WO2023113413A1 - Waste synthetic polymer pyrolysis system - Google Patents

Waste synthetic polymer pyrolysis system Download PDF

Info

Publication number
WO2023113413A1
WO2023113413A1 PCT/KR2022/020174 KR2022020174W WO2023113413A1 WO 2023113413 A1 WO2023113413 A1 WO 2023113413A1 KR 2022020174 W KR2022020174 W KR 2022020174W WO 2023113413 A1 WO2023113413 A1 WO 2023113413A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
oil
synthetic polymer
casing
decomposition reactor
Prior art date
Application number
PCT/KR2022/020174
Other languages
French (fr)
Korean (ko)
Inventor
박인만
Original Assignee
티엠에스 꼬레아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티엠에스 꼬레아 filed Critical 티엠에스 꼬레아
Publication of WO2023113413A1 publication Critical patent/WO2023113413A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/12Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of plastics, e.g. rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a waste synthetic polymer pyrolysis system, and more particularly, to a waste synthetic polymer pyrolysis system capable of thermally emulsifying polymer waste such as plastics or synthetic rubber by heating and then cooling to extract liquefied oil components. .
  • the prior art related to the thermal decomposition and emulsification system of waste synthetic polymers is "Continuous production method and system for gasoline, kerosene, and diesel using waste plastic" disclosed in Korean Patent Registration No. 10-0322663.
  • Continuous production system for gasoline, kerosene and diesel using waste plastics including the following: A waste plastics molten mixture and silicate alumina-based solid acid catalyst particles are introduced from top to bottom to perform cracking and isomerization reactions, and at the bottom the A fluidized-bed catalytic cracker having a steam injector for evaporating unevaporated gas oil on the surface of the catalyst and communicating with the fractionation tower via a pressure control means at the upper end; Among the catalyst particles falling to the lower end of the fluidized-bed catalytic cracker, a predetermined size An external cyclone that selects only the catalyst particles; and an air injector and an exhaust gas pressure regulator are installed, the catalyst transferred from the external cyclone is regenerated, and the regenerated catalyst is returned to the fluidized bed cat
  • the thermally emulsified gas outlet part at the end of the casing is not included in the combustion chamber (heating device) and is exposed to the air, so that the thermally emulsified gas is air-cooled and liquefied at the fluid outlet at the end of the casing, resulting in liquid clogging.
  • the thermally emulsified gas outlet part at the end of the casing is not included in the combustion chamber (heating device) and is exposed to the air, so that the thermally emulsified gas is air-cooled and liquefied at the fluid outlet at the end of the casing, resulting in liquid clogging.
  • the prior art related to the thermal decomposition and emulsification system of waste synthetic polymers is "Continuous production method and system for gasoline, kerosene, and diesel using waste plastic" disclosed in Korean Patent Registration No. 10-0322663.
  • Continuous production system for gasoline, kerosene and diesel using waste plastics including the following: A waste plastics molten mixture and silicate alumina-based solid acid catalyst particles are introduced from top to bottom to perform cracking and isomerization reactions, and at the bottom the A fluidized-bed catalytic cracker having a steam injector for evaporating unevaporated gas oil on the surface of the catalyst and communicating with the fractionation tower via a pressure control means at the upper end; Among the catalyst particles falling to the lower end of the fluidized-bed catalytic cracker, a predetermined size An external cyclone that selects only the catalyst particles; and an air injector and an exhaust gas pressure regulator are installed, the catalyst transferred from the external cyclone is regenerated, and the regenerated catalyst is returned to the fluidized bed cat
  • the thermally emulsified gas outlet part at the end of the casing is not included in the combustion chamber (heating device) and is exposed to the air, so that the thermally emulsified gas is air-cooled and liquefied at the fluid outlet at the end of the casing, resulting in liquid clogging.
  • the thermally emulsified gas outlet part at the end of the casing is not included in the combustion chamber (heating device) and is exposed to the air, so that the thermally emulsified gas is air-cooled and liquefied at the fluid outlet at the end of the casing, resulting in liquid clogging.
  • the decomposition reactor for heating and decomposing the waste synthetic polymer;
  • a cooling device for cooling the components produced in the decomposition reactor; It includes a storage device for storing components produced in the decomposition reactor and the cooling device;
  • the decomposition reactor includes a cylindrical casing with a spiral guide formed on an inner circumferential surface; Includes a power transmission device for forward or reverse rotation of the casing; In the casing, it is characterized in that the fork rail is formed to extend by a predetermined length from the waste inlet and spaced apart from the guide by a predetermined distance.
  • the fork rail may include two flat plates in which a liquid passage is rotatably fixed to the fluid outlet of the casing and protrudes by a predetermined distance toward the waste inlet.
  • the fork rail is 80% to 120% of the size of the forklift fork, and when the casing is in a stationary state, it rotates around the fixture by its own weight so that the two flat plates are parallel to the ground surface.
  • the power transmission device is formed on the side of the waste inlet, characterized in that the combustion chamber is included up to the fluid outlet.
  • the waste inlet is characterized in that it is fixed by a plurality of bolts and nuts having a locking hole.
  • a pressure regulating plate rotatable by a rotating shaft is formed by a motor to which pressure and temperature sensors are attached to the fluid discharge port.
  • the cooling device includes a water tank in which a predetermined accommodation space is formed;
  • the cooling water tank heat exchange pipe is characterized in that a plurality of pipes are alternately connected to form a predetermined flow path.
  • the cooling water tank heat exchange pipe is configured so that the height gradually decreases from the input end to the output end, and the transfer from the input end to the output end is accelerated by the weight of the material inside the cooling water tank heat exchange pipe according to the density change due to cooling.
  • the cooling device includes a water tank in which a predetermined accommodation space is formed; a water circulation device for circulating water in the water tank; It includes a cooling water tank heat exchange pipe accommodated in the water tank and in which heat exchange with water occurs;
  • the cooling water tank heat exchange pipe is characterized in that a plurality of pipes are alternately connected to form a predetermined flow path.
  • the produced oil can be used in various fields.
  • the oil production per hour is higher (less loss time) compared to the existing method, and the number of people required for work is small.
  • the generated harmful gas can be liquefied after the combustion reaction to be stored, purified, and discharged in the form of wastewater, thereby minimizing the impact on air pollution.
  • FIG. 1 is a schematic diagram of a waste synthetic polymer pyrolysis system according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a decomposition reactor 3 according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a casing 3a according to an embodiment of the present invention.
  • FIG. 4 is a view of an inlet 3b according to an embodiment of the present invention.
  • FIG 5 is a view of a cutting device 4 according to an embodiment of the present invention.
  • FIG. 6 is a view of a fork rail 3d according to an embodiment of the present invention.
  • FIG 7 and 8 are views of the rear side of the decomposition reactor according to an embodiment of the present invention.
  • FIG. 9 is a diagram of a power transmission device 3h according to an embodiment of the present invention.
  • FIG. 10 is a view showing a cross section of a decomposition reactor according to an embodiment of the present invention.
  • FIG. 11 is a view of a distillation column 5 according to an embodiment of the present invention.
  • FIG. 12 is a view of a settling tank 8 according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a cooling device 6 according to an embodiment of the present invention.
  • FIG. 14 is a view of a cooling pipe fin according to an embodiment of the present invention.
  • FIG. 15 is a view of a crushing drum 11 according to an embodiment of the present invention.
  • 16 is a diagram of a gas impact crusher 11' according to an embodiment of the present invention.
  • a shredding device In order to break up the waste in a compressed state, a shredding device, an agitator or a high-pressure air blasting device may be used.
  • the thermal emulsification device may be composed of a decomposition reactor 3 and a heating device.
  • the heating device may be configured separately from the decomposition reactor (3) or as a part of the decomposition reactor (3).
  • the decomposition reactor 3 may include one or more of a rotary kiln (rotary drying incinerator), a CSTR decomposition reactor (Continuous Stirred Tank Reactor), a tubular reactor, and a batch reactor.
  • a rotary kiln rotary drying incinerator
  • CSTR decomposition reactor Continuous Stirred Tank Reactor
  • tubular reactor a tubular reactor
  • batch reactor a batch reactor.
  • the type of decomposition reactor 3 can be selected by a person skilled in the art according to the input amount per hour (or per hour or per day) of waste with reference to the description of the present invention.
  • an air pipe and a vacuum pump may be connected to one side of the decomposition reactor 3 to remove air introduced into the decomposition reactor 3 in the process of introducing waste.
  • the decomposition reactor 3 includes a cylindrical casing 3a having a spiral guide (blade or screw, 3a-1) formed on the inner circumferential surface in the form of a screw thread; a heating device for heating the cylindrical casing (3a) from the outside of the cylindrical casing (3a); It may be configured to include a power transmission device (3h) for forward or reverse rotation of the cylindrical casing (3a).
  • the length (height of a cylinder/cylinder) of the casing of the decomposition reactor 3 is usually about 7m to 8m.
  • the waste is introduced into the casing 3a by equipment such as a forklift through the entrance of the casing 3a, and the waste is pushed into the casing 3a by pushing the waste into the fork of the forklift.
  • problems such as failure of the decomposition reactor 3 or damage to the guide 3a-1 occur due to impact between the fork of the forklift and the guide 3a-1.
  • the guide (3a-1) may be one to multiple coupled to one side or multiple sides of the casing (3a) when observing the decomposition reactor (3) in a cross section perpendicular to the axis of rotation.
  • 3 shows an embodiment in which 13 guides 3a-1 are combined.
  • the cylindrical casing 3a may be configured to have a waste inlet 3b on one side, a fluid outlet 3c on the other side, and a sludge outlet (not shown) on the other side.
  • the inlet (3b) is more firmly fixed and easily opened and closed by bolts and nuts (3b-1) formed with locking holes (3b-2) due to the high pressure in the decomposition reactor (3). It can be.
  • the guide 3a-1 may assist in the transfer of reactants/products (a mixture including gas/liquid/solid generated in the thermal emulsification process) from the waste inlet to the fluid outlet in the thermal emulsification process.
  • reactants/products a mixture including gas/liquid/solid generated in the thermal emulsification process
  • the weight of the waste introduced into the decomposition reactor 3 is usually about 1 ton, most of the waste rotates in place.
  • the sludge generated in the thermal emulsification process may be transported to a sludge outlet by rotating the cylindrical casing 3a in a reverse direction.
  • the fixed body 3d-2 having the liquid passage 3d-3 formed in the fluid outlet 3c of the cylindrical casing 3a is rotatable. It may be configured to form a fork rail (3d) including two flat plates (3d-1) that are fixed and protrude by a predetermined distance in the direction of the waste inlet.
  • the fork rail 3d may be configured parallel to the ground surface when the cylindrical casing 3a is in a stationary state.
  • the fork rail 3d is preferably formed in the range of 80% to 120% of the fork size of the forklift. According to the distance between the forks of the forklift, the two plates 3d-1 may be configured in parallel and spaced apart from the guide 3a-1 by a predetermined distance. Through this configuration, it is possible to prevent a collision between waste and the fork of the forklift and the guide 3a-1.
  • the thermally emulsified gas outlet portion at the end of the casing (3a) was not included in the combustion chamber (heating device) and was exposed to the air, and the thermally emulsified gas was discharged through the fluid discharge port (3c) at the end of the casing.
  • the conventional decomposition reactor 3 has a structure in which the power transmission device 3h for rotating the casing 3a is provided on the outlet side of the casing 3a so that the combustion chamber cannot be expanded, but in the embodiment of the present invention, the power transmission device 3h It is provided on the waste inlet side, and the combustion chamber (3e) is expanded to include the thermal emulsification gas outlet to fundamentally prevent the clogging of the fluid outlet (3c).
  • An exhaust pipe 3f may be connected to the thermal emulsification gas outlet at the end of the combustion chamber 3e. Since the exhaust pipe 3f is connected to the outlet of the thermal emulsification gas, the gas (thermal energy) in the combustion chamber 3e is exhausted after contacting the outlet of the casing 3a, so that the thermal emulsification gas can completely escape from the decomposition reactor 3. Heating may be continued until
  • a pressure regulating plate ( 3g-2) may be included.
  • the motor 3g may include a sensor for measuring pressure and temperature in the decomposition reactor.
  • the power transmission device (3h) of the decomposition reactor (3) is connected to the secondary gear (inner ring gear, 3h-2) formed at one end of the casing (3a) and the secondary gear (3h-2).
  • the primary gear 3h-1 rotates the secondary gear 3h-2
  • the secondary pulley 3h-4 rotates the primary gear 3h-1
  • the secondary pulley 3h-4 and a primary pulley 3h-3 connected through a belt 3h-5
  • a motor 3h for rotating the primary pulley 3h-3.
  • the gear ratio/reduction ratio/gear ratio between the primary pulley (3h-3)-second pulley (3h-4) and primary gear (3h-1)-second gear (3h-2) is "one to many (primary -> The rate at which it is decelerated as it goes to the secondary)". Since the casing (3a) does not require a high rotational speed, the primary pulley (3h-3)-secondary pulley (3h- 4) and the first gear (2h-1)-secondary gear (3h-2) by multi-stage deceleration (shifting), thereby amplifying the magnitude of the force applied to the casing (3a), so that even with a small motor (3h) output, the casing ( 3a) can rotate smoothly.
  • a roller 3i for assisting rotation by separating the casing 3a from the inner circumferential surface of the combustion chamber 3e by a predetermined distance will be provided.
  • a plurality of rollers 3i may be connected in multiple stages to the outer circumferential surface of the casing 3a. Each roller 3i distributes and supports the load of the casing 3a, and can assist the casing 3a to rotate when the casing 3a rotates according to the drive of the power transmission device 3h.
  • a fuel spray nozzle 3e-1 and a spark plug 3e-2 may be provided inside the combustion chamber 3e.
  • a plurality of fuel spray nozzles 3e-1 and spark plugs 3e-2 may be provided at predetermined intervals so as to uniformly heat the inside of the combustion chamber 3e.
  • Oil in a state where each component is mixed as described above can be distributed as industrial heavy oil.
  • each separation device can be connected including pipes and pumps.
  • a distillation column 5 connected to the discharge end of the decomposition reactor 3, a cooling device 6 connected to the diesel gas discharge end of the distillation column 5, water and water from the fluid discharged from the cooling device 6
  • An oil-water separator (7) that separates oil
  • a storage tank that temporarily stores the oil separated from the oil-water separator (7)
  • a settling tank that precipitates the fluid stored in the storage tank, and the sediment inside the settling tank (8)
  • a sedimentation separator for removing, a centrifugal separator 9 for extracting residual oil from the sediment separated in the sedimentation separator, and a sludge treatment device for receiving the sludge discharged from the centrifugal separator 9 may be included.
  • the distillation column 5 may be formed to have a long inner space in a direction perpendicular to the ground. It may be configured in a cylindrical or rectangular (pillar) shape.
  • an inlet 5-1 may be formed for gas flowing from the discharge end of the decomposition reactor 3.
  • the high boiling point product (or undecomposed reactant) which is in a liquid state even at a high temperature, is discharged through the lower discharge port provided at the bottom of the distillation column (5). It exits through (5-2), and the lower discharge port (5-2) is reintroduced into the decomposition reactor (3) to induce decomposition into low-boiling products.
  • the liquid waste may be conveyed into the decomposition reactor 3 through the inlet.
  • a heating device or a cooling device may be provided so that the gas inside the distillation column 5 reaches a temperature within a desired range for each stage.
  • the temperature at each stage can be controlled through this.
  • the gas (heavy oil) in contact with the tray cap 5-4 is liquefied by maintaining the temperature below 350 ° C, and the liquefied heavy oil is transferred to the heavy oil tank 18d through pipes and equipment. It can be.
  • the temperature is maintained in the range of 220 ° C to 250 ° C to liquefy the gas (diesel) in contact with the tray cap 5-4, and the liquefied diesel is transferred to the diesel tank 18b through pipes and equipment. It can be.
  • the gas (kerosene) in contact with the tray cap is liquefied by maintaining the temperature in the range of 150 ° C to 240 ° C, and the liquefied kerosene can be transferred to the diesel tank 18b through pipes and equipment.
  • the temperature is maintained in the range of 75 ° C to 150 ° C to liquefy the gas (naphtha) in contact with the tray cap 5-4, and the liquefied naphtha can be transferred to the naphtha tank through pipes and equipment. .
  • the temperature is maintained in the range of 40 ° C to 75 ° C to liquefy the gas (gasoline) in contact with the tray cap 5-4, and the liquefied gasoline is transferred to the gasoline tank 18a through pipes and equipment. It can be.
  • LPG may be discharged through an upper discharge port provided at the top of the distillation column 5.
  • the bubble cap tray may have a shape in which the hole of the tray 5-3 is formed in a chimney shape, and a cap is mounted on the chimney shape.
  • This configuration is suitable for the distillation column 5 having a high contamination coefficient, and in the embodiment of the present invention, it is preferable to apply the above configuration because the generation of a predetermined contaminant is predicted by thermally emulsifying the waste.
  • the oil-water separation device 7 includes an oil-water separation tank equipped with a predetermined accommodation space, a fluid supply pipe, an oil discharge pipe provided at the top of the oil-water separation tank, and an oil-water separation tank. It may include a water discharge pipe provided at the bottom and through which water is introduced and discharged.
  • the density of each liquid at room temperature is: Water 1000kg/m3, gasoline 680kg/m3, kerosene 780 ⁇ 810kg/m3, light oil 820 ⁇ 845kg/m3, heavy oil 890 ⁇ 1010kg/m3. (m3 : cubic meter)
  • the fluid is supplied to the oil/water separator 7 in a state in which at least the heavy oil component is separated from the front end of the oil/water separator 7 .
  • the oil-water separation process may be performed in a state including heavy oil by dissolving other solutes in water or using a hydrophilic solvent having a higher density than water (heavy oil).
  • a water level sensor is provided in the oil-water separation tank, so that the water level in the oil-water separation tank can be kept constant.
  • HCl is produced during the decomposition of polyvinyl chloride (PVC). If the foreign substances are not completely removed, they can cause fatal damage to internal combustion engines, etc. when using oil, and can also adversely affect the human body and the environment, so it is important to properly separate and remove these harmful foreign substances.
  • PVC polyvinyl chloride
  • the primary oil storage device may include the function of the settling tank (8).
  • the body of the sedimentation tank 8 is formed in a cylindrical shape as a whole, and the lower portion is configured to have a hopper shape (inverted cone/polygonal pyramid shape) with a predetermined inclined surface formed on the circumferential surface.
  • a transport pipe and a pump capable of transporting sediment may be connected to the lower end of the sedimentation tank 8.
  • An oil inlet 8-1 may be provided at one side of the settling tank 8, and an oil outlet 8-2 may be provided at a position lower than the water level of the settling tank 8 by a predetermined height.
  • sludge is separated and discharged from the thermal emulsifier, but some sludge with small particles may be introduced together with gases, and some foreign substances are converted to gas or liquid at high temperatures and return to solid when the temperature is lowered, forming solid sludge. can remain in the form
  • the sludge Since the sludge has a higher density than the oil component, it is precipitated in the sedimentation tank 8, and the sludge and some oil components can be discharged through the sediment outlet 8-3.
  • phthalic acid is precipitated as phthalic anhydride, and phthalic anhydride is deposited on the pipe, causing clogging of the pipe.
  • phthalic anhydride may be precipitated in the precipitation tank 8 as described above and separated from the oil component.
  • predetermined heating means such as heating wires / planar heaters may be provided in all / part of the pipe (including equipment) from the decomposition reactor 3 to the storage device.
  • the heating temperature is preferably 130°C or higher.
  • the heating means may be omitted for piping or equipment having a temperature of 130 ° C or higher by receiving heat from the heating device (decomposition reactor 3, etc.).
  • a centrifugal separator 9 may be connected to the rear end of the sedimentation separator.
  • the sludge After centrifugation, the sludge is transferred to the sludge treatment device, and the oil component may be re-introduced through the upper part of the sedimentation separator (settling tank 8). While circulating through the sediment separator-centrifugal separator (9), the ratio of foreign matter components such as sludge or phthalic anhydride mixed with oil can be converged to 1% or less.
  • hydrochloric acid (chlorine) generated during thermal decomposition of waste vinyl or PVC has a very high solubility in water, most of it can be removed while contacting the water in the oil-water separator 7 described above.
  • the oil-water separation device 7 may include a buffer solution or a basic solution so as to accommodate a sufficient amount of hydrochloric acid.
  • a pH measuring sensor may be provided in a pipe, etc. When the pH value measured by the pH measuring sensor is below a predetermined value (for example, when the pH is less than 4), the aforementioned buffer solution or basic solution is poured into the water tank or pipe. It may also be configured to inject a buffer solution or basic solution after discharging a solution having a low pH value.
  • the chlorine removal device may be configured in the form of a chlorine removal system in which components are distributed throughout the system, rather than a single device located on one side of the system.
  • gaseous oil components gasoline, heavy oil, light oil, kerosene, etc.
  • a cooling device 6 may be connected to the rear end of the separator to cool and liquefy it.
  • the boiling points of crude oil components are: LPG 25°C or less, gasoline 40 ⁇ 75°C, naphtha 75°C ⁇ 150°C, kerosene 150 ⁇ 240°C, diesel 220 ⁇ 250°C, heavy oil 350°C or more (based on fractional distillation).
  • the water tank cooling device 6 includes a water tank 6-1 in which a predetermined accommodation space is formed, and a pipe and a pump for injecting water into the water tank 6-1. , A pipe and a pump for discharging water from the water tank (6-1), a cooling means for cooling the water again, and a cooling water tank heat exchange pipe (6) for generating heat exchange between water and oil through the water tank (6-1). -2), a bend pipe 6-4 connecting each pipe, and a pipe cover 6-3 closing an end of an unused pipe.
  • the cooling means is configured to lower the temperature using a heat pump or the like, or a heat sink 16 such as river/sea water, a water storage tank that can ignore temperature changes compared to the water tank 6-1 because the water capacity is very large)
  • a heat pump or the like or a heat sink 16 such as river/sea water, a water storage tank that can ignore temperature changes compared to the water tank 6-1 because the water capacity is very large
  • a configuration in which water is supplied from and the water is discharged to the heat sink 16 may be used. Since the water tank 6-1 is in contact with a pipe having high thermal conductivity, the direct effect on environmental pollution is small even if the water used as cooling water is discharged to the river or the sea as it is.
  • the water is cooled to a predetermined temperature before discharging and discharged, but the water discharged by generating turbulence around the discharge end (water heated by being used as cooling water) and It can be configured to mix river/sea water quickly.
  • the amount of energy required for cooling is relatively small compared to a configuration in which the water used as the cooling water is cooled by the cooling means and then supplied again as the cooling water.
  • the pipe is composed of a plurality of rows from the upper part 6a to the lower part 6b of the water tank 6-1, and each row may be alternately connected.
  • the pipe diameter can be configured to gradually decrease from the upper pipe 6a to the lower pipe 6b.
  • the flow rate is relatively slow in the beginning of cooling, and the pipe diameter of the last pipe row (oil output end, 6b) is relatively narrow (32A), the flow rate can be quickly configured at the time when cooling is completed.
  • the pipes may be connected so that the height gradually decreases from the upper pipe 6a to the lower pipe 6b so that the oil component, whose density increases as it cools, naturally flows toward the outlet of the cooling water tank due to its own weight.
  • the pipe 6-2 is a water tank 6 -1), but is configured to open each column through the flange 6-3 at the outer portion of the water tank 6-1 (removable the pipe cover in the form of the flange 6-3) can When the pipe clogging phenomenon occurs, the clogging phenomenon can be solved by opening only the pipe cover of the corresponding pipe 6-2.
  • each pipe row in a U-shaped, H-shaped, or c-shaped form (bend pipe, 6-4) outside the water tank (6-1)
  • the corresponding flange (6-3 ) can be separated (opened) to quickly resolve clogging.
  • cooling fins are formed on the outer circumferential surface of the pipe in the water tank 6-1 to maximize the cooling efficiency by maximizing the contact surface area with water.
  • heat transfer between the pipe and water may be promoted by radially attaching flat metal fins F to the circumferential surface of the pipe in addition to the cooling fins.
  • flat metal fins F may be attached to the outer circumferential surface of the pipe.
  • the water tank 6-1 is provided with a stirring device, and the temperature of the water in the water tank 6-1 can be maintained uniformly by forced convection of the cooling water in the water tank 6-1.
  • a water discharge pipe and a pump are provided at the top of the water tank (6-1), and the cooling water that is heated and discharged can be transported to the decomposition reactor (3) and sprayed.
  • the load of the heating means increases due to the latent heat of the water. load can be reduced.
  • Each storage device may be provided with a pressure regulator and a pressure gauge for regulating the pressure inside the storage device (tank) due to vaporized gas.
  • a condenser (cooling device) or a gas discharge device may be provided in the storage device to lower the pressure.
  • the pressure is controlled by discharging and ventilating the gas, and in other cases, the pressure is reduced by condensing gas molecules through a condenser.
  • Sludge can also be regarded as a kind of waste or waste synthetic polymers to be recycled in the present invention, so it is possible to re-inject the sludge into the waste synthetic polymer thermal emulsification system.
  • the oil component extraction rate of the second thermal emulsification process may be relatively low compared to the first thermal emulsification process.
  • the secondary thermal emulsification process can be more effective as the under-thermal emulsification reaction of waste synthetic polymers (a state in which wastes are not properly decomposed and remain as synthetic polymers) occurs due to factors such as insufficient reaction time.
  • the sludge crushing device includes a pair of crushing drums 11-1 having the same rotation axis and spaced apart from each other by a predetermined interval, and the crushing drum 11-1 ) It may include a power transmission device (3h) connected to the drive shaft, and a power supply device (drive motor or internal combustion engine) that provides power to the power transmission device (3h).
  • the crushing drum 11-1 is configured in a cylindrical shape, and a plurality of crushing blades 11-2 may be spirally provided at predetermined intervals on the outer circumferential surface of the cylinder.
  • the helical crushing blades 11-2 formed on the plurality of crushing drums 11-1 may be provided to be offset from each other like a coupling part of a helical gear.
  • the description of misalignment may mean a configuration in which wear of the crushing blades 11-2 is suppressed by minimizing interference between the crushing blades 11-2.
  • the crushing drum 11-1 may be composed of a plurality of series. In this case, each row of the crushing drums 11-1 (in the direction of the drive shaft) may be provided in a state twisted by a predetermined angle.
  • the wastes crushed in row 1 (top crushing drum, 11a) are compressed and discharged in a parallel form in the east-west direction, In the crushing drum located in 11b), it is preferable to be formed in the north-south direction so as to be perpendicular to it.
  • the crushing rate through the crushing drum 11-1 drops sharply in the second half of the row (fourth row or later), so the cost of equipment, maintenance, and management It is preferable to provide up to 2 or 3 rows in consideration of ease and the like.
  • combustible materials of various compositions are generated in each process/device, and among them, oil components (gasoline, diesel, etc.) with high added value are present, while many combustible materials unsuitable for life or industry are also generated It can be.
  • the cost of transportation may be greater than the value of oil (in the process of transporting oil, oil of higher/more value than the value of the oil to be transported may be consumed). yes) can be used by itself in the system according to the embodiment of the present invention.
  • an internal combustion engine using the above low value-added oil (some of the intermediate/final products of the thermal emulsification system) may be provided.
  • the internal combustion engine includes a cylinder 11'-1 in which a predetermined combustion chamber is formed, a piston 11'-2 accommodated in the cylinder 11'-1, and the piston 11'- 2) may include a crankshaft connected to.
  • a predetermined sealing structure is formed between the cylinder 11'-1 and the piston 11'-2, so that the gas in the cylinder 11'-1 passes through the piston 11'-2 and the cylinder 11'- 1) It is preferable to be configured so that it does not flow into the opposite side. Since the general configuration of the internal combustion engine itself is a well-known technology, it will not be described in detail.
  • the energy generated in the internal combustion engine may be connected to an electric motor such as a motor and used as a power generation device.
  • the space (non-reactive gas accommodating space) formed on the opposite side of the combustion chamber of the cylinder 11'-1 may be connected to a sludge storage device.
  • the energy generated through the combustion of gas (oil) in the internal combustion engine quickly pushes the piston 11 ⁇ -2 to the end of the cylinder 11 ⁇ -1 (top dead center or bottom dead center), and the non-reactive gas accommodation space
  • the space formed in the sludge is rapidly compressed and supplied to the sludge storage device. Shock waves generated in this process can crush the sludge.
  • the output end (injection end) of the shock wave may be configured in the form of a nozzle.
  • the size of the dynamic pressure is rapidly increased by rapidly reducing the diameter of the pipe, thereby promoting the crushing of the sludge.
  • a gas that does not react with other gases such as air or has low reactivity, such as group 18 gas or nitrogen (N2) on the periodic table, in consideration of the maximum temperature at the time of ignition (explosion) reaction of the internal combustion engine can be used
  • a force is generated in the generator in a direction that interferes with the rotation of the crankshaft, which can hinder the crushing of sludge, so a coupler is connected to the crankshaft, and the sludge crushing process using shock waves is not performed It may be configured to be connected to the generator only in
  • a shock absorbing device may be provided on one or more sides in order to prevent damage or explosion of the sludge storage device due to shock waves.
  • the shock absorbing device is formed on one side of the outer circumferential surface of the sludge storage device and includes a shock absorbing space in which a predetermined cylinder is formed, and a buffering means (11'-7) (spring, elastic body, damper, etc.) connected to one end of the shock absorbing space. ).
  • a shock relieving piston (11'-6) is coupled to the other end of the shock absorbing means (11'-7) (the other end of the shock absorbing space coupling part), and is pushed out by the pressure when the air pressure of the sludge storage device rapidly increases while it may be configured to transmit force to the buffering means (11 ⁇ -7).
  • the shock relieving device may include a shock relieving on-off device, and a pressure gauge may be further provided in the sludge storage device.
  • a pressure gauge may be further provided in the sludge storage device.
  • the sludge crushed through the above configuration can be introduced into the sludge treatment reactor.
  • the sludge that has undergone re-thermal emulsification and crushing almost no oil components of high added value remain, and rather, there is a high possibility that toxic gas components remain. Therefore, the sludge is stirred and heated to vaporize components such as gas/oil buried in the sludge, and the vaporized components can be transferred to a separate waste gas treatment device 13.
  • the waste gas supplied from the sludge treatment reaction device can be burned and removed. After combustion, water may be sprayed to remove fine particles generated by the combustion reaction. After the combustion reaction, high-pressure water is sprayed into the waste gas treatment device (13) to clean the dregs buried inside, and the waste gas is cooled by water and a separate cooling device to store the final sludge in a liquid state (wastewater) It may be sent to the device 15 or the wastewater storage device 14.
  • the wastewater may be discharged after being introduced into a predetermined water purification device to remove suspended matter and contaminants.
  • the sludge remaining after the waste gas is removed may be transferred to the final sludge storage device 15 for transport to a waste treatment facility.
  • the waste synthetic polymer pyrolysis system of the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The present invention relates to a waste synthetic polymer pyrolysis system and, specifically, to a waste synthetic polymer pyrolysis system wherein polymer waste, such as plastic or synthetic rubber, are thermally emulsified by heating and then cooled, thereby extracting liquefied oil components. An embodiment of the present invention can provide a waste synthetic polymer pyrolysis system comprising: a decomposition reactor for decomposing a waste synthetic polymer by heating; a cooling device for cooling components generated in the decomposition reactor; and a storage device for storing components generated in the decomposition reactor and the cooling device.

Description

폐합성고분자 열분해 시스템Waste synthetic polymer pyrolysis system
본 발명은 폐합성고분자 열분해 시스템에 관한 것으로서, 상세하게는 플라스틱류 또는 합성고무 등 고분자 폐기물을 가열하여 열유화시킨 후, 냉각하여 액화된 기름 성분을 추출할 수 있는 폐합성고분자 열분해 시스템에 관한 것이다.The present invention relates to a waste synthetic polymer pyrolysis system, and more particularly, to a waste synthetic polymer pyrolysis system capable of thermally emulsifying polymer waste such as plastics or synthetic rubber by heating and then cooling to extract liquefied oil components. .
플라스틱, 합성고무 등 합성고분자로 된 제품들은 자연분해 되기까지 500년 이상의 기간이 소요되므로, 선진국에서는 법규 등을 통해 폐 플라스틱 등을 재활용하도록 규제하고 있으며, 이와 더불어 폐기물을 재활용하여 자원화하는 기술이 각광받고 있다.Products made of synthetic polymers, such as plastic and synthetic rubber, take more than 500 years to decompose naturally, so developed countries regulate waste plastics through laws and regulations to recycle waste plastics. are receiving
특히, 고유가 시대에 접어들며 자원의 한정성 때문에 대체에너지 등의 연구개발에 많은 시간과 비용이 투자되고 있다.In particular, in the era of high oil prices, a lot of time and money are being invested in R&D such as alternative energy due to the limited resources.
플라스틱 제품 대부분은 원유로부터 추출되는 성분으로 만들어졌기 때문에 기름으로 열분해가 가능하여, 이러한 시대적 요구를 충족시키기에 적합한 폐기물 재활용 및 기름 생산기술로써 폐합성고분자의 열분해 장치가 개발되고 있다.Since most plastic products are made of components extracted from crude oil, they can be thermally decomposed into oil, and a waste synthetic polymer pyrolysis device is being developed as a waste recycling and oil production technology suitable to meet the needs of the times.
폐합성고분자의 열분해 유화 시스템에 관한 선행기술은, 국내등록특허공보 제10-0322663호에 개시된 "폐플라스틱을 이용한 휘발유, 등유 및 경유의 연속식 제조방법 및 그 시스템"이 있으며, 상기 특허문헌에는 "하기를 포함하는 폐플라스틱을 이용한 휘발유, 등유 및 경유의 연속식 제조 시스템: 폐플라스틱 용융 혼합물과 규산염 알루미나계 고체산 촉매 입자가 상방으로부터 하방으로 도입되어 크랙킹 및 이성화 반응이 수행되고, 하단에 상기 촉매 표면의 미증발 가스오일을 증발시키기 위한 스팀 인젝터가 설치되며, 상단에는 압력 조절 수단을 경유하여 분류탑과 연통되어 있는 유동층 접촉 분해기; 상기한 유동층 접촉 분해기의 하단으로 낙하한 촉매 입자중 소정 사이즈의 촉매 입자만을 선별하는 외부 사이클론; 및 공기 분사기 및 배기 가스 압력 조절기가 장착되고, 상기한 외부 사이클론으로부터 이송되는 촉매가 재생되며, 상기한 재생된 촉매를 상기한 유동층 접촉 분해기로 회송시키는 니켈-몰리브덴계 촉매 재생기."가 제공되고 있다.The prior art related to the thermal decomposition and emulsification system of waste synthetic polymers is "Continuous production method and system for gasoline, kerosene, and diesel using waste plastic" disclosed in Korean Patent Registration No. 10-0322663. "Continuous production system for gasoline, kerosene and diesel using waste plastics, including the following: A waste plastics molten mixture and silicate alumina-based solid acid catalyst particles are introduced from top to bottom to perform cracking and isomerization reactions, and at the bottom the A fluidized-bed catalytic cracker having a steam injector for evaporating unevaporated gas oil on the surface of the catalyst and communicating with the fractionation tower via a pressure control means at the upper end; Among the catalyst particles falling to the lower end of the fluidized-bed catalytic cracker, a predetermined size An external cyclone that selects only the catalyst particles; and an air injector and an exhaust gas pressure regulator are installed, the catalyst transferred from the external cyclone is regenerated, and the regenerated catalyst is returned to the fluidized bed catalytic cracker for nickel-molybdenum. based catalyst regenerator." is provided.
다만, 상기와 같은 종래 기술에서는, 열유화 과정 이후에 발생하는 다양한 부산물(고체 슬러지, 유해가스, 액체기름, 기체기름, 물 등)이 명확하게 분리되지 않아, 생산된 기름을 사용할 수 있는 분야에 제한이 있었으며(기름 내 이물질에 민감한 장치에 사용하면 장치가 손상됨), 생산효율 또한 낮아 이용하기에 어려움이 많았다(촉매 등의 사용이 필수적으로 요구되었음).However, in the prior art as described above, various by-products (solid sludge, harmful gas, liquid oil, gas oil, water, etc.) generated after the thermal emulsification process are not clearly separated, so that the produced oil can be used in the field There were limitations (if used in a device sensitive to foreign substances in oil, the device would be damaged), and production efficiency was also low, making it difficult to use (the use of a catalyst was essential).
또한, 폐기물의 종류가 다양하고, 형상이나 크기, 무게, 재질 등이 혼재된 상태로 버려지는 경우가 많아 분해반응기를 손상시키는 경우가 많으며, 기름으로 변환되지 않는 물질들에 열에너지가 가해지면서 투입 에너지 대비 생산 에너지(기름)율이 낮은 한계가 있었다.In addition, there are many types of waste, and they are often thrown away in a mixed state of shape, size, weight, material, etc., which often damages the decomposition reactor. There was a limit to the low production energy (oil) rate.
종래 분해반응기에서는 케이싱 끝단부의 열유화가스 출구부 부분이 연소실(가열장치)에 포함되지 않고 공기중에 노출되어 있어, 열유화된 가스가 케이싱의 끝단부 유체 배출구부에서 공랭되어 액화됨으로써 액막힘현상이 발생하는 문제점이 있었다. In the conventional decomposition reactor, the thermally emulsified gas outlet part at the end of the casing is not included in the combustion chamber (heating device) and is exposed to the air, so that the thermally emulsified gas is air-cooled and liquefied at the fluid outlet at the end of the casing, resulting in liquid clogging. There were problems that arose.
종래 로터리킬른 타입 분해반응기는, 지게차를 이용하여 폐기물을 투입시키는 과정에서 지게차 포크 등과 가이드가 충돌하여 로터리킬른 내부의 가이드가 파손되거나 찌그러져 가이드가 제 기능을 할 수 없었다.In the conventional rotary kiln-type decomposition reactor, the fork of the forklift and the guide collided with each other in the process of introducing waste using a forklift, and the guide inside the rotary kiln was damaged or crushed, so the guide could not function properly.
그리고, 한 번(한 사이클)의 열유화 과정이 끝난 뒤, 분해반응기를 개방시키고 폐기물을 투입한 뒤 다시 분해반응기를 밀폐시키고 분해반응기를 진공상태로 만들어야 두번째의 열유화 과정을 진행할 수 있어서, 작업에 소요되는 인력 및 시간이 과도한 문제가 있었다.In addition, after one (one cycle) thermal emulsification process is over, the decomposition reactor is opened, waste is introduced, and the decomposition reactor is closed again and the decomposition reactor is vacuumed to proceed with the second thermal emulsification process. There was a problem of excessive manpower and time.
플라스틱, 합성고무 등 합성고분자로 된 제품들은 자연분해 되기까지 500년 이상의 기간이 소요되므로, 선진국에서는 법규 등을 통해 폐 플라스틱 등을 재활용하도록 규제하고 있으며, 이와 더불어 폐기물을 재활용하여 자원화하는 기술이 각광받고 있다.Products made of synthetic polymers, such as plastic and synthetic rubber, take more than 500 years to decompose naturally, so developed countries regulate waste plastics through laws and regulations to recycle waste plastics. are receiving
특히, 고유가 시대에 접어들며 자원의 한정성 때문에 대체에너지 등의 연구개발에 많은 시간과 비용이 투자되고 있다.In particular, in the era of high oil prices, a lot of time and money are being invested in R&D such as alternative energy due to the limited resources.
플라스틱 제품 대부분은 원유로부터 추출되는 성분으로 만들어졌기 때문에 기름으로 열분해가 가능하여, 이러한 시대적 요구를 충족시키기에 적합한 폐기물 재활용 및 기름 생산기술로써 폐합성고분자의 열분해 장치가 개발되고 있다.Since most plastic products are made of components extracted from crude oil, they can be thermally decomposed into oil, and a waste synthetic polymer pyrolysis device is being developed as a waste recycling and oil production technology suitable to meet the needs of the times.
폐합성고분자의 열분해 유화 시스템에 관한 선행기술은, 국내등록특허공보 제10-0322663호에 개시된 "폐플라스틱을 이용한 휘발유, 등유 및 경유의 연속식 제조방법 및 그 시스템"이 있으며, 상기 특허문헌에는 "하기를 포함하는 폐플라스틱을 이용한 휘발유, 등유 및 경유의 연속식 제조 시스템: 폐플라스틱 용융 혼합물과 규산염 알루미나계 고체산 촉매 입자가 상방으로부터 하방으로 도입되어 크랙킹 및 이성화 반응이 수행되고, 하단에 상기 촉매 표면의 미증발 가스오일을 증발시키기 위한 스팀 인젝터가 설치되며, 상단에는 압력 조절 수단을 경유하여 분류탑과 연통되어 있는 유동층 접촉 분해기; 상기한 유동층 접촉 분해기의 하단으로 낙하한 촉매 입자중 소정 사이즈의 촉매 입자만을 선별하는 외부 사이클론; 및 공기 분사기 및 배기 가스 압력 조절기가 장착되고, 상기한 외부 사이클론으로부터 이송되는 촉매가 재생되며, 상기한 재생된 촉매를 상기한 유동층 접촉 분해기로 회송시키는 니켈-몰리브덴계 촉매 재생기."가 제공되고 있다.The prior art related to the thermal decomposition and emulsification system of waste synthetic polymers is "Continuous production method and system for gasoline, kerosene, and diesel using waste plastic" disclosed in Korean Patent Registration No. 10-0322663. "Continuous production system for gasoline, kerosene and diesel using waste plastics, including the following: A waste plastics molten mixture and silicate alumina-based solid acid catalyst particles are introduced from top to bottom to perform cracking and isomerization reactions, and at the bottom the A fluidized-bed catalytic cracker having a steam injector for evaporating unevaporated gas oil on the surface of the catalyst and communicating with the fractionation tower via a pressure control means at the upper end; Among the catalyst particles falling to the lower end of the fluidized-bed catalytic cracker, a predetermined size An external cyclone that selects only the catalyst particles; and an air injector and an exhaust gas pressure regulator are installed, the catalyst transferred from the external cyclone is regenerated, and the regenerated catalyst is returned to the fluidized bed catalytic cracker for nickel-molybdenum. based catalyst regenerator." is provided.
다만, 상기와 같은 종래 기술에서는, 열유화 과정 이후에 발생하는 다양한 부산물(고체 슬러지, 유해가스, 액체기름, 기체기름, 물 등)이 명확하게 분리되지 않아, 생산된 기름을 사용할 수 있는 분야에 제한이 있었으며(기름 내 이물질에 민감한 장치에 사용하면 장치가 손상됨), 생산효율 또한 낮아 이용하기에 어려움이 많았다(촉매 등의 사용이 필수적으로 요구되었음).However, in the prior art as described above, various by-products (solid sludge, harmful gas, liquid oil, gas oil, water, etc.) generated after the thermal emulsification process are not clearly separated, so that the produced oil can be used in the field There were limitations (if used in a device sensitive to foreign substances in oil, the device would be damaged), and production efficiency was also low, making it difficult to use (the use of a catalyst was essential).
또한, 폐기물의 종류가 다양하고, 형상이나 크기, 무게, 재질 등이 혼재된 상태로 버려지는 경우가 많아 분해반응기를 손상시키는 경우가 많으며, 기름으로 변환되지 않는 물질들에 열에너지가 가해지면서 투입 에너지 대비 생산 에너지(기름)율이 낮은 한계가 있었다.In addition, there are many types of waste, and they are often thrown away in a mixed state of shape, size, weight, material, etc., which often damages the decomposition reactor. There was a limit to the low production energy (oil) rate.
종래 분해반응기에서는 케이싱 끝단부의 열유화가스 출구부 부분이 연소실(가열장치)에 포함되지 않고 공기중에 노출되어 있어, 열유화된 가스가 케이싱의 끝단부 유체 배출구부에서 공랭되어 액화됨으로써 액막힘현상이 발생하는 문제점이 있었다. In the conventional decomposition reactor, the thermally emulsified gas outlet part at the end of the casing is not included in the combustion chamber (heating device) and is exposed to the air, so that the thermally emulsified gas is air-cooled and liquefied at the fluid outlet at the end of the casing, resulting in liquid clogging. There were problems that arose.
종래 로터리킬른 타입 분해반응기는, 지게차를 이용하여 폐기물을 투입시키는 과정에서 지게차 포크 등과 가이드가 충돌하여 로터리킬른 내부의 가이드가 파손되거나 찌그러져 가이드가 제 기능을 할 수 없었다.In the conventional rotary kiln-type decomposition reactor, the fork of the forklift and the guide collided with each other in the process of introducing waste using a forklift, and the guide inside the rotary kiln was damaged or crushed, so the guide could not function properly.
그리고, 한 번(한 사이클)의 열유화 과정이 끝난 뒤, 분해반응기를 개방시키고 폐기물을 투입한 뒤 다시 분해반응기를 밀폐시키고 분해반응기를 진공상태로 만들어야 두번째의 열유화 과정을 진행할 수 있어서, 작업에 소요되는 인력 및 시간이 과도한 문제가 있었다.In addition, after one (one cycle) thermal emulsification process is over, the decomposition reactor is opened, waste is introduced, and the decomposition reactor is closed again and the decomposition reactor is vacuumed to proceed with the second thermal emulsification process. There was a problem of excessive manpower and time.
본 발명의 일 실시 예로써, 폐합성고분자 열분해 시스템에 있어서, 폐합성고분자를 가열하여 분해하는 분해반응기; 분해반응기에서 생성된 성분을 냉각시키는 냉각장치 및; 분해반응기 및 냉각장치에서 생성된 성분을 저장하는 저장장치를 포함하고; 분해반응기는, 내주면에 나선형 가이드가 형성된 원통형 케이싱; 케이싱을 정회전 또는 역회전시키는 동력전달장치를 포함하고; 케이싱에는, 폐기물 투입구로부터 소정의 길이만큼 신장되고 가이드와 소정의 거리만큼 이격되게 포크 레일이 형성되는 것을 특징으로 한다.As an embodiment of the present invention, in the waste synthetic polymer pyrolysis system, the decomposition reactor for heating and decomposing the waste synthetic polymer; A cooling device for cooling the components produced in the decomposition reactor; It includes a storage device for storing components produced in the decomposition reactor and the cooling device; The decomposition reactor includes a cylindrical casing with a spiral guide formed on an inner circumferential surface; Includes a power transmission device for forward or reverse rotation of the casing; In the casing, it is characterized in that the fork rail is formed to extend by a predetermined length from the waste inlet and spaced apart from the guide by a predetermined distance.
상기 포크 레일은 상기 케이싱의 유체 배출구에 액체 통로가 형성된 고정체가 회전 가능하게 고정되고 폐기물 투입구 방향으로 소정의 거리만큼 돌출된 두 개의 평판을 포함하는 것을 특징으로 한다.The fork rail may include two flat plates in which a liquid passage is rotatably fixed to the fluid outlet of the casing and protrudes by a predetermined distance toward the waste inlet.
상기 포크 레일은, 지게차 포크의 80% 내지 120%의 크기로서, 케이싱이 정지 상태에 있을 때 자체 무게에 의하여 고정체를 중심으로 회전하여 두 개의 평판이 지표면과 평행하게 되는 것을 특징으로 한다.The fork rail is 80% to 120% of the size of the forklift fork, and when the casing is in a stationary state, it rotates around the fixture by its own weight so that the two flat plates are parallel to the ground surface.
상기 동력전달장치는 폐기물 투입구측에 형성되고, 연소실이 유체 배출구부까지 포함되는 것을 특징으로 한다.The power transmission device is formed on the side of the waste inlet, characterized in that the combustion chamber is included up to the fluid outlet.
상기 폐기물 투입구는 걸림구가 형성된 다수의 볼트 너트에 의하여 고정되는 것을 특징으로 한다.The waste inlet is characterized in that it is fixed by a plurality of bolts and nuts having a locking hole.
상기 유체 배출구부에는 압력 및 온도 센서가 부착된 모터에 의하여 회전축에 의해 회전가능한 압력 조절판이 형성된 것을 특징으로 한다.It is characterized in that a pressure regulating plate rotatable by a rotating shaft is formed by a motor to which pressure and temperature sensors are attached to the fluid discharge port.
상기 냉각장치는, 소정의 수용공간이 형성되는 수조; 수조에 물을 순환시키는 물순환장치 및; 수조 내에 수용되어 물과 열교환이 발생되는 냉각수조열교환배관을 포함하고; 냉각수조열교환배관은, 복수개의 파이프가 교번하며 연결되어 소정의 유로가 형성되는 것을 특징으로 한다.The cooling device includes a water tank in which a predetermined accommodation space is formed; A water circulation device for circulating water in the water tank; It includes a cooling water tank heat exchange pipe accommodated in the water tank and in which heat exchange with water occurs; The cooling water tank heat exchange pipe is characterized in that a plurality of pipes are alternately connected to form a predetermined flow path.
상기 냉각수조열교환배관은, 입력단으로부터 출력단까지 높이가 점차 낮아지도록 구성되어, 냉각으로 인한 밀도변화에 따라 냉각수조열교환배관 내부 물질의 자중에 의해 입력단으로부터 출력단까지 이송이 촉진되는 것을 특징으로 한다.The cooling water tank heat exchange pipe is configured so that the height gradually decreases from the input end to the output end, and the transfer from the input end to the output end is accelerated by the weight of the material inside the cooling water tank heat exchange pipe according to the density change due to cooling.
상기 냉각장치는, 소정의 수용공간이 형성되는 수조; 상기 수조에 물을 순환시키는 물순환장치 및; 수조 내에 수용되어 물과 열교환이 발생되는 냉각수조열교환배관을 포함하고; 냉각수조열교환배관은, 복수개의 파이프가 교번하며 연결되어 소정의 유로가 형성되는 것을 특징으로 한다.The cooling device includes a water tank in which a predetermined accommodation space is formed; a water circulation device for circulating water in the water tank; It includes a cooling water tank heat exchange pipe accommodated in the water tank and in which heat exchange with water occurs; The cooling water tank heat exchange pipe is characterized in that a plurality of pipes are alternately connected to form a predetermined flow path.
본 발명의 실시 예에 따르면, 플라스틱, 합성고무 등 폐합성고분자를 분해하여 기름 성분을 추출 할 수 있다.According to an embodiment of the present invention, it is possible to extract oil components by decomposing waste synthetic polymers such as plastic and synthetic rubber.
또한, 열유화 과정에서 생성된 기름으로부터 이물질을 온전하게 제거하여, 생산된 기름을 다양한 분야에 활용할 수 있다.In addition, by completely removing foreign substances from the oil produced in the thermal emulsification process, the produced oil can be used in various fields.
그리고, 폐기물에 섞여있는 금속 이물질 등을 제거한 상태로 분해반응로에 투입시킴으로써, 교반장치나 분해반응로의 가이드(블레이드) 등의 손상을 방지할 수 있으며, 열에너지가 온전히 폐합성고분자에만 가해지도록 하여(금속이 흡수하여 낭비되는 열에너지가 없음) 투입 에너지 대비 생산 에너지율을 향상시킬 수 있다.In addition, by removing metal foreign substances mixed in the waste and introducing it into the decomposition reactor, it is possible to prevent damage to the agitator or the guide (blade) of the decomposition reactor, and to ensure that the thermal energy is applied only to the waste synthetic polymer. (No heat energy wasted due to metal absorption) The ratio of energy output to input energy can be improved.
아울러, 연속적인 폐기물 열유화 반응을 진행시킴으로써, 기존 방식 대비 시간당 기름 생산량이 높고(로스 타임이 적고) 작업 소요 인원이 적다.In addition, by proceeding with a continuous thermal emulsification reaction of waste, the oil production per hour is higher (less loss time) compared to the existing method, and the number of people required for work is small.
그리고, 생성된 유해가스를 연소반응 후 액화시켜 폐수 형태로 저장, 정화 및 배출할 수 있어서, 대기오염에 대한 영향을 최소화할 수 있다.In addition, the generated harmful gas can be liquefied after the combustion reaction to be stored, purified, and discharged in the form of wastewater, thereby minimizing the impact on air pollution.
또한, 냉각장치에서 주로 발생하는 배관 막힘 현상을 개선하여, 배관 막힘으로 인한 작업 중단 시간을 줄임으로써 장비 가동율이 높다.In addition, it improves the pipe clogging phenomenon that mainly occurs in the cooling device, and reduces work downtime due to pipe clogging, so the equipment operation rate is high.
그리고, 중간생성물이나 최종생성물 중 가치가 떨어지는 가스/기름 성분을 연소시켜 슬러지 또는 폐기물을 파쇄하고, 파쇄 작업이 진행되지 않는 동안에는 내역기관을 이용하여 발전기를 가동시킴으로써 전기에너지를 생산할 수 있다.In addition, it is possible to produce electrical energy by burning gas / oil components of low value among intermediate products or final products to crush sludge or waste, and by operating a generator using a gas engine while the crushing operation is not in progress.
또한, 분해반응기 내부에 폐기물을 투입하는 과정에서의 가이드 손상을 방지하여, 슬러지 배출률의 감소를 예방할 수 있다.In addition, by preventing damage to the guide in the process of introducing waste into the decomposition reactor, it is possible to prevent a decrease in sludge discharge rate.
그리고, 폐기물 투입구를 안전하고 편리하게 개폐하여 작업의 능률을 높일 수 있다.In addition, it is possible to increase work efficiency by safely and conveniently opening and closing the waste inlet.
케이싱 끝단부의 유체 배출구부의 액화를 방지하는 것이다.It is to prevent liquefaction of the fluid outlet at the end of the casing.
또한, 분해반응로 내부의 압력과 온도를 감지하여 적정한 압력을 유지하므로서 안전성을 높이고, 열분해 효과를 높일 수 있다.In addition, by sensing the pressure and temperature inside the decomposition reactor and maintaining an appropriate pressure, safety and thermal decomposition effect can be increased.
도 1 은 본 발명의 실시 예에 의한 폐합성고분자 열분해 시스템의 개략도이다.1 is a schematic diagram of a waste synthetic polymer pyrolysis system according to an embodiment of the present invention.
도 2 는 본 발명의 실시 예에 분해반응기(3)의 사시도이다.2 is a perspective view of a decomposition reactor 3 according to an embodiment of the present invention.
도 3 은 본 발명의 실시 예에 의한 케이싱(3a)의 개략도이다.3 is a schematic diagram of a casing 3a according to an embodiment of the present invention.
도 4 는 본 발명의 실시 예에 의한 투입구(3b)의 도면이다.4 is a view of an inlet 3b according to an embodiment of the present invention.
도 5 는 본 발명의 실시 예에 의한 절단장치(4)의 도면이다.5 is a view of a cutting device 4 according to an embodiment of the present invention.
도 6 은 본 발명의 실시 예에 의한 포크 레일(3d)의 도면이다.6 is a view of a fork rail 3d according to an embodiment of the present invention.
도 7 및 8은 본 발명의 실시 예에 의한 분해반응기 후면의 도면이다.7 and 8 are views of the rear side of the decomposition reactor according to an embodiment of the present invention.
도 9는 본 발명의 실시 예에 의한 동력전달장치(3h)의 도면이다.9 is a diagram of a power transmission device 3h according to an embodiment of the present invention.
도 10은 본 발명의 실시 예에 의한 분해반응기의 단면을 나타내는도면이다.10 is a view showing a cross section of a decomposition reactor according to an embodiment of the present invention.
도 11은 본 발명의 실시 예에 의한 증류탑(5)의 도면이다.11 is a view of a distillation column 5 according to an embodiment of the present invention.
도 12는 본 발명의 실시 예에 의한 침전조(8)의 도면이다.12 is a view of a settling tank 8 according to an embodiment of the present invention.
도 13은 본 발명의 실시 예에 의한 냉각장치(6)의 개략도이다.13 is a schematic diagram of a cooling device 6 according to an embodiment of the present invention.
도 14는 본 발명의 실시 예에 의한 냉각파이프 핀의 도면이다.14 is a view of a cooling pipe fin according to an embodiment of the present invention.
도 15는 본 발명의 실시 예에 의한 파쇄드럼(11)의 도면이다.15 is a view of a crushing drum 11 according to an embodiment of the present invention.
도 16은 본 발명의 실시 예에 의한 가스충격 파쇄장치(11`)의 도면이다.16 is a diagram of a gas impact crusher 11' according to an embodiment of the present invention.
1 : 폐기물저장장치1: waste storage device
2 : 금속분리장치2: metal separation device
3 : 분해반응기 3: decomposition reactor
4 : 관형반응기 4: tubular reactor
5 : 증류탑 5: distillation column
6 : 냉각장치 6: cooling device
7 : 유수분리장치 7: Oil water separator
8 : 침전조 8: sedimentation tank
9 : 원심분리장치9: centrifugal separator
10 : 슬러지저장장치10: sludge storage device
11 : 슬러지파쇄장치11: Sludge crushing device
12 : 슬러지처리반응장치12: sludge treatment reactor
13 : 폐기가스처리장치 13: waste gas treatment device
14 : 폐수저장장치14: wastewater storage device
15 : 최종 슬러지 저장장치15: final sludge storage device
16 : 히트싱크16: heat sink
17 : 물탱크 17: water tank
18 : 기름저장탱크18: oil storage tank
N : 비반응성기체N: non-reactive gas
S : 슬러지S: Sludge
W : 폐기물W: waste
물이 올려진 상태에서 전자석을 작동시키고, 금속분리컨베이어의 끝단(배출단)에서 금속 이외의 물질(전자석에 부착되지 않는 물질)이 떨어져 나가도록 구성할 수 있다.It can be configured so that the electromagnet is operated while the water is raised, and materials other than metal (materials that are not attached to the electromagnet) are separated from the end (discharge end) of the metal separation conveyor.
압축되어있던 상태의 폐기물을 흐트러뜨리기 위하여, 파쇄장치, 교반장치 또는 고압 공기 분사장치 등이 사용될 수 있다.In order to break up the waste in a compressed state, a shredding device, an agitator or a high-pressure air blasting device may be used.
[2] 열유화장치[2] Thermal emulsification device
본 발명의 실시 예에 의한 열유화장치는, 분해반응기(3)및 가열장치로 구성될 수 있다. 가열장치는 분해반응기(3)와 별도로 구성되거나 분해반응기(3)의 부속으로 구성될 수 있다.The thermal emulsification device according to an embodiment of the present invention may be composed of a decomposition reactor 3 and a heating device. The heating device may be configured separately from the decomposition reactor (3) or as a part of the decomposition reactor (3).
분해반응기(3)Decomposition Reactor (3)
분해반응기(3)는 로터리킬른(rotary kiln; 회전 건조 소각로), CSTR분해반응기(Continuous Stirred Tank Reactor; 연속 교반 탱크 반응기), 관형(Tubular) 반응기, 회분식 반응기(Batch Reactor) 중 하나 이상을 포함할 수 있다. 분해반응기(3)의 종류는 통상의 기술자가 본 발명의 설명을 참조하여 폐기물의 시간당(또는 일당; per hour or per day) 투입량에 따라 선택할 수 있을 것이다.The decomposition reactor 3 may include one or more of a rotary kiln (rotary drying incinerator), a CSTR decomposition reactor (Continuous Stirred Tank Reactor), a tubular reactor, and a batch reactor. can The type of decomposition reactor 3 can be selected by a person skilled in the art according to the input amount per hour (or per hour or per day) of waste with reference to the description of the present invention.
상기 분해반응기(3)중 어떤 종류를 사용하더라도, 외부 공기와 접촉을 차단하는 밀폐구조는 포함되는 것이 바람직하다.Regardless of which type of the decomposition reactor 3 is used, it is preferable to include a closed structure that blocks contact with external air.
또한, 폐기물을 투입하는 과정에서 분해반응기(3)내부로 유입된 공기를 제거하도록, 분해반응기(3)의 일측에 공기배관 및 진공펌프가 연결될 수 있다.In addition, an air pipe and a vacuum pump may be connected to one side of the decomposition reactor 3 to remove air introduced into the decomposition reactor 3 in the process of introducing waste.
분해반응기(3)는, 내주면에 나사산 형태로 나선형 가이드(블레이드 또는 스크류, 3a-1)가 형성된 원통형 케이싱(3a); 상기 원통형 케이싱(3a)의 외부에서 원통형 케이싱(3a)을 가열하는 가열장치 및; 상기 원통형 케이싱(3a)을 정회전 또는 역회전 시키는 동력전달장치(3h)를 포함하여 구성될 수 있다.The decomposition reactor 3 includes a cylindrical casing 3a having a spiral guide (blade or screw, 3a-1) formed on the inner circumferential surface in the form of a screw thread; a heating device for heating the cylindrical casing (3a) from the outside of the cylindrical casing (3a); It may be configured to include a power transmission device (3h) for forward or reverse rotation of the cylindrical casing (3a).
도 2에서, 통상 분해반응기(3)의 케이싱의 길이(원통/원기둥의 높이)는 7m 내지 8m가량으로 구성된다. 케이싱(3a) 입구를 통해 지게차 등의 장비로 폐기물을 투입하고, 지게차 포크로 폐기물을 밀어넣는 방식으로 폐기물을 케이싱(3a) 안쪽까지 집어넣는다. 이 과정에서 지게차 포크와 가이드(3a-1)간 충격으로 분해반응기(3)의 고장이나 가이드(3a-1)의 손상 등 문제가 발생하고 있다.In FIG. 2, the length (height of a cylinder/cylinder) of the casing of the decomposition reactor 3 is usually about 7m to 8m. The waste is introduced into the casing 3a by equipment such as a forklift through the entrance of the casing 3a, and the waste is pushed into the casing 3a by pushing the waste into the fork of the forklift. In this process, problems such as failure of the decomposition reactor 3 or damage to the guide 3a-1 occur due to impact between the fork of the forklift and the guide 3a-1.
상기 가이드(3a-1)는 분해반응기(3)를 회전축에 수직인 단면에서 관측했을 때 케이싱(3a)의 일측 내지 다측에 하나 내지 다수개가 결합될 수 있다. 도 3에는 가이드(3a-1)가 13개 결합된 실시 예를 나타낸 것이다. 종래 분해반응기에서는 가이드(3a-1)가 하나 결합되는 것이 일반적이다. 가이드(3a-1)의 개수가 증가할수록 지지할 수 있는 폐기물(W)의 하중이 증가할 수 있다.The guide (3a-1) may be one to multiple coupled to one side or multiple sides of the casing (3a) when observing the decomposition reactor (3) in a cross section perpendicular to the axis of rotation. 3 shows an embodiment in which 13 guides 3a-1 are combined. In a conventional decomposition reactor, it is common that one guide (3a-1) is coupled. As the number of guides 3a-1 increases, the load of waste W that can be supported may increase.
상기 원통형 케이싱(3a)의 일측에는 폐기물 투입구(3b)가, 타측에는 유체 배출구(3c)가, 다른 일측에는 슬러지 배출구(미도시)가 구비되도록 구성될 수 있다.The cylindrical casing 3a may be configured to have a waste inlet 3b on one side, a fluid outlet 3c on the other side, and a sludge outlet (not shown) on the other side.
도 4 및 도 5에서, 상기 투입구(3b)는 분해반응기(3)내의 높은 압력으로 인하여 걸림구(3b-2)가 형성된 볼트 너트(3b-1)들에 의하여 더욱 단단하게 고정되고 용이하게 개폐될 수 있다.4 and 5, the inlet (3b) is more firmly fixed and easily opened and closed by bolts and nuts (3b-1) formed with locking holes (3b-2) due to the high pressure in the decomposition reactor (3). It can be.
상기 가이드(3a-1)는, 열유화 과정에서는 폐기물 투입구로부터 유체 배출구 방향으로 반응물/생성물 등(열유화 과정에서 생성된 기체/액체/고체를 포함한 혼합물)의 이송을 보조할 수 있다. 다만, 분해반응기(3)내부로 투입되는 폐기물의 중량이 통상 1톤가량 되므로 폐기물은 대부분이 제자리에서 회전하게 된다.The guide 3a-1 may assist in the transfer of reactants/products (a mixture including gas/liquid/solid generated in the thermal emulsification process) from the waste inlet to the fluid outlet in the thermal emulsification process. However, since the weight of the waste introduced into the decomposition reactor 3 is usually about 1 ton, most of the waste rotates in place.
열유화 과정이 종료된 후에는, 원통형 케이싱(3a)을 역방향으로 회전시켜, 열유화 과정에서 생성된 슬러지(분해/변환되지 않고 남아있는 찌꺼기)를 슬러지 배출구로 이송시킬 수 있다.After the thermal emulsification process is finished, the sludge generated in the thermal emulsification process (residue remaining without being decomposed/converted) may be transported to a sludge outlet by rotating the cylindrical casing 3a in a reverse direction.
종래 분해반응기(3)는, 지게차를 이용하여 폐기물을 투입시키는 과정에서 지게차 포크 등과 가이드(3a-1)가 충돌하여 케이싱(3a) 내부의 가이드(3a-1)가 파손되거나 찌그러져 가이드(3a-1)가 제 기능을 할 수 없는데도 내부 보수에 시간 및 비용이 많이 든다는 이유로 보수하지 않은 상태로 장치를 사용하는 경우가 많았다. 이 경우 슬러지 배출이 잘 되지 않아 한 사이클 종료 후 수작업으로 분해반응기(3)내부를 청소해야 하기 때문에, 로스 타임이 크다.In the conventional decomposition reactor (3), in the process of introducing waste using a forklift, the fork of the forklift and the guide (3a-1) collide, and the guide (3a-1) inside the casing (3a) is damaged or crushed, resulting in the guide (3a-1). Although 1) cannot perform its function, there are many cases in which the device is used without repair because internal repair takes a lot of time and money. In this case, since the sludge is not discharged well and the inside of the decomposition reactor (3) must be cleaned manually after one cycle is finished, the loss time is large.
따라서, 도 6 내지 도 8에서와 같이 본 발명의 일 실시 예에서는, 원통형 케이싱(3a)의 유체 배출구(3c)에 액체 통로(3d-3)가 형성된 고정체(3d-2)가 회전 가능하게 고정되고 폐기물 투입구 방향으로 소정의 거리만큼 돌출된 두 개의 평판(3d-1)을 포함하는 포크 레일(3d)이 형성되도록 구성될 수 있다. 상기 포크 레일(3d)은, 원통형 케이싱(3a)이 정지 상태에 있을 때 지표면과 평행하게 구성될 수 있다. Therefore, as shown in FIGS. 6 to 8, in one embodiment of the present invention, the fixed body 3d-2 having the liquid passage 3d-3 formed in the fluid outlet 3c of the cylindrical casing 3a is rotatable. It may be configured to form a fork rail (3d) including two flat plates (3d-1) that are fixed and protrude by a predetermined distance in the direction of the waste inlet. The fork rail 3d may be configured parallel to the ground surface when the cylindrical casing 3a is in a stationary state.
상기 포크 레일(3d)은, 지게차 포크 크기의 80% 내지 120%의 범위에서 형성되는 것이 바람직하다. 지게차 포크의 간격에 맞추어 두 개의 평판(3d-1)이 평행하게 가이드(3a-1)와 소정의 거리만큼 이격된 형태로 구성될 수 있다. 이러한 구성을 통해, 폐기물 및 지게차 포크와 가이드(3a-1) 간 충돌을 방지할 수 있다.The fork rail 3d is preferably formed in the range of 80% to 120% of the fork size of the forklift. According to the distance between the forks of the forklift, the two plates 3d-1 may be configured in parallel and spaced apart from the guide 3a-1 by a predetermined distance. Through this configuration, it is possible to prevent a collision between waste and the fork of the forklift and the guide 3a-1.
종래 분해반응기(3)내부의 폐기물의 이송은 가이드(3a-1)와는 무관하며, 슬러지는 가이드(3a-1)의 높이보다 넘치지 않는 경우가 대부분이므로, 가이드(3a-1)에 포크 레일(3d)이 고정 결합되더라도 폐기물이나 슬러지의 이송에는 큰 영향이 없다.The transfer of waste inside the conventional decomposition reactor (3) is irrelevant to the guide (3a-1), and in most cases the sludge does not exceed the height of the guide (3a-1), so the guide (3a-1) has a fork rail ( Even if 3d) is fixedly combined, there is no significant effect on the transport of waste or sludge.
또한, 종래 분해반응기(3)에서는 케이싱(3a) 끝단부의 열유화가스 출구부 부분이 연소실(가열장치)에 포함되지 않고 공기중에 노출되어 있었으며, 열유화된 가스가 케이싱 끝단부 유체 배출구(3c)에서 공랭되어 액화됨으로써 액막힘현상이 발생하는 문제점이 있었다. 종래 분해반응기(3)는 케이싱(3a)을 회전시키는 동력전달장치(3h)가 케이싱(3a) 출구부측에 구비되어 연소실의 확장이 불가능한 구조였으나, 본 발명의 실시 예에서는 동력전달장치(3h)를 폐기물 투입구측에 구비하고, 연소실(3e)이 열유화가스 출구부까지를 포함하도록 연소실(3e)을 확장하여 유체 배출구부(3c)의 액막힘 현상을 근본적으로 방지할 수 있다.In addition, in the conventional decomposition reactor (3), the thermally emulsified gas outlet portion at the end of the casing (3a) was not included in the combustion chamber (heating device) and was exposed to the air, and the thermally emulsified gas was discharged through the fluid discharge port (3c) at the end of the casing. There was a problem in that liquid clogging occurred as it was cooled in air and liquefied. The conventional decomposition reactor 3 has a structure in which the power transmission device 3h for rotating the casing 3a is provided on the outlet side of the casing 3a so that the combustion chamber cannot be expanded, but in the embodiment of the present invention, the power transmission device 3h It is provided on the waste inlet side, and the combustion chamber (3e) is expanded to include the thermal emulsification gas outlet to fundamentally prevent the clogging of the fluid outlet (3c).
연소실(3e)의 끝단부 열유화가스 출구부에는 배기배관(3f)이 연결될 수 있다. 배기배관(3f)이 열유화가스 출구부측에 연결됨으로써, 연소실(3e) 내의 가스(열에너지)가 케이싱(3a) 출구부와 접촉한 뒤에 배기되므로 분해반응기(3)로부터 열유화가스가 완전히 빠져나갈 때까지 가열을 지속할 수 있다.An exhaust pipe 3f may be connected to the thermal emulsification gas outlet at the end of the combustion chamber 3e. Since the exhaust pipe 3f is connected to the outlet of the thermal emulsification gas, the gas (thermal energy) in the combustion chamber 3e is exhausted after contacting the outlet of the casing 3a, so that the thermal emulsification gas can completely escape from the decomposition reactor 3. Heating may be continued until
또한, 연소실(3e)의 끝단부 유체 배출구(3c)의 통로 일부에는 분해반응기의 적정한 압력을 유지하기 위해 모터(3g)에 회전축(3g-1)으로 연결되어 일정한 각도로 회전 조절되는 압력조절판(3g-2)이 포함될 수 있다.In addition, a pressure regulating plate ( 3g-2) may be included.
상기 모터(3g)에는 분해반응기내 압력과 온도를 측정하는 센서가 포함될 수 있다. The motor 3g may include a sensor for measuring pressure and temperature in the decomposition reactor.
도 9에서, 분해반응기(3)의 동력전달장치(3h)는, 케이싱(3a)의 일단에 형성된 2차기어(내측링기어, 3h-2), 상기 2차기어(3h-2)와 연결되어 2차기어(3h-2)를 회전시키는 1차기어(3h-1), 상기 1차기어(3h-1)를 회전시키는 2차풀리(3h-4), 상기 2차풀리(3h-4)와 벨트(3h-5)를 통해 연결되는 1차풀리(3h-3), 상기 1차풀리(3h-3)를 회전시키는 모터(3h)를 포함하여 구성될 수 있다9, the power transmission device (3h) of the decomposition reactor (3) is connected to the secondary gear (inner ring gear, 3h-2) formed at one end of the casing (3a) and the secondary gear (3h-2). The primary gear 3h-1 rotates the secondary gear 3h-2, the secondary pulley 3h-4 rotates the primary gear 3h-1, and the secondary pulley 3h-4 ) and a primary pulley 3h-3 connected through a belt 3h-5, and a motor 3h for rotating the primary pulley 3h-3.
1차풀리(3h-3)-2차풀리(3h-4) 및 1차기어(3h-1)-2차기어(3h-2) 사이의 변속비/감속비/기어비는 "1 대 다(1차->2차로 갈수록 감속되는 비율)"로 구성될 수 있다. 케이싱(3a)은 빠른 회전속도가 요구되지는 않으므로, 내부에 폐기물을 포함하여 하중이 20톤에 육박하는 케이싱(3a)을 회전시키기 위하여 1차풀리(3h-3)-2차풀리(3h-4) 및 1차기어(2h-1)-2차기어(3h-2)로 다단 감속(변속)시킴으로써, 케이싱(3a)에 가해지는 힘의 크기를 증폭시켜 작은 모터(3h) 출력에서도 케이싱(3a)을 원활하게 회전시킬 수 있다.The gear ratio/reduction ratio/gear ratio between the primary pulley (3h-3)-second pulley (3h-4) and primary gear (3h-1)-second gear (3h-2) is "one to many (primary -> The rate at which it is decelerated as it goes to the secondary)". Since the casing (3a) does not require a high rotational speed, the primary pulley (3h-3)-secondary pulley (3h- 4) and the first gear (2h-1)-secondary gear (3h-2) by multi-stage deceleration (shifting), thereby amplifying the magnitude of the force applied to the casing (3a), so that even with a small motor (3h) output, the casing ( 3a) can rotate smoothly.
도 10에서, 상기와 같은 분해반응기(3)의 동력전달장치(3h)와 더불어, 케이싱(3a)을 연소실(3e) 내주면과 소정의 거리만큼 이격시켜 회전을 보조하는 롤러(3i)가 구비될 수 있다. 롤러(3i)는 케이싱(3a)의 외주면에 복수개가 다단으로 연결될 수 있다. 각 롤러(3i)들은 케이싱(3a)의 하중을 분산해서 지지하며, 동력전달장치(3h)의 구동에 따라 케이싱(3a)이 회전할 때 케이싱(3a)이 회전하도록 보조할 수 있다.In FIG. 10, in addition to the power transmission device 3h of the decomposition reactor 3 as described above, a roller 3i for assisting rotation by separating the casing 3a from the inner circumferential surface of the combustion chamber 3e by a predetermined distance will be provided. can A plurality of rollers 3i may be connected in multiple stages to the outer circumferential surface of the casing 3a. Each roller 3i distributes and supports the load of the casing 3a, and can assist the casing 3a to rotate when the casing 3a rotates according to the drive of the power transmission device 3h.
연소실(3e) 내부에는 연료분무노즐(3e-1) 및 점화플러그(3e-2)가 구비될 수 있다. 연소실(3e) 내부를 균일하게 가열시킬 수 있도록 복수개의 연료분무노즐(3e-1) 및 점화플러그(3e-2)가 소정의 간격마다 구비되도록 구성할 수 있다.A fuel spray nozzle 3e-1 and a spark plug 3e-2 may be provided inside the combustion chamber 3e. A plurality of fuel spray nozzles 3e-1 and spark plugs 3e-2 may be provided at predetermined intervals so as to uniformly heat the inside of the combustion chamber 3e.
[3] 분리장치(생성물 성분별 분리장치)[3] Separation device (separation device by product component)
생산된 기름을 성분별(휘발유, 경유, 등유, 중유 등)로 분리하여 저장 및 유통시키는 것이 바람직하나, 분리장치를 별도로 포함시키지 않고 성분이 섞여있는 상태로 저장 및 유통시키는 것도 가능하다. 상기와 같이 각 성분들이 섞여있는 상태의 기름은 산업용 중유로 유통될 수 있다.It is preferable to separate the produced oil into components (gasoline, diesel, kerosene, heavy oil, etc.) to store and distribute it, but it is also possible to store and distribute the components in a mixed state without including a separate separator. Oil in a state where each component is mixed as described above can be distributed as industrial heavy oil.
각 분리장치들은 통상의 기술자가 그 연결 순서 및 연결 관계를 용이하게 치환할 수 있을 것이다. 각 분리장치와 다른 구성요소(열유화장치, 냉각장치(6), 저장장치 등)는 배관 및 펌프를 포함하여 연결될 수 있다.A person of ordinary skill in the art can easily replace the connection order and connection relationship of each separation device. Each separation device and other components (thermal emulsification device, cooling device 6, storage device, etc.) can be connected including pipes and pumps.
바람직한 일 실시 예로는, 분해반응기(3)의 토출단과 연결되는 증류탑(5), 증류탑(5)의 경유가스 토출단과 연결되는 냉각장치(6), 냉각장치(6)로부터 토출된 유체에서 물과 기름을 분리하는 유수분리장치(7), 유수분리장치(7)로부터 분리된 기름을 일시적으로 저장하는 저장탱크, 저장탱크에 저장된 유체를 침전시키는 침전조(8), 침전조(8) 내부의 침전물을 제거하는 침전분리장치, 침전분리장치에서 분리된 침전물에서 잔여 기름을 추출하는 원심분리장치(9), 원심분리장치(9)로부터 배출되는 슬러지를 받아들이는 슬러지 처리장치가 포함될 수 있다.In a preferred embodiment, a distillation column 5 connected to the discharge end of the decomposition reactor 3, a cooling device 6 connected to the diesel gas discharge end of the distillation column 5, water and water from the fluid discharged from the cooling device 6 An oil-water separator (7) that separates oil, a storage tank that temporarily stores the oil separated from the oil-water separator (7), a settling tank (8) that precipitates the fluid stored in the storage tank, and the sediment inside the settling tank (8) A sedimentation separator for removing, a centrifugal separator 9 for extracting residual oil from the sediment separated in the sedimentation separator, and a sludge treatment device for receiving the sludge discharged from the centrifugal separator 9 may be included.
이하, 각 분리장치별 상세한 구성을 설명한다.Hereinafter, a detailed configuration of each separation device will be described.
증류탑(5)(중유가스/경유가스 분리 장치, 기액분리장치)Distillation column (5) (heavy oil gas/light oil gas separation device, gas-liquid separation device)
도 10에서, 증류탑(5)은 지면으로부터 수직한 방향으로 긴 내부공간을 가지도록 형성될 수 있다. 원통형 또는 장방형(기둥형) 등으로 구성될 수 있다.10, the distillation column 5 may be formed to have a long inner space in a direction perpendicular to the ground. It may be configured in a cylindrical or rectangular (pillar) shape.
증류탑(5)의 하부에는 분해반응기(3)의 토출단으로부터 유입되는 가스의 유입구(5-1가) 형성될 수 있다. 고온(350℃ 내지 550℃; 분해반응기(3)의 최대온도) 상태로 유입된 유체 중, 고온상태임에도 액체상태인 고비점 생성물(또는 미분해 반응물)은 증류탑(5) 하단에 구비된 하부토출구(5-2)를 통해 빠져나가고, 하부토출구(5-2는 분해반응기(3)에 재투입되어 저비점 생성물로의 분해를 유도한다. 고체폐기물 및 액체폐기물 동시 분해반응기(3)가 적용되는 실시 예에서는, 액체폐기물 유입구를 통해 분해반응기(3) 내부로 이송될 수 있다.At the bottom of the distillation column 5, an inlet 5-1 may be formed for gas flowing from the discharge end of the decomposition reactor 3. Among the fluids introduced at a high temperature (350 ° C to 550 ° C; maximum temperature of the decomposition reactor 3), the high boiling point product (or undecomposed reactant), which is in a liquid state even at a high temperature, is discharged through the lower discharge port provided at the bottom of the distillation column (5). It exits through (5-2), and the lower discharge port (5-2) is reintroduced into the decomposition reactor (3) to induce decomposition into low-boiling products. In an example, the liquid waste may be conveyed into the decomposition reactor 3 through the inlet.
증류탑(5)의 내부에는 복수개의 단(5-3), columns, 트레이; tray)이 형성되며, 각 단에서는 비점에 따라 다른 분자량의 기름 성분이 액화되어 토출될 수 있다.Inside the distillation column 5, a plurality of stages 5-3, columns, and trays; tray) is formed, and in each stage, oil components of different molecular weights can be liquefied and discharged according to the boiling point.
증류탑(5) 내부의 가스가 각 단별로 원하는 범위의 온도가 되도록 가열장치 또는 냉각장치를 구비할 수 있으며, 별도로 가열장치나 냉각장치가 구비되지 않더라도 통상의 기술자는 증류탑(5)의 설계변경을 통해 각 단에서의 온도를 조절할 수 있다.A heating device or a cooling device may be provided so that the gas inside the distillation column 5 reaches a temperature within a desired range for each stage. The temperature at each stage can be controlled through this.
예를 들어 1단에서는 350℃ 이하로 온도를 유지시켜 트레이 캡(5-4)에 접촉된 가스(중유)를 액화시키며, 액화된 중유는 배관 및 설비장치 등을 거쳐 중유탱크(18d)로 이송될 수 있다. 2단에서는 220℃ 내지 250℃ 범위로 온도를 유지시켜 트레이 캡(5-4)에 접촉된 가스(경유)를 액화시키며, 액화된 경유는 배관 및 설비장치 등을 거쳐 경유탱크(18b)로 이송될 수 있다. 3단에서는 150℃ 내지 240℃ 범위로 온도를 유지시켜 트레이 캡에 접촉된 가스(등유)를 액화시키며, 액화된 등유는 배관 및 설비장치 등을 거쳐 경유탱크(18b)로 이송될 수 있다. 4단에서는 75℃ 내지 150℃ 범위로 온도를 유지시켜 트레이 캡(5-4)에 접촉된 가스(나프타)를 액화시키며, 액화된 나프타는 배관 및 설비장치 등을 거쳐 나프타탱크로 이송될 수 있다. 5단에서는 40℃ 내지 75℃ 범위로 온도를 유지시켜 트레이 캡(5-4)에 접촉된 가스(휘발유)를 액화시키며, 액화된 휘발유는 배관 및 설비장치 등을 거쳐 휘발유탱크(18a)로 이송될 수 있다. 이후에는 증류탑(5) 상단에 구비된 상부토출구를 통해 LPG가 배출될 수 있다.For example, in the first stage, the gas (heavy oil) in contact with the tray cap 5-4 is liquefied by maintaining the temperature below 350 ° C, and the liquefied heavy oil is transferred to the heavy oil tank 18d through pipes and equipment. It can be. In the second stage, the temperature is maintained in the range of 220 ° C to 250 ° C to liquefy the gas (diesel) in contact with the tray cap 5-4, and the liquefied diesel is transferred to the diesel tank 18b through pipes and equipment. It can be. In the third stage, the gas (kerosene) in contact with the tray cap is liquefied by maintaining the temperature in the range of 150 ° C to 240 ° C, and the liquefied kerosene can be transferred to the diesel tank 18b through pipes and equipment. In the fourth stage, the temperature is maintained in the range of 75 ° C to 150 ° C to liquefy the gas (naphtha) in contact with the tray cap 5-4, and the liquefied naphtha can be transferred to the naphtha tank through pipes and equipment. . In the fifth stage, the temperature is maintained in the range of 40 ° C to 75 ° C to liquefy the gas (gasoline) in contact with the tray cap 5-4, and the liquefied gasoline is transferred to the gasoline tank 18a through pipes and equipment. It can be. After that, LPG may be discharged through an upper discharge port provided at the top of the distillation column 5.
트레이 캡(5-4)은, "버블 캡 트레이"가 채용될 수 있다. 버블 캡 트레이는, 트레이(5-3)의 구멍이 굴뚝 모양으로 형성되고, 굴뚝 형상의 위에 캡이 장착된 형태일 수 있다. 이러한 구성은, 오염계수가 높은 증류탑(5)에 적합하며, 본 발명의 실시 예에서는 폐기물을 열유화함으로써 소정의 오염물질의 발생이 예측되므로 상기와 같은 구성을 적용하는 것이 바람직하다.As the tray cap 5-4, a "bubble cap tray" may be employed. The bubble cap tray may have a shape in which the hole of the tray 5-3 is formed in a chimney shape, and a cap is mounted on the chimney shape. This configuration is suitable for the distillation column 5 having a high contamination coefficient, and in the embodiment of the present invention, it is preferable to apply the above configuration because the generation of a predetermined contaminant is predicted by thermally emulsifying the waste.
- 유수분리장치(7)- Oil water separator (7)
분해반응로에서 생성된 가스를 냉각하여 액화시킨 뒤, 생성된 액체에서 물 성분을 분리할 필요가 있다. 통상의 기술자는 본 발명의 설명을 참조하여, 열분해장치를 통해 생산된 기름의 사용처에 따라 물 성분의 분리 여부(유수분리장치의 시스템 포함 여부)를 결정할 수 있을 것이다.After cooling and liquefying the gas produced in the decomposition reactor, it is necessary to separate the water component from the produced liquid. With reference to the description of the present invention, a person skilled in the art will be able to determine whether to separate water components (whether an oil-water separator system is included or not) according to the use of the oil produced through the pyrolysis device.
본 발명의 일 실시 예에 따르면, 유수분리장치(7)는 소정의 수용공간이 구비된 유수분리수조와, 유체공급배관과, 유수분리수조의 상부에 구비된 유분토출배관과, 유수분리수조의 하부에 구비되어 물이 유입 및 배출되는 물토출입배관을 포함할 수 있다.According to an embodiment of the present invention, the oil-water separation device 7 includes an oil-water separation tank equipped with a predetermined accommodation space, a fluid supply pipe, an oil discharge pipe provided at the top of the oil-water separation tank, and an oil-water separation tank. It may include a water discharge pipe provided at the bottom and through which water is introduced and discharged.
상온에서 각 액체의 밀도는 다음과 같다. 물 1000kg/m3, 가솔린 680kg/m3, 등유 780~810kg/m3, 경유 820~845kg/m3, 중유 890~1010kg/m3.(m3 : 세제곱 미터)The density of each liquid at room temperature is: Water 1000kg/m3, gasoline 680kg/m3, kerosene 780~810kg/m3, light oil 820~845kg/m3, heavy oil 890~1010kg/m3. (m3 : cubic meter)
중유 성분 중 일부를 제외하면 모든 성분이 물보다 밀도가 작으므로, 유체공급배관을 통해 공급된 기름/물 혼합액은 밀도차이에 의해 분리(상부에 기름, 하부에 물이 위치)된다.All components, except for some of the heavy oil components, have a lower density than water, so the oil/water mixture supplied through the fluid supply pipe is separated by the difference in density (oil at the top, water at the bottom).
중유 성분의 밀도를 감안할 때, 유수분리장치(7)의 전단에서 최소한 중유 성분이 분리된 상태로 유수분리장치(7)에 유체가 공급되는 것이 바람직하다. 또는, 물에 다른 용질을 용해시키거나 물(중유)보다 밀도가 큰 친수성 용매를 통해 중유를 포함한 상태에서 유수분리 과정을 진행시킬 수도 있다.Considering the density of the heavy oil component, it is preferable that the fluid is supplied to the oil/water separator 7 in a state in which at least the heavy oil component is separated from the front end of the oil/water separator 7 . Alternatively, the oil-water separation process may be performed in a state including heavy oil by dissolving other solutes in water or using a hydrophilic solvent having a higher density than water (heavy oil).
유수분리수조에는 수위센서가 구비되어, 유수분리수조 내 물의 높이를 일정하게 유지할 수 있다.A water level sensor is provided in the oil-water separation tank, so that the water level in the oil-water separation tank can be kept constant.
- 생성물 내 이물질분리장치- Foreign matter separation device in the product
원유를 분별증류하게 되면 슬러지로 아스팔트가 생성되나, 본 발명의 실시 예에서는 폐기물로부터 기름 성분들을 분별증류하기 때문에, 시스템을 이용한 전체 과정에서 다양한 이물질(2차 폐기물)이 생성될 수 있다.When crude oil is fractionated, asphalt is produced as sludge, but in the embodiment of the present invention, since oil components are fractionated from waste, various foreign substances (secondary waste) may be generated during the entire process using the system.
예를 들어, 폴리 염화 비닐(Polyvinyl chloride, PVC)의 분해 시에는 HCl이 생성된다. 이물질이 온전하게 제거되지 않는 경우, 기름 사용 시 내연기관 등에 치명적인 손상을 발생시킬 수 있으며, 인체 및 환경에도 악영향을 끼칠 수 있으므로, 이러한 유해성 이물질들을 적절히 분리하여 제거하는 것이 중요하다.For example, HCl is produced during the decomposition of polyvinyl chloride (PVC). If the foreign substances are not completely removed, they can cause fatal damage to internal combustion engines, etc. when using oil, and can also adversely affect the human body and the environment, so it is important to properly separate and remove these harmful foreign substances.
- 침전분리장치(침전조(8), 1차 기름저장장치)- Sedimentation separation device (sedimentation tank (8), primary oil storage device)
도 12에서, 냉각장치(6)에서 액상으로 응축되고, 유수분리장치(7)에서 수분이 제거된 기름 성분은 1차 기름저장장치로 이송될 수 있다. 1차 기름저장장치는, 침전조(8)의 기능을 포함할 수 있다. 상기 침전조(8)는, 몸체가 전체적으로 원통형으로 형성되며, 하부는 호퍼 형상(역으로 된 원뿔/다각뿔 형상)으로 둘레면에 소정의 경사면이 형상되도록 구성된다. 침전조(8)의 하단에는 침전물을 이송시킬 수 있는 이송배관 및 펌프가 연결될 수 있다. 침전조(8)의 일측에는 기름유입구(8-1)가, 침전조(8) 수위보다 소정의 높이만큼 낮은 위치에는 기름배출구(8-2)가 구비될 수 있다.12, oil components condensed into a liquid phase in the cooling device 6 and water removed in the oil-water separator 7 may be transported to the primary oil storage device. The primary oil storage device may include the function of the settling tank (8). The body of the sedimentation tank 8 is formed in a cylindrical shape as a whole, and the lower portion is configured to have a hopper shape (inverted cone/polygonal pyramid shape) with a predetermined inclined surface formed on the circumferential surface. A transport pipe and a pump capable of transporting sediment may be connected to the lower end of the sedimentation tank 8. An oil inlet 8-1 may be provided at one side of the settling tank 8, and an oil outlet 8-2 may be provided at a position lower than the water level of the settling tank 8 by a predetermined height.
통상적으로 슬러지는 열유화장치에서 분리되어 배출되나, 일부 입자가 작은 슬러지들은 가스들과 같이 유입될 수도 있으며, 일부 이물질은 고온에서 기상 또는 액상으로 변환되었다가 온도가 낮아질 때 고상으로 돌아오면서 고체 슬러지 형태로 남을 수 있다.Normally, sludge is separated and discharged from the thermal emulsifier, but some sludge with small particles may be introduced together with gases, and some foreign substances are converted to gas or liquid at high temperatures and return to solid when the temperature is lowered, forming solid sludge. can remain in the form
슬러지는 기름 성분에 비해 밀도가 커서 침전조(8)에서 침전되며, 침전물배출구(8-3)를 통해 슬러지 및 일부 기름 성분이 토출될 수 있다.Since the sludge has a higher density than the oil component, it is precipitated in the sedimentation tank 8, and the sludge and some oil components can be discharged through the sediment outlet 8-3.
또한, 가스 성분 중 프탈산이 포함되어 있는 경우에 가스가 130℃ 이하로 냉각되면, 프탈산이 무수프탈산으로 석출되며, 무수프탈산이 배관에 적층되어 배관막힘 현상이 발생할 수 있다. 이러한 막힘 현상을 방지하기 위하여, 상기와 같은 침전조(8)에서 무수프탈산을 침전시켜 기름 성분으로부터 분리할 수 있다.In addition, when the gas is cooled to 130° C. or lower when phthalic acid is included among the gas components, phthalic acid is precipitated as phthalic anhydride, and phthalic anhydride is deposited on the pipe, causing clogging of the pipe. In order to prevent this clogging phenomenon, phthalic anhydride may be precipitated in the precipitation tank 8 as described above and separated from the oil component.
무수프탈산으로 인한 배관막힘현상을 방지하기 위해, 분해반응기(3)로부터 저장장치까지의 배관(설비장치를 포함)의 전부/일부에는 열선/면상발열체 등 소정의 가열수단이 구비될 수 있다. 가열 온도는 130℃ 이상이 바람직하다. 가열장치(분해반응기(3) 등으로부터 열을 공급받아 자체 온도가 130℃ 이상인 배관이나 설비장치에는 가열수단을 생략할 수도 있을 것이다.In order to prevent clogging of pipes due to phthalic anhydride, predetermined heating means such as heating wires / planar heaters may be provided in all / part of the pipe (including equipment) from the decomposition reactor 3 to the storage device. The heating temperature is preferably 130°C or higher. The heating means may be omitted for piping or equipment having a temperature of 130 ° C or higher by receiving heat from the heating device (decomposition reactor 3, etc.).
- 원심분리장치(9)- Centrifugal separator (9)
상기 침전분리장치에서 토출된 슬러지/기름 혼합물로부터 기름을 재추출하기 위하여 침전분리장치 후단에는 원심분리장치(9)가 연결될 수 있다.In order to re-extract oil from the sludge/oil mixture discharged from the sedimentation separator, a centrifugal separator 9 may be connected to the rear end of the sedimentation separator.
원심분리 후 슬러지는 슬러지 처리장치로 이송되고, 기름 성분은 침전분리장치(침전조(8))의 상부를 통해 재유입될 수 있다. 침전분리장치-원심분리장치(9)를 순환하면서 기름에 섞여있는 슬러지 또는 무수프탈산 등 이물질 성분의 비율이 1% 이하로 수렴될 수 있다.After centrifugation, the sludge is transferred to the sludge treatment device, and the oil component may be re-introduced through the upper part of the sedimentation separator (settling tank 8). While circulating through the sediment separator-centrifugal separator (9), the ratio of foreign matter components such as sludge or phthalic anhydride mixed with oil can be converged to 1% or less.
- 염소(HCl) 제거 장치- Chlorine (HCl) removal device
폐비닐 또는 PVC 열분해 시 발생되는 염산(염소)은 물에 대한 용해도가 매우 높으므로, 전술한 유수분리장치(7)에 있는 물에 접촉하면서 대부분이 제거될 수 있다.Since hydrochloric acid (chlorine) generated during thermal decomposition of waste vinyl or PVC has a very high solubility in water, most of it can be removed while contacting the water in the oil-water separator 7 described above.
다만, 투입되는 폐기물 중 염소가 포함된 폐합성고분자가 많아 HCl의 발생량이 과다한 경우에는, 유수분리장치(7) 등 시스템 내부에서 유독가스(HCl 증기) 발생 및 장치의 부식 위험성이 있다.However, if the amount of HCl generated is excessive due to the large amount of waste synthetic polymers containing chlorine among the input wastes, there is a risk of generating toxic gas (HCl vapor) and corrosion of the device inside the system such as the oil-water separation device 7.
따라서, 충분한 양의 염산을 수용할 수 있도록, 상기 유수분리장치(7는 완충용액 또는 염기성 용액이 포함될 수 있다. 또한, 시스템 내부의 pH를 실시간으로 측정하여 장치의 부식을 방지하도록, 수조 내부 또는 배관 등에 pH측정센서가 구비될 수 있다. pH측정센서에서 측정된 pH값이 소정의 수치 이하(예를 들어 pH가 4보다 작은 경우)일 경우에는 전술한 완충용액 또는 염기성 용액을 수조 또는 배관에 투입하도록 구성될 수 있다. pH값이 낮은 용액을 배출시킨 뒤 완충용액 또는 염기성 용액을 투입시키는 구성도 가능하다.Therefore, the oil-water separation device 7 may include a buffer solution or a basic solution so as to accommodate a sufficient amount of hydrochloric acid. In addition, to prevent corrosion of the device by measuring the pH inside the system in real time, A pH measuring sensor may be provided in a pipe, etc. When the pH value measured by the pH measuring sensor is below a predetermined value (for example, when the pH is less than 4), the aforementioned buffer solution or basic solution is poured into the water tank or pipe. It may also be configured to inject a buffer solution or basic solution after discharging a solution having a low pH value.
전술한 바와 같이, 본 발명의 일 실시 예에 따르면, 염소 제거 장치는 시스템의 일측에 위치하는 하나의 장치 형태가 아니라 시스템 전반에 구성요소들이 분산되어 구성되는 염소 제거 시스템 형태로 구성될 수 있다.As described above, according to an embodiment of the present invention, the chlorine removal device may be configured in the form of a chlorine removal system in which components are distributed throughout the system, rather than a single device located on one side of the system.
[4] 냉각장치(6)[4] Cooling device (6)
열유화장치에서는 가스 상태의 기름 성분(휘발유, 중유, 경유, 등유 등)이 추출된다. 이를 냉각하여 액화시키기 위하여 분리장치의 후단에 냉각장치(6)가 연결될 수 있다.In the thermal emulsifier, gaseous oil components (gasoline, heavy oil, light oil, kerosene, etc.) are extracted. A cooling device 6 may be connected to the rear end of the separator to cool and liquefy it.
원유 성분의 끓는점은 다음과 같다. LPG 25℃ 이하, 가솔린 40~75℃, 나프타 75℃~150℃, 등유 150~240℃, 경유 220~250℃, 중유 350℃ 이상(분별 증류 시 기준).The boiling points of crude oil components are: LPG 25℃ or less, gasoline 40~75℃, naphtha 75℃~150℃, kerosene 150~240℃, diesel 220~250℃, heavy oil 350℃ or more (based on fractional distillation).
LPG를 제외한 다른 기름 성분들은 상온(25℃)의 물만으로도 액화가 가능하므로(LPG도 일부 냉각), 이하 냉각수를 이용한 냉각장치(6를 상세히 설명한다.Since other oil components other than LPG can be liquefied only with water at room temperature (25 ° C) (LPG is also partially cooled), the cooling device (6) using cooling water will be described in detail below.
수조 냉각장치(6)Bath Chiller (6)
도 13에서, 본 발명의 일 실시 예에 의한 수조 냉각장치(6)는, 소정의 수용공간이 형성되는 수조(6-1)와, 상기 수조(6-1)에 물을 투입하는 배관 및 펌프, 상기 수조(6-1)로부터 물을 배출시키는 배관 및 펌프, 물을 다시 냉각하는 냉각수단 및 상기 수조(6-1)를 통과하여 물과 기름 사이의 열교환을 발생시키는 냉각수조열교환배관(6-2), 각 배관 사이를 잇는 곡관(6-4), 미사용 배관의 단부를 폐쇄하는 배관커버(6-3)를 포함하여 구성될 수 있다.In FIG. 13, the water tank cooling device 6 according to an embodiment of the present invention includes a water tank 6-1 in which a predetermined accommodation space is formed, and a pipe and a pump for injecting water into the water tank 6-1. , A pipe and a pump for discharging water from the water tank (6-1), a cooling means for cooling the water again, and a cooling water tank heat exchange pipe (6) for generating heat exchange between water and oil through the water tank (6-1). -2), a bend pipe 6-4 connecting each pipe, and a pipe cover 6-3 closing an end of an unused pipe.
상기 냉각수단은, 히트펌프 등을 이용하여 온도를 낮추는 구성 또는, 강물/바닷물 등 히트싱크(16), 물의 용량이 매우 커서, 수조(6-1)에 비해 온도 변화를 무시할 수 있는 물 저장조)로부터 물을 공급받고 히트싱크(16)로 물을 배출시키는 구성 등이 사용될 수 있다. 수조(6-1)에서 열전도율이 높은 파이프와 물이 접촉하는 구성이기 때문에, 냉각수로 사용된 물을 그대로 강이나 바다로 배출하더라도 환경오염에 직접적인 영향은 적다.The cooling means is configured to lower the temperature using a heat pump or the like, or a heat sink 16 such as river/sea water, a water storage tank that can ignore temperature changes compared to the water tank 6-1 because the water capacity is very large) A configuration in which water is supplied from and the water is discharged to the heat sink 16 may be used. Since the water tank 6-1 is in contact with a pipe having high thermal conductivity, the direct effect on environmental pollution is small even if the water used as cooling water is discharged to the river or the sea as it is.
다만, 물 배출단 주변에서 수온 상승으로 인한 환경 변화가 발생할 수 있으므로, 물의 배출 전 소정의 온도만큼 냉각시키고 배출하되 배출단 주변에서 난류를 발생시켜 배출되는 물(냉각수로 사용되어 가열된 물)과 강물/바닷물을 빠르게 믹싱하도록 구성될 수 있다. 이 경우에는, 냉각수로 사용된 물을 냉각수단으로 냉각하여 다시 냉각수로 공급하는 구성에 비해 냉각에 필요한 에너지의 양이 상대적으로 적다.However, since environmental changes may occur around the water discharge end due to a rise in water temperature, the water is cooled to a predetermined temperature before discharging and discharged, but the water discharged by generating turbulence around the discharge end (water heated by being used as cooling water) and It can be configured to mix river/sea water quickly. In this case, the amount of energy required for cooling is relatively small compared to a configuration in which the water used as the cooling water is cooled by the cooling means and then supplied again as the cooling water.
상기 파이프는, 수조(6-1)의 상부(6a)로부터 하부(6b)까지 복수개의 열로 구성되며, 각 열이 교번되며 연결되도록 구성될 수 있다. 또한, 상부의 파이프(6a)로부터 하부의 파이프(6b)까지 배관경을 점차 작아지게 구성할 수 있다.The pipe is composed of a plurality of rows from the upper part 6a to the lower part 6b of the water tank 6-1, and each row may be alternately connected. In addition, the pipe diameter can be configured to gradually decrease from the upper pipe 6a to the lower pipe 6b.
종래 냉각장치에서, 배관 내를 흐르던 기름(가스) 성분이 액화되면서 액상 기름이 배관을 막아 파이프가 막히는 현상이 자주 발생하는데, 상기와 같은 파이프의 구성을 통해, 수조(6-1)의 상부(기름 입력단, 6a)에서 기름의 급격한 밀도 변화 등으로 인한 배관 막힘 현상을 방지할 수 있다.In a conventional cooling device, as the oil (gas) component flowing in the pipe is liquefied, the liquid oil blocks the pipe, and the pipe is often clogged. Through the configuration of the pipe as described above, the upper part ( It is possible to prevent pipe clogging due to sudden change in density of oil at the oil input stage, 6a).
기름과 냉각수가 가장 처음 접촉하는 첫번째 파이프 열(6a)의 배관경을 넓게(65A) 하여, 냉각 초반에는 상대적으로 유속이 느리게 구성하고, 마지막 파이프 열(기름 출력단, 6b)의 배관경은 상대적으로 좁게(32A) 하여, 냉각이 완료되는 시점에서는 유속을 빠르게 구성할 수 있다.By widening (65A) the pipe diameter of the first pipe row (6a) where oil and coolant first come into contact, the flow rate is relatively slow in the beginning of cooling, and the pipe diameter of the last pipe row (oil output end, 6b) is relatively narrow (32A), the flow rate can be quickly configured at the time when cooling is completed.
상부 파이프(6a)로부터 하부 파이프(6b)까지 높이가 점차 낮아지도록 파이프를 연결시켜, 냉각에 따라 밀도가 증가한 기름 성분이 자중에 의해 자연스럽게 냉각수조 출구 방향으로 흘러가도록 구성할 수 있다.The pipes may be connected so that the height gradually decreases from the upper pipe 6a to the lower pipe 6b so that the oil component, whose density increases as it cools, naturally flows toward the outlet of the cooling water tank due to its own weight.
배관 막힘 현상이 자주 발생하게 되면 시간당(또는 일당) 기름 생산량에 치명적인 영향을 끼칠 수 있다. 배관 막힘 현상 발생 시, 모든 장치를 가동 정지시킨 뒤, 냉각수조 파이프(6-2) 및 파이프 내부의 유체가 충분히 냉각될 때까지 대기한 뒤에 파이프(6-2)를 개방하여 뚫는 작업(수작업이므로 작업자의 안전을 위함. 장비 가동중에는 파이프 내에 고온/고압의 유체가 흐름)을 해야 하므로, 작업시간에 큰 손실이 발생한다.Frequent clogging of pipelines can have a devastating effect on oil production per hour (or per day). In the event of pipe blockage, after stopping all devices, waiting until the cooling water tank pipe (6-2) and the fluid inside the pipe are sufficiently cooled, and then opening and drilling the pipe (6-2). For the safety of workers, high-temperature/high-pressure fluid must flow in the pipe while the equipment is operating, resulting in a large loss of working time.
상기와 같은 구성으로 배관 막힘 현상을 획기적으로 개선할 수 있으나, 주변환경의 영향이나 폐기물의 종류 등 악조건에서 발생할 수도 있는 배관 막힘 현상에 쉽게 대응할 수 있도록, 상기 파이프(6-2)는 수조(6-1)를 관통하도록 결합되되, 수조(6-1)의 외곽부에는 플랜지(6-3)를 통해 각 열을 개방(배관커버를 플랜지(6-3) 형태로 착탈)할 수 있도록 구성될 수 있다. 배관 막힘 현상이 발생한 경우, 해당되는 파이프(6-2)의 배관커버만 개방하여 막힘 현상을 해소할 수 있다.Although the pipe clogging phenomenon can be drastically improved with the above configuration, the pipe 6-2 is a water tank 6 -1), but is configured to open each column through the flange 6-3 at the outer portion of the water tank 6-1 (removable the pipe cover in the form of the flange 6-3) can When the pipe clogging phenomenon occurs, the clogging phenomenon can be solved by opening only the pipe cover of the corresponding pipe 6-2.
또한, 수조(6-1) 내의 냉각수가 자연대류하여 가열된 뜨거운 물이 수조(6-1)의 상부로 이동하고 새로이 공급된 차가운 물은 수조(6-1)의 하부로 이동하므로, 각 파이프 열 간 내부 유체의 부피 변화를 평균화할 수 있다.In addition, since the cooling water in the water tank 6-1 is naturally convex, the heated hot water moves to the upper part of the water tank 6-1 and the newly supplied cold water moves to the lower part of the water tank 6-1, so each pipe The volume change of the internal fluid between heats can be averaged.
그리고, 각 파이프 열을 수조(6-1) 외부에서 U자형 또는 H형, ㄷ형 등의 형태(곡관, 6-4)로 플랜지 결합 시킴으로써, 특정한 배관에서 막힘이 발생한 경우에 해당 플랜지(6-3)만 분리(개방)하여 막힘 현상을 신속하게 해소할 수 있다.In addition, by flange-joining each pipe row in a U-shaped, H-shaped, or c-shaped form (bend pipe, 6-4) outside the water tank (6-1), in case of clogging in a specific pipe, the corresponding flange (6-3 ) can be separated (opened) to quickly resolve clogging.
아울러, 상기 수조(6-1) 내의 파이프 외주면에는 냉각핀이 형성되어, 물과의 접촉 표면적을 최대화함으로써 냉각효율을 극대화할 수 있다In addition, cooling fins are formed on the outer circumferential surface of the pipe in the water tank 6-1 to maximize the cooling efficiency by maximizing the contact surface area with water.
도 14에서, 냉각핀 이외에도, 평판 형태의 금속핀(F)을 파이프 위주면에 방사상으로 부착시킴으로써 파이프와 물 사이의 열전달을 촉진시킬 수 있다. 평판 형태의 금속 4개 내지 8개 가량을 파이프 외주면에 부착시킬 수 있다.In FIG. 14 , heat transfer between the pipe and water may be promoted by radially attaching flat metal fins F to the circumferential surface of the pipe in addition to the cooling fins. About 4 to 8 pieces of flat metal may be attached to the outer circumferential surface of the pipe.
수조(6-1)에는 교반장치가 구비되어, 수조(6-1) 내의 냉각수를 강제대류시킴으로써, 수조(6-1) 내 물의 온도를 균일하게 유지시킬 수 있다.The water tank 6-1 is provided with a stirring device, and the temperature of the water in the water tank 6-1 can be maintained uniformly by forced convection of the cooling water in the water tank 6-1.
수조(6-1)의 상부에 물 배출 배관 및 펌프가 구비되되, 가열되어 토출되는 냉각수를 상기 분해반응기(3)로 이송시켜 분무시킬 수 있다. 분해반응기(3)에 물을 분무할 때, 온도가 낮은 물을 분무하게 되면 물의 잠열로 인해 가열수단의 부하가 증가하므로, 고온의 가스로부터 열에너지를 받아 가열된 상태의 물을 분무함으로써 가열수단의 부하를 감소시킬 수 있다.A water discharge pipe and a pump are provided at the top of the water tank (6-1), and the cooling water that is heated and discharged can be transported to the decomposition reactor (3) and sprayed. When water is sprayed into the decomposition reactor (3), when spraying low-temperature water, the load of the heating means increases due to the latent heat of the water. load can be reduced.
[5] 저장장치[5] Storage
각 저장장치에는, 기화된 가스로 인한 저장장치(탱크) 내부의 압력을 조절하는 압력조절장치 및 압력계가 구비될 수 있다.Each storage device may be provided with a pressure regulator and a pressure gauge for regulating the pressure inside the storage device (tank) due to vaporized gas.
본 발명의 실시 예에 의하면, 중간생성물 또는 최종생성물들이 서로 다양한 비점/포화증기압력을 가지므로, 저장장치의 저장온도에서 기화가 잘 일어나는 경우에는 압력 증가로 인한 저장장치의 파손 또는 폭발 등이 발생할 수 있으므로, 압력을 하강시키기 위해 저장장치에 응축기(냉각장치) 또는 기체배출장치 등이 구비될 수 있다.According to an embodiment of the present invention, since intermediate products or final products have various boiling points/saturated vapor pressures, when vaporization occurs well at the storage temperature of the storage device, damage or explosion of the storage device due to the increase in pressure may occur. Therefore, a condenser (cooling device) or a gas discharge device may be provided in the storage device to lower the pressure.
해당 저장장치에 구비된 유체가 무독성이며 환경에 미치는 영향이 적은 경우에는 기체를 배출하여 환기시킴으로써 압력을 조절하고, 이외의 경우에는 응축기를 통해 기체 분자들을 응축시켜 압력을 감소시킨다.If the fluid provided in the storage device is non-toxic and has little impact on the environment, the pressure is controlled by discharging and ventilating the gas, and in other cases, the pressure is reduced by condensing gas molecules through a condenser.
[6] 슬러지 처리장치[6] Sludge treatment device
슬러지 파쇄장치sludge crusher
- 물리적 파쇄장치- Physical crushing device
폐기물의 원활한 순환경로를 구성하기 위해서는 슬러지 파쇄를 위한 별도의 파쇄장치를 구비하는 것이 바람직하다.In order to construct a smooth circulation path of waste, it is preferable to have a separate crushing device for crushing sludge.
슬러지 또한 본 발명에서 재활용하고자 하는 대상인 폐기물 내지 폐합성고분자의 일종으로 볼 수 있어서, 슬러지를 상기 폐합성고분자 열유화 시스템에 재투입 하는 것도 가능하다. 다만, 1차 열유화 과정에서 이미 대부분의 기름 성분이 추출되어 1차 열유화 과정에 비해 2차 열유화 과정의 기름성분 추출률은 상대적으로 낮을 수 있다. 2차 열유화 과정은, 반응시간의 부족 등의 요인으로 발생하는 폐합성고분자의 과소 열유화 반응(폐기물이 제대로 분해되지 않고 합성고분자 상태 그대로 남아있는 상태)이 많이 일어날 수록 효과적일 수 있다.Sludge can also be regarded as a kind of waste or waste synthetic polymers to be recycled in the present invention, so it is possible to re-inject the sludge into the waste synthetic polymer thermal emulsification system. However, since most of the oil components are already extracted in the first thermal emulsification process, the oil component extraction rate of the second thermal emulsification process may be relatively low compared to the first thermal emulsification process. The secondary thermal emulsification process can be more effective as the under-thermal emulsification reaction of waste synthetic polymers (a state in which wastes are not properly decomposed and remain as synthetic polymers) occurs due to factors such as insufficient reaction time.
파쇄드럼(11)Crushing drum (11)
도 15에서, 본 발명의 일 실시 예에 따르면, 슬러지 파쇄장치는, 서로 동일한 회전축을 가지고 소정의 간격만큼 이격되어 구비되는 한 쌍의 파쇄드럼(11-1)과, 상기 파쇄드럼(11-1)의 구동축에 연결되는 동력전달장치(3h)와, 상기 동력전달장치(3h)에 동력을 제공하는 동력제공장치(구동모터 또는 내연기관)를 포함할 수 있다.In FIG. 15, according to an embodiment of the present invention, the sludge crushing device includes a pair of crushing drums 11-1 having the same rotation axis and spaced apart from each other by a predetermined interval, and the crushing drum 11-1 ) It may include a power transmission device (3h) connected to the drive shaft, and a power supply device (drive motor or internal combustion engine) that provides power to the power transmission device (3h).
상기 파쇄드럼(11-1)은 원통형으로 구성되되, 원통의 외주면에는 복수개의 파쇄 날(11-2)이 소정의 간격마다 나선형으로 구비될 수 있다. 복수개의 파쇄드럼(11-1)에 형성된 나선형의 파쇄 날(11-2)은, 헬리컬 기어의 결합부위와 같이 서로 어긋나도록 구비될 수 있다. 어긋난다는 기재는, 파쇄 날(11-2)끼리의 간섭을 최소화하여 파쇄 날(11-2)의 마모를 억제시키는 구성을 의미할 수 있다.The crushing drum 11-1 is configured in a cylindrical shape, and a plurality of crushing blades 11-2 may be spirally provided at predetermined intervals on the outer circumferential surface of the cylinder. The helical crushing blades 11-2 formed on the plurality of crushing drums 11-1 may be provided to be offset from each other like a coupling part of a helical gear. The description of misalignment may mean a configuration in which wear of the crushing blades 11-2 is suppressed by minimizing interference between the crushing blades 11-2.
상기 파쇄드럼(11-1)은, 복수개의 시리즈로 구성될 수 있다. 이 경우, 각각의 파쇄드럼(11-1) 열(구동축의 방향)이 소정의 각도만큼 틀어진 상태로 구비될 수 있다.The crushing drum 11-1 may be composed of a plurality of series. In this case, each row of the crushing drums 11-1 (in the direction of the drive shaft) may be provided in a state twisted by a predetermined angle.
상기와 같은 구성에서, 1열(최 상단 파쇄드럼, 11a)에서 파쇄된 폐기물은 동서(東西) 방향에 평행한 형태로 압착되어 배출되므로, 이를 더 잘게 분해하려면 2열(최 상단 파쇄드럼의 하부에 위치하는 파쇄드럼, 11b)에서는 그와 수직이 되도록 남북(南北) 방향으로 형성되는 것이 바람직하다.In the above configuration, the wastes crushed in row 1 (top crushing drum, 11a) are compressed and discharged in a parallel form in the east-west direction, In the crushing drum located in 11b), it is preferable to be formed in the north-south direction so as to be perpendicular to it.
파쇄드럼(11-1)이 4열 이상 구비되는 경우, 후반부의 열(4열 이후)에서는 파쇄드럼(11-1)을 통한 파쇄율이 급격하게 떨어지므로, 설비비용이나 유지보수 비용, 관리의 용이성 등을 고려하여 2열 또는 3열까지 구비되는 것이 바람직하다.When the crushing drum 11-1 is provided in four or more rows, the crushing rate through the crushing drum 11-1 drops sharply in the second half of the row (fourth row or later), so the cost of equipment, maintenance, and management It is preferable to provide up to 2 or 3 rows in consideration of ease and the like.
- 가스충격 파쇄장치- Gas impact crusher
본 발명의 일 실시 예에 따르면, 각 과정/장치에서 다양한 조성의 가연성 물질이 생성되며, 이 중 부가가치가 높은 기름 성분(휘발유, 경유 등)이 있는 반면, 생활 또는 산업에 부적합한 가연성 물질도 다수 생성될 수 있다.According to an embodiment of the present invention, combustible materials of various compositions are generated in each process/device, and among them, oil components (gasoline, diesel, etc.) with high added value are present, while many combustible materials unsuitable for life or industry are also generated It can be.
상기와 같이 부가가치가 떨어지는 기름 성분은, 운송 과정에 소요되는 비용이 기름의 가치보다 더 클 수 있으므로(기름을 운송하는 과정에서, 운송되는 기름의 가치보다 더 높은/많은 가치의 기름이 소모될 수 있음) 본 발명의 실시 예에 의한 시스템에서 자체적으로 사용할 수 있다.As for oil components with low value-added as described above, the cost of transportation may be greater than the value of oil (in the process of transporting oil, oil of higher/more value than the value of the oil to be transported may be consumed). yes) can be used by itself in the system according to the embodiment of the present invention.
그 일 실시 예로는, 상기와 같은 저부가가치 기름(열유화 시스템의 중간/최종 생성물 중 일부)을 사용하는 내연기관이 제공될 수 있다.As an example thereof, an internal combustion engine using the above low value-added oil (some of the intermediate/final products of the thermal emulsification system) may be provided.
도 16에서, 상기 내연기관은, 소정의 연소실이 형성되는 실린더(11`-1)와, 상기 실린더(11`-1) 내에 수용되는 피스톤(11`-2)과, 상기 피스톤(11`-2)과 연결되는 크랭크축을 포함할 수 있다. 실린더(11`-1) 및 피스톤(11`-2) 사이에는 소정의 밀폐구조가 형성되어, 실린더(11`-1) 내의 기체가 피스톤(11`-2)을 통과하여 실린더(11`-1) 맞은편으로 유입되지 않도록 구성되는 것이 바람직하다. 내연기관의 일반적인 구성 자체는 공지기술이므로 더 상세히 기재하지는 않는다.16, the internal combustion engine includes a cylinder 11'-1 in which a predetermined combustion chamber is formed, a piston 11'-2 accommodated in the cylinder 11'-1, and the piston 11'- 2) may include a crankshaft connected to. A predetermined sealing structure is formed between the cylinder 11'-1 and the piston 11'-2, so that the gas in the cylinder 11'-1 passes through the piston 11'-2 and the cylinder 11'- 1) It is preferable to be configured so that it does not flow into the opposite side. Since the general configuration of the internal combustion engine itself is a well-known technology, it will not be described in detail.
상기 내연기관에서 발생된 에너지를 모터 등 전동기와 연결하여 발전장치로 사용할 수 있다.The energy generated in the internal combustion engine may be connected to an electric motor such as a motor and used as a power generation device.
상기 실린더(11`-1)의 연소실 맞은편에 형성된 공간(비반응성 기체 수용공간)은, 슬러지 저장장치로 연결될 수 있다. 이 경우, 내연기관에서 가스(기름)의 연소를 통해 발생한 에너지가 피스톤(11`-2)을 실린더(11`-1) 끝단(상사점 또는 하사점)으로 빠르게 밀어내고, 비반응성 기체 수용공간에 형성되어있던 공간이 급격하게 압축되면서 슬러지 저장장치로 공급된다. 이 과정에서 발생한 충격파는 슬러지를 파쇄할 수 있다.The space (non-reactive gas accommodating space) formed on the opposite side of the combustion chamber of the cylinder 11'-1 may be connected to a sludge storage device. In this case, the energy generated through the combustion of gas (oil) in the internal combustion engine quickly pushes the piston 11`-2 to the end of the cylinder 11`-1 (top dead center or bottom dead center), and the non-reactive gas accommodation space The space formed in the sludge is rapidly compressed and supplied to the sludge storage device. Shock waves generated in this process can crush the sludge.
충격파의 파쇄력을 증가시키기 위하여, 충격파의 출력단(분사단)은 노즐 형태로 구성될 수 있다. 충격파의 출력단에서 배관의 관경을 급격하게 감소시켜 동압력의 크기가 급격하게 증가시키는 것으로, 슬러지의 파쇄를 촉진할 수 있다.In order to increase the crushing force of the shock wave, the output end (injection end) of the shock wave may be configured in the form of a nozzle. At the output end of the shock wave, the size of the dynamic pressure is rapidly increased by rapidly reducing the diameter of the pipe, thereby promoting the crushing of the sludge.
상기 비반응성 기체 수용공간에는, 주기율표 상 18족 기체 또는 질소(N2)와 같이, 상기 내연기관의 점화(폭발) 반응 시의 최대온도를 감안하여 공기 등 다른 기체와 반응하지 않거나 반응성이 작은 기체가 사용될 수 있다.In the non-reactive gas accommodating space, a gas that does not react with other gases such as air or has low reactivity, such as group 18 gas or nitrogen (N2) on the periodic table, in consideration of the maximum temperature at the time of ignition (explosion) reaction of the internal combustion engine can be used
발전기가 가동되는 과정에서는, 발전기에서 크랭크축의 회전을 방해하는 방향으로 힘이 발생하여 슬러지의 파쇄를 방해할 수 있으므로, 상기 크랭크축에는 커플러가 연결되어, 충격파를 이용한 슬러지 파쇄 과정이 수행되지 않는 시점에서만 발전기와 연결되도록 구성될 수 있다.In the process of operating the generator, a force is generated in the generator in a direction that interferes with the rotation of the crankshaft, which can hinder the crushing of sludge, so a coupler is connected to the crankshaft, and the sludge crushing process using shock waves is not performed It may be configured to be connected to the generator only in
상기 슬러지 저장장치에는, 충격파로 인한 슬러지 저장장치의 파손 또는 폭발 등을 방지하기 위하여, 일측 이상에 충격완화장치가 구비될 수 있다.In the sludge storage device, a shock absorbing device may be provided on one or more sides in order to prevent damage or explosion of the sludge storage device due to shock waves.
상기 충격완화장치는, 슬러지 저장장치의 외주면 일측에 형성되어 소정의 실린더가 형성되는 충격흡수공간과, 상기 충격흡수공간의 일단에 연결되는 완충수단(11`-7)(스프링, 탄성체 또는 댐퍼 등)을 포함하여 구성될 수 있다.The shock absorbing device is formed on one side of the outer circumferential surface of the sludge storage device and includes a shock absorbing space in which a predetermined cylinder is formed, and a buffering means (11'-7) (spring, elastic body, damper, etc.) connected to one end of the shock absorbing space. ).
상기 완충수단(11`-7)의 타단(충격흡수공간 결합부의 타단)에는, 충격완화 피스톤(11`-6)이 결합되어, 슬러지 저장장치의 기압이 급격하게 증가하는 경우에 압력에 의해 밀려나면서 완충수단(11`-7)에 힘을 전달하도록 구성될 수 있다.A shock relieving piston (11'-6) is coupled to the other end of the shock absorbing means (11'-7) (the other end of the shock absorbing space coupling part), and is pushed out by the pressure when the air pressure of the sludge storage device rapidly increases while it may be configured to transmit force to the buffering means (11`-7).
상기 충격완화장치에는, 충격완화 온오프(On-Off)장치가 구비되고, 슬러지 저장장치에는 압력계가 더 구비될 수 있다. 슬러지 저장장치 내부의 압력이 슬러지 저장장치가 버틸 수 있는 한계 압력의 50% 이상이 되는 경우 충격완화장치를 즉시 온(On) 하여 충격을 완화시키도록 동작할 수 있다. 내연기관의 폭발에 의한 압력변화 시간이 매우 짧으므로, 하나 이상의 충격완화장치는 상시 온(On)상태인 것이 바람직하다.The shock relieving device may include a shock relieving on-off device, and a pressure gauge may be further provided in the sludge storage device. When the pressure inside the sludge storage device becomes 50% or more of the limit pressure that the sludge storage device can withstand, the shock absorber may be turned on immediately to relieve the shock. Since the pressure change time due to the explosion of the internal combustion engine is very short, it is preferable that one or more shock absorbing devices are always on.
슬러지 처리반응장치 / 슬러지 배출장치Sludge treatment reaction device / sludge discharge device
상기 구성을 통해 파쇄된 슬러지는, 슬러지 처리반응장치로 투입될 수 있다. 재 열유화 및 파쇄 등의 과정을 거친 슬러지에는 고부가가치의 기름 성분이 거의 남아있지 않으며, 오히려 유독한 가스 성분들이 남아있을 가능성이 높다. 따라서, 슬러지를 교반 및 가열하여 슬러지에 묻어있는 가스/기름 등의 성분을 기화시키고, 기화된 성분은 별도의 폐기가스처리장치(13)로 이송될 수 있다.The sludge crushed through the above configuration can be introduced into the sludge treatment reactor. In the sludge that has undergone re-thermal emulsification and crushing, almost no oil components of high added value remain, and rather, there is a high possibility that toxic gas components remain. Therefore, the sludge is stirred and heated to vaporize components such as gas/oil buried in the sludge, and the vaporized components can be transferred to a separate waste gas treatment device 13.
폐기가스처리장치(13)에서는, 상기 슬러지 처리반응장치로부터 공급받은 폐기가스를 연소시켜 제거할 수 있다. 연소 후에는 물을 스프레이 형태로 분무하여, 연소반응으로 생성된 미세입자 등을 제거할 수 있다. 연소반응 후 폐기가스처리장치(13) 내부에 고압의 물을 분사함으로써 내부에 묻은 찌꺼기를 마저 세척시키고, 폐기가스는 물, 별도의 냉각장치 등을 통해 냉각되어 액체상태(폐수)로 최종 슬러지 저장장치(15) 또는 폐수저장장치(14)로 이송될 수 있다.In the waste gas treatment device 13, the waste gas supplied from the sludge treatment reaction device can be burned and removed. After combustion, water may be sprayed to remove fine particles generated by the combustion reaction. After the combustion reaction, high-pressure water is sprayed into the waste gas treatment device (13) to clean the dregs buried inside, and the waste gas is cooled by water and a separate cooling device to store the final sludge in a liquid state (wastewater) It may be sent to the device 15 or the wastewater storage device 14.
상기 폐수는, 소정의 수질정화장치에 투입되어 부유물질 및 오염물질 등을 제거한 뒤 배출될 수 있다.The wastewater may be discharged after being introduced into a predetermined water purification device to remove suspended matter and contaminants.
폐기가스가 제거되고 남은 슬러지는, 폐기물 처리 시설로 운송되기 위하여 최종 슬러지 저장장치(15)로 이송될 수 있다.The sludge remaining after the waste gas is removed may be transferred to the final sludge storage device 15 for transport to a waste treatment facility.
본 발명의 폐합성고분자 열분해 시스템은 산업상 이용가능성이 있다.The waste synthetic polymer pyrolysis system of the present invention has industrial applicability.

Claims (9)

  1. 폐합성고분자 열분해 시스템에 있어서,In the waste synthetic polymer pyrolysis system,
    폐합성고분자를 가열하여 분해하는 분해반응기;a decomposition reactor for heating and decomposing the waste synthetic polymer;
    상기 분해반응기에서 생성된 성분을 냉각시키는 냉각장치 및;a cooling device for cooling components produced in the decomposition reactor;
    상기 분해반응기 및 냉각장치에서 생성된 성분을 저장하는 저장장치를 포함하고;It includes a storage device for storing the components produced in the decomposition reactor and the cooling device;
    상기 분해반응기는,The decomposition reactor,
    내주면에 나선형 가이드가 형성된 원통형 케이싱;A cylindrical casing with a spiral guide formed on an inner circumferential surface;
    상기 케이싱을 정회전 또는 역회전시키는 동력전달장치를 포함하고;Includes a power transmission device for forward or reverse rotation of the casing;
    상기 케이싱에는, 폐기물 투입구로부터 소정의 길이만큼 신장되고 상기 가이드와 소정의 거리만큼 이격되게 형성되는 포크 레일;In the casing, a fork rail extending from the waste inlet by a predetermined length and spaced apart from the guide by a predetermined distance;
    상기 포크 레일은 상기 케이싱의 유체 배출구에 액체 통로가 형성된 고정체가 회전 가능하게 고정되고 폐기물 투입구 방향으로 소정의 거리만큼 돌출되어 상기 케이싱이 정지 상태에 있을 때 자체 무게에 의하여 상기 고정체를 중심으로 회전하여 지표면과 평행하게 되는 두 개의 평판을 포함하는 것을 특징으로 하는 폐합성고분자 열분해 시스템. The fork rail is rotatably fixed to a fixture in which a liquid passage is formed at the fluid outlet of the casing and protrudes by a predetermined distance in the direction of the waste inlet, so that when the casing is in a stationary state, the fixture is centered on the fixture by its own weight. Waste synthetic polymer pyrolysis system, characterized in that it comprises two plates that are rotated and parallel to the ground surface.
  2. 청구항 1항에 있어서,The method of claim 1,
    상기 포크 레일은, 지게차 포크의 80% 내지 120%의 크기인 것을 특징으로 하는 폐합성고분자 열분해 시스템. The fork rail is a waste synthetic polymer pyrolysis system, characterized in that the size of 80% to 120% of the fork of the forklift.
  3. 청구항 1항에 있어서,The method of claim 1,
    상기 폐기물 투입구는 걸림구가 형성된 다수의 볼트 너트에 의하여 고정되는 것을 특징으로 하는 폐합성고분자 열분해 시스템. The waste synthetic polymer pyrolysis system, characterized in that the waste inlet is fixed by a plurality of bolts and nuts having locking holes.
  4. 청구항 1항에 있어서,The method of claim 1,
    상기 유체 배출구부에는 압력 및 온도 센서가 부착된 모터의 회전축에 의해 회전가능한 압력 조절판이 형성된 것을 특징으로 하는 폐합성고분자 열분해 시스템.Waste synthetic polymer pyrolysis system, characterized in that the pressure control plate rotatable by the rotary shaft of the motor to which the pressure and temperature sensor is attached is formed in the fluid outlet part.
  5. 청구항 1항에 있어서,The method of claim 1,
    상기 포크 레일은 상기 케이싱의 유체 배출구에 액체 통로가 형성된 고정체가 회전 가능하게 고정되고 폐기물 투입구 방향으로 소정의 거리만큼 돌출된 두 개의 평판을 포함하는 것을 특징으로 하는 폐합성고분자 열분해 시스템. The waste synthetic polymer pyrolysis system, characterized in that the fork rail includes two flat plates in which a fixture having a liquid passage formed at the fluid outlet of the casing is rotatably fixed and protrudes by a predetermined distance toward the waste inlet.
  6. 청구항 5항에 있어서,The method of claim 5,
    상기 포크 레일은, 지게차 포크의 80% 내지 120%의 크기로서, 상기 케이싱이 정지 상태에 있을 때 자체 무게에 의하여 고정체를 중심으로 회전하여 두 개의 평판이 지표면과 평행하게 되는 것을 특징으로 하는 폐합성고분자 열분해 시스템. The fork rail has a size of 80% to 120% of the forklift fork, and when the casing is in a stationary state, it rotates around the fixture by its own weight so that the two flat plates are parallel to the ground surface. Lungs, characterized in that Synthetic polymer pyrolysis system.
  7. 청구항 1항에 있어서,The method of claim 1,
    상기 동력전달장치는 폐기물 투입구측에 형성되고, 연소실이 상기 유체 배출구부까지 포함하는 것을 특징으로 하는 폐합성고분자 열분해 시스템. The waste synthetic polymer pyrolysis system, characterized in that the power transmission device is formed on the side of the waste inlet, and the combustion chamber includes up to the fluid outlet.
  8. 청구항 1항에 있어서,The method of claim 1,
    증류탑의 내부에는 5개의 단이 형성되고, 각 단에는 중유, 경유, 등유, 나프타, 휘발유를 액화시키는 트레이 캡을 포함하는 것을 특징으로 하는 폐합성고분자 열분해 시스템. Five stages are formed inside the distillation column, and each stage includes a tray cap for liquefying heavy oil, light oil, kerosene, naphtha, and gasoline.
  9. 청구항 1항에 있어서,The method of claim 1,
    상기 동력전달장치는 폐기물 투입구측에 형성되고, 연소실이 상기 유체 배출구부까지 포함하는 것을 특징으로 하는 폐합성고분자 열분해 시스템. The waste synthetic polymer pyrolysis system, characterized in that the power transmission device is formed on the side of the waste inlet, and the combustion chamber includes up to the fluid outlet.
PCT/KR2022/020174 2021-12-14 2022-12-13 Waste synthetic polymer pyrolysis system WO2023113413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0179187 2021-12-14
KR1020210179187A KR102456546B1 (en) 2021-12-14 2021-12-14 Pyrolysis system of waste synthetic-highly polymerized compound

Publications (1)

Publication Number Publication Date
WO2023113413A1 true WO2023113413A1 (en) 2023-06-22

Family

ID=83804904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020174 WO2023113413A1 (en) 2021-12-14 2022-12-13 Waste synthetic polymer pyrolysis system

Country Status (2)

Country Link
KR (2) KR102456546B1 (en)
WO (1) WO2023113413A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102456546B1 (en) * 2021-12-14 2022-10-20 티엠에스꼬레아 주식회사 Pyrolysis system of waste synthetic-highly polymerized compound

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100183A (en) * 1994-09-30 1996-04-16 Toshiba Corp Oil conversion processing system for synthetic resin material and oil conversion processing using the same
KR20000020076A (en) * 1998-09-17 2000-04-15 안봉조 Automatic incinerator of high temperature pyrolysis type
KR20040045650A (en) * 2002-11-25 2004-06-02 한국에너지기술연구원 Apparatus and method for recovery of non-condensing pyrolysis gas
KR20050097073A (en) * 2004-03-30 2005-10-07 (주)유하에너지 Apparatus for making oil using chemical recycling of plastic wastes
JP2006036806A (en) * 2004-07-22 2006-02-09 Mugen System Kk Method of thermal decomposition and apparatus for thermal decomposition
KR20130041520A (en) * 2011-10-17 2013-04-25 주식회사 아시아에너지 Rotary kiln type oil recycling device for high polymer waste materials
KR20190126739A (en) * 2019-10-21 2019-11-12 주식회사 선진에너지 Pyrolysis system
KR20190126740A (en) * 2019-10-21 2019-11-12 주식회사 선진에너지 Pyrolysis apparatus and pyrolysis system using thereof
KR102060395B1 (en) * 2019-07-30 2019-12-30 (주)이레이티에스 Pyrolysis and emulsification power generation system of waste synthetic resin to improve productivity and safety, and heating furnace for the same
KR102456546B1 (en) * 2021-12-14 2022-10-20 티엠에스꼬레아 주식회사 Pyrolysis system of waste synthetic-highly polymerized compound

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322663B1 (en) 2000-03-20 2002-02-07 곽호준 Continuous Preparing Method for Gasoline, Kerosene and Diesel Using Waste Plastics and System thereof
KR200452087Y1 (en) * 2009-12-16 2011-02-01 김상택 Waste plastic and waste vinyl total liquefaction apparatus
KR102262779B1 (en) * 2020-12-08 2021-06-11 성안이엔티주식회사 Methods and devices for pyrolysis emulsifying the continuous injection of waste synthetic resins and flammable wastes, as well as continuous discharge of pyrolysis by-products and producing high-quality without the discharge of fine dust and wastewater
KR102335758B1 (en) * 2021-02-02 2021-12-06 주식회사 정도하이텍 A high efficiency pyrolysis petrolizing system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100183A (en) * 1994-09-30 1996-04-16 Toshiba Corp Oil conversion processing system for synthetic resin material and oil conversion processing using the same
KR20000020076A (en) * 1998-09-17 2000-04-15 안봉조 Automatic incinerator of high temperature pyrolysis type
KR20040045650A (en) * 2002-11-25 2004-06-02 한국에너지기술연구원 Apparatus and method for recovery of non-condensing pyrolysis gas
KR20050097073A (en) * 2004-03-30 2005-10-07 (주)유하에너지 Apparatus for making oil using chemical recycling of plastic wastes
JP2006036806A (en) * 2004-07-22 2006-02-09 Mugen System Kk Method of thermal decomposition and apparatus for thermal decomposition
KR20130041520A (en) * 2011-10-17 2013-04-25 주식회사 아시아에너지 Rotary kiln type oil recycling device for high polymer waste materials
KR102060395B1 (en) * 2019-07-30 2019-12-30 (주)이레이티에스 Pyrolysis and emulsification power generation system of waste synthetic resin to improve productivity and safety, and heating furnace for the same
KR20190126739A (en) * 2019-10-21 2019-11-12 주식회사 선진에너지 Pyrolysis system
KR20190126740A (en) * 2019-10-21 2019-11-12 주식회사 선진에너지 Pyrolysis apparatus and pyrolysis system using thereof
KR102456546B1 (en) * 2021-12-14 2022-10-20 티엠에스꼬레아 주식회사 Pyrolysis system of waste synthetic-highly polymerized compound

Also Published As

Publication number Publication date
KR102503270B1 (en) 2023-02-23
KR102456546B1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US4658736A (en) Incineration of combustible waste materials
WO2023113413A1 (en) Waste synthetic polymer pyrolysis system
EP0382673B1 (en) Method and apparatus for cofiring hazardous waste in industrial rotary kilns
KR101817728B1 (en) Continuous Operation Type Liquefaction Facility Using Waste of Synthetic Resins
CN107327851B (en) The method of hazardous waste burn system cooperative disposal complexity greasy filth
WO2006012800A1 (en) An apparatus for preparing oil from waste plastics in continuous and industrial production
KR20170096120A (en) Furnace
KR20100100366A (en) Oil extraction device from plastics wastematerial
JP7130693B2 (en) Combustion device
CN105295985A (en) Method used for producing fuel oil and combustible gas from abandoned tyres
US5881475A (en) Non-draining type human waste disposal method by pulse combustion drying
WO2023068454A1 (en) Biomass gasification system
Yongrong et al. Technical advance on the pyrolysis of used tires in China
WO2008002186A1 (en) Plant for reprocessing solid combustible waste
EP1511823B1 (en) Indirectly heated waste plastic pyrolysis device
RU2671742C1 (en) Assembly for processing of sewage drain sediments
JP3588669B2 (en) Thermal recycling method of waste plastic
KR20210119076A (en) waste acrylic recycling apparatus
RU2305032C1 (en) Aggregate for the waste reprocessing
KR101729859B1 (en) Pyrolysis oil production unit using waste plastics
WO2024039123A1 (en) Device and system for pyrolysis of waste
CN217293049U (en) Low-value waste plastic resource utilization system
Schneider et al. Cleanup of contaminated soils by pyrolysis in an indirectly heated rotary kiln
SU887884A1 (en) Unit for neutralizing wastes
KR102590527B1 (en) Eco-friendly Oil Facilities Using Plastic Waste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907880

Country of ref document: EP

Kind code of ref document: A1