WO2023116124A1 - 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法 - Google Patents

一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法 Download PDF

Info

Publication number
WO2023116124A1
WO2023116124A1 PCT/CN2022/124106 CN2022124106W WO2023116124A1 WO 2023116124 A1 WO2023116124 A1 WO 2023116124A1 CN 2022124106 W CN2022124106 W CN 2022124106W WO 2023116124 A1 WO2023116124 A1 WO 2023116124A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
wave infrared
inorganic hybrid
layer
preparation
Prior art date
Application number
PCT/CN2022/124106
Other languages
English (en)
French (fr)
Inventor
黄飞
宋煜
俞钢
杨喜业
Original Assignee
广州光达创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州光达创新科技有限公司 filed Critical 广州光达创新科技有限公司
Publication of WO2023116124A1 publication Critical patent/WO2023116124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the field of photodetectors, and in particular relates to an organic-inorganic hybrid short-wave infrared photodetector and an array thereof, and a preparation method of the photodetector.
  • Short-wave infrared photodetectors have attracted much attention from academia and industry due to their wide applications in night vision, lidar, medical diagnosis, and image sensing.
  • commercial high-performance SWIR photodetectors are based on III-V compound semiconductors.
  • this inorganic photodetector has some disadvantages. On the one hand, it needs to be prepared by epitaxial crystal growth technology; Chip bond and technology or wire bonding technology is integrated to the silicon-based readout circuit. This leads to limitations in pixel size and pixel count, and complex manufacturing processes hinder their use in markets where cost, resolution, and/or form factor are critical.
  • lead sulfide quantum dots have the advantages of solution processability, tunable absorption spectrum, low cost, and easy integration into readout circuits. Since the long-chain ligands of lead sulfide quantum dots hinder the transport of charges, it is necessary to replace the long-chain ligands with short-chain ligands during preparation. There are two commonly used ligand exchange methods: solution-phase ligand exchange and solid-state ligand exchange.
  • lead sulfide quantum dots For short-wave infrared absorption lead sulfide quantum dots, on the one hand, it is difficult to prepare lead sulfide quantum dots with a particle size of more than 5nm by the solution-phase ligand exchange method; on the other hand, the hole transport layer commonly used in lead sulfide quantum dot photodetectors
  • the preparation of PbS-EDT thin film requires layer-by-layer solid-state ligand exchange and long-term air oxidation. During this process, a large number of surface defects are easily generated, forming recombination centers, reducing the external quantum efficiency of the device and increasing the Noise in the dark state. For these reasons, the performance of lead sulfide quantum dot photodetectors is still lower than that of commercial InGaAs photodetectors.
  • photodetectors with a diode structure have a faster response speed, but the external quantum efficiencies of these photodetectors are all below 20% at zero bias in the short-wave infrared region, and their dark current densities are comparable to commercial ones. InGaAs photodetectors still have a certain gap.
  • the object of the present invention is to disclose an organic-inorganic hybrid short-wave infrared photodetector and its array.
  • the organic-inorganic hybrid short-wave infrared photodetector has a With higher external quantum efficiency and lower dark current density, the detection sensitivity of photodetectors can be greatly improved.
  • the invention also relates to a preparation method of the organic-inorganic hybrid short-wave infrared photodetector.
  • photosensitive layer in the present invention refers to the thin film layer responsible for absorbing photons and generating free electrons and holes in the device structure.
  • the term "energy gap” in the present invention refers to the optical energy gap of the semiconductor material, and its value is obtained by dividing 1240 by the cut-off wavelength of the absorption edge of the semiconductor material.
  • cathode interface layer in the present invention refers to an N-type material layer near the cathode in the device structure and capable of transporting electrons and blocking holes.
  • anode interface layer in the present invention refers to a P-type material layer near the anode in the device structure, which is capable of transporting holes and blocking electrons.
  • spectral response region in the present invention refers to the effective working optical band of the photodetector and its array. Defined as the corresponding wavelength range where the external quantum efficiency is greater than 10%.
  • patterning treatment in the present invention refers to a process of forming a thin film layer of a certain material into a pattern of a certain shape by means of a mask or photolithography.
  • solution-phase ligand exchange in the present invention refers to a process flow for obtaining lead sulfide quantum dots with short-chain ligands through ligand exchange in a solution during the synthesis of lead sulfide quantum dots.
  • solid-state ligand exchange in the present invention refers to the process of preparing a thin film of lead sulfide quantum dots with long-chain ligands through solution processing, followed by immersion in short-chain ligand solutions and solvent cleaning to obtain short-chain ligands. Process flow of lead sulfide quantum dot thin film.
  • One object of the present invention is to provide an organic-inorganic hybrid short-wave infrared photodetector.
  • An organic-inorganic hybrid short-wave infrared photodetector which includes a photosensitive layer
  • the photosensitive layer is a multilayer structure
  • the multilayer structure at least includes a structure formed by superimposing a lead sulfide quantum dot layer doped with a ligand and an organic semiconductor layer, and the ligand is selected from substances containing a specific unit 3;
  • the specific unit 3 is selected from one of fluoride ion, chloride ion, bromide ion, iodide ion, sulfide ion, thiocyanate ion, hydroxide ion, ammonium ion, mercapto group, amino group, carboxyl group and hydroxyl group or various;
  • the organic semiconductor layer is blended by at least one donor and one acceptor;
  • the energy gap of the lead sulfide quantum dot is ⁇ 1.24eV.
  • the absolute value of the difference between the energy level at the bottom of the conduction band of the lead sulfide quantum dot and the energy level of the lowest unoccupied molecular orbital of the acceptor is ⁇ 0.3eV
  • the valence of the lead sulfide quantum dot is The absolute value of the difference between the top energy level and the highest occupied molecular orbital energy level of the donor is ⁇ 0.3eV.
  • the donor material is selected from the P-type organic semiconductor based on the specific unit 1
  • the acceptor material is selected from the N-type organic semiconductor based on the specific unit 2; wherein the specific unit 1 contains the following structure one or more:
  • the specific unit 2 contains one or more of the following structures:
  • R 1 -R 6 are independently selected from alkyl groups with 1-40 carbon atoms, or alkyl derivatives with 1-40 carbon atoms;
  • One or more carbon atoms on the alkyl derivative are replaced by a hydrogen atom, an oxygen atom, an alkenyl group, an alkynyl group, an aryl group, a hydroxyl group, an amino group, a carbonyl group, a carboxyl group, an ester group, a cyano group, or a nitro group or a variety of replacements;
  • One or more hydrogen atoms on the alkyl derivative are replaced by one or more of fluorine atom, chlorine atom, bromine atom and iodine atom;
  • Said X 1 -X 6 are independently selected from one or more of hydrogen atom, fluorine atom, chlorine atom, cyano group and nitro group.
  • the donor material in the organic semiconductor layer is one of the polymer donors JD40 and P3HT
  • the acceptor material in the organic semiconductor layer is the fullerene acceptor PC 71 BM and non-fullerene
  • One of the ene receptors IEICO-4F, Y6 is shown below.
  • the thickness of the lead sulfide quantum dot layer is 10-500nm.
  • the substance containing specific unit 3 is selected from 3-mercaptopropionic acid, 1,4-benzenedithiol, chromium chloride, lead iodide, lead bromide, methylamine lead chloroiodide, sodium sulfide, One or more of ammonium thiocyanate and 1-ethyl-3-methylimidazolium iodide.
  • the particle size of the lead sulfide quantum dots is 3-20nm.
  • the thickness of the organic semiconductor layer is 5-1000 nm.
  • organic-inorganic hybrid short-wave infrared photodetector is selected from a flip-chip structure or a front-mount structure;
  • the flip-chip structure includes, from bottom to top, a substrate, a bottom electrode as a cathode, a cathode interface layer, a lead sulfide quantum dot layer, an organic semiconductor layer, an anode interface layer, a top electrode as an anode, and an encapsulation layer;
  • the formal structure includes, from bottom to top, a substrate, a bottom electrode serving as an anode, an anode interface layer, a lead sulfide quantum dot layer, an organic semiconductor layer, a cathode interface layer, a top electrode serving as a cathode, and an encapsulation layer.
  • the energy gap of the cathode interface layer material and the material in the anode interface layer are all larger than the energy gap of the lead sulfide quantum dots, the energy gap of the donor and the energy gap of the acceptor in the photosensitive layer.
  • the thicknesses of the cathode interface layer and the anode interface layer are both smaller than the thickness of the photosensitive layer.
  • the material of the cathode interface layer is selected from organic compound 1, inorganic compound 1, or a combination thereof;
  • the organic compound 1 is selected from fullerene and its derivatives, naphthalene diimide and its derivatives, perylene diimide and its derivatives, 4,7-diphenyl-1,10-phenanthrene Roline, polyethyleneimine, polyethoxyethyleneimine, 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline, [9,9-dioctylfluorene -9,9-bis(N,N-dimethylaminopropyl)fluorene], bromo-[9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl) )fluorene], 8-hydroxyquinoline lithium, 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, bis(2-methyl-8-quinoline)-4 -(phenylphenol)aluminum, 1,3,5-tris[((2-
  • the inorganic compound 1 is selected from zinc oxide, tin oxide, magnesium oxide, aluminum-doped zinc oxide, magnesium-doped zinc oxide, gallium-doped zinc oxide, titanium oxide, tantalum oxide, zinc sulfide, chromium sulfide, or the above materials mixture or compound.
  • the material of the anode interface layer is selected from organic compound 2, inorganic compound 2, or a combination thereof;
  • the organic compound 2 is selected from 4,4'-cyclohexylbis[N,N'-bis(4-methylphenyl)aniline], N,N'-bis(naphthalene-1-yl)-N ,N'-bis(phenyl)-benzidine, N,N'-bis(naphthalene-1-yl)-N,N'-bis(phenyl)-2,7-diamino-9,9-spirobis Fluorene, 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene, 4,4',4"-tri( Carbazol-9-yl)triphenylamine, poly(4-butyltriphenylamine), polyvinylcarbazole, polystyrene-N,N'-diphenyl-N,N'-bis-(3-methyl One or more of phenyl)-(
  • the inorganic compound 2 is selected from tungsten oxide, molybdenum oxide, vanadium oxide, chromium oxide, nickel oxide, copper oxide, cuprous oxide, cuprous thiocyanate, copper sulfide, copper iodide, or a mixture or composite of the above materials .
  • the cathode and/or the anode have a transmittance greater than 20% in the spectral response region.
  • Another object of the present invention is to provide an organic-inorganic hybrid short-wave infrared photodetector array, the photosensitive pixel of which includes the above-mentioned organic-inorganic hybrid short-wave infrared photodetector.
  • the photodetector array includes a substrate, and the substrate includes a pixel readout circuit composed of silicon-based complementary metal-oxide-semiconductor transistors or thin-film transistors.
  • the photodetector array includes a photosensitive layer and a bottom electrode, the bottom electrode is a cathode or an anode, and the bottom electrode is adjacent to the substrate;
  • the size of the photosensitive pixel of the organic-inorganic hybrid short-wave infrared photodetector array is consistent with the size of the bottom electrode
  • the bottom electrode is patterned
  • the photosensitive layer has not been patterned.
  • the photosensitive pixel size of the organic-inorganic hybrid short-wave infrared photodetector array is less than 50 ⁇ m.
  • Another object of the present invention is to provide a method for preparing the above-mentioned organic-inorganic hybrid short-wave infrared photodetector or the above-mentioned organic-inorganic hybrid short-wave infrared photodetector array, comprising the following steps:
  • the bottom electrode and the top electrode must be opposite electrodes, if the bottom electrode is an anode, then the top electrode is a cathode, and vice versa.
  • the preparation of the photosensitive layer comprises the following steps:
  • the preparation of the lead sulfide quantum dot thin film adopts the one-step film-forming method after the solution-phase ligand exchange, or the step-by-step film-forming method after the solid-state ligand exchange.
  • the preparation of the photosensitive layer comprises the following steps:
  • the preparation of the organic semiconductor thin film adopts a solution film forming method or a vacuum thermal evaporation deposition method.
  • the preparation of the cathode interface layer and the preparation of the anode interface layer are all independently selected from solution film formation, sol-gel film formation, vacuum thermal evaporation, atomic layer deposition, chemical vapor deposition, electrodeposition, anode One or more of the oxidation methods.
  • the preparation of the cathode and the anode are independently selected from vacuum thermal evaporation, electron beam evaporation, molecular beam evaporation or plasma sputtering, atomic layer deposition or reduction transformation after liquid film formation, electroplating Or one or more of electrodeposition methods.
  • the preparation of the encapsulation layer is selected from one of vacuum thermal evaporation, chemical vapor deposition, atomic layer deposition, plasma sputtering, and liquid film formation.
  • the organic-inorganic hybrid short-wave infrared photodetector disclosed in the present invention has a photosensitive layer comprising a short-wave infrared absorbing lead sulfide quantum dot film and an organic semiconductor film blended with a donor and acceptor.
  • the organic semiconductor film does not require complex layer-by-layer solution processing, and the film can be directly prepared by only one-step solution processing, which simplifies the preparation process and avoids
  • the introduction of surface defects in the preparation process is conducive to the formation of good interface morphology and improved charge transport; on the other hand, the introduction of organic semiconductor films blended with P-type materials and N-type materials is conducive to increasing the built-in capacity of the device.
  • the electric field increases the width of the depletion layer, and can adjust the balance of hole and electron transport rates in the photosensitive layer. Therefore, the dark current, external quantum efficiency, specific detectivity and response speed of the organic-inorganic hybrid photodetector have been significantly improved, and finally the comprehensive performance comparable to that of the commercial InGaAs photodetector can be obtained.
  • the lead sulfide quantum dot/P-type material and N-type material blended organic semiconductor thin film photosensitive layer can still significantly improve the external quantum efficiency of photodetectors in the short-wave infrared region, which benefits from the conduction band bottom of the lead sulfide quantum dots and the lowest unoccupied molecules of the acceptor.
  • the small energy level difference between the orbitals, and the small energy level difference between the top of the valence band of the lead sulfide quantum dot and the highest occupied molecular orbital of the donor thereby promoting the photogenerated electrons and holes to the corresponding electrodes through the photosensitive layer.
  • Transmission also reduces the non-radiative recombination loss, increases the open circuit voltage of the device, and increases the charge generation and transmission efficiency inside the device.
  • the organic-inorganic hybrid short-wave infrared photodetector can work at zero bias voltage or a lower reverse bias voltage (such as -0.1V), and can achieve the same gain as short-wave infrared Compared with the 10-50V operating voltage of the gain-type photodetector, this is conducive to reducing the energy consumption of the device; on the other hand, compared with the low response speed of the gain-type photodetector , the organic-inorganic hybrid photodetector has a sub-microsecond response speed, which indicates that the organic-inorganic hybrid short-wave infrared photodetector is expected to be applied in the field of high-speed response photodetection.
  • the organic-inorganic hybrid short-wave infrared photodetector in the present invention can constitute a photodetector array, which can be directly integrated on the backplane of TFT or CMOS by solution processing, and does not need to be processed by photolithography, etc.
  • an image sensor array By patterning the photosensitive layer, an image sensor array can be fabricated.
  • the pixel of this photodetector array can be simply defined by the size and shape of the anode/cathode as the bottom electrode, that is, it is consistent with the size of the anode/cathode as the bottom electrode, and the etching of the anode as the bottom electrode is omitted Other layers between the /cathode and the anode/cathode as the top electrode.
  • CMOS and charge-coupled device (CCD) image sensor arrays require patterning between each pixel in the photosensitive layer to reduce signal crosstalk between pixels. These lithographic patternings involve deep trench etching and complex post-processing processes, limiting pixel pitch, process yield, and device cost.
  • the thin film photodetector is used as the pixel of the image sensor, the crosstalk between the pixels is greatly weakened due to the reduction of the thickness of the pixel.
  • this photodetector array simplifies the structure and manufacturing process of the image sensor, enhances the responsivity and reduces the manufacturing cost, reduces the signal crosstalk between adjacent pixels, and improves the detection sensitivity of the device to weak light. Improved signal-to-noise ratio for image sensor arrays.
  • FIG. 1 shows a schematic diagram of the device structure of the organic-inorganic hybrid short-wave infrared photodetector in Example 1 of the present invention.
  • FIG. 2 shows a schematic diagram of the energy levels of the photosensitive layer in the organic-inorganic hybrid short-wave infrared photodetector in Example 1 of the present invention.
  • FIG. 3 shows a cross-sectional view of the organic-inorganic hybrid short-wave infrared photodetector image array in Embodiment 4-5.
  • 301-pixel readout circuit 301-pixel readout circuit
  • 302-bottom electrode can be cathode or anode array
  • 303-cathode interface layer or anode interface layer 303-cathode interface layer or anode interface layer
  • 304-photosensitive layer 305-anode interface layer or cathode interface layer
  • 306 top electrode (anode or cathode, respectively) layer
  • 307 encapsulation layer.
  • FIG. 4( a ) shows the dark current test charts of Comparative Examples 1-3 in Test Example 1;
  • FIG. 4( b ) shows the dark current test charts of Examples 1-3 in Test Example 1.
  • Fig. 5 (a) shows in test example 2, the external quantum efficiency test figure of comparative example 1-3 under -0.1V work
  • Fig. 5 (b) shows in test example 2, embodiment 1-3 in External quantum efficiency test chart at -0.1V operation.
  • Fig. 6 (a) has shown in test example 3, the specific detection rate test figure of comparative example 1-3 under -0.1V work;
  • Fig. 6 (b) has shown in test example 3, embodiment 1-3 in Specific detection rate test chart under -0.1V operation.
  • the substrate may be made of various insulating materials or high-resistance semiconductor materials, which may have a flat surface or a curved surface of a specific shape.
  • the substrate is a readout circuit integrated with picture elements.
  • the substrate integrated with the pixel readout circuit is usually made on a single crystal silicon substrate through a CMOS process.
  • the substrate can be a readout circuit integrated with a thin film transistor on a glass, ceramic or plastic substrate.
  • the pixel readout circuit on the substrate can also be made of a hybrid circuit of CMOS and TFT.
  • the anode/cathode as the bottom electrode and the cathode/anode as the top electrode can be selected from various materials. in:
  • the cathode/anode as the bottom electrode should be transparent or partially transparent in the desired wavelength range, and the optical transmittance of the electrode should be higher than 20%.
  • the cathode/anode as the bottom electrode can be transparent metal oxides (such as indium tin oxide, zinc oxide and aluminum-doped zinc oxide, etc.), or nitrides (such as titanium nitride) and oxynitrides of corresponding metals.
  • the anode/cathode used as the top electrode can be made of thicker metal materials, such as, but not limited to, aluminum, silver, titanium, tantalum, molybdenum, copper, chromium, gold and nickel.
  • the cathode/anode as the bottom electrode can be used to reflect the incident light in the desired wavelength range to optimize the photosensitivity in a specific wavelength band, by selecting a suitable metal Materials can achieve the desired electrical conductivity and optical reflectivity simultaneously.
  • the anode/cathode as the top electrode is transparent or partially transparent in the desired wavelength range, and the optical transmittance of the electrodes is higher than 20%.
  • the transparent or partially transparent anode/cathode as the top electrode here can be realized with nano-metal particles or nano-wire mesh.
  • both the cathode/anode layer as the bottom electrode and the anode/cathode layer as the top electrode need to have high transmittance (higher than 20%) for the detection wavelength. It is worth pointing out that this kind of thin film photodetector and its array can be prepared on various types, various materials and various confocal surface shapes of substrates, and can be used for bidirectional light detection or omnidirectional three-dimensional stereoscopic detection .
  • an encapsulation layer to ensure the stable operation of the photodetector or photodetector array under various usage environments and during the target lifetime. If the photodetector or photodetector array is bottom-incidence, the encapsulation layer need not be optically transparent. If the photodetector or photodetector array is incident from the top, the encapsulation layer should be transparent in the working band, and the optical transmittance should be above 50%.
  • the encapsulation layer can be formed by various vacuum coating methods, such as thermal evaporation, molecular beam coating or plasma sputtering, atomic layer deposition. It can also be prepared by liquid film-forming methods, such as drop coating, dip coating, spin coating and various printing methods. In addition to selecting one material, the encapsulation layer can also be alternately multilayered. In addition to improving the packaging performance, this alternating film structure can also be used to optimize the optical resonant cavity structure of the thin-film photodiode in the working band, thereby optimizing its light sensitivity and specific detectivity.
  • Commonly used inorganic packaging materials include silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, zirconia, magnesium oxide, zirconia and magnesium fluoride.
  • Commonly used organic packaging materials include polymethyl methacrylate, polyethylene oxide, Polystyrene, polyvinylpyrrolidone, polycarbonate, polyacrylic acid, epoxy resin, parylene, polysiloxazane.
  • the energy gaps of all donor materials and acceptor materials in the examples of the present invention are tested by the method of ultraviolet-visible absorption spectroscopy.
  • the specific method is: dissolve the donor material or acceptor material in chloroform or chlorobenzene solvent, process the dissolved solution on the quartz plate by spin coating, and use the obtained film for the test of absorption spectrum, and the optical energy gap is passed 1240 divided by the absorption edge cutoff wavelength of the material.
  • the energy level of the valence band top of the lead sulfide quantum dot, the donor and the acceptor material or the energy level of the highest occupied molecular orbital is tested by an atmospheric photoelectron spectrometer; the energy level at the bottom of the conduction band of the corresponding material The level or the energy level of the lowest unoccupied molecular orbital is obtained by adding the energy level of the highest occupied molecular orbital to the optical energy gap of the corresponding material.
  • the light transmittance of the anode/cathode serving as the bottom electrode and the anode/cathode serving as the top electrode in the photoresponsive region of the device is tested by a spectrometer.
  • the specific method is to firstly prepare a metal thin film with the same thickness as the device electrode by vacuum thermal evaporation on the quartz plate, and measure the transmission spectrum of the electrode.
  • the device structure of the organic-inorganic hybrid short-wave infrared photodetector in this embodiment is shown in Figure 1. From bottom to top, it is a glass substrate (2mm), a cathode (150nm) as a bottom electrode, and a cathode interface layer (30nm). , photosensitive layer (260nm), anode interface layer (10nm), anode (100nm) as top electrode and encapsulation layer.
  • ITO indium tin oxide
  • zinc oxide is used for the cathode interface layer
  • molybdenum oxide is used for the anode interface layer
  • the energy gap of lead sulfide quantum dots is calculated to be 0.83eV, the bottom energy level of its conduction band is -4.37eV, and the top energy level of its valence band is -5.20eV;
  • the energy gap of the polymer donor JD40 is calculated to be 1.96eV, its lowest unoccupied molecular orbital energy level is -3.32eV, and its highest occupied molecular orbital energy level is -5.28eV;
  • the energy gap of the non-fullerene acceptor Y6 is calculated to be 1.33eV, its lowest unoccupied molecular orbital energy level is -4.10eV, and its highest occupied molecular orbital energy level is -5.43eV;
  • the transmittance of the cathode of the organic-inorganic hybrid short-wave infrared photodetector in the photosensitive layer is greater than 90% after measurement
  • the preparation method of the above-mentioned organic-inorganic hybrid short-wave infrared photodetector comprises the following steps:
  • the ITO conductive substrate is ultrasonically treated and cleaned with isopropanol, detergent, deionized water, and acetone in sequence, and the treatment time is 20 minutes each time. Then put the cleaned ITO conductive substrate into an oven at 60°C to dry for 5 hours; then perform plasma surface treatment on the ITO conductive substrate (vacuum degree: 2mPa; duration: 20s);
  • the polymer donor JD40 and the non-fullerene acceptor Y6 are blended at a mass ratio of 1:1, and added to the chloroform solvent, and then the dissolved solution is spin-coated on the above-mentioned lead sulfide quantum dot layer , prepare an organic semiconductor layer with a specified thickness, and finally place it on a heating stage at 80° C. for 5 minutes for annealing treatment.
  • FIG. 1 shows a schematic diagram of the device structure of the organic-inorganic hybrid short-wave infrared photodetector in Example 1 of the present invention.
  • Fig. 2 shows the energy level schematic diagram of the photosensitive layer in the organic-inorganic hybrid short-wave infrared photodetector in embodiment 1, can draw the following conclusions from the figure:
  • the energy level difference between the lowest unoccupied molecular orbital (or the bottom of the conduction band) of the lead sulfide quantum dot and the acceptor material is less than 0.3eV, and the energy level difference between the highest occupied molecular orbital (or the top of the valence band) of the lead sulfide quantum dot and the donor material It is also less than 0.3eV.
  • Such a small energy level difference is conducive to the transmission of photogenerated electrons or holes to the corresponding electrodes through the photosensitive layer, and is also conducive to reducing non-radiative recombination losses, increasing the open circuit voltage and built-in electric field of the device, and then increasing the internal energy of the device. charge generation and transfer efficiencies.
  • the device structure, materials used, and device preparation method in this embodiment are the same as those in Embodiment 1. The only difference is that the organic semiconductor layer in Example 2 is blended from the polymer donor JD40 and the non-fullerene acceptor IEICO-4F.
  • the calculated energy gap of the non-fullerene acceptor IEICO-4F is 1.24eV, its lowest unoccupied molecular orbital energy level is -4.20eV, and its highest occupied molecular orbital energy level is -5.44eV.
  • the device structure, materials used, and device preparation method in this embodiment are the same as those in Embodiment 1. The only difference is that the organic semiconductor layer in Example 3 is blended from the polymer donor P3HT and the fullerene acceptor PC 71 BM, and the solvent chloroform is replaced by chlorobenzene.
  • the energy gap of the polymer donor P3HT is calculated to be 2.0eV, its lowest unoccupied molecular orbital energy level is -3.00eV, and its highest occupied molecular orbital energy level is -5.00eV;
  • the calculated energy gap of fullerene acceptor PC 71 BM is 2.13eV, its lowest unoccupied molecular orbital energy level is -4.08eV, and its highest occupied molecular orbital energy level is -6.21eV.
  • This embodiment provides a photodetector array based on the organic-inorganic hybrid short-wave infrared photodetectors in the above-mentioned embodiment 2.
  • the device structure of the photodetector array is shown in FIG. 3 . It can be seen from the figure that the photodetector array sequentially includes a pixel readout circuit 301 fabricated on a single crystal silicon substrate and composed of silicon-based complementary metal-oxide-semiconductor transistors (MOSFETs) from bottom to top.
  • the pixel readout circuitry is linked to an array 302 of bottom electrodes (here cathodes) that define the size of the pixel.
  • cathode array Above the cathode array are a cathode interface layer 303 , a photosensitive layer 304 , an anode interface layer 305 , a top electrode (anode here) 306 and an encapsulation layer 307 .
  • the structures from 303 to 307 are continuous in the entire array area, and do not need to be patterned between pixels.
  • the bottom electrode array is an aluminum, titanium or titanium-aluminum alloy electrode with a thickness of 100nm
  • the cathode interface layer is a zinc oxide film (30nm)
  • the photosensitive layer includes a lead sulfide quantum dot layer and an organic semiconductor layer, wherein the lead sulfide quantum dot layer is Through the film layer (200nm) after four times of solid-state ligand exchange, the organic semiconductor layer (60nm) in the material composition of organic semiconductor layer is referred to embodiment 2, and anode interfacial layer is molybdenum oxide thin film (10nm), and top electrode array is silver
  • the encapsulation layer is epoxy resin.
  • the transmittance of the anode of the organic-inorganic hybrid short-wave infrared photodetector array in the range of 300-1700nm is greater than 50% after measurement.
  • the pixel size of the array is 25 ⁇ m, the number of pixels is 1 ⁇ 256 or 1 ⁇ 512, and the imaging test is carried out on it.
  • the results show that the organic-inorganic hybrid short-wave infrared photodetector array shown in Figure 3 whose pixels are only defined by the bottom electrode can be used in digital camera applications with high pixel density.
  • the preparation method of the above-mentioned organic-inorganic hybrid short-wave infrared photodetector comprises the following steps:
  • the device structure, materials used, and device preparation method in this embodiment are the same as those in Embodiment 4.
  • the only difference is that the pixel readout circuit 301 in Embodiment 4 is replaced by a pixel readout circuit composed of thin film transistors (TFTs) on a glass substrate.
  • TFTs thin film transistors
  • Example 1 The device structure, materials used, and device preparation method in this comparative example are the same as those in Example 1. The only difference is that the organic semiconductor layer in Example 1 is replaced by a lead sulfide quantum dot layer exchanged with 1,2-ethanedithiol, and correspondingly, the preparation method S4 in Example 1 is replaced by The following processing conditions:
  • Example 1 The device structure, materials used, and device preparation method in this comparative example are the same as those in Example 1. The only difference is that the material of the organic semiconductor layer in Example 1 is replaced by a single-component polymer donor JD40.
  • the device structure, materials used, and device preparation method in this comparative example are the same as those in Example 1.
  • the only difference is that the photosensitive layer in Comparative Example 3 includes a lead sulfide quantum dot film with an energy gap of 1.77eV and an organic semiconductor film blended by a polymer donor JD40 and a non-fullerene acceptor IEICO-4F.
  • the energy gap of the lead sulfide quantum dots in this comparative example is calculated to be 1.77eV, the energy level at the bottom of its conduction band is -3.87eV, and the energy level at the top of its valence band is -5.64eV;
  • This aspect shows that compared with the two photosensitive layers of pure lead sulfide quantum dots and lead sulfide quantum dots/P-type organic semiconductor, the photosensitive layer of lead sulfide quantum dots/P-type material and N-type material blended organic semiconductor thin film is more sensitive. Significantly enhance the external quantum efficiency of photodetectors.
  • the P-type material and N-type material blended organic semiconductor thin film needs to meet certain energy level difference conditions to be able to significantly enhance the photoelectric response capability of lead sulfide quantum dots at 1520nm; Compared with Example 3, Example The energy level difference between the 1-2 donor acceptor level and the lead sulfide quantum dot is smaller, which is conducive to the transmission of photogenerated electrons or holes to the corresponding electrodes through the photosensitive layer, and is also conducive to reducing non-radiative recombination losses and improving the open circuit of the device Voltage, thereby increasing the charge generation and transfer efficiency inside the device. Therefore, although the donor and acceptor do not absorb the incident light at 1520nm, they can still significantly enhance the external quantum efficiency of the photodetector in the entire short-wave infrared region.
  • Example 2 has a higher external quantum efficiency in the infrared band of 700-1700nm.
  • the energy level difference of the acceptor is smaller, which is beneficial to reduce the non-radiative recombination loss and promote the generation of excitons and the transmission of charges; on the other hand, the energy gap of the lead sulfide quantum dots used in Example 2 is 0.83eV, and the corresponding photosensitive layer In the infrared band itself has a strong absorption.
  • the photosensitive layer of lead sulfide quantum dots/P-type material and N-type material blended organic semiconductor thin film is more efficient. can significantly improve the specific detectivity of the photodetector; on the other hand, it also shows that only when the energy level difference between the used donor and acceptor and the energy level of the lead sulfide quantum dots are small, the lead sulfide quantum dots/P-type
  • the photosensitive layer of organic semiconductor materials blended with N-type materials will have a more obvious effect on the improvement of the specific detection rate.
  • Example 2 has a higher specific detectivity in the infrared band of 700-1700nm, which is due to the fact that Example 2 has a lower dark current density and a higher external quantum efficiency.
  • it also shows that when the energy levels of the lead sulfide quantum dots and the donor acceptors used meet certain conditions, the corresponding photodetector will show a better specific detectivity in the short-wave infrared band.
  • comparative example 2 and embodiment 2 all present the regular square wave signal, and the response speed of embodiment 2 is better than comparative example 2, embodiment 2 and pair
  • the rise time of scale 2 (the time required for the response signal to rise from 10% of the amplitude to 90% of the amplitude) is 7 ⁇ s and 9 ⁇ s, respectively.
  • the surface defects of dot films improve the morphology of the interface and reduce the probability of photogenerated charges being captured by defects; on the other hand, compared with the photosensitive layer of lead sulfide quantum dots/P-type organic semiconductors, lead sulfide quantum dots/P-type
  • the photosensitive layer of organic semiconductor film blended with N-type material and N-type material can significantly improve the response speed of the photodetector, because the organic semiconductor film blended with the acceptor can increase the built-in electric field of the device and balance the internal
  • the transmission rate of holes and electrons reduces the occurrence of charge recombination.
  • the external quantum efficiency and specific detectivity of Comparative Example 1-2 and Example 1-3 are taken from the values corresponding to the wavelength of 1520nm, and the external quantum efficiency and specific detectivity of Comparative Example 3 are the corresponding values at the wavelength of 800nm.
  • the above test results prove that: (1) Compared with the two photosensitive layers of pure lead sulfide quantum dots and lead sulfide quantum dots/P-type organic semiconductor film, the performance of lead sulfide quantum dots/P-type material and N-type material blended organic semiconductor film
  • the photosensitive layer structure can significantly reduce the dark current of the photodetector, and improve the signal-to-noise ratio and specific detectivity of the photodetector.
  • the reduction of dark current is because the introduction of the acceptor is conducive to increasing the built-in electric field of the device and increasing the width of the depletion layer; (2) in particular, the greater the difference between the energy level of the acceptor and the energy level of the lead sulfide quantum dot Even if the used donor and acceptor materials have almost no absorption of short-wave infrared incident light, the photosensitive layer of the lead sulfide quantum dot/P-type material and N-type material blended organic semiconductor thin film can still significantly improve the photodetector in the The external quantum efficiency in the short-wave infrared region, which benefits from the small energy level difference, promotes the transmission of photogenerated electrons or holes to the corresponding electrodes through the photosensitive layer, and also reduces the non-radiative recombination loss, increases the open circuit voltage of the device, and then increases Exciton generation and charge transport efficiency inside the device; (3) It is worth mentioning that when the energy gap of lead sulfide quantum dots is ⁇ 1.24eV, and the
  • the organic-inorganic hybrid short-wave infrared photodetector can work at zero bias or a lower reverse bias (such as -0.1V), and can achieve a ratio comparable to that of short-wave infrared gain-type detectors.
  • the detection rate is beneficial to reduce the energy consumption of the device; in addition, compared with the millisecond-level response time of the gain-type photodetector, the organic-inorganic hybrid photodetector has a response speed of sub-microsecond level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种有机无机杂化的短波红外光电探测器,其光敏层包括能隙≤1.24 eV的硫化铅量子点薄膜和给受体共混的有机半导体结构。相比纯硫化铅量子点的光电探测器,该有机无机杂化的光敏层提高了光电探测器在短波红外区的外量子效率,降低了暗电流密度,提高了响应速度,致使其比探测率得到了数量级的提升。值得一提的是,该光电探测器能够在零偏压或较低的反向偏压下呈现出优异的综合性能。本发明还涉及其组成的阵列以及相关的制备方法。

Description

一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法 技术领域
本发明属于光电探测器领域,具体涉及一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及该光电探测器的制备方法。
背景技术
短波红外光电探测器由于其在夜视、激光雷达、医疗诊断以及图像传感等领域的广泛应用而备受学术界和工业界的关注。目前,商业的高性能短波红外光电探测器是基于III-V族化合物半导体的。但是这种无机光电探测器却具有一些缺点,一方面,其需要通过外延晶体生长技术来制备;另一方面,在制备图像传感器时,传统的III-V族化合物半导体光电探测器需要通过倒装芯片键和技术或引线键合技术集成至硅基读出电路上。这就导致了像素大小和像素数量受到限制,并且复杂的制造流程也阻碍了其在对成本、分辨率和/或形状因数至关重要的市场中的应用。
相比之下,硫化铅量子点具有可溶液加工、吸收光谱可调、低成本以及易于集成至读出电路的优势。由于硫化铅量子点的长链配体阻碍了电荷的传输,在制备时就需要将长链配体替换成短链配体。常用的配体交换方法有两种:溶液相配体交换法和固态配体交换法。对于短波红外吸收的硫化铅量子点,一方面,溶液相配体交换法很难制备超过5nm粒径的硫化铅量子点;另一方面,在硫化铅量子点光电探测器中常用的空穴传输层PbS-EDT,其薄膜的制备需要经过逐层的固态配体交换和长时间的空气氧化,在此过程中,容易产生大量的表面缺陷,形成复合中心,降低器件的外量子效率并增大在暗态下的噪声。这些原因导致了硫化铅量子点光电探测器的性能仍低于商业的InGaAs光电探测器。
为了解决这个问题,Oliver Hayden等人将长链配体的硫化铅量子点与有机给受体材料进行共混制备了三组分本体异质结结构的光电探测器,该器件在可见至近红外区展现了较低的暗电流密度和较高的比探测率(DOI:10.1038/NPHOTON.2009.72)。此外,天津大学的研究人员提出了一种基于硫化铅量子点/P3HT的光电晶体管结构,该器件具有较高的光电增益,呈现出较高的外量子效率,但是其低响应速度限制了其应用范围。中科院化学所Jizheng Wang等人制备了一种硫化铅量子点/有机双层异质结的光电导型光电探测器,该器件是基于光照后电阻率的变化进行光电探测,由于其存在光电倍增,具有较高的光谱响应度,但需要40V的反向偏压才能具有较优的性能,且其响应速度仅为0.4s。相比之下,二极管结构的光电探测器具有更快的响应速度,但目前这些光电探测器在短波红外区的零偏压下外量子效率均低于 20%,并且其暗电流密度与商业的InGaAs光电探测器仍有一定差距。
因此,有必要提出一种新的器件结构,以解决目前硫化铅量子点光电探测器性能受限的问题。
发明内容
本发明的目的是公开一种有机无机杂化的短波红外光电探测器及其阵列,与传统的硫化铅量子点光电探测器相比,该有机无机杂化的短波红外光电探测器在短波红外区域具有更高的外量子效率,以及更低的暗电流密度,可以极大地提升光电探测器的探测灵敏度。本发明还涉及该有机无机杂化的短波红外光电探测器的制备方法。
本发明中的术语“光敏层”,是指在在器件结构中,负责吸收光子并产生自由电子和空穴的薄膜层。
本发明中的术语“能隙”,是指半导体材料的光学能隙,其数值由1240除以半导体材料吸收边的截止波长所得。
本发明中的术语“阴极界面层”,是指在器件结构中,靠近阴极附近,且具备传输电子和阻挡空穴的一种N型材料层。
本发明中的术语“阳极界面层”,是指在器件结构中,靠近阳极附近,且具备传输空穴和阻挡电子的一种P型材料层。
本发明中的术语“光谱响应区”,是指光电探测器及其阵列的有效工作光学波段。定义为外量子效率大于10%的对应波长区间。
本发明中的术语“图案化处理”,是指通过掩模版或光刻等手段使某种材料的薄膜层形成某种形状图案的一种加工流程。
本发明中的术语“溶液相配体交换”,是指在硫化铅量子点合成过程中,通过在溶液中进行配体交换得到短链配体的硫化铅量子点的工艺流程。
本发明中的术语“固态配体交换”,是指将长链配体的硫化铅量子点通过溶液加工制备薄膜、随后在短链配体溶液中浸泡以及溶剂清洗,才得到短链配体的硫化铅量子点薄膜的工艺流程。
本发明的一个目的,在于提供一种有机无机杂化的短波红外光电探测器。
一种有机无机杂化的短波红外光电探测器,其包括光敏层,
其中,
所述光敏层为多层结构,
所述多层结构中,至少包括掺杂有配体的硫化铅量子点层和有机半导体层叠加而成的结构,所述配体选自含有特定单元3的物质;
其中,所述特定单元3选自氟离子、氯离子、溴离子、碘离子、硫离子、硫氰酸根离子、氢氧根离子、铵根离子、巯基、氨基、羧基和羟基中的一种或多种;
所述有机半导体层由至少一种给体和一种受体共混而成;
所述硫化铅量子点的能隙≤1.24eV。
进一步地,所述光敏层中,硫化铅量子点的导带底的能级与受体的最低未占分子轨道的能级,二者之差的绝对值≤0.3eV,硫化铅量子点的价带顶的能级与给体的最高已占分子轨道的能级,二者之差的绝对值≤0.3eV。
进一步地,所述光敏层中,给体材料选自基于特定单元1的P型有机半导体,受体材料选自基于特定单元2的N型有机半导体;其中,所述特定单元1含有下列结构的一种或多种:
Figure PCTCN2022124106-appb-000001
所述特定单元2含有下列结构的一种或多种:
Figure PCTCN2022124106-appb-000002
其中,所述R 1-R 6,独立地选自碳原子数为1-40的烷基,或者碳原子数为1-40的烷基衍生物;
所述烷基衍生物上的一个或多个碳原子,被氢原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、硝基的一种或多种所取代;
和/或,
所述烷基衍生物上的一个或多个氢原子,被氟原子、氯原子、溴原子、碘原子的一种或多种取代;
所述X 1-X 6,独立地选自氢原子、氟原子、氯原子、氰基、硝基的一种或多种。
优选地,所述有机半导体层中的给体材料为聚合物给体JD40和P3HT中的一种,所述有机半导体层中的受体材料为富勒烯类受体PC 71BM和非富勒烯类受体IEICO-4F、Y6中的一种。上述单元的具体结构如下所示。
Figure PCTCN2022124106-appb-000003
进一步地,所述硫化铅量子点层的厚度为10-500nm。
进一步地,所述含有特定单元3的物质选自3-巯基丙酸、1,4-苯二硫醇、氯化铬、碘化铅、溴化铅、甲胺铅氯碘盐、硫化钠、硫氰酸铵、1-乙基-3-甲基碘化咪唑鎓的一种或多种。
进一步地,所述硫化铅量子点的粒径为3-20nm。
进一步地,所述有机半导体层的厚度为5-1000nm。
进一步地,所述有机无机杂化的短波红外光电探测器选自倒装结构或正装结构;
其中,
所述倒装结构,从下至上依次包括基底、作为阴极的底电极、阴极界面层、硫化铅量子点层、有机半导体层、阳极界面层,作为阳极的顶电极和封装层;
所述正装结构,从下至上依次包括基底、作为阳极的底电极、阳极界面层、硫化铅量子点层、有机半导体层、阴极界面层,作为阴极的顶电极和封装层。
进一步地,所述阴极界面层材料的能隙和阳极界面层中材料的能隙,均大于所述光敏层中硫化铅量子点的能隙、给体的能隙和受体的能隙。
进一步地,所述阴极界面层和所述阳极界面层的厚度,均小于所述光敏层的厚度。
进一步地,所述阴极界面层的材料选自有机化合物1、无机化合物1,或其组合;
其中,所述有机化合物1选自富勒烯及其衍生物、萘二酰亚胺及其衍生物、苝二酰亚胺及其衍生物、4,7-二苯基-1,10-菲啰啉、聚乙烯亚胺、聚乙氧基乙烯亚胺、2,9-二甲基-4,7-联苯 -1,10-邻二氮杂菲、[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴]、溴代-[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴]、8-羟基喹啉锂、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、双(2-甲基-8-喹啉)-4-(苯基苯酚)铝、1,3,5-三[(3-吡啶基)-苯-3-基]苯,或以上材料的混合物或复合物;
所述无机化合物1选自氧化锌、氧化锡、氧化镁、铝掺杂氧化锌、镁掺杂氧化锌、镓掺杂氧化锌、氧化钛、氧化钽、硫化锌、硫化铬,或以上材料的混合物或复合物。
进一步地,所述阳极界面层的材料选自有机化合物2、无机化合物2,或其组合;
其中,所述有机化合物2选自4,4'-环己基二[N,N'-二(4-甲基苯基)苯胺]、N,N'-双(萘-1-基)-N,N'-双(苯基)-联苯胺、N,N'-双(萘-1-基)-N,N'-双(苯基)-2,7-二氨基9,9-螺二芴、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、4,4',4"-三(咔唑-9-基)三苯胺、聚(4-丁基三苯胺)、聚乙烯咔唑、聚苯乙烯-N,N'-二苯基-N,N'-双-(3-甲基苯基)-(1,1)-联苯-4,4'-二胺全氟环丁烷、聚3,4-乙撑二氧噻吩混合聚苯乙烯磺酸盐中的一种或多种;
所述无机化合物2选自氧化钨、氧化钼、氧化钒、氧化铬、氧化镍、氧化铜、氧化亚铜、硫氰酸亚铜、硫化铜、碘化铜,或以上材料的混合物或复合物。
进一步地,所述阴极和/或所述阳极在光谱响应区内具有大于20%的透过率。
本发明的另一个目的,在于提供一种有机无机杂化的短波红外光电探测器阵列,其光敏像元,包括上述的有机无机杂化的短波红外光电探测器。
进一步地,所述光电探测器阵列包括基底,所述基底包括由硅基互补金属氧化物半导体晶体管或薄膜晶体管组成的像元读出电路。
进一步地,所述光电探测器阵列包括光敏层以及底电极,所述底电极为阴极或者阳极,所述底电极与基底相邻;
其中,所述有机无机杂化的短波红外光电探测器阵列的光敏像元的尺寸,与所述底电极的尺寸一致;
所述底电极经图案化处理;
所述光敏层未经图案化处理。
进一步地,所述有机无机杂化的短波红外光电探测器阵列的光敏像元尺寸小于50μm。
本发明的另一个目的,在于提供上述有机无机杂化的短波红外光电探测器或上述有机无机杂化的短波红外光电探测器阵列的制备方法,包括以下步骤:
(1)基底清洗及读出电路制备;
(2)底电极成膜及光刻图型化;
(3)阴极界面层成膜或阳极界面层的制备;
(4)光敏层的制备;
(5)阳极界面层成膜或阴极界面层的制备;
(6)顶电极的制备;
(7)封装层的制备。
其中,底电极与顶电极须取相反电极,若底电极为阳极,则顶电极为阴极,反之亦然。
进一步地,所述光敏层的制备包括如下步骤:
硫化铅量子点薄膜的制备,所述硫化铅量子点薄膜的制备采用溶液相配体交换后一步成膜法,或固态配体交换后逐步成膜法。
进一步地,所述光敏层的制备包括如下步骤:
有机半导体薄膜的制备,所述有机半导体薄膜的制备采用溶液成膜法,或真空热蒸镀沉积法。
进一步地,所述阴极界面层的制备和阳极界面层的制备,均独立地选自溶液成膜、溶胶-凝胶成膜、真空热蒸镀、原子层沉积、化学气相沉积、电沉积、阳极氧化法中的一种或多种。
进一步地,所述阴极的制备和阳极的制备,均独立地选自真空热蒸镀、电子束蒸镀、分子束蒸镀或等离子体溅射、原子层沉积或液体成膜后还原转化、电镀或电沉积法中的一种或多种。
进一步地,所述封装层的制备,选自真空热蒸镀、化学气相沉积、原子层沉积、等离子体溅射、液体成膜法的一种。
本发明具有以下有益效果:
(1)本发明中公开的有机无机杂化的短波红外光电探测器,其光敏层包括短波红外吸收的硫化铅量子点薄膜和给受体共混的有机半导体薄膜。与传统的纯硫化铅量子点光敏层相比,一方面,有机半导体薄膜不需要复杂的逐层溶液加工,仅通过一步溶液加工便可直接制备薄膜,这简化了制备工艺,同时也避免了在制备过程中引入表面缺陷,有利于形成良好的界面形貌和改善电荷的传输;另一方面,P型材料和N型材料共混的有机半导体薄膜的引入,既有利于增大器件的内建电场,增大耗尽层宽度,又能调节光敏层中空穴和电子传输速率的平衡。因此该有机无机杂化的光电探测器的暗电流、外量子效率、比探测率和响应速度均得到了显著地改善,最终可得到与商业InGaAs光电探测器相当的综合性能。
(2)特别地,在给受体的能级和硫化铅量子点的能级差越小时,即使所使用的给受体材料对短波红外的入射光几乎没有吸收,该硫化铅量子点/P型材料和N型材料共混有机半导体薄膜的光敏层仍能够显著地提升光电探测器在短波红外区域的外量子效率,这得益于硫化铅量子点的导带底与受体的最低未占分子轨道之间较小的能级差,以及硫化铅量子点的价带顶 与给体的最高已占分子轨道之间较小的能级差,从而促进了光生电子和空穴经光敏层向相应电极的传输,还减少了非辐射复合损失,提高器件的开路电压,增大了器件内部的电荷产生和传输效率。
(3)值得一提的是,该有机无机杂化的短波红外光电探测器能够在零偏压或较低的反向偏压下工作(如-0.1V),便可实现与短波红外的增益型探测器相当的比探测率,相比增益型光电探测器10-50V的工作电压,这一方面有利于减少器件工作的能耗;另一方面,相比增益型光电探测器的低响应速度,该有机无机杂化的光电探测器具有亚微秒级别的响应速度,这表明该有机无机杂化的短波红外光电探测器有望应用于高速响应的光电探测领域。
(4)本发明中的有机无机杂化的短波红外光电探测器,可以构成光电探测器阵列,其可以直接通过溶液加工的方式集成在TFT或CMOS的背板上,并且无须通过光刻等方式图案化光敏层,便可以制备成图像传感器阵列。这种光电探测器阵列的像元可以简单地由作为底电极的阳极/阴极的尺寸和形状来定义,即与作为底电极的阳极/阴极的尺寸保持一致,省略了刻蚀作为底电极的阳极/阴极与作为顶电极的阳极/阴极间的其他层。并且该结构与由无机半导体晶元制备的图像探测器有着本质上的不同。传统的前向入射和背入射的CMOS及电荷藕合器件(CCD)图像传感器阵列都需要对光敏层内各像元间作图案化处理以减少像元间信号串扰。这些光刻图形化涉及深度沟槽蚀刻和复杂的后处理工艺,限制了像素间距、工艺产量和器件成本。而将薄膜光电探测器用作图像传感器像元,由于像元厚度的减小,使像元间的串扰大为减弱。因此,这种光电探测器阵列简化了图像传感器的结构和制备流程,增强了响应度并且降低了制备成本,减小了相邻像素间的信号串扰,提升了器件对弱光的探测灵敏度,同时改善了图像传感器阵列的信噪比。
附图说明
图1示出了本发明实施例1中的有机无机杂化的短波红外光电探测器的器件结构示意图。
附图标记:1-基底;2-底电极;3-阴极界面层或阳极界面层;4-光敏层;5-阳极界面层或阴极界面层;6-顶电极;7-封装层。
图2示出了本发明实施例1中的有机无机杂化的短波红外光电探测器中光敏层的能级示意图。
图3示出了实施例4-5中的有机无机杂化的短波红外光电探测器图像阵列的横截面图。
附图说明:301-像元读出电路;302-底电极(可以为阴极或阳极)阵列;303-阴极界面层或阳极界面层;304-光敏层;305-阳极界面层或阴极界面层;306-顶电极(对应地为阳极或阴极)层;307-封装层。
图4(a)示出了测试例1中,对比例1-3的暗电流测试图;图4(b)示出了测试例1中,实施例1-3的暗电流测试图。
图5(a)示出了测试例2中,对比例1-3在-0.1V工作下的外量子效率测试图;图5(b)示出了测试例2中,实施例1-3在-0.1V工作下的外量子效率测试图。
图6(a)示出了测试例3中,对比例1-3在-0.1V工作下的比探测率测试图;图6(b)示出了测试例3中,实施例1-3在-0.1V工作下的比探测率测试图。
图7(a)-(c)分别示出了在1550nm脉冲光源下,对比例1、对比例2和实施例2在-0.1V工作下的响应曲线图。
具体实施方式
为了更清楚地说明本发明的技术方案,列举如下实施例。实施例中所出现的原料、反应和后处理手段,除非特别声明,均为市面上常见原料,以及本领域技术人员所熟知的技术手段。
本发明实施例中,基底可以由各种绝缘材料或高阻半导体材料制成,其既可具有平坦表面,也可具有特定形状的曲面。对于用于图像传感器的有机无机杂化的短波红外光电探测器阵列,基底为集成有像元的读出电路。对于高光敏像元密度的光电探测器阵列,集成有像元读出电路的基底通常是在单晶硅衬底上通过CMOS工艺制成。而对于中低光敏像元密度的光电探测器阵列,基底可以是在玻璃、陶瓷或塑料衬底上集成了薄膜晶体管的读出电路。对于超大尺度和高光敏像元密度的图像阵列,基底上的像元读出电路也可由CMOS和TFT的混合电路制成。
作为底电极为阳极/阴极、作为顶电极对应地为阴极/阳极,均可以在多种材料中选择。其中:
对于底入射结构的有机无机杂化的短波红外光电探测器及其阵列,作为底电极的阴极/阳极,在所需波长范围内是透明或部分透明的,且电极的光学透过率要高于20%。作为底电极的阴极/阳极可以为透明金属氧化物(如氧化铟锡、氧化锌和铝掺杂氧化锌等),或氮化物(如氮化钛)及相应金属的氮氧化合物。此外,作为顶电极的阳极/阴极可以是较厚的金属材料,可以但不限于为,铝、银、钛、钽、钼、铜、铬、金和镍等。
对于顶入射结构的有机无机杂化的短波红外光电探测器及其阵列,作为底电极的阴极/阳极可以利用反射所需波长范围的入射光以优化在特定波段的光敏度,通过选择合适的金属材料可以同时获得所需的电导率和光学反射率。此外,作为顶电极的阳极/阴极在所需波长范围是透明的或部分透明的,且电极的光学透过率要高于20%。除了薄金属及透明金属氧化物外,这里透明的或部分透明的作为顶电极的阳极/阴极可以用纳米金属颗粒或纳米金属丝网实现。
对于双向入射结构的光电探测器及其阵列,作为底电极的阴极/阳极和作为顶电极的阳极/阴极层均需要对探测波长具有高透过率(高于20%)。值得特别指出的是,这种薄膜光电探测器及其阵列可以在各种类型、各种材料和各种共焦面形状的衬底上制备,并且能够用于双 向光探测或全向三维立体探测。
在作为顶电极的阳极/阴极上方是一个封装层,以保证光电探测器或光电探测器阵列在各种使用环境下及在目标寿命期间稳定工作。若光电探测器或光电探测器阵列为底入射方式,此封装层无须光学透明。若光电探测器或光电探测器阵列为顶部入射,此封装层应在工作波段透明,光学透过率应在50%之上。
此封装层可用各种真空镀膜方法成膜,如热蒸镀,分子束镀膜或等离子体溅射,原子层沉积。也可采用液体成膜法制备,如滴涂、浸涂、旋涂和各种印刷方式。除选用一种材料,封装层也可用多层膜交替方式。除了可以改善封装性能,这种交替膜结构还可用来优化薄膜光电二极管在工作波段的光学谐振腔结构,进而优化其光灵敏度和比探测率。
常用的无机封装材料包括氧化硅、氮化硅、氮氧化硅、氧化铝、氧化锆、氧化镁、氧化锆和氟化镁,常用的有机封装材料包括聚甲基丙烯酸甲酯、聚氧化乙烯、聚苯乙烯、聚乙烯吡咯烷酮、聚碳酸脂、聚丙烯酸、环氧树脂、聚对二甲苯、聚硅氧氮烷。
本发明实施例中所有给体材料和受体材料的能隙,均采用紫外-可见吸收光谱的方法进行测试。具体方法为:将给体材料或受体材料溶于氯仿或氯苯溶剂中,将溶解好的溶液通过旋涂方式加工至石英片上,将所得薄膜用于吸收光谱的测试,光学能隙则通过1240除以材料的吸收边截止波长得到。
本发明实施例中硫化铅量子点、给体和受体材料的价带顶的能级或最高已占分子轨道的能级,采用大气光电子能谱仪进行测试;对应材料的导带底的能级或最低未占分子轨道的能级,则通过对应材料的光学能隙加上其最高已占分子轨道能级得到。
本发明实施例中作为底电极的阳极/阴极,以及作为顶电极的阳极/阴极,在器件光响应区内的光透过率,利用光谱仪进行测试。具体方法为先在石英片上通过真空热蒸镀制备和器件电极相同厚度的金属薄膜,并测量电极的透过光谱。
实施例1
本实施例中的有机无机杂化的短波红外光电探测器的器件结构如图1所示,从下至上依次是玻璃基底(2mm)、作为底电极的阴极(150nm)、阴极界面层(30nm)、光敏层(260nm)、阳极界面层(10nm),作为顶电极的阳极(100nm)和封装层。
其中,阴极采用氧化铟锡(ITO);阴极界面层采用氧化锌;阳极界面层为氧化钼;光敏层为双层结构,包括硫化铅量子点层(200nm)和聚合物给体JD40与非富勒烯受体Y6组成的有机半导体层(60nm);阳极为金属银;封装层为环氧树脂。
硫化铅量子点的能隙,经计算为0.83eV,其导带底能级为-4.37eV,其价带顶能级为-5.20eV;
聚合物给体JD40的能隙,经计算为1.96eV,其最低未占分子轨道能级为-3.32eV,其最 高已占分子轨道能级为-5.28eV;
非富勒烯受体Y6的能隙,经计算为1.33eV,其最低未占分子轨道能级为-4.10eV,其最高已占分子轨道能级为-5.43eV;
该有机无机杂化的短波红外光电探测器的阴极在光敏层内的透过率,经测量大于90%;
上述有机无机杂化的短波红外光电探测器的制备方法,包括如下步骤:
S1.将ITO导电基底,依次用异丙醇、洗涤剂、去离子水、丙酮进行超声处理和清洁,每次处理时间为20min。随后将清洗干净的ITO导电基底,放入60℃的烘箱中干燥5h;然后将该ITO导电基底进行等离子体表面处理(真空度:2mPa;持续时间:20s);
S2.将0.4g乙酸锌溶于4ml的2-甲氧基乙醇和110μl的乙醇胺的混合溶剂中,然后在50℃下加热搅拌10h,得到溶胶凝胶的氧化锌前驱体溶液。将其以3300rpm的转速旋涂,旋涂时间为30s,并在150℃的热台上退火30min,得到30nm厚的氧化锌薄膜。
S3.将油酸配体包裹的硫化铅量子点溶液旋涂至上述氧化锌薄膜上,随后使用四丁基碘化铵的甲醇溶液作为短链配体进行固态配体交换,最后使用甲醇溶剂清洗两次得到钝化好的硫化铅量子点薄膜,上述步骤重复四次得到指定厚度的硫化铅量子点层。
S4.将聚合物给体JD40与非富勒烯受体Y6以1:1的质量比进行共混,并加入至氯仿溶剂中,随后将溶解好的溶液旋涂至上述硫化铅量子点层上,制备得到指定厚度的有机半导体层,最后置于80℃加热台退火处理5min。
S5.将上述结构转移至热蒸镀设备,在5×10 -7torr的真空条件下,将指定厚度的氧化钼薄膜以
Figure PCTCN2022124106-appb-000004
的速率热蒸镀沉积在上述有机半导体层薄膜上。
S6.在5×10 -7torr的真空条件下,在氧化钼薄膜上热蒸镀沉积指定厚度的银薄膜作为阳极,从而得到有机无机杂化的短波红外光电探测器。
图1示出了本发明实施例1中的有机无机杂化的短波红外光电探测器的器件结构示意图。图2示出了实施例1中的有机无机杂化的短波红外光电探测器中光敏层的能级示意图,从图中可以得出以下结论:
硫化铅量子点和受体材料的最低未占分子轨道(或导带底)的能级差小于0.3eV,硫化铅量子点和给体材料的最高已占分子轨道(或价带顶)的能级差也小于0.3eV,这样小的能级差有利于光生电子或空穴经光敏层向相应电极的传输,还有利于减少非辐射复合损失,提高器件的开路电压和内建电场,进而增大器件内部的电荷产生和传输效率。
实施例2
本实施例中的器件结构、所用材料,以及器件制备方法与实施例1均相同。唯一不同点在于,实施例2中的有机半导体层,由聚合物给体JD40和非富勒烯受体IEICO-4F共混而成。
非富勒烯受体IEICO-4F的能隙,经计算为1.24eV,其最低未占分子轨道能级为-4.20eV,其最高已占分子轨道能级为-5.44eV。
其他所用相同材料的各个参数,同实施例1。
实施例3
本实施例中的器件结构、所用材料,以及器件制备方法与实施例1均相同。唯一不同点在于,实施例3中的有机半导体层,由聚合物给体P3HT和富勒烯受体PC 71BM共混而成,且溶剂氯仿以氯苯替代。
聚合物给体P3HT的能隙,经计算为2.0eV,其最低未占分子轨道能级为-3.00eV,其最高已占分子轨道能级为-5.00eV;
富勒烯受体PC 71BM的能隙,经计算为2.13eV,其最低未占分子轨道能级为-4.08eV,其最高已占分子轨道能级为-6.21eV。
其他所用相同材料的各个参数,同实施例1。
实施例4
本实施例提供了基于上述实施例2中的有机无机杂化的短波红外光电探测器所组成的光电探测器阵列。该光电探测器阵列的器件结构如图3所示。从图中可以看出,光电探测器阵列从下至上,依次包括一个制作在单晶硅衬底上的、由硅基互补金属氧化物半导体晶体管(MOSFET)组成的像元读出电路301,每像元读出电路链接到定义像元大小的底电极(此处为阴极)阵列302。阴极阵列之上的为阴极界面层303、光敏层304、阳极界面层305、顶电极(此处为阳极)306及封装层307。从303至307都是在整个阵列区域连续的结构,不需要做像元间的图案化处理。
其中,底电极阵列为铝、钛或钛铝合金电极,厚度为100nm,阴极界面层为氧化锌薄膜(30nm),光敏层包括硫化铅量子点层和有机半导体层,其中硫化铅量子点层为经过四次固态配体交换后的薄膜层(200nm),有机半导体层的材料组成参照实施例2中的有机半导体层(60nm),阳极界面层为氧化钼薄膜(10nm),顶电极阵列为银电极(10nm)和氧化钼薄膜(50nm)的堆叠结构,封装层为环氧树脂。
该有机无机杂化的短波红外光电探测器阵列的阳极在300-1700nm范围内的透过率,经测量大于50%。
该阵列的像元尺寸为25μm,像素数量为1×256或1×512,并对其进行了成像测试。结果表明图3所示的只由下电极定义像元的有机无机杂化的短波红外光电探测器阵列可以用于高像元密度的数字相机应用。
上述有机无机杂化的短波红外光电探测器的制备方法,包括如下步骤:
S1.将硅基互补金属氧化物半导体晶体管组成的像元读出电路转移至蒸镀手套箱,在5×10 -7torr的真空条件下,通过热蒸镀沉积指定厚度的铝金属电极阵列;
S2-S5.氧化锌薄膜、硫化铅量子点薄膜、P型材料和N型材料共混有机半导体共混薄膜以及氧化钼薄膜的制备方法,与实施例2相同。
S6.在5×10 -7torr的真空条件下,在氧化钼薄膜上热蒸镀沉积指定厚度的银薄膜,蒸镀完银电极后等待5~10min,再蒸镀一层指定厚度的氧化钼薄膜作为光学调节层,该堆叠结构的阳极可以增大电极在红外区的透过率。
实施例5
本实施例中的器件结构、所用材料,以及器件制备方法与实施例4均相同。唯一不同点在于,将实施例4中的像元读出电路301,替换为在玻璃衬底上的由薄膜晶体管(TFT)组成的像元读出电路。
对比例1
本对比例中的器件结构、所用材料,以及器件制备方法与实施例1均相同。唯一不同点在于,将实施例1中的有机半导体层,替换为用1,2-乙二硫醇进行配体交换的硫化铅量子点层,对应地,将实施例1中制备方法S4替换为以下加工条件:
S4.将油酸配体包裹的硫化铅量子点溶液旋涂至上述硫化铅量子点层上,随后使用1,2-乙二硫醇(EDT)的乙腈溶液作为短链配体进行固态配体交换,最后使用乙腈溶剂清洗两次得到钝化好的PbS-EDT薄膜,随后置于80℃加热台退火处理5min。
对比例2
本对比例中的器件结构、所用材料,以及器件制备方法与实施例1均相同。唯一不同点在于,将实施例1中有机半导体层的材料,替换为单组分的聚合物给体JD40。
对比例3
本对比例中的器件结构、所用材料,以及器件制备方法与实施例1均相同。唯一不同点在于,对比例3中的光敏层包括能隙为1.77eV的硫化铅量子点薄膜以及由聚合物给体JD40和非富勒烯受体IEICO-4F共混而成的有机半导体薄膜。
该对比例中的硫化铅量子点的能隙,经计算为1.77eV,其导带底能级为-3.87eV,其价带顶能级为-5.64eV;
为了测试上述实施例和对比例的光敏层结构,在光电探测器中的技术效果,进行如下测试。
测试例
测试例1
暗电流测试:采用文献(DOI:10.1063/5.0018274)中的方法进行。所得结果如图4所示。从图4(a)和图4(b)可以清楚地看出,与对比例1-3相比,实施例1-3均呈现出降低的暗电流密度。并且与对比例1相比,实施例1-3都呈现出约2-3个数量级的降低。一方面,这表明相比纯硫化铅量子点的光敏层,硫化铅量子点/P型材料和N型材料共混有机半导体薄膜的光敏层可以有效地降低光电探测器的暗电流;另一方面,相比硫化铅量子点/P型有机半导体薄膜的光敏层,硫化铅量子点/P型材料和N型材料共混有机半导体薄膜的光敏层可以更为显著地降低光电探测器的暗电流,这是由于受体的引入有利于增大器件的内建电场,增大耗尽层宽度,从而使得暗电流降低。此外,将对比例3和实施例2比较,可以发现:当所使用的硫化铅量子点与给受体材料具有更低的能级差时,对应的光电探测器在暗态下具有更低的暗电流密度。
测试例2
外量子效率测试:采用文献(DOI:10.1063/5.0018274)中的方法进行。所得结果如图5所示。结合图5(a)和图5(b),可以清楚地看出,相比于对比例1-3,实施例1-2均呈现出更高的外量子效率,且实施例1-2在1520nm的外量子效率均超过了20%;尽管相比对比例1,实施例3呈现出更高的外量子效率,然而实施例3的外量子效率却低于对比例2和实施例1-2的外量子效率。这一方面说明,相比纯硫化铅量子点和硫化铅量子点/P型有机半导体的两种光敏层,硫化铅量子点/P型材料和N型材料共混有机半导体薄膜的光敏层更能显著地增强光电探测器的外量子效率。但是另一方面,P型材料和N型材料共混有机半导体薄膜需要满足一定的能级差条件才能够显著地增强硫化铅量子点在1520nm处的光电响应能力;与实施例3相比,实施例1-2的给受体能级与硫化铅量子点的能级差更小,这有利于光生电子或空穴经光敏层向相应电极的传输,还有利于减少非辐射复合损失,提高器件的开路电压,进而增大器件内部的电荷产生和传输效率。因此尽管该给体和受体对1520nm的入射光没有吸收,但是仍能较为显著地增强光电探测器在整个短波红外区的外量子效率。
另外,还可以发现:相对于对比例3,实施例2在700-1700nm的红外波段具有更高的外量子效率,这是由于一方面,实施例2使用的硫化铅量子点的能级与给受体的能级差更小,有利于减少非辐射复合损失,促进激子的产生和电荷的传输;另一方面,实施例2使用的硫化铅量子点的能隙为0.83eV,对应的光敏层在红外波段本身就具有很强的吸收。
测试例3
比探测率测试:采用文献(DOI:10.1063/5.0018274)中的方法进行。所得结果如图6所示。结合图6(a)和图6(b),可以清楚地看出,相比于对比例1-2,实施例1-2均呈现出更高的比探测率,且实施例1-2在1520nm处的峰值比探测率均超过了10 12Jones,这些数值与商业的InGaAs光电探测器具有相当的水平;尽管相比对比例1,实施例3呈现出更高的比 探测率,然而实施例3的比探测率却低于对比例2和实施例1-2的比探测率。这说明一方面,相比纯硫化铅量子点和硫化铅量子点/P型有机半导体的两种光敏层结构,硫化铅量子点/P型材料和N型材料共混有机半导体薄膜的光敏层更能显著地提升光电探测器的比探测率;另一方面,这也表明,只有当所使用的给体和受体的能级与硫化铅量子点的能级差较小时,硫化铅量子点/P型材料和N型材料共混有机半导体的光敏层才会对比探测率的提高具有更明显的效果。
此外,我们还发现:与对比例3相比,实施例2在700-1700nm的红外波段具有更高的比探测率,这得益于实施例2具备更低的暗电流密度和更高的外量子效率。同时也说明,当所使用的硫化铅量子点与给受体的能级均满足一定条件时,对应的光电探测器在短波红外波段会呈现出更优异的比探测率。
测试例4
响应时间测试:采用文献(DOI:10.1063/5.0018274)中的方法进行,所使用的光源为1550nm的LED,其输出的光信号为频率20kHz的方波脉冲光。所得结果如图7所示。从图7(a)的响应波形可以看出,对比例1的纯硫化铅量子点光电探测器已经跟不上光源的响应,输出电信号失去了方波的形状,出现了响应尖峰。从图7(b)和图7(c)可以看出,对比例2和实施例2都呈现出规律的方波信号,并且实施例2的响应速度优于对比例2,实施例2和对比例2的上升时间(响应信号从幅值的10%上升至幅值的90%所需要的时间)分别为7μs和9μs。这说明一方面,相比纯硫化铅量子点的光敏层,硫化铅量子点/有机半导体薄膜的光敏层能够显著提升光电探测器的响应速度,这是由于有机半导体薄膜的引入减少了硫化铅量子点薄膜的表面缺陷,改善了界面处的形貌,减少了光生电荷被缺陷俘获的概率;另一方面,相比硫化铅量子点/P型有机半导体的光敏层,硫化铅量子点/P型材料和N型材料共混有机半导体薄膜的光敏层更能显著地提升光电探测器的响应速度,这是因为给受体共混的有机半导体薄膜,可以增大器件的内建电场,平衡器件内部的空穴以及电子的传输速率,减少电荷复合的发生。
综上所述,对比例1-3和实施例1-3的短波红外光电探测器的关键参数如下表1所示:
表1实施例1-3和对比例1-3的短波红外光电探测器的关键参数
Figure PCTCN2022124106-appb-000005
Figure PCTCN2022124106-appb-000006
注:对比例1-2及实施例1-3的外量子效率和比探测率均取自1520nm波长对应的数值,对比例3的外量子效率和比探测率为800nm波长处对应的数值。
以上测试结果证明:(1)相比纯硫化铅量子点和硫化铅量子点/P型有机半导体薄膜的两种光敏层,硫化铅量子点/P型材料和N型材料共混有机半导体薄膜的光敏层结构更能显著降低光电探测器的暗电流,提升光电探测器的信噪比和比探测率。暗电流的降低,是因为受体的引入有利于增大器件的内建电场,增大耗尽层宽度;(2)特别地,在给受体的能级和硫化铅量子点的能级差越小时,即使所使用的给受体材料对短波红外的入射光几乎没有吸收,该硫化铅量子点/P型材料和N型材料共混有机半导体薄膜的光敏层仍能够显著地提升光电探测器在短波红外区域的外量子效率,这得益于较小的能级差促进了光生电子或空穴经光敏层向相应电极的传输,还减少了非辐射复合损失,提高器件的开路电压,进而增大器件内部的激子产生和电荷传输效率;(3)值得一提的是,当硫化铅量子点的能隙≤1.24eV,并同时满足给受体的能级与硫化铅量子点的能级差≤0.3eV时,对应的光敏层能够最为显著地降低光电探测器的暗电流密度、提升光电探测器在短波红外区的外量子效率和比探测率。(4)该有机无机杂化的短波红外光电探测器能够在零偏压或较低的反向偏压下工作(如-0.1V),便可实现与短波红外的增益型探测器相当的比探测率,这有利于减少器件工作的能耗;此外,相比增益型光电探测器的毫秒级别的响应时间,该有机无机杂化的光电探测器具有亚微秒级别的响应速度。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解 的其他实施方式。

Claims (23)

  1. 一种有机无机杂化的短波红外光电探测器,其特征在于,所述有机无机杂化的短波红外光电探测器包括光敏层,
    其中,
    所述光敏层为多层结构,
    所述多层结构中,至少包括配体配位的硫化铅量子点层和有机半导体层叠加而成的结构,所述配体选自含有特定单元3的物质;
    其中,所述特定单元3选自氟离子、氯离子、溴离子、碘离子、硫离子、硫氰酸根离子、氢氧根离子、铵根离子、巯基、氨基、羧基和羟基中的一种或多种;
    所述有机半导体层由至少一种给体和一种受体共混而成;
    所述硫化铅量子点的能隙≤1.24eV。
  2. 根据权利要求1所述的有机无机杂化的短波红外光电探测器,其特征在于,所述光敏层中,硫化铅量子点的导带底的能级与受体的最低未占分子轨道的能级,二者之差的绝对值≤0.3eV,硫化铅量子点的价带顶的能级与给体的最高已占分子轨道的能级,二者之差的绝对值≤0.3eV。
  3. 根据权利要求1所述的有机无机杂化的短波红外光电探测器,其特征在于,所述光敏层中,给体材料选自基于特定单元1的P型有机半导体,受体材料选自基于特定单元2的N型有机半导体;其中,所述特定单元1含有下列结构的一种或多种:
    Figure PCTCN2022124106-appb-100001
    所述特定单元2含有下列结构的一种或多种:
    Figure PCTCN2022124106-appb-100002
    其中,所述R 1-R 6,独立地选自碳原子数为1-40的烷基,或者碳原子数为1-40的烷基衍生物;
    所述烷基衍生物上的一个或多个碳原子,被氢原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、硝基的一种或多种所取代;
    和/或,
    所述烷基衍生物上的一个或多个氢原子,被氟原子、氯原子、溴原子、碘原子的一种或多种取代;
    所述X 1-X 6,独立地选自氢原子、氟原子、氯原子、氰基、硝基的一种或多种。
  4. 根据权利要求1所述的有机无机杂化的短波红外光电探测器,其特征在于,所述硫化铅量子点层的厚度为10-500nm。
  5. 根据权利要求1所述的有机无机杂化的短波红外光电探测器,其特征在于,所述含有特定单元3的物质选自3-巯基丙酸、1,4-苯二硫醇、氯化铬、碘化铅、溴化铅、甲胺铅氯碘盐、硫化钠、硫氰酸铵、1-乙基-3-甲基碘化咪唑鎓的一种或多种。
  6. 根据权利要求1所述的有机无机杂化的短波红外光电探测器,其特征在于,所述硫化铅量子点的粒径为3-20nm。
  7. 根据权利要求1所述的有机无机杂化的短波红外光电探测器,其特征在于,所述有机半导体层的厚度为5-1000nm。
  8. 根据权利要求1所述的有机无机杂化的短波红外光电探测器,其特征在于,所述有机无机杂化的短波红外光电探测器选自倒装结构或正装结构;
    其中,
    所述倒装结构,从下至上依次包括基底、作为阴极的底电极、阴极界面层、硫化铅量子点层、有机半导体层、阳极界面层,作为阳极的顶电极和封装层;
    所述正装结构,从下至上依次包括基底、作为阳极的底电极、阳极界面层、硫化铅量子点层、有机半导体层、阴极界面层,作为阴极的顶电极和封装层。
  9. 根据权利要求8所述的有机无机杂化的短波红外光电探测器,其特征在于,所述阴极界面层材料的能隙和阳极界面层材料的能隙,均大于所述光敏层中硫化铅量子点的能隙、给体的能隙和受体的能隙。
  10. 根据权利要求9所述的有机无机杂化的短波红外光电探测器,其特征在于,所述阴极界面层和所述阳极界面层的厚度,均小于所述光敏层的厚度。
  11. 根据权利要求8所述的有机无机杂化的短波红外光电探测器,其特征在于,所述阴极界面层的材料选自有机化合物1、无机化合物1,或其组合;
    其中,所述有机化合物1选自富勒烯及其衍生物、萘二酰亚胺及其衍生物、苝二酰亚胺及其衍生物、4,7-二苯基-1,10-菲啰啉、聚乙烯亚胺、聚乙氧基乙烯亚胺、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴]、溴代-[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴]、8-羟基喹啉锂、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、双(2-甲基-8-喹啉)-4-(苯基苯酚)铝、1,3,5-三[(3-吡啶基)-苯-3-基]苯,或以上材料的混合物或复合物;
    所述无机化合物1选自氧化锌、氧化锡、氧化镁、铝掺杂氧化锌、镁掺杂氧化锌、镓掺杂氧化锌、氧化钛、氧化钽、硫化锌、硫化铬,或以上材料的混合物或复合物。
  12. 根据权利要求8所述的有机无机杂化的短波红外光电探测器,其特征在于,所述阳极界面层的材料选自有机化合物2、无机化合物2,或其组合;
    其中,所述有机化合物2选自4,4'-环己基二[N,N'-二(4-甲基苯基)苯胺]、N,N'-双(萘-1-基)-N,N'-双(苯基)-联苯胺、N,N'-双(萘-1-基)-N,N'-双(苯基)-2,7-二氨基9,9-螺二芴、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、4,4',4"-三(咔唑-9-基)三苯胺、聚(4-丁基三苯胺)、聚乙烯咔唑、聚苯乙烯-N,N'-二苯基-N,N'-双-(3-甲基苯基)-(1,1)-联苯-4,4'-二胺全氟环丁烷、聚3,4-乙撑二氧噻吩混合聚苯乙烯磺酸 盐中的一种或多种;
    所述无机化合物2选自氧化钨、氧化钼、氧化钒、氧化铬、氧化镍、氧化铜、氧化亚铜、硫氰酸亚铜、硫化铜、碘化铜,或以上材料的混合物或复合物。
  13. 根据权利要求8所述的有机无机杂化的短波红外光电探测器,其特征在于,所述阴极和/或所述阳极在光谱响应区内具有大于20%的透过率。
  14. 一种有机无机杂化的短波红外光电探测器阵列,其特征在于,所述光电探测器阵列的光敏像元,包括根据权利要求1-13任一项所述的有机无机杂化的短波红外光电探测器。
  15. 根据权利要求14所述的有机无机杂化的短波红外光电探测器阵列,其特征在于,所述光电探测器阵列包括基底,所述基底包括由硅基互补金属氧化物半导体晶体管或薄膜晶体管组成的像元读出电路。
  16. 根据权利要求15所述有机无机杂化的短波红外光电探测器阵列,其特征在于,所述光电探测器阵列包括光敏层以及底电极,所述底电极为阴极或者阳极,所述底电极与基底相邻;
    其中,所述有机无机杂化的短波红外光电探测器阵列的光敏像元的尺寸,与所述底电极的尺寸一致;
    所述底电极经图案化处理;
    所述光敏层未经图案化处理。
  17. 根据权利要求16所述有机无机杂化的短波红外光电探测器阵列,其特征在于,所述有机无机杂化的短波红外光电探测器阵列的光敏像元尺寸小于50μm。
  18. 一种如权利要求1-13任一项所述有机无机杂化的短波红外光电探测器或者如权利要求14所述的光电探测器阵列的制备方法,其特征在于,包括以下步骤:
    (1)基底清洗及读出电路制备;
    (2)底电极成膜及光刻图型化;
    (3)阴极界面层成膜或阳极界面层的制备;
    (4)光敏层的制备;
    (5)阳极界面层成膜或阴极界面层的制备;
    (6)顶电极的制备;
    (7)封装层的制备。
  19. 根据权利要求18所述有机无机杂化的短波红外光电探测器或光电探测器阵列的制备方法,其特征在于,所述光敏层的制备包括如下步骤:
    硫化铅量子点薄膜的制备,所述硫化铅量子点薄膜的制备采用溶液相配体交换后一 步成膜法,或固态配体交换后逐步成膜法。
  20. 根据权利要求18所述的有机无机杂化的短波红外光电探测器或光电探测器阵列的制备方法,其特征在于,所述光敏层的制备包括如下步骤:
    有机半导体薄膜的制备,所述有机半导体薄膜的制备采用溶液成膜法,或真空热蒸镀沉积法。
  21. 根据权利要求18所述的有机无机杂化的短波红外光电探测器或光电探测器阵列的制备方法,其特征在于,所述阴极界面层的制备和阳极界面层的制备,均独立地选自溶液成膜、溶胶-凝胶成膜、真空热蒸镀、原子层沉积、化学气相沉积、电沉积、阳极氧化法中的一种或多种。
  22. 根据权利要求18所述的有机无机杂化的短波红外光电探测器或光电探测器阵列的制备方法,其特征在于,所述阴极的制备和阳极的制备,均独立地选自真空热蒸镀、电子束蒸镀、分子束蒸镀或等离子体溅射、原子层沉积或液体成膜后还原转化、电镀或电沉积法中的一种或多种。
  23. 根据权利要求18所述的有机无机杂化的短波红外光电探测器或光电探测器阵列的制备方法,其特征在于,所述封装层的制备,选自真空热蒸镀、化学气相沉积、原子层沉积、等离子体溅射、液体成膜法的一种。
PCT/CN2022/124106 2021-12-21 2022-10-09 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法 WO2023116124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111570736.9 2021-12-21
CN202111570736.9A CN114284436A (zh) 2021-12-21 2021-12-21 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法

Publications (1)

Publication Number Publication Date
WO2023116124A1 true WO2023116124A1 (zh) 2023-06-29

Family

ID=80873524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124106 WO2023116124A1 (zh) 2021-12-21 2022-10-09 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法

Country Status (2)

Country Link
CN (1) CN114284436A (zh)
WO (1) WO2023116124A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293208A (zh) * 2023-09-07 2023-12-26 中国科学院重庆绿色智能技术研究院 基于硫化铅/硅复合结构的光电探测器及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284436A (zh) * 2021-12-21 2022-04-05 广州光达创新科技有限公司 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法
CN114891027A (zh) * 2022-05-27 2022-08-12 广州光达创新科技有限公司 一种红外响应的n型有机分子及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118921A (zh) * 2015-09-14 2015-12-02 中国科学院长春应用化学研究所 一种高外量子效率和宽光谱响应的有机光电探测器及其制备方法
CN107591484A (zh) * 2017-09-01 2018-01-16 北京交通大学 一种兼具窄带及宽带光探测能力的倍增型有机光电探测器
CN114284436A (zh) * 2021-12-21 2022-04-05 广州光达创新科技有限公司 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183070A1 (en) * 2003-03-21 2004-09-23 International Business Machines Corporation Solution processed pentacene-acceptor heterojunctions in diodes, photodiodes, and photovoltaic cells and method of making same
DE102007043648A1 (de) * 2007-09-13 2009-03-19 Siemens Ag Organischer Photodetektor zur Detektion infraroter Strahlung, Verfahren zur Herstellung dazu und Verwendung
JP2011023594A (ja) * 2009-07-16 2011-02-03 Idemitsu Kosan Co Ltd 光電変換素子
EP2483926B1 (en) * 2009-09-29 2019-02-06 Research Triangle Institute Quantum dot-fullerene junction optoelectronic devices
JP5688646B2 (ja) * 2013-11-26 2015-03-25 国立大学法人鳥取大学 有機−無機ハイブリッド接合型光電変換素子
KR20150119507A (ko) * 2014-04-10 2015-10-26 국립대학법인 울산과학기술대학교 산학협력단 고효율 하이브리드 양자점 유기 태양전지
EP3140247A4 (en) * 2014-05-09 2018-01-17 Massachusetts Institute of Technology Energy level modification of nanocrystals through ligand exchange
CN107275484A (zh) * 2016-04-07 2017-10-20 中国科学院苏州纳米技术与纳米仿生研究所 一种近红外探测器及其制备方法
CN105977336A (zh) * 2016-05-30 2016-09-28 北京理工大学 一种量子点红外探测与显示器件及其制备方法
CN106531886B (zh) * 2016-09-29 2019-02-01 南京邮电大学 一种基于量子点有机场效应晶体管光敏存储器及其制备方法
US11522094B2 (en) * 2018-10-24 2022-12-06 The Florida State University Research Foundation, Inc. Photovoltaic devices and methods
CN110534650B (zh) * 2019-05-28 2021-08-10 华南理工大学 一种自滤光窄光谱响应有机光探测器
CN111682110B (zh) * 2020-05-13 2022-04-22 华南理工大学 一种含非富勒烯受体的近红外光谱响应聚合物光探测器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118921A (zh) * 2015-09-14 2015-12-02 中国科学院长春应用化学研究所 一种高外量子效率和宽光谱响应的有机光电探测器及其制备方法
CN107591484A (zh) * 2017-09-01 2018-01-16 北京交通大学 一种兼具窄带及宽带光探测能力的倍增型有机光电探测器
CN114284436A (zh) * 2021-12-21 2022-04-05 广州光达创新科技有限公司 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293208A (zh) * 2023-09-07 2023-12-26 中国科学院重庆绿色智能技术研究院 基于硫化铅/硅复合结构的光电探测器及其制备方法
CN117293208B (zh) * 2023-09-07 2024-05-10 中国科学院重庆绿色智能技术研究院 基于硫化铅/硅复合结构的光电探测器及其制备方法

Also Published As

Publication number Publication date
CN114284436A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
Xu et al. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives
WO2023116124A1 (zh) 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法
Tian et al. Hybrid organic–inorganic perovskite photodetectors
CN109952652B (zh) 成像元件、堆叠式成像元件、成像装置和电子装置
US8466452B2 (en) Color unit and imaging device having the same
JP2022519403A (ja) MXene改質ハイブリッド光変換器
JP5313680B2 (ja) 増感超薄層を用いた有機光電池
KR101387254B1 (ko) 서브프탈로시아닌 화합물을 사용한 유기 감광성 소자
JP6965967B2 (ja) 撮像素子、積層型撮像素子及び撮像装置
WO2016203724A1 (en) Solid state imaging element and method for manufacturing solid state imaging element, photoelectric conversion element, imaging device, and electronic device
Ghosh et al. Recent advances in perovskite/2D materials based hybrid photodetectors
KR20180060166A (ko) 광전자 소자 및 전자 장치
CN109904320B (zh) 一种基于钙钛矿-有机半导体异质结的高性能光电晶体管及其制备方法
TW202114936A (zh) 光檢測元件及影像感測器
Chaudhary et al. Impact of electron transport layer material on the performance of CH3NH3PbBr3 perovskite-based photodetectors
US10403837B2 (en) Organic photoelectric device and image sensor
Bhatt et al. Low cost and solution processible sandwiched CH3NH3PbI3-xClx based photodetector
CN113823744A (zh) 一种高灵敏度的有机光电二极管及其所构成的阵列,以及该有机光电二极管的制备方法
Li et al. High-performance UV-Vis-NIR photomultiplier detectors assisted by interfacial trapped-electrons
JP2021093534A (ja) 撮像素子、積層型撮像素子、撮像装置及び電子装置
Li et al. Flexible Optoelectronic Devices Based on Hybrid Perovskites
Wang et al. Correlation of ETL in perovskite light-emitting diodes and the ultra-long rise time in time-resolved electroluminescence
JP7501714B2 (ja) 撮像素子、積層型撮像素子、撮像装置及び電子装置
CN111509076B (zh) 一种具有低暗电流的自驱动型光电探测器及其制备方法
JP7470752B2 (ja) 特定の波長を有する光を自己フィルタリングするフォトダイオードの構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909442

Country of ref document: EP

Kind code of ref document: A1