WO2023115843A1 - 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法 - Google Patents

一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法 Download PDF

Info

Publication number
WO2023115843A1
WO2023115843A1 PCT/CN2022/099098 CN2022099098W WO2023115843A1 WO 2023115843 A1 WO2023115843 A1 WO 2023115843A1 CN 2022099098 W CN2022099098 W CN 2022099098W WO 2023115843 A1 WO2023115843 A1 WO 2023115843A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
hydrogenation
product
maleic anhydride
butyrolactone
Prior art date
Application number
PCT/CN2022/099098
Other languages
English (en)
French (fr)
Inventor
朱君成
徐志刚
吴非克
和成刚
张遵亮
Original Assignee
常州瑞华化工工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州瑞华化工工程技术股份有限公司 filed Critical 常州瑞华化工工程技术股份有限公司
Priority to EP22740273.2A priority Critical patent/EP4223735A4/en
Priority to US17/759,436 priority patent/US20240208918A1/en
Publication of WO2023115843A1 publication Critical patent/WO2023115843A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/177Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of a carboxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/60Two oxygen atoms, e.g. succinic anhydride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form

Definitions

  • the invention relates to the technical field of chemical industry, in particular to the production of various chemical intermediate raw materials, in particular to a method for directly hydrogenating maleic anhydride to produce 1,4-butanediol and co-producing succinic anhydride.
  • BDO 4-Butanediol
  • SAN succinic anhydride
  • THF tetrahydrofuran
  • PBT polybutylene terephthalate
  • PBS polybutylene succinate
  • GBL ⁇ -butyrolactone
  • PU polyurethane resin
  • THF can be used to produce polytetramethylene butanediol (PTMEG).
  • PTMEG is a raw material for the synthesis of high-elastic spandex (Lycra fiber), polyether elastomer and thermoplastic polyurethane. Spandex is mainly used for the production of high-end sportswear, swimming suits, etc. High stretch knit.
  • polybutylene succinate (PBS) obtained by polymerization of BDO and SAN is a biodegradable material. With the strong rise of degradable plastics, 1,4-butanediol as the main raw material is also people's close attention.
  • the main production methods of BDO are: 1 alkyne aldehyde method, 2 maleic anhydride hydrogenation method, 3 butadiene method, 4 propylene oxide method.
  • domestic BDO production enterprises basically adopt alkyne aldehyde method and maleic anhydride method.
  • the alkyne aldehyde method is to produce 1,4-butynediol by reacting acetylene and formaldehyde, and then hydrogenate it into 1,4-butenediol, and then continue to further catalytic hydrogenation to generate 1,4-butanediol.
  • the ion exchange resin removes the metal ions, it is purified by distillation to obtain the pure product.
  • the acetylene in the alkyne aldehyde method comes from cheap calcium carbide
  • the production cost of the alkyne aldehyde method BDO is relatively low, which severely squeezes the profits of the maleic anhydride method BDO device, and the maleic anhydride method BDO device cannot be started. Therefore, my country's BDO Basically, it is produced by alkyne aldehyde method.
  • the biggest defect of the alkyne aldehyde BDO production process is the serious environmental protection problem. After the calcium carbide used to make acetylene is used, a very large amount of carbide slag will be produced, which will have a devastating impact on the environment around the factory.
  • alkyne aldehyde plants are basically located in sparsely populated areas in the Northwest.
  • China restricting the development of high-energy-consumption and high-pollution industries and the vigorous implementation of energy-saving and emission-reduction policies, the possibility of the alkyne aldehyde BDO plant continuing to be launched in the future will be greatly reduced; and the maleic anhydride method has low investment, good product quality, and three-waste emissions. If there are few advantages, it will develop rapidly.
  • Maleic anhydride hydrogenation production process includes two processes of maleic anhydride direct hydrogenation and maleic anhydride esterification hydrogenation, among which the direct hydrogenation technology of maleic anhydride was first successfully developed by Mitsubishi Petrochemical and Mitsubishi Chemical in the early 1970s.
  • the process is divided into two steps.
  • the first step is hydrogenation using Raney-ni catalyst.
  • the reaction raw material is maleic anhydride.
  • the reaction conditions are 210-280°C, 6-12MPa.
  • the acid anhydride is further hydrogenated to 1,4-butanediol, the reaction conditions are 250°C, 10MPa, the reaction residence time is 6h, the conversion rate of maleic anhydride can reach 100%, and the selectivity is above 98%.
  • the main by-products are tetrahydrofuran and ⁇ -butyrolactone.
  • the characteristic of this technology is that the product composition can be changed according to different process conditions, and THF, ⁇ -butyrolactone and 1,4-butanediol can be produced simultaneously.
  • the main disadvantage is that the reaction conditions are harsh and high operating pressure is required. A large amount of hydrogen is circulated.
  • Patents Us4795824, US4584419, US4751334, and CN103360209A are all processes for producing 1,4-butanediol through esterification and hydrogenation of maleic anhydride.
  • the maleic anhydride methyl esterification route is used in industrial production units, which is better than the ethyl ester method.
  • the new technology has the advantages of high product purity and mild reaction conditions.
  • the process flow is longer and the investment is larger.
  • the methanol introduced is azeotropic with the main by-product tetrahydrofuran of the reaction, so the energy consumption for separation is higher.
  • the maleic anhydride esterification and hydrogenation process consumes a lot of energy and cannot compete with the alkyne aldehyde process for a long time in China, resulting in the long-term shutdown of the domestic maleic anhydride esterification and hydrogenation to BDO plant.
  • the purpose of the present invention is to provide a kind of raw material of maleic anhydride, through relatively mild reaction conditions, direct hydrogenation to produce 1,4-butanediol, and co-produce succinic anhydride at the same time, without introducing methanol that causes separation difficulties to reduce energy consumption It is a low-cost BDO production method that can compete with the current alkyne aldehyde method without introducing cisic acid that causes severe corrosion of equipment to reduce equipment investment.
  • the technical problem to be solved by the present invention is that in the traditional process, the reaction conditions are harsh, the equipment and materials are expensive, the investment cost is high, the process is complicated, the separation is difficult, the energy consumption is high, and the problem of economy is poor.
  • Process for the production of 1,4-butanediol at a cost is that in the traditional process, the reaction conditions are harsh, the equipment and materials are expensive, the investment cost is high, the process is complicated, the separation is difficult, the energy consumption is high, and the problem of economy is poor.
  • the technical solution adopted in the present invention comprises the following steps:
  • a method for direct hydrogenation of maleic anhydride to produce 1,4-butanediol and co-production of succinic anhydride characterized in that: maleic anhydride is hydrogenated in two steps to obtain products 1,4-butanediol and succinic anhydride;
  • the method includes the following steps:
  • the liquid-phase maleic anhydride and ⁇ -butyrolactone from the subsequent separation unit are mixed and then heated by the feed heater and then enter the top of the gasification tower.
  • Fresh hydrogen is mixed with circulating hydrogen and heated and then enters the bottom of the gasification tower.
  • the tower is gasified, the gaseous phase at the top of the tower reacts with the hydrogenation of maleic anhydride, and the output material is heated and enters the hydrogenation reactor of maleic anhydride.
  • a small part of the bottom material of the gasification tower is separated and sent to the heavy oil tank in the intermediate tank area, and the rest Return to the gasification tower after heating;
  • maleic anhydride and hydrogen react under the action of a hydrogenation catalyst to generate gamma-butyrolactone and succinic anhydride, tetrahydrofuran, water, and simultaneously generate gamma-butyrolactone by hydrogenation of succinic anhydride, and A small amount of succinic anhydride is hydrated to generate succinic acid.
  • the hydrogenation product is cooled step by step to realize gas-liquid separation. After cooling, the hydrogenation gas phase product enters the circulating hydrogen compressor and returns to the hydrogen heater of the maleic anhydride gasification unit.
  • the maleic anhydride reaction liquid enters the stabilization tower, and water, n-butanol, tetrahydrofuran, etc. are separated from the top of the tower and enter the dehydration tower.
  • the process wastewater containing a small amount of n-butanol and tetrahydrofuran is separated from the top of the dehydration tower and sent to the outside water for treatment;
  • the bottom of the dehydration tower ⁇ -butyrolactone and a small amount of succinic acid are returned to the stabilizing tower, and the bottom product of the stabilizing tower is gamma-butyrolactone, succinic anhydride, and succinic acid, which are pumped to the light removal tower;
  • the non-condensable gas product cooled at the top of the light removal tower is sent to the dehydration tower for separation, and the liquid phase product at the top of the tower is divided into three parts after cooling, one part is recycled to the maleic anhydride hydrogenation unit as a solvent, one part is sent to the tank farm as a product, and the rest Part of it enters the hydrogenation unit of ⁇ -butyrolactone; in the light removal tower, succinic acid is dehydrated to generate succinic anhydride, and the crude succinic anhydride at the bottom of the tower is pumped to the heavy removal tower for further separation; the top of the heavy removal tower is separated to obtain butane The dianhydride product is pumped to the succinic anhydride product tank in the tank area, and the heavy oil at the bottom of the de-weighting tower is pumped to the heavy oil storage tank in the tank area;
  • ⁇ -butyrolactone (GBL) from the succinic anhydride product refining unit is mixed with the GBL returned from the subsequent 1,4-butanediol refining unit, pumped and heated to enter GBL hydrogenation reactor reacts with supplementary new hydrogen from outside and GBL hydrogenation reaction cycle hydrogen to generate 1,4-butanediol and a small amount of tetrahydrofuran, n-butanol, and acetal;
  • the reaction product is cooled step by step, the gas-liquid separation is realized, the gas phase is pressurized by the circulating hydrogen compressor and then returned to the reactor, and the liquid phase product enters the subsequent 1,4-butanediol product refining unit;
  • the mass ratio of maleic anhydride and circulating ⁇ -butyrolactone is 0.5-2
  • the operating pressure of the maleic anhydride gasification tower is 0.1-1 MPaG
  • the operating temperature is 120-220°C.
  • the circulating material is heated to 140-220 °C and returned to the tower.
  • the circulating material is 5-10 times the mass of the liquid phase feed
  • the temperature of the liquid phase and the hydrogen gas into the gasification tower is 100-150 °C
  • the feed molar ratio of hydrogen and maleic anhydride is 20-200.
  • the hydrogenation reaction is divided into four stages, and the reaction temperature is controlled by the steam pressure of the waste heat boiler between each two stages, and at the same time, 1-2.5MPaG steam is produced by-product; the reaction of each stage bed
  • the temperature is 200-300° C.
  • the reaction pressure is 0.1-1 MpaG
  • the mass space velocity of maleic anhydride is 0.05-1
  • the hydrogenation catalyst used is Cu-Ni-Al 2 O 3 /SiO 2 catalyst.
  • all towers are negative pressure towers, and the operating conditions of each tower are as follows:
  • Stable tower tower top pressure 5-50kPa, number of theoretical plates 20-50, tower top temperature 45-100°C, reflux ratio 3-10, tower kettle temperature 120-180°C;
  • the vacuum systems of the above towers all use liquid ring pumps with ⁇ -butyrolactone as the sealing liquid, the dehydration tower and the light removal tower share a vacuum system, and the stabilization tower and the weight removal tower use independent vacuum systems respectively.
  • the reaction feed molar ratio of hydrogen to ⁇ -butyrolactone is 20-300
  • the reaction temperature is controlled at 120-200°C
  • the reaction pressure is controlled at 2-8MPaG
  • ⁇ - The liquid hourly mass space velocity of butyrolactone is 0.05-2
  • the hydrogenation catalyst used is Cu-Ni-Al 2 O 3 /SiO 2 catalyst.
  • all towers are negative pressure towers, and the operating conditions of each tower are as follows:
  • GBL recovery tower tower top pressure 5-50kPa, number of theoretical plates 20-50, tower top temperature 100-150°C, reflux ratio 2-5, tower kettle temperature 150-200°C;
  • BDO product tower tower top pressure 2-50kPa, number of theoretical plates 20-50, tower top temperature 120-160°C, reflux ratio 0.5-5, tower kettle temperature 180-220°C;
  • the vacuum system of the above-mentioned GBL recovery tower uses a liquid ring pump with GBL as the sealing liquid
  • the vacuum system of the BDO product tower uses a liquid ring pump with BDO as the sealing liquid
  • the present invention has the following beneficial effects:
  • the conversion rate of maleic anhydride is more than 99%, 1,4-butanediol, succinic anhydride and
  • the total selectivity of products such as ⁇ -butyrolactone is above 90%, and the proportion of each product can be adjusted by properly adjusting the first step maleic anhydride hydrogenation reaction conditions to meet market demand.
  • the present invention saves the esterification step, which not only simplifies the flow process, reduces equipment investment, but also reduces operating costs. Due to avoiding the introduction of methanol or other alcohols, hydrogenation The product has simple composition and is easy to separate, which also reduces energy consumption for separation, which enables the method of the invention to significantly reduce the production cost of 1,4-butanediol.
  • the present invention avoids the severe corrosion caused by cis-acid aqueous solution, adopts the method of the present invention, can adopt common stainless steel materials, and does not need to adopt special materials such as titanium alloy, which can significantly Reduce equipment investment, and at the same time, compared with the hydrogenation of maleic acid aqueous solution, the method of the present invention can also improve the hydrogenation efficiency of maleic anhydride, thereby reducing the operating pressure and temperature of maleic anhydride hydrogenation, and alleviating the harsh reaction conditions of traditional hydrogenation .
  • the main reason for this advantage is that the hydrogenation pressure can be significantly reduced by adopting the method of the present invention because the solubility of hydrogen in the maleic anhydride material is much larger than that in water. Thereby reducing equipment investment cost.
  • the innovation of the present invention is that it does not require 100% conversion of the liquid phase feed, allowing partial ⁇ -butyrolactone circulation, which can significantly reduce the hydrogenation reaction.
  • the energy consumption increased by a small amount of circulation of ⁇ -butyrolactone has little impact on the economic cost of the whole device compared to the easy implementation of the project formed by the relaxation of hydrogenation conditions and the reduction of the one-time investment of the device.
  • the method for hydrogenating maleic anhydride to generate 1,4-butanediol of the present invention can not only solve the serious problem of traditional maleic acid hydrogenation corrosion, but also solve the disadvantage of high production cost of esterification hydrogenation process, and can be used in Competing with the alkyne aldehyde method in the market.
  • Fig. 1 is maleic anhydride hydrogenation unit
  • Fig. 2 is a succinic anhydride product refining unit
  • Figure 3 shows the hydrogenation of ⁇ -butyrolactone and the product refining unit of 1,4-butanediol.
  • the bottom material 4 of the gasification tower is pumped out through the gasification tower kettle pump P-101, and a small part of it is separated 6 to the heavy oil storage tank in the tank farm, and the remaining 5 is heated to 150°C by the gasification tower kettle heater E-103 and then returned to the gasification tower.
  • the operating pressure at the top of the maleic anhydride gasification tower T101 is 0.45MPaG
  • the operating temperature at the top of the tower is 130°C
  • the circulating material in the tower reactor is ten times the mass of the liquid phase feed.
  • the feed molar ratio of hydrogen and maleic anhydride was 100.
  • the reaction products of each section pass through the MA hydrogenation primary cooler E-105, the MA hydrogenation secondary cooler E-106, The MA hydrogenation three-stage cooler E-107 is cooled to 230°C, and then enters the next stage of reaction bed reaction after cooling.
  • the hydrogenation product 11 is cooled to 40°C through heat exchange between E-104 and E-108, and the gas-liquid separation is realized through the MA hydrogenation gas-liquid separation tank V-101.
  • the hydrogenation gas phase product 12 enters the circulating hydrogen compressor, and the pressure is raised to 0.6 MPaG returns to the hydrogen heater E-102 of the maleic anhydride gasification unit, and the liquid phase product 13 is separated from the stabilizing tower T-102 of the subsequent succinic anhydride product refining unit.
  • maleic anhydride hydrogenation reaction liquid 13 enters stabilizing tower T-102, and tower top separates water, n-butanol, tetrahydrofuran etc. 14 and enters dehydration tower T-103, and dehydration tower top separates and contains a small amount of normal Process wastewater 16 of butanol and tetrahydrofuran is sent to outside water treatment.
  • the ⁇ -butyrolactone and a small amount of succinic anhydride 17 at the bottom of the dehydration tower are returned to the light removal tower.
  • the bottom product 15 of the stabilization tower is ⁇ -butyrolactone, succinic anhydride, and succinic acid, which are pumped to the light removal tower T-104, and ⁇ -butyrolactone and a small amount of water are separated from the top of the tower, and butanediol is separated from the bottom of the tower.
  • Crude anhydride 19 The light-removed non-condensable gas 18 is sent to the dehydration tower T-103, and the light-removed tower top condensate 21 is divided into three parts, a part 25 is recycled to E-101 as a solvent, a part 23 is sent to the tank area as a product, and the rest 24 enters GBL hydrogenation unit E-201.
  • Stabilizing tower T-102 tower top pressure 10kPa, number of theoretical plates 40, tower top temperature 60°C, reflux ratio 9, tower bottom temperature 142°C; dehydration tower T-103: tower top pressure 15kPa, number of theoretical plates 35, Tower top temperature 71°C, reflux ratio 2, tower kettle temperature 141°C; light removal tower T-104: tower top pressure 57kPa, number of theoretical plates 45, tower top temperature 180°C, reflux ratio 2, tower kettle temperature 240°C; Weight removal tower T-105: tower top pressure 10kPa, number of theoretical plates 35, tower top temperature 180°C, reflux ratio 0.5, tower kettle temperature 200°C; all the above towers are negative pressure towers, and the vacuum system of each tower adopts GBL Liquid ring pumps with sealing fluid.
  • the ⁇ -butyrolactone 24 from the succinic anhydride product refining unit is mixed with the ⁇ -butyrolactone 31 returned from the subsequent 1,4-butanediol refining unit, and enters the GBL hydrogenation reaction Device R-201 reacts with supplementary new hydrogen 22 from outside the boundary and GBL hydrogenation reaction cycle hydrogen 27, ⁇ -butyrolactone is hydrogenated to 1,4-butanediol, and a small amount of tetrahydrofuran, n-butanol, and condensation Aldehydes and other by-products.
  • the GBL hydrogenation reaction temperature is 150°C
  • the reaction pressure is 6.5MPaG
  • the molar ratio of hydrogen to ⁇ -butyrolactone is 50.
  • the new hydrogen 22 is compressed by K-201 to the pressure required for the reaction.
  • the reaction product 26 is cooled to 40°C by E-203
  • the gas-liquid separation is realized in the GBL hydrogenation gas-liquid separation tank V-201, and the gas phase 27 is pressurized to 6.5MPaG by the circulating hydrogen compressor K-202 and then returned to the reactor.
  • the phase product 28 enters the subsequent product refining unit.
  • the liquid phase product 28 after the cooling of the GBL hydrogenation product is transported to the GBL recovery tower T-201 through pipelines, and after the tower top product 31 is cooled, the GBL is transported to the ⁇ -butyrolactone hydrogenation through the pump P-201
  • the unit continues to react, and the non-condensable gas 29 at the top of the tower is further cryogenically separated from the water and light components and sent to the outside water for treatment.
  • the material 30 at the bottom of the tower is transported to the BDO product tower T-202 through the pump P-202.
  • the BDO product 33 is extracted from the top of the BDO product tower, and after being cooled by the BDO product cooler E-204, it is transported to the product tank in the tank farm by the pump P-203; -204 is transported to the tank farm for storage.
  • GBL recovery tower T-201 tower top pressure 12kPa, number of theoretical plates 35, tower top temperature 131°C, reflux ratio 3, tower bottom temperature 175°C;
  • BDO products Tower T-202 The pressure at the top of the tower is 3kPa, the number of theoretical plates is 30, the temperature at the top of the tower is 138°C, the reflux ratio is 1, and the temperature at the bottom of the tower is 162°C.
  • the implementation process is the same as in Example 1, but the conditions for hydrogenation reaction of maleic anhydride are changed: the reaction temperature is 250° C., the reaction pressure is 0.4 MPaG, the molar ratio of hydrogen to maleic anhydride is 150, and the mass space velocity of maleic anhydride is 0.3. All the other conditions and processes are the same as in Example 1.
  • the implementation process is the same as in Example 1, but the conditions for hydrogenation reaction of maleic anhydride are changed: the reaction temperature is 260° C., the reaction pressure is 0.4 MPaG, the molar ratio of hydrogen to maleic anhydride is 200, and the mass space velocity of maleic anhydride is 0.1. All the other conditions are the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法,以顺酐和氢气为原料通过两步加氢得到1,4-丁二醇;其中第一步顺酐加氢反应,通过多塔精馏分离得到γ-丁内酯和丁二酸酐产品;第二步加氢反应是γ-丁内酯加氢,通过精馏分离得到1,4-丁二醇产品;具体包括如下步骤:a.顺酐加氢;b.丁二酸酐产品精制;c.γ-丁内酯加氢;d.1,4-丁二醇产品精制。与现有方法相比,本发明加氢产品更丰富,特别是可以联产丁二酸酐,顺酐的转化率在99%以上,1,4-丁二醇、丁二酸酐等产品总选择性在90%以上,并且可以通过适当调整第一步顺酐加氢反应条件来调整各产品的比例,以适应市场需求。

Description

一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法 技术领域
本发明涉及化工技术领域,特别是涉及多种化工中间体原材料的生产,尤其涉及一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法。
背景技术
4-丁二醇(简称BDO)、丁二酸酐(SAN)都是重要的有机和精细化工原料,它们被广泛应用于医药、化工、纺织、造纸、汽车和日用化工等领域。由BDO可以生产四氢呋喃(THF)、聚对苯二甲酸丁二醇酯(PBT)、聚丁二酸丁二醇酯(PBS)、γ-丁内酯(GBL)和聚氨酯树脂(PU)、涂料和增塑剂等。其中THF可用于生产聚四亚甲基丁二醇(PTMEG),PTMEG是合成高弹性氨纶(莱卡纤维)、聚醚弹性体及热塑性聚氨酯的原料,氨纶主要用于生产高级运动服、游泳衣等高弹性针织品。另外,由BDO和SAN聚合得到的聚丁二酸丁二醇酯(PBS)是一种可生物降解的材料,随着可降解塑料的强势兴起,作为主要原料的1,4-丁二醇也受到人们的密切关注。
目前,BDO的主要的生产方法有:①炔醛法、②顺酐加氢法、③丁二烯法、④环氧丙烷法。目前国内BDO生产企业基本采用炔醛法和顺酐法。炔醛法是以乙炔和甲醛反应制成1,4-丁炔二醇,再经加氢成1,4-丁烯二酸盐,继续进一步催化加氢生成1,4-丁二醇,经离子交换树脂除去金属离子后,再经蒸馏提纯得纯品。由于炔醛法中的乙炔来源于价格低廉的电石,造成炔醛法BDO的生产成本较低,严重紧压了顺酐法BDO装置的利润,造成顺酐法BDO装置无法开车,因而我国的BDO基本均采用炔醛法生产。不过,炔醛法BDO生产工艺的最大缺陷便是严重的环保问题,用于制乙炔的电石使用后会产生数量十分庞大的电石渣,这对于工厂周边的环境影响是毁灭性的,因而我们的炔醛法装置基本都在西北部人口稀疏的地方。随着中国限制高能耗、高污染行业发展和节能减排政策的大力实施,未来炔醛法BDO装置再继续上马的可能性将大幅下降;而顺酐法因投资低、产品质量好、三废排放少等优点,将会得到快速发展。
顺酐加氢生产工艺包括顺酐直接加氢和顺酐酯化加氢两种工艺,其中顺酐直接 加氢技术于20世纪70年代初首先由日本三菱油化和三菱化成开发成功。该工艺分为两步进行,第一步加氢采用Raney-ni催化剂,反应原料为顺酐,反应条件为210~280℃,6~12MPa,主要生成丁二酸酐,第二步是将丁二酸酐进一步加氢为1,4-丁二醇,反应条件为250℃,10MPa,反应停留时间为6h,顺酐的转化率可达到100%,选择性在98%以上,除1,4-丁二醇外,主要副产物为四氢呋喃、γ-丁内酯。
这种技术的特点是可以根据工艺条件不同,改变产品的组成,可同时生产四氢呋喃、γ-丁内酯和1,4-丁二醇,主要缺点是反应条件苛刻,需要较高的操作压力的大量氢气循环。
20世纪80年代初,英国Dawy公司开发成功顺酐经乙酯化加氢制1,4-丁二醇技术,其工艺条件远较顺酐直接加氢温和,也可以同时联产1,4-丁二醇、四氢呋喃和γ-丁内酯。专利Us4795824、US4584419、US4751334、CN103360209A均为顺酐酯化加氢制1,4-丁二醇工艺。工业生产装置采用的是顺酐甲酯化路线,要优于乙酯法。新技术具有产品纯度高,反应条件温和的优点,但由于引入了酯化步骤,工艺流程更长,投资更大,引入的甲醇与反应主要副产物四氢呋喃共沸,因而分离能耗更高,这使得顺酐酯化加氢工艺能耗较高,在国内较长时间内无法与炔醛法竞争,造成国内的顺酐酯化加氢制BDO装置长时间关停。
随之顺酐生产原料从苯往更加廉价的正丁烷转变,BASF、Du Pont、BP等公司又在上世纪90年代开发了各自的正丁烷氧化,不经分离,直接将用顺酸加氢制造1,4-丁二醇、γ-丁内酯、四氢呋喃的技术。这一路线简化了顺酯酯化加氢的流程,但顺酸的腐蚀性极强,在后续的加氢条件下,需要采用昂贵的特种材料,钛是一种合适的抗腐蚀材料,但这也大大提高了该工艺的投资成本。
尽管后期有一些改进工艺,但又基本没有从根本上解决传统技术的主要缺点:反应条件苛刻,设备材料昂贵,投资成本高,流程复杂、分离困难、能耗高。
本发明的目的是提供一种以顺酐为原料,经过较为温和的反应条件,直接加氢生产1,4-丁二醇,同时联产丁二酸酐,不引入造成分离困难的甲醇以降低能耗,不引入造成设备严重腐蚀的顺酸以降低装置投资,是一种可以与当前炔醛法竞争的低成本BDO生产方法。
发明内容
本本发明所要解决的技术问题是传统工艺中,反应条件苛刻,设备材料昂贵, 投资成本高,流程复杂、分离困难、能耗高、经济性差的问题,提供一种以顺酐为原料,环保低成本的生产1,4-丁二醇的方法。
为解决上述问题,本发明采用的技术方案包括如下步骤:
一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法,其特征在于:顺酐通过两步加氢得到产品1,4-丁二醇、丁二酸酐;
该方法包含以下步骤:
a.顺酐加氢:
液相顺酐和来自后续分离单元的γ-丁内酯混合后经进料加热器加热后进入气化塔顶部,新鲜氢气与循环氢气混合并加热后进入气化塔底部,顺酐在气化塔内被气化,塔顶气相与顺酐加氢反应出料换热被加热后进入顺酐加氢反应器,气化塔的底部物料分离出一小部分至中间罐区重油罐,其余加热后返回至气化塔;
在顺酐加氢反应器中顺酐和氢气在加氢催化剂的作用下反应生成γ-丁内酯和丁二酸酐、四氢呋喃、水,同时由丁二酸酐加氢生成γ-丁内酯,以及少量丁二酸酐水合生成丁二酸,加氢产物通过逐级冷却实现气液分离,加氢气相产品经冷却后进入循环氢气压缩机,返回至顺酐气化单元的氢气加热器,液相产品去后续丁二酸酐产品精制单元分离;
b.丁二酸酐产品精制:包括稳定塔、脱水塔、脱轻塔和脱重塔;
首先顺酐反应液进入稳定塔,塔顶分离出水、正丁醇、四氢呋喃等进入脱水塔,脱水塔顶部分离出含有少量正丁醇、四氢呋喃的工艺废水,送至界外水处理;脱水塔底部γ-丁内酯和少量丁二酸返回至稳定塔,稳定塔底部产品为γ-丁内酯和丁二酸酐、丁二酸,经泵送至脱轻塔;
脱轻塔顶冷却后的不凝气产物送至脱水塔分离,塔顶液相产品经冷却后分为三部分,一部分循环至顺酐加氢单元作为溶剂,一部分作为产品送至罐区,其余部分进入γ-丁内酯加氢单元;在脱轻塔中丁二酸脱水反应生成丁二酸酐,塔底丁二酸酐粗品经泵送至脱重塔进一步分离;脱重塔塔顶分离得到丁二酸酐产品,经泵送至罐区丁二酸酐产品罐,脱重塔底为重油,经泵送至罐区重油储罐;
c.γ-丁内酯加氢:来自丁二酸酐产品精制单元的γ-丁内酯(GBL)与后续1,4-丁二醇精制单元返回的GBL混合后,经泵输送并加热后进入GBL加氢反应器,与来自界外的补充新氢和GBL加氢反应循环氢气反应,生成1,4-丁二醇,同时生成少量四氢呋喃、正丁醇,以及缩醛;
反应产物经过逐级冷却后,实现气液分离,气相通过循环氢压缩机增压后返回至反应器,液相产品进入后续1,4-丁二醇产品精制单元;
d.1,4-丁二醇产品精制:GBL加氢产品冷却后的液相产品经管道输送至GBL回收塔,塔顶产品冷却后GBL经泵输送至γ-丁内酯加氢单元继续反应,塔顶不凝气进一步深冷分离出其中的水和轻组分送至界外水处理;塔底的物料经泵输送至BDO产品塔,BDO产品塔顶部采出BDO产品,经泵输送至罐区产品罐;BDO产品塔塔底为缩醛等重组分,经泵输送至罐区储存。
优选地,顺酐加氢过程中,顺酐和循环γ-丁内酯的质量比例为0.5~2,顺酐气化塔的操作压力为0.1~1MPaG,操作温度为120~220℃,塔釜循环物料加热至140~220℃返塔,循环物料是液相进料质量的5~10倍,液相和氢气进气化塔的温度为100~150℃,氢气和顺酐的进料摩尔比为20~200。
优选地,顺酐加氢过程中,加氢反应分为四段,每两段之间通过废热锅炉产汽压力来控制反应温度,同时副产1~2.5MPaG的蒸汽;每段床层的反应温度为200~300℃,反应压力为0.1~1MpaG,顺酐的质量空速为0.05~1,所用的加氢催化剂为Cu-Ni-Al 2O 3/SiO 2催化剂。
优选地:丁二酸酐产品精制过程中,所有塔均为负压塔,各塔操作条件如下:
(1)稳定塔:塔顶压力5~50kPa,理论板数20~50块,塔顶温度45~100℃,回流比3~10,塔釜温度120~180℃;
(2)脱水塔:塔顶压力5~50kPa,理论板数30~50块,塔顶温度45~80℃,回流比0.5~5,塔釜温度100~150℃;
(3)脱轻塔:塔顶压力10~60kPa,理论板数20~50块,塔顶温度120~180℃,回流比0.5~5,塔釜温度200~250℃;
(4)脱重塔:塔顶压力10~50kPa,理论板数20~50块,塔顶温度160~200℃,回流比1~5,塔釜温度180~210℃;
上述各塔真空系统均采用γ-丁内酯为密封液的液环泵,脱水塔和脱轻塔共用一个真空系统,稳定塔和脱重塔分别采用独立的真空系统。
优选地:γ-丁内酯加氢过程中,氢气和γ-丁内酯的反应进料摩尔比为20~300,反应温度控制在120~200℃,反应压力控制在2~8MPaG,γ-丁内酯的液时质量空速为0.05~2,所用的加氢催化剂为Cu-Ni-Al 2O 3/SiO 2催化剂。
优选地:1,4-丁二醇产品精制过程中,所有塔均为负压塔,各塔操作条件如下:
(1)GBL回收塔:塔顶压力5~50kPa,理论板数20~50块,塔顶温度100~150℃,回流比2~5,塔釜温度150~200℃;
(2)BDO产品塔:塔顶压力2~50kPa,理论板数20~50块,塔顶温度120~160℃,回流比0.5~5,塔釜温度180~220℃;
上述GBL回收塔真空系统采用GBL为密封液的液环泵,BDO产品塔真空系统采用BDO为密封液的液环泵。
本发明相对于现有技术,具有如下的有益效果:
1.本发明提供的顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法,顺酐的转化率在99%以上,1,4-丁二醇、丁二酸酐和γ-丁内酯等产品总选择性在90%以上,并且可以通过适当调整第一步顺酐加氢反应条件来调整各产品的比例,以适应市场需求。
2.与顺酐酯化加氢工艺比较,本发明省掉了酯化步骤,这不仅简化了流程,降低了设备投资,同时减少了操作成本,由于避免了引入甲醇或其它醇类,加氢产物组成简单,易于分离,这也降低了分离能耗,这使得本发明的方法能够显著降低1,4-丁二醇的生产成本。
3.与顺酸直接加氢工艺相比,本发明避免了顺酸水溶液造成的严重腐蚀,采用本发明的方法,可以采用普通的不锈钢材料,而不需要采用钛合金等特种材料,这能够显著降低装置投资,同时,相比于顺酸水溶液加氢,本发明的方法还能够提高顺酐的加氢效率,从而降低顺酐加氢的操作压力和温度,缓和传统加氢严苛的反应条件。这一优势的主要原因是由于氢气在顺酐物料中的溶解度比在水中的溶解度大得多,采用本发明的方法可以显著降低加氢压力。从而降低了设备投资成本。
4.与传统的顺酐直接加氢工艺相比,本发明的创新点在于不强求液相进料的100%转化,允许部分γ-丁内酯循环,这一改变能够显著降低加氢反应的操作压力,同时,γ-丁内酯少量循环增加的能耗相比于加氢条件缓和形成的工程易实施性和装置一次性投资的降低,对整个装置的经济成本影响很小,因而,采用本发明的顺酐加氢生成1,4-丁二醇的方法,不仅能解决传统顺酸加氢腐蚀严重的问题、同时能够解决酯化加氢工艺生产成本居高不下的弊端,并且能够在市场上与炔醛法进行竞争。
附图说明
图1为顺酐加氢单元;
图2为丁二酸酐产品精制单元;
图3为γ-丁内酯加氢和1,4-丁二醇产品精制单元。
具体实施方式
实施例1
a.按附图1所示,15600kg/h液相顺酐为原料的物流1和来自后续分离单元的γ-丁内酯25按质量比一混合后,经顺酐预热器E-101加热至150℃后从顺酐气化塔T101顶部进料,新鲜氢气2与循环氢气12混合并通过氢气加热器E-102加热至150℃后从顺酐气化塔T101底部进料,顺酐在顺酐气化塔T101内被气化,塔顶气相3通过MA加氢进出料换热器E-104被加热至220℃后进入MA加氢反应器R-101A/B/C/D。气化塔的底部物料4通过气化塔釜泵P-101抽出,其中分离出一小部分6至罐区重油储罐,其余5通过气化塔釜加热器E-103加热至150℃后返回至气化塔。
顺酐气化塔T101的塔顶操作压力为0.45MPaG,塔顶操作温度为130℃,塔釜循环物料是液相进料质量的十倍。氢气和顺酐的进料摩尔比为100。
b.按附图1所示,在MA加氢反应器R-101A/B/C/D中顺酐和氢气反应生成γ-丁内酯和丁二酸酐、四氢呋喃,同时有丁二酸酐加氢生成γ-丁内酯,反应温度为240℃,反应压力为0.4MPaG,氢气和顺酐的摩尔比为100,顺酐的质量空速为0.5。所用的加氢催化剂为Cu-Ni-Al 2O 3/SiO 2催化剂。加氢反应器R-101A/B/C/D分为4段,反应总体放热,每段反应产物分别通过MA加氢一段冷却器E-105、MA加氢二段冷却器E-106、MA加氢三段冷却器E-107冷却至230℃,冷却后进入下一段反应床层反应。加氢产物11通过E-104和E-108换热冷却至40℃,并通过MA加氢气液分离罐V-101实现气液分离,加氢气相产品12进入循环氢气压缩机,压力提升至0.6MPaG返回至顺酐气化单元的氢气加热器E-102,液相产品13去后续丁二酸酐产品精制单元的稳定塔T-102分离。
c.按附图2所示,顺酐加氢反应液13进入稳定塔T-102,塔顶分离出水、正丁醇、四氢呋喃等14进入脱水塔T-103,脱水塔顶部分离出含有少量正丁醇、四氢呋喃的工艺废水16,送至界外水处理。脱水塔底部γ-丁内酯和少量丁二酸酐17返回至脱轻塔。稳定塔底部产品15为γ-丁内酯和丁二酸酐、丁二酸,经泵送至脱轻塔T-104,塔顶分出γ-丁内酯和少量水、塔底分出丁二酸酐粗品19。脱轻顶不凝气18送至脱水塔T-103,脱轻塔顶冷凝液21分为三部分,一部分25循环至E-101作为溶剂,一部分23作为产 品送至罐区,其余部分24进入GBL加氢单元E-201。
稳定塔T-102:塔顶压力10kPa,理论板数40块,塔顶温度60℃,回流比9,塔釜温度142℃;脱水塔T-103:塔顶压力15kPa,理论板数35块,塔顶温度71℃,回流比2,塔釜温度141℃;脱轻塔T-104:塔顶压力57kPa,理论板数45块,塔顶温度180℃,回流比2,塔釜温度240℃;脱重塔T-105:塔顶压力10kPa,理论板数35块,塔顶温度180℃,回流比0.5,塔釜温度200℃;上述所有塔均为负压塔,各塔真空系统均采用GBL为密封液的液环泵。
d.按附图3所示,来自丁二酸酐产品精制单元的γ-丁内酯24与后续1,4-丁二醇精制单元返回的γ-丁内酯31混合后,进入GBL加氢反应器R-201,与来自界外的补充新氢22和GBL加氢反应循环氢气27反应,γ-丁内酯加氢生成1,4-丁二醇,同时生成少量四氢呋喃、正丁醇,以及缩醛等副产物。
GBL加氢反应温度为150℃,反应压力为6.5MPaG,氢气和γ-丁内酯的摩尔比为50。新氢22通过K-201压缩至反应所需的压力。反应产物26经过E-203冷却至40℃后,在GBL加氢气液分离罐V-201实现气液分离,气相27通过循环氢压缩机K-202增压至6.5MPaG后返回至反应器,液相产品28进入后续产品精制单元。
按附图3所示,GBL加氢产品冷却后的液相产品28经管道输送至GBL回收塔T-201,塔顶产品31冷却后GBL经泵P-201输送至γ-丁内酯加氢单元继续反应,塔顶不凝气29进一步深冷分离出其中的水和轻组分送至界外水处理。塔底的物料30经泵P-202输送至BDO产品塔T-202。BDO产品塔顶部采出BDO产品33,经BDO产品冷却器E-204冷却后,再经泵P-203输送至罐区产品罐;BDO产品塔塔底为缩醛等重组分32,经泵P-204输送至罐区储存。
BDO产品精制过程中,所有塔均为负压塔,GBL回收塔T-201:塔顶压力12kPa,理论板数35块,塔顶温度131℃,回流比3,塔釜温度175℃;BDO产品塔T-202:塔顶压力3kPa,理论板数30块,塔顶温度138℃,回流比1,塔釜温度162℃。
本实施例的原料和产品分析结果见表1。
表1
Figure PCTCN2022099098-appb-000001
由表1可知,实施例1条件下,顺酐的转化率在99%以上,1,4-丁二醇选择性在42%以上,丁二酸酐选择性在48%以上,主要产品总选择性为90%以上。
实施例2
实施流程与实施例1相同,改变顺酐加氢反的条件:反应温度为250℃,反应压力为0.4MPaG,氢气和顺酐的摩尔比为150,顺酐的质量空速为0.3。其余所有条件和流程与实施例1相同。
本实施例的原料和产品分析结果见表2。
表2
Figure PCTCN2022099098-appb-000002
由表2可知,实施例2条件下,顺酐的转化率在99%以上,1,4-丁二醇选择性在44.8%以上,丁二酸酐选择性在47.1%以上,产品总选择性为91%以上。
实施例3
实施流程与实施例1相同,改变顺酐加氢反的条件:反应温度为260℃,反应压力为0.4MPaG,氢气和顺酐的摩尔比为200,顺酐的质量空速为0.1。其余所有条件与实施例1相同。
本实施例的原料和产品分析结果见表3。
表3
Figure PCTCN2022099098-appb-000003
由表3可知,实施例3条件下,顺酐的转化率在99%以上,1,4-丁二醇选择性在47.4%以上,丁二酸酐选择性在44.2%以上,主要产品总选择性为91%以上。
对比实施例1~3结果,随着顺酐加氢的反应温度升高、氢气和顺酐的摩尔比提高、顺酐质量空速的降低,1,4-丁二醇选择性逐渐增加,丁二酸酐选择性逐步降低。加氢的深度逐步提高。
本发明专利并不限于上述实施方式,采用与专利上述实施例相同或近似的工艺流程,而得到的其他工艺流程设计,均在本发明专利的保护范围之内。

Claims (6)

  1. 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法,其特征在于:顺酐通过两步加氢得到产品1,4-丁二醇、丁二酸酐;
    该方法包含以下步骤:
    a.顺酐加氢:
    液相顺酐和来自后续分离单元的γ-丁内酯混合后经进料加热器加热后进入气化塔顶部,新鲜氢气与循环氢气混合并加热后进入气化塔底部,顺酐在气化塔内被气化,塔顶气相与顺酐加氢反应出料换热被加热后进入顺酐加氢反应器,气化塔的底部物料分离出一小部分至中间罐区重油罐,其余加热后返回至气化塔;
    在顺酐加氢反应器中顺酐和氢气在加氢催化剂的作用下反应生成γ-丁内酯和丁二酸酐、四氢呋喃、水,同时由丁二酸酐加氢生成γ-丁内酯,以及少量丁二酸酐水合生成丁二酸,加氢产物通过逐级冷却实现气液分离,加氢气相产品经冷却后进入循环氢气压缩机,返回至顺酐气化单元的氢气加热器,液相产品去后续丁二酸酐产品精制单元分离;
    b.丁二酸酐产品精制:包括稳定塔、脱水塔、脱轻塔和脱重塔;
    首先顺酐反应液进入稳定塔,塔顶分离出水、正丁醇、四氢呋喃等进入脱水塔,脱水塔顶部分离出含有少量正丁醇、四氢呋喃的工艺废水,送至界外水处理;脱水塔底部γ-丁内酯和少量丁二酸返回至稳定塔,稳定塔底部产品为γ-丁内酯和丁二酸酐、丁二酸,经泵送至脱轻塔;
    脱轻塔顶冷却后的不凝气产物送至脱水塔分离,塔顶液相产品经冷却后分为三部分,一部分循环至顺酐加氢单元作为溶剂,一部分作为产品送至罐区,其余部分进入γ-丁内酯加氢单元;在脱轻塔中丁二酸脱水反应生成丁二酸酐,塔底丁二酸酐粗品经泵送至脱重塔进一步分离;脱重塔塔顶分离得到丁二酸酐产品,经泵送至罐区丁二酸酐产品罐,脱重塔底为重油,经泵送至罐区重油储罐;
    c.γ-丁内酯加氢:来自丁二酸酐产品精制单元的γ-丁内酯(GBL)与后续1,4-丁二醇精制单元返回的GBL混合后,经泵输送并加热后进入GBL加氢反应器,与来自界外的补充新氢和GBL加氢反应循环氢气反应,生成1,4-丁二醇,同时生成少量四氢呋喃、正丁醇,以及缩醛;
    反应产物经过逐级冷却后,实现气液分离,气相通过循环氢压缩机增压后返回至反应器,液相产品进入后续1,4-丁二醇产品精制单元;
    d.1,4-丁二醇产品精制:GBL加氢产品冷却后的液相产品经管道输送至GBL回收塔,塔顶产品冷却后GBL经泵输送至γ-丁内酯加氢单元继续反应,塔顶不凝气进一步深冷分离出其中的水和轻组分送至界外水处理;塔底的物料经泵输送至BDO产品塔,BDO产品塔顶部采出BDO产品,经泵输送至罐区产品罐;BDO产品塔塔底为缩醛等重组分,经泵输送至罐区储存。
  2. 根据权利要求1所述的方法,其特征在于:顺酐加氢过程中,顺酐和循环γ-丁内酯的质量比例为0.5~2,顺酐气化塔的操作压力为0.1~1MPaG,操作温度为120~220℃,塔釜循环物料加热至140~220℃返塔,循环物料是液相进料质量的5~10倍,液相和氢气进气化塔的温度为100~150℃,氢气和顺酐的进料摩尔比为20~200。
  3. 根据权利要求1所述的方法,其特征在于:顺酐加氢过程中,加氢反应分为四段,每两段之间通过废热锅炉产汽压力来控制反应温度,同时副产1~2.5MPaG的蒸汽;每段床层的反应温度为200~300℃,反应压力为0.1~1MpaG,顺酐的质量空速为0.05~1,所用的加氢催化剂为Cu-Ni-Al 2O 3/SiO 2催化剂。
  4. 根据权利要求1所述的方法,其特征在于:丁二酸酐产品精制过程中,所有塔均为负压塔,各塔操作条件如下:
    (1)稳定塔:塔顶压力5~50kPa,理论板数20~50块,塔顶温度45~100℃,回流比3~10,塔釜温度120~180℃;
    (2)脱水塔:塔顶压力5~50kPa,理论板数30~50块,塔顶温度45~80℃,回流比0.5~5,塔釜温度100~150℃;
    (3)脱轻塔:塔顶压力10~60kPa,理论板数20~50块,塔顶温度120~180℃,回流比0.5~5,塔釜温度200~250℃;
    (4)脱重塔:塔顶压力10~50kPa,理论板数20~50块,塔顶温度160~200℃,回流比1~5,塔釜温度180~210℃;
    上述各塔真空系统均采用γ-丁内酯为密封液的液环泵,脱水塔和脱轻塔共用一个真空系统,稳定塔和脱重塔分别采用独立的真空系统。
  5. 根据权利要求1所述的方法,其特征在于:γ-丁内酯加氢过程中,氢气和γ-丁内酯的反应进料摩尔比为20~300,反应温度控制在120~200℃,反应压力控制在2~8MPaG,γ-丁内酯的液时质量空速为0.05~2,所用的加氢催化剂为Cu-Ni-Al 2O 3/SiO 2催化剂。
  6. 根据权利要求1所述的方法,其特征在于:1,4-丁二醇产品精制过程中,所有塔 均为负压塔,各塔操作条件如下:
    (1)GBL回收塔:塔顶压力5~50kPa,理论板数20~50块,塔顶温度100~150℃,回流比2~5,塔釜温度150~200℃;
    (2)BDO产品塔:塔顶压力2~50kPa,理论板数20~50块,塔顶温度120~160℃,回流比0.5~5,塔釜温度180~220℃;
    上述GBL回收塔真空系统采用GBL为密封液的液环泵,BDO产品塔真空系统采用BDO为密封液的液环泵。
PCT/CN2022/099098 2021-12-24 2022-06-16 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法 WO2023115843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22740273.2A EP4223735A4 (en) 2021-12-24 2022-06-16 PROCESS FOR PRODUCTION OF 1,4-BUTANEDIOL AND CO-PRODUCTION OF SUCCINIC ANHYDRIDE BY DIRECT HYDROGENATION OF MALEIC ANHYDRIDE
US17/759,436 US20240208918A1 (en) 2021-12-24 2022-06-16 A method for direct hydrogenation of maleic anhydride to produce 1,4-butanediol and co-produce succinic anhydride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111599651.3 2021-12-24
CN202111599651.3A CN114181038B (zh) 2021-12-24 2021-12-24 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法

Publications (1)

Publication Number Publication Date
WO2023115843A1 true WO2023115843A1 (zh) 2023-06-29

Family

ID=80544916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099098 WO2023115843A1 (zh) 2021-12-24 2022-06-16 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法

Country Status (4)

Country Link
US (1) US20240208918A1 (zh)
EP (1) EP4223735A4 (zh)
CN (1) CN114181038B (zh)
WO (1) WO2023115843A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181038B (zh) * 2021-12-24 2022-10-11 常州瑞华化工工程技术股份有限公司 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法
CN114656331A (zh) * 2022-05-07 2022-06-24 抚顺石化东源化工助剂有限公司 高产率1,4-丁二醇生产方法
CN114920913B (zh) * 2022-05-23 2023-04-14 中国科学院山西煤炭化学研究所 顺酐催化转化制备聚丁二酸丁二醇酯的方法及由其制得的聚丁二酸丁二醇酯

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584419A (en) 1983-11-29 1986-04-22 Davy Mckee Ltd. Process for the production of butane-1,4-diol
US4751334A (en) 1985-06-04 1988-06-14 Davy Mckee (London) Limited Process for the production of butane-1,4-diol
US4795824A (en) 1986-08-01 1989-01-03 Davy Mckee (London) Limited Process for the production of dialkyl maleates
JPH02233632A (ja) * 1989-03-08 1990-09-17 Tonen Corp 1,4―ブタンジオールの製法
US5196602A (en) * 1991-12-30 1993-03-23 The Standard Oil Company Two-stage maleic anhydride hydrogenation process for 1,4-butanediol synthesis
CN1182732A (zh) * 1996-11-15 1998-05-27 中国石油化工总公司 一种气相加氢制1,4-丁二醇的方法
CN1255914A (zh) * 1998-01-08 2000-06-07 潘托希米股份有限公司 一种生产四氢呋喃、γ-丁内酯和丁二醇的方法
CN103360209A (zh) 2012-04-01 2013-10-23 中国石油化工股份有限公司 联产1,4-丁二醇、γ-丁内酯和丁醇的方法
CN107253938A (zh) * 2017-08-17 2017-10-17 冯岩 顺酐直接加氢制备高纯度丁二酸酐的生产工艺
CN114181038A (zh) * 2021-12-24 2022-03-15 常州瑞华化工工程技术股份有限公司 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782190A (ja) * 1993-09-14 1995-03-28 Tosoh Corp 1,4−ブタンジオールの製法
CN1049207C (zh) * 1994-08-10 2000-02-09 中国石油化工总公司 1,4-丁二醇的制备方法
CN102188978A (zh) * 2011-03-28 2011-09-21 广州大学 一种顺酐气相加氢制备γ-丁内酯的催化剂
CN102389751B (zh) * 2011-08-17 2013-06-19 徐志刚 顺酐溶液加氢制备丁二酸酐的固定床反应器和方法
CN104607204B (zh) * 2015-01-29 2017-08-22 武汉科林精细化工有限公司 一种顺酐加氢连续化生产琥珀酸酐的催化剂及其制备方法
CN113332999B (zh) * 2021-06-03 2022-09-13 上海贯新科技有限公司 一种用于顺酐加氢制备丁二酸酐和1,4-丁二醇的新型催化剂

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584419A (en) 1983-11-29 1986-04-22 Davy Mckee Ltd. Process for the production of butane-1,4-diol
US4751334A (en) 1985-06-04 1988-06-14 Davy Mckee (London) Limited Process for the production of butane-1,4-diol
US4795824A (en) 1986-08-01 1989-01-03 Davy Mckee (London) Limited Process for the production of dialkyl maleates
JPH02233632A (ja) * 1989-03-08 1990-09-17 Tonen Corp 1,4―ブタンジオールの製法
US5196602A (en) * 1991-12-30 1993-03-23 The Standard Oil Company Two-stage maleic anhydride hydrogenation process for 1,4-butanediol synthesis
CN1182732A (zh) * 1996-11-15 1998-05-27 中国石油化工总公司 一种气相加氢制1,4-丁二醇的方法
CN1255914A (zh) * 1998-01-08 2000-06-07 潘托希米股份有限公司 一种生产四氢呋喃、γ-丁内酯和丁二醇的方法
CN103360209A (zh) 2012-04-01 2013-10-23 中国石油化工股份有限公司 联产1,4-丁二醇、γ-丁内酯和丁醇的方法
CN107253938A (zh) * 2017-08-17 2017-10-17 冯岩 顺酐直接加氢制备高纯度丁二酸酐的生产工艺
CN114181038A (zh) * 2021-12-24 2022-03-15 常州瑞华化工工程技术股份有限公司 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4223735A4
WU, ZHIGANG; ZHAO, YONG XIANG; DONG, HAI LIN; XU, LIN PING; LIU, DIAN SHENG: "Advances in catalyst systems for hydrogenation of maleic anhydride", MODERN CHEMICAL INDUSTRY, vol. 23, no. 3, 31 March 2003 (2003-03-31), CN , pages 22 - 24, 26, XP009541541, ISSN: 0253-4320 *

Also Published As

Publication number Publication date
CN114181038B (zh) 2022-10-11
EP4223735A1 (en) 2023-08-09
US20240208918A1 (en) 2024-06-27
CN114181038A (zh) 2022-03-15
EP4223735A4 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2023115843A1 (zh) 一种顺酐直接加氢生产1,4-丁二醇并联产丁二酸酐的方法
CN101357890B (zh) 采用热泵技术的碳酸二甲酯合成与精制工艺及其装置
WO2022166540A1 (zh) 一种制备马来酸二醇酯的工艺方法
CN114031580B (zh) 一种低能耗pbat副产四氢呋喃的精制装置及精制方法
CN109651110A (zh) 一种高纯1,4-丁二醇的生产方法
CN106554253B (zh) 一种醋酸酯加氢制乙醇的产品分离节能工艺
CN105237456A (zh) 一种吡咯烷酮类产品的生产方法
Song et al. Conceptual design of water separation process in glycerol-based acrylic acid production
CN114315569A (zh) 一种异丙醇和醋酸甲酯联产的工艺及其生产设备
CN115253337B (zh) 一种两塔热耦合反应-变压混合精馏制备异丙醇的方法、装置和应用
CN107089901A (zh) 一种1,4‑丁炔二醇提纯系统
CN116573701A (zh) 一种hppo法制环氧丙烷工艺废水回收处理方法及装置
CN102001938B (zh) 一种合成草酸二甲酯或草酸二乙酯并联产草酸的工艺及生产系统
JP2012219066A (ja) テトラヒドロフランの製造方法
CN214830035U (zh) 一种优化的顺酐直接加氢反应产物的分离系统
CN109896953A (zh) 乙酸乙酯生产工艺
CN205152115U (zh) 环己烯法环己酮生产过程中环己酮和环己醇分离节能装置
CN105566064B (zh) 一种醋酸加氢制备乙醇的方法
Wang et al. Process design and comprehensive 3E analysis of low carbon diol production with and without heat integration
CN113072425A (zh) 一种隔壁塔萃取精馏-变压精馏分离乙醇-环己醇-水的方法
CN115974652B (zh) 一种从1,4-丁炔二醇溶液中脱除甲醛的工艺
CN217340114U (zh) DMMn生产中的防堵装置
CN114230465B (zh) 一种分离碳酸二甲酯和甲醇共沸混合物的工艺
CN109734556A (zh) 一种1,4丁二醇组合物的制备方法
CN115672249B (zh) 一种异丙醇醚化反应精馏制备异丙醚的系统、方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17759436

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022740273

Country of ref document: EP

Effective date: 20220725

WWE Wipo information: entry into national phase

Ref document number: 140350140003000439

Country of ref document: IR

NENP Non-entry into the national phase

Ref country code: DE