WO2023115854A1 - 一种CsPbBr3钙钛矿太阳能电池的制备方法 - Google Patents

一种CsPbBr3钙钛矿太阳能电池的制备方法 Download PDF

Info

Publication number
WO2023115854A1
WO2023115854A1 PCT/CN2022/099757 CN2022099757W WO2023115854A1 WO 2023115854 A1 WO2023115854 A1 WO 2023115854A1 CN 2022099757 W CN2022099757 W CN 2022099757W WO 2023115854 A1 WO2023115854 A1 WO 2023115854A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
layer
cspbbr3
transport layer
fto
Prior art date
Application number
PCT/CN2022/099757
Other languages
English (en)
French (fr)
Inventor
李卫东
肖平
赵志国
赵东明
王力军
徐越
秦校军
刘家梁
李梦洁
熊继光
刘入维
申建汛
梁思超
王森
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023115854A1 publication Critical patent/WO2023115854A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the application belongs to the technical field of perovskite solar cells, and in particular relates to a preparation method of cesium lead bromide CsPbBr3 perovskite solar cells.
  • perovskite solar cells are one of the solar cells that have attracted much attention.
  • perovskite solar cells are mainly composed of FTO conductive glass, electron transport layer, perovskite material absorption layer, hole transport layer and metal electrodes.
  • the working principle of this photoelectric effect solar cell is: when receiving sunlight, the perovskite layer first absorbs photons to generate electron-hole pairs, and then the unrecombined electrons and holes are transported by the electron transport layer and the hole transport layer respectively. The collection, and finally, the photocurrent is generated by a circuit connecting the FTO and the metal electrodes.
  • CsPbBr 3 perovskite cesium-lead-bromide perovskite material
  • the material of the electron transport layer is C60, SnO 2 , TiO 2 , etc.
  • the material of the hole transport layer is mainly PTAA, Spiro
  • the metal electrode includes Cu, Al, Au, Ag, etc.
  • the preparation of the perovskite layer is mainly carried out by spraying or spin coating the perovskite precursor solution.
  • the present application provides a method for preparing cesium-lead-bromide perovskite solar cells.
  • the present invention saves energy consumption during the preparation process, and has good battery stability and high preparation efficiency, which is beneficial to industrial production.
  • the application provides a method for preparing a cesium-lead-bromide perovskite solar cell, comprising the following steps:
  • a hole transport layer and a metal electrode are sequentially prepared on the CsPbBr3 film layer to obtain a CsPbBr3 perovskite solar cell.
  • the thickness of the hole transport layer is 20-100 nm; the composition of the hole transport layer is PTAA or Sprio.
  • the thickness of the mixed solution of CsBr and PbBr 2 sprayed is 200 nm-1 ⁇ m.
  • the metal electrode is selected from one or more of Cu, Al, Au and Ag.
  • the present application additionally provides a method for preparing a cesium-lead-bromide perovskite solar cell, comprising the following steps:
  • An electron transport layer and a metal electrode are sequentially prepared on the CsPbBr3 film layer to obtain a CsPbBr3 perovskite solar cell.
  • the thickness of the electron transport layer is 20-100 nm; the composition of the electron transport layer is C60, SnO 2 or TiO 2 .
  • the thickness of the mixed solution of CsBr and PbBr 2 sprayed is 200 nm-1 ⁇ m.
  • the metal electrode is selected from one or more of Cu, Al, Au and Ag.
  • the present invention provides a method for preparing CsPbBr 3 perovskite solar cells.
  • the FTO substrate is prepared by using the existing high-temperature in-situ preparation of FTO
  • the residual heat in the in-situ preparation of FTO is utilized by spraying tin source or nickel source.
  • tin source or nickel source make it into a tin oxide layer/nickel oxide layer, and become a heat source; use the heat source for preparing tin oxide/nickel oxide in situ, prepare CsPbBr 3 (250° C.) by spraying on the tin oxide layer/nickel oxide layer, That is, in the process of preparing the CsPbBr 3 thin film, no separate heating link is required to obtain a perovskite solar cell.
  • the present invention does not need to provide an additional external heat source during the preparation process, thereby saving energy consumption.
  • the CsPbBr3 thin film is formed in one step, which further improves the preparation efficiency.
  • the CsPbBr3 perovskite layer formed by the spraying method can improve battery stability, and the photoelectric conversion efficiency of the perovskite solar cell prepared by the present invention can reach 8%.
  • the application provides a method for preparing a cesium-lead-bromide perovskite solar cell, comprising the following steps:
  • Spray CsBr and PbBr 2 mixed solution on described tin oxide layer or nickel oxide layer utilize the heat source of preparation tin oxide layer or nickel oxide layer to form CsPbBr 3 film layer;
  • a hole transport layer/electron transport layer and a metal electrode are sequentially prepared to obtain a CsPbBr 3 perovskite solar cell.
  • the method for preparing the CsPbBr 3 perovskite solar battery of the invention has low energy consumption, simple and convenient operation, high efficiency and good battery stability.
  • the FTO substrate is first prepared by the existing high-temperature in-situ method; usually, the FTO is prepared by spraying or gas phase method, and the preparation temperature is about 670°C-700°C.
  • the FTO substrate is SnO 2 transparent conductive glass doped with fluorine (SnO 2 :F), referred to as FTO for short.
  • the methods used to prepare FTO thin films mainly include vapor deposition (CVD), sputtering, thermal evaporation, and sol-gel methods; the current production methods of FTO coated glass are mainly: chemical vapor deposition (APCVD) and magnetron sputtering (PVD).
  • APCVD chemical vapor deposition
  • PVD magnetron sputtering
  • On-line chemical vapor deposition is an online high-temperature deposition of SnO 2 :F in the process of float production, and is currently the main production method for photovoltaic FTO coatings.
  • a multi-channel coating device is inserted into the narrow section of the tin bath of the float glass production line, with monobutyltin trichloride (C 4 H 9 SnCl 3 , MBTC) as the precursor, trifluoroacetic acid (CF 3 COOH, TFA) as the dopant, with air and water as the oxidant and catalyst of the reaction for coating; preferably using MBTC with a molar fraction of 1.6%, TFA of 0.88%, water and nitrogen of 4.8% as the carrier gas, and enter the evaporator Then gasify at 175°C; after gasification, enter the gas mixing chamber to mix and spray on the surface of the glass at a temperature of 675°C through a film coater, the mixed gas reacts at the gas-solid phase interface, and deposits to form a dense FTO solid film.
  • monobutyltin trichloride C 4 H 9 SnCl 3 , MBTC
  • TFA trifluoroacetic acid
  • air and water
  • the embodiment of the present invention immediately sprays the tin source to form a tin oxide layer in situ, and further utilizes the heat source for in-situ preparation of the tin oxide layer to prepare a CsPbBr 3 film by spraying.
  • the nickel source is sprayed on the FTO substrate immediately, and the residual heat after the in-situ preparation of the FTO is used to convert it into a nickel oxide layer and become a heat source, and the heat source is sprayed on the nickel oxide layer to form a CsPbBr3 film.
  • the CsPbBr 3 thin film is prepared by spraying using waste heat (at least 250° C.), and the spraying slurry used is a mixed solution of cesium bromide (CsBr) and lead bromide (PbBr 2 ).
  • the concentrations of CsBr and PbBr 2 solutions are respectively between 0.5-1.5 mol/L, and the spraying thickness can be 200nm-1 ⁇ m to form a CsPbBr 3 material layer.
  • CsBr and PbBr 2 are respectively dissolved in isopropanol and DMF, with concentrations of 0.05 mol/L and 1 mol/L respectively, and the thickness of the spray coating can be regarded as the thickness after the formation of the perovskite layer.
  • the present invention no separate heating link is provided in the process of spraying and preparing CsPbBr 3 thin films, etc., which reduces energy consumption.
  • the CsPbBr 3 thin film in the present invention is formed by spraying in one step, and it is easy to control the performance of the film layer, thereby improving the performance of the battery and improving the preparation efficiency.
  • methods such as spin coating methods are difficult to control well, and are not suitable for the preparation system of this application.
  • the nickel oxide hole transport layer is prepared by using waste heat, then on the formed perovskite material layer, the electron transport layer and metal electrode.
  • the preparation methods of the electron transport layer and the metal electrode are existing conventional methods, such as spray coating method, spin coating method and the like.
  • the thickness of the electron transport layer can be 20nm-100nm, preferably 30-90nm, more preferably 40-80nm; the main components of the electron transport layer are C60, tin dioxide (SnO 2 ), titanium dioxide (TiO 2 ).
  • the metal electrodes include but are not limited to copper (Cu), aluminum (Al), gold (Au), and silver (Ag) electrodes; there is no special limitation in this application.
  • an electron transport layer is prepared on the perovskite light absorbing layer by a thermal evaporation method, and the material is C60.
  • the evaporation rate can be 0.1A-0.5A/s, preferably 0.3A/s; the thickness is about 40-50nm.
  • a metal counter electrode layer is vapor-deposited on the electron transport layer, and the material is high-purity copper (>99.99%).
  • the evaporation rate can be 0.1A-1.5A/s, preferably 0.3A/s; the thickness of the copper film is 100nm.
  • N-type SnO 2 is prepared in situ, that is, the SnO 2 electron transport layer is prepared using waste heat, then on the formed perovskite material layer, the hole transport layer and metal electrodes.
  • the preparation methods of the hole transport layer and the metal electrode are existing conventional methods; wherein, the thickness of the hole transport layer may be 20-100 nm, preferably 30-90 nm, more preferably 40-80 nm.
  • the material of the hole transport layer is PTAA, Spiro, and PTAA is poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], and the number average molecular weight can be 20,000-40,000 ;
  • Spiro is Spiro-OMeTAD, N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobifluorene-2,2′ ,7,7′-Tetraamine, 2,2′,7,7′-Tetrakis(N,N-p-methoxyanilino)-9,9′-spirobifluorene.
  • the metal electrode may be one or more of Cu, Al, Au, Ag.
  • the present invention does not need to provide an additional external heat source in the process of preparing the CsPbBr 3 perovskite layer (removing the substrate preparation), the energy consumption is low, and the energy recovery cycle of the entire component is shortened. Moreover, the CsPbBr3 thin film is formed in one step, which is easy to prepare and further improves the preparation efficiency.
  • the CsPbBr 3 perovskite layer formed by the spraying method can improve battery stability, and the perovskite solar cell prepared by the present invention has good photoelectric conversion efficiency, which is beneficial for application.
  • a kind of preparation method of CsPbBr 3 perovskite solar cell, concrete steps are as follows:
  • Insert a multi-channel coating device in the narrow section of the tin tank of the float glass production line use monobutyl tin trichloride with a purity of 95% (mass fraction, the same below) as a precursor, and trifluoroacetic acid with a purity of 99% as a dopant , using air and water as the reaction oxidant and catalyst for coating; using MBTC with a mole fraction of 1.6%, 0.88% TFA, 4.8% water and N2 as the carrier gas, and vaporized at 175°C after entering the evaporator; After melting, enter the gas mixing chamber to mix and spray on the surface of the glass at a temperature of 675°C through a film coater, and deposit to form a dense FTO solid film.
  • the isopropanol solution of nickel nitrate with a purity of 99% (Ni(NO 3 ) 2 ⁇ 6H 2 O) is used as the precursor solution, and the coating is carried out in a multi-oxygen environment: N 2 with a purity of 99.9% and 99% O2 is used as the carrier gas at a flow ratio of 10:1.
  • N 2 with a purity of 99.9% and 99% O2 is used as the carrier gas at a flow ratio of 10:1.
  • N 2 with a purity of 99.9% and 99% O2
  • the mixed gas reacts at the gas-solid phase interface and deposits to form a dense nickel oxide solid film.
  • CsPbBr 3 250°C
  • spray CsBr and PbBr 2 solutions wherein the spray thickness is 200nm, CsBr and PbBr 2 are dissolved in isopropanol and DMF respectively, and the concentrations are 0.05mol/L and 1mol/L respectively, forming CsPbBr 3 material layer.
  • the in-situ preparation is P-type NiO x , and on the formed perovskite material layer, an electron transport layer and a metal electrode are further prepared, as follows:
  • the electron transport layer was prepared by thermal evaporation on the perovskite light absorbing layer, and the material was C60.
  • the evaporation speed is 0.3A/s; the thickness is about 40-50nm.
  • a metal counter electrode layer is vapor-deposited on the electron transport layer, and the material is high-purity copper.
  • the evaporation rate is 0.3A/s; the copper film thickness is 100nm.
  • the photoelectric conversion efficiency of the perovskite solar cell prepared by the invention reaches 8%.
  • a kind of preparation method of CsPbBr 3 perovskite solar cell, concrete steps are as follows:
  • Insert a multi-channel coating device in the narrow section of the tin tank of the float glass production line use monobutyl tin trichloride with a purity of 95% (mass fraction, the same below) as a precursor, and trifluoroacetic acid with a purity of 99% as a dopant , using air and water as the reaction oxidant and catalyst for coating; using MBTC with a mole fraction of 1.6%, 0.88% TFA, 4.8% water and N2 as the carrier gas, and vaporized at 175°C after entering the evaporator; After melting, enter the gas mixing chamber to mix and spray on the surface of the glass at a temperature of 675°C through a film coater, and deposit to form a dense FTO solid film.
  • the aqueous solution of tin oxide with a purity of 99% is used as the precursor solution, and the coating is carried out in a multi-oxygen environment: N2 with a purity of 99.9% and O2 with a purity of 99% are used as the carrier gas at a flow ratio of 10:1, and enter the evaporator After gasification at 175°C, after gasification, it enters the gas mixing chamber for mixing, and sprays it on the surface of FTO glass with a temperature of 300°C (FTO glass with waste heat obtained in the above preparation process) through a film coater, and the mixed gas is in the gas- The solid-phase interface reacts and deposits to form a dense solid-state film of tin oxide.
  • N2 with a purity of 99.9% and O2 with a purity of 99% are used as the carrier gas at a flow ratio of 10:1, and enter the evaporator After gasification at 175°C, after gasification, it enters the gas mixing chamber for mixing, and sprays it on the surface of F
  • N-type SnO 2 is prepared in situ.
  • a hole transport layer and a metal electrode are further prepared, as follows: a hole transport layer is prepared on the perovskite light-absorbing layer by spin coating,
  • the material is PTAA.
  • the PTAA solvent is chlorobenzene, the concentration is 0.5mol/L, and the thickness is about 20-30nm.
  • a metal counter electrode layer is vapor-deposited on the electron transport layer, and the material is high-purity copper.
  • the evaporation rate is 0.3A/s; the copper film thickness is 100nm.
  • the photoelectric conversion efficiency of the perovskite solar cell prepared by the invention is 6%.
  • the present invention does not need to provide an additional external heat source during the preparation process, which saves energy consumption.
  • the CsPbBr3 thin film is formed in one step, which further improves the preparation efficiency.
  • the CsPbBr3 perovskite layer formed by the spraying method of the invention can improve battery stability, and the photoelectric conversion efficiency of the perovskite solar cell prepared by the invention can reach 8%.
  • the battery prepared by the invention has good stability, high preparation efficiency and is beneficial to industrialized production.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种铯铅溴钙钛矿太阳能电池的制备方法,包括以下步骤:高温原位制备FTO基底;在所述基底上喷涂锡源或镍源,利用原位制备FTO过程中残余的热量,使其转化为氧化锡层/氧化镍层并成为热源;在所述氧化锡层上喷涂CsBr及PbBr2混合溶液,利用上述热源形成CsPbBr3膜层;在所述CsPbBr3膜层上依次制备空穴传输层/电子传输层和金属电极,得到CsPbBr3钙钛矿太阳能电池。除了基底,本发明无需在制备过程中再额外提供外部热源,节约能耗。并且,CsPbBr3薄膜一步成形,进一步提高制备效率。在本发明中,喷涂法形成的CsPbBr3钙钛矿层可以提高电池稳定性,利于应用。

Description

一种CsPbBr3钙钛矿太阳能电池的制备方法
本申请要求于2021年12月23日提交中国专利局、申请号为202111595119.4、发明名称为“一种CsPbBr3钙钛矿太阳能电池的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于钙钛矿太阳能电池技术领域,具体涉及一种铯铅溴CsPbBr3钙钛矿太阳能电池的制备方法。
背景技术
目前,钙钛矿太阳能电池是备受关注的太阳能电池之一。通常情况下,钙钛矿太阳能电池主要由FTO导电玻璃、电子传输层、钙钛矿材料吸收层、空穴传输层和金属电极组成。这种光电效应太阳能电池的工作原理是:在接受太阳光照射时,钙钛矿层首先吸收光子产生电子-空穴对,然后,未复合的电子和空穴分别被电子传输层和空穴传输层收集,最后,通过连接FTO和金属电极的电路而产生光电流。
其中,以铯铅溴钙钛矿材料(CsPbBr 3钙钛矿)为吸收层的太阳能电池,由于开路电压等性能相对较好,已成为近来的一个研究热点。常规的CsPbBr 3钙钛矿太阳能电池中,电子传输层的材料为C60、SnO 2、TiO 2等,空穴传输层的材料主要为PTAA、Spiro,金属电极包括Cu、Al、Au、Ag等,钙钛矿层的制备主要通过喷涂或旋涂钙钛矿前驱液的方式进行。
但是,已有制备传输层以及CsPbBr 3钙钛矿层的过程中,大多需要单独进行高温加热,能耗高,造成能源的浪费,使整个组件的能源回收周期更长。同时,CsPbBr 3层常需两步至多步制备,制备方法繁琐,不利于工业化的大规模生产。
发明内容
有鉴于此,本申请提供一种铯铅溴钙钛矿太阳能电池的制备方法,本发明在制备过程中节约能耗,并且电池稳定性良好,制备效率高,利于工业化生产。
本申请提供一种铯铅溴钙钛矿太阳能电池的制备方法,包括以下步骤:
高温原位制备FTO基底;
在所述基底上喷涂锡源,利用原位制备FTO过程中残余的热量,使其转化为氧化锡层并成为热源;
在所述氧化锡层上喷涂CsBr及PbBr 2混合溶液,利用制备氧化锡层的热源形成CsPbBr 3膜层;
在所述CsPbBr 3膜层上依次制备空穴传输层和金属电极,得到CsPbBr 3钙钛矿太阳能电池。
在本申请的优选实施例中,所述空穴传输层的厚度为20-100nm;所述空穴传输层的成分为PTAA或Sprio。
在本申请的优选实施例中,所述喷涂CsBr及PbBr 2混合溶液的厚度为200nm-1μm。
在本申请的优选实施例中,所述金属电极选自Cu、Al、Au和Ag中的一种或多种。
本申请另外提供一种铯铅溴钙钛矿太阳能电池的制备方法,包括以下步骤:
高温原位制备FTO基底;
在所述基底上喷涂镍源,利用原位制备FTO过程中残余的热量,使其转化为氧化镍层并成为热源;
在所述氧化镍层上喷涂CsBr及PbBr 2混合溶液,利用制备氧化镍层的热源形成CsPbBr 3膜层;
在所述CsPbBr 3膜层上依次制备电子传输层和金属电极,得到CsPbBr 3钙钛矿太阳能电池。
在本申请的优选实施例中,所述电子传输层的厚度为20-100nm;所述电子传输层的成分为C60、SnO 2或TiO 2
在本申请的优选实施例中,所述喷涂CsBr及PbBr 2混合溶液的厚度为200nm-1μm。
在本申请的优选实施例中,所述金属电极选自Cu、Al、Au和Ag中的一种或多种。
本发明提供一种CsPbBr 3钙钛矿太阳能电池的制备方法,其采用已有高温原位制备FTO的方式制备FTO基底后,通过喷涂锡源或镍源,利用原位制备FTO过程中残余的热量使其转化为氧化锡层/氧化镍层,并成为热源;利用原位制备氧化锡/氧化镍的热源,在所述氧化锡层/氧化镍层上通过喷涂法制备CsPbBr 3(250℃),即在制备CsPbBr 3薄膜的过程中不再单独设置加热环节,进而得到钙钛矿太阳能电池。除了基底,本发明无需在制备过程中再额外提供外部热源,节约能耗。并且,CsPbBr 3薄膜一步成形,进一步提高制备效率。在本发明中,喷涂法形成的CsPbBr 3钙钛矿层可以提高电池稳定性,通过本发明制备的钙钛矿太阳能电池的光电转换效率可达到8%。
具体实施方式
下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供了一种铯铅溴钙钛矿太阳能电池的制备方法,包括以下步骤:
高温原位制备FTO基底;
在所述基底上喷涂锡源或镍源,利用原位制备FTO过程中残余的热量,使其转化为氧化锡层或氧化镍层,并成为热源;
在所述氧化锡层或氧化镍层上喷涂CsBr及PbBr 2混合溶液,利用制备氧化锡层或氧化镍层的热源形成CsPbBr 3膜层;
在所述CsPbBr 3膜层上,依次制备空穴传输层/电子传输层以及金属电极,得到CsPbBr 3钙钛矿太阳能电池。
本发明制备CsPbBr 3钙钛矿太阳能电池的方法能耗低,操作简便、效率高,并且电池稳定性良好。
本发明实施例首先采用已有的高温原位方式制备FTO基底;通常情况下,通过喷涂或气相法制备FTO,制备温度约在670℃-700℃。所述的FTO基底为掺杂氟的SnO 2透明导电玻璃(SnO 2:F),简称为FTO。用于制备FTO薄膜的方法主要包括气相沉积法(CVD)、溅射、热蒸发法、溶胶凝胶法;目前FTO镀 膜玻璃生产方式主要为:化学气相沉积法(APCVD)和磁控溅射法(PVD)。在线化学气相沉积法是在浮法生产过程中进行的在线高温沉积SnO 2:F,是目前光伏FTO镀膜的主要生产方式。
具体地,本发明实施例在浮法玻璃生产线锡槽窄段插入多通道镀膜器,以单丁基三氯化锡(C 4H 9SnCl 3,MBTC)为前驱物,三氟乙酸(CF 3COOH,TFA)为掺杂剂,以空气、水作为反应的氧化剂和催化剂进行镀膜;优选采用摩尔分数为1.6%的MBTC、0.88%的TFA、4.8%的水和氮气为载气,进入蒸发器后在175℃气化;气化后进入混气室混合并通过镀膜器喷涂在温度为675℃玻璃的表面,混合气体在气–固相界面发生反应,沉积形成致密的FTO固态薄膜。
原位制备FTO后残余一定热量,本发明实施例随即喷涂锡源原位形成氧化锡层,进一步利用原位制备氧化锡层的热源,通过喷涂法制备CsPbBr 3薄膜。或者,本发明实施例在FTO基底上随即喷涂镍源,利用原位制备FTO后残余的热量使其转化为氧化镍层并成为热源,在氧化镍层上利用所述热源喷涂形成CsPbBr 3薄膜。
在本发明的实施例中,利用余热(至少250℃)通过喷涂法制备CsPbBr 3薄膜,采用的喷涂浆料是溴化铯(CsBr)及溴化铅(PbBr 2)的混合溶液。其中,CsBr、PbBr 2溶液浓度分别在0.5-1.5mol/L之间,喷涂厚度可为200nm-1μm,形成CsPbBr 3材料层。作为优选,CsBr、PbBr 2分别溶解在异丙醇与DMF中,浓度分别为0.05mol/L及1mol/L,喷涂厚度可看做钙钛矿层形成后的厚度。
本发明在喷涂制备CsPbBr 3薄膜等过程中不再单独设置加热环节,降低了能耗。本发明中的CsPbBr 3薄膜通过喷涂一步成形,容易控制膜层性能,从而提升电池性能,也提高了制备效率。而旋涂法等方式难以良好控制,并不适宜本申请制备体系。
在本发明的一些实施例中,如果原位制备的是P型NiO x,即利用余热制备了氧化镍空穴传输层,则在形成的钙钛矿材料层上,进一步制备电子传输层和金属电极。所述电子传输层和金属电极的制备方法均为现有常规方法,例如喷涂法、旋涂法等。其中,所述电子传输层的厚度可为20nm-100nm,优选为30-90nm,更优选为40-80nm;所述电子传输层的主体成分为C60、二氧化锡(SnO 2)、二氧化钛(TiO 2)。所述金属电极包括但不限于铜(Cu)、铝(Al)、金(Au)、 银(Ag)电极;本申请并无特殊限制。
示例地,在所述钙钛矿吸光层上通过热蒸发法制备电子传输层,材料为C60。蒸镀速度可为0.1A-0.5A/s,优选为0.3A/s;厚度约为40-50nm。在电子传输层上蒸镀金属对电极层,材料为高纯铜(>99.99%)。蒸镀速度可为0.1A-1.5A/s,优选为0.3A/s;铜膜厚度为100nm。
在本发明的另一些实施例中,如果原位制备的是N型SnO 2,即利用余热制备了SnO 2电子传输层,则在形成的钙钛矿材料层上,进一步制备空穴传输层和金属电极。所述空穴传输层和金属电极的制备方法均为现有常规方法;其中,所述空穴传输层的厚度可为20-100nm,优选为30-90nm,更优选为40-80nm。所述空穴传输层的材料为PTAA、Spiro,PTAA是聚[双(4-苯基)(2,4,6-三甲基苯基)胺],数均分子量可为2万-4万;Spiro是Spiro-OMeTAD,N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-甲氧苯基)-9,9′-螺二芴-2,2′,7,7′-四胺,2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴。此外,所述金属电极可为Cu、Al、Au、Ag中的一种或多种。
综上所述,本发明在制备CsPbBr 3钙钛矿层等过程中(除去基底制备),无需再额外提供外部热源,能耗较低,缩短了整个组件的能源回收周期。并且,CsPbBr 3薄膜一步成形,制备简便,进一步提高制备效率。在本发明中,喷涂法形成的CsPbBr 3钙钛矿层可以提高电池稳定性,通过本发明制备的钙钛矿太阳能电池具有良好的光电转换效率,利于应用。
为了更好理解本发明技术内容,下面提供具体实施例,对本发明做进一步的说明。其中,本发明实施例采用市售原料。
实施例1
一种CsPbBr 3钙钛矿太阳能电池的制备方法,具体步骤如下:
在浮法玻璃生产线锡槽窄段插入多通道镀膜器,以纯度为95%(质量分数,下同)的单丁基三氯化锡为前驱物,纯度99%的三氟乙酸为掺杂剂,以空气、水作为反应的氧化剂和催化剂进行镀膜;采用摩尔分数为1.6%的MBTC、0.88%的TFA、4.8%的水和N 2为载气,进入蒸发器后在175℃气化;气化后进入混气室混合并通过镀膜器喷涂在温度为675℃玻璃的表面,沉积形成致密的FTO固态薄膜。
以纯度为99%的硝酸镍的异丙醇溶液(Ni(NO 3) 2·6H 2O)为前驱体溶液,在多氧环境下进行镀膜:采用纯度为99.9%的N 2及99%的O 2按10:1流量比为载气,进入蒸发器后在175℃气化,气化后进入混气室混合,并通过镀膜器喷涂在温度为450℃的FTO玻璃(上述制备过程中得到的具有余热的FTO玻璃)的表面,混合气体在气–固相界面发生反应,沉积形成致密的氧化镍固态薄膜。
利用原位制备FTO过程中残余的热量使其转化为氧化镍,并成为热源,在该氧化镍层上,利用原位制备氧化镍的热源通过喷涂法制备CsPbBr 3(250℃),具体的,在形成的氧化镍层上通过喷涂CsBr及PbBr 2溶液,其中喷涂厚度200nm,CsBr与PbBr 2分别溶解在异丙醇与DMF中,浓度分别为0.05mol/L及1mol/L,形成CsPbBr 3材料层。
原位制备的是P型NiO x,在形成的钙钛矿材料层上,进一步制备电子传输层和金属电极,具体如下:
在钙钛矿吸光层上通过热蒸发法制备电子传输层,材料为C60。蒸镀速度为0.3A/s;厚度约为40-50nm。
在电子传输层上蒸镀金属对电极层,材料为高纯铜。蒸镀速度为0.3A/s;铜膜厚度为100nm。
通过本发明制备的钙钛矿太阳能电池,光电转换效率达到8%。
此种方法避免了在实验中CsPbBr 3与NiO x两步加热,根据Q=cmt,所需能量与温度成正比,因此,此种方法节约能量约在40-50%;节约时间约在每节拍20%左右。
实施例2
一种CsPbBr 3钙钛矿太阳能电池的制备方法,具体步骤如下:
在浮法玻璃生产线锡槽窄段插入多通道镀膜器,以纯度为95%(质量分数,下同)的单丁基三氯化锡为前驱物,纯度99%的三氟乙酸为掺杂剂,以空气、水作为反应的氧化剂和催化剂进行镀膜;采用摩尔分数为1.6%的MBTC、0.88%的TFA、4.8%的水和N 2为载气,进入蒸发器后在175℃气化;气化后进入混气室混合并通过镀膜器喷涂在温度为675℃玻璃的表面,沉积形成致密的FTO固态薄膜。
以纯度为99%的氧化锡的水溶液为前驱体溶液,在多氧环境下进行镀膜:采用纯度为99.9%的N 2及99%的O 2按10:1流量比为载气,进入蒸发器后在175℃气化,气化后进入混气室混合,并通过镀膜器喷涂在温度为300℃的FTO玻璃(上述制备过程中得到的具有余热的FTO玻璃)的表面,混合气体在气–固相界面发生反应,沉积形成致密的氧化锡固态薄膜。
利用原位制备FTO过程中残余的热量使其转化为氧化锡,并成为热源,在该氧化锡层上,利用原位制备氧化锡的热源,通过喷涂法制备CsPbBr 3(250℃),具体的,在形成的氧化锡层上通过喷涂CsBr及PbBr 2溶液,其中喷涂厚度200nm,CsBr与PbBr 2分别溶解在异丙醇与DMF中,浓度分别为0.05mol/L及1mol/L,形成CsPbBr 3材料层。
原位制备的是N型SnO 2,在形成的钙钛矿材料层上,进一步制备空穴传输层和金属电极,具体如下:在钙钛矿吸光层上通过旋涂法制备空穴传输层,材料为PTAA。PTAA溶剂为氯苯,浓度0.5mol/L,厚度约为20-30nm。
在电子传输层上蒸镀金属对电极层,材料为高纯铜。蒸镀速度为0.3A/s;铜膜厚度为100nm。
通过本发明制备的钙钛矿太阳能电池,光电转换效率为6%。
由以上实施例可知,本发明除了基底无需在制备过程中再额外提供外部热源,节约能耗。并且,CsPbBr 3薄膜一步成形,进一步提高制备效率。本发明喷涂法形成的CsPbBr 3钙钛矿层可以提高电池稳定性,通过本发明制备的钙钛矿太阳能电池的光电转换效率可达到8%。本发明制备的电池稳定性良好,制备效率高,利于工业化生产。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种铯铅溴钙钛矿太阳能电池的制备方法,其特征在于,包括以下步骤:
    高温原位制备FTO基底;
    在所述基底上喷涂锡源,利用原位制备FTO过程中残余的热量,使其转化为氧化锡层并成为热源;
    在所述氧化锡层上喷涂CsBr及PbBr 2混合溶液,利用制备氧化锡层的热源形成CsPbBr 3膜层;
    在所述CsPbBr 3膜层上依次制备空穴传输层和金属电极,得到CsPbBr 3钙钛矿太阳能电池。
  2. 根据权利要求1所述的制备方法,其特征在于,所述空穴传输层的厚度为20-100nm;所述空穴传输层的成分为PTAA或Sprio。
  3. 一种铯铅溴钙钛矿太阳能电池的制备方法,其特征在于,包括以下步骤:
    高温原位制备FTO基底;
    在所述基底上喷涂镍源,利用原位制备FTO过程中残余的热量,使其转化为氧化镍层并成为热源;
    在所述氧化镍层上喷涂CsBr及PbBr 2混合溶液,利用制备氧化镍层的热源形成CsPbBr 3膜层;
    在所述CsPbBr 3膜层上依次制备电子传输层和金属电极,得到CsPbBr 3钙钛矿太阳能电池。
  4. 根据权利要求3所述的制备方法,其特征在于,所述电子传输层的厚度为20-100nm;所述电子传输层的成分为C60、SnO 2或TiO 2
  5. 根据权利要求1-4任一项所述的制备方法,其特征在于,所述喷涂CsBr及PbBr 2混合溶液的厚度为200nm-1μm。
  6. 根据权利要求1-4任一项所述的制备方法,其特征在于,所述金属电极选自Cu、Al、Au和Ag中的一种或多种。
PCT/CN2022/099757 2021-12-23 2022-06-20 一种CsPbBr3钙钛矿太阳能电池的制备方法 WO2023115854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111595119.4 2021-12-23
CN202111595119.4A CN114284444B (zh) 2021-12-23 2021-12-23 一种CsPbBr3钙钛矿太阳能电池的制备方法

Publications (1)

Publication Number Publication Date
WO2023115854A1 true WO2023115854A1 (zh) 2023-06-29

Family

ID=80875510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099757 WO2023115854A1 (zh) 2021-12-23 2022-06-20 一种CsPbBr3钙钛矿太阳能电池的制备方法

Country Status (2)

Country Link
CN (1) CN114284444B (zh)
WO (1) WO2023115854A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284444B (zh) * 2021-12-23 2023-04-07 华能新能源股份有限公司 一种CsPbBr3钙钛矿太阳能电池的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783695A (zh) * 2017-02-07 2017-05-31 金海平 一种节能型太阳能电池硅片清洗装置以及清洗方法
CN114284444A (zh) * 2021-12-23 2022-04-05 华能新能源股份有限公司 一种CsPbBr3钙钛矿太阳能电池的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059412A1 (en) * 2010-05-04 2013-03-07 North Carolina State University In-situ polymerization in bulk heterojunction organic devices
CN103996749B (zh) * 2014-06-04 2016-02-10 山西大学 一种钙钛矿太阳能电池光阳极的原位制备方法
US9911935B2 (en) * 2015-09-04 2018-03-06 International Business Machines Corporation Transparent conducting oxide as top-electrode in perovskite solar cell by non-sputtering process
CN109119540B (zh) * 2017-06-22 2020-03-20 中国科学院金属研究所 在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法
CN111785835A (zh) * 2020-07-24 2020-10-16 西安电子科技大学 一种复合电子传输层钙钛矿太阳能电池及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783695A (zh) * 2017-02-07 2017-05-31 金海平 一种节能型太阳能电池硅片清洗装置以及清洗方法
CN114284444A (zh) * 2021-12-23 2022-04-05 华能新能源股份有限公司 一种CsPbBr3钙钛矿太阳能电池的制备方法

Also Published As

Publication number Publication date
CN114284444B (zh) 2023-04-07
CN114284444A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN108878554B (zh) 基于镧系稀土离子掺杂CsPbBr3的全无机钙钛矿太阳能电池及其制备方法和应用
CN105226187B (zh) 薄膜晶硅钙钛矿异质结太阳电池及其制备方法
CN106887520B (zh) 一种添加剂辅助的钙钛矿太阳能电池及其制备方法
CN106025085A (zh) 基于Spiro-OMeTAD/CuXS复合空穴传输层的钙钛矿太阳能电池及其制备方法
CN104362253A (zh) 全固态钙钛矿微晶硅复合太阳电池及其制备方法
CN108666424B (zh) 一种基于醋酸甲胺室温熔盐作绿色溶剂制备钙钛矿太阳能电池及其方法和应用
CN111785835A (zh) 一种复合电子传输层钙钛矿太阳能电池及其制备方法
CN111261745B (zh) 一种钙钛矿电池及其制备方法
CN112490363B (zh) 一种基于磁控溅射氧化锌/二氧化锡双电子传输层的钙钛矿太阳能电池制备方法
CN101673778A (zh) 一种薄膜太阳能电池
WO2023115854A1 (zh) 一种CsPbBr3钙钛矿太阳能电池的制备方法
CN110828673B (zh) 一种引入硫化物添加剂制备高效钙钛矿太阳能电池的方法
CN102637777A (zh) 一种太阳电池光吸收层Cu2O纳米薄膜的化学制备工艺
CN116669504A (zh) 一种表面平整的CsPbBr3钙钛矿薄膜太阳电池及其制备方法
CN114678472A (zh) 一种FAPbI3钙钛矿薄膜及其高效的钙钛矿太阳能电池的方法
CN105280822A (zh) 适于生产的低成本太阳能电池结构
CN112909187A (zh) 钙钛矿晶体硅两端叠层太阳电池结构及其制备方法
CN105449103B (zh) 一种薄膜晶硅钙钛矿异质结太阳电池及其制备方法
CN105470338B (zh) 一种柔性叠层太阳电池及制备方法
CN115666191A (zh) 提高钙钛矿太阳能电池器件稳定性的方法
CN111769197B (zh) 钙钛矿太阳能电池及其制备方法
CN114420853A (zh) 一种碱金属醋酸盐修饰自组装空穴传输层的方法
CN113937224A (zh) 一种钙钛矿太阳能电池及其制备方法
CN112420929A (zh) 一种以掺杂铯的二氧化锡薄膜为电子传输层的钙钛矿太阳能电池及其制备方法
CN105261703A (zh) 一种以Cu:CrOx薄膜作为空穴传输层的钙钛矿光伏电池及其制备方法