WO2023116672A1 - 取样方法及铂载量的测量方法 - Google Patents

取样方法及铂载量的测量方法 Download PDF

Info

Publication number
WO2023116672A1
WO2023116672A1 PCT/CN2022/140289 CN2022140289W WO2023116672A1 WO 2023116672 A1 WO2023116672 A1 WO 2023116672A1 CN 2022140289 W CN2022140289 W CN 2022140289W WO 2023116672 A1 WO2023116672 A1 WO 2023116672A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum loading
measured
sampled
sample
area
Prior art date
Application number
PCT/CN2022/140289
Other languages
English (en)
French (fr)
Inventor
刘虎昌
卢楷月
Original Assignee
未势能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未势能源科技有限公司 filed Critical 未势能源科技有限公司
Publication of WO2023116672A1 publication Critical patent/WO2023116672A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the disclosure relates to the technical field of fuel cells, in particular to a sampling method and a method for measuring platinum loading.
  • the membrane electrode (Membrane Electrode assembly, MEA) is the main power generating element of the fuel cell.
  • the membrane electrode is composed of a proton exchange membrane and catalyst layers on both sides of the proton exchange membrane.
  • the proton exchange membrane is the place where the electrochemical reaction of the fuel cell occurs.
  • the hydrogen gas undergoes an oxidation reaction on the anode side of the proton exchange membrane, and the oxygen in the air undergoes a reduction reaction on the cathode side to generate water.
  • a large amount of energy is generated in the redox process to drive energy-consuming systems such as vehicles.
  • the cathode and anode catalyst layers of the proton exchange membrane contain metallic platinum particles. Platinum metal particles are used as a catalytic carrier, and if the content is too high, the cost of the entire fuel cell will increase; if the content is too low, it will not be able to provide sufficient current and voltage, and thus cannot provide energy to the energy-consuming system. Therefore, the determination of platinum loading is particularly important for the performance of membrane electrodes.
  • the two sides of the proton exchange membrane are respectively coated with different components of the cathode and anode catalytic layers by hot pressing.
  • the cathode and anode coatings are transferred to both sides of the proton exchange membrane at the same time, so the platinum loading at a specific position of the cathode or anode cannot be measured separately.
  • the main purpose of the present disclosure is to provide a sampling method and a method for measuring the platinum loading, aiming at solving the technical problem that the prior art cannot separately measure the platinum loading at a specific position of the cathode or anode.
  • the present disclosure proposes a sampling method for measuring the platinum loading of a membrane electrode, wherein the membrane electrode includes a first side and a second side oppositely arranged, and the first side and the second side are provided with a coating layer, the coating layer contains platinum particles;
  • Described measuring method comprises the following steps at least:
  • the cutting of at least part of the membrane electrode located in the area to be sampled, and the specific steps of obtaining the first sample to be measured include: sticking a preset shape and a preset size on the surface of the area to be sampled tape; cutting the membrane electrode along the edge of the tape to obtain the first sample to be measured.
  • the area to be sampled is square, and the tape is square; the length of the tape is less than the length of the area to be sampled, and the width of the tape is smaller than the width of the area to be sampled.
  • the measuring The method also includes: in the area where the coating layer on one of the first side or the second side is removed, select a part to continue erasing to obtain a verification area; judge whether the area to be sampled is wiped or not through the verification area. removing it; if it is removed, cutting at least part of the membrane electrode located in the area to be sampled to obtain a first sample to be measured.
  • the cropped membrane electrode does not include the verification region.
  • a dissolving agent is used to remove the coating layer on one of the first side or the second side corresponding to the region to be sampled.
  • the region to be sampled is at least a portion of a failure location of the membrane electrode.
  • the present disclosure also proposes a method for measuring platinum loading, including the aforementioned sampling method, and after obtaining the first sample to be measured, measuring the platinum loading of the first sample to be measured to obtain the first platinum loading capacity.
  • the step of the method for measuring the platinum loading further includes: removing the first The coating layer on the unremoved side of the other side of the sample to be measured is obtained to obtain a second sample to be measured; the platinum loading of the second sample to be measured is measured to obtain a second platinum loading, based on the second platinum loading amount and the first platinum loading to obtain a third platinum loading.
  • the specific step of measuring the platinum loading of the first sample to be measured to obtain the first platinum loading includes: measuring the intensity of the first sample to be measured by an X-ray fluorescence spectrometer to obtain a first intensity; the first platinum loading is obtained based on the first intensity and a predetermined intensity-platinum loading curve.
  • the first sample to be measured is obtained by erasing the coating layer corresponding to the area to be sampled on any side of the first side or the second side; cutting a part of the membrane electrode corresponding to the area to be sampled , used to measure platinum loading. That is, the present disclosure obtains the platinum loading of the first side by erasing the coating layer on the opposite side of the side to be measured, reducing the influence of the coating layer on the opposite side on the measurement result of the coating layer on the measurement side, Furthermore, the platinum loading on one side of the first side or the second side can be obtained independently, which solves the technical problem in the prior art that the platinum loading at a specific position on the anode or cathode of the membrane electrode cannot be obtained separately.
  • the theoretical calculation method in the traditional solution is based on the premise that the slurry components are uniform and stable during catalyst coating, but in the actual development and production process, the slurry often undergoes natural settlement or thinning. In some cases the theoretical value does not accurately reflect the actual platinum loading at the local or specified location.
  • the membrane electrode by erasing the membrane electrode in a specified area and cutting a part of the membrane electrode, the actual platinum loading on a single side of a local or specified position can be obtained, and the difference in the content of platinum loading on a single side can be evaluated, and then can Evaluate the actual performance of the battery.
  • Fig. 1 is a sample preparation schematic diagram of the disclosed sampling method
  • Fig. 2 is a schematic diagram of an embodiment of the sampling method of the present disclosure
  • FIG. 3 is a schematic diagram of an implementation of step S300 of the sampling method of the present disclosure.
  • Fig. 4 is another sample preparation schematic diagram of the disclosed sampling method
  • FIG. 5 is a schematic diagram of another embodiment of the sampling method of the present disclosure.
  • Fig. 6 is another schematic diagram of sample preparation of the disclosed sampling method
  • Figure 7 is a schematic diagram of the measurement results of platinum loading in the present disclosure.
  • FIG. 8 is a schematic diagram of an embodiment of a method for measuring platinum loading in the present disclosure.
  • connection and “fixation” should be understood in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • the membrane electrode assembly of the proton exchange membrane fuel cell is the core part of the whole battery system.
  • the membrane electrode assembly uses platinum as the coating layer.
  • the coating layer is applied to the cathode and anode of the proton exchange membrane.
  • Platinum as a catalytic activity center, directly affects the electrocatalytic performance of electrodes and the cost of batteries. Therefore, the determination of platinum loading in proton exchange membrane fuel cells is of great significance for evaluating battery performance and saving costs.
  • the determination of platinum loading mainly includes:
  • the first measurement method is based on the ideal state of uniform slurry distribution, uniform coating thickness, and no sedimentation, etc., and cannot accurately reflect the platinum loading at a specific position in actual conditions.
  • the present disclosure proposes a sampling method and a method for measuring platinum loading, which are used to measure the platinum loading on the first side of the membrane electrode, aiming to provide a method for separately measuring a specific position of the anode or cathode of the membrane electrode. Platinum loading to be able to accurately evaluate the performance of the battery.
  • the membrane electrode 100 includes a proton exchange membrane, a first coating layer 100a, and a second coating layer 100b.
  • the first coating layer 100a is coated on the first side of the membrane electrode 100; the second coating layer 100b is coated on the second side of the membrane electrode 100, which is the opposite side to the first side.
  • the first side is the cathode, and the second side is the anode.
  • the first side is the anode and the second side is the cathode.
  • described sampling method comprises the following steps at least:
  • the area to be sampled A2 is a small area on the opposite side to be measured.
  • the area to be sampled A2 may be a randomly selected area, or an area designated for detection. For example, if the platinum loading on the first side needs to be measured, the area to be sampled A2 is a certain area on the second side; when the platinum loading on the second side needs to be measured, the area to be sampled A2 is a certain area on the first side.
  • a part of the membrane electrode 100 corresponding to the area to be sampled A2 is cut out to obtain a first sample to be measured.
  • the first sample to be measured for adapting to the size of the detection instrument can be cut out.
  • the area A2 to be sampled is 3 cm*5 cm
  • the size of the membrane electrode 100 to be cut is 19 mm*40 mm.
  • the first The sample to be measured is used to measure the platinum loading. That is, the present disclosure reduces the influence of the coating layer on the opposite side on the measurement result of the coating layer on the side to be measured by erasing the coating layer on the opposite side of the side to be measured, so as to obtain the specific position of the platinum loading on the first side surface. Therefore, the platinum loading at a specific position on the first side or the second side can be obtained separately, which solves the technical problem in the prior art that the platinum loading at a specific position of the anode or cathode of the membrane electrode 100 cannot be obtained separately.
  • the theoretical calculation method in the traditional solution is based on the premise that the slurry components are uniform and stable during catalyst coating, but in the actual development and production process, the slurry often undergoes natural settlement or thinning. In some cases the theoretical value does not accurately reflect the actual platinum loading at the local or specified location.
  • the membrane electrode 100 by erasing the membrane electrode 100 in a specified area and cutting a part of the membrane electrode 100, the actual platinum loading on a single side of a local or specified position can be obtained, and the difference in the content of platinum loading on a single side can be evaluated. In turn, the actual performance of the battery can be evaluated.
  • the cutting of at least part of the membrane electrode located in the area to be sampled to obtain the first sample to be measured the specific steps of obtaining the sample to be measured include: S301, Paste a tape 200 with a preset shape and size on the surface of the area to be sampled A2; S302, cut the membrane electrode 100 along the edge of the tape 200 to obtain the first sample to be measured.
  • S301 Paste a tape 200 with a preset shape and size on the surface of the area to be sampled A2
  • S302 cut the membrane electrode 100 along the edge of the tape 200 to obtain the first sample to be measured.
  • the embodiment of the present disclosure applies a tape 200 of a preset shape and size to the surface of the area A2 to be sampled to define a cutout area A1 and then The membrane electrode 100 is cut out along the edge of the adhesive tape 200 to obtain a first sample to be measured.
  • the adhesive tape 200 can play the role of flattening the second side, which is convenient for placing the first sample to be measured on the measuring device.
  • the preset shape may be a square, a circle, an ellipse or the like.
  • the preset size mainly determines the range of sampling, which is mainly determined according to the size of the sample that can be measured by the measuring equipment.
  • the tape 200 may be 3M Scotch invisible tape 200 .
  • the first measurement sample measured in the present disclosure may be the first measurement sample 2 with the tape 200 attached or the first measurement sample 1 without the tape 200 .
  • the present disclosure mainly uses an X-ray fluorescence spectrometer to measure the platinum loading. Compared with other measuring instruments, the results of X-ray fluorescence spectrometer are more accurate and easy to operate.
  • the generation of fluorescence is due to the fact that when high-energy X-ray photons collide with the atoms of the material, the inner layer electrons overcome the work function and are knocked out and vacancies appear in the inner layer, while the high-energy level electrons fill the vacancies inward and undergo electronic transitions to generate radiation, that is, the characteristic X Rays.
  • This process of excitation and radiation by exciting material atoms with X-ray photons is called the fluorescence effect
  • the electrons that are knocked out are called X-ray photoelectrons
  • the characteristic X-rays radiated are called secondary X-rays or fluorescent X-rays.
  • Atoms have energy levels and energy band structures.
  • the innermost layer is defined as K, and the outwards are K, L, M, and N layer energy levels.
  • the level is represented by the symbol corresponding to which energy level, K represents all possible transitions of electrons to the K shell, L-all possible transitions to the L shell, and so on.
  • the energy levels are differentiated.
  • the electrons in the same shell differentiate into different energy levels. These energy levels form energy bands.
  • the electrons jump inward from the differentiated energy levels, they radiate photons of different intensities, that is, X-rays of different intensities, and ⁇ , ⁇ , and ⁇ represent different intensities, ⁇ has the highest intensity, ⁇ is next, and ⁇ is the weakest.
  • X-rays of different energies generated by electronic transitions can be represented by symbols, such as L ⁇ , K ⁇ , etc.
  • the atomic transition will be excited and the characteristic X-rays of the atom will be emitted.
  • the wavelengths and energies of the characteristic X-rays produced by atoms with different atomic numbers are different, and the peak intensity is generally the largest.
  • the wavelength or energy of the characteristic X-ray can be judged by the wavelength or energy corresponding to the peak. Therefore, the characteristic X-ray of the test sample can be obtained by the sensor to determine what kind of atom the atom is, and the platinum loading can be obtained through the intensity.
  • the sample to be tested is preferably square, for this reason, with reference to shown in Figure 6, described area A2 to be sampled is square, and described adhesive tape 200 is square;
  • the length of described adhesive tape 200 is less than The length of the area to be sampled A2, and the width of the tape 200 is smaller than the width of the area to be sampled A2. That is to say: in this embodiment, the glue is pasted in the region A2 to be sampled, so as to avoid collecting samples that have not erased the second coating layer 100b.
  • the area A2 to be sampled is 3cm*5cm
  • the size of the membrane electrode 100 to be cut is 19mm*40mm.
  • the dissolving agent can be absolute ethanol, isopropanol or n-propanol.
  • absolute ethanol is used as a preferred dissolving agent, which can basically wipe off the second coating layer 100b from the second side.
  • the area to be sampled A2 can be determined in the specified area, and then the second coating layer 100b at the edge of the area to be sampled A2 is erased first, and then the first coating layer 100a of the area to be sampled A2 is erased.
  • the steps of the method for measuring platinum loading further include: S400, after removing one of the first side or the second side In the area of the coating layer, select a part to continue erasing to obtain the verification area A3; judge whether the area to be sampled A2 is wiped clean through the verification area A3; A part of the membrane electrode 100 is used to obtain the first sample to be measured.
  • the second coating layer 100b is erased in the area A2 to be sampled, a position will be selected in the area A2 to be sampled, and the second coating layer 100b will be gently erased.
  • the second coating layer 100b is wiped clean.
  • the second platinum loading is measured, if the value is too high, it means that the first coating layer 100a has not been wiped clean, and further wiping is required.
  • the same method can also be used to verify whether the first coating layer 100a is wiped clean.
  • the trimmed membrane electrode 100 does not include the verification area A3. That is, the verification area A3 is not selected in the area where the membrane electrode 100 is to be trimmed, as shown in FIG. 6 . Since the verification area A3 is used to verify whether the second coating layer 100b is wiped clean, and is formed by continuing to erase, in order to maintain the consistency and reliability of the measurement results, the cut membrane electrode 100 is the first sample to be tested Verification area A3 is not included. Generally speaking, the verification area A3 is a local small area, such as a circular area with a radius of 0.5 mm.
  • the area to be sampled is a part of the failure position of the membrane electrode.
  • the second coating layer 100b is erased to obtain the region A2 to be sampled.
  • at least a part of the second coating layer 100b at the failure site A4 can be wiped off to obtain a sampling area in the failure site A4. The first sample to be measured at the failure site can be obtained, and then the platinum loading on one side of the failure site can be obtained, which provides a more reliable basis for the failure analysis of the membrane electrode 100 .
  • the present disclosure also proposes a method for measuring platinum loading, as shown in FIG. 8 , which includes a sampling method, the sampling method adopts the steps of one of the aforementioned embodiments, after these steps: S500 measures the first sample to be measured The platinum loading of , the first platinum loading is obtained.
  • the measurement of the platinum loading of the first sample to be measured can be performed by spectroscopic methods, such as X-ray fluorescence method, atomic absorption spectrometry, visible light spectrometry and other methods. It achieves platinum loading primarily by strength.
  • the obtained first platinum loading can be used as the platinum loading on the first side, so as to be able to accurately evaluate the performance of the battery.
  • the platinum loading After the step of measuring the platinum loading of the sample to be measured and obtaining the first platinum loading, as shown in 5, the platinum loading
  • the step of the measurement method further includes: S600, erasing the first coating layer 100a of the first sample to be measured to obtain a second sample to be measured; that is, in this embodiment, the first coating layer 100a is also wiped off , and then measure the second sample to be measured to obtain the second platinum loading, which is used to evaluate the error of the first platinum loading.
  • the residual first coating layer 100a will also affect the measurement results of the second platinum loading, but due to the first coating layer 100a and the second coating Both layers 100b are left on both sides of the membrane electrode 100, and the obtained second platinum loading can basically reflect the platinum loading of the remaining second coating layer 100b.
  • the second platinum loading should be close to 0; however, in reality, the second platinum loading can only be as small as possible, and the second platinum loading The diplatinum loading is also affected by the remaining first coating layer 100a, so the second platinum loading only reflects the platinum loading of the remaining second coating layer 100b as much as possible. If the measured second platinum loading is small enough, it can be explained that the second coating layer 100b is wiped more cleanly, and the accuracy of the first platinum loading is higher.
  • the second platinum loading after the retest decreases, it means that the first coating layer 100a was The layer 100a is not wiped clean; if the second platinum loading after the retest is basically unchanged, it means that the first coating layer 100a was wiped clean during the previous measurement, and the second platinum loading after the retest can be used as an evaluation value to judge the accuracy of the first platinum loading.
  • it is necessary to measure the platinum loading on the second side which can be performed by referring to the steps of measuring the platinum loading on the first side.
  • the step of the method for measuring the platinum loading further includes: S700, Based on the second platinum loading and the first platinum loading, a third platinum loading is obtained.
  • the present disclosure can evaluate the platinum loading of the first side in the following manner:
  • the difference between the first platinum load and the second platinum load can be used to obtain the third platinum load as the evaluation basis; or the first platinum load can be directly used as the second platinum load.
  • Triple platinum loading as the basis for evaluation.
  • the first coating layer 100a can be continuously wiped and retested: if the second platinum loading after the retest decreases, it means that the first coating layer 100a was If it is not wiped clean, the third platinum load can be obtained by subtracting the second platinum load after the retest from the first platinum load as the evaluation basis; if the second platinum load after the retest is basically unchanged, then Explain that the previous first coating layer 100a was wiped clean, then the average value of (the second platinum load before the retest and the second platinum load after the retest) can be obtained by subtracting the first platinum load from the first platinum load. Platinum loading, as the basis for evaluation.
  • the specific step of measuring the platinum loading of the first sample to be measured to obtain the first platinum loading includes: measuring the first sample to be measured by an X-ray fluorescence spectrometer The intensity is obtained to obtain a first intensity; the first platinum loading is obtained based on the first intensity and a pre-drawn intensity-platinum loading curve.
  • the intensity curve L1 can be obtained by X-ray fluorescence spectrometer measurement, as shown in Figure 7, and then the peak intensity A can be obtained, which is obtained by the peak intensity A and the pre-drawn intensity-platinum loading curve First platinum loading.
  • the intensity curve L2 can be obtained by X-ray fluorescence spectrometer measurement, as shown in Figure 7, and then the peak intensity B can be obtained, through the peak intensity B and the predetermined intensity-platinum loading The amount curve obtained the second platinum loading.
  • the pre-drawn strength-platinum loading curve is a curve drawn after measuring several standard test pieces. Therefore, in general, in order to eliminate the influence of the second coating layer 100b on the first platinum loading, as shown in Figure 7, the difference between peak intensity A-peak intensity B can be combined with the predetermined intensity - Platinum loading curve to obtain a third platinum loading.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种取样方法及铂载量的测量方法,取样方法包括:S100 在膜电极(100)上确定待取样区域(A2);S200 去除第一侧面或第二侧面一者上与待取样区域对应位置上的涂覆层;S300 裁剪位于待取样区域的至少部分膜电极,得到第一测量样品,用于测量铂载量。

Description

取样方法及铂载量的测量方法
优先权信息
本公开请求2021年12月21日向中国国家知识产权局提交的、专利申请号为202111572673.0的专利申请的优先权和权益,并且通过参照将其全文并入本文。
技术领域
本公开涉及燃料电池技术领域,特别涉及一种取样方法及铂载量的测量方法。
背景技术
膜电极(Membrane Electrode assembly,MEA)是燃料电池的主要发电元件。其中,膜电极由质子交换膜和质子交换膜两侧的催化剂层构成。质子交换膜是燃料电池发生电化学反应的场所,氢气在质子交换膜的阳极侧发生氧化反应,空气中的氧气在阴极侧发生还原反应并生成水。在氧化还原过程中产生大量能量,以驱动车辆等用能系统运行。
质子交换膜的阴阳极催化层含有金属铂颗粒。金属铂颗粒作为催化载体,其含量过高,则会导致整个燃料电池的成本增加;若含量过低,则无法提供足够的电流和电压,进而无法向用能系统提供能量。因此,铂载量的测定对于膜电极的性能尤其重要。
目前质子交换膜两侧通过热压分别涂覆不同组分的阴阳极催化层。在产品研发以及产线生产过程中,阴阳极涂层是同时转印到质子交换膜两侧的,因而无法单独测量阴极或者阳极的某一特定位置铂载量。
发明内容
本公开的主要目的是提供一种取样方法及铂载量的测量方法,旨在解决现有技术无法单独测量阴极或者阳极的某一特定位置铂载量的技术问题。
为此,本公开提出一种取样方法,用于膜电极铂载量的测量,其中,所述膜电极包括相对设置的第一侧面和第二侧面,所述第一侧面和所述第二侧面上均设有涂覆层,所述涂覆层中含有铂颗粒;
所述测量方法至少包括如下步骤:
在所述膜电极上确定待取样区域;
去除所述第一侧面或所述第二侧面一者上与所述待取样区域对应位置上的涂覆层;
裁剪位于所述待取样区域的至少部分所述膜电极,得到第一待测量样品,用于测量铂载量。
在一些实施方案中,所述裁剪位于所述待取样区域的至少部分所述膜电极,得到第一待测量样品的具体步骤包括:在所述待取样区域的表面粘贴预设形状和预设大小的胶带;沿着所述胶带的边缘裁剪所述膜电极,得到所述第一待测量样品。
在一些实施方案中,所述待取样区域为方形,所述胶带为方形;所述胶带的长度小于所述待取样区域的长度,且所述胶带的宽度小于所述待取样区域的宽度。
在一些实施方案中,在去除所述第一侧面或所述第二侧面一者上与所述待取样区域对应位置上的涂覆层所述铂载量的测量方法的步骤之后,所述测量方法还包括:在去除所述第一侧面或所述第二侧面一者上的涂敷层的区域,选择一部分继续擦除,得到验证区域;通过所述验证区域判断所述待取样区域是否擦除干净;若擦除干净,则裁剪位于所述待取样区域的至少部分所述膜电极,得到第一待测量样品,得到第一待测量样品。
在一些实施方案中,裁剪下的膜电极不包含所述验证区域。
在一些实施方案中,采用溶解剂去除所述第一侧面或所述第二侧面一者上与所述待取样区域对应位置上的涂覆层。
在一些实施方案中,所述待取样区域为所述膜电极的失效位置的至少一部分。
本公开还提出一种铂载量的测量方法,包括如前所述的取样方法,以及在得到所述第一待测量样品之后,测量所述第一待测量样品铂载量,得到第一铂载量。
在一些实施方案中,在所述测量所述第一待测量样品的铂载量,得到第一铂载量的步骤之后,所述铂载量的测量方法的步骤还包括:去除所述第一待测量样品的另一侧的未去除侧的涂覆层,得到第二待测量样品;测量所述第二待测量样品的铂载量,得到第二铂载量,基于所述第二铂载量和所述第一铂载量,得到第三铂载量。
在一些实施方案中,所述测量所述第一待测量样品的铂载量,得到第一铂载量的具体步骤包括:通过X射线荧光法光谱仪测量所述第一待测量样品的强度,得到第一强度;基于第一强度和预先拟定的强度-铂载量曲线得到所述第一铂载量。
本公开实施方案的技术方案中,通过擦除第一侧面或者第二侧面任意侧的与待取样区域对应的涂敷层;裁剪所述待取样区域对应的一部分膜电极,得到第一待测量样品,用于测量铂载量。即,本公开通过擦除待测量一侧的相对侧的涂覆层,减少相对侧的涂覆层对带测量侧的涂覆层的测量结果的影响,来得到第一侧面的铂载量,进而能够单独获得第一侧面或者第二侧面中某一侧的铂载量,解决了现有技术中无法单独获得膜电极阳极或者阴 极上的某一特定位置铂载量的技术问题。
此外,传统解决方案中的理论计算方法是建立在催化剂涂布时浆料组分均匀稳定的前提上,但实际研发和生产过程中,浆料往往会发生自然沉降或者稀化等状况,在此情况下理论值并不能准确反映局部或指定位置实际的铂载量。本公开通过擦除指定区域的膜电极,通过裁剪一部分膜电极的方式,来获得局部或指定位置单独一侧实际的铂载量,可以评价单独一侧铂载量的含量的差异性,进而可以评价电池的实际性能。
附图说明
为了更清楚地说明本公开实施方案或现有技术中的技术方案,下面将对实施方案或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施方案,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本公开取样方法的一制样示意图;
图2为本公开取样方法的一实施方式示意图;
图3为本公开取样方法步骤S300的一实施示意图;
图4为本公开取样方法的又一制样示意图;
图5为本公开取样方法的又一实施方式示意图;
图6为本公开取样方法的再一制样示意图;
图7为本公开铂载量的测量结果示意图;
图8为本公开铂载量的测量方法的一实施方式示意图。
发明详细描述
下面将结合本公开实施方案中的附图,对本公开实施方案中的技术方案进行清楚、完整地描述,显然,所描述的实施方案仅仅是本公开的一部分实施方案,而不是全部的实施方案。基于本公开中的实施方案,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方案,都属于本公开保护的范围。
需要说明,本公开实施方案中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本公开中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如, “固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
另外,若本公开实施方案中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施方案之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本公开要求的保护范围之内。
质子交换膜燃料电池的膜电极组件是整个电池系统的核心部分。其中,膜电极组件采用铂作为涂覆层。涂覆层涂覆于质子交换膜的阴极和阳极。铂作为催化活动中心,其直接影响电极的电催化性能以及电池的成本。因此,质子交换膜燃料电池的铂载量的测定对于评价电池性能以及节约成本有重要的意义。
质子交换膜两侧通过热压分别涂覆不同组分的阴阳极催化层。在产品研发以及产线生产过程中,阴阳极涂层是同时转印到质子交换膜两侧的。相关现有技术中,对于铂载量的测定主要包括:
(1)理论计算:通过催化层材料的各组分的配比,如铂碳比、离聚物和碳载体之比来计算。
(2)通过破碎、焙烧、热分析进行计算。
第一种测定方式建立在浆料分布均匀,涂布厚度均一、未发生沉降等的理想状态下,无法准确反映实际情况中某一特定位置的铂载量。
第二种测定方式中,只能测定阴阳极铂载量的总量,无法区分某一侧的铂载量。然而,膜电极阴阳两极的铂载量不尽相同,不同位置的铂载量也可能不同,现有技术测得的结果无法评估膜电极阳极或者阴极的某一特定位置的铂载量,因而难以准确评价电池的性能。
为此,本公开提出一种取样方法及铂载量的测量方法,用于测量膜电极第一侧面的铂载量,旨在能够提供一种单独测量膜电极阳极或者阴极的某一特定位置的铂载量,以能够准确评价电池的性能。
膜电极100包括质子交换膜、第一涂覆层100a和第二涂覆层100b。第一涂覆层100a涂覆于膜电极100的第一侧面;第二涂覆层100b涂覆于膜电极100的第二侧面,第二侧面 是所述第一侧面的相对侧。需要说明的是,在测量阴极的铂载量时,第一侧面为阴极,第二侧为阳极。在测量阳极的铂载量时,第一侧面为阳极,第二侧面为阴极。
参照图1和图2所示,所述取样方法至少包括如下步骤:
S100在所述膜电极100上确定待取样区域;
需要说明的是,待取样区域A2是待测量测的相对侧的的一小部分区域。待取样区域A2可以是随机抽取的区域,也可以是指定检测的区域。比如,需要测量第一侧面的铂载量,待取样区域A2为第二侧面的某一区域;需要测量第二侧面的铂载量时,待取样区域A2为第一侧面的某一区域。
S200去除所述第一侧面或所述第二侧面一者上与所述待取样区域对应位置上的涂覆层;
比如,需要测量第一侧面的铂载量,则去除待取样区域A2的至少一部分第二涂覆层100b;比如,需要测量第二侧面的铂载量,则去除待取样区域的至少一部分第一涂覆层100a。
S300裁剪位于所述待取样区域的至少部分所述膜电极,得到第一待测量样品,用于测量铂载量。
参照图6所示,步骤S200之后,将待取样区域A2对应的一部分膜电极100裁剪下来,得到第一待测量样品。具体实施过程中,也无需整个待取样区域A2对应的膜电极100裁剪下来,而是可以裁剪出用于适配检测仪器大小的第一待测量样品。比如,待取样区域A2为3cm*5cm,而所需裁剪的膜电极100的大小为19mm*40mm。
本公开实施方案的技术方案中,通过擦除第一侧面或者第二侧面任意侧的与待取样区域A2对应的涂敷层;裁剪所述待取样区域A2对应的一部分膜电极100,得到第一待测量样品,用于测量铂载量。即,本公开通过擦除待测量一侧的相对侧的涂覆层,减少相对侧的涂覆层对带测量侧的涂覆层的测量结果的影响,来得到第一侧面的特定位置铂载量,进而能够单独获得第一侧面或者第二侧面中某一侧的特定位置的铂载量,解决了现有技术中无法单独获得膜电极100阳极或者阴极的特定位置铂载量的技术问题。
此外,传统解决方案中的理论计算方法是建立在催化剂涂布时浆料组分均匀稳定的前提上,但实际研发和生产过程中,浆料往往会发生自然沉降或者稀化等状况,在此情况下理论值并不能准确反映局部或指定位置实际的铂载量。本公开通过擦除指定区域的膜电极100,通过裁剪一部分膜电极100的方式,来获得局部或指定位置单独一侧实际的铂载量,可以评价单独一侧铂载量的含量的差异性,进而可以评价电池的实际性能。
作为上述实施方案的可选实施方式,图3所示,所述裁剪位于所述待取样区域的至少部分所述膜电极,得到第一待测量样品,得到待测量样品的具体步骤包括:S301,在所述 待取样区域A2的表面粘贴预设形状和预设大小的胶带200;S302,沿着所述胶带200的边缘裁剪所述膜电极100,得到所述第一待测量样品。在对铂载量测量时,对于样品的大小和形状具有要求,为此本公开实施方案将预设形状和预设大小的胶带200贴敷于待取样区域A2的表面,限定出裁剪区域A1随后沿着胶带200的边缘裁剪出膜电极100,进而得到第一待测量样品。而且胶带200能够起到平整第二侧的作用,便于将第一待测量样品放置于测量设备上。一般而言,预设形状可以为方形、圆形、椭圆形等形状。预设大小则主要确定采样的范围,其主要依据测量设备所能测量样品的大小而确定。一些可选的实施方式中,胶带200可以是3M思高隐形胶带200。
需要说明的是,参照图1和4所示,本公开所测量的第一测量样品可以为粘贴有胶带200的第一测量样品2或未粘贴有胶带200的第一测量样品1。在本公开实施的过程中,通过测量粘贴有胶带200的第一测量样品2得到第一铂载量为较佳的实施方式。
作为上述实施方案的可选实施方式,本公开主要采用X射线荧光光谱仪来测量铂载量。相比较于其他测量仪器,X射线荧光光谱仪结果更准确且易操作。
荧光的产生是由于高能X射线光子碰撞到物质的原子时,内层电子克服逸出功被击出并在内层出现空位,而高能级电子向内填补空位发生电子跃迁产生辐射,即特征X射线。这种以X射线光子激发物质原子所发生的激发和辐射的过程称为荧光效应,被击出的电子称为X射线光电子,所辐射的特征X射线称为次级X射线或荧光X射线。
原子具有能级和能带结构,定义最内层为K,向外以此为K、L、M、N层能级,在发生荧光效应时,由外层电子向内跃迁,跃迁至哪个能级则用哪个能级对应的符号表示,K表示电子到K壳层的所有可能跃迁,L-所有可能跃迁到L壳层,等等。而能级又是分化的,同壳层电子分化出不同的能级这些能级构成能带,电子从分化的能级上向内跃迁时辐射不同强度的光子即不同强度的X射线,而α、β、γ表示不同强度,α强度最高,β其次,而γ强度最弱,因此电子跃迁产生的不同能量的X射线就可以用符号来表示,如Lα、Kβ等。当测试样品中含有某种元素时,就会激发该原子跃迁并辐射出该原子的特征X射线,不同原子序数的原子产生的特征X射线的波长和能量都是不同的,一般以峰强最大的峰所对应的波长或能量来判断其特征X射线的波长或能量,因此可以通过传感器获取测试样品的特征X射线来判断该原子是何种原子,以及通过强度来得到铂载量。
针对于X射线荧光光谱仪而言,待测样品最好为方形的,为此,参照图6所示,所述待取样区域A2为方形,所述胶带200为方形;所述胶带200的长度小于所述待取样区域A2的长度,且所述胶带200的宽度小于所述待取样区域A2的宽度。也即:在本实施方案中,胶粘贴于待取样区域A2内,避免采集到未擦除第二涂覆层100b的样品。比如,待取 样区域A2为3cm*5cm,而所需裁剪的膜电极100的大小为19mm*40mm。
作为上述实施方案的可选实施方式,采用去除所述第一侧面或所述第二侧面一者上与所述待取样区域对应位置上的涂覆层。溶解剂可以为无水乙醇、异丙醇或者正丙醇。比如,对第一侧面的第一涂覆层测量时,无水乙醇作为较佳的溶解剂,其基本能够将第二涂覆层100b从第二侧面擦除掉。同时,在擦除时,可以采用棉签沾有溶解剂进行擦除。在擦除时,可以在指定区域内确定出待取样区域A2,然后先擦除待取样区域A2的边缘的第二涂覆层100b,再擦除待取样区域A2的第一涂覆层100a。
上述技术措施,是为了能够尽量的让结果准确,但是涂覆层是难以擦除干净的,只能尽量的擦除干净。为此,作为上述实施方案的可选实施方式,图5所示,所述铂载量的测量方法的步骤还包括:S400,在去除所述第一侧面或所述第二侧面一者上的涂敷层的区域,选择一部分继续擦除,得到验证区域A3;通过所述验证区域A3判断所述待取样区域A2是否擦除干净;若擦除干净,则裁剪所述待取样区域A2对应的一部分膜电极100,得到第一待测量样品。以测量第一侧面的铂载量为例,当待取样区域A2擦除第二涂覆层100b之后,会在待取样区域A2内选择一个位置,继续轻轻擦除第二涂覆层100b,得到验证区域A3;若验证区域A3只剩下透明膜电极100和/或放置于透写板上观察发现透光和/或无黑色催化层残留,即可以判断第二侧的待取样区域A2内的第二涂覆层100b擦除干净。此时,在测量第二铂载量时,如果值过高,则说明第一涂覆层100a未擦除干净,需要继续擦除。同时,在擦除第一涂覆层100a时,也可以采用相同的方式,验证第一涂覆层100a是否擦除干净。
作为上述实施方案的可选实施方式,裁剪下的膜电极100不包含所述验证区域A3。也即:验证区域A3不选择在要裁剪膜电极100的区域内,如图6所示。由于验证区域A3用于验证第二涂覆层100b是否擦除干净,且是继续擦除形成的,为了保持测量结果的的一致性和可靠性,裁剪下的膜电极100即第一待测样品不含验证区域A3。一般而言,验证区域A3是个局部细小的区域,比如可以是0.5mm半径的圆形区域。
作为上述实施方案的可选实施方式,待取样区域为所述膜电极的失效位置的一部分。以测量第一侧面的铂载量为例,比如,在所述膜电极100的失效位置A4,擦除至少一部分第二涂覆层100b,得到所述待取样区域A2。相关现有技术中,无法对失效部位单侧的铂载量进行测量,在本公开中通过擦去失效位置A4的至少一部分第二涂覆层100b,进而可以在失效位置A4内得到取样区域,便可以得到失效部位的第一待测量样品,进而可以获得失效部位单侧的铂载量,为膜电极100的失效分析提供了更为可靠的依据。
本公开还提出一种铂载量的测量方法,图8所示,其包括取样方法,该取样方法采用 了前述实施方案之一的步骤,在这些步骤之后:S500测量所述第一待测量样品的铂载量,得到第一铂载量。
需要说明的是,测量第一待测量样品的铂载量可以采用光谱法,如X射线荧光法、原子吸收光谱法、可见光光谱分析法等方法进行测量。其主要通过强度来获得铂载量。得到的第一铂载量可以作为第一侧面的铂载量,以能够准确评价电池的性能。
以测量第一侧面的铂载量为例,尽管对第二涂覆层100b进行了擦除,但是第二侧仍然会残留很小一部分第二涂覆层100b,进而对测量结果造成影响,为了能够评估残余的第二涂覆层100b对测量结果的影响,在所述测量所述待测量样品的铂载量,得到第一铂载量的步骤之后,如5所示,所述铂载量的测量方法的步骤还包括:S600,擦除所述第一待测量样品的第一涂覆层100a,得到第二待测量样品;即本实施方案中,将第一涂覆层100a也擦掉,此时再对第二待测量样品进行测量,得到第二铂载量,用于评估第一铂载量的误差。在不出现实验失误的情况下,就一般情况下而言,残余的第一涂覆层100a也会影响到第二铂载量的测量结果,不过由于第一涂覆层100a和第二涂覆层100b均是残余在膜电极100两侧,得出的第二铂载量基本能够反应残余的第二涂覆层100b的铂载量。
需要说明的是,在第二涂覆层100b擦除干净的的情况下,第二铂载量应当趋近于0;不过真实情况下,第二铂载量只能够做到尽量小,而且第二铂载量还受到残余的第一涂覆层100a的影响,因而第二铂载量只是尽可能的反应残余第二涂覆层100b的铂载量。如果测出的第二铂载量足够小,那么便能够说明第二涂覆层100b擦除的更干净,第一铂载量的准确率更高。如果测出的第二铂载量较高,可以对第一涂覆层100a继续擦除,进行复测:如果复测后的第二铂载量降低,则说明前一次测量时第一涂覆层100a未擦除干净;如果复测后的第二铂载量基本不变,则说明前一次测量时第一涂覆层100a擦除干净,则可以复测后的第二铂载量作为评估值来判断第一铂载量的准确率。同理地,需要测量第二侧面的铂载量,参照测量第一侧面的铂载量的步骤执行。
作为上述实施方案的可选实施方式,所述测量所述第二待测量样品的铂载量,得到第二铂载量的步骤之后,所述铂载量的测量方法的步骤还包括:S700,基于所述第二铂载量和所述第一铂载量,得到第三铂载量。
考虑到第二铂载量是残余第一涂覆层100a和第二涂覆层100b的铂载量。为此本公开可以采用如下方式对第一侧面的铂载量进行评估:
如果测出的第二铂载量足够小,则可以采用第一铂载量和第二铂载量的差值得到第三铂载量,作为评估依据;或者直接以第一铂载量为第三铂载量,作为评估依据。
如果测出的第二铂载量较大,可以对第一涂覆层100a继续擦除,进行复测:如果复测 后的第二铂载量降低,则说明前一次第一涂覆层100a未擦除干净,则可以以第一铂载量减去复测后的第二铂载量得到第三铂载量,作为评估依据;如果复测后的第二铂载量基本不变,则说明前一次第一涂覆层100a擦除干净,则可以以第一铂载量减去(复测前的第二铂载量和复测后的第二铂载量)的平均值得到第三铂载量,作为评估依据。
作为上述实施方案的可选实施方式,所述测量所述第一待测量样品的铂载量,得到第一铂载量的具体步骤包括:通过X射线荧光法光谱仪测量所述第一待测量样品的强度,得到第一强度;基于第一强度和预先拟定的强度-铂载量曲线得到所述第一铂载量。测量第一待测量样品时,通过X射线荧光法光谱仪测量,可以得到强度曲线L1,如图7所示,进而可以得到峰强A,通过峰强A和预先拟定的强度-铂载量曲线得到第一铂载量。
相同地,测量第二待测量样品时,通过X射线荧光法光谱仪测量,可以得到强度曲线L2,如图7所示,进而可以得到峰强B,通过峰强B和预先拟定的强度-铂载量曲线得到第二铂载量。
需要说明的是,预先拟定的强度-铂载量曲线是通过测量若干个标准试件后拟定得出的曲线。因此,一般情况下,为了可以消除第二涂覆层100b对第一铂载量的影响,如图7所示,可以通过峰强A-峰强B之后的差值,再结合预先拟定的强度-铂载量曲线来得到第三铂载量。
以上所述仅为本公开的可选实施方案,并非因此限制本公开的专利范围,凡是在本公开的发明构思下,利用本公开说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本公开的专利保护范围内。

Claims (10)

  1. 一种取样方法,其中,用于膜电极铂载量的测量,其中,所述膜电极包括相对设置的第一侧面和第二侧面,所述第一侧面和所述第二侧面上均设有涂覆层,所述涂覆层中含有铂颗粒;
    所述取样方法至少包括如下步骤:
    在所述膜电极上确定待取样区域;
    去除所述第一侧面或所述第二侧面一者上与所述待取样区域对应位置上的涂覆层;
    裁剪位于所述待取样区域的至少部分所述膜电极,得到第一待测量样品,用于测量铂载量。
  2. 如权利要求1所述的取样方法,其中,所述裁剪位于所述待取样区域的至少部分所述膜电极,得到第一待测量样品的具体步骤包括:
    在所述待取样区域的表面粘贴预设形状和预设大小的胶带;
    沿着所述胶带的边缘裁剪所述膜电极,得到所述第一待测量样品。
  3. 如权利要求2所述的取样方法,其中,所述待取样区域为方形,所述胶带为方形;
    所述胶带的长度小于所述待取样区域的长度,且所述胶带的宽度小于所述待取样区域的宽度。
  4. 如权利要求1所述的取样方法,其中,在去除所述第一侧面或所述第二侧面一者上与所述待取样区域对应位置上的涂覆层所述铂载量的测量方法的步骤之后,所述取样方法还包括:
    在去除所述第一侧面或所述第二侧面一者上的涂敷层的区域,选择一部分继续擦除,得到验证区域;
    通过所述验证区域判断所述待取样区域是否擦除干净;
    若擦除干净,则裁剪位于所述待取样区域的至少部分所述膜电极,得到第一待测量样品,得到第一待测量样品。
  5. 如权利要求4所述的取样方法,其中,裁剪下的膜电极不包含所述验证区域。
  6. 如权利要求1-5中任一项所述的取样方法,其中,采用溶解剂去除所述第一侧面或所述第二侧面一者上与所述待取样区域对应位置上的涂覆层。
  7. 如权利要求1-5中任一项所述的取样方法,其中,所述待取样区域为所述膜电极的失效位置的至少一部分。
  8. 一种铂载量的测量方法,其中,包括权利要求1-7中任一项所述的取样方法,以及
    在得到所述第一待测量样品之后,测量所述第一待测量样品铂载量,得到第一铂载量。
  9. 如权利要求8所述的测量方法,其中,在所述测量所述第一待测量样品的铂载量,得到第一铂载量的步骤之后,所述铂载量的测量方法的步骤还包括:
    去除所述第一待测量样品的另一侧的未去除侧的涂覆层,得到第二待测量样品;
    测量所述第二待测量样品的铂载量,得到第二铂载量,
    基于所述第二铂载量和所述第一铂载量,得到第三铂载量。
  10. 如权利要求8所述的测量方法,其中,所述测量所述第一待测量样品的铂载量,得到第一铂载量的具体步骤包括:
    通过X射线荧光法光谱仪测量所述第一待测量样品的强度,得到第一强度;
    基于第一强度和预先拟定的强度-铂载量曲线得到所述第一铂载量。
PCT/CN2022/140289 2021-12-21 2022-12-20 取样方法及铂载量的测量方法 WO2023116672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111572673.0A CN116297600A (zh) 2021-12-21 2021-12-21 一种取样方法及铂载量的测量方法
CN202111572673.0 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023116672A1 true WO2023116672A1 (zh) 2023-06-29

Family

ID=86827336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140289 WO2023116672A1 (zh) 2021-12-21 2022-12-20 取样方法及铂载量的测量方法

Country Status (2)

Country Link
CN (1) CN116297600A (zh)
WO (1) WO2023116672A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116793891A (zh) * 2023-08-21 2023-09-22 中铁九局集团第五工程有限公司 一种骨料比表面积的测试方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018284A1 (de) * 1990-05-12 1991-11-28 Gkss-Forschungszentrum Geesthacht Gmbh Anordnung mit beschichtetem spiegel zur untersuchung von proben nach der methode der röntgenfluoreszenzanalyse
CN101055254A (zh) * 2006-04-12 2007-10-17 中国科学院大连化学物理研究所 一种质子交换膜燃料电池膜电极铂担量的测定方法
JP2010169528A (ja) * 2009-01-22 2010-08-05 Japan Gore Tex Inc 蛍光x線分析(xrf)を用いた積層体の表裏を判別する方法
US20120216827A1 (en) * 2011-02-24 2012-08-30 General Electric Company Method for detecting tin
RU2469303C1 (ru) * 2011-07-29 2012-12-10 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф.Иоффе Российской академии наук Способ количественного определения содержания диоксида кремния на поверхности кремния
CN103884729A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 一种燃料电池催化层金属载量的测试方法
US20190006680A1 (en) * 2015-07-17 2019-01-03 Sumitomo Electric Industries, Ltd. Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
EP3450593A1 (de) * 2017-08-29 2019-03-06 Collini Holding AG Verfahren und sensoreinrichtung zur störungskompensierten bestimmung des materialauftrags oder -abtrags während nasschemischer prozesse
CN109904496A (zh) * 2017-12-07 2019-06-18 中国科学院大连化学物理研究所 一种在燃料电池膜电极生产线上定量催化剂担量的方法
CN112304989A (zh) * 2020-10-30 2021-02-02 广东泰极动力科技有限公司 一种可实现连续实时监测膜电极铂载量变化的方法
CN112557451A (zh) * 2020-12-01 2021-03-26 南京大学 一种膜电极上催化剂载量的检测装置及方法
CN114965536A (zh) * 2022-05-30 2022-08-30 长沙微谱科技有限公司 一种膜电极催化剂元素载量的检测装置及检测方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018284A1 (de) * 1990-05-12 1991-11-28 Gkss-Forschungszentrum Geesthacht Gmbh Anordnung mit beschichtetem spiegel zur untersuchung von proben nach der methode der röntgenfluoreszenzanalyse
CN101055254A (zh) * 2006-04-12 2007-10-17 中国科学院大连化学物理研究所 一种质子交换膜燃料电池膜电极铂担量的测定方法
JP2010169528A (ja) * 2009-01-22 2010-08-05 Japan Gore Tex Inc 蛍光x線分析(xrf)を用いた積層体の表裏を判別する方法
US20120216827A1 (en) * 2011-02-24 2012-08-30 General Electric Company Method for detecting tin
RU2469303C1 (ru) * 2011-07-29 2012-12-10 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф.Иоффе Российской академии наук Способ количественного определения содержания диоксида кремния на поверхности кремния
CN103884729A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 一种燃料电池催化层金属载量的测试方法
US20190006680A1 (en) * 2015-07-17 2019-01-03 Sumitomo Electric Industries, Ltd. Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
EP3450593A1 (de) * 2017-08-29 2019-03-06 Collini Holding AG Verfahren und sensoreinrichtung zur störungskompensierten bestimmung des materialauftrags oder -abtrags während nasschemischer prozesse
CN109904496A (zh) * 2017-12-07 2019-06-18 中国科学院大连化学物理研究所 一种在燃料电池膜电极生产线上定量催化剂担量的方法
CN112304989A (zh) * 2020-10-30 2021-02-02 广东泰极动力科技有限公司 一种可实现连续实时监测膜电极铂载量变化的方法
CN112557451A (zh) * 2020-12-01 2021-03-26 南京大学 一种膜电极上催化剂载量的检测装置及方法
CN114965536A (zh) * 2022-05-30 2022-08-30 长沙微谱科技有限公司 一种膜电极催化剂元素载量的检测装置及检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116793891A (zh) * 2023-08-21 2023-09-22 中铁九局集团第五工程有限公司 一种骨料比表面积的测试方法
CN116793891B (zh) * 2023-08-21 2023-11-14 中铁九局集团第五工程有限公司 一种骨料比表面积的测试方法

Also Published As

Publication number Publication date
CN116297600A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Nickol et al. GITT analysis of lithium insertion cathodes for determining the lithium diffusion coefficient at low temperature: challenges and pitfalls
Wu et al. Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes
Waldmann et al. 18650 vs. 21700 Li-ion cells–A direct comparison of electrochemical, thermal, and geometrical properties
Herklotz et al. Advances in in situ powder diffraction of battery materials: a case study of the new beamline P02. 1 at DESY, Hamburg
Hu et al. Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-ion batteries
Solchenbach et al. Quantification of PF5 and POF3 from side reactions of LiPF6 in Li-ion batteries
Liu et al. In situ detection of hydrogen peroxide in PEM fuel cells
WO2023116672A1 (zh) 取样方法及铂载量的测量方法
Jomori et al. An experimental study of the effects of operational history on activity changes in a PEMFC
Zhu et al. Electrochemical impedance study of commercial LiNi0. 80Co0. 15Al0. 05O2 electrodes as a function of state of charge and aging
Dhanushkodi et al. Carbon corrosion fingerprint development and de-convolution of performance loss according to degradation mechanism in PEM fuel cells
El Gabaly et al. Oxidation stages of Ni electrodes in solid oxide fuel cell environments
Paul et al. Investigation of carbon corrosion behavior and kinetics in proton exchange membrane fuel cell cathode electrodes
CN103884729B (zh) 一种燃料电池催化层金属载量的测试方法
Star et al. FIB-SEM tomography connects microstructure to corrosion-induced performance loss in PEMFC cathodes
Horita et al. Correlation between degradation of cathode performance and chromium concentration in (La, Sr) MnO3 cathode
Zhao et al. The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective
Zhao et al. Direct detection of manganese ions in organic electrolyte by UV-vis spectroscopy
Sato et al. Non-destructive observation of plated lithium distribution in a large-scale automobile Li-ion battery using synchrotron X-ray diffraction
Darowicki et al. The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit
Hinds In situ diagnostics for polymer electrolyte membrane fuel cells
Lyons et al. Considerations in applying neutron depth profiling (NDP) to Li-ion battery research
Yi et al. Estimation of NCM111/graphite acoustic properties under different lithium stoichiometry based on nondestructive acoustic in situ testing
Borkiewicz et al. Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays
Min et al. Direct measurements of size-independent lithium diffusion and reaction times in individual polycrystalline battery particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909984

Country of ref document: EP

Kind code of ref document: A1