WO2023112407A1 - 暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ、及びその使用 - Google Patents

暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ、及びその使用 Download PDF

Info

Publication number
WO2023112407A1
WO2023112407A1 PCT/JP2022/033638 JP2022033638W WO2023112407A1 WO 2023112407 A1 WO2023112407 A1 WO 2023112407A1 JP 2022033638 W JP2022033638 W JP 2022033638W WO 2023112407 A1 WO2023112407 A1 WO 2023112407A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
cyanidioschizon
mellorae
culture
strains
Prior art date
Application number
PCT/JP2022/033638
Other languages
English (en)
French (fr)
Inventor
浩正 中村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023567544A priority Critical patent/JPWO2023112407A1/ja
Publication of WO2023112407A1 publication Critical patent/WO2023112407A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/46Addition of dyes or pigments, e.g. in combination with optical brighteners using dyes or pigments of microbial or algal origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9706Algae
    • A61K8/9717Rhodophycota or Rhodophyta [red algae], e.g. Porphyra
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to Cyanidioschizon mellolae capable of growing heterotrophically in the dark and uses thereof.
  • it relates to a method for producing phycocyanin using said Cyanidioschizon melolae, a method for growing said Cyanidioschizon melolae, compositions, dry powders and extracts comprising said Cyanidioschizon melolae.
  • Phycocyanin is one of the few natural blue pigments and has been used to color food. Phycocyanin has been produced mainly using blue-green algae such as Spirulina. However, because of its low heat resistance and acid resistance, the range of foods that can be used has been limited.
  • Cyanidioschyzon merolae is a unicellular red alga belonging to the class Cyanidiophyceae. Cyanidioschison mellorae produces phycocyanin as a photosynthetic pigment. Phycocyanin produced by Cyanidioschizone mellorae has high acid resistance and heat resistance, and is expected to find wide application (Patent Document 1, Non-Patent Document 1). However, Cyanidioschizon mellorae is generally regarded as obligate autotroph, and is not suitable for high-density, large-scale industrial production of algal bodies. In recent years, heterotrophic culture of Cyanidioschizon mellolae has been reported (Non-Patent Documents 2 and 3). However, the optical density, which is an index of algae density, is OD 750 ⁇ 8 at maximum, and the density has not been increased.
  • Cyanidioschizone mellorae reported in Non-Patent Document 1 and Non-Patent Document 2 can be cultured heterotrophically, but the density of the algal body cannot be said to be sufficient.
  • useful substances such as phycocyanin, it is preferable to be able to grow faster under heterotrophic conditions.
  • the present invention provides Cyanidioschizon melolae capable of growing well under heterotrophic conditions, a method for producing phycocyanin using the Cyanidioschizon melolae, a method for growing the Cyanidioschizon melolae, and the An object of the present invention is to provide a composition containing Cyanidioschizon melorae, as well as dry powders and extracts of said Cyanidioschizon mellorae.
  • the present invention includes the following aspects.
  • Cyanidioschizone mellorae Cm-1 strain (accession number FERM BP-22429), Cyanidioschizon mellorae Cm-2 strain (accession number FERM BP-22430), Cyanidioschizon mellorae Cm-3 Cyanidioschizon mellorae capable of growing heterotrophically in the dark, selected from the group consisting of strains (Accession No. FERM BP-22431), and mutants thereof.
  • a method for producing phycocyanin comprising culturing the Cyanidioschison mellolae of [1].
  • Cyanidioschizon melolae capable of growing well under heterotrophic conditions, a method for producing phycocyanin using the Cyanidioschizon melolae, a method for growing the Cyanidioschizon melolae, the above Compositions comprising Cyanidioschizon melorae and dry powders and extracts of said Cyanidioschizon mellorae are provided.
  • FIG. 1 The results of a culture test of Cyanidioschizon mellorae isolates (Cm-1 strain, Cm-2 strain, Cm-3 strain) and NIES-1804 strain using 50 mL flasks are shown.
  • Figure 2 shows photomicrographs of Cyanidioschizon mellorae isolates (strains Cm-1, Cm-2, and Cm-3) and strain NIES-1804 cultured under heterotrophic conditions.
  • the results of culture tests of Cyanidioschizon mellolae isolates (Cm-1 strain, Cm-2 strain, Cm-3 strain) and NIES-1804 strain using a 5 L jar are shown.
  • Cyanidioschizone mellorae Cm-1 strain accesion number FERM BP-22429
  • Cyanidioschizon mellorae Cm-2 strain accesion No. FERM BP-22430
  • Cyanidioschizon mellorae Cm- 3 strains accesion No. FERM BP-22431
  • Cyanidioschizon mellorae capable of growing heterotrophically in the dark selected from the group consisting of mutant strains thereof.
  • heterotrophically proliferative means proliferate by assimilating an organic carbon source.
  • Heterotrophic conditions refer to conditions in the dark (0 ⁇ E m 2 ⁇ sec ⁇ 1 ) and in the presence of an organic carbon source.
  • Cyanidioschizon melorae Cm-1 strain (hereinafter referred to as "Cm-1 strain")
  • Cyanidioschizon mellorae Cm-2 strain (hereinafter referred to as “Cm-2 strain)
  • Cyanidioschizon Melolae Cm-3 strain (hereinafter referred to as "Cm-3 strain") is a mutant strain of Cyanidioschizon mellolae NIES-1804 strain (hereinafter referred to as "NIES-1804 strain”).
  • These strains are isolated strains obtained by subculturing the NIES-1804 strain under heterotrophic conditions. These strains can grow well under heterotrophic conditions.
  • strains had an algae density of 10 or more at OD 800 nm in 14 days when cultured with shaking (100 rpm rotary) at 40°C in the dark using a 50 mL flask containing 20 mL of MA2 medium containing 3% glycerol. can grow to
  • the Cm-1 strain, the Cm-2 strain, and the Cm-3 strain are mutants of the Cyanidioschizon mellolae NIES-1804 strain (hereinafter referred to as "NIES-1804 strain"). These strains are isolated strains obtained by subculturing the NIES-1804 strain under heterotrophic conditions.
  • the Cm-1 strain was designated as Accession No. FERM P-22429 on September 28, 2021 by the National Institute of Technology and Evaluation Patent Organism Depositary Center (2-5-8 120 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan). Room No.) and has been transferred to an international deposit on June 30, 2022 under accession number FERM BP-22429.
  • the Cm-2 strain was designated as Accession No. FERM P-22430 on September 28, 2021 by the National Institute of Technology and Evaluation Patent Organism Depositary Center (2-5-8 120 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan).
  • the Cm-3 strain was designated as Accession No. FERM P-22431 on September 28, 2021 by the National Institute of Technology and Evaluation Patent Organism Depositary Center (2-5-8 120 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan). Room No.) and has been transferred to an international deposit on June 30, 2022 under accession number FERM BP-22431.
  • the depositors of the Cm-1, Cm-2 and Cm-3 strains are as follows.
  • Depositor's name Hisayoshi Arai Depositor's address: 631 Sakado, Sakura City, Chiba Prefecture, Japan
  • the Depositor authorizes Applicant to refer to the deposited organism in this application.
  • the depositor has given consent to the applicant that the deposited organism will be made available to the public.
  • Cells of strain Cm-1 exhibit a dumbbell-shaped shape when cultured under heterotrophic conditions and are smaller than cells of strain NIES-1804.
  • the color of the cells when cultured under heterotrophic conditions is yellowish green.
  • Cell pellets harvested after culturing under heterotrophic conditions have a sweet and sour odor.
  • Cells of strain Cm-2 exhibit a dumbbell-shaped shape when cultured under heterotrophic conditions and are smaller than cells of strain NIES-1804.
  • the color of the cells when cultured under heterotrophic conditions is yellowish green.
  • Cell pellets harvested after culturing under heterotrophic conditions have a sweet and sour odor.
  • Cells of the Cm-3 strain, when cultured under heterotrophic conditions have unclear cell shapes and tend to aggregate.
  • the color of the cells when cultured under heterotrophic conditions is deep green.
  • Cell pellets harvested after culturing under heterotrophic conditions have a green fruity odor.
  • a “mutant strain” refers to an algal strain in which a mutation has occurred in the genome of the original algal strain. Mutations may occur in the nuclear genome, the chloroplast genome, or the mitochondrial genome. Mutations may be naturally occurring or artificially occurring.
  • the method of artificially mutating the genome is not particularly limited. Techniques for artificially generating mutations include, for example, ultraviolet irradiation, radiation irradiation, chemical treatment with nitrous acid, gene introduction, genetic engineering techniques such as genome editing, and the like.
  • the mutant strain has a ratio of mutation to the total genome (e.g., total nuclear genome) of the original algal strain, for example, 10% or less, 5% or less, 3% or less, 2% or less, 1% or less, 0.5%. Below, it is preferably 0.3% or less, or 0.1% or less.
  • the Cm-1 strain mutant (hereinafter referred to as "Cm-1 mutant strain”) preferably has a specific growth rate equal to or higher than that of the Cm-1 strain under heterotrophic conditions.
  • the specific growth rate of the Cm-1 mutant strain is 0.7 (or 0.75, 0.8, 0.85, It is preferably at least 0.9, 0.95, 0.97, 0.98, 0.99, or a value multiplied by 1).
  • a mutant strain of the Cm-2 strain (hereinafter referred to as "Cm-2 mutant strain") preferably has a specific growth rate equal to or higher than that of the Cm-2 strain under heterotrophic conditions.
  • the specific growth rate of the Cm-2 mutant strain is 0.7 (or 0.75, 0.8, 0.85, It is preferably at least 0.9, 0.95, 0.97, 0.98, 0.99, or a value multiplied by 1).
  • a mutant strain of the Cm-3 strain (hereinafter referred to as "Cm-3 mutant strain") preferably has a specific growth rate under heterotrophic conditions equal to or higher than that of the Cm-3 strain.
  • the specific growth rate of the Cm-3 mutant strain is 0.7 (or 0.75, 0.8, 0.85, It is preferably at least 0.9, 0.95, 0.97, 0.98, 0.99, or a value multiplied by 1).
  • the Cm-1 mutant, Cm-2 mutant, and Cm-3 mutant were shake-cultured (100 rpm rotary) at 40°C in the dark using a 50 mL flask containing 20 mL of MA2 medium containing 3% glycerol. At times, it is preferable to grow algae to a density of 10 or more at OD800nm in 14 days.
  • Cm-1 strain, Cm-2 strain, Cm-3 strain, and mutants thereof may be cultured under heterotrophic conditions, may be cultured under autotrophic conditions, and may be cultured under mixed trophic conditions.
  • Autotrophic conditions refer to conditions in which there is light irradiation and no carbon source is present.
  • Matotrophic conditions refer to conditions in which there is light irradiation and a carbon source is present.
  • Algae culture media include, for example, inorganic salt media containing nitrogen sources, phosphorus sources, trace elements (zinc, boron, cobalt, copper, manganese, molybdenum, iron, etc.) and the like.
  • Nitrogen sources include, for example, ammonium salts, nitrates, and nitrites, and phosphorus sources include, for example, phosphates.
  • Such media include, for example, Ford's medium (Ford TW Biochim. Biophys.
  • Carbon sources include, for example, sugar alcohols, sugars, amino acids and the like.
  • Sugar alcohols include, for example, glycerol.
  • Sugars include, for example, glucose, mannose, fructose, sucrose, maltose, lactose sugars.
  • the carbon source is preferably sugar alcohol, and more preferably glycerol.
  • the concentration of the carbon source in the medium is, for example, 0.1-10% (w/v).
  • the concentration of the carbon source is within the above range, Cm-1 strain, Cm-2 strain, Cm-3 strain, and mutant strains thereof can grow satisfactorily heterotrophically.
  • the lower limit of the concentration of the carbon source is 0.5% (w/v) or more, 1% (w/v) or more, 1.5% (w/v) or more, or 2% (w/v) or more. preferable.
  • the upper limit of the carbon source concentration in the medium is 9% (w/v) or less, 8% (w/v) or less, 7% (w/v) or less, 6% (w/v) or less, 5% (w/v) or less, or 4% (w/v) or less.
  • the medium may be a solid medium or a liquid medium.
  • a solid medium For maintenance, it is preferred to use a solid medium.
  • a liquid medium For growth, it is preferable to use a liquid medium.
  • the pH of the medium includes, for example, pH 1-6.
  • Cm-1 strains, Cm-2 strains, Cm-3 strains, and mutants thereof can grow better in acidic conditions.
  • the pH of the medium is, for example, preferably pH 5 or less, more preferably pH 4 or less, and even more preferably pH 3 or less. More preferably, the pH is 2 or more.
  • the culture temperature is 15 to 50°C.
  • Cm-1 strain, Cm-2 strain, Cm-3 strain, and mutant strains thereof can grow better under high temperature conditions of 25° C. or higher.
  • the culture temperature is preferably 30°C or higher, more preferably 35°C or higher.
  • the light intensity When cultured under autotrophic or mixed trophic conditions, the light intensity includes 10 to 100 ⁇ E m ⁇ 2 ⁇ sec ⁇ 1 .
  • the light intensity is preferably 20 to 60 ⁇ E m ⁇ 2 ⁇ sec ⁇ 1 and more preferably 30 to 50 ⁇ E m ⁇ 2 ⁇ sec ⁇ 1 .
  • Continuous light may be used, or a light-dark cycle (10L:14D, etc.) may be provided.
  • the culture may be static culture, aerobic culture, or shaking culture.
  • aerobic culture or shaking culture is preferred from the viewpoint of preventing oxygen deficiency.
  • the Cm-1 strain, Cm-2 strain, Cm-3 strain, and their mutant strains may be passaged as appropriate.
  • the subculture interval is, for example, 1 to 3 months.
  • passage intervals include, for example, 10 to 50 days, or 15 to 30 days.
  • a manufacturing method is provided.
  • the Cm-1 strain, Cm-2 strain, Cm-3 strain, and their mutant strains can be cultured in the same manner as above. Cultivation is preferably carried out in a liquid medium from the viewpoint of growth efficiency.
  • the culture may be heterotrophic culture, autotrophic culture, or mixed nutrition culture.
  • Cm-1 strains, Cm-2 strains, Cm-3 strains, and mutant strains thereof can grow well under heterotrophic conditions, so mixed nutrition culture is preferred. Mixed nutrition culture is performed in a dark place, so the culture environment can be easily controlled and the cost can be reduced.
  • a medium containing a carbon source is used.
  • the carbon source and the concentration of the carbon source are the same as those described above.
  • Glycerol is preferred as the carbon source.
  • the culture may be batch culture, fed-batch culture, or continuous culture.
  • Fed-batch culture is preferred because the density of algae in the culture tank can be increased.
  • substrates to be supplied include a carbon source and a nitrogen source.
  • the algae cells may be collected and phycocyanin extracted.
  • Methods for collecting algal cells from the culture solution include centrifugation, filtration and the like.
  • a method for extracting phycocyanin from algae cells is not particularly limited, and a known method can be used.
  • phycocyanin can be extracted using known methods such as crushing treatment, extraction treatment, compression treatment, centrifugation treatment, supercritical extraction treatment, and the like, either singly or in combination.
  • the method described in Japanese Patent Laid-Open No. 2003-342489 or Japanese Patent No. 4677250 may be used.
  • Extraction solvents used to extract phycocyanin include water and organic solvents.
  • An extraction solvent may be used individually by 1 type, and may combine 2 or more types.
  • organic solvents include alcohols such as ethanol and methanol; hydrocarbons such as hexane and pentane.
  • Preferred extraction solvents are water, ethanol, and mixed solvents thereof.
  • Various additives may be used for the purpose of increasing the extraction efficiency.
  • the amount of extraction solvent used for algae cells is not particularly limited.
  • the amount of the extraction solvent can be, for example, about 1 to 1000 times (preferably about 5 to 200 times) the algae cells.
  • the extraction operation can usually be carried out under normal pressure in the range from room temperature to the boiling point of the solvent.
  • the extraction operation may be performed only once or may be performed multiple times.
  • a fresh extraction solvent may be added again to the cell residue that has been subjected to the extraction operation once, or the extraction operation may be performed again.
  • cell debris may be removed by centrifugation, filtration, ultrafiltration, or the like.
  • the extraction solvent may be removed by heating or distillation under reduced pressure using an evaporator or the like.
  • purification treatments may be performed to purify phycocyanin.
  • Purification treatments include, for example, salting out, dialysis, recrystallization, reprecipitation, solvent extraction, adsorption, concentration, filtration, gel filtration, ultrafiltration, various chromatography (thin layer chromatography, column chromatography, ion exchange chromatography, high-performance liquid chromatography, adsorption chromatography, etc.), but are not limited thereto.
  • Phycocyanin can be used as a blue natural pigment.
  • phycocyanin can be used as an additive for foods, feeds, feeds, cosmetics, and the like.
  • the Cm-1 strain, Cm-2 strain, Cm-3 strain, and their mutant strains can be cultured in the same manner as above. Cultivation is preferably carried out in a liquid medium from the viewpoint of growth efficiency. Examples of the medium containing the carbon source are the same as those described above. Glycerol is preferred as the carbon source.
  • the Cm-1 strain, Cm-2 strain, Cm-3 strain, and their mutant strains can grow well under heterotrophic conditions. Therefore, a desired amount of Cyanidioschizone mellorae cells can be easily obtained by culturing in the dark using a medium containing a carbon source.
  • composition comprising at least one Cyanidioschizon mellorae selected from the group consisting of Cm-1 strain, Cm-2 strain, Cm-3 strain, and mutant strains thereof. I will provide a.
  • Cyanidioschizone mellolae contains useful ingredients such as phycocyanin. Therefore, Cyanidioschizon mellorae cells can be used in various compositions.
  • compositions include, for example, foods, feeds, feeds, cosmetics, and the like.
  • Feeds include, for example, various pet foods.
  • the feed includes, for example, feed for ornamental fish, feed for cultured fish, and the like.
  • Cosmetics include, for example, skin cosmetics (lotions, milky lotions, serums, creams, etc.), hair cosmetics (hair styling, shampoos, rinses, conditioners, etc.), makeup cosmetics (foundations, cheeks, eye shadows, lipstick, etc.).
  • Cyanidioschizone mellolae can be added as an additive to various compositions such as those described above. In addition, it may be mixed with other ingredients and prepared as foods, feeds, feeds, cosmetics, and the like. Other components can be appropriately selected depending on the use of the composition.
  • ingredients that can be used for food, feed, or feed can be used without particular limitation.
  • ingredients that can be used for foods, feeds, or feeds include fish meat, vegetables, grains, dairy products, fermented products, spices, proteins, amino acids, sugars, various seasonings, sweeteners, corrigents, flavors, Oils and fats, vitamins, thickeners, gelling agents, antioxidants, preservatives, chelating agents, pH adjusters, colorants, etc., but not limited to these.
  • any ingredient that can be used in cosmetics can be used without any particular restrictions.
  • ingredients that can be used in cosmetics include hydrocarbons, lipids (oils such as animal and vegetable oils and mineral oils, waxes, fatty acid esters, fatty acids, ceramides, etc.), alcohols (higher alcohols, lower alcohols and polyhydric alcohols).
  • the present invention provides a dry powder of at least one Cyanidioschizon mellorae selected from the group consisting of Cm-1 strain, Cm-2 strain, Cm-3 strain, and mutant strains thereof. do.
  • “Dried powder of Cyanidioschizon mellolae” refers to dried and powdered cells of Cyanidioschizon mellorae.
  • a dry powder of Cyanidioschizon melorae can be produced by a known method. For example, Cyanidioschison mellolae is cultured, and algal cells are collected by centrifugation or the like. A dry powder can then be obtained by drying and pulverizing the algal cells.
  • the method for drying algal cells is not particularly limited, and examples thereof include natural drying, heat drying, reduced pressure drying, freeze drying and the like. Dried algal cells may be physically pulverized into a powder.
  • the algal cells may be subjected to washing treatment, sterilization treatment, etc. before drying.
  • a washing solution such as water or a buffer solution can be used.
  • the sterilization method include sterilization using hypochlorous acid, ultraviolet treatment, ozone treatment, and the like.
  • the dry powder of Cyanidioschizon mellolae can be used as food, feed, or fodder.
  • the dry powder of Cyanidioschizone mellolae can be used as an additive in foods, feeds, feeds, or cosmetics.
  • the present invention provides an extract of at least one Cyanidioschizon mellorae selected from the group consisting of strains Cm-1, Cm-2, Cm-3, and mutant strains thereof. do.
  • cyanidioschizon meloraea extract refers to a cell component extracted from the cells of Cyanidioschizon mellorae.
  • the extract of Cyanidioschizon mellorae may be a cell disruption product obtained by disrupting the cells of Cyanidioschizon mellorae. Methods for disrupting cells include, for example, mechanical disruption using a homogenizer or the like, ultrasonic treatment, freeze-thaw treatment, and the like.
  • the Cyanidioschizon melorae extract may be a cell lysate obtained by lysing the cells of Cyanidioschizon melorae.
  • Methods for lysing cells include, for example, enzymatic treatment using enzymes such as protease and cellulase, surfactant treatment, and the like.
  • the extract of Cyanidioschizon mellolae may be obtained by adding an extraction solvent to Cyanidioschizon mellolae cells, cell disruptions, or cell lysates, and subjecting them to extraction treatment. .
  • the same extraction solvent as mentioned above can be used.
  • the extract of Cyanidioschizon mellorae can be used as food, feed, or fodder.
  • the extract of Cyanidioschizone mellorae can be used as an additive in foods, feeds, feeds, or cosmetics.
  • Cyanidioschizone melorae strain NIES-1804 obtained from the National Institute of Genetics was plated in the dark using MA2 + 3% (W/v) glycerol medium plates containing 0.5% (w/v) gellan gum. cultured. Cultivation in the dark was continued for a certain period of time, and colonies with a high growth rate were collected. As a result, three strains, Cm-1 strain, Cm-2 strain, and Cm-3 strain, were isolated as strains with a high growth rate under heterotrophic conditions. Table 1 shows the composition of MA2 + 3% (W/v) glycerol medium.
  • the culture medium was sampled and optical density was measured at a wavelength of 800 nm in a PMMA semi-micro cuvette with a UV/Vis spectrophotometer (NanoDrop, Thermo Scientific).
  • FIG. 2 Photomicrographs of strains Cm-1, Cm-2, Cm-3, and NIES-1804 after culture under heterotrophic conditions are shown in FIG. 2 (magnification: 400x).
  • the cells of the Cm-1, Cm-2, and Cm-3 strains exhibited a dumbbell-shaped shape, similar to the cells of the NIES-1804 strain. Weak fluorescence was observed in about half of the observed cells.
  • Table 2 summarizes the characteristics of the Cm-1, Cm-2, and Cm-3 strains.
  • the maximum reaching OD 800 nm is obtained by fed-batch culture in the dark using MA2 medium containing 3% glycerol.
  • ⁇ Jar culture test under heterotrophic conditions A jar culture test was performed under heterotrophic conditions using strains Cm-1, Cm-3, and NIES-1804. Preculture was performed using MA2 + 3% (W/v) glycerol medium under a light condition of 40 ⁇ E m 2 ⁇ sec -1 . A 5 L jar containing MA2 + 3% (W/v) glycerol medium was used for the main culture. Aerobic culture (1 vvm air, 100 rpm) was carried out at 40° C. in the dark. A nitrogen source and a carbon source were supplied during the culture period.
  • Algae density was measured in the same manner as above.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physiology (AREA)
  • Animal Husbandry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

シアニディオシゾン・メロラエ Cm-1株(受託番号FERM BP-22429)、シアニディオシゾン・メロラエ Cm-2株(受託番号FERM BP-22430)、シアニディオシゾン・メロラエ Cm-3株(受託番号FERM BP-22431)、及びこれらの変異株からなる群より選択される、暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ。

Description

暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ、及びその使用
 本発明は、暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ、及びその使用に関する。特に、前記シアニディオシゾン・メロラエを用いたフィコシアニンの製造方法、前記シアニディオシゾン・メロラエの増殖方法、前記シアニディオシゾン・メロラエを含む組成物、乾燥粉末、及び抽出物に関する。
 本願は、2021年12月13日に、日本に出願された特願2021-201950号に基づき優先権を主張し、その内容をここに援用する。
 フィコシアニンは、数少ない天然の青色色素であり、食品の着色に用いられてきた。フィコシアニンは、主にスピルリナ等の藍藻を用いて生産されてきた。しかしながら、耐熱及び耐酸性が低いため、使用できる食品の範囲が限定されていた。
 シアニディオシゾン・メロラエ(Cyanidioschyzon merolae)は、イデユコゴメ綱(Cyanidiophyceae)に属する単細胞紅藻である。シアニディオシゾン・メロラエは、光合成色素としてフィコシアニンを産生する。シアニディオシゾン・メロラエが産生するフィコシアニンは、耐酸性及び耐熱性が高く、用途の拡大が見込まれる(特許文献1、非特許文献1)。しかしながら、シアニディオシゾン・メロラエは、一般に、絶対独立栄養性とされているため、藻体の高密度且つ大規模な工業生産に適していなかった。
 近年、シアニディオシゾン・メロラエを従属栄養培養したことが報告されている(非特許文献2、3)。しかしながら、藻密度の指標となる光学密度が最大でもOD750≒8であり、高密度化に至っていない。
特許第6681065号公報
D. Y. Rahman, F. D. Sarian, A. van Wijk, M. Martinez-Garcia & M. J. E. C. van der Maarel. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant. Journal of Applied Phycology (2017) 29, 1233-1239. Takashi Moriyama, Natsumi Mori, and Naoki Sato. Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth. SpringerPlus (2015) 4:559. Takashi Moriyama, Natsumi Moril, Noriko Nagata, and Naoki Sato. Selective loss of photosystem I and formation of tubular thylakoids in heterotrophka11y grown red alga cyanidioschyzon merolae. Photosynthesis Research (2019) 140, 275-287.
 非特許文献1及び非特許文献2で報告されるシアニディオシゾン・メロラエは、従属栄養培養可能であるが、藻体の高密度化は十分とはいえない。フィコシアニン等の有用物質の工業生産のためには、従属栄養条件下で、より速く増殖できることが好ましい。
 そこで、本発明は、従属栄養条件下で良好に増殖可能なシアニディオシゾン・メロラエ、前記シアニディオシゾン・メロラエを用いたフィコシアニンの製造方法、前記シアニディオシゾン・メロラエの増殖方法、前記シアニディオシゾン・メロラエを含む組成物、並びに前記シアニディオシゾン・メロラエの乾燥粉末及び抽出物を提供することを課題とする。
 本発明は、以下の態様を含む。
[1]シアニディオシゾン・メロラエ Cm-1株(受託番号FERM BP-22429)、シアニディオシゾン・メロラエ Cm-2株(受託番号FERM BP-22430)、シアニディオシゾン・メロラエ Cm-3株(受託番号FERM BP-22431)、及びこれらの変異株からなる群より選択される、暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ。
[2][1]のシアニディオシゾン・メロラエを培養することを含む、フィコシアニンの製造方法。
[3]前記培養を、炭素源を含む培地を用いて行う、[2]のフィコシアニンの製造方法。
[4]前記培養を暗所で行う、[3]のフィコシアニンの製造方法。
[5][1]のシアニディオシゾン・メロラエを、炭素源を含む培地を用いて、暗所で培養することを含む、シアニディオシゾン・メロラエの増殖方法。
[6][1]のシアニディオシゾン・メロラエを含む、組成物。
[7]食品、飼料、餌料、又は化粧料である、[6]の組成物。
[8][1]のシアニディオシゾン・メロラエの乾燥粉末。
[9][1]のシアニディオシゾン・メロラエの抽出物。
 本発明によれば、従属栄養条件下で良好に増殖可能なシアニディオシゾン・メロラエ、前記シアニディオシゾン・メロラエを用いたフィコシアニンの製造方法、前記シアニディオシゾン・メロラエの増殖方法、前記シアニディオシゾン・メロラエを含む組成物、並びに前記シアニディオシゾン・メロラエの乾燥粉末及び抽出物が提供される。
50mLフラスコを用いた、シアニディオシゾン・メロラエの単離株(Cm-1株、Cm-2株、Cm-3株)、及びNIES-1804株の培養試験の結果を示す。 従属栄養条件下で培養された、シアニディオシゾン・メロラエの単離株(Cm-1株、Cm-2株、及びCm-3株)、及びNIES-1804株の顕微鏡写真を示す。 5Lジャーを用いた、シアニディオシゾン・メロラエの単離株(Cm-1株、Cm-2株、Cm-3株)、及びNIES-1804株の培養試験の結果を示す。
<シアニディオシゾン・メロラエの単離株>
 一態様において、シアニディオシゾン・メロラエ Cm-1株(受託番号FERM BP-22429)、シアニディオシゾン・メロラエ Cm-2株(受託番号FERM BP-22430)、シアニディオシゾン・メロラエ Cm-3株(受託番号FERM BP-22431)、及びこれらの変異株からなる群より選択される、暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエを提供する。
 「従属栄養的に増殖可能」とは、有機炭素源を資化して増殖できることをいう。
 「従属栄養条件」とは、暗所(0μE m・sec-1)、且つ有機炭素源が存在する条件をいう。
 シアニディオシゾン・メロラエ Cm-1株(以下、「Cm-1株」という)、シアニディオシゾン・メロラエ Cm-2株(以下、「Cm-2株」という)、及びシアニディオシゾン・メロラエ Cm-3株(以下、「Cm-3株」という)は、シアニディオシゾン・メロラエ NIES-1804株(以下、「NIES-1804株」という。)の変異株である。これらの株は、NIES-1804株を、従属栄養条件下で継代培養して得られた単離株である。これらの株は、従属栄養条件下で、良好に増殖することができる。これらの株は、3%グリセロールを含む20mLのMA2培地を入れた50mLフラスコを用いて、暗所、40℃で振盪培養(100rpm rotary)したとき、14日間で、OD800nmが10以上の藻密度に増殖することができる。
 Cm-1株、Cm-2株、及びCm-3株は、シアニディオシゾン・メロラエ NIES-1804株(以下、「NIES-1804株」という。)の変異株である。これらの株は、NIES-1804株を、従属栄養条件下で継代培養して得られた単離株である。
[規則91に基づく訂正 30.09.2022] 
 Cm-1株は、2021年9月28日付で、受託番号FERM P-22429として、独立行政法人製品評価技術基盤機構特許生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-22429として、2022年6月30日付で国際寄託に移管されている。
 Cm-2株は、2021年9月28日付で、受託番号FERM P-22430として、独立行政法人製品評価技術基盤機構特許生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-22430として、2022年6月30日付で国際寄託に移管されている。
 Cm-3株は、2021年9月28日付で、受託番号FERM P-22431として、独立行政法人製品評価技術基盤機構特許生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-22431として、2022年6月30日付で国際寄託に移管されている。
 上記Cm-1株、Cm-2株、Cm-3株の寄託者は以下の通りである。
  寄託者氏名:新井 久由
  寄託者住所:日本国千葉県佐倉市坂戸631
 寄託者は、本出願において寄託生物について言及する権限を出願人に与えている。寄託者は、寄託生物が公衆に利用可能となる旨の同意を出願人に与えている。
 Cm-1株の細胞は、従属栄養条件下で培養したとき、ダンベル型の形状を呈し、NIES-1804株の細胞よりも小さい。従属栄養条件下で培養したときの細胞の色調は、黄みがかった緑色である。従属栄養条件下で培養した後に回収された細胞ペレットは、甘酸っぱい匂いがする。
 Cm-2株の細胞は、従属栄養条件下で培養したとき、ダンベル型の形状を呈し、NIES-1804株の細胞よりも小さい。従属栄養条件下で培養したときの細胞の色調は、黄みがかった緑色である。従属栄養条件下で培養した後に回収された細胞ペレットは、甘酸っぱい匂いがする。
 Cm-3株の細胞は、従属栄養条件下で培養したとき、細胞の形状が不明瞭であり、凝集しやすい。従属栄養条件下で培養したときの細胞の色調は、深い緑色である。従属栄養条件下で培養した後に回収された細胞ペレットは、青い果実臭がする。
 「変異株」とは、元の藻類株のゲノムに変異が生じた藻類株をいう。変異は、核ゲノムに生じてもよく、葉緑体ゲノムに生じてもよく、ミトコンドリアゲノムに生じてもよい。変異は、自然発生的に生じたものであってもよく、人為的に生じたものであってもよい。人為的にゲノムに変異を生じさせる手法は、特に限定されない。人為的に変異を生じさせる手法としては、例えば、紫外線照射、放射線照射、亜硝酸などによる化学的処理、遺伝子導入、ゲノム編集などの遺伝子工学的手法等が挙げられる。
 変異株は、元の藻類株の全ゲノム(例えば、全核ゲノム)に対する変異の割合が、例えば、10%以下、5%以下、3%以下、2%以下、1%以下、0.5%以下、0.3%以下、又は0.1%以下であることが好ましい。
 Cm-1株の変異株(以下、「Cm-1変異株」という)は、従属栄養条件下での比増殖速度が、Cm-1株と同等以上であることが好ましい。例えば、同じ従属栄養条件下で培養したとき、Cm-1変異株の比増殖速度は、Cm-1株の比増殖速度に0.7(又は、0.75、0.8、0.85、0.9.0.95、0.97、0.98、0.99、若しくは1)を乗じた値以上であることが好ましい。
 Cm-2株の変異株(以下、「Cm-2変異株」という)は、従属栄養条件下での比増殖速度が、Cm-2株と同等以上であることが好ましい。例えば、同じ従属栄養条件下で培養したとき、Cm-2変異株の比増殖速度は、Cm-2株の比増殖速度に0.7(又は、0.75、0.8、0.85、0.9.0.95、0.97、0.98、0.99、若しくは1)を乗じた値以上であることが好ましい。
 Cm-3株の変異株(以下、「Cm-3変異株」という)は、従属栄養条件下での比増殖速度が、Cm-3株と同等以上であることが好ましい。例えば、同じ従属栄養条件下で培養したとき、Cm-3変異株の比増殖速度は、Cm-3株の比増殖速度に0.7(又は、0.75、0.8、0.85、0.9.0.95、0.97、0.98、0.99、若しくは1)を乗じた値以上であることが好ましい。
 Cm-1変異株、Cm-2変異株、及びCm-3変異株は、3%グリセロールを含む20mLのMA2培地を入れた50mLフラスコ用いて、暗所、40℃で振盪培養(100rpm rotary)したとき、14日間で、OD800nmが10以上の藻密度に増殖することが好ましい。
 Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株は、従属栄養条件下で培養してもよく、独立栄養条件下で培養してもよく、混合栄養条件下で培養してもよい。「独立栄養条件」とは、光照射があり、且つ炭素源が存在しない条件をいう。「混合栄養条件」とは、光照射があり、且つ炭素源が存在する条件をいう。
 Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株を独立栄養条件下で培養する場合、培地としては、藻類用培地として公知の培地を用いることができる。藻類用培地としては、例えば、窒素源、リン源、微量元素(亜鉛、ホウ素、コバルト、銅、マンガン、モリブデン、鉄など)等を含む無機塩培地が挙げられる。窒素源としては、例えば、アンモニウム塩、硝酸塩、亜硝酸塩等が挙げられ、リン源としては、例えば、リン酸塩等が挙げられる。そのような培地としては、例えば、Fordの培地(Ford TW Biochim. Biophys. Acta 1979 569: 239-248.)、2×Allen培地(Allen MB. Arch. Microbiol. 1959 32: 270-277.)、M-Allen培地(Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.)、MA2培地(Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.)、改変M-Allen培地等が挙げられるが、これらに限定されない。
 Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株を従属栄養条件下又は混合栄養条件下で培養する場合、上記のような無機塩培地に、炭素源を添加した培地を用いることができる。炭素源としては、例えば、糖アルコール、糖、アミノ酸等が挙げられる。糖アルコールとしては、例えば、グリセロールが挙げられる。糖としては、例えば、グルコース、マンノース、フルクトース、スクロース、マルトース、ラクトース糖が挙げられる。中でも、炭素源としては、糖アルコールが好ましく、グリセロールがより好ましい。培地中の炭素源の濃度としては、例えば、0.1~10%(w/v)が挙げられる。炭素源の濃度が前記範囲内であると、Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株が、従属栄養的に、良好に増殖することができる。炭素源の濃度の下限値は、0.5%(w/v)以上、1%(w/v)以上、1.5%(w/v)以上、又は2%(w/v)以上が好ましい。培地中の炭素源の濃度の上限値は、9%(w/v)以下、8%(w/v)以下、7%(w/v)以下、6%(w/v)以下、5%(w/v)以下、又は4%(w/v)以下が好ましい。
 培地は、固体培地であってもよく、液体培地であってもよい。維持のためには、固体培地を用いることが好ましい。増殖させる場合には、液体培地を用いることが好ましい。
 培地のpHとしては、例えば、pH1~6が挙げられる。Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株は、酸性条件で、より良好に増殖することができる。培地のpHは、例えば、pH5以下が好ましく、pH4以下がより好ましく、pH3以下がさらに好ましい。pHは、2以上がより好ましい。
 培養温度としては、15~50℃が挙げられる。Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株は、25℃以上の高温条件下で、より良好に増殖することができる。培養温度は、30℃以上が好ましく、35℃以上がより好ましい。
 独立栄養条件下又は混合栄養条件下で培養する場合、光強度としては、10~100μE m-2・sec-1が挙げられる。光強度は、20~60μE m-2・sec-1が好ましく、30~50μE m-2・sec-1がより好ましい。連続光としてもよく、明暗周期(10L:14Dなど)を設けてもよい。
 培養は、静置培養であってもよく、通気培養であってもよく、振盪培養であってもよい。従属栄養条件下で培養する場合、酸素不足を防ぐ観点から、通気培養又は振盪培養することが好ましい。
 培養期間中、Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株は、適宜継代してもよい。固体培地で維持培養する場合、継代の間隔としては、例えば、1カ月~3カ月が挙げられる。液体培地で増殖させる場合、継代の間隔としては、例えば、10日~50日、又は15~30日が挙げられる。
<フィコシアニンの製造方法>
 一態様において、Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株からなる群より選択される少なくとも1種のシアニディオシゾン・メロラエを培養することを含む、フィコシアニンの製造方法を提供する。
 Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株の培養は、上記と同様に行うことができる。培養は、増殖効率の観点から、液体培地で行うことが好ましい。培養は、従属栄養培養であってもよく、独立栄養培養であってもよく、混合栄養培養であってもよい。Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株は、従属栄養条件下で、良好に増殖できるため、混合栄養培養が好ましい。混合栄養培養は、暗所で培養するため、培養環境の制御が容易であり、コストを低減することができる。
 従属栄養培養又は混合培養とする場合、炭素源を含む培地を用いる。炭素源及び炭素源の濃度は、上記と同様のものが挙げられる。炭素源としては、グリセロールが好ましい。
 培養は、バッチ培養であってもよく、流加培養であってもよく、連続培養であってもよい。培養槽中の藻密度を高められることから、流加培養が好ましい。流加培養を行う場合、供給する基質としては、炭素源及び窒素源が挙げられる。
 培養後は、藻類細胞を回収し、フィコシアニンの抽出を行ってもよい。培養液からの藻類細胞の回収方法としては、遠心分離、ろ過等が挙げられる。藻類細胞からのフィコシアニンの抽出方法は、特に限定されず、公知の方法を用いることができる。例えば、破砕処理、抽出処理、圧搾処理、遠心分離処理、超臨界抽出処理等の公知の方法を、単独又は組み合わせて使用して、フィコシアニンの抽出を行うことができる。また、特開2003-342489号公報又は特許4677250号公報に記載の方法を用いてもよい。
 フィコシアニンを抽出するために用いる抽出溶媒としては、水及び有機溶媒が挙げられる。抽出溶媒は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。有機溶媒としては、例えば、エタノール、メタノール等のアルコール類;ヘキサン、ペンタン等の炭化水素類等が挙げられる。抽出溶媒としては、水、エタノール及びこれらの混合溶媒が好ましい。また、抽出効率を上げる等の目的で、各種添加剤を用いてもよい。
 藻類細胞に対して使用する抽出溶媒の量は、特に限定されない。抽出溶媒の量は、例えば、藻類細胞に対して、1~1000倍量程度(好ましくは5~200倍量程度)とすることができる。抽出操作は、通常、常圧下、常温~溶媒の沸点の範囲で行うことができる。抽出操作は、1回のみ行ってもよく、複数回行ってもよい。例えば、1度抽出操作を行った細胞残渣に再度新鮮な抽出溶媒を添加しても再度抽出操作を行ってもよい。抽出操作後、必要に応じて、遠心分離、ろ過、限外ろ過等により細胞残渣を除去してもよい。また、加熱、エバポレーター等を用いた減圧蒸留により、抽出溶媒を除去してもよい。さらに、各種精製処理を行い、フィコシアニンを精製してもよい。精製処理としては、例えば、塩析、透析、再結晶、再沈殿、溶媒抽出、吸着、濃縮、ろ過、ゲルろ過、限外ろ過、各種クロマトグラフィ(薄層クロマトグラフィ、カラムクロマトグラフィ、イオン交換クロマトグラフィ、高速液体クロマトグラフィ、吸着クロマトグラフィなど)等が挙げられるが、これらに限定されない。
 フィコシアニンは、青色天然色素として使用することができる。また、フィコシアニンは、食品、飼料、餌料、又は化粧料等の添加剤等として、使用することができる。
<シアニディオシゾン・メロラエの増殖方法>
 一態様において、Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株からなる群より選択される少なくとも1種のシアニディオシゾン・メロラエを、炭素源を含む培地を用いて、暗所で培養することを含む、シアニディオシゾン・メロラエの増殖方法を提供する。
 Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株の培養は、上記と同様に行うことができる。培養は、増殖効率の観点から、液体培地で行うことが好ましい。炭素源を含む培地は、上記と同様のものが挙げられる。炭素源としては、グリセロールが好ましい。
 Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株は、従属栄養条件下で良好に増殖することができる。そのため、炭素源を含む培地を用いて、暗所で培養することにより、所望の量のシアニディオシゾン・メロラエの細胞を容易に得ることができる。
<組成物>
 一態様において、本発明は、Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株からなる群より選択される少なくとも1種のシアニディオシゾン・メロラエを含む、組成物を提供する。
 シアニディオシゾン・メロラエは、フィコシアニン等の有用成分を含有する。そのため、シアニディオシゾン・メロラエの細胞を、各種組成物に利用することができる。
 シアニディオシゾン・メロラエを含む組成物の種類は、特に限定されない。組成物としては、例えば、食品、飼料、餌料、化粧料等が挙げられる。
 食品としては、例えば、菓子類(キャラメル、キャンディー等)、氷菓類(アイスクリーム等)、乳製品(ヨーグルト等)、各種加工食品、各種調味料、各種飲料、機能性食品、サプリメント等が挙げられる。
 飼料としては、例えば、各種ペットフードが挙げられる。
 餌料としては、例えば、観賞魚用の餌料、養殖魚用の餌料等が挙げられる。
 化粧料としては、例えば、皮膚化粧料(化粧水、乳液、美容液、クリーム等)、頭髪化粧料(整髪料、シャンプー、リンス、コンディショナー等)、メーキャップ用化粧料(ファンデーション、チーク、アイシャドウ、口紅等)が挙げられる。
 シアニディオシゾン・メロラエは、上記のような各種組成物に、添加剤として添加することができる。また、他の成分と混合し、食品、飼料、餌料、化粧料等として、調製してもよい。他の成分は、組成物の用途に応じて、適宜選択可能である。
 例えば、組成物が食品、飼料、又は餌料である場合、食品、飼料、又は餌料に使用可能な成分を特に制限なく用いることができる。食品、飼料、又は餌料に使用可能な成分としては、例えば、魚肉類、野菜類、穀類、乳製品、発酵製品、香辛料、タンパク質、アミノ酸、糖類、各種調味料、甘味剤、矯味剤、香料、油脂類、ビタミン類、増粘剤、ゲル化剤、酸化防止剤、防腐剤、キレート剤、pH調整剤、着色剤等が挙げられるが、これらに限定されない。
 例えば、組成物が化粧料である場合、化粧料に使用可能な成分を特に制限なく用いることができる。化粧料に使用可能な成分としては、例えば、炭化水素、脂質類(動植物性油脂や鉱物油等の油脂、ロウ、脂肪酸エステル、脂肪酸、セラミド等)、アルコール類(高級アルコール、低級アルコールや多価アルコール等)、タンパク質類(コラーゲン等)、多糖類(ヒアルロン酸、キトサン、セルロース、キサンタンガム、サクラン等)、各種高分子化合物(ポリエチレングリコール、シリコーン等)、動植物や微生物由来成分、アミノ酸、無機鉱物、各種界面活性剤、紫外線吸収剤、美白剤、抗炎症剤、血行促進剤、抗老化剤、保湿剤、ビタミン類、増粘剤、ゲル化剤、酸化防止剤、防腐剤、抗菌剤、キレート剤、pH調整剤、粉体、香料、着色剤等が挙げられるが、これらに限定されない。
<乾燥粉末>
 一態様において、本発明は、Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株からなる群より選択される少なくとも1種のシアニディオシゾン・メロラエの乾燥粉末を提供する。
 「シアニディオシゾン・メロラエの乾燥粉末」とは、シアニディオシゾン・メロラエの細胞を乾燥し、粉末状にしたものをいう。シアニディオシゾン・メロラエの乾燥粉末は、公知の方法により製造することができる。例えば、シアニディオシゾン・メロラエを培養し、遠心分離等により藻類細胞を回収する。次いで、藻類細胞を乾燥し、粉末状とすることにより、乾燥粉末を得ることができる。藻類細胞の乾燥方法は、特に限定されないが、例えば、自然乾燥、加熱乾燥、減圧乾燥、凍結乾燥等が挙げられる。乾燥した藻類細胞は、物理的に粉砕して、粉末状としてもよい。藻類細胞は、乾燥する前に、洗浄処理、殺菌処理等を行ってもよい。洗浄処理には、例えば、水、緩衝液等の洗浄液を用いることができる。殺菌処理の方法としては、例えば、次亜塩素酸等の殺菌による処理、紫外線処理、オゾン処理等が挙げられる。
 乾燥粉末とすることにより、シアニディオシゾン・メロラエが含有するフィコシアニン等の有用成分が濃縮される。そのため、シアニディオシゾン・メロラエの乾燥粉末は、食品、飼料、又は餌料として用いることができる。また、シアニディオシゾン・メロラエの乾燥粉末は、添加剤として、食品、飼料、餌料、又は化粧料に使用することができる。
<抽出物>
 一態様において、本発明は、Cm-1株、Cm-2株、Cm-3株、及びこれらの変異株からなる群より選択される少なくとも1種のシアニディオシゾン・メロラエの抽出物を提供する。
 「シアニディオシゾン・メロラエの抽出物」とは、シアニディオシゾン・メロラエの細胞から細胞成分を抽出したものをいう。シアニディオシゾン・メロラエの抽出物は、シアニディオシゾン・メロラエの細胞を破壊した細胞破壊物であってもよい。細胞の破壊方法としては、例えば、ホモジナイザー等による機械的破砕処理、超音波処理、凍結融解処理等が挙げられる。また、シアニディオシゾン・メロラエの抽出物は、シアニディオシゾン・メロラエの細胞を溶解した細胞溶解物であってもよい。細胞の溶解方法としては、例えば、プロテアーゼ、セルラーゼ等の酵素を用いた酵素処理、界面活性剤処理等が挙げられる。
 シアニディオシゾン・メロラエの抽出物は、シアニディオシゾン・メロラエの細胞、細胞破壊物、又は細胞溶解物に対して、抽出溶媒を添加して、抽出処理を行ったものであってもよい。抽出溶媒は、上記と同様のものを用いることができる。
 抽出物とすることにより、シアニディオシゾン・メロラエが含有するフィコシアニン等の有用成分が濃縮される。そのため、シアニディオシゾン・メロラエの抽出物は、食品、飼料、又は餌料として用いることができる。また、シアニディオシゾン・メロラエの抽出物は、添加剤として、食品、飼料、餌料、又は化粧料に使用することができる。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
<従属栄養条件下で増殖速度の速いシアニディオシゾン・メロラエ株の単離>
 0.5%(w/v)ジェランガムを含むMA2+3%(W/v)グリセロール培地プレート培地を用いて、シアニディオシゾン・メロラエ NIES-1804株(国立遺伝学研究所から入手)を暗所で培養した。暗所での培養を一定期間継続し、増殖速度の速いコロニーを採取した。
 その結果、従属栄養条件下で増殖速度の速い株として、Cm-1株、Cm-2株、及びCm-3株の3株を単離した。MA2+3%(W/v)グリセロール培地の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<従属栄養条件下での増殖試験>
 20mLのMA2+3%(W/v)グリセロール培地を用いて、Cm-1株、Cm-2株、Cm-3株、及びNIES-1804株の培養を行った。培養にはベントキャップを備えた50mLカルチャーフラスコ(VTC-F25V,VIOLAMO)を用いた。40℃に維持したインキュベーター(MLR-352-PJ,PHC)で、バイオシェーカー(BR-20, TAITEC)を用いて、振盪培養(100rpm rotary)した。光条件は、Light(40μE m-2・sec-1)、Dim light(10μE m-2・sec-1))、又はDark(0μE m・sec-1)とした。
(藻密度の測定)
 培養液をサンプリングし、PMMAセミマイクロキュベット中で、UV/Vis分光光度計(NanoDrop,Thermo Scientific)により、波長800nmにおける光学密度を測定した。
 結果を図1に示す。図中、「Inoculation」は、継代したことを示す。Cm-1株、Cm-2株、及びCm-3株は、暗所(Dark)及び弱光(Dim light)下でも良好な増殖を示した。一方、NIES-1804株は、暗所ではほとんど増殖できなかった。
 図1のRun3のDarkでは、Cm-1株は、14日間で、OD800の値が0.40から21.9になった(μ=0.012hr-1)。
 図1のRun3のDarkでは、Cm-2株は、14日間で、OD800の値が0.42から13.9になった(μ=0.010hr-1)。
 図1のRun3のDarkでは、Cm-3株は、14日間で、OD800の値が0.34から24.19になった(μ=0.013hr-1)。
 図1のRun3のDarkでは、NIES-1804株は、14日間で、OD800の値が0.35から0.51になった(μ=0.001hr-1)。
<単離株の性質>
 従属栄養条件下で培養後のCm-1株、Cm-2株、Cm-3株、及びNIES-1804株の顕微鏡写真を図2(倍率:400倍)に示す。Cm-1株、Cm-2株、及びCm-3株の細胞は、NIES-1804株の細胞と同様に、ダンベル型の形状を呈していた。観察された細胞のうちの半分程度の細胞に弱い蛍光が観察された。
 表2に、Cm-1株、Cm-2株、及びCm-3株の特徴をまとめた。表2中、最大到達OD800nmは、3%グリセロールを含むMA2培地を用いて、暗所で流加培養したときのものである。
Figure JPOXMLDOC01-appb-T000002
<従属栄養条件下でのジャー培養試験>
 Cm-1株、Cm-3株、及びNIES-1804株を用いて、従属栄養条件下で、ジャー培養試験を行った。前培養は、MA2+3%(W/v)グリセロール培地を用いて、40μE m・sec-1の光条件下で行った。本培養には、MA2+3%(W/v)グリセロール培地を入れた5Lジャーを用いた。40℃、暗所で、通気培養(1vvm air、100rpm)した。培養期間中、窒素源及び炭素源を供給した。
(藻密度の測定)
 藻密度の測定は、上記と同様に行った。
(乾燥藻体重量の測定)
 任意の容積の培養液を、5000g、4°Cで5分間遠心分離し、沈殿を得た。これを酢酸アンモニウム水溶液1%(w/v)で穏やかに洗浄し、再度遠心分離する工程を2度行った。沈殿を少量の酢酸アンモニウム水溶液に再懸濁し、予め秤量した樹脂チューブに移した。-80°Cで凍結後、凍結乾燥を行い、乾燥藻体を得た。藻体を含む樹脂チューブを再度秤量し、容積当たりの藻体乾燥重量を得た。
 結果を図3に示す。Cm-1株、及びCm-3株は、良好な増殖を示した。一方、NIES-1804株は、ほとんど増殖しなかった。
 ジャー培養の結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003

Claims (9)

  1.  シアニディオシゾン・メロラエ Cm-1株(受託番号FERM BP-22429)、シアニディオシゾン・メロラエ Cm-2株(受託番号FERM BP-22430)、シアニディオシゾン・メロラエ Cm-3株(受託番号FERM BP-22431)、及びこれらの変異株からなる群より選択される、暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ。
  2.  請求項1に記載のシアニディオシゾン・メロラエを培養することを含む、フィコシアニンの製造方法。
  3.  前記培養を、炭素源を含む培地を用いて行う、請求項2に記載のフィコシアニンの製造方法。
  4.  前記培養を暗所で行う、請求項3に記載のフィコシアニンの製造方法。
  5.  請求項1に記載のシアニディオシゾン・メロラエを、炭素源を含む培地を用いて、暗所で培養することを含む、シアニディオシゾン・メロラエの増殖方法。
  6.  請求項1に記載のシアニディオシゾン・メロラエを含む、組成物。
  7.  食品、飼料、餌料、又は化粧料である、請求項6に記載の組成物。
  8.  請求項1に記載のシアニディオシゾン・メロラエの乾燥粉末。
  9.  請求項1に記載のシアニディオシゾン・メロラエの抽出物。
PCT/JP2022/033638 2021-12-13 2022-09-08 暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ、及びその使用 WO2023112407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023567544A JPWO2023112407A1 (ja) 2021-12-13 2022-09-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201950 2021-12-13
JP2021-201950 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023112407A1 true WO2023112407A1 (ja) 2023-06-22

Family

ID=86774273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033638 WO2023112407A1 (ja) 2021-12-13 2022-09-08 暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ、及びその使用

Country Status (2)

Country Link
JP (1) JPWO2023112407A1 (ja)
WO (1) WO2023112407A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099261A1 (en) * 2014-12-16 2016-06-23 Rijksuniversiteit Groningen Natural blue photopigments, methods for producing them and to uses thereof as colorant.
CN106190853A (zh) * 2016-04-18 2016-12-07 嘉兴泽元生物制品有限责任公司 一种高产藻蓝蛋白的红藻培养方法
JP2017123816A (ja) * 2016-01-14 2017-07-20 学校法人明治大学 食品、食品の加熱処理方法、フィコシアニンの製造方法、有機酸の製造方法、及び水素の製造方法
JP2020512334A (ja) * 2017-03-30 2020-04-23 フェルメンタル フィコビリタンパク質の精製
US20210230534A1 (en) * 2018-05-31 2021-07-29 Fermentalg Method for cultivating unicellular red algae (ura) on a mixture of substrates
WO2021229209A1 (en) * 2020-05-11 2021-11-18 The University Of Sheffield Method of culturing algae

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099261A1 (en) * 2014-12-16 2016-06-23 Rijksuniversiteit Groningen Natural blue photopigments, methods for producing them and to uses thereof as colorant.
JP2017123816A (ja) * 2016-01-14 2017-07-20 学校法人明治大学 食品、食品の加熱処理方法、フィコシアニンの製造方法、有機酸の製造方法、及び水素の製造方法
CN106190853A (zh) * 2016-04-18 2016-12-07 嘉兴泽元生物制品有限责任公司 一种高产藻蓝蛋白的红藻培养方法
JP2020512334A (ja) * 2017-03-30 2020-04-23 フェルメンタル フィコビリタンパク質の精製
US20210230534A1 (en) * 2018-05-31 2021-07-29 Fermentalg Method for cultivating unicellular red algae (ura) on a mixture of substrates
WO2021229209A1 (en) * 2020-05-11 2021-11-18 The University Of Sheffield Method of culturing algae

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORIYAMA TAKASHI, MORI NATSUMI, SATO NAOKI: "Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth", SPRINGERPLUS, vol. 4, no. 1, 1 December 2015 (2015-12-01), XP093001283, DOI: 10.1186/s40064-015-1365-0 *
MORIYAMA TAKASHI; MORI NATSUMI; NAGATA NORIKO; SATO NAOKI: "Selective loss of photosystem I and formation of tubular thylakoids in heterotrophically grown red algaCyanidioschyzon merolae", PHOTOSYNTHESIS RESEARCH., SPRINGER NETHERLANDS, DORDRECHT, NL, vol. 140, no. 3, 10 November 2018 (2018-11-10), DORDRECHT, NL , pages 275 - 287, XP036805496, ISSN: 0166-8595, DOI: 10.1007/s11120-018-0603-z *

Also Published As

Publication number Publication date
JPWO2023112407A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
CN103608459B (zh) 用于从微藻提取角鲨烯的方法
EP2650356B1 (en) Aurantiochytrium strains having high squalene-producing ability, and method for producing squalene thereof
Asker et al. Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction
Martin et al. Growth parameters for the yeast Rhodotorula rubra grown in peat extracts
WO2019107385A1 (ja) 新規微細藻類、及びその使用
CN113604395B (zh) 一株可发酵石斛且其发酵液可改善皮肤质量的植物乳杆菌
CN116964189A (zh) 新型的裂殖壶菌属菌株和使用其的多不饱和脂肪酸生产方法
US20130309719A1 (en) Heterotrophic microbial production of xanthophyll pigments
MX2011002107A (es) Microorganismos fotosinteticos enriquecidos con selenio a partir de compuestos seleno-hidroxiacidos y sus aplicaciones en la nutricion, cosmetica y farmaceutica.
CN114134050B (zh) 一株积累DHA和β-胡萝卜素的裂殖壶菌FR-908及其制备方法与应用
Hernández–Martínez et al. C-phycocyanin production with high antioxidant activity of a new thermotolerant freshwater Desertifilum tharense UAM-C/S02 strain
JP2024019630A (ja) 新規微細藻類
WO2022255477A1 (ja) シェワネラ属細菌、及びその使用
WO2023112407A1 (ja) 暗所で従属栄養的に増殖可能なシアニディオシゾン・メロラエ、及びその使用
Mohammed et al. Local culture medium from the legumes mixture as a novel media for the growth and stimulation of prodigiosin pigment which production from Serratia marcescens that isolated environmentally
KR102260782B1 (ko) 흰점박이꽃무지 추출물의 발효물, 이의 제조방법 및 용도
CN113512504B (zh) 一株产虾青素菌株及其应用
KR102612095B1 (ko) 구슬말 추출물의 생물전환산물 또는 이의 추출물을 포함하는 항균용 조성물
CN116059138A (zh) 具有抗氧化活性的索罗金小球藻及其在化妆品中的应用
CA3085995C (en) Composition for type i allergy
KR102160001B1 (ko) 메틸 케톤 생성능이 우수한 락토바실러스 플란타럼 균주 및 상기 균주를 포함하는 천연 향료 조성물
KR101639467B1 (ko) 신규한 미세조류 오돈텔라 및 이의 용도
KR100511770B1 (ko) 아스타잔틴을 생산하는 해양 미생물, 파라코커스 해운대시스
JP2019129721A (ja) 海藻由来の乳酸発酵液の製造方法
JP2018029537A (ja) 紅藻類乳酸発酵液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023567544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE