WO2023112322A1 - 変速制御装置 - Google Patents

変速制御装置 Download PDF

Info

Publication number
WO2023112322A1
WO2023112322A1 PCT/JP2021/046807 JP2021046807W WO2023112322A1 WO 2023112322 A1 WO2023112322 A1 WO 2023112322A1 JP 2021046807 W JP2021046807 W JP 2021046807W WO 2023112322 A1 WO2023112322 A1 WO 2023112322A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
state
shift
torque
dog
Prior art date
Application number
PCT/JP2021/046807
Other languages
English (en)
French (fr)
Inventor
賢吾 南
拓磨 為政
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/046807 priority Critical patent/WO2023112322A1/ja
Priority to PCT/JP2022/046537 priority patent/WO2023113032A1/ja
Publication of WO2023112322A1 publication Critical patent/WO2023112322A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/08Timing control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/682Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present invention relates to a shift control device.
  • Patent Document 1 discloses a technique of switching the control contents of the clutch ACT during shifting according to predetermined operating conditions such as accelerator opening, vehicle speed, etc., in a dog clutch type automatic transmission.
  • the specifications of the clutch are specification A that maintains the half-clutch state when the clutch is changed from the disengaged state to the engaged state, specification B that does not maintain the half-clutch state when the clutch is changed from the disengaged state to the engaged state, and the clutch.
  • An object of the present invention is to provide a shift control device that enables a comfortable shift operation.
  • the gear shift control device of the present invention includes: In the connected state, the clutch friction material is pressed to transmit torque from the power source to the main shaft, and in the semi-connected state, the clutch friction material is pressed with a lower pressing force than in the connected state to transmit torque, a clutch that cuts off torque transmission from the power source to the main shaft in a cut-off state; a clutch actuator that controls the clutch; By moving the driving dog and the driven dog toward and away from each other, the driving dog and the driven dog are engaged and disengaged to switch gears for transmitting driving force between the main shaft and the drive shaft.
  • a transmission that shifts gears by a shift actuator for shifting the transmission; a torque adjusting device that adjusts the torque of the power source during gear shifting; a control device that controls the clutch actuator, the shift actuator, and the torque adjustment device;
  • a shift control device for a dog clutch type automatic transmission comprising changing the control mode of the clutch control and the torque control of the power source during gear shifting according to whether the power source is in a driving state or a driven state when a gear shift command is generated;
  • the shift control device of the present invention is In the connected state, the clutch friction material is pressed to transmit torque from the power source to the main shaft, and in the semi-connected state, the clutch friction material is pressed with a lower pressing force than in the connected state to transmit torque, a clutch that cuts off torque transmission from the power source to the main shaft in a cut-off state; a clutch actuator that changes the state of the clutch; By moving the driving dog and the driven dog toward and away from each other, the driving dog and the driven dog are engaged and disengaged to switch gears for transmitting driving force between the main shaft and the drive shaft.
  • a transmission that shifts gears by a shift actuator for shifting the transmission; a torque adjusting device that adjusts the torque of the power source during gear shifting; a control device that controls the clutch actuator, the shift actuator, and the torque adjustment device;
  • a shift control device for a dog clutch type automatic transmission comprising When a shift command is generated, the engagement state of the clutch at the time of gear shifting depends on whether the engagement state of the dog is in the state of meshing on the acceleration side or the state of meshing on the deceleration side. It is characterized by changing the control mode of the control and the torque control of the power source.
  • FIG. 1 is a side view of a motorcycle according to an embodiment
  • FIG. FIG. 2 is a cross-sectional view showing the internal configuration of the power unit according to the embodiment
  • FIG. 2 is a perspective view showing a transmission gear that constitutes the transmission according to the embodiment
  • 1 is a control block diagram of a shift control device according to an embodiment
  • FIG. 1 is a schematic configuration diagram of a steering handle of a motorcycle according to an embodiment
  • FIG. 4(a) to 4(e) are schematic configuration diagrams sequentially showing the gear disengagement and gear engagement operations
  • FIG. 4 is a schematic configuration diagram showing a state when a dog is partially engaged;
  • a diagram showing changes in the clutch command value, the actual clutch position, the required engine torque, the shift cam angle, the engine speed, the main shaft speed, and the drive shaft speed when the power source is in the driven state when the shift command is generated. is.
  • Clutch command value, actual clutch position, required engine torque, shift cam angle, engine speed, main shaft speed, and drive shaft speed when the power source is in a high-rotation, high-driving-force drive state when a shift command is generated It is a figure which shows.
  • Clutch command value actual clutch position, required engine torque, shift cam angle, engine speed, main shaft speed, and drive shaft speed when the power source is in a low-rotation, low-driving-force drive state when a shift command is generated It is a figure which shows.
  • FIGS. 1 to 10 are diagrams showing a shift control device according to the present embodiment and a motorcycle equipped with this shift control device.
  • FIG. 1 is a side view showing the motorcycle 1.
  • FIG. A motorcycle 1 is an example of a vehicle according to the present embodiment.
  • a vehicle according to the present embodiment is not limited to the motorcycle 1 .
  • the vehicle according to the present embodiment may be a straddle-type vehicle such as a snowmobile or an ATV. Also, the vehicle according to the present embodiment may be a four-wheeled vehicle.
  • the motorcycle 1 includes a head pipe 3 and a body frame 6.
  • the body frame 6 has a pair of left and right frame portions 6 a extending rearward from the head pipe 3 .
  • a rear portion of the frame portion 6 a extends downward and is connected to the rear arm bracket 5 .
  • a front end portion of a rear arm 21 is supported by the rear arm bracket 5 via a pivot shaft 22 so as to be vertically swingable.
  • a rear wheel 23 is supported at the rear end of the rear arm 21 .
  • a front fork 10 is pivotally supported on the head pipe 3 .
  • a steering handle 4 is provided at the upper end of the front fork 10, and a front wheel 12 is rotatably provided at the lower end.
  • a fuel tank 13 is arranged above the frame portion 6a, and a seat 14 is arranged behind the fuel tank 13. As shown in FIG.
  • a power unit 20 is suspended between the frame portion 6a and the rear arm bracket 5.
  • the power unit 20 has at least an engine 45 as a power source, a clutch 44 and a shift mechanism 43 .
  • the engine 45 , the clutch 44 and the shift mechanism 43 are integrally attached to the crankcase 26 .
  • the engine 45 is an internal combustion engine using gasoline as fuel.
  • the engine 45 is not limited to an internal combustion engine such as a gasoline engine, and may be a motor or the like. Also, the engine 45 may be a combination of a gasoline engine and a motor.
  • FIG. 2 is a cross-sectional view showing the internal configuration of the power unit 20.
  • the power unit 20 has an engine 45 , a clutch 44 and a shift mechanism 43 .
  • the main shaft 41 is arranged parallel to the crankshaft 25 .
  • the drive shaft 42 is arranged parallel to the main shaft 41 .
  • the shift control device 50 according to the present embodiment also includes a clutch 44, a shift mechanism 43, a clutch actuator 60, and a shift actuator 70 (see FIG. 4). By driving the clutch actuator 60, the clutch 44 can be connected and disconnected. By driving the shift actuator 70, the transmission gear of the shift mechanism 43 can be switched, that is, the gear position of the shift mechanism 43 can be changed.
  • the shift control device 50 also includes a torque adjustment device 80 that adjusts the torque of the engine 45 during gear shifting (see FIG. 4). Furthermore, shift control device 50 includes a control device 90 that controls driving of clutch actuator 60 and shift actuator 70 and control of torque adjustment device 80 .
  • the shift control device 50 does not have to include separate actuators for the clutch actuator 60 and the shift actuator 70 . That is, the shift control device 50 may include an actuator that engages and disengages the clutch 44 and switches the transmission gears of the shift mechanism 43 . In this case, this actuator has a function of connecting and disconnecting the clutch 44 and a function of switching the transmission gear of the shift mechanism 43 .
  • the clutch 44 transmits torque from the engine 45 to the main shaft 41 without slipping by pressing the clutch friction material in the connected state, and in the half-connected state, the pressing force is lower than the pressing force in the connected state.
  • the clutch friction material is pressed to transmit torque, and in the cutoff state cuts off torque transmission from the engine 45 to the main shaft 41 .
  • the clutch friction material includes a drive-side clutch friction material (e.g., friction disc) that rotates integrally with the primary gear on the driven side of the clutch 44 and a driven-side clutch friction material that rotates integrally with the main shaft 41 (e.g., clutch disc) and the like.
  • the driving-side clutch friction material and the driven-side clutch friction material are pressed against each other by a clutch spring (not shown), and integrally rotated by the frictional force generated between them.
  • the torque of the engine 45 is transmitted from the driving side clutch friction material to the main shaft 41 via the driven side clutch friction material.
  • the driving side clutch friction material and the driven side clutch friction material are separated from each other against the elastic force of the clutch spring, and the driving side clutch friction material and the driven side clutch friction material are pressed. be released. Then, the driven-side clutch friction material idles with respect to the driving-side clutch friction material, and torque transmission is interrupted.
  • the driving-side clutch friction material presses the driven-side clutch friction material with a lower pressing force than in the connected state, thereby transmitting torque.
  • the clutch actuator 60 separates the drive-side friction member and the driven-side friction member against the elastic force of the clutch spring, and the pressing force acting between them is released. to reduce Further, in the friction clutch, the driving side friction member and the driven side friction member are generally pressed with a pressing force corresponding to the clutch position, and torque corresponding to the pressing force is transmitted via the friction clutch. Therefore, the clutch position and the torque transmitted via the friction clutch are correlated.
  • the clutch 44 is, for example, a multi-plate friction clutch, and includes a clutch housing 443 and a clutch boss 447.
  • a plurality of friction plates 445 each functioning as a drive-side clutch friction material are provided inside the clutch housing 443, and a plurality of clutch plates each functioning as a driven-side clutch friction material are provided outside the clutch boss 447. 449 is provided.
  • Each friction plate 445 is fixed to the clutch housing 443 with respect to the rotation direction of the main shaft 41 . Therefore, the multiple friction plates 445 rotate together with the clutch housing 443 .
  • Each friction plate 445 is displaceable in the axial direction of the main shaft 41 .
  • a plurality of friction plates 445 are arranged in the axial direction of the main shaft 41 .
  • Each clutch plate 449 faces each adjacent friction plate 445 .
  • Each clutch plate 449 is fixed to the clutch boss 447 with respect to the rotational direction of the main shaft 41 . Thereby, the plurality of clutch plates 449 rotate together with the clutch boss 447 .
  • Each clutch plate 449 is displaceable in the axial direction of the main shaft 41 .
  • a plate group 442 is composed of the plurality of friction plates 445 and the plurality of clutch plates 449 .
  • a pressure plate 451 is arranged outside the main shaft 41 (on the right side in FIG. 2).
  • the pressure plate 451 is formed in a substantially disk shape.
  • a pressing portion 451B projecting toward the plate group 442 is formed on the radially outer portion of the pressure plate 451 .
  • the pressing portion 451B faces the rightmost friction plate 445 in the plate group 442 .
  • a spring 450 is provided in the clutch 44 .
  • the spring 450 urges the pressure plate 451 inward (to the left in FIG. 2). That is, the spring 450 biases the pressure plate 451 in the direction in which the pressing portion 451B presses the plate group 442 .
  • the central portion of the pressure plate 451 is engaged with one end side (right side in FIG. 2) of the push rod 455 via a bearing 457. Thereby, the pressure plate 451 is rotatable with respect to the push rod 455 .
  • the main shaft 41 has a cylindrical shape.
  • the other end (left end) of the push rod 455 is housed inside the main shaft 41 .
  • a spherical ball 459 adjacent to the other end (left end) of the push rod 455 is provided inside the main shaft 41 .
  • a push rod 461 adjacent to the ball 459 is provided inside the main shaft 41 .
  • One end (left end) 461 A of the push rod 461 protrudes from the main shaft 41 .
  • a piston 463 is integrally provided at one end 461A of the push rod 461 .
  • the piston 463 is guided by the cylinder body 465 and is slidable in the axial direction of the main shaft 41 .
  • the pressure plate 451 When the clutch 44 is engaged, the pressure plate 451 is moved to the left in FIG. 2 by the spring 450. When the pressure plate 451 moves leftward in FIG. 2, the pressing portion 451B presses the plate group 442 leftward. As a result, the friction plates 445 and the clutch plates 449 of the plate group 442 are brought into pressure contact. As a result, the clutch 44 is brought into the connected state.
  • the pressure plate 451 moves in one or the other axial direction of the main shaft 41 depending on the magnitude of the driving force of the clutch actuator 60 and the biasing force of the spring 450 .
  • the state of the clutch 44 changes between the connected state and the disengaged state.
  • the term “connected state” refers to a state in which torque is transmitted from the engine 45 to the main shaft 41 without slippage by pressing the clutch friction material
  • the term “half-connected state” refers to the pressing force applied in the connected state. A state in which torque is transmitted by pressing the clutch friction material with a low pressing force, and a state in which transmission of torque from the engine 45 to the main shaft 41 is cut off.
  • a gear 310 is integrally supported on the crankshaft 25 of the engine 45 .
  • the main shaft 41 engages with a gear 310 and is supported.
  • the gear 441 is rotatable with respect to the main shaft 41 .
  • the gear 441 is provided integrally with the clutch housing 443, for example.
  • the torque of the engine 45 is transmitted from the crankshaft 25 to the clutch housing 443 via the gear 441 .
  • the torque of the engine 45 is transmitted from the clutch housing 443 to the clutch boss 447 by frictional force generated between the plurality of friction plates 445 and the plurality of clutch plates 449 .
  • the clutch boss 447 and the main shaft 41 rotate integrally. In other words, there is no relative rotation between the clutch boss 447 and the main shaft 41 . Therefore, torque of the engine 45 is transmitted to the main shaft 41 when the clutch 44 is engaged.
  • the push rod 455 is not limited to one that pushes the pressure plate 451 to the right in FIG.
  • the push rod 455 may pull the pressure plate 451 to the right in FIG. 2 by a mechanism provided outside the pressure plate 451 (to the right in FIG. 2).
  • clutch 44 may be a single-plate clutch instead of a multi-plate clutch.
  • Clutch 44 may also include centrifugal weights. In this case, the clutch 44 is engaged and disengaged based on the drive of the clutch actuator 60 and the centrifugal force of the centrifugal weight.
  • the shift mechanism 43 is a so-called dog-type shift mechanism.
  • the crankshaft 25 is provided with an engine rotation speed sensor S30.
  • An engine rotation speed sensor S30 detects the rotation speed of the crankshaft 25 .
  • the crankshaft 25 is connected to the main shaft 41 via a clutch 44 .
  • the main shaft 41 is provided with a main shaft rotational speed sensor S31.
  • a main shaft rotation speed sensor S31 detects the rotation speed of the main shaft 41 .
  • a multi-stage transmission gear 49 is attached to the main shaft 41 .
  • the drive shaft 42 is mounted with a plurality of transmission gears 420 corresponding to the multistage transmission gears 49 .
  • the multi-stage transmission gear 49 and the plurality of transmission gears 420 are in mesh with each other only at a selected pair of gears. At least one of the transmission gears 49 other than the selected transmission gear 49 among the multi-stage transmission gears 49 and the transmission gears 420 other than the selected transmission gear 420 among the plurality of transmission gears 420 is connected to the main shaft. 41 or the drive shaft 42 is rotatable.
  • At least one of the non-selected transmission gear 49 and the non-selected transmission gear 420 is idly rotated with respect to the main shaft 41 or the drive shaft 42 . That is, the rotation transmission between the main shaft 41 and the drive shaft 42 is performed only through the selected transmission gear 49 and the selected transmission gear 420 that mesh with each other.
  • FIG. 3 A specific configuration of the transmission gear 49 will be described using FIG. Although the configuration of the transmission gear 49 is shown in FIG. 3, the transmission gear 420 has the same configuration, so the description thereof is omitted.
  • first gear 49a having an engaging projection 49c formed as a driving dog on its shaft end face
  • first gear 49a having an engaging concave portion 49e formed as a driven dog on its shaft end face opposite to the engaging projection 49c.
  • 2 gear 49b The shift mechanism 43 includes a plurality of first gears 49a and second gears 49b, with the first gear 49a arranged between the pair of second gears 49b.
  • Three engaging projections 49c are formed on the first gear 49a, and these engaging projections 49c are evenly arranged in the circumferential direction on the outer edge of the shaft end face of the first gear 49a.
  • the second gear 49b is formed with six engaging recesses 49e, and these engaging recesses 49e are also arranged evenly in the circumferential direction.
  • An insertion hole 49g through which the main shaft 41 and the drive shaft 42 are inserted is formed in the axial center portion of the first gear 49a, and a plurality of grooves 49d are formed in the peripheral surface of the insertion hole 49g. ing.
  • the first gear 49 a is spline-fitted to the main shaft 41 and the drive shaft 42 .
  • the second gear 49b is also formed with an insertion hole 49h through which the main shaft 41 and the drive shaft 42 are inserted, but the insertion hole 49h is not formed with a groove. Therefore, the second gear 49b is attached to the main shaft 41 and the drive shaft 42 in an idle state.
  • Rotation of the shift cam 421 causes the shift fork 422 to move along the cam groove 421a. move to By engaging the engagement protrusion 49c of the first gear 49a with the engagement recess 49e of the second gear 49b, the combination of the transmission gears 49 and 420 for transmitting the driving force from the main shaft 41 to the drive shaft 42 is achieved. A shift is made and a gear change takes place.
  • a transmission 48 is composed of the transmission gears 49 and 420 and the shift cam 421 .
  • FIG. 6(a) is a diagram showing a state when the first gear 49a is engaged with a certain second gear 49b.
  • the engagement projection 49c of the first gear 49a is deeply inserted into the engagement recess 49e of the second gear 49b. It abuts on the inner surface of the engaging recess 49e of the second gear 49b. In this case, driving force is transmitted from the main shaft 41 to the drive shaft 42 .
  • the shift cam 421 (see FIG. 2) rotates when the gear is changed from this state, the first gear 49a moves rightward in FIG. 6(a), as shown in FIG. 6(b).
  • the second gear 49b rotates relative to the first gear 49a.
  • the engagement protrusion 49c of the first gear 49a enters the engagement recess 49e of the second gear 49b as shown in FIG. 6(d). This is called dog entry.
  • the engaging projection 49c of the first gear 49a engages the inner surface of the engaging recess 49e of the second gear 49b as shown in FIG. 6(e). abut.
  • the first gear 49a is engaged with another second gear 49b, and the driving force is transmitted from the main shaft 41 to the drive shaft .
  • Selection of transmission gear 49 or transmission gear 420 is performed by shift cam 421 .
  • a plurality of cam grooves 421 a are formed on the outer peripheral surface of the shift cam 421 .
  • a shift fork 422 is attached to each cam groove 421a.
  • Each shift fork 422 is engaged with a predetermined transmission gear 49 and transmission gear 420 of the main shaft 41 and the drive shaft 42, respectively.
  • As the shift cam 421 rotates each of the plurality of shift forks 422 moves in the axial direction of the main shaft 41 while being guided by the cam groove 421a.
  • gears that mesh with each other are selected from transmission gear 49 and transmission gear 420 .
  • the shift cam 421 rotates by a predetermined angle as the shift rod 75 reciprocates.
  • the shift rod 75 is reciprocated by being driven by the shift actuator 70 .
  • FIG. 4 is a control block diagram of the shift control device 50.
  • the shift control device 50 includes a shift mechanism 43 , a clutch 44 , a clutch actuator 60 , a shift actuator 70 and an electric control unit 90 .
  • the control device 90 has a switching determination section 91 , an operating state detection section 92 , a semi-automatic control section 93 and a full-automatic control section 94 .
  • the motorcycle 1 includes a power supply device 73 and a main switch 74.
  • the power supply device 73 and the control device 90 are energized, and the control device 90 becomes operable.
  • the motorcycle 1 may be provided with a relay switch or the like (not shown). In this case, part of the control device 90 can operate even when the main switch 74 is not operated.
  • the crankshaft 25 (see FIG. 2) is provided with the engine rotation speed sensor S30.
  • the engine speed sensor S30 is adjacent to the engine 45.
  • a main shaft rotational speed sensor S31 is provided on the main shaft 41 (see FIG. 2).
  • the main shaft rotational speed sensor S31 is adjacent to the clutch 44.
  • the motorcycle 1 includes an intake pipe 61, an exhaust pipe 62, an accelerator 63, a throttle valve 65, a fuel supply device 66, and an ignition device 67.
  • the intake pipe 61 is connected to the engine 45 .
  • the exhaust pipe 62 is connected to the engine 45 at a position different from the position where the intake pipe 61 is connected.
  • the throttle valve 65 is provided inside the intake pipe 61 .
  • the throttle valve 65 adjusts the amount and speed of air flowing through the intake pipe 61 .
  • a fuel supply device 66 is provided in the middle of the intake pipe 61 .
  • the fuel supply device 66 may be a so-called carburetor or a fuel injector.
  • the fuel supply device 66 supplies fuel stored in the fuel tank 13 to the inside of the intake pipe 61 .
  • the ignition device 67 is provided inside the engine 45 . In this embodiment, the ignition device 67 is electronically controlled in ignition timing. However, the ignition device 67 may be mechanically controlled in ignition timing.
  • the opening of the throttle valve 65 changes based on the amount of operation of the accelerator 63 .
  • the opening of the throttle valve 65 may have its opening controlled electronically.
  • the motorcycle 1 also includes an accelerator opening sensor S33, a throttle position sensor S35, a fuel supply amount sensor S36, an ignition timing sensor S37, a shift position sensor S32, and a vehicle speed sensor S34.
  • the accelerator opening sensor S33 detects the amount of operation of the accelerator 63 as the opening.
  • a throttle position sensor S35 detects the opening of the throttle valve 65 .
  • a fuel supply amount sensor S36 detects the amount of fuel supplied in the fuel supply device 66 .
  • the ignition timing sensor S37 detects the ignition timing of the air-fuel mixture in the ignition device 67 .
  • the shift position sensor S32 detects the gear position of the shift mechanism 43 by detecting the rotation angle of the shift cam 421 (see FIG. 2).
  • a vehicle speed sensor S34 detects the vehicle speed of the motorcycle 1 .
  • Each sensor may directly or indirectly detect each displacement amount, and may have a calculation function to calculate a necessary physical quantity from a predetermined physical quantity.
  • the shift control device 50 includes a potentiometer 38 that detects the drive amount of the clutch actuator 60 and a potentiometer 39 that detects the drive amount of the shift actuator 70 .
  • potentiometer 38 detects the rotation angle of clutch actuator 60 .
  • Potentiometer 39 detects the rotation angle of shift actuator 70 .
  • the shift control device 50 may include the potentiometer 38 and the potentiometer 39 and two potentiometers.
  • a driving state detection unit 92 of the control device 90 detects the driving state of the motorcycle 1 based on the detection values of the sensors. That is, the driving state detection unit 92 receives a signal based on the opening of the accelerator 63 from the accelerator opening sensor S33. Thereby, the driving state detection unit 92 detects the opening degree of the accelerator 63 .
  • the operating state detection unit 92 receives a signal based on the opening of the throttle valve 65 from the throttle position sensor S35. Thereby, the operating state detection unit 92 detects the opening degree of the throttle valve 65 .
  • the operating state detection unit 92 receives a signal based on the fuel supply amount of the fuel supply device 66 from the fuel supply amount sensor S36. Thereby, the operating state detection unit 92 detects the amount of fuel supplied by the fuel supply device 66 .
  • the operating state detector 92 receives a signal based on the ignition timing of the ignition device 67 from the ignition timing sensor S37. Thereby, the operating state detection unit 92 detects the ignition timing of the ignition device 67 .
  • the operating state detector 92 receives a signal based on the rotation speed of the crankshaft 25 from the engine rotation speed sensor S30. Thereby, the operating state detector 92 detects the rotation speed of the crankshaft 25 .
  • the operating state detector 92 receives a signal based on the rotational speed of the main shaft 41 from the main shaft rotational speed sensor S31. Thereby, the operating state detector 92 detects the rotation speed of the main shaft 41 .
  • the operating state detector 92 receives a signal based on the rotation angle of the shift cam 421 from the shift position sensor S32.
  • the driving state detection unit 92 detects the current gear position in the shift mechanism 43 .
  • the driving state detector 92 receives a signal based on the vehicle speed of the motorcycle 1 from the vehicle speed sensor S34. Thereby, the driving state detection unit 92 detects the vehicle speed of the motorcycle 1 .
  • the shift operation is performed by driving the clutch actuator 60 and the shift actuator 70, or by driving the shift actuator 70 alone.
  • the shift operation of the shift control device 50 is a series of operations of disengaging the clutch 44 , changing the gear position of the shift mechanism 43 , and engaging the clutch 44 .
  • the shift control device 50 can execute control in which the rider of the motorcycle 1 instructs the start of the shift operation described above, and a series of shift operations are automatically performed. Such control is control to start driving the clutch actuator 60 and the shift actuator 70 according to the operation of the shift switch 72 (see FIG. 4 and the like) by the rider of the motorcycle 1 . Such control is called semi-automatic control Sc.
  • the shift control device 50 can execute control for automatically performing a series of shift operations according to the driving state of the motorcycle 1 regardless of the will of the rider of the motorcycle 1 .
  • Such control is control to start driving the clutch actuator 60 and the shift actuator 70 according to the detection of the operating state by the operating state detection device. Such control is called full auto control Fc.
  • the shift control device 50 is configured to be switchable between semi-automatic control Sc and full-automatic control Fc.
  • the control device 90 has a semi-automatic control section 93 and a full-automatic control section 94 .
  • the semi-automatic control section 93 executes semi-automatic control Sc.
  • the full-auto control unit 94 executes full-auto control Fc.
  • FIG. 5 shows a schematic diagram of the steering handle 4.
  • the steering handle 4 has a handlebar 4d, a left grip 4a and a right grip 4b.
  • the right grip 4b forms an accelerator 63 and is rotatable within a predetermined rotation angle.
  • the steering handle 4 is provided with a front brake lever 4c and a rear brake lever 4e.
  • a switch panel 40 is provided on the left side of the handlebar 4d.
  • the control changeover switch 71 is provided on the front of the switch panel 40, for example.
  • the control changeover switch 71 is, for example, a push button. Each time the control changeover switch 71 is switched once, the transmission control device 50 switches from the full-automatic control Fc to the semi-automatic control Sc or from the semi-automatic control Sc to the full-automatic control Fc.
  • the control changeover switch 71 is not limited to a push button.
  • the control changeover switch 71 may be, for example, a slide switch.
  • the shift control device 50 executes the full-auto control Fc.
  • the transmission control device 50 executes the semi-automatic control Sc.
  • a shift switch 72 is also provided on the switch panel 40 .
  • the shift switch 72 has a shift-up switch 72a for changing to the upper gear position of the shift mechanism 43 and a shift-down switch 72b for changing to the lower gear position.
  • the shift control device 50 executes the semi-automatic control Sc, when the rider switches the shift switch 72, the gear position of the shift mechanism 43 is changed.
  • the shift control device 50 drives the clutch actuator 60 and the shift actuator 70 or only the shift actuator 70 when the shift switch 72 is switched by the rider. In other words, when the rider switches the shift switch 72, the shift control device 50 is instructed to start the series of shift operations described above.
  • the switching determination section 91 inputs a signal based on the operation of the control switching switch 71 . Thereby, the switching determination section 91 detects switching of the control switching switch 71 and selects the semi-automatic control Sc and the full-automatic control Fc.
  • the switching determination section 91 may detect that the shift switch 72 has been switched while the shift control device 50 is executing the full-auto control Fc. At this time, the shift switch 72 has the function of the control changeover switch 71 . That is, in the transmission control device 50, when the shift switch 72 is switched while the full-automatic control Fc is being executed, the full-automatic control Fc may be switched to the semi-automatic control Sc.
  • the semi-automatic control unit 93 detects switching of the shift switch 72 .
  • the semi-automatic control unit 93 detects the switching of the shift switch 72, it changes the gear position of the shift mechanism 43 from the current gear position to another adjacent gear position.
  • the gear position of shift mechanism 43 is changed by driving clutch actuator 60 and shift actuator 70, or shift actuator 70 alone.
  • the semi-automatic control unit 93 receives a signal based on the driving state of the motorcycle 1 from the driving state detection unit 92 .
  • semi-automatic control unit 93 detects that shift switch 72 has been switched, it drives clutch actuator 60 and shift actuator 70 or only shift actuator 70 . That is, when the shift switch 72 is switched by the rider, the semi-automatic control unit 93 starts driving the clutch actuator 60 and the shift actuator 70 or only the shift actuator 70 to change the gear position of the shift mechanism 43 .
  • the semi-automatic control unit 93 can also drive the clutch actuator 60 and the shift actuator 70 by changing the suitable values of the predetermined parameters based on the driving state of the motorcycle 1 input from the driving state detection unit 92. be.
  • Such predetermined parameters include the rotational speed of clutch actuator 60, the acceleration of the rotational speed of clutch actuator 60, and the like.
  • the controller 90 controls the throttle valve 65, the fuel supply device 66, and the ignition device 67, based on the operating state of the motorcycle 1 input from the operating state detection unit 92, to determine the appropriate values of the predetermined parameters.
  • control device 90 can adjust the ignition timing of the ignition device 67 based on the driving state of the motorcycle 1 input from the driving state detection section 92.
  • FIG. 4 omits illustration of the aforementioned controls executed by the control device 90 .
  • the semi-automatic control section 93 does not change the gear position of the shift mechanism 43 even if the rider operates the upshift switch 72a. That is, when the current gear position of the shift mechanism 43 is at the highest gear, the semi-automatic control unit 93 cancels the operation of the shift-up switch 72a by the rider and does not drive the clutch actuator 60 and the shift actuator 70. Further, when the current gear position of the shift mechanism 43 is located at the lowest stage, the semi-automatic control section 93 does not change the gear position of the shift mechanism 43 even if the shift down switch 72b is operated by the rider. That is, when the current gear position of the shift mechanism 43 is at the lowest position, the semi-automatic control unit 93 cancels the operation of the downshift switch 72b by the rider and does not drive the clutch actuator 60 and the shift actuator 70.
  • a full-auto control unit 94 receives a signal based on the driving state of the motorcycle 1 from the driving state detection unit 92 .
  • the full-auto control section 94 changes the current gear position of the shift mechanism 43 to a predetermined gear position based on the driving state of the motorcycle 1 input from the driving state detection section 92 .
  • the gear position of shift mechanism 43 is changed by driving clutch actuator 60 and shift actuator 70 . That is, the full-auto control unit 94 starts driving the clutch actuator 60 and the shift actuator 70 and changes the gear position of the shift mechanism 43 based on the driving state of the motorcycle 1 input from the driving state detection unit 92 .
  • the full-auto control unit 94 can also drive the clutch actuator 60 and the shift actuator 70 by changing the suitable values of the predetermined parameters based on the driving state of the motorcycle 1 input from the driving state detection unit 92.
  • the predetermined parameter includes the rotational speed of clutch actuator 60, the acceleration of the rotational speed of clutch actuator 60, and the like.
  • the gear shift control device 50 controls the clutch 44 and the engine 45 during gear shift depending on whether the engine 45 is in the driving state or the driven state when the gear shift command is generated.
  • the control mode of torque control is changed.
  • the engine 45 when the engine 45 is in a driving state, it means that torque is transmitted from the crankshaft 25 to the rear wheels 23 through the transmission 48 by rotating the right grip 4b of the steering wheel 4 and operating the accelerator 63.
  • the engine 45 when the engine 45 is in a driven state, it means a state in which torque is transmitted from the rear wheels 23 to the crankshaft 25 through the transmission 48 by returning the right grip 4b of the steering handle 4 .
  • Whether the engine 45 is in the driving state or the driven state can be determined from, for example, the magnitude of the engine torque.
  • the dogs of the transmission gears 49 and 420 are meshed on the acceleration side.
  • the dogs of the transmission gears 49 and 420 are meshed on the deceleration side. Whether the engine 45 is in a driving state or a driven state is determined by determining whether the dog meshing state is a state in which the surfaces on the acceleration side are meshed or a state in which the surfaces are meshed on the deceleration side. It is also possible to determine whether it is in a state.
  • FIG. 8 shows transitions of the clutch command value, actual clutch position, required engine torque, shift cam angle, engine rotation speed, main shaft rotation speed, and drive shaft rotation speed when the engine 45 is in the driven state.
  • the clutch command value switches from the engaged state to the disengaged state as shown in FIG.
  • the pressure plate 451 is pushed rightward in FIG. 2 with respect to the axial direction of the main shaft 41, and the clutch actual position gradually moves from the engaged state to the disengaged state. It will be in the cutoff state before the dog is pulled out.
  • the control device 90 controls the torque adjusting device so that the required engine torque (the torque of the engine 45) is increased to 0 or near 0 after a predetermined time has elapsed since the shift command was generated. Also, the shift mechanism 43 switches the transmission gears.
  • the first gear 49a is disengaged from the second gear 49b and engaged with another second gear 49b. Then, when the dog engagement of the first gear 49a to another second gear 49b is performed, the command value of the clutch is switched to the semi-engaged state. As a result, the pressure plate 451 is pushed leftward in FIG. 2 with respect to the axial direction of the main shaft 41, and the clutch actual position gradually moves from the disengaged state to the semi-engaged state. Thereafter, when the clutch command value switches from the half-connected state to the connected state, the pressure plate 451 is further pushed leftward in FIG. It gradually moves, and finally the clutch 44 is brought into the engaged state.
  • the shift control device 50 reduces the torque of the engine 45 to 0 or near 0 when the dog is disengaged.
  • the driving state of the engine 45 when a shift command is generated is a first driving state defined by the rotational speed or torque state of the engine 45, and the rotational speed relative to the first driving state. or a second drive state defined as a low torque state.
  • the first driving state is a driving state when the engine 45 rotates at a high speed and a high driving force
  • the second driving state is a driving state when the engine 45 rotates at a low speed with a low driving force.
  • the shift control device 50 determines in which state the engine 45 is driven, and according to the determined drive state of the engine 45, controls the clutch 44 and the torque control of the engine 45 at the time of shifting. to change
  • the shift control device 50 maintains the clutch 44 in a connected state and generates a shift command. At times, the control is changed to start reducing the torque of the engine 45 .
  • maintaining the clutch 44 in the connected state means keeping the clutch 44 in the connected state or the semi-connected state without disengaging the clutch 44 .
  • FIG. 9 shows changes in the clutch command value, the actual clutch position, the required engine torque, the shift cam angle, the engine rotation speed, the main shaft rotation speed, and the drive shaft rotation speed when the engine 45 is at high rotation and high driving force. be.
  • the clutch command value does not immediately switch from the engaged state to the disengaged state when the engine 45 is in the first drive state. Further, when a shift command is generated, the control device 90 changes the control to start reducing the required engine torque (the torque of the engine 45). After that, when a predetermined time elapses, the clutch command value switches from the connected state to the semi-connected state. As a result, the pressure plate 451 is pushed rightward in FIG. 2 with respect to the axial direction of the main shaft 41, and the clutch actual position gradually moves from the connected state to the semi-connected state. Also, the shift mechanism 43 switches the transmission gears.
  • the first gear 49a is disengaged from the second gear 49b and engaged with another second gear 49b. Then, when the dog of the first gear 49a is disengaged from the second gear 49b, the command value of the clutch is switched to the semi-engaged state. Thereafter, when the clutch command value switches from the half-connected state to the connected state, the pressure plate 451 is further pushed leftward in FIG. It gradually moves, and finally the clutch 44 is brought into the engaged state.
  • the shift control device 50 starts disengagement control of the clutch 44 when a shift command is generated, and a predetermined time has passed since the start of disengagement control of the clutch 44. After that, or based on the timing at which the clutch 44 becomes disengaged, the control is changed to the control that starts reducing the torque of the engine 45 .
  • the disengagement control of the clutch 44 is such that the clutch is disengaged when the dog is disengaged, and is semi-connected after the dog is disengaged and before the dog is engaged.
  • FIG. 10 shows changes in the clutch command value, clutch actual position, required engine torque, shift cam angle, engine rotation speed, main shaft rotation speed, and drive shaft rotation speed when the engine 45 is at low rotation and low driving force. be.
  • the clutch command value switches from the engaged state to the disengaged state as shown in FIG.
  • the pressure plate 451 is pushed rightward in FIG. 2 with respect to the axial direction of the main shaft 41, and the clutch actual position gradually moves from the engaged state to the disengaged state. It will be in the cutoff state before the dog is pulled out.
  • the control device 90 changes the control to start reducing the required engine torque (the torque of the engine 45) at the timing when the clutch 44 is disengaged.
  • torque is transmitted from the engine 45 (power source) to the main shaft 41 without slippage by pressing the clutch friction material in the engaged state
  • the clutch friction material In the semi-connected state, the clutch friction material is pressed with a lower pressing force than in the connected state to transmit torque, and in the disconnected state, the clutch 44 and the clutch 44 are controlled to cut off torque transmission from the engine 45 to the main shaft 41.
  • the engaging projection 49c (driving dog) and the engaging recessed portion 49e (driven dog) are moved toward and away from the clutch actuator 60 to engage and disengage the engaging projection 49c and the engaging recessed portion 49e.
  • a transmission 48 that changes gears by switching gears (second gear 49b to first gear 49a) that transmit driving force between the main shaft 41 and the drive shaft 42; It includes an actuator 70, a torque adjustment device 80 that adjusts the torque of the engine 45 during gear shifting, and a control device 90 that controls the clutch actuator 60, the shift actuator 70 and the torque adjustment device 80.
  • the control mode of the control of the clutch 44 and the torque control of the engine 45 at the time of shifting are changed. In this way, by changing the control mode of the control of the clutch 44 and the torque control of the engine 45 at the time of gear shifting, the engine 45 is in either the driving state or the driven state when the gear shift command is generated.
  • the dog can be disengaged and engaged reliably and smoothly, it is possible to shorten the time of drive disconnection and ensure speed change (that is, reliably switch the dog), resulting in a comfortable ride.
  • a shift operation can be performed.
  • the clutch 44 when the engine 45 is in the driven state when a shift command is generated, the clutch 44 is disengaged and the engine 45 is disengaged when the dog is disengaged and the dog is engaged. Control is performed so that the torque is increased to 0 or close to 0.
  • the engaging protrusion 49c drive dog
  • the engaging recess 49e driven dog
  • the dog can be reliably disengaged by disengaging the clutch 44 when the dog is disengaged. Further, by disengaging the clutch 44 when the dog is engaged, it is possible to cope with the half-engaged state of the dog.
  • the shift control device 50 of the present embodiment when the engine 45 is in a driving state when a shift command is generated, the torque of the engine 45 is reduced to 0 or near 0 when the dog is disengaged. 2, when the dog is engaged, the torque of the engine 45 is increased more than when the dog is disengaged, and the clutch 44 is changed to a semi-connected state or a connected state. As a result, since the dog is disengaged while the torque of the engine 45 is reduced to 0 or near 0, the dog can be reliably disengaged. Also, by setting the clutch 44 to the semi-connected state or the connected state, it is possible to shorten the time of drive loss as much as possible, so that a comfortable shift operation can be performed.
  • the driving state of the engine 45 when the shift command is generated is determined by the rotational speed of the engine 45 or the In which state is the driving state of the engine 45, including a first driving state defined from a torque state and a second driving state defined as a state in which the rotational speed or torque is smaller than the first driving state? Then, depending on the determined driving state of the engine 45, the control mode of the control of the clutch 44 and the torque control of the engine 45 at the time of shifting are changed. As a result, regardless of whether the engine 45 is in a low rotation, low driving force state or a high rotation, high driving force state, it is possible to perform gear shifting suitable for each state.
  • the clutch 44 when in the first drive state, the clutch 44 is maintained in the connected state during shifting, and reduction of the torque of the engine 45 is started when a shift command is generated. Change to control.
  • reduction of the torque of the engine 45 provides higher responsiveness of transmission of driving force than control of the clutch 44, dog disengagement is performed by reducing the torque of the engine 45.
  • the clutch 44 is set in a semi-connected state or a connected state so that the drive can be restored immediately after the dog is engaged. When the dog is partially engaged, the torque of the engine 45 is reduced. By these operations, the time of drive loss can be shortened as much as possible, so that a comfortable shift operation can be performed.
  • the clutch 44 when in the first drive state, the clutch 44 is brought into the semi-connected state before the dog is engaged, and after the dog is engaged, the clutch 44 is shifted from the semi-connected state to the connected state.
  • the control may be changed to start reducing the torque of the engine 45 when a shift command is generated. Even in this case, even if the control is changed to start reducing the torque of the engine 45 when a shift command is generated, the semi-connected state of the clutch 44 is maintained. good gear shifting operation.
  • disengagement control of the clutch 44 when in the second drive state, disengagement control of the clutch 44 is started when a shift command is generated, and after a predetermined time has elapsed from the start of disengagement control of the clutch 44 or the clutch 44 is disengaged.
  • the control is changed to start reducing the torque of the engine 45 based on the timing at which the engine 45 is cut off.
  • the rotational speed of the main shaft 41 is reduced, and the relative speed of the dog disappears, resulting in a longer dog contact time as shown in FIG. 6(b).
  • the clutch 44 By disengaging the clutch 44, the rotation speed of the main shaft 41 is prevented from decreasing, thereby securing the relative speed of the dog.
  • the torque of the engine 45 is reduced.
  • the disengagement control of the clutch 44 is such that the clutch is disengaged when the dog is disengaged, and the semi-connected state is set after the dog is disengaged and before the dog is engaged. and In this case, the time during which the clutch is disengaged can be shortened as much as possible, so the time during which the drive is lost can be shortened as much as possible.
  • torque is transmitted from the engine 45 (power source) to the main shaft 41 without slippage by pressing the clutch friction material in the connected state, and in the semi-connected state, the clutch is connected.
  • a clutch 44 that transmits torque by pressing the clutch friction material with a pressing force lower than the pressing force in the state, and cuts off torque transmission from the engine 45 to the main shaft 41 in the cutoff state, and a clutch actuator 60 that controls the clutch 44.
  • the engaging protrusion 49c (driving dog) and the engaging recess 49e (driven dog) are moved toward and away from each other to engage and disengage the engaging protrusion 49c and the engaging recess 49e.
  • a transmission 48 that shifts gears by switching a gear (second gear 49b relative to the first gear 49a) that transmits driving force between the drive shaft 42; a shift actuator 70 that shifts the transmission 48; and a control device 90 for controlling the clutch actuator 60, the shift actuator 70, and the torque adjustment device 80, and when a shift command is generated, the engagement of the dog
  • the control mode of the clutch 44 control and the torque control of the engine 45 at the time of shifting is changed according to whether the state is a state of meshing on the acceleration side or a state of meshing on the deceleration side. do.
  • shift control device 50 is not limited to the aspects described above, and can be modified in various ways.
  • the shift control device 50 can set the drive state of the engine 45 when a shift command is generated to a first drive state defined by the state of the rotation speed or torque of the engine 45, and a first drive state.
  • the control mode of the torque control of the engine 45 may be made substantially the same in the second drive state defined as a state in which the rotational speed or torque is small.
  • the clutch 44 may be controlled to a region where the pressure plate 451 does not stroke or a stroke position where the clutch 44 does not slip. In this case, it is possible to control the clutch 44 so that the drive recovery after the engagement of the dog can be accelerated and the clutch 44 can be disengaged when necessary (for example, when the dog is partially engaged). More specifically, after the dog is disengaged, the clutch 44 is moved to a region where the clutch 44 does not slip, thereby shortening the time from the start of shifting to the return of driving.

Abstract

クラッチ(44)を制御するクラッチアクチュエータ(60)と、変速機(48)の変速を行うシフトアクチュエータ(70)と、変速の際に動力源(45)のトルクを調整するトルク調整装置(80)と、クラッチアクチュエータ(60)、シフトアクチュエータ(70)およびトルク調整装置(80)を制御する制御装置と(90)、を備えるドグクラッチ式自動変速機の変速制御装置(50)において、変速指令が発生した際の動力源(45)が駆動状態か被駆動状態のいずれの状態にあるかに応じて、変速時におけるクラッチ(44)の制御および動力源(45)のトルク制御の制御態様を変更する。

Description

変速制御装置
 本発明は、変速制御装置に関する。
 従来から、いわゆるドッグ式の変速機を備え、アクチュエータによって一連の変速動作を行う変速制御装置が知られている。すなわち、クラッチの遮断、変速機のギアポジションの変更、およびクラッチの接続という一連の変速動作を、電動モータ等のアクチュエータを用いて行う変速制御装置が知られている。
 特許文献1には、ドグクラッチ式の自動変速機において、変速操作時に、アクセル開度、車速などの所定の運転条件に応じて、変速時のクラッチACTの制御内容を切り替える技術が開示されている。詳細には、クラッチの仕様として、クラッチの遮断状態から接続状態への変更時に半クラッチ状態を保持する仕様A、クラッチの遮断状態から接続状態への変更時に半クラッチ状態を保持しない仕様B、クラッチを遮断しない仕様Cがある。そして、フルオート制御の小アクセル開度(低車速)では仕様A、フルオート制御の大アクセル開度(高車速)またはセミオート制御の小アクセル開度(低車速)では仕様B、高ギアシフト及びクラッチの断接を電気モータにより行う電動式変速装置(ドグクラッチ)におけるセミオート制御の大アクセル開度(高車速)では仕様Cに、それぞれ切り替えられる。つまり、変速時のクラッチの制御内容をアクセル開度や車速といった車両の運転条件に応じて切り替えることで、変速時間を短縮したスポーツ性の高い変速動作と快適性の高い変速動作とを切り替えている。
特開2010-117005号公報
 ドグクラッチ式の自動変速機では、変速(前段からドグ抜きし、後段へドグ入りすること)を行うためには、変速過渡時に、噛み合っているドグを抜く、ドグ当たりしない位置までドグの相対回転を進める、ドグ半噛み時に半噛みを解消させてドグを完全に入れる、という動作が必要になる。これらの動作が確実かつ円滑に行われないと、変速時間が長くなったり、変速時の駆動力抜け時間が長くなったりするため、乗り心地が悪くなるという問題が生じる。
 本発明は、乗り心地の良い変速動作を可能にする変速制御装置を提供することを目的とする。
 本発明の変速制御装置は、
 接続状態ではクラッチ摩擦材が押圧されることで動力源からメイン軸にトルクを伝達し、半接続状態では接続状態における押圧力より低い押圧力で前記クラッチ摩擦材が押圧されてトルクを伝達し、遮断状態では前記動力源から前記メイン軸へのトルク伝達を遮断するクラッチと、
 前記クラッチを制御するクラッチアクチュエータと、
 駆動ドグおよび被駆動ドグを接近および離隔させることにより前記駆動ドグと前記被駆動ドグとを係合および係合解除させて、前記メイン軸とドライブ軸との間で駆動力を伝達するギアを切り換えることにより変速が行われる変速機と、
 前記変速機の変速を行うシフトアクチュエータと、
 変速の際に前記動力源のトルクを調整するトルク調整装置と、
 前記クラッチアクチュエータ、前記シフトアクチュエータおよび前記トルク調整装置を制御する制御装置と、
 を備えるドグクラッチ式自動変速機の変速制御装置において、
 変速指令が発生した際の前記動力源が駆動状態か被駆動状態のいずれの状態にあるかに応じて、変速時における前記クラッチの制御および前記動力源のトルク制御の制御態様を変更することを特徴とする。
 また、本発明の変速制御装置は、
 接続状態ではクラッチ摩擦材が押圧されることで動力源からメイン軸にトルクを伝達し、半接続状態では接続状態における押圧力より低い押圧力で前記クラッチ摩擦材が押圧されてトルクを伝達し、遮断状態では前記動力源から前記メイン軸へのトルク伝達を遮断するクラッチと、
 前記クラッチの状態を変更するクラッチアクチュエータと、
 駆動ドグおよび被駆動ドグを接近および離隔させることにより前記駆動ドグと前記被駆動ドグとを係合および係合解除させて、前記メイン軸とドライブ軸との間で駆動力を伝達するギアを切り換えることにより変速が行われる変速機と、
 前記変速機の変速を行うシフトアクチュエータと、
 変速の際に前記動力源のトルクを調整するトルク調整装置と、
 前記クラッチアクチュエータ、前記シフトアクチュエータおよび前記トルク調整装置を制御する制御装置と、
 を備えるドグクラッチ式自動変速機の変速制御装置において、
 変速指令が発生した際に、ドグの噛合い状態が加速側の面で噛み合っている状態か減速側の面で噛み合っている状態のいずれの状態にあるかに応じて、変速時における前記クラッチの制御および前記動力源のトルク制御の制御態様を変更することを特徴とする。
本実施の形態に係る自動二輪車の側面図である。 本実施の形態に係るパワーユニットの内部構成を示す断面図である。 本実施の形態に係る変速機を構成する変速ギアを示す斜視図である。 本実施の形態に係る変速制御装置の制御ブロック図である。 本実施の形態に係る自動二輪車の操向ハンドルの概略構成図である。 (a)~(e)は、ギア抜けおよびギア入りの動作を順に示す概略構成図である。 ドグの半噛み状態が発生したときの状態を示す概略構成図である。 変速指令が発生した際の動力源が被駆動状態にあるときのクラッチ指令値、クラッチ実位置、要求エンジントルク、シフトカム角度、エンジン回転速度、メイン軸回転速度およびドライブ軸回転速度の推移を示す図である。 変速指令が発生した際の動力源が高回転高駆動力の駆動状態にあるときのクラッチ指令値、クラッチ実位置、要求エンジントルク、シフトカム角度、エンジン回転速度、メイン軸回転速度およびドライブ軸回転速度を示す図である。 変速指令が発生した際の動力源が低回転低駆動力の駆動状態にあるときのクラッチ指令値、クラッチ実位置、要求エンジントルク、シフトカム角度、エンジン回転速度、メイン軸回転速度およびドライブ軸回転速度を示す図である。
 以下、図面を参照して本発明の実施の形態について説明する。図1乃至図10は、本実施の形態に係る変速制御装置およびこの変速制御装置を備えた自動二輪車を示す図である。
 図1は、自動二輪車1を示す側面図である。自動二輪車1は、本実施の形態に係る車両の一例である。本実施の形態に係る車両は、自動二輪車1に限定されない。本実施の形態に係る車両は、スノーモービルやATV等の鞍乗型車両であってもよい。また、本実施の形態に係る車両は、四輪車であってもよい。
 図1に示すように、自動二輪車1は、ヘッドパイプ3と車体フレーム6とを備えている。車体フレーム6は、ヘッドパイプ3から左右一対に後方に延びる2本のフレーム部6aを有している。図1では、フレーム部6aは、1本のみが図示されている。フレーム部6aの後部は、下方に延びてリヤアームブラケット5と接続している。リヤアームブラケット5には、リヤアーム21の前端部がピボット軸22を介して上下揺動可能に支持されている。リヤアーム21の後端部には、後輪23が支持されている。
 ヘッドパイプ3にはフロントフォーク10が枢支されている。フロントフォーク10の上端には、操向ハンドル4が設けられ、下端には前輪12が回転自在に設けられている。フレーム部6aの上部には燃料タンク13が配置され、燃料タンク13の後方にはシート14が配置されている。
 フレーム部6aとリヤアームブラケット5とには、パワーユニット20が懸架されている。パワーユニット20は、少なくとも、動力源としてのエンジン45と、クラッチ44と、シフト機構43とを有している。エンジン45と、クラッチ44と、シフト機構43とは、クランクケース26に一体に組み付けられている。
 本実施の形態に係るエンジン45は、燃料にガソリンを用いた内燃機関である。ただし、エンジン45は、ガソリンエンジン等の内燃機関に限定されず、モータ等であってもよい。また、エンジン45は、ガソリンエンジンとモータとを組み合わせたものであってもよい。
 図2は、パワーユニット20の内部構成を示す断面図である。図2に示すように、パワーユニット20は、エンジン45と、クラッチ44と、シフト機構43とを有している。メイン軸41は、クランク軸25と平行に配設されている。ドライブ軸42は、メイン軸41と平行に配設されている。また、本実施の形態に係る変速制御装置50は、クラッチ44と、シフト機構43と、クラッチアクチュエータ60と、シフトアクチュエータ70と、を備えている(図4参照)。クラッチアクチュエータ60が駆動することにより、クラッチ44を断続することができる。シフトアクチュエータ70が駆動することにより、シフト機構43の変速ギアの切り換え、つまりシフト機構43のギアポジションの変更を行うことができる。また、本実施の形態に係る変速制御装置50は、変速の際にエンジン45のトルクを調整するトルク調整装置80を備えている(図4参照)。さらに、変速制御装置50は、クラッチアクチュエータ60およびシフトアクチュエータ70の駆動の制御、ならびにトルク調整装置80の制御を実行する制御装置90を備えている。
 なお、変速制御装置50は、クラッチアクチュエータ60とシフトアクチュエータ70とで、別々のアクチュエータを備えていなくてもよい。すなわち、変速制御装置50は、クラッチ44の断続を行い、かつ、シフト機構43の変速ギアの切り換えを行うアクチュエータを備えていてもよい。この場合、このアクチュエータは、クラッチ44の断続を行う機能と、シフト機構43の変速ギアの切り換えを行う機能とを有している。
 本実施の形態に係るクラッチ44は、接続状態ではクラッチ摩擦材が押圧されることでエンジン45からメイン軸41に滑りなくトルクを伝達し、半接続状態では接続状態における押圧力より低い押圧力でクラッチ摩擦材が押圧されてトルクを伝達し、遮断状態ではエンジン45からメイン軸41へのトルク伝達を遮断するものである。クラッチ摩擦材は、クラッチ44の被駆動側の一次ギアと一体的に回転する駆動側クラッチ摩擦材(例えばフリクションディスクなど)およびメイン軸41と一体的に回転する被駆動側クラッチ摩擦材(例えば、クラッチディスク)等のうち少なくとも何れかを含む。クラッチ44の接続状態では、駆動側クラッチ摩擦材と被駆動側クラッチ摩擦材はクラッチスプリング(図示せず)によって互いに押圧され、それらの間に生じる摩擦力によって一体的に回転する。そして、エンジン45のトルクは、駆動側クラッチ摩擦材から被駆動側クラッチ摩擦材を介してメイン軸41に伝達される。クラッチ44の遮断状態では、駆動側クラッチ摩擦材と被駆動側クラッチ摩擦材とが、クラッチスプリングの弾性力に抗して互いに離れ、駆動側クラッチ摩擦材と被駆動側クラッチ摩擦材との押圧が解除される。そして、被駆動側クラッチ摩擦材は駆動側クラッチ摩擦材に対して空転し、トルク伝達が遮断される。また、クラッチ44の半接続状態では、接続状態における押圧力より低い押圧力で駆動側クラッチ摩擦材が被駆動側クラッチ摩擦材を押圧してトルクを伝達する。クラッチアクチュエータ60は、クラッチ44を切断側に移行させる際には、クラッチスプリングの弾性力に抗して、駆動側摩擦部材と被駆動側摩擦部材とを離し、それらの間に働いていた押圧力を低減する。また、摩擦クラッチでは、一般的にクラッチ位置に応じた押圧力で駆動側摩擦部材と被駆動側摩擦部材とが押圧され、その押圧力に応じたトルクが摩擦クラッチを介して伝達される。そのため、クラッチ位置と、当該摩擦クラッチを介して伝達されるトルクとは相関している。
 クラッチ44は、例えば、多板摩擦クラッチであり、クラッチハウジング443と、クラッチボス447とを備えている。クラッチハウジング443の内側には、各々が駆動側クラッチ摩擦材として機能する複数のフリクションプレート445が設けられ、クラッチボス447の外側には、各々が被駆動側クラッチ摩擦材として機能する複数のクラッチプレート449が設けられている。各フリクションプレート445は、メイン軸41の回転方向に関して、クラッチハウジング443に対して固定されている。そのため、複数のフリクションプレート445は、クラッチハウジング443とともに回転する。なお、各フリクションプレート445は、メイン軸41の軸方向に関して変位可能である。
 複数のフリクションプレート445は、メイン軸41の軸方向に配列されている。各クラッチプレート449は、隣接する各フリクションプレート445に対向している。各クラッチプレート449は、メイン軸41の回転方向に関して、クラッチボス447に対して固定されている。これにより、複数のクラッチプレート449は、クラッチボス447とともに回転する。なお、各クラッチプレート449は、メイン軸41の軸方向に関して変位可能である。
 本実施の形態では、これら複数のフリクションプレート445と複数のクラッチプレート449とによってプレート群442が構成されている。
 図2に示すように、メイン軸41よりも外方(図2の右側)には、プレッシャプレート451が配置されている。プレッシャプレート451は、略円盤形状に形成されている。プレッシャプレート451の半径方向外側の部分には、プレート群442側に突出する押圧部451Bが形成されている。押圧部451Bは、プレート群442における最も右側に位置するフリクションプレート445に対向している。
 クラッチ44には、バネ450が設けられている。バネ450は、プレッシャプレート451を内方(図2の左側)に向かって付勢している。すなわち、バネ450は、押圧部451Bがプレート群442を押圧する方向に、プレッシャプレート451を付勢している。
 プレッシャプレート451の中心部は、軸受457を介してプッシュロッド455の一端部側(図2の右側)と係合している。これにより、プレッシャプレート451は、プッシュロッド455に対して回転自在である。ところで、メイン軸41は、筒形状を有している。プッシュロッド455の他端部(左端部)は、メイン軸41の内部に収容されている。メイン軸41の内側には、プッシュロッド455の他端部(左端部)に隣接した球状のボール459が設けられている。さらに、メイン軸41の内側には、ボール459に隣接したプッシュロッド461が設けられている。
 プッシュロッド461の一端部(左端部)461Aは、メイン軸41より突出している。プッシュロッド461の一端部461Aには、ピストン463が一体的に設けられている。ピストン463は、シリンダ本体465によってガイドされ、メイン軸41の軸方向に摺動自在である。
 クラッチアクチュエータ60が駆動すると、ピストン463とシリンダ本体465とで囲まれている空間467に圧縮流体としての作動油が供給される。空間467に作動油が供給されると、ピストン463は、図2の右方向に押されて移動する。これにより、ピストン463は、プッシュロッド461、ボール459、プッシュロッド455および軸受457を介して、プレッシャプレート451を図2の右方向に押す。プレッシャプレート451が図2の右方向に押されると、プレッシャプレート451の押圧部451Bがフリクションプレート445から離反し、クラッチ44は遮断状態になる。
 クラッチ44が接続される際には、プレッシャプレート451は、バネ450によって図2の左側に移動する。プレッシャプレート451が図2の左側に移動すると、押圧部451Bがプレート群442を左向きに押圧する。その結果、プレート群442のフリクションプレート445とクラッチプレート449とが、圧接される。これにより、クラッチ44が接続状態となる。
 一方、クラッチ44の遮断状態では、プッシュロッド455によって、プレッシャプレート451が図2の右側に移動する。そして、プレッシャプレート451の押圧部451Bが、プレート群442と離反する。押圧部451Bがプレート群442と離反した状態では、各フリクションプレート445と各クラッチプレート449とは圧接されておらず、各フリクションプレート445と各クラッチプレート449との間には、僅かな隙間が形成されている。そのため、各フリクションプレート445と各クラッチプレート449との間には、駆動力を伝達できる摩擦力は発生しない。
 このように、クラッチアクチュエータ60の駆動力とバネ450の付勢力との大小によって、プレッシャプレート451はメイン軸41の軸方向の一方または他方の方向に移動する。この移動に応じて、クラッチ44が接続状態と遮断状態との間で状態が推移する。以降、特に定義付けがなければ、接続状態とはクラッチ摩擦材が押圧されることでエンジン45からメイン軸41に滑りなくトルクを伝達する状態を示し、半接続状態とは接続状態における押圧力より低い押圧力でクラッチ摩擦材が押圧されてトルクを伝達する状態を示し、遮断状態とはエンジン45からメイン軸41へのトルク伝達を遮断する状態を示す。
 エンジン45のクランク軸25には、ギア310が一体的に支持されている。メイン軸41には、ギア310と噛み合うが支持されている。ギア441は、メイン軸41に対して回転自在である。また、ギア441は、例えばクラッチハウジング443に一体式に設けられている。これにより、エンジン45のトルクは、クランク軸25からギア441を介し、クラッチハウジング443に伝達される。また、エンジン45のトルクは、複数のフリクションプレート445と複数のクラッチプレート449との間に生じる摩擦力によって、クラッチハウジング443からクラッチボス447に伝達される。クラッチボス447とメイン軸41とは、一体式に回転する。つまり、クラッチボス447とメイン軸41との間には、相対回転がない。そのため、クラッチ44が接続されているとき、エンジン45のトルクは、メイン軸41に伝達される。
 ところで、プッシュロッド455は、メイン軸41の内部を挿通した機構によってプレッシャプレート451を図2の右側に押すものに限定されない。プッシュロッド455は、プレッシャプレート451の外方(図2の右側)に設けられた機構により、プレッシャプレート451を図2の右側に引っ張るものであってもよい。
 なお、クラッチ44は、多板式クラッチでなく、単板式クラッチであってもよい。また、クラッチ44は、遠心ウエイトを備えていてもよい。この場合、クラッチ44は、クラッチアクチュエータ60の駆動と、遠心ウエイトの遠心力とに基づいて断続される。
 続いて、シフト機構43の詳細な構成を説明する。本実施の形態に係るシフト機構43は、いわゆるドッグ式のシフト機構である。
 パワーユニット20では、クランク軸25にエンジン回転速度センサS30が設けられている。エンジン回転速度センサS30は、クランク軸25の回転速度を検出する。クランク軸25は、クラッチ44を介してメイン軸41に連結されている。メイン軸41には、メイン軸回転速度センサS31が設けられている。メイン軸回転速度センサS31は、メイン軸41の回転速度を検出する。
 メイン軸41には、多段の変速ギア49が装着されている。一方、ドライブ軸42には、多段の変速ギア49に対応する複数の変速ギア420が装着されている。多段の変速ギア49と複数の変速ギア420とは、選択された一対のギア同士のみで相互に噛合している。多段の変速ギア49のうち、選択された変速ギア49以外の変速ギア49と、複数の変速ギア420のうち、選択された変速ギア420以外の変速ギア420とのうちの少なくとも一方は、メイン軸41またはドライブ軸42に対して回転可能となっている。つまり、選択されていない変速ギア49と、選択されていない変速ギア420のうちの少なくとも一方は、メイン軸41またはドライブ軸42に対して空転するようになっている。すなわち、メイン軸41とドライブ軸42との間の回転伝達は、相互に噛合する、選択された変速ギア49および選択された変速ギア420のみを介して行われる。
 変速ギア49の具体的な構成について図3を用いて説明する。なお、図3では変速ギア49の構成を示しているが、変速ギア420も同様の構成となっているため説明を省略する。
 変速ギア49として、軸端面に駆動ドグとして係合突起49cが形成されている第1ギア49aと、係合突起49cと対向する軸端面に被駆動ドグとして係合凹部49eが形成されている第2ギア49bとを備えている。シフト機構43は、複数の第1ギア49aおよび第2ギア49bを備えており、一対の第2ギア49bの間に第1ギア49aが配置されている。第1ギア49aには、3つの係合突起49cが形成されており、これら係合突起49cは、第1ギア49aの軸端面の外縁部に、周方向に均等に配置されている。また、第2ギア49bは、6つの係合凹部49eが形成されており、これら係合凹部49eも、周方向に均等に配置されている。
 また、第1ギア49aの軸心部には、メイン軸41およびドライブ軸42に挿通される挿通孔49gが形成されており、この挿通孔49gの周面には、複数の溝49dが形成されている。この第1ギア49aは、メイン軸41およびドライブ軸42にスプライン嵌合される。一方、第2ギア49bにも、メイン軸41およびドライブ軸42に挿通される挿通孔49hが形成されているが、この挿通孔49hには、溝が形成されていない。したがって、第2ギア49bは、メイン軸41およびドライブ軸42に空転状態で装着される。
 シフトカム421(図2参照)が回転することにより、シフトフォーク422がカム溝421aに沿って移動し、これに連動して第1ギア49aがメイン軸41およびドライブ軸42のスプラインに沿って軸方向に移動する。そして、第1ギア49aの係合突起49cが、第2ギア49bの係合凹部49eに係合することにより、メイン軸41からドライブ軸42へ駆動力を伝達する変速ギア49、420の組み合わせが切り換えられ、ギアチェンジが行われる。これら変速ギア49、420およびシフトカム421により変速機48が構成される。
 次に、変速ギア49においてギアの切り換え時におけるドグ抜けおよびドグ入りについて図6(a)~(e)により説明する。
 図6(a)は、第1ギア49aがある第2ギア49bに係合しているときの状態を示す図である。第1ギア49aと第2ギア49bとが係合しているときに、第1ギア49aの係合突起49cが第2ギア49bの係合凹部49eに深く入り込んだ状態でこの係合突起49cが第2ギア49bの係合凹部49eの内面に当接している。この場合は、メイン軸41からドライブ軸42に駆動力が伝達される。このような状態からギアチェンジが行われる際に、シフトカム421(図2参照)が回転することによって、第1ギア49aが図6(a)における右方向に移動すると、図6(b)に示すように第1ギア49aの係合突起49cが第2ギア49bの係合凹部49eから抜ける。このことをドグ抜けという。第1ギア49aが図6(a)における右方向に更に移動すると、隣に配置されている別の第2ギア49bの軸端面49fに第1ギア49aの係合突起49cが当接する。このことをドグ当たりという。
 また、図6(b)に示すように、第2ギア49bは第1ギア49aに対して相対的に回転しているため、図6(c)に示すように第1ギア49aの係合突起49cが第2ギア49bの軸端面49fに当接しなくなると、図6(d)に示すように第1ギア49aの係合突起49cが第2ギア49bの係合凹部49eに入り込む。このことをドグ入りという。第2ギア49bは第1ギア49aに対して相対的に更に回転すると、図6(e)に示すように第1ギア49aの係合突起49cが第2ギア49bの係合凹部49eの内面に当接する。このことにより、第1ギア49aが別の第2ギア49bに係合し、メイン軸41からドライブ軸42に駆動力が伝達されるようになる。
 ところで、シフトカム421(図2参照)が回転することによって、第1ギア49aが軸方向に移動するときに、図7に示すように、第1ギア49aの係合突起49cが、第2ギア49bの係合凹部49eに完全に入り込まない状態で第2ギア49bの係合凹部49eの内面に当接してしまう場合がある。このような状態をドグの半噛みという。この場合は、エンジン45のトルクを低減させ、第1ギア49aの係合突起49cと第2ギア49bの係合凹部49eとの間の圧着力(荷重)を抜かないと第1ギア49aの係合突起49cが第2ギア49bの係合凹部49eに深く入り込ませることができない。
 変速ギア49または変速ギア420の選択は、シフトカム421によって行われる。シフトカム421の外周面には、複数のカム溝421aが形成されている。各カム溝421aには、シフトフォーク422が装着されている。各シフトフォーク422は、それぞれメイン軸41およびドライブ軸42の所定の変速ギア49および変速ギア420に係合している。シフトカム421が回転することにより、複数のシフトフォーク422のそれぞれは、カム溝421aに案内されてメイン軸41の軸方向に移動する。これにより、変速ギア49および変速ギア420のうちの相互に噛合するギアが選択される。具体的には、複数の変速ギア49および変速ギア420のうち、シフトカム421の回転角度に応じた位置の一対のギアのみが、メイン軸41およびドライブ軸42に対して、それぞれスプラインによる固定状態となる。これにより、シフト機構43におけるギアポジションが決定される。その結果、メイン軸41とドライブ軸42との間では、変速ギア49および変速ギア420を介して、所定の変速比で回転伝達が行われる。
 なお、シフトカム421は、シフトロッド75が往復移動することによって、所定の角度だけ回転する。シフトロッド75は、シフトアクチュエータ70が駆動することによって往復移動する。
 以上のような構成により、それぞれメイン軸41およびドライブ軸42に所定の一対の変速ギア49と変速ギア420を固定し、クラッチ44を接続状態とした上でエンジン45が駆動すると、エンジン45のトルクがクラッチ44を介してメイン軸41に伝達される。また、所定の一対の変速ギア49および変速ギア420を介して、メイン軸41とドライブ軸42との間で所定の変速比で回転伝達が行われ、ドライブ軸42が回転する。ドライブ軸42が回転すると、ドライブ軸42と後輪23(図1参照)とを接続する動力伝達機構47(図1参照)によってトルクが伝達され、後輪23が回転する。
 次に、本実施の形態に係る変速制御装置50について説明する。図4は、変速制御装置50の制御ブロック図である。図4に示すように、変速制御装置50は、シフト機構43と、クラッチ44と、クラッチアクチュエータ60と、シフトアクチュエータ70と、制御装置(Electric Control Unit)90とを備えている。制御装置90は、切り換え判定部91と、運転状態検知部92と、セミオート制御部93と、フルオート制御部94とを有している。
 自動二輪車1は、電源装置73とメインスイッチ74とを備えている。自動二輪車1の乗員によりメインスイッチ74が操作されると、電源装置73と制御装置90との間が通電状態となり、制御装置90が作動可能となる。ただし、自動二輪車1は、図示しないリレースイッチ等を備えていてもよい。この場合、制御装置90の一部は、メインスイッチ74が操作されていないときでも作動することができる。
 前述したように、パワーユニット20(図1参照)では、クランク軸25(図2参照)にエンジン回転速度センサS30が設けられている。図4では、エンジン回転速度センサS30は、エンジン45に隣接している。また、メイン軸41(図2参照)には、メイン軸回転速度センサS31が設けられている。図4では、メイン軸回転速度センサS31は、クラッチ44に隣接している。
 自動二輪車1は、吸気管61、排気管62、アクセル63、スロットル弁65、燃料供給装置66、および点火装置67を備えている。吸気管61は、エンジン45と接続している。また、排気管62は、吸気管61が接続する位置と異なる位置において、エンジン45と接続している。スロットル弁65は、吸気管61の内部に設けられている。スロットル弁65は、吸気管61を流れる空気の量や速度を調整する。また、吸気管61の中途には、燃料供給装置66が設けられている。燃料供給装置66は、いわゆる気化器であっても燃料噴射装置であってもよい。燃料供給装置66は、燃料タンク13に貯留されている燃料を吸気管61の内部に供給する。さらに、点火装置67は、エンジン45の内部に設けられている。本実施の形態において、点火装置67は、電子的に点火時期が制御される。ただし、点火装置67は、機械的に点火時期が制御されるものであってもよい。
 アクセル63の操作量に基づき、スロットル弁65の開度が変化する。スロットル弁65の開度が変化することにより、吸気管61を通る空気の量が変化する。ただし、スロットル弁65は、電子的に開度が制御されるものであってもよい。
 また、自動二輪車1は、アクセル開度センサS33、スロットル位置センサS35、燃料供給量センサS36、点火時期センサS37、シフト位置センサS32、および車速センサS34を備えている。アクセル開度センサS33は、アクセル63の操作量を開度として検出する。スロットル位置センサS35は、スロットル弁65の開度を検出する。燃料供給量センサS36は、燃料供給装置66における燃料の供給量を検出する。点火時期センサS37は、点火装置67における混合気の点火時期を検出する。シフト位置センサS32は、シフトカム421(図2参照)の回転角度を検出することにより、シフト機構43のギアポジションを検出する。車速センサS34は、自動二輪車1の車速を検出する。前記各センサは、各変位量を直接または間接的に検出するものであってもよく、演算機能を有し、所定の物理量から必要な物理量を算出することにしてもよい。
 さらに、変速制御装置50は、クラッチアクチュエータ60の駆動量を検出するポテンショメータ38と、シフトアクチュエータ70の駆動量を検出するポテンショメータ39とを備えている。詳細には、ポテンショメータ38は、クラッチアクチュエータ60の回転角度を検出する。ポテンショメータ39は、シフトアクチュエータ70の回転角度を検出する。ただし、前述したように、変速制御装置50が、クラッチアクチュエータ60としての機能と、シフトアクチュエータ70としてのとの機能を両立したアクチュエータを備えている場合、変速制御装置50は、ポテンショメータ38とポテンショメータ39との二つのポテンショメータを備えていなくてもよい。
 制御装置90の運転状態検知部92は、前記各センサの検出値により、自動二輪車1の運転状態を検知する。つまり、運転状態検知部92は、アクセル開度センサS33より、アクセル63の開度に基づく信号を入力する。これにより、運転状態検知部92は、アクセル63の開度を検知する。
 運転状態検知部92は、スロットル位置センサS35より、スロットル弁65の開度に基づく信号を入力する。これにより、運転状態検知部92は、スロットル弁65の開度を検知する。運転状態検知部92は、燃料供給量センサS36より、燃料供給装置66の燃料供給量に基づく信号を入力する。これにより、運転状態検知部92は、燃料供給装置66での燃料の供給量を検知する。運転状態検知部92は、点火時期センサS37より、点火装置67の点火時期に基づく信号を入力する。これにより、運転状態検知部92は、点火装置67の点火時期を検知する。運転状態検知部92は、エンジン回転速度センサS30より、クランク軸25の回転速度に基づく信号を入力する。これにより、運転状態検知部92は、クランク軸25の回転速度を検知する。運転状態検知部92は、メイン軸回転速度センサS31より、メイン軸41の回転速度に基づく信号を入力する。これにより、運転状態検知部92は、メイン軸41の回転速度を検知する。運転状態検知部92は、シフト位置センサS32より、シフトカム421の回転角度に基づく信号を入力する。これにより、運転状態検知部92は、シフト機構43での現在のギアポジションを検知する。運転状態検知部92は、車速センサS34より、自動二輪車1の車速に基づく信号を入力する。これにより、運転状態検知部92は、自動二輪車1の車速を検知する。
 変速制御装置50では、クラッチアクチュエータ60およびシフトアクチュエータ70、またはシフトアクチュエータ70のみが駆動することによって、変速動作が行われる。変速制御装置50の変速動作とは、クラッチ44の遮断、シフト機構43のギアポジションの変更、およびクラッチ44の接続という一連の動作である。
 変速制御装置50では、自動二輪車1のライダーが前述の変速動作の開始を指示し、一連の変速動作が自動的に行われる制御が実行可能である。このような制御は、自動二輪車1のライダーによるシフトスイッチ72(図4等参照)の操作に従ってクラッチアクチュエータ60およびシフトアクチュエータ70の駆動を開始させる制御である。このような制御をセミオート制御Scと称する。また、変速制御装置50では、自動二輪車1のライダーの意志とは無関係に、自動二輪車1の運転状態に応じて、一連の変速動作を自動的に行う制御が実行可能である。このような制御は、運転状態検出装置による運転状態の検出に従い、クラッチアクチュエータ60およびシフトアクチュエータ70の駆動を開始させる制御である。このような制御をフルオート制御Fcと称する。
 本実施の形態に係る変速制御装置50は、セミオート制御Scとフルオート制御Fcとが切り換え自在に構成されている。具体的には、制御装置90は、セミオート制御部93とフルオート制御部94とを有している。セミオート制御部93は、セミオート制御Scを実行する。また、フルオート制御部94は、フルオート制御Fcを実行する。
 セミオート制御Scとフルオート制御Fcとは、例えば制御切換スイッチ71により切り換えが可能である。図5は、操向ハンドル4の模式図を示している。操向ハンドル4は、ハンドルバー4dと、左グリップ4aと、右グリップ4bとを有している。本実施の形態において、右グリップ4bはアクセル63を形成し、所定の回転角度内で回転自在である。また、操向ハンドル4には、フロントブレーキレバー4cとリアブレーキレバー4eとが設けられている。ハンドルバー4dの左側には、スイッチパネル40が設けられている。
 制御切換スイッチ71は、例えばスイッチパネル40の正面に設けられている。制御切換スイッチ71は、例えばプッシュ式のボタンになっている。制御切換スイッチ71が一回切り換えられるごとに、変速制御装置50は、フルオート制御Fcからセミオート制御Scに、もしくはセミオート制御Scからフルオート制御Fcに切り換える。
 制御切換スイッチ71は、プッシュ式のボタンに限定されない。制御切換スイッチ71は、例えばスライド式のスイッチであってもよい。この場合、スライド式の制御切換スイッチ71が例えば左右方向に関して左側に位置しているとき、変速制御装置50では、フルオート制御Fcが実行される。また、スライド式の制御切換スイッチ71が例えば左右方向に関して右側に位置しているとき、変速制御装置50では、セミオート制御Scが実行される。
 また、スイッチパネル40には、シフトスイッチ72が設けられている。シフトスイッチ72は、シフト機構43の上段側のギアポジションに変更させるシフトアップスイッチ72aと、下段側のギアポジションに変更させるシフトダウンスイッチ72bとを有している。
 変速制御装置50においてセミオート制御Scが実行されるとき、ライダーによりシフトスイッチ72が切り換えられると、シフト機構43のギアポジションが変更される。変速制御装置50は、ライダーによりシフトスイッチ72が切り換えられると、クラッチアクチュエータ60およびシフトアクチュエータ70、またはシフトアクチュエータ70のみを駆動させる。つまり、前述の一連の変速動作は、ライダーがシフトスイッチ72を切り換えることにより、変速制御装置50に開始が指示される。
 図4に示すように、切り換え判定部91は、制御切換スイッチ71の作動に基づく信号を入力する。これにより、切り換え判定部91が制御切換スイッチ71の切り換えを検知し、セミオート制御Scとフルオート制御Fcとを選択する。
 また、切り換え判定部91は、変速制御装置50がフルオート制御Fcを実行している場合にシフトスイッチ72が切り換えられたことを検知することにしてもよい。このとき、シフトスイッチ72は、制御切換スイッチ71の機能を有している。つまり、変速制御装置50において、フルオート制御Fcが実行されている場合にシフトスイッチ72が切り換えられると、フルオート制御Fcからセミオート制御Scに切り換わることにしてもよい。
 セミオート制御部93は、シフトスイッチ72の切り換えを検知する。セミオート制御部93は、シフトスイッチ72の切り換えを検知すると、シフト機構43のギアポジションを、現在のギアポジションから隣り合う別のギアポジションに変更させる。シフト機構43のギアポジションは、クラッチアクチュエータ60およびシフトアクチュエータ70、またはシフトアクチュエータ70のみが駆動することにより変更される。
 セミオート制御部93は、運転状態検知部92より、自動二輪車1の運転状態に基づく信号を入力している。セミオート制御部93は、シフトスイッチ72の切り換えを検知すると、クラッチアクチュエータ60およびシフトアクチュエータ70、またはシフトアクチュエータ70のみを駆動させる。つまり、セミオート制御部93は、ライダーによりシフトスイッチ72が切り換えられると、クラッチアクチュエータ60およびシフトアクチュエータ70、またはシフトアクチュエータ70のみの駆動を開始させ、シフト機構43のギアポジションを変更する。このとき、セミオート制御部93は、運転状態検知部92より入力する自動二輪車1の運転状態に基づき、所定のパラメータの適合値を変更してクラッチアクチュエータ60およびシフトアクチュエータ70を駆動させることも可能である。このような所定のパラメータとして、クラッチアクチュエータ60の回転速度またはクラッチアクチュエータ60の回転速度の加速度等が挙げられる。
 このとき、制御装置90は、運転状態検知部92より入力する自動二輪車1の運転状態に基づき、スロットル弁65、燃料供給装置66、および点火装置67のそれぞれに対して、所定のパラメータの適合値を変更した制御を実行することができる。すなわち、制御装置90は、シフト機構43のギアポジションを変更する際、運転状態検知部92より入力する自動二輪車1の運転状態に基づき、スロットル弁65の開度を調整することが可能である。また、制御装置90は、シフト機構43のギアポジションを変更する際、運転状態検知部92より入力する自動二輪車1の運転状態に基づき、燃料供給装置66での燃料の供給量を調整することが可能である。さらに、制御装置90は、シフト機構43のギアポジションを変更する際、運転状態検知部92より入力する自動二輪車1の運転状態に基づき、点火装置67での点火時期を調整することが可能である。なお、図4では、制御装置90が実行する前述した各制御は、図示が省略されている。
 ただし、シフト機構43の現在のギアポジションが最高段に位置している場合、ライダーによってシフトアップスイッチ72aが操作されても、セミオート制御部93は、シフト機構43のギアポジションを変更しない。つまり、シフト機構43の現在のギアポジションが最高段に位置している場合、セミオート制御部93は、ライダーによるシフトアップスイッチ72aの操作をキャンセルし、クラッチアクチュエータ60およびシフトアクチュエータ70を駆動させない。また、シフト機構43の現在のギアポジションが最下段に位置している場合、ライダーによってシフトダウンスイッチ72bが操作されても、セミオート制御部93は、シフト機構43のギアポジションを変更しない。つまり、シフト機構43の現在のギアポジションが最下段に位置している場合、セミオート制御部93は、ライダーによるシフトダウンスイッチ72bの操作をキャンセルし、クラッチアクチュエータ60およびシフトアクチュエータ70を駆動させない。
 フルオート制御部94は、運転状態検知部92より、自動二輪車1の運転状態に基づく信号を入力している。フルオート制御部94は、運転状態検知部92より入力する自動二輪車1の運転状態に基づき、シフト機構43の現在のギアポジションから所定のギアポジションに変更する。シフト機構43のギアポジションは、クラッチアクチュエータ60およびシフトアクチュエータ70が駆動することにより変更される。つまり、フルオート制御部94は、運転状態検知部92より入力する自動二輪車1の運転状態に基づき、クラッチアクチュエータ60およびシフトアクチュエータ70の駆動を開始させ、シフト機構43のギアポジションを変更する。このとき、フルオート制御部94は、運転状態検知部92より入力する自動二輪車1の運転状態に基づき、所定のパラメータの適合値を変更してクラッチアクチュエータ60およびシフトアクチュエータ70を駆動させることも可能である。前記所定のパラメータは、クラッチアクチュエータ60の回転速度またはクラッチアクチュエータ60の回転速度の加速度等が挙げられる。
 本実施の形態に係る変速制御装置50は、変速指令が発生した際のエンジン45が駆動状態か被駆動状態のいずれの状態にあるかに応じて、変速時におけるクラッチ44の制御およびエンジン45のトルク制御の制御態様を変更するようになっている。ここで、エンジン45が駆動状態であるとは、操向ハンドル4の右グリップ4bを回転させてアクセル63を操作することによりクランク軸25から変速機48を通して後輪23にトルクが伝達される状態をいう。また、エンジン45が被駆動状態であるとは、操向ハンドル4の右グリップ4bを戻すことで、後輪23から変速機48を通してクランク軸25にトルクが伝達される状態をいう。エンジン45が駆動状態か被駆動状態のいずれの状態であるかの判別は、例えば、エンジントルクの大きさから判別することができる。ここで、エンジン45が駆動状態であるときには、変速ギア49、変速ギア420においてドグの噛合い状態が加速側の面で噛み合うようになる。一方、エンジン45が被駆動状態であるときには、変速ギア49、変速ギア420においてドグの噛合い状態が減速側の面で噛み合うようになる。ドグの噛合い状態が加速側の面で噛み合っている状態か減速側の面で噛み合っている状態のいずれの状態にあるかを判別することによって、エンジン45が駆動状態か被駆動状態のいずれの状態であるかの判別をすることも可能である。
 変速指令が発生した際にエンジン45が被駆動状態にあるとき、変速制御装置50は、ドグ抜きおよびドグ入りの際にクラッチ44を遮断状態にするとともにエンジン45のトルクを0ないし0近傍にまで増大した状態にする制御を行う。図8は、エンジン45が被駆動状態にあるときのクラッチ指令値、クラッチ実位置、要求エンジントルク、シフトカム角度、エンジン回転速度、メイン軸回転速度およびドライブ軸回転速度の推移を示す図である。
 シフトアップスイッチ72aまたはシフトダウンスイッチ72bが押されることにより変速指令が発生すると、図8に示すように、クラッチの指令値が接続状態から遮断状態に切り換わる。このことにより、メイン軸41の軸方向に関してプレッシャプレート451が図2の右方向に押され、クラッチ実位置が接続状態から遮断状態に徐々に移動し、第2ギア49bからの第1ギア49aのドグ抜き前に遮断状態となる。また、制御装置90は、変速指令が発生してから所定時間が経過すると、要求エンジントルク(エンジン45のトルク)を0ないし0近傍にまで増大した状態にするようトルク調整装置の制御を行う。また、シフト機構43において変速ギアの切り換えが行われる。具体的には、第1ギア49aの第2ギア49bからのドグ抜きおよび別の第2ギア49bへのドグ入りが行われる。そして、別の第2ギア49bへの第1ギア49aのドグ入りが行われると、クラッチの指令値が半接続状態に切り換わる。このことにより、メイン軸41の軸方向に関してプレッシャプレート451が図2の左方向に押され、クラッチ実位置が遮断状態から半接続状態に徐々に移動する。その後、クラッチの指令値が半接続状態から接続状態に切り換わると、メイン軸41の軸方向に関してプレッシャプレート451が図2の左方向に更に押され、クラッチ実位置が半接続状態から接続状態に徐々に移動し、最終的にクラッチ44が接続状態になる。
 一方、変速指令が発生した際にエンジン45が被駆動状態ではなく駆動状態にあるとき、変速制御装置50は、ドグ抜きの際にエンジン45のトルクを0ないし0近傍にまで低減した状態にし、ドグ入りの際にエンジン45のトルクをドグ抜き時よりも増大した状態にするとともにクラッチ44を半接続状態または接続状態にする制御に変更する。また、本実施の形態では、変速指令が発生した際のエンジン45の駆動状態が、エンジン45の回転速度またはトルクの状態から規定される第1駆動状態と、第1駆動状態に対して回転速度またはトルクが小さい状態として規定される第2駆動状態とを含んでいる。具体的には、第1駆動状態は、エンジン45が高回転高駆動力時の駆動状態であり、第2駆動状態は、エンジン45が低回転低駆動力時の駆動状態である。変速制御装置50は、エンジン45の駆動状態がいずれの状態にあるかを判別し、判別されたエンジン45の駆動状態に応じて、変速時におけるクラッチ44の制御およびエンジン45のトルク制御の制御態様を変更する。
 具体的には、変速制御装置50は、エンジン45が第1駆動状態(高回転高駆動力)にあるとき、変速の際にクラッチ44を接続している状態に維持するとともに、変速指令の発生時にエンジン45のトルクの低減を開始する制御に変更する制御を行う。ここで、クラッチ44を接続している状態に維持するとは、クラッチ44を遮断状態とせずに、クラッチ44を接続状態または半接続状態とするものである。図9は、エンジン45が高回転高駆動力にあるときのクラッチ指令値、クラッチ実位置、要求エンジントルク、シフトカム角度、エンジン回転速度、メイン軸回転速度およびドライブ軸回転速度の推移を示す図である。
 シフトアップスイッチ72aまたはシフトダウンスイッチ72bが押されることにより変速指令が発生しても、エンジン45が第1駆動状態にあるときにはクラッチの指令値がすぐには接続状態から遮断状態に切り換わらない。また、変速指令が発生すると、制御装置90は、要求エンジントルク(エンジン45のトルク)の低減を開始する制御に変更する。その後、所定時間が経過すると、クラッチの指令値が接続状態から半接続状態に切り換わる。このことにより、メイン軸41の軸方向に関してプレッシャプレート451が図2の右方向に押され、クラッチ実位置が接続状態から半接続状態に徐々に移動する。また、シフト機構43において変速ギアの切り換えが行われる。具体的には、第1ギア49aの第2ギア49bからのドグ抜きおよび別の第2ギア49bへのドグ入りが行われる。そして、第2ギア49bからの第1ギア49aのドグ抜きが行われると、クラッチの指令値が半接続状態に切り換わる。その後、クラッチの指令値が半接続状態から接続状態に切り換わると、メイン軸41の軸方向に関してプレッシャプレート451が図2の左方向に更に押され、クラッチ実位置が半接続状態から接続状態に徐々に移動し、最終的にクラッチ44が接続状態になる。
 また、変速制御装置50は、エンジン45が第2駆動状態(低回転低駆動力)にあるとき、変速指令の発生時にクラッチ44の遮断制御を開始し、クラッチ44の遮断制御開始から所定時間経過後またはクラッチ44が遮断状態となるタイミングに基づいてエンジン45のトルクの低減を開始する制御に変更する制御を行う。また、クラッチ44の遮断制御はドグ抜きの際にクラッチ遮断状態とし、ドグ抜き後かつドグ入りの前に半接続状態とする。図10は、エンジン45が低回転低駆動力にあるときのクラッチ指令値、クラッチ実位置、要求エンジントルク、シフトカム角度、エンジン回転速度、メイン軸回転速度およびドライブ軸回転速度の推移を示す図である。
 シフトアップスイッチ72aまたはシフトダウンスイッチ72bが押されることにより変速指令が発生すると、図10に示すように、クラッチの指令値が接続状態から遮断状態に切り換わる。このことにより、メイン軸41の軸方向に関してプレッシャプレート451が図2の右方向に押され、クラッチ実位置が接続状態から遮断状態に徐々に移動し、第2ギア49bからの第1ギア49aのドグ抜き前に遮断状態となる。また、制御装置90は、変速指令が発生してから所定時間が経過すると、クラッチ44が遮断状態となるタイミングで要求エンジントルク(エンジン45のトルク)の低減を開始する制御に変更する。そして、第2ギア49bからの第1ギア49aのドグ抜きが行われると、クラッチの指令値が半接続状態に切り換わる。このことにより、メイン軸41の軸方向に関してプレッシャプレート451が図2の左方向に押され、クラッチ実位置が遮断状態から半接続状態に徐々に移動する。このことにより、ドグ抜き後かつドグ入りの前に半接続状態となる。その後、第2ギア49bへの第1ギア49aのドグ入りが行われ、クラッチの指令値が半接続状態から接続状態に切り換わると、メイン軸41の軸方向に関してプレッシャプレート451が図2の左方向に更に押され、クラッチ実位置が半接続状態から接続状態に徐々に移動し、最終的にクラッチ44が接続状態になる。
 以上のような構成からなる本実施の形態の変速制御装置50によれば、接続状態ではクラッチ摩擦材が押圧されることでエンジン45(動力源)からメイン軸41に滑りなくトルクを伝達し、半接続状態では接続状態における押圧力より低い押圧力でクラッチ摩擦材が押圧されてトルクを伝達し、遮断状態ではエンジン45からメイン軸41へのトルク伝達を遮断するクラッチ44と、クラッチ44を制御するクラッチアクチュエータ60と、係合突起49c(駆動ドグ)および係合凹部49e(被駆動ドグ)を接近および離隔させることにより係合突起49cと係合凹部49eとを係合および係合解除させて、メイン軸41とドライブ軸42との間で駆動力を伝達するギア(第1ギア49aに対する第2ギア49b)を切り換えることにより変速が行われる変速機48と、変速機48の変速を行うシフトアクチュエータ70と、変速の際にエンジン45のトルクを調整するトルク調整装置80と、クラッチアクチュエータ60、シフトアクチュエータ70およびトルク調整装置80を制御する制御装置90とを備え、変速指令が発生した際のエンジン45が駆動状態か被駆動状態のいずれの状態にあるかに応じて、変速時におけるクラッチ44の制御およびエンジン45のトルク制御の制御態様を変更する。このように、変速時におけるクラッチ44の制御およびエンジン45のトルク制御の制御態様を変更することにより、変速指令が発生した際のエンジン45が駆動状態および被駆動状態のうちいずれの状態であっても、ドグ抜きおよびドグ入りを確実かつ円滑に行うことができるため、駆動抜けの時間の短縮および確実な変速(すなわち、確実なドグの切り換え)の両立を図ることができ、よって乗り心地の良い変速動作を行うことができる。
 また、本実施の形態の変速制御装置50においては、変速指令が発生した際にエンジン45が被駆動状態にあるとき、ドグ抜きおよびドグ入りの際にクラッチ44を遮断状態にするとともにエンジン45のトルクを0ないし0近傍にまで増大した状態にする制御を行う。ここで、エンジン45が被駆動状態にある場合にはエンジン45のトルクを減少させることによる第1ギア49aの係合突起49c(駆動ドグ)および第2ギア49bの係合凹部49e(被駆動ドグ)の圧着力の低減を行うことができないが、ドグ抜き時にクラッチ44を遮断状態とすることによりドグ抜きを確実に行うことができる。また、ドグ入り時にクラッチ44を遮断状態とすることによりドグの半噛み状態への対応を行うことができる。
 また、本実施の形態の変速制御装置50においては、変速指令が発生した際にエンジン45が駆動状態にあるとき、ドグ抜きの際にエンジン45のトルクを0ないし0近傍にまで低減した状態にし、ドグ入りの際にエンジン45のトルクをドグ抜き時よりも増大した状態にするとともにクラッチ44を半接続状態または接続状態にする制御に変更する。このことにより、エンジン45のトルクを0ないし0近傍にまで低減した状態でドグ抜きを行うためドグ抜きを確実に行うことができ、また、ドグ入りの際にエンジン45のトルクをドグ抜き時よりも増大した状態にするとともにクラッチ44を半接続状態または接続状態にすることにより駆動抜けの時間を極力短くすることができるため乗り心地の良い変速動作を行うことができる。
 また、本実施の形態の変速制御装置50においては、変速指令が発生した際にエンジン45が駆動状態にあるとき、変速指令が発生した際のエンジン45の駆動状態が、エンジン45の回転速度またはトルクの状態から規定される第1駆動状態と、第1駆動状態に対して回転速度またはトルクが小さい状態として規定される第2駆動状態とを含み、エンジン45の駆動状態がいずれの状態にあるかを判別し、判別されたエンジン45の駆動状態に応じて、変速時におけるクラッチ44の制御およびエンジン45のトルク制御の制御態様を変更する。このことにより、エンジン45が低回転低駆動力および高回転高駆動力のいずれの状態であっても、各状態に適した変速を行うことができる。
 また、本実施の形態の変速制御装置50においては、第1駆動状態にあるとき、変速の際にクラッチ44を接続状態に維持するとともに、変速指令の発生時にエンジン45のトルクの低減を開始する制御に変更する。この場合は、エンジン45のトルクの低減のほうがクラッチ44の制御よりも駆動力の伝達の応答性が高いため、エンジン45のトルクの低減によるドグ抜きを実施する。また、クラッチ44はドグ入り後にすぐに駆動復帰できるように半接続状態または接続状態とする。ドグの半噛み状態が発生したときには、エンジン45のトルクの低減により対応する。これらの動作により、駆動抜けの時間を極力短くすることができるため乗り心地の良い変速動作を行うことができる。
 また、本実施の形態の変速制御装置50においては、第1駆動状態にあるとき、変速の際にクラッチ44を、ドグ入り前に半接続状態とし、ドグ入り後に半接続状態から接続状態に移行させるとともに、変速指令の発生時にエンジン45のトルクの低減を開始する制御に変更してもよい。この場合でも、変速指令の発生時にエンジン45のトルクの低減を開始する制御に変更してもクラッチ44の半接続状態が維持されるため、駆動抜けの時間を極力短くすることができるため乗り心地の良い変速動作を行うことができる。
 また、本実施の形態の変速制御装置50においては、第2駆動状態にあるとき、変速指令の発生時にクラッチ44の遮断制御を開始し、クラッチ44の遮断制御開始から所定時間経過後またはクラッチ44が遮断状態となるタイミングに基づいてエンジン45のトルクの低減を開始する制御に変更する。ここで、エンジン45のトルクの低減のみではメイン軸41の回転速度が低下することでドグの相対速度がなくなり図6(b)に示すようなドグ当たり時間が長期化するため、ドグ抜き時はクラッチ44を遮断することによりメイン軸41の回転速度低下を防止することでドグ相対速度を確保し、駆動復帰を早めるためにドグ抜き後はすぐに半接続状態とする。また、ドグの半噛み状態が発生したときには、エンジン45のトルクの低減により対応する。これらの動作により、駆動抜けの時間を極力短くすることができるため乗り心地の良い変速動作を行うことができる。
 また、本実施の形態の変速制御装置50においては、第2駆動状態にあるとき、クラッチ44の遮断制御はドグ抜きの際にクラッチ遮断状態とし、ドグ抜き後かつドグ入りの前に半接続状態とする。この場合は、クラッチ遮断状態となる時間を極力短くすることができるため、駆動抜けの時間を極力短くすることができ、よってより乗り心地の良い変速動作を行うことができる。
 また、本実施の形態の変速制御装置50によれば、接続状態ではクラッチ摩擦材が押圧されることでエンジン45(動力源)からメイン軸41に滑りなくトルクを伝達し、半接続状態では接続状態における押圧力より低い押圧力でクラッチ摩擦材が押圧されてトルクを伝達し、遮断状態ではエンジン45からメイン軸41へのトルク伝達を遮断するクラッチ44と、クラッチ44を制御するクラッチアクチュエータ60と、係合突起49c(駆動ドグ)および係合凹部49e(被駆動ドグ)を接近および離隔させることにより係合突起49cと係合凹部49eとを係合および係合解除させて、メイン軸41とドライブ軸42との間で駆動力を伝達するギア(第1ギア49aに対する第2ギア49b)を切り換えることにより変速が行われる変速機48と、変速機48の変速を行うシフトアクチュエータ70と、変速の際にエンジン45のトルクを調整するトルク調整装置80と、クラッチアクチュエータ60、シフトアクチュエータ70およびトルク調整装置80を制御する制御装置90とを備え、変速指令が発生した際に、ドグの噛合い状態が加速側の面で噛み合っている状態か減速側の面で噛み合っている状態のいずれの状態にあるかに応じて、変速時におけるクラッチ44の制御およびエンジン45のトルク制御の制御態様を変更する。この場合でも、変速時におけるクラッチ44の制御およびエンジン45のトルク制御の制御態様を変更することにより、変速指令が発生した際のドグの噛合い状態が加速側の面で噛み合っている状態か減速側の面で噛み合っている状態のいずれの状態であっても、ドグ抜きおよびドグ入りを確実かつ円滑に行うことができるため、駆動抜けの時間の短縮および確実な変速(すなわち、確実なドグの切り換え)の両立を図ることができ、よって乗り心地の良い変速動作を行うことができる。
 なお、本実施の形態による変速制御装置50は上述した態様に限定されることはなく、様々な変更を行うことができる。
 例えば、変形例に係る変速制御装置50は、変速指令が発生した際のエンジン45の駆動状態が、エンジン45の回転速度またはトルクの状態から規定される第1駆動状態と、第1駆動状態に対して回転速度またはトルクが小さい状態として規定される第2駆動状態とでエンジン45のトルク制御の制御態様を略同一にしてもよい。
 また、変速指令が発生した際のエンジン45の駆動状態が第1駆動状態である場合に、プレッシャプレート451がストロークしない領域またはクラッチ44が滑らないストローク位置までクラッチ44を制御してもよい。この場合、ドグ入り後の駆動復帰を早くするとともに必要な場合に(例えばドグの半噛みが発生したとき)クラッチ44を遮断できるようにクラッチ44を制御することができる。より詳細には、ドグ抜きが行われた後、クラッチ44が滑らない領域までクラッチ44を動かすことで、変速開始から駆動復帰までの時間が短くなる。これにより、変速時に必要な駆動力が伝達されない時間を短くできるので、車体の姿勢に対する影響、例えばピッチングを少なく抑えることができる。また、変速中にクラッチ44の伝達トルクを低下させたり、クラッチ44の遮断が必要な場合に備えて、プレッシャプレート451の遊びが詰まっている状態としておくことでプレッシャプレート451がストロークするまでの遅れを最小限にすることができる。このように、上述した技術的事項によれば、変速中のクラッチ44の伝達トルクの低減やクラッチ44の遮断までの遅れを最小にしつつ、ピッチングの振幅量およびピッチング量の積分値の低減により、乗車フィーリングの悪化具合を低減させることができる。

Claims (9)

  1.  接続状態ではクラッチ摩擦材が押圧されることで動力源からメイン軸にトルクを伝達し、半接続状態では接続状態における押圧力より低い押圧力で前記クラッチ摩擦材が押圧されてトルクを伝達し、遮断状態では前記動力源から前記メイン軸へのトルク伝達を遮断するクラッチと、
     前記クラッチを制御するクラッチアクチュエータと、
     駆動ドグおよび被駆動ドグを接近および離隔させることにより前記駆動ドグと前記被駆動ドグとを係合および係合解除させて、前記メイン軸とドライブ軸との間で駆動力を伝達するギアを切り換えることにより変速が行われる変速機と、
     前記変速機の変速を行うシフトアクチュエータと、
     変速の際に前記動力源のトルクを調整するトルク調整装置と、
     前記クラッチアクチュエータ、前記シフトアクチュエータおよび前記トルク調整装置を制御する制御装置と、
     を備えるドグクラッチ式自動変速機の変速制御装置において、
     変速指令が発生した際の前記動力源が駆動状態か被駆動状態のいずれの状態にあるかに応じて、変速時における前記クラッチの制御および前記動力源のトルク制御の制御態様を変更する、変速制御装置。
  2.  変速指令が発生した際に前記動力源が被駆動状態にあるとき、ドグ抜きおよびドグ入りの際に前記クラッチを遮断状態にするとともに前記動力源のトルクを0ないし0近傍にまで増大した状態にする制御を行う、請求項1記載の変速制御装置。
  3.  変速指令が発生した際に前記動力源が駆動状態にあるとき、ドグ抜きの際に前記動力源のトルクを0ないし0近傍にまで低減した状態にし、ドグ入りの際に前記動力源のトルクをドグ抜き時よりも増大した状態にするとともに前記クラッチを半接続状態または接続状態にする制御に変更する、請求項1または2記載の変速制御装置。
  4.  変速指令が発生した際に前記動力源が駆動状態にあるとき、変速指令が発生した際の前記動力源の駆動状態が、前記動力源の回転速度またはトルクの状態から規定される第1駆動状態と、前記第1駆動状態に対して回転速度またはトルクが小さい状態として規定される第2駆動状態とを含み、
     前記動力源の駆動状態がいずれの状態にあるかを判別し、判別された前記動力源の駆動状態に応じて、変速時における前記クラッチの制御および前記動力源のトルク制御の制御態様を変更する、請求項3記載の変速制御装置。
  5.  前記第1駆動状態にあるとき、変速の際に前記クラッチを接続状態に維持するとともに、変速指令の発生時に前記動力源のトルクの低減を開始する制御に変更する、請求項4記載の変速制御装置。
  6.  前記第1駆動状態にあるとき、変速の際に、前記クラッチを、ドグ入り前に半接続状態とし、ドグ入り後に半接続状態から接続状態に移行させるとともに、変速指令の発生時に前記動力源のトルクの低減を開始する制御に変更する、請求項4記載の変速制御装置。
  7.  前記第2駆動状態にあるとき、変速指令の発生時に前記クラッチの遮断制御を開始し、前記クラッチの遮断制御開始から所定時間経過後または前記クラッチが遮断状態となるタイミングに基づいて前記動力源のトルクの低減を開始する制御に変更する、請求項4乃至6のいずれか一項に記載の変速制御装置。
  8.  前記第2駆動状態にあるとき、前記クラッチの遮断制御はドグ抜きの際にクラッチ遮断状態とし、ドグ抜き後かつドグ入りの前に半接続状態とする、請求項7記載の変速制御装置。
  9.  接続状態ではクラッチ摩擦材が押圧されることで動力源からメイン軸にトルクを伝達し、半接続状態では接続状態における押圧力より低い押圧力で前記クラッチ摩擦材が押圧されてトルクを伝達し、遮断状態では前記動力源から前記メイン軸へのトルク伝達を遮断するクラッチと、
     前記クラッチの状態を変更するクラッチアクチュエータと、
     駆動ドグおよび被駆動ドグを接近および離隔させることにより前記駆動ドグと前記被駆動ドグとを係合および係合解除させて、前記メイン軸とドライブ軸との間で駆動力を伝達するギアを切り換えることにより変速が行われる変速機と、
     前記変速機の変速を行うシフトアクチュエータと、
     変速の際に前記動力源のトルクを調整するトルク調整装置と、
     前記クラッチアクチュエータ、前記シフトアクチュエータおよび前記トルク調整装置を制御する制御装置と、
     を備えるドグクラッチ式自動変速機の変速制御装置において、
     変速指令が発生した際に、ドグの噛合い状態が加速側の面で噛み合っている状態か減速側の面で噛み合っている状態のいずれの状態にあるかに応じて、変速時における前記クラッチの制御および前記動力源のトルク制御の制御態様を変更する、変速制御装置。
PCT/JP2021/046807 2021-12-17 2021-12-17 変速制御装置 WO2023112322A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/046807 WO2023112322A1 (ja) 2021-12-17 2021-12-17 変速制御装置
PCT/JP2022/046537 WO2023113032A1 (ja) 2021-12-17 2022-12-16 ドグクラッチ式変速装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046807 WO2023112322A1 (ja) 2021-12-17 2021-12-17 変速制御装置

Publications (1)

Publication Number Publication Date
WO2023112322A1 true WO2023112322A1 (ja) 2023-06-22

Family

ID=86773973

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/046807 WO2023112322A1 (ja) 2021-12-17 2021-12-17 変速制御装置
PCT/JP2022/046537 WO2023113032A1 (ja) 2021-12-17 2022-12-16 ドグクラッチ式変速装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046537 WO2023113032A1 (ja) 2021-12-17 2022-12-16 ドグクラッチ式変速装置

Country Status (1)

Country Link
WO (2) WO2023112322A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117005A (ja) * 2008-11-14 2010-05-27 Yamaha Motor Co Ltd 変速制御装置およびそれを備えた車両
JP2016043792A (ja) * 2014-08-22 2016-04-04 アイシン・エーアイ株式会社 車両の動力伝達制御装置
JP2018103928A (ja) * 2016-12-28 2018-07-05 ヤマハ発動機株式会社 制御システムおよび車両
JP2021055814A (ja) * 2019-10-02 2021-04-08 川崎重工業株式会社 クイックシフタ付き乗物の制御装置及び自動二輪車
JP2021110397A (ja) * 2020-01-10 2021-08-02 トヨタ自動車株式会社 車両の変速制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972566B2 (ja) * 2008-01-10 2012-07-11 日立オートモティブシステムズ株式会社 自動変速機の制御方法及び制御装置
JP5782278B2 (ja) * 2011-03-22 2015-09-24 ヤマハ発動機株式会社 車両の制御装置、車両及び原動機
JP2015108438A (ja) * 2013-10-25 2015-06-11 ヤマハ発動機株式会社 変速装置および鞍乗型車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117005A (ja) * 2008-11-14 2010-05-27 Yamaha Motor Co Ltd 変速制御装置およびそれを備えた車両
JP2016043792A (ja) * 2014-08-22 2016-04-04 アイシン・エーアイ株式会社 車両の動力伝達制御装置
JP2018103928A (ja) * 2016-12-28 2018-07-05 ヤマハ発動機株式会社 制御システムおよび車両
JP2021055814A (ja) * 2019-10-02 2021-04-08 川崎重工業株式会社 クイックシフタ付き乗物の制御装置及び自動二輪車
JP2021110397A (ja) * 2020-01-10 2021-08-02 トヨタ自動車株式会社 車両の変速制御装置

Also Published As

Publication number Publication date
WO2023113032A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
JP5164337B2 (ja) 自動変速制御装置および鞍乗型車両
EP1947359B1 (en) Clutch engagement controller and vehicle having the same
JP5161644B2 (ja) 変速制御装置、鞍乗型車両、及び変速制御方法
US8396636B2 (en) Clutch controller, method of controlling clutch, and straddle-type vehicle
US7736271B2 (en) Clutch controller, method for controlling clutch, and straddle-type vehicle
JP2010117005A (ja) 変速制御装置およびそれを備えた車両
US7887458B2 (en) Clutch controller, method for controlling clutch, and straddle-type vehicle
EP2696108B1 (en) Automatic transmission apparatus and straddle-type vehicle equipped with the apparatus
EP2696091B1 (en) Straddle-type vehicle
US8108114B2 (en) Clutch controller, method of controlling clutch, and straddle-type vehicle
JP2014034964A (ja) 車両
WO2023112322A1 (ja) 変速制御装置
JP2014035069A (ja) 車両
WO2023112324A1 (ja) 変速制御装置
WO2023112325A1 (ja) 変速制御装置
WO2023112323A1 (ja) 変速制御装置
PL207169B1 (pl) Sposób i urządzenie sterujące do sterowania przełączaną przekładnią
JP2014034380A (ja) 車両
US7896776B2 (en) Gear change control device, straddle-type vehicle, and method of controlling gearbox
US8886419B2 (en) Automatic transmission apparatus and straddle-type vehicle equipped with the apparatus
JPH11294484A (ja) 自動クラッチの制御装置
JP3501594B2 (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968235

Country of ref document: EP

Kind code of ref document: A1