驱动信号进行自适应控制,以便自适应地调整以下至少一种:所述超声驱动信号的功率、所述超声驱动信号的频率、所述高频电驱动信号的功率以及所述高频电驱动信号的频率。
根据本公开实施例,设备100可以采集并处理超声驱动信号和高频电驱动信号,例如通过超声能量电路板124和高频电能量电路板上的专用电路进行采集并处理,得到的信号传输到主板123上。主板123可以基于该信号确定调整参数,基于调整参数控制超声能量电路板124和高频电能量电路板的输出。例如,在使用超声电刀切割肝脏时,超声刀杆的振动可实现切割的功能,电钳口所施加高频电能可辅助进行凝血,当检测到阻抗增大时,驱动超声刀的信号功率也增加,从而加速超声刀杆振动,阻抗变大时,施加在电钳口的信号功率也增加,可提高凝血或者蒸发水分的效率,这样使用超声电刀,可加快切割进程并且减少出血,获得更佳的手术效果。又例如,切割小肠时,由于组织韧性大,切割耗时较多,当使用超声电刀时,就可增加驱动超声刀的信号功率,加速切割,而施加在电钳口的信号功率保持适当水平以蒸发组织内的水分,辅助切割即可。
根据本公开实施例的技术方案,通过对超声驱动信号和高频电驱动信号进行自适应控制,能够更好地匹配手术进程,有利于实现凝血效果和切割性能俱佳的手术效果。
根据本公开实施例,所述超声能量电路板上设有超声信号采集电路,包括第一滤波模块、第一差分放大模块、第二滤波模块、第一自动增益控制模块以及第一模数转换模块,用于采集并处理超声能量电路板与外科器械的连接电路中的信号,以得到超声反馈信号,将所述超声反馈信号提供给所述主板,所述超声反馈信号包括超声电压反馈信号和超声电流反馈信号。
其中,第一滤波模块用于对采集到的超声信号进行初级滤波;第一差分放大模块用于对经过初级滤波后的信号进行差分放大;第二滤波模块用于对经过差分放大后的信号进行次级滤波;第一自动增益控制模块用于对经过次级滤波的信号进行增益控制以便于进行数字采样;第一模数转换模块用于对经过处理后的信号进行数字转换。
根据本公开实施例,所述高频电能量电路板上设有高频电采集电路,包括第三滤波模块、第二差分放大模块、第四滤波模块、第二自动增益控制模块以及第二模数转换模块,用于采集并处理高频电能量电路板与所述外科器械的连接电路中的信号,以得到高频电反馈信号,将所述高频电反馈信号提供给所述主板,所述高频电反馈信号包括高频电压反馈信号和高频电流反馈信号。
其中,第三滤波模块用于对采集到的高频电信号进行初级滤波;第二差分放大模块用于对经过初级滤波后的信号进行差分放大;第四滤波模块用于对经过差分放大后的信号进行次级滤波;第二自动增益控制模块用于对经过次级滤波的信号进行增益控制以便于进行数字采样;第二模数转换模块用于对经过处理后的信号进行数字转换。
根据本公开实施例,主板123用于基于超声反馈信号和高频电反馈信号控制所述输出参数,从而能够更好地匹配手术进程,有利于实现凝血效果和切割性能俱佳的手术效果;同时,通过各自独立的采集和处理电路获取超声反馈信号和高频电反馈信号以便主板123对信号自适应控制,这种结构可降低超声信号和高频信号间的干扰。
根据本公开实施例,所述主板123还用于基于所述超声反馈信号获得声阻抗,基于所述高频电反馈信号获得电阻抗,将所述声阻抗和/或电阻抗与阻抗数据匹配确定组织类型,基于所述组织类型确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
本领域技术人员知晓,由电压信号V(t)和电流信号I(t),可以得到负载电路中的阻抗,即R(t)=V(t)/I(t)。在本公开实施例中,通过超声能量电路板输出的电压信号和负载电路中的电流信号可得到超声电路中的阻抗R US(t),简称声阻抗,通过高频电能量电路板输出的电压信号和电流信号可得到高频电路中的阻抗R ES(t),简称电阻抗。
根据本公开的实施例,声阻抗、电阻抗与负载电路有关,即,与正在切割的组织的阻抗特性有关。如上文所述,可以通过检测手术切割进程中的声阻抗和/或电阻抗,或者其变化规律,来识别切割组织类型,作为调整驱动信号功率的一个依据,实现驱动信号的功率自适应调整,获得更佳的手术效果。
例如,可以在切割初始阶段内设定一个识别组织类型的时间窗,将检测到的声阻抗和/或电阻抗与不同类型组织的阻抗特性值进行对比,匹配度最高的为识别出的组织类型。由于不同组织的物理特性差异其在切割时也会有阻抗差异,通过对实验数据和经验数据的处理和分析,可以得到不同类型的组织在切割初始阶段的区别的声阻抗和/或电阻抗,这些结果可以被存储,并用于匹配组织类型。
示例性地,在切割初始阶段,识别出的组织类型编号为1型,其对应的后一时刻的超声驱动信号的功率P1(n+1)和高频电驱动信号的功率P2(n+1)与前一时刻的声阻抗R US(n)和电阻抗R ES(n)的关系分别为:
P1(n+1) = f1(R US(n), R ES(n)),
P2(n+1) = f2(R US(n), R ES(n)),
如果识别出的组织类型编号为2型,其对应的后一时刻的超声驱动信号的功率P1(n+1)和高频电驱动信号的功率P2(n+1)与前一时刻的声阻抗R US(n)和电阻抗R ES(n)的关系分别为:
P1(n+1)= f3(R US(n), R ES(n)),
P2(n+1)= f4(R US(n), R ES(n))。
其中,f1、f2、f3、f4为函数,例如可以是经验函数或经过训练的神经网络模型;R US(n)、R ES(n)分别为n时刻的声阻抗和电阻抗。采用本公开的实施例,在手术切割中遇到不同的组织时,也可以自动调整更适合该组织的切割功率,提高切割的性能。
根据本公开实施例,主板123还用于基于所述超声电压反馈信号和所述超声电流反馈信号获得第一相位差;基于所述高频电压反馈信号和所述高频电流反馈信号获得第二相位差;基于所述组织类型、所述第一相位差以及所述第二相位差确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
根据负载电路中的电压信号和电流信号的相位差,可以对施加在负载电路中的信号功率进行精准的调整。例如,加载在外科器械上的实际信号功率为 P=UIcos θ,当电压信号和电流信号的相位差θ不为零时,实际信号的功率会降低。根据本公开的实施例,当根据阻抗匹配了组织类型后,如果当前电路中的相位差不为零,则需提高能量源输出的信号功率,从而确保实际加载在外科器械上的信号功率满足要求。例如,当前匹配的组织类型为1型,对应的超声信号的功率建议值为P01,高频电信号的功率建议值为P02,而此时计算得到的第一相位差θ 1,即超声反馈信号的相位差不为零,而第二相位差θ 2为零,则主板123控制超声能量电路板输出的信号功率P US = P 1 / cosθ 1,高频电能量电路板的输出信号功率为P ES=P 2
根据本公开实施例,主板123还可以对超声能量电路板和所述高频电能量电路板输出信号的时长进行控制。例如,应用超声电刀进行手术切割时,在某时段内,控制超声能量电路板输出驱动信号,而高频电能量电路板不输出,此时超声电刀只执行“超声刀”的切割功能,在另一时段内,控制高频电能量电路板输出驱动信号,而超声能量电路板不输出,此时超声电刀只执行“电刀”的凝血功能,这样也有助于获得更佳的手术效果。
根据本公开实施例,主板123用于基于所述超声反馈信号和/或所述高频电反馈信号确定切割阶段,并基于所述切割阶段确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
根据本公开的实施例,切割的进程可以划分为切割初始阶段、切割进行阶段和切割末期阶段。在每个阶段调整驱动信号功率以适配切割进程可对切割带来益处。例如,在切割初始阶段,要让超声刀快速开始工作,此时驱动超声刀的功率可以较高值输出,而电刀的功率只需较低值;到切割进行阶段,刀头已经深入组织,需要切割并同步凝血,此时要利用超声刀和电刀各自的优势,因此驱动信号功率按各自总功率的50%输出;到切割末期阶段,即将完成切割,充分利用超声刀的快切优势,此时驱动超声刀的信号功率也以较高值输出,而驱动电刀的信号功率只需较低值。
根据本公开的实施例,可通过声阻抗和或电阻抗确定切割阶段,从而在不同的切割阶段输出适配的超声驱动信号和高频电驱动信号。实验发现,切割的阶段也会通过组织的阻抗特性表现出来,例如,在切割刚开始时阻抗先增大后减小,此为切割初始阶段,然后出现较为长期且恒定的一个阶段,此为切割进行阶段,到最后切割末期阶段时,阻抗会快速增加。因此,在检测到声阻抗或电阻抗在设定的时间窗内呈现先下降后平稳的情况下,可识别为进入切割进行阶段,检测到声阻抗或电阻抗在设定的时间窗内呈现快速上升的变化趋势,则识别为进入切割末期阶段。
根据本公开实施例,可以设置在切割初始和切割末期阶段采用固定功率,而在切割进行阶段采用动态调整的功率。可选地,在切割初始阶段,驱动超声刀和电刀的信号功率可依据超声功率设定值和高频电功率设定值来进行比例输出;在切割进行阶段,驱动超声刀和电刀的信号功率可根据声阻抗和/或电阻抗进行自适应调整;在切割末期阶段,驱动信号的功率仍依据超声功率设定值和高频电功率设定值来进行比例输出。这样可以提高功率适配效率,获得更佳的手术效果。
根据本公开实施例,如图1、图2、图5、图7所示,壳体上设有显示屏114,设备100还包括显示电路板127,设置在显示屏114的后方,用于处理显示信号,使显示屏114显示信息。通过显示屏,可以使用户更加直观地了解设备100的状态。
根据本公开实施例,显示电路板127与主板123、超声能量电路板124、高频电能量电路板、电源模块121和电源电路板122中的任意一个之间的距离不小于10毫米或12毫米,从而降低电路之间的干扰。
根据本公开实施例,壳体上可以设有物理按键和/或虚拟按键。例如,前盖113上可以设有物理的开关键,以启动或关闭设备100。又如,前盖113的显示屏可以为触控显示屏,可以设置一个或多个虚拟按键,从而实现各种控制功能,例如功率的档位设置、工作模式的选择等。在本公开的一些实施例中,也可以通过接口向设备100传入控制信号,作为设备的输入。
根据本公开实施例,如图1和图2所示,壳体上设有接口115,包括单极电刀正极接口1151、单极电刀负极接口1152、双极电刀接口1153和超声电刀接口1154中的一种或多种。
在单极电刀的工作模式下,可以使用单极电刀正极接口1151和单极电刀负极接口1152与单极电刀连接,向其提供高频电驱动信号,此时,电源模组、主板和高频电能量电路板等组件工作,超声能量电路板可以不工作。
在双极电刀的工作模式下,可以使用双极电刀接口1153与双极电刀连接,向其提供高频电驱动信号,此时,电源模组、主板和高频电能量电路板等组件工作,超声能量电路板可以不工作。
在超声电刀的工作模式下,可以使用超声电刀接口1154与超声电刀连接,向其提供超声驱动信号和/或高频电驱动信号,此时,电源模组、主板、超声能量电路板和高频电能量电路板等组件均工作。其中,如果仅使用超声刀的功能,高频电能量电路板可以不工作。在仅使用超声刀的功能的情况下,设备100可以同时接入单极电刀或双极电刀中的一种,以驱动单极电刀或双极电刀中的一个与超声刀同时工作。
根据本公开实施例的技术方案,该设备设有多个接口,可以支持多种应用模式,适应手术需要。
根据本公开实施例,如图7所示,在壳体的内侧,在接口与显示屏114之间的位置,设置有宽度不小于30毫米的绝缘板129。在不干涉其他结构件、安装件的情况下,该绝缘板129的宽度越大越好,以此增大绝缘面积,增加前侧接口115与显示屏114及显示电路板127之间的爬电距离,从而降低接口处的电流对显示功能的影响,保证电气安全特性。
根据本公开实施例,如图3和图5所示,该设备100还包括数据接口118,可以设置在壳体的后侧,例如USB接口或网口等;下载板128,与主板123和数据接口118连接,被配置为接收从数据接口118传入的升级数据,并将升级数据传输至主板123。由于设备100通常具有较高的隐私性要求,不适合通过网络对主板123上的程序进行维护和更新,因此,该设备100可以设置数据接口118,在需要维护和更新时,可以通过有线连接,将升级数据导入设备100。该下载板的设置不仅有利于升级数据的导入,而且可以起到较好的线路固定作用。
根据本公开实施例,如图3和图5所示,壳体上可以设有多个风扇1171、1172,例如可以设置在背板上。多个风扇中的两个风扇方向相反,至少包括一个向内侧吹风的风扇和一个向外侧吹风的风扇,形成稳定的气流,从而有效提升设备的散热效率。
根据本公开实施例,如图4、图8和图9所示,该设备100还包括扬声器1301、1302,设置于主板123的下方,通过转接板1311、1312固定在壳体上,扬声器端面和壳体表面之间形成密闭空间,壳体的底部设有出声孔120。
根据本公开实施例,转接板1311固定在壳体底面,与出声孔120匹配。扬声器1301固定在转接板1311上。转接板1311上设有与扬声器1301的发声端面大小相近的预留孔。扬声器1301的发声端面通过预留孔与壳体的出声孔相对,从而扬声器1301发出的声音可以从出声孔120发出。扬声器1302的设置可以与扬声器1301类似,此处不再赘述。转接板的材质可以为铝合金材质。
根据本公开实施例的技术方案,转接板不仅起到固定作用,还起到聚拢声音的作用,能够改善声音播放的效果。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

  1. 一种向外科器械输出驱动信号的设备,包括壳体,所述壳体内设有:
    电源模组,包括电源模块和电源电路板,用于提供电源;
    主板;
    超声能量电路板,与所述主板连接,用于产生超声驱动信号;以及
    高频电能量电路板,与所述主板连接,用于产生高频电驱动信号;
    其中,所述超声能量电路板和所述高频电能量电路板在所述壳体底面上的投影至少部分地重叠,所述超声能量电路板和/或所述高频电能量电路板外部设有屏蔽单元。
  2. 根据权利要求1所述的设备,其中:
    所述超声能量电路板上设有超声频率调节模块和超声功率调节模块;
    所述高频电能量电路板上设有高频电频率调节模块和高频电功率调节模块;
    所述主板用于对所述超声驱动信号和所述高频电驱动信号进行自适应控制,以便自适应地调整以下至少一种输出参数:所述超声驱动信号的功率、所述超声驱动信号的频率、所述高频电驱动信号的功率以及所述高频电驱动信号的频率。
  3. 根据权利要求2所述的设备,其中:
    所述超声能量电路板上设有超声信号采集电路,包括第一滤波模块、第一差分放大模块、第二滤波模块、第一自动增益控制模块以及第一模数转换模块,用于采集并处理超声能量电路板与外科器械的连接电路中的信号,以得到超声反馈信号,将所述超声反馈信号提供给所述主板,所述超声反馈信号包括超声电压反馈信号和超声电流反馈信号;
    所述高频电能量电路板上设有高频电采集电路,包括第三滤波模块、第二差分放大模块、第四滤波模块、第二自动增益控制模块以及第二模数转换模块,用于采集并处理高频电能量电路板与所述外科器械的连接电路中的信号,以得到高频电反馈信号,将所述高频电反馈信号提供给所述主板,所述高频电反馈信号包括高频电压反馈信号和高频电流反馈信号;
    所述主板用于基于所述超声反馈信号和所述高频电反馈信号控制所述输出参数。
  4. 根据权利要求3所述的设备,其中,所述主板还用于基于所述超声反馈信号获得声阻抗,基于所述高频电反馈信号获得电阻抗,将所述声阻抗和/或电阻抗与阻抗数据匹配确定组织类型,基于所述组织类型确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
  5. 根据权利要求4所述的设备,其中,所述主板还用于基于所述超声电压反馈信号和所述超声电流反馈信号获得第一相位差;基于所述高频电压反馈信号和所述高频电流反馈信号获得第二相位差;基于所述组织类型、所述第一相位差以及所述第二相位差确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
  6. 根据权利要求3所述的设备,其中,所述主板用于基于所述超声反馈信号和/或所述高频电反馈信号确定切割阶段,并基于所述切割阶段确定所述超声驱动信号的功率和所述高频电驱动信号的功率。
  7. 根据权利要求1~6任一项所述的设备,其中,
    所述超声能量电路板包括第一网电区和第一应用区,所述高频电能量电路板包括第二网电区和第二应用区,所述第一网电区和所述第二网电区位于靠近所述主板的一侧;
    所述超声能量电路板上设有至少一个跨越所述第一网电区和所述第一应用区的第一元件,在所述第一元件位于所述第一网电区的引脚和位于所述第一应用区的引脚之间的位置,所述超声能量电路板上设有第一缝隙;
    所述高频电能量电路板上设有至少一个跨越所述第二网电区和所述第二应用区的第二元件,在所述第二元件位于所述第二网电区的引脚和位于所述第二应用区的引脚之间的位置,所述高频电能量电路板上设有第二缝隙。
  8. 根据权利要求1~6任一项所述的设备,其中,所述设备满足以下至少一项:
    所述超声能量电路板、高频电能量电路板、主板、电源模块和电源电路板中的任意两者之间的距离不小于10毫米;
    所述超声能量电路板、高频电能量电路板、主板、电源模块和电源电路板中的每一个与所述壳体之间的距离不小于10毫米;
    所述第一屏蔽单元为设置在所述超声能量电路板外部的第一屏蔽罩,所述超声能量电路板与所述第一屏蔽罩的侧壁之间的距离不小于10毫米;
    所述第二屏蔽单元为设置在所述高频电能量电路板外部的第二屏蔽罩,所述高频电能量电路板与所述第二屏蔽罩的侧壁之间的距离不小于10毫米。
  9. 根据权利要求1~6任一项所述的设备,其中,所述壳体上设有显示屏,所述壳体上设有接口,包括单极电刀正极接口、单极电刀负极接口、双极电刀接口和超声电刀接口中的一种或多种;在所述壳体的内侧,在所述接口与所述显示屏之间的位置,设置有宽度不小于30毫米的绝缘板。
  10. 根据权利要求1~6任一项所述的设备,其中,所述设备还具有以下特征中的至少一种:
    所述设备包括扬声器,设置于所述主板的下方,通过转接板固定在所述壳体上,所述扬声器端面和壳体表面之间形成密闭空间,所述壳体的底部设有出声孔;
    所述设备还包括数据接口和下载板,所述下载板与所述主板和所述数据接口连接,被配置为接收从所述数据接口传入的升级数据,并将升级数据传输至所述主板;
    所述电源模组还包括备用电池,设置在所述电源电路板的下方。
PCT/CN2022/141414 2021-12-24 2022-12-23 向外科器械输出驱动信号的设备 WO2023116881A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111595350.3A CN114027937A (zh) 2021-12-24 2021-12-24 向外科器械输出驱动信号的设备
CN202111595350.3 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116881A1 true WO2023116881A1 (zh) 2023-06-29

Family

ID=80141120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141414 WO2023116881A1 (zh) 2021-12-24 2022-12-23 向外科器械输出驱动信号的设备

Country Status (2)

Country Link
CN (1) CN114027937A (zh)
WO (1) WO2023116881A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114027937A (zh) * 2021-12-24 2022-02-11 上海益超医疗器械有限公司 向外科器械输出驱动信号的设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204734502U (zh) * 2015-03-27 2015-11-04 无锡海斯凯尔医学技术有限公司 用于弹性测量的超声波探测便携装置
US20170000542A1 (en) * 2015-06-30 2017-01-05 Ethicon Endo-Surgery, Llc Surgical system with user adaptable techniques based on tissue impedance
CN107648751A (zh) * 2017-08-15 2018-02-02 安隽医疗科技(南京)有限公司 多功能智能信息化超声理疗仪
US20180042659A1 (en) * 2016-08-09 2018-02-15 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
CN109547220A (zh) * 2018-12-14 2019-03-29 深圳和而泰智能控制股份有限公司 隔离通信电路
CN110662500A (zh) * 2017-05-22 2020-01-07 爱惜康有限责任公司 带有可调节的能量模式的组合超声和电外科器械以及用于密封组织和防止组织切除的方法
US20200078120A1 (en) * 2018-09-07 2020-03-12 Ethicon Llc Modular surgical energy system with module positional awareness with digital logic
CN110916762A (zh) * 2019-07-01 2020-03-27 广州易和医疗技术开发有限公司 一种基于电阻网络的多输出微创手术系统
CN211934284U (zh) * 2019-08-13 2020-11-17 华南理工大学 一种具有超声和射频功能集成的微创手术发生装置
CN113208697A (zh) * 2021-03-26 2021-08-06 上海益超医疗器械有限公司 外科手术装置
CN114027937A (zh) * 2021-12-24 2022-02-11 上海益超医疗器械有限公司 向外科器械输出驱动信号的设备
CN216876510U (zh) * 2021-12-24 2022-07-05 上海益超医疗器械有限公司 向外科器械输出驱动信号的设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204734502U (zh) * 2015-03-27 2015-11-04 无锡海斯凯尔医学技术有限公司 用于弹性测量的超声波探测便携装置
US20170000542A1 (en) * 2015-06-30 2017-01-05 Ethicon Endo-Surgery, Llc Surgical system with user adaptable techniques based on tissue impedance
US20180042659A1 (en) * 2016-08-09 2018-02-15 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
CN110662500A (zh) * 2017-05-22 2020-01-07 爱惜康有限责任公司 带有可调节的能量模式的组合超声和电外科器械以及用于密封组织和防止组织切除的方法
CN107648751A (zh) * 2017-08-15 2018-02-02 安隽医疗科技(南京)有限公司 多功能智能信息化超声理疗仪
US20200078120A1 (en) * 2018-09-07 2020-03-12 Ethicon Llc Modular surgical energy system with module positional awareness with digital logic
CN109547220A (zh) * 2018-12-14 2019-03-29 深圳和而泰智能控制股份有限公司 隔离通信电路
CN110916762A (zh) * 2019-07-01 2020-03-27 广州易和医疗技术开发有限公司 一种基于电阻网络的多输出微创手术系统
CN211934284U (zh) * 2019-08-13 2020-11-17 华南理工大学 一种具有超声和射频功能集成的微创手术发生装置
CN113208697A (zh) * 2021-03-26 2021-08-06 上海益超医疗器械有限公司 外科手术装置
CN114027937A (zh) * 2021-12-24 2022-02-11 上海益超医疗器械有限公司 向外科器械输出驱动信号的设备
CN216876510U (zh) * 2021-12-24 2022-07-05 上海益超医疗器械有限公司 向外科器械输出驱动信号的设备

Also Published As

Publication number Publication date
CN114027937A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
US20210234566A1 (en) Integrated karaoke device
CN216876510U (zh) 向外科器械输出驱动信号的设备
WO2023104203A1 (zh) 向外科器械输出驱动信号的设备及外科手术系统
WO2023116881A1 (zh) 向外科器械输出驱动信号的设备
JP6522122B2 (ja) 機械的作動パネル音響システム
US8634570B2 (en) Sound monitor
JP2004163875A (ja) フィードバック能動型ノイズ防止回路およびヘッドホン
JP2005027307A (ja) ライン・アレイ電気音響変換
JP2004166272A (ja) オーディオ装置およびその改良
US11272312B2 (en) Non-transitory computer-readable medium having computer-readable instructions and system
JP4844306B2 (ja) アレイスピーカ装置
US5033577A (en) Room sound reproducing
EP3745835B1 (en) Generator
CN217611276U (zh) 向外科器械输出驱动信号的设备及外科手术系统
JP2886402B2 (ja) ステレオ信号発生装置
US10755693B2 (en) Acoustic apparatus and vibration transmission method
US20100177921A1 (en) Response speaker system
US10356517B2 (en) Blended passive microphone
JP7289352B2 (ja) 駆動装置
US20200045424A1 (en) Multi-chambered ported resonator for distributed mode and balanced mode radiator transducers
WO2014021178A1 (ja) 音場支援装置および音場支援システム
JP6455006B2 (ja) スピーカ装置
KR100189105B1 (ko) 전자레인지의 소음제거장치
CN211406260U (zh) 扬声器装置
CN218830592U (zh) 音响系统以及音箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910192

Country of ref document: EP

Kind code of ref document: A1