WO2023112243A1 - 表面検査装置 - Google Patents

表面検査装置 Download PDF

Info

Publication number
WO2023112243A1
WO2023112243A1 PCT/JP2021/046458 JP2021046458W WO2023112243A1 WO 2023112243 A1 WO2023112243 A1 WO 2023112243A1 JP 2021046458 W JP2021046458 W JP 2021046458W WO 2023112243 A1 WO2023112243 A1 WO 2023112243A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
stage
vertical
driving
surface inspection
Prior art date
Application number
PCT/JP2021/046458
Other languages
English (en)
French (fr)
Inventor
あゆみ 冨山
雅也 山本
勝彦 木村
良広 佐藤
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2021/046458 priority Critical patent/WO2023112243A1/ja
Publication of WO2023112243A1 publication Critical patent/WO2023112243A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention relates to a surface inspection device for inspecting samples such as wafers.
  • the surface inspection device irradiates the surface of the sample with laser light and inspects the entire surface of the sample by moving the sample in the radial direction while rotating it.
  • a foreign substance or defect on the sample surface is irradiated with laser light
  • the laser light scatters.
  • the detection optical system the foreign matter or defect is detected, and the position of the foreign matter or defect on the sample is specified from the rotational angle and radial position of the sample.
  • the inspection sensitivity of such a surface inspection device can be improved by shortening the wavelength of the irradiated laser light.
  • the wavelength of the laser light is shortened, it is necessary to improve the S/N ratio, so it is necessary to change the imaging detection optical system. If the imaging detection optical system is used, the depth of focus becomes shallow, and even a slight movement of the position of the sample surface may deviate from the focal position of the detection optical system, resulting in reduced inspection sensitivity.
  • Patent Document 1 shows an example of a device that can be driven in a direction perpendicular to the surface of the sample.
  • the driving device described in Patent Literature 1 can drive in the vertical direction (Z direction), horizontal direction (XY direction), and rotational direction about an axis perpendicular to the XY plane.
  • the PZT stack and lever system allow the chuck to be adjusted in the Z direction on the order of ⁇ m so that the wafer can be adjusted within the range of the probe beam.
  • the wavelength of the laser light is shortened, it is necessary to improve the S/N ratio, so it is necessary to change the imaging detection optical system. If the imaging detection optical system is used, the depth of focus becomes shallow, and even a slight movement of the position of the surface of the sample causes it to deviate from the focal position of the detection optical system, possibly degrading the inspection sensitivity.
  • the surface inspection apparatus is affected by the vibration of the sample surface due to rotation, the warpage of the sample itself, the unevenness of the thickness, and the like, and the deformation of the sample holder due to centrifugal force. There is a difference between the height of the center of gravity of the sample holder and the height of the position where the sample holder is fixed. Deformation of the sample holder occurs in the direction in which the heights match.
  • the magnitude of the centrifugal force acting on the sample holder also changes with the acceleration/deceleration of rotation. This causes a change in the amount of deformation of the sample holder during inspection.
  • the amount of vertical adjustment that differs for each in-plane position during rotation of the sample is adjusted so that the inspection surface of the sample can be maintained at the focal point of the optical system even if the rotation speed changes during inspection. It is required to detect and make adjustments.
  • the present invention is configured as follows.
  • an illumination optical system for irradiating a sample with laser light, a detection optical system for detecting laser light scattered or reflected from the sample, a stage system for holding the sample, and driving control of the stage system a controller for controlling the stage system; a data processing unit for generating scan information of the sample;
  • the stage system includes a sample holding unit for holding the sample;
  • a sample drive unit that drives a sample holding unit, a spindle stage that rotates the sample, a vertical drive stage that drives the sample in a vertical direction, a horizontal drive stage that drives the sample in a horizontal direction, and a height of the sample.
  • the specimen driving section includes a support member that supports the specimen holding section and can be displaced in the vertical direction, and a driving force for driving the specimen.
  • a specimen drive source that causes the spindle stage to rotate, and the controller controls the in-plane position and the vertical position of the specimen detected by the displacement sensor while the spindle stage rotates.
  • a vertical adjustment amount is calculated, the vertical driving stage drives the sample in the vertical direction by a first adjustment amount, and the sample driving unit performs a second adjustment smaller than the first adjustment amount. to drive the sample vertically.
  • the sample driving section is provided which is capable of highly accurate position control with respect to the vertical movement of the sample.
  • a surface inspection device can be provided.
  • FIG. 1 is a diagram showing a surface inspection apparatus according to Example 1; FIG. It is a figure which shows a sample delivery position (TP), an inspection start position (MP1), and an inspection completion position (MP2).
  • TP sample delivery position
  • MP1 inspection start position
  • MP2 inspection completion position
  • 4 is a cross-sectional view passing through the central axis of the sample holder;
  • FIG. 4 is a diagram showing the configuration of the stage system of Example 1.
  • FIG. 4 is a cross-sectional view passing through the central axis of the sample holder;
  • FIG. 4 is a flow chart showing an example of an optical system and stage system control procedure during inspection;
  • FIG. 10 is a diagram showing the configuration of a stage system of Example 2;
  • FIG. 11 is a diagram showing the configuration of a stage system of Example 3;
  • FIG. 10 is a diagram showing a case where a sample vibrates due to rotation; It is a figure which shows a state when a sample itself warps. It is a
  • FIG. 1 is a diagram showing a surface inspection apparatus 1 according to Embodiment 1 of the present invention.
  • the surface inspection apparatus 1 includes an optical system 100 , a stage system 200 , a data processing section 12 , a controller 13 and a stage control section 14 .
  • the optical system 100 includes an illumination optical system 8 and a detection optical system 9, and the stage system 200 includes a horizontal drive stage 7, a vertical drive stage 6, a spindle stage 5, a sample holder 3, and a sample drive unit. 4.
  • the up-down direction in FIG. 1 is called the vertical direction, and the left-right direction is called the radial direction. Each element constituting the surface inspection apparatus 1 will be described in order.
  • stage system 200 includes a horizontal drive stage 7 , a vertical drive stage 6 , a spindle stage 5 , a sample holder 3 , a sample drive unit 4 , a rotary encoder 15 and a linear encoder 16 .
  • the sample holder 3 is an inspection table that horizontally holds a sample 2 such as a wafer. Although the structure of the sample holding part 3 will be described later, the sample holding part 3 of the first embodiment holds the sample (wafer) 2 by sucking the back surface of the sample (wafer) 2 .
  • a displacement sensor 10 for detecting the height of the sample 2 held by the sample holding part 3 is installed in the surface inspection device 1 .
  • a non-contact type displacement sensor such as an optical type or an ultrasonic type can be used.
  • the sample driving unit 4 supports the sample holding unit 3 and drives it in the vertical direction. Details of the sample driving unit 4 will be described later.
  • the spindle stage 5 holds the sample driving section 4 and rotates around the rotation axis 11 in FIG. 1 to rotate the sample driving section 4, the sample holding section 3, and the sample 2.
  • An optically readable rotary encoder 15 is incorporated in the spindle stage 5 , and the rotation angle of the spindle stage 5 is detected by the rotary encoder 15 and output to the controller 13 .
  • the rotation angle detector any sensor capable of detecting the rotation angle with high precision can be employed instead of the rotary encoder 15 .
  • the vertical drive stage 6 is a stage that supports the spindle stage 5, and moves the sample 2 vertically by a first adjustment amount (50 to 100 ⁇ m) so that the position of the surface of the sample 2 falls within a predetermined height range. Let Since the spindle stage 5 is supported, the speed at which the vertical drive stage 6 can be driven in the vertical direction is lower than the rotation speed of the spindle stage 5 . In order to inspect the sample 2 with high accuracy, it is required that the spindle stage 5 be adjusted while following the vertical positional fluctuation of the surface of the sample 2 while it is rotating.
  • the horizontal driving stage 7 supports the vertical driving stage 6, and by moving the vertical driving stage 6, the spindle stage 5, the sample driving section 4, the sample holding section 3, and the sample 2 are moved in the radial direction. horizontally.
  • a linear encoder 16 detects the radial position of the horizontal drive stage 7 and outputs it to the controller 13 .
  • the detector for the radial position of the horizontal drive stage 7 is not limited to the linear encoder 16, and any sensor that can accurately detect a linear position can be used in place of the linear encoder 16. FIG.
  • the in-plane position coordinates of the sample 2 can be specified by the rotation angle of the spindle stage 5 and the radial position of the horizontal drive stage 7 .
  • the sample delivery position (TP), the inspection start position (MP1), and the inspection completion position (MP2) are set on the movement axis of the horizontal drive stage 7.
  • the inspection start position (MP1) is a position where the inspection of the sample 2 is started by irradiating the sample 2 with laser light.
  • the focal position of the laser beam and the specific point of the sample 2 are at the same position.
  • the inspection completion position (MP2) is the position where the inspection of the sample 2 is completed, and in the first embodiment, the position where the outer edge of the sample 2 coincides with the focal position of the laser beam.
  • the sample transfer position (TP) is a position where the sample 2 starts to move to the inspection start position (MP1), and also serves as a position where the sample 2 is attached to and detached from the sample holder 3 in the first embodiment.
  • the optical system 100 includes an illumination optical system 8 and a detection optical system 9 .
  • the illumination optical system 8 is a unit that irradiates the sample 2 with laser light.
  • a detection optical system 9 is a unit for detecting laser light scattered or reflected by the sample 2 .
  • a data processing unit 12 is connected to the detection optical system 9 .
  • the data processing unit 12 generates scan information of the sample 2 from the detection result by the detection optical system 9 and the in-plane position coordinates of the sample 2 input from the controller 13 .
  • the scan information generated by the data processing unit 12 includes the position, size, shape, and the like of foreign matter and defects.
  • stage control section 14 controls the operation of the stage system 200 .
  • it includes a motor driver for driving the driving device (motor) of the spindle stage 5 and a motor driver for driving the driving device (motor) of the horizontal drive stage 7 .
  • the drive device is driven by the stage control unit 14 according to the command from the controller 13, and the spindle stage 5 and the horizontal drive stage 7 are operated.
  • the controller 13 controls a stage system 200 (sample driving unit 4, spindle stage 5, vertical driving stage 6, horizontal driving stage 7, displacement sensor 10, rotary encoder 15 incorporated in the spindle stage 5, linear encoder 15 incorporated in the horizontal driving stage 7). It is a computer that controls the operation of the encoder 16) and the optical system 100 (the illumination optical system 8 and the detection optical system 9).
  • the sample holding part 3 has a circular shape and its central axis coincides with the rotation axis 11 of the spindle stage 5 .
  • the sample holding part 3 is fixed to the sample driving part 4 with bolts. Since the sample 2 is held by suction on the upper surface of the sample holding portion 3, the sample holding portion 3 has a counterbore for the bolt on the upper surface so that the bolt and the sample 2 do not interfere with each other.
  • fastening force is generated by bolts between the counterbore portion and the surface in contact with the sample driving portion 4 . A position where this fastening force is generated is defined as a fixed portion.
  • the center of mass in the vertical direction be the center of gravity at each radial position r on a cross section passing through the rotation axis 11 .
  • the height of the fixed portion is lower than the height of the center of gravity.
  • the deformation of the sample holder 3 occurs in the direction in which the height of the center of gravity and the height of the position where the sample holder 3 is fixed match.
  • the deformation of the sample holder 3 can be suppressed regardless of the magnitude of the centrifugal force.
  • Horizontally aligning the fixed portion of the sample holder 3 and the height of the center of gravity position can be used to improve the inspection speed even when the rotation speed of the spindle stage 5 is increased or when acceleration/deceleration is performed during inspection. .
  • FIG. 4 shows the configuration of the stage system of the first embodiment.
  • the sample drive unit 4 includes a support member 4a and a sample drive source 4b, and drives in the vertical direction. Since the sample driving section 4 drives only the sample holding section 3 and the sample 2, it can be driven at a higher speed than the vertical driving stage 6 that drives the spindle stage 5 as well.
  • a vertically displaceable support member 4 a is arranged (installed) between the sample holder 3 and the spindle stage 5 .
  • the support member 4a can be composed of an elastic member such as a spring, for example. It is not limited to a fixed shape.
  • the support members 4a are arranged at equal intervals on a circle equidistant from the rotation axis (central axis) 11 of the sample holder 3. , and the influence of variations in the mounting position of the support member 4a can be reduced.
  • tilting of the sample 2 can be suppressed by providing three or more supporting members 4a.
  • the sample driving source 4b includes a yoke 4ba, a magnet 4bb, a coil 4bc, and a coil fixing member 4bd. ) are horizontally aligned, and the yoke 4ba and the magnet 4bb are attached so that their positions are at the same height.
  • the yoke 4ba and the magnet 4bb are arranged in a ring-like arrangement, the position of the center of gravity of the sample holding part 3 and the position of the fixed part are at the same height on any cross section passing through the rotating shaft (central axis) 11. should be placed in
  • a coil fixing member 4bd is attached to the frame of the surface inspection apparatus 1, and a coil 4bc is attached to the coil fixing member 4bd so as to face the magnet 4bb.
  • the sample driving source 4b drives the sample driving section 4 in the vertical direction by electromagnetic force generated by the action of the current to the coil 4bc and the magnetic field of the magnet 4bb, and also drives the sample 2 in the vertical direction. Thereby, the surface of the sample 2 is adjusted within the range of the focal length of the detection optical system 9 .
  • the rotation of the spindle stage 5 rotates the support member 4a, which in turn rotates the sample holder 3 and the yoke 4ba and magnet 4bb fixed thereto.
  • the sample driving unit 4 can be driven at a high frequency that can follow the rotation frequency of the spindle stage 5 with an accuracy of about 0.5 to several ⁇ m for a deviation of about 50 to 100 ⁇ m.
  • the vertical drive stage 6 moves the sample 2 vertically by a first adjustment amount (50 to 100 ⁇ m), and the sample drive unit 4 moves a second adjustment amount (0.5 ⁇ m) smaller than the first adjustment amount.
  • the sample 2 is moved (finely moved) by a distance of up to several ⁇ m.
  • the fine movement of the sample driving unit 4 corresponds to fluctuations during one rotation
  • the vertical drive stage 6 corresponds to large radial fluctuations and inclinations, thereby enabling accurate vertical position control.
  • the sample driving unit 4b finely adjusts the adjustment amount with an accuracy of about 0.5 to several ⁇ m for the deviation adjustment amount of about 50 to 100 ⁇ m by the vertical drive stage 6. can be done.
  • FIG. 6 is a flow chart showing an example of the control procedure of the optical system 100 and the stage system 200 during inspection by the controller 13 .
  • steps S11 to S16 are the sample transport procedure
  • steps S17 to S24 are the inspection procedure
  • steps S25 to S28 are the sample unloading procedure.
  • step S11 of FIG. 6 the sample is mounted on the sample holder 3 at the sample transfer position (TP).
  • step S12 the outer circumference detection/AF (Auto Focus) sensor detects the average vertical position of the surface of the sample 2 at the sample transfer position (TP). By driving, the vertical position of the surface of the sample 2 is brought into the focal range of the detection optical system 9 .
  • TP sample transfer position
  • step S13 the controller 13 determines whether the vertical position of the surface of the sample 2 has reached the focal range of the detection optical system 9, and proceeds to step S14 if it falls within the range.
  • step S14 the controller 13 drives the horizontal drive stage 7 and the spindle stage 5 to start moving to the inspection start position (MP1) and accelerating rotation.
  • step S15 after starting to move the sample 2, the controller 13 determines whether the sample 2 has reached the inspection start position (MP1). At this time, the acceleration of the spindle stage 5 continues.
  • step S16 when the sample 2 reaches the inspection start position (MP1), the inspection is started.
  • a central position of the surface of the sample 2 is irradiated with a laser beam by the illumination optical system 8 .
  • the horizontal drive stage 7 moves from the inspection start position (MP1) to the inspection completion position (MP2), thereby helically irradiating the sample 2 with laser light from the center thereof. inspect the entire surface of Inspection results are then obtained based on the scan information.
  • step S17 the controller 13 determines whether the spindle stage 5 has reached a predetermined rotation speed, and continues accelerating the spindle stage 5 until it reaches the predetermined rotation speed.
  • step S18 when the spindle stage 5 reaches the specified rotation speed, the specified rotation speed is maintained.
  • step S19 the controller 13 determines whether the set time has been reached.
  • the set time is the required stop time required to stop the spindle stage 5 rotating at the specified rotation speed, calculated backward from the specified time when the sample 2 arrives at the sample transfer position (TP) from the inspection completion position (MP2) after the inspection is completed. is the time just before.
  • the required stop time is a known value, for example a design value or an experimental value can be used.
  • step S20 when the set time is reached, the controller 13 starts decelerating the rotation of the spindle stage 5 while continuing the inspection.
  • step S21 after starting to decelerate the rotation speed of the spindle stage 5, the controller 13 proceeds to determine the end of the inspection.
  • the end of inspection is determined by whether the sample 2 reaches the inspection completion position (MP2) and the inspection is completed (in the first embodiment, whether the outer edge of the sample 2 coincides with the focal position of the laser beam).
  • Steps S22 to S24 for adjusting the height of the sample are performed in parallel with the above Steps S17 to S21.
  • step S22 the in-plane position coordinates of the sample 2 are calculated by the rotary encoder 15 and the linear encoder 16, and at the same time, the displacement sensor 10 detects the vertical position of the sample 2 surface.
  • step S23 based on the calculated in-plane position coordinates of the sample and the detected vertical position of the sample surface, the sample driving unit 4 and the vertical driving stage 6 are driven to move within the depth of focus of the detection optical system 9. adjust to At this time, if the detected vertical position of the surface of the sample 2 is a deviation amount that cannot be adjusted by the sample driving unit 4, the vertical driving stage 6 adjusts the position. Vertical positional fluctuations of the sample 2 are averaged in the radial direction and high-speed minute fluctuations occurring in the circumferential direction. Vertical positional fluctuations averaged in the radial direction are adjusted by the vertical driving stage 6 , and high-speed minute vertical positional fluctuations in the circumferential direction due to rotation are adjusted by the sample driving section 4 .
  • step S24 steps S22 and S23 are repeated until the inspection is completed, and when the inspection is completed, detection and adjustment of the vertical position of the surface of the sample 2 are also completed.
  • step S25 when the inspection is completed, the controller 13 causes the horizontal drive stage 7 to move the sample 2 to the sample delivery position (TP). At this time, the deceleration of the spindle stage 5 continues.
  • step S26 the controller 13 proceeds to determine whether the delivery position has been reached. It is determined whether or not the sample 2 has reached the sample transfer position (TP), and the movement and the deceleration of the spindle stage 5 are continued until it reaches the sample transfer position (TP).
  • step S27 when the sample 2 reaches the transfer position, the spindle stage 5 and the horizontal drive stage 7 are stopped.
  • step S28 when the rotation of the spindle stage 5 and the driving of the horizontal drive stage 7 are stopped, the sample 2 is replaced, and the above processing is repeated.
  • the rotation speed is accelerated, maintained, and decelerated during inspection.
  • the deformation of the specimen holder 3 itself was suppressed by aligning the height of the fixed part and the center of gravity of the specimen holder 3, and the flatness of the specimen 2 was maintained.
  • the vertical positional fluctuation of the specimen 2 averaged in the radial direction is adjusted by the vertical drive stage 6, and the vertical positional fluctuation in the circumferential direction accompanying the rotation is adjusted at high speed and minutely in the vertical direction. is adjusted (finely adjusted) by the sample drive unit 4, the sample 2 can be stably held regardless of the rotation speed when the sample 2 is held and inspected at high speed rotation. It is possible to provide the surface inspection apparatus 1 having the sample driving section 4 capable of highly accurate position control with respect to driving in the vertical direction.
  • Example 2 Next, a surface inspection apparatus 1 according to Embodiment 2 of the present invention will be described with reference to FIG.
  • the surface inspection apparatus 1 according to the second embodiment differs from the surface inspection apparatus 1 according to the first embodiment in the arrangement of the sample drive unit 4, and the other configurations are the same as those of the surface inspection apparatus 1 according to the first embodiment. Therefore, since the overall configuration of the surface inspection apparatus 1 is the same as the configuration shown in FIG. 1, illustration and detailed description thereof will be omitted.
  • a vertically displaceable support member 4a is arranged between the spindle stage 5 and the sample holder 3.
  • a yoke 4ba is fixed to the sample holder 3, and a magnet 4bb is attached to the yoke 4a.
  • the yoke 4ba has a cylindrical shape and is installed outside the spindle stage 5 as shown in FIG.
  • a magnet 4bb is installed outside the yoke 4ba along the yoke 4ba.
  • the coil fixing member 4bd is attached to the structure (frame) of the surface inspection apparatus 1, and the coil 4bc is attached to the coil fixing member 4bd so as to face the magnet 4bb.
  • the sample 2 is driven in the vertical direction by the electromagnetic force generated by the action of the current to the coil 4bc and the magnetic field of the magnet 4bb.
  • Example 2 the same effect as in Example 1 can be obtained.
  • the surface inspection apparatus 1 according to the third embodiment is different from the surface inspection apparatus 1 according to the first embodiment in the driving method of the sample driving unit 4 and the support member 4a, and the rest of the configuration is the same as the surface inspection apparatus 1 according to the first embodiment. . Therefore, since the overall configuration of the surface inspection apparatus 1 is the same as the configuration shown in FIG. 1, illustration and detailed description thereof will be omitted.
  • the sample driving source 4b includes a mechanism for generating an electromagnetic force or a member for generating an electric/magnetic force such as a piezoelectric element or a magnetostrictive actuator. placed between 3. This drives the sample 2 in the vertical direction.
  • the sample drive unit 4b is not limited to a piezoelectric element or a magnetostrictive actuator, and may be any one that can be adjusted at a high frequency that follows the rotation frequency with good precision of 0.5 ⁇ m to several tens of ⁇ m.
  • the sample driving source 4b generates at least one of electric and magnetic forces to generate a driving force for driving the sample 2. As shown in FIG.
  • Example 3 the same effect as in Example 1 can be obtained.
  • the sample holding part 3 according to the first embodiment of the present invention is of a type that holds the sample 2 by sucking the back surface thereof, but the back surface of the sample 2 is held in a floating state by gripping the edge of the sample 2 or the like. , the sample 2 can be held in other ways.
  • the method of holding the back surface of the sample 2 by suction in Example 1 is used, for example, when used by a semiconductor device maker.
  • the method of holding the sample 2 in a state in which the back surface of the sample 2 is raised which is given in the fourth embodiment, is used by a wafer maker that does not allow the back surface of the sample 2 to come into contact with the sample holder 3, for example. Used.
  • the surface inspection apparatus 1 according to the fourth embodiment differs from the surface inspection apparatus 1 according to the first embodiment in that the sample holder 3 holds the side surface of the sample 2, and the rest of the configuration is the same as the surface inspection apparatus 1 according to the first embodiment. be. Therefore, since the overall configuration of the surface inspection apparatus 1 is the same as the configuration shown in FIG. 1, illustration and detailed description thereof will be omitted.
  • Example 4 the side surface of the sample 2 is supported by the sample holding portion 3 without contacting the back surface of the sample 2, and the sample holding portion 3 is driven by the sample driving portion 4 of Example 2, for example. and
  • the sample driving unit 4 is configured to support the holding unit 3 without contacting the back surface of the sample 2 .
  • the same effect as in the first embodiment can be obtained, and even when the back surface of the sample 2 is not permitted to contact the sample holder 3, the sample 2 can be driven with high accuracy in the vertical direction. It is possible to provide the surface inspection apparatus 1 equipped with the position controllable sample driving unit 4.
  • the specimen holder 3 can suppress the deformation of the specimen 2 regardless of the rotational speed by aligning the height of the center of gravity of the specimen holder 3 with that of the fixed part. This makes it possible not only to cope with a high rotational speed but also to maintain the flatness of the sample 2 even when the rotational speed changes during inspection.
  • the vertical drive stage 6 can be adjusted up to several tens of millimeters, it is difficult to deal with high-speed minute vertical positional fluctuations of the sample surface during high-speed rotation.
  • the sample driving unit 4 can adjust the positional variation of the sample surface in the vertical direction as small as several ⁇ m to several tens of ⁇ m by following the frequency of the high-speed rotation. Inspection sensitivity can be improved by combining the adjustment of the vertical drive stage 6 and the sample drive unit 4 . In addition, compared to driving the entire spindle stage 5 with the vertical drive stage 6, driving only the sample holder 3 and the sample 2 by the sample drive unit 4 is lighter, and thus an effect of reducing driving power can be expected.
  • the first adjustment amount up to several millimeters is adjusted by the vertical drive stage 6 for the vertical positional fluctuation of the surface of the sample 2, and the high-speed fluctuation is adjusted. Then, by adjusting the sample driving unit 4b with the accuracy of the second adjustment amount on the order of 0.5 to several ⁇ m, it is possible to adjust the position of the sample 2 in the vertical direction with high accuracy. can.
  • the sample holding portion 3 is circular, and the height of the position where the sample holding portion 3 is fixed is substantially the same as the height of the center of gravity of the sample holding portion 3 in the radial direction.
  • the specimen 2 is inspected by the spindle stage 5, the horizontal drive stage 7, the illumination optical system 8, the detection optical system 9, the data processing unit 12, and the controller 13.
  • the displacement sensor 10 detects the leading position of the sample 2 in the vertical direction at the outer peripheral position of the spiral trajectory from the inspection position of the sample 2 of the laser light irradiated to the sample 2 from the illumination optical system 8, and the controller 13 and
  • the stage control unit 14 predictively controls the sample driving unit 4 to drive the sample 2 in the vertical direction by the second adjustment amount immediately before the laser light is applied to the detected preceding position of the sample 2. can do.
  • the controller 13 and the stage control unit 14 calculate the second adjustment amount, output an operation command to the sample driving unit 4, and the sample driving unit 4 actually drives the sample 2. It is possible to compensate for the delay time up to and control the operation in real time.
  • the controller 13 and the stage control unit 14 calculate the difference between the vertical position of the inspection position of the sample 2 and the vertical position of the preceding position of the laser beam irradiated to the sample 2, and based on the calculated difference, It can be configured to correct the second adjustment amount.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

回転速度によらず試料2を安定的に保持し、試料2の鉛直方向駆動に対し高精度に位置制御可能な試料駆動部4を備えた表面検査装置1を提供する。試料駆動部4は試料保持部3を、試料2を支持する鉛直方向に変位可能な支持部材4aと、試料2を駆動するための駆動力を発生させる試料駆動源4bと、を有する。スピンドルステージ5が回転中に変位センサ10が検知した試料2の面内位置と鉛直方向位置に基づきコントローラ13は、試料2の面内位置ごとに異なる鉛直方向の調整量を算出し、鉛直駆動ステージ6により試料2を鉛直方向に第1の調整量で駆動し、試料駆動部4は、試料2を記第1の調整量より小さい第2の調整量で試料2を鉛直方向に駆動する。

Description

表面検査装置
 本発明は、ウェハなどの試料を検査する表面検査装置に関する。
 半導体製造工程では、ウェハ等の試料の欠陥や異物などが歩留まりに大きく影響を与える。そこで、表面検査装置により試料の欠陥検査を行い、半導体製造工程並びに製造装置にフィードバックすることが歩留まり管理において重要になる。半導体デバイスの微細化が進み、表面検査装置には異物や欠陥の検出性能の向上が求められている。
 表面検査装置は試料の表面にレーザ光を照射し、試料を回転しながら半径方向に移動することで試料の全面を検査する。試料表面の異物や欠陥にレーザ光が照射されるとレーザ光が散乱する。それを検出光学系で検出することで異物や欠陥を検出し試料の回転角度と半径方向の位置から試料上の異物や欠陥の位置を特定する。
 このような表面検査装置の検査感度は照射するレーザ光を短波長にすることで向上する。しかしながら、レーザ光の波長を短くするとS/N比を向上させる必要があるため、結像検出光学系への変更が必要になる。結像検出光学系にすると焦点深度が浅くなり、試料表面の位置がわずかに動くだけで検出光学系の焦点位置から外れてしまい、検査感度が落ちてしまう恐れがある。
 この課題に対して、試料の表面に垂直な方向に駆動することのできる装置の例が、特許文献1に示されている。特許文献1に記載されている駆動装置は、上下方向(Z方向)と、水平方向(XY方向)と、XY平面に垂直な軸を中心とした回転方向と、に駆動することができる。特許文献1に記載の技術においては、PZTスタックとレバーシステムによりチャックをZ方向にμmオーダーで調整可能で、プローブビームの範囲の中にウェハを調整することができるようになっている。
US2004/0223144A1
 半導体製造工程において、検査感度とスループットの向上が表面検査装置に求められるようになっている。これに対して、レーザ光の短波長化、最高回転速度の向上、回転速度の加減速中に検査を行うことなどにより性能向上を図っている。
 しかしながら、レーザ光の波長を短くするとS/N比を向上させる必要があるため、結像検出光学系への変更が必要になる。結像検出光学系にすると焦点深度が浅くなり試料表面の位置がわずかに動くだけで検出光学系の焦点位置から外れてしまい、検査感度が落ちてしまう恐れがある。
 そのため、試料表面の鉛直方向の位置精度が求められる。表面検査装置では回転に伴う試料表面の振動、試料自身の反りや厚みのバラツキなどが影響するほかに、遠心力による試料保持部の変形が起きる。試料保持部は重心位置の高さと試料保持部が固定される位置の高さに差があり、試料保持部に遠心力が働くことにより、重心の高さと試料保持部が固定される位置の高さが一致する方向に試料保持部の変形が起きてしまう。
 また、検査中の回転速度の加減速のため、試料保持部に働く遠心力の大きさも回転の加減速に伴って変化する。これは検査中に試料保持部の変形量が変化を引き起こす。
 これにより、試料表面の鉛直方向の位置を検出光学系の焦点深度内に収めることが困難になり、検査感度の低下が予想できる。そのため、試料の高速回転と、高速回転しながら試料の検査面を検出光学系の焦点位置に高精度に調整することの両立が必要である。
 特許文献1に開示の方法では、PZTスタックとレバーシステムを制御することで、ウェハが搭載されたチャックの鉛直方向の高さ調整を行うことができるが、ウェハの面内位置ごとに調整することに関して記述がない。
 この課題に対して、検査中に回転速度が変化しても試料の検査面が光学系の焦点位置に保たれるように、試料が回転中に面内位置ごとに異なる鉛直方向の調整量を検出し、調整を行うことが要求される。
 本発明の目的は、試料を保持し高速回転で検査する際、回転速度によらず試料を安定的に保持し、試料の鉛直方向駆動に対し高精度に位置制御可能な試料駆動部を備えた表面検査装置を提供することである。
 本発明は、上記目的を達成するため、以下のように構成される。
 表面検査装置において、試料に対しレーザ光を照射する照明光学系と、前記試料から散乱又は反射したレーザ光を検出する検出光学系と、前記試料を保持するステージ系と、前記ステージ系の駆動制御を行うコントローラと、前記ステージ系を制御するステージ制御部と、前記試料のスキャン情報を生成するデータ処理部と、を備え、前記ステージ系は前記試料を保持する試料保持部と、前記試料と前記試料保持部を駆動する試料駆動部と、前記試料を回転させるスピンドルステージと、前記試料を鉛直方向に駆動する鉛直駆動ステージと、前記試料を水平方向に駆動する水平駆動ステージと、前記試料の高さを検出する変位センサと、を有し、前記試料駆動部は、前記試料保持部を、前記試料を支持する鉛直方向に変位可能な支持部材と、前記試料を駆動するための駆動力を発生させる試料駆動源と、を有し、前記スピンドルステージが回転中に、前記変位センサが検知した前記試料の面内位置と鉛直方向位置に基づき、前記コントローラは、前記試料の面内位置ごとに異なる鉛直方向の調整量を算出し、前記鉛直駆動ステージにより前記試料を鉛直方向に第1の調整量で駆動し、前記試料駆動部は、前記試料を前記第1の調整量より小さい第2の調整量で前記試料を鉛直方向に駆動する。
 本発明によれば、試料を保持し高速回転で検査する際、回転速度によらず試料を安定的に保持し、試料の鉛直方向駆動に対し高精度に位置制御可能な試料駆動部を備えた表面検査装置を提供することができる。
実施例1に係る表面検査装置を示す図である。 試料受け渡し位置(TP)、検査開始位置(MP1)及び検査完了位置(MP2)を示す図である。 試料保持部の中心軸を通る断面図である。 実施例1のステージ系の構成を示す図である。 試料保持部の中心軸を通る断面図である。 検査中の光学系及びステージ系制御手順の例を示すフローチャートである。 実施例2のステージ系の構成を示す図である。 実施例3のステージ系の構成を示す図である。 試料が回転により振動した場合を示す図である。 試料自身が反ったときの状態を示す図である。 試料自身に厚みのバラツキがある状態を示す図である。
 以下、添付図面を参照して本発明の実施形態を説明する。
 (実施例1)
 図1は、本発明の実施例1に係る表面検査装置1を示す図である。表面検査装置1は、光学系100と、ステージ系200と、データ処理部12と、コントローラ13と、ステージ制御部14とを備える。
 光学系100は、照明光学系8と、検出光学系9とを備え、ステージ系200は、水平駆動ステージ7と、鉛直駆動ステージ6と、スピンドルステージ5と、試料保持部3と、試料駆動部4とを備える。図1における上下方向を鉛直方向、左右方向を半径方向と呼ぶ。表面検査装置1を構成する各要素について順次説明する。
 (A)ステージ系200
 ステージ系200は、水平駆動ステージ7と、鉛直駆動ステージ6と、スピンドルステージ5と、試料保持部3と、試料駆動部4と、ロータリーエンコーダ15と、リニアエンコーダ16とを備えている。
 試料保持部3は、ウェハ等の試料2を水平に保持する検査台である。試料保持部3の構成については後述するが、本実施例1の試料保持部3は試料(ウェハ)2の裏面を吸着して試料2を保持するものである。
 表面検査装置1には、試料保持部3に保持している試料2の高さを検出する変位センサ10を設置している。変位センサ10は光学式や超音波式などの非接触式の変位センサなどを用いることができる。
 試料駆動部4は試料保持部3を支持し、鉛直方向に駆動する。試料駆動部4の詳細については後述する。
 スピンドルステージ5は、試料駆動部4を保持し、図1の回転軸11を中心として自転し、試料駆動部4、試料保持部3、試料2を回転させる。スピンドルステージ5には光学読み取り式のロータリーエンコーダ15が組み込まれており、スピンドルステージ5の回転角度がロータリーエンコーダ15で検出されてコントローラ13に出力される。回転角度の検出器は精度よく回転角度が検出できるセンサであればロータリーエンコーダ15に替えて採用することができる。
 鉛直駆動ステージ6は、スピンドルステージ5を支持するステージであり、試料2の表面の位置が所定の高さ範囲に収まるように試料2を第1の調整量(50~100μm)だけ鉛直方向に移動させる。スピンドルステージ5を支持しているため、鉛直駆動ステージ6が鉛直方向に駆動できる速度はスピンドルステージ5の回転速度と比較して低速になってしまう。試料2の検査を高精度に行うためにはスピンドルステージ5が回転中に、試料2の表面の鉛直方向の位置変動に追従して、調整することが求められる。
 水平駆動ステージ7は、鉛直駆動ステージ6を支持しており、鉛直駆動ステージ6を移動させることでスピンドルステージ5、試料駆動部4、試料保持部3、試料2を半径方向に移動させて試料2を水平方向に駆動する。水平駆動ステージ7の半径方向の位置をリニアエンコーダ16で検出してコントローラ13に出力する。水平駆動ステージ7の半径方向位置の検出器はリニアエンコーダ16に限定されず、精度よく直線上の位置が検出できるセンサであればリニアエンコーダ16に替えて採用することができる。
 スピンドルステージ5が回転しながら水平駆動ステージ7が動作することにより、試料2の全面を螺旋状に検査することができる。スピンドルステージ5の回転角度と水平駆動ステージ7の半径方向位置により試料2の面内位置座標を特定できる。
 本実施例1においては、図2に示すように試料受け渡し位置(TP)、検査開始位置(MP1)、検査完了位置(MP2)が水平駆動ステージ7の動作軸上に設定されており、水平駆動ステージ7を駆動することで、これらの位置を含む直線に沿って鉛直駆動ステージ6が移動する。検査開始位置(MP1)は、試料2にレーザ光を照射して試料2の検査を開始する位置である。本実施例1では、レーザ光の焦点位置と試料2の特定点(本実施例1では中心O)が一致する位置である。
 検査完了位置(MP2)は試料2の検査が完了する位置で、本実施例1ではレーザ光の焦点位置に試料2の外縁が一致する位置としている。試料受け渡し位置(TP)は検査開始位置(MP1)へ試料2の移動を開始する位置で、本実施例1では試料保持部3に試料2を着脱する位置を兼ねている。
 (B)光学系100
 光学系100は、照明光学系8と検出光学系9とを備える。
 照明光学系8は、レーザ光を試料2に照射するユニットである。検出光学系9は試料2で散乱または反射したレーザ光を検出するユニットである。検出光学系9にはデータ処理部12が接続されている。
 (C)データ処理部12
 データ処理部12は、検出光学系9による検出結果とコントローラ13から入力された試料2の面内位置座標から試料2のスキャン情報が生成される。データ処理部12で生成されるスキャン情報には、異物や欠陥の位置、大きさ、形状などが含まれる。
 (D)ステージ制御部14
 ステージ制御部14は、ステージ系200の動作を制御する。例えば、スピンドルステージ5の駆動装置(モータ)を駆動するモータドライバや水平駆動ステージ7の駆動装置(モータ)を駆動するモータドライバなどで構成されている。コントローラ13からステージ系200の動作について指令値が入力されると、ステージ制御部14によりコントローラ13からの指令に応じて駆動装置が駆動され、スピンドルステージ5や水平駆動ステージ7が動作する。
 (E)コントローラ13
 コントローラ13はステージ系200(試料駆動部4、スピンドルステージ5、鉛直駆動ステージ6、水平駆動ステージ7、変位センサ10、スピンドルステージ5に組込のロータリーエンコーダ15、水平駆動ステージ7に組込のリニアエンコーダ16)、光学系100(照明光学系8、検出光学系9)の動作を制御するコンピュータである。
 (F)試料保持部3
 試料保持部3の中心軸を通る断面図を図3に示す。
 試料保持部3は、円形で中心軸はスピンドルステージ5の回転軸11と一致する。試料保持部3はボルトによって試料駆動部4に固定される。試料保持部3の上面に試料2を吸着保持するため、ボルトと試料2が干渉しないように試料保持部3は上面にボルトのザグリ部を有する。試料保持部3はザグリ部と試料駆動部4に接触する面との間にボルトによる締結力が発生する。この締結力が発生する位置を固定部とする。回転軸11を通る断面上において、各半径位置rで鉛直方向の質量中心位置を重心とする。試料保持部3が図3の様な形状の場合、固定部の高さは重心位置の高さよりも低くなる。遠心力が働くと、重心の高さと試料保持部3が固定される位置の高さが一致する方向に試料保持部3の変形が起きてしまう。これに対し、試料保持部3の固定部と重心位置の高さとを水平に揃えることにより、遠心力の大きさにかかわらず試料保持部3の変形を抑えることができる。試料保持部3の固定部と重心位置の高さとを水平に揃えることは、検査速度の向上のため、スピンドルステージ5の回転速度を上げた場合や検査中に加減速を行う場合にも対応できる。
 (G)試料駆動部4
 試料駆動部4について説明する。実施例1のステージ系の構成を図4に示す。図4において、試料駆動部4は、支持部材4aと、試料駆動源4bとを備え、鉛直方向に駆動する。試料駆動部4は試料保持部3と試料2のみを駆動するため、スピンドルステージ5を含めて駆動する鉛直駆動ステージ6と比較して高速に駆動することができる。鉛直方向に変位可能な支持部材4aを試料保持部3とスピンドルステージ5の間に配置する(設置する)。支持部材4aは、例えば、ばねなどの弾性部材で構成することができ、板ばねで構成する場合は1か所の屈曲部を有するような形状や曲線状、複数回折り曲げた形状などでよく、決まった形に限定されない。
 また、支持部材4aの配置は、試料保持部3の回転軸(中心軸)11から等距離の円周上に等間隔で配置することで支持部材4aの取り付け位置が回転軸(中心軸)11に対して対称となり、支持部材4aの取り付け位置のバラツキの影響を小さくすることができる。
 また、支持部材4aは3個以上にすることで試料2の傾きを抑えることができる。
 試料駆動源4bは図5に示すとおり、ヨーク4ba、マグネット4bb、コイル4bc及びコイル固定部材4bdを備え、試料保持部3に、中心を通る断面上において重心の位置と固定部(試料保持部3の固定部)とを水平に揃え、互いの位置が同じ高さになるように、ヨーク4baとマグネット4bbを取り付ける。ヨーク4baとマグネット4bbを円環に近い配置にすることで、回転軸(中心軸)11を通る任意の断面上において試料保持部3の重心の位置と固定部の位置が同じ高さになるように配置することが望ましい。
 ヨーク4baとマグネット4bbを円環に近い形状にすることでスピンドルステージ5によって回転したときの気流の乱れを抑制でき、振動や騒音を低減することができる。表面検査装置1のフレームに、コイル固定部材4bdを取り付け、マグネット4bbに対向するようにコイル4bcをコイル固定部材4bdに取り付ける。試料駆動源4bは、コイル4bcへの電流とマグネット4bbの磁界との作用で生じる電磁力によって試料駆動部4を鉛直方向に駆動して、試料2も鉛直方向に駆動する。これにより、試料2の表面を検出光学系9の焦点距離の範囲に調整する。
 スピンドルステージ5による回転で支持部材4aが回転し、これにより、試料保持部3とこれに固定されているヨーク4baとマグネット4bbが回転する。試料駆動部4は50~100μm程度のずれに対して0.5~数μm程度の精度で、スピンドルステージ5の回転周波数に追従できる高周波数で駆動することができる。
 鉛直駆動ステージ6により、試料2を鉛直方向に第1の調整量(50~100μm)で鉛直方向に移動し、試料駆動部4により第1の調整量より小さい第2の調整量(0.5~数μm)で試料2を移動(微動)させる。
 これにより、試料駆動部4の微動で1回転中の変動に対応し、鉛直駆動ステージ6で半径方向の大きな変動、傾きに対応することで精度良く鉛直方向の位置制御を行うことができる。試料2の鉛直方向への移動調整において、鉛直駆動ステージ6による50~100μm程度のずれ調整量に対して、試料駆動部4bにより0.5~数μm程度の精度の調整量で微調整することができる。
 (H)検査動作
 図6は、コントローラ13による検査中の光学系100及びステージ系200の制御手順の例を示すフローチャートである。以下の手順のうちステップS11~S16が試料搬送手順、ステップS17~S24が検査手順、ステップS25~S28が試料搬出手順である。
 図6のステップS11において、試料受け渡し位置(TP)で、試料保持部3に試料を搭載する。
 次に、ステップS12において、試料受け渡し位置(TP)にて、外周検出・AF(Auto Focus)センサにより試料2の表面の平均的な鉛直方向の位置を検出し、コントローラ13は鉛直駆動ステージ6を駆動し試料2の表面の鉛直方向の位置を検出光学系9の焦点範囲に収める。
 ステップS13において、コントローラ13は試料2の表面の鉛直方向位置が検出光学系9の焦点範囲に到達したか判定し、範囲内に収まったらステップS14に進む。
 ステップS14において、コントローラ13は水平駆動ステージ7とスピンドルステージ5を駆動し検査開始位置(MP1)への移動と回転の加速を開始する。
 ステップS15において、試料2の移動を開始したら、コントローラ13は試料2が検査開始位置(MP1)に到着したかを判定する。このときスピンドルステージ5の加速は継続している。
 ステップS16において、試料2が検査開始位置(MP1)に到達したら、検査開始に進む。照明光学系8により試料2の表面の中心位置にレーザ光が照射される。スピンドルステージ5の回転を加速しつつ、検査開始位置(MP1)から検査完了位置(MP2)まで水平駆動ステージ7により移動することにより試料2の中心から、螺旋状にレーザ光が照射され、試料2の全面を検査する。これ以降スキャン情報に基づいて検査結果が得られる。
 ステップS17において、コントローラ13はスピンドルステージ5が既定の回転速度に到達したかを判定し、既定の回転速度に到達するまではスピンドルステージ5は加速を続ける。
 ステップS18において、スピンドルステージ5が規定回転速度に到達したら規定回転速度を維持する。
 ステップS19において、コントローラ13は設定時刻に到達したかを判定する。設定時刻は、検査完了後に試料2が検査完了位置(MP2)から試料受け渡し位置(TP)に到着する規定の時刻から逆算して、規定回転速度で回転するスピンドルステージ5の停止に要する所要停止時間だけ前の時刻である。所要停止時間は既知の値であり、例えば設計値又は実験値を用いることができる。
 ステップS20において、設定時刻に到達したらコントローラ13は検査を継続しつつスピンドルステージ5の回転の減速を始める。
 ステップS21において、スピンドルステージ5の回転速度の減速を開始したら、コントローラ13は検査終了の判定に進む。検査終了は検査完了位置(MP2)に試料2が到達し検査が完了したか(本実施例1ではレーザ光の焦点位置に試料2の外縁が一致したか)で判定を行う。
 (I)試料表面の高さ調整のフロー
 検査を行っている間、上記のステップS17~ステップS21と並行して、試料高さを調整するステップS22~ステップS24までを行う。
 ステップS22において、ロータリーエンコーダ15とリニアエンコーダ16により試料2の面内位置座標を算出すると同時に、変位センサ10により試料2表面の鉛直方向の位置を検出する。
 ステップS23において、算出した試料の面内位置座標と検出した試料表面の鉛直方向の位置をもとに、試料駆動部4と鉛直駆動ステージ6を駆動して検出光学系9の焦点深度の範囲内に調整する。このとき、検出した試料2の表面の鉛直方向の位置が、試料駆動部4では調整しきれないずれ量であった場合に、鉛直駆動ステージ6により位置調整を行う。試料2の鉛直方向の位置変動は半径方向に平均化されたものと、周方向で発生する高速で微小なものがある。半径方向に平均化された鉛直方向の位置変動を鉛直駆動ステージ6で調整し、回転に伴う周方向の高速で微小な鉛直方向の位置変動を試料駆動部4により調整する。
 ステップS24において、検査が完了するまでステップS22とステップS23を繰り返し、検査が完了したら試料2の表面の鉛直方向の位置の検出と調整動作も終了する。
 ステップS25において、検査が完了したらコントローラ13は水平駆動ステージ7により試料2を試料受け渡し位置(TP)へ移動する。このとき、スピンドルステージ5の減速は継続している。
 ステップS26において、コントローラ13は受け渡し位置に到達の判定に進む。試料2が試料受け渡し位置(TP)に到達したかを判定し到達するまで移動とスピンドルステージ5の減速を継続する。
 ステップS27において、試料2が受け渡し位置に到達したらスピンドルステージ5と水平駆動ステージ7の停止に進む。
 ステップS28において、スピンドルステージ5の回転と水平駆動ステージ7の駆動が停止したら試料2の交換に移り、以上の処理を繰り返し行う。
 本実施例1ではステップS17~S21にあるように、検査中に回転速度の加速・維持・減速が行われる。試料保持部3の項(F)で説明したように、試料保持部3の固定部と重心の高さを揃えることにより試料保持部3の変形自体は抑えられ、試料2の平面度が保たれる。
 回転速度の変化が起きない場合でも試料2自体の厚みのバラツキやスピンドルステージ5の回転精度や試料保持部3の平面度などの影響により回転に伴う試料表面の鉛直方向の位置変動が起きる。その場合に鉛直方向位置の調整のフローは有効である。
 以上のように、本発明の実施例によれば、試料2の半径方向に平均化された鉛直方向の位置変動を鉛直駆動ステージ6で調整し、回転に伴う周方向の高速で微小な鉛直方向の位置変動を試料駆動部4により調整(微調整)するように構成したので、試料2を保持し高速回転で検査する際、回転速度によらず試料2を安定的に保持し、試料2の鉛直方向駆動に対し高精度に位置制御可能な試料駆動部4を備えた表面検査装置1を提供することができる。
 (実施例2)
 次に、本発明の実施例2による表面検査装置1について図7を用いて説明する。
 本実施例2による表面検査装置1は、試料駆動部4の配置が実施例1による表面検査装置1と異なり、その他の構成は実施例1による表面検査装置1と同じである。よって、表面検査装置1の全体構成は、図1に示す構成と同様であるので、図示及び詳細な説明は省略する。
 図7において、スピンドルステージ5と試料保持部3の間に鉛直方向に変位可能な支持部材4aを配置する。試料保持部3にヨーク4baを固定し、ヨーク4aにマグネット4bbを取り付ける。ヨーク4baは筒形状で図7に示すようにスピンドルステージ5の外側に設置される。ヨーク4baの外側にヨーク4baに沿うようにマグネット4bbを設置する。コイル固定部材4bdを表面検査装置1の構造体(フレーム)に取り付け、マグネット4bbに対向するようにコイル4bcをコイル固定部材4bdに取り付ける。コイル4bcへの電流とマグネット4bbの磁界との作用で生じる電磁力で試料2を鉛直方向に駆動する。
 実施例2においても、実施例1と同様な効果を得ることができる。
 (実施例3)
 次に、本発明の実施例3による表面検査装置1について図8を用いて説明する。
 本実施例3による表面検査装置1は、試料駆動部4の駆動方法と支持部材4aが実施例1による表面検査装置1と異なり、その他の構成は実施例1による表面検査装置1と同じである。よって、表面検査装置1の全体構成は、図1に示す構成と同様であるので、図示及び詳細な説明は省略する。
 図8において、試料駆動源4bは、電磁力を発生させる機構若しくは圧電素子や磁歪アクチュエータのような電気的・磁気的力を発生させる部材を備え、試料駆動部4をスピンドルステージ5と試料保持部3の間に配置される。これにより、試料2を鉛直方向に駆動する。試料駆動部4bは圧電素子や磁歪アクチュエータに限定されず、0.5μm~数十μmで精度よく、回転周波数に追従するような高周波数で調整が行えるものであればよい。試料駆動源4bは、電気的・磁気的力の少なくとも一方を発生させ、試料2を駆動するための駆動力を発生させる。
 実施例3においても、実施例1と同様な効果を得ることができる。
 (実施例4)
 次に、本発明の実施例4による表面検査装置1について説明する。
 本発明の実施例1による試料保持部3は裏面を吸着して試料2を保持する方式であるが、試料2のエッジをグリップするなどして試料2の裏面を浮かせた状態で保持するものなど、ほかの方式でも試料2を保持することができる。
 実施例1における、試料2の裏面を吸着して保持する方式は、例えば半導体デバイスメーカで使用される場合に用いられる。
 本実施例4で挙げている、試料2の裏面を浮かせた状態で試料2を保持する方式は、例えば、試料2の裏面を試料保持部3に接触することが許されないウェハメーカで使用する場合に用いられる。
 本実施例4による表面検査装置1は、試料保持部3が試料2の側面を保持するところが実施例1による表面検査装置1と異なり、その他の構成は実施例1による表面検査装置1と同じである。よって、表面検査装置1の全体構成は、図1に示す構成と同様であるので、図示及び詳細な説明は省略する。
 実施例4においては、試料2の裏面に接触することなく、試料2の側面を試料保持部3により支持し、試料保持部3を、例えば、実施例2の試料駆動部4により、駆動する構成とする。この場合、試料駆動部4は、試料2の裏面に接触することなく、保持部3を支持する構成とする。
 実施例4においては、実施例1と同様な効果を得ることができる他、試料2の裏面を試料保持部3に接触することが許されない場合においても、試料2の鉛直方向駆動に対し高精度に位置制御可能な試料駆動部4を備えた表面検査装置1を提供することができる。
 以上説明した本発明によれば、試料保持部3は固定部と重心位置の高さを揃えることにより回転速度によらず試料2の変形を抑えることができる。これにより高速な回転速度に対応するだけでなく検査中に回転速度が変化する場合にも試料2の平面度を維持することができる。
 しかしながら、試料保持部3の変形以外に、試料2自身の反り(図9Bに示す)や厚みのバラツキ(図9Cに示す)、スピンドルステージ5の回転精度などが試料2の表面の鉛直方向の位置変動(図9Aに示す)の原因として挙げられる。
 鉛直駆動ステージ6は~数十mmまで調整することができるが、高速回転時の高速で微小な試料表面の鉛直方向の位置変動には対応が困難である。
 これに対し試料駆動部4は数μ~数十μmの微小な試料表面の鉛直方向の位置変動を、高速回転の周波数に追従して調整を行うことができる。鉛直駆動ステージ6と試料駆動部4の調整を組み合わせることにより検査感度を向上することができる。また、鉛直駆動ステージ6でスピンドルステージ5全体を駆動するのと比較して試料駆動部4による試料保持部3と試料2のみの駆動は軽量であるため駆動電力を抑える効果も見込める。
 なお、上記実施例1~4において、数mmまでの大きさの第1の調整量で、試料2の表面の鉛直方向の位置変動に対して鉛直駆動ステージ6で調整し、高速な変動に対して、0.5~数μm程度の大きさの第2の調整量による精度で、試料駆動部4bで調整を行うことで、試料2の高精度な鉛直方向の位置調整を可能にすることができる。
 また、上記実施例1~4において、試料保持部3は円形であり、試料保持部3が固定される位置の高さと、試料保持部3の半径方向の位置における重心の高さとが略同一となるに試料駆動部4が第2の調整量を調整することにより、回転による遠心力の影響によって発生する試料保持部2の変形を抑え、試料2を平面に保つことができる。
 また、上記実施例1~4において、スピンドルステージ5による試料保持部3と試料2の回転に伴って、試料保持部3と試料2のみを鉛直方向に変位させることができる。
 また、上記実施例1~4において、スピンドルステージ5と、水平駆動ステージ7と、照明光学系8と、検出光学系9と、データ処理部12と、コントローラ13と、により試料2の検査を行っている間、照明光学系8から試料2に照射されたレーザ光の試料2の検査位置より螺旋状軌跡の外周位置における試料2の鉛直方向の先行位置を変位センサ10により検出し、コントローラ13及びステージ制御部14は、試料駆動部4を予測制御して、レーザ光が試料2の検出した先行位置に照射される直前に、第2の調整量で試料2を鉛直方向に駆動するように構成することができる。
 このように制御することで、コントローラ13及びステージ制御部14が、第2の調整量を演算して、試料駆動部4に動作指令を出力し、実際に試料駆動部4が試料2を駆動するまでの遅延時間を補償して、リアルタイムに動作制御することができる。
 コントローラ13及びステージ制御部14は、試料2に照射されたレーザ光の試料2の検査位置の鉛直方向の位置と先行位置における鉛直方向の位置との差分を算出し、算出した差分に基いて、第2の調整量を補正するように構成することができる。
 1・・・表面検査装置、2・・・試料(ウェハ)、3・・・試料保持部、4・・・試料駆動部、4a・・・支持部材、4b・・・試料駆動源、4ba・・・ヨーク、4bb・・・マグネット、4bc・・・コイル、4bd・・・コイル固定部材、5・・・スピンドルステージ、6・・・鉛直駆動ステージ、7・・・水平駆動ステージ、8・・・照明光学系、9・・・検出光学系、10・・・変位センサ、11・・・回転軸、12・・・データ処理部、13・・・コントローラ、14・・・ステージ制御部、15・・・ロータリーエンコーダ、16・・・リニアエンコーダ、100・・・光学系、200・・・ステージ系

Claims (9)

  1.  試料に対しレーザ光を照射する照明光学系と、前記試料からの散乱又は反射したレーザ光を検出する検出光学系と、前記試料を保持するステージ系と、前記ステージ系の駆動制御を行うコントローラと、前記ステージ系を制御するステージ制御部と、前記試料のスキャン情報を生成するデータ処理部と、を備え、
     前記ステージ系は前記試料を保持する試料保持部と、前記試料と前記試料保持部を駆動する試料駆動部と、前記試料を回転させるスピンドルステージと、前記試料を鉛直方向に駆動する鉛直駆動ステージと、前記試料を水平方向に駆動する水平駆動ステージと、前記試料の高さを検出する変位センサと、を有し、
     前記試料駆動部は、前記試料保持部を、前記試料を支持する鉛直方向に変位可能な支持部材と、前記試料を駆動するための駆動力を発生させる試料駆動源と、を有し、前記スピンドルステージが回転中に、前記変位センサが検知した前記試料の面内位置と鉛直方向位置に基づき、前記コントローラは、前記試料の面内位置ごとに異なる鉛直方向の調整量を算出し、前記鉛直駆動ステージにより前記試料を鉛直方向に第1の調整量で駆動し、前記試料駆動部は、前記試料を前記第1の調整量より小さい第2の調整量で前記試料を鉛直方向に駆動することを特徴とする表面検査装置。
  2.  請求項1に記載の表面検査装置において、
     前記スピンドルステージと、前記水平駆動ステージと、前記照明光学系と、前記検出光学系と、前記データ処理部と、前記コントローラと、により前記試料の検査を行っている間、前記変位センサにより前記試料の面内位置とその鉛直方向位置を検出し続け、前記試料駆動部と前記鉛直駆動ステージにより前記試料を前記検出光学系の焦点範囲に鉛直方向位置を調整し続けることを特徴とする表面検査装置。
  3.  請求項1に記載の表面検査装置において、
     数mmまでの大きさの試料表面の鉛直方向の位置変動に対して前記第1の調整量により前記鉛直駆動ステージで調整し、高速な変動に対して0.5~数μm程度の精度で前記第2の調整量により前記試料駆動部で調整を行うことを特徴とする表面検査装置。
  4.  請求項1に記載の表面検査装置において、
     前記試料保持部は円形であり、前記試料保持部を前記試料駆動部に固定させる位置の高さと、前記試料保持部の半径方向中心部から外周部までの各位置での鉛直方向の重心の高さとが略同一となるように構成されたことを特徴とする表面検査装置。
  5.  請求項1に記載の表面検査装置において、
     前記支持部材は、前記スピンドルステージと前記試料保持部の間に設置され、前記スピンドルステージによる前記試料保持部と前記試料の回転に伴って、前記試料保持部と前記試料が鉛直方向に変位することを特徴とする表面検査装置。
  6.  請求項1に記載の表面検査装置において、
     前記試料駆動部は、前記試料と前記試料保持部とを駆動するための、電磁力を発する機構もしくは電気的磁気的力を発生させる部材を有し、前記試料駆動部が前記スピンドルステージと前記試料保持部との間に配置されることにより、前記試料の回転に伴って前記試料保持部と前記試料が鉛直方向に変位することを特徴とする表面検査装置。
  7.  請求項1に記載の表面検査装置において、
     前記照明光学系から前記試料に照射された前記レーザ光の前記試料の検査位置より螺旋状軌跡の外周位置における前記試料の鉛直方向の先行位置を前記変位センサにより検出し、前記コントローラ及び前記ステージ制御部は、前記試料駆動部を予測制御して、前記レーザ光が前記試料の前記先行位置に照射される直前に、前記第2の調整量で前記試料を鉛直方向に駆動することを特徴とする表面検査装置。
  8.  請求項7に記載の表面検査装置において、
     前記コントローラ及び前記ステージ制御部は、前記試料に照射された前記レーザ光の前記試料の検査位置の鉛直方向の位置と前記先行位置における鉛直方向の位置との差分を算出し、算出した前記差分に基づいて、前記第2の調整量を補正することを特徴とする表面検査装置。
  9.  請求項1に記載の表面検査装置において、
     前記第1の調整量は、50~100μmであり、前記第2の調整量は、0.5~数μmであることを特徴とする表面検査装置。
PCT/JP2021/046458 2021-12-16 2021-12-16 表面検査装置 WO2023112243A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046458 WO2023112243A1 (ja) 2021-12-16 2021-12-16 表面検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046458 WO2023112243A1 (ja) 2021-12-16 2021-12-16 表面検査装置

Publications (1)

Publication Number Publication Date
WO2023112243A1 true WO2023112243A1 (ja) 2023-06-22

Family

ID=86773887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046458 WO2023112243A1 (ja) 2021-12-16 2021-12-16 表面検査装置

Country Status (1)

Country Link
WO (1) WO2023112243A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238445A (ja) * 1986-04-10 1987-10-19 Hitachi Electronics Eng Co Ltd 表面検査装置
JPS6382390A (ja) * 1986-09-26 1988-04-13 日立電子エンジニアリング株式会社 移動ステ−ジ機構
JPS63213810A (ja) * 1987-03-02 1988-09-06 Hitachi Electronics Eng Co Ltd オ−トフオ−カス方式
JP2003028974A (ja) * 2001-07-13 2003-01-29 Sumitomo Heavy Ind Ltd ステージ装置
JP2011119320A (ja) * 2009-12-01 2011-06-16 Yaskawa Electric Corp θZ駆動装置およびそれを備えたステージ装置、検査装置
JP2013137315A (ja) * 2013-01-28 2013-07-11 Hitachi High-Technologies Corp 試料搭載装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238445A (ja) * 1986-04-10 1987-10-19 Hitachi Electronics Eng Co Ltd 表面検査装置
JPS6382390A (ja) * 1986-09-26 1988-04-13 日立電子エンジニアリング株式会社 移動ステ−ジ機構
JPS63213810A (ja) * 1987-03-02 1988-09-06 Hitachi Electronics Eng Co Ltd オ−トフオ−カス方式
JP2003028974A (ja) * 2001-07-13 2003-01-29 Sumitomo Heavy Ind Ltd ステージ装置
JP2011119320A (ja) * 2009-12-01 2011-06-16 Yaskawa Electric Corp θZ駆動装置およびそれを備えたステージ装置、検査装置
JP2013137315A (ja) * 2013-01-28 2013-07-11 Hitachi High-Technologies Corp 試料搭載装置

Similar Documents

Publication Publication Date Title
JP5331828B2 (ja) 荷電粒子線装置
TWI462143B (zh) 動態調整電子束影像之聚焦之方法、動態量測欲檢測樣本之高度變化之裝置、電子束裝置、調整電子束之焦距之裝置
JP4668809B2 (ja) 表面検査装置
WO2011004533A1 (ja) 荷電粒子線装置
JP2017108089A (ja) レーザ加工装置及びレーザ加工方法
US10254307B2 (en) Scanning probe microscope
US9905393B2 (en) Stage apparatus with braking system for lens, beam, or vibration compensation
US20160260631A1 (en) Holding and rotating apparatus for flat objects
US11209373B2 (en) Six degree of freedom workpiece stage
JP2010123354A (ja) 荷電粒子線装置
US20220317058A1 (en) Defect Inspection Device and Defect Inspection Method
WO2023112243A1 (ja) 表面検査装置
JP4927506B2 (ja) 荷電粒子線装置及び荷電粒子線装置の撮像方法
JP4435730B2 (ja) 基板検査装置
TW201944157A (zh) 雷射光線的焦點位置檢測方法
KR100927639B1 (ko) 레이저 가공 시편 틸트 보상 장치
JP2014095612A (ja) 検査装置
JP7292968B2 (ja) 荷電粒子ビーム装置
JP6364282B2 (ja) 荷電粒子線装置
JP4477573B2 (ja) 基板検査装置
CN112394199A (zh) 原子力显微镜及其测量方法
TWI836101B (zh) 將一工件定位於一載台上的系統及方法
US10690600B1 (en) Analyzer of technological surfaces
WO2024079791A1 (ja) 表面検査装置
JP2009212257A (ja) ウエハーエッジ検査装置用ステージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968158

Country of ref document: EP

Kind code of ref document: A1