WO2023112093A1 - 多関節ロボット - Google Patents

多関節ロボット Download PDF

Info

Publication number
WO2023112093A1
WO2023112093A1 PCT/JP2021/045869 JP2021045869W WO2023112093A1 WO 2023112093 A1 WO2023112093 A1 WO 2023112093A1 JP 2021045869 W JP2021045869 W JP 2021045869W WO 2023112093 A1 WO2023112093 A1 WO 2023112093A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
printed circuit
circuit board
articulated robot
arm
Prior art date
Application number
PCT/JP2021/045869
Other languages
English (en)
French (fr)
Inventor
秀俊 植松
慶太郎 稲垣
泰地 田口
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/045869 priority Critical patent/WO2023112093A1/ja
Priority to TW111143594A priority patent/TW202322998A/zh
Publication of WO2023112093A1 publication Critical patent/WO2023112093A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present invention relates to articulated robots.
  • a robot in which a motor drive device that supplies power to a motor that drives the joints of the robot is built into the robot housing (for example, Patent Document 1).
  • a motor driving device generally includes a control circuit for controlling the position, speed, torque, etc. of the motor, and an inverter circuit for generating an alternating current power signal from a direct current.
  • Japanese Patent Laid-Open No. 2002-200003 relates to an assembly robot, and states that "the first turning arm 26 is provided with control devices 34 and 35 that control the energization of the first turning servomotor 32 and the second turning servomotor, respectively. ” (Paragraph 0014).
  • Patent Document 2 describes the configuration of the robot: "In the first embodiment, the sensor units S1 to S6 and the circuit boards 21 to 34 are connected by wirings 141 to 146. Then, the sensor units S1 to S6 and the circuit boards 31 to 34 are arranged inside the robot main body 150 so that the branch lines 141 to 146 do not pass through the joints J1, J4, and J6, which are torsion joints.” (Paragraph 0025).
  • Patent Document 3 describes the configuration of the robot: "The first motor M1 has a built-in resolver R1 that detects the absolute position, which is the rotation angle of the output shaft of the first motor M1.
  • the resolver R1 It is connected to the drive circuit board 25 arranged inside the base 11 and driven by the drive power output from the drive circuit board 25.” (Paragraph 0023).
  • Patent Document 1 describes a configuration in which a substantially circular control board and drive board are arranged behind an actuator composed of a motor and a speed reducer so as to face the actuator.
  • the control board and the like are arranged in a circular configuration so as to face the actuator, the area of the printed circuit board is limited.
  • a configuration of a robot that can secure a large substrate area for a motor driving device is desired.
  • One aspect of the present disclosure is an articulated robot having a plurality of joint axes, comprising: a plurality of motors for respectively driving the plurality of joint axes; and driving one of the plurality of joint axes. and a second motor that drives the joint axis next to the one joint axis when viewed from the base of the articulated robot, in the extended portion of the housing of the articulated robot.
  • at least one motor driving device for driving at least one of the plurality of motors, the at least one motor driving device being disposed in space, the at least one motor driving device driving the at least one motor
  • the printed circuit board has a printed circuit board on which a circuit for The multi-joint robot is arranged in the extension part in a state inclined with respect to the extension direction.
  • FIG. 11 is a diagram showing a second example of the configuration of the robot;
  • 1 is a perspective view of a motor driver having a printed circuit board on which control circuitry is mounted;
  • FIG. 6B is a diagram including top, side, bottom, and front views of the motor drive of FIG. 6A;
  • FIG. 6B is a cross-sectional perspective view of the motor drive taken along line AA shown in FIG. 6B;
  • FIG. 1 is a perspective view of a motor driver having a printed circuit board on which control circuitry is mounted;
  • FIG. 7B is a diagram including top, side, bottom, and front views of the motor drive of FIG. 7A;
  • FIG. 7C is a cross-sectional perspective view of the motor drive device taken along line BB shown in FIG. 7B;
  • FIG. It is the figure which represented as sectional drawing the state which fixed the motor drive device to the internal space of J2 arm.
  • FIG. 11 is a perspective view of a state in which the motor driving device is fixed in the internal space of the J2 arm;
  • FIG. 4 is a diagram showing a configuration example in which heat generated in a printed circuit board is released to a mounting component side via a heat transfer component in the motor drive device;
  • FIG. 3 is a diagram showing a configuration example in which two printed circuit boards are mounted in a motor drive device;
  • FIG. 1 is a perspective view showing the external configuration of the robot 1 according to this embodiment. It should be noted that FIG. 1 also shows six actuators 11 to 16 arranged in the housing that constitutes the arm of the robot 1 . As shown in FIG. 1, the robot 1 is equipped with a housing having a substantially circular cross section, and has six actuators 11 to 16 arranged between a base 10 fixed to an installation surface and an end effector mounting portion at the tip. It is a 6-axis articulated robot with 6 jointed axes to be driven. Each actuator 11-16 includes a motor and speed reducer. Each joint axis is called J1 axis, J2 axis, J3 axis, J4 axis, J5 axis, and J6 axis in order from the base side.
  • the robot 1 drives, in order from the base side, the actuator 11 that drives the J1 axis, the actuator 12 that drives the J2 axis, the actuator 13 that drives the J3 axis, the actuator 14 that drives the J4 axis, and the J5 axis. It has an actuator 15 and an actuator 16 that drives the J6 axis.
  • arrows J1 to J6 indicate the directions of rotation of the axes by the actuators 11-16.
  • the robot 1 includes a base 10 serving as a base for supporting the entire robot 1, a J1 arm 21 driven by an actuator 11 so as to rotate around the J1 axis in the vertical direction, and an actuator 12 around the J2 axis extending in the horizontal direction.
  • J2 arm 22 driven to rotate
  • J3 arm 23 driven to rotate about J3 axis by actuator 13
  • J4 arm 24 driven to rotate about J4 axis by actuator 14, It has a J5 arm 25 driven by the actuator 15 to rotate about the J5 axis, and a J6 arm 26 as a wrist driven by the actuator 16 to rotate about the J6 axis.
  • FIG. 2 is a diagram showing a configuration example of a control system for controlling the robot 1.
  • the control system includes a robot 1 , a robot controller 50 that controls the robot 1 , and a teaching operation panel 60 connected to the robot controller 50 .
  • a teaching operation panel 60 is used to teach the robot 1 .
  • the robot control device 50 controls the motion of the robot 1 according to commands or motion programs from the teaching operation panel 60 .
  • the robot 1 has six actuators 11-16, and control circuits 11c-16c and drive circuits 11d-16d for driving and controlling them.
  • the actuator 11 has a motor 11m and an encoder 11e that outputs the rotational position of the motor 11m.
  • the actuator 12 has a motor 12m and an encoder 12e that outputs the rotational position of the motor 12m
  • the actuator 13 has a motor 13m and an encoder 13e that outputs the rotational position of the motor 13m
  • the actuator 14 has , a motor 14m and an encoder 14e for outputting the rotational position of the motor 14m.
  • the actuator 15 has a motor 15m and an encoder 15e for outputting the rotational position of the motor 15m. and an encoder 16e that outputs the rotational position of the .
  • the closer to the base side the larger the load driving capability and the larger the size.
  • a control circuit 13c and a drive circuit 13d for controlling and driving the actuator 14 a control circuit 14c and a driving circuit 14d for controlling and driving the actuator 14, a control circuit 15c and a driving circuit for controlling and driving the actuator 15 15d, and a control circuit 16c and a drive circuit 16d for controlling and driving the actuator 16 are arranged.
  • control circuits 11c to 16c those having the same circuit configuration and common electrical specifications of each part can be used.
  • the drive circuits 11d to 16d can have the same circuit configuration, the load drive capability of the motor varies depending on the actuator, and the output power varies. Different electrical specifications are used.
  • the control circuit 11c performs servo control of the motor 11m, and the drive circuit 11d operates according to the control signal from the control circuit 11c and outputs a power signal for driving the motor 11m.
  • Control circuits 12c-16c have the same function as control circuit 11c, and drive circuits 12d-16d have the same function as drive circuit 11d.
  • the motion control unit 51 in the robot control device 50 generates a trajectory plan according to the motion program, obtains the position of each axis by kinematic calculation, and sends commands to the actuators of each axis.
  • the control circuits 11c-16c of the actuators 11-16 perform servo control on the motors according to commands from the operation control unit 51, and the drive circuits 11d-16d control the motors according to control signals from the control circuits 11c-16c. outputs a power signal to drive the
  • FIG. 3 is a diagram showing a configuration example of a circuit of a motor drive device including a control circuit and a drive circuit (that is, a circuit for driving the motor).
  • the circuit configurations of the control circuit 11c and the drive circuit 11d are shown representatively, but the control circuits 12c to 16c have the same circuit configuration as the control circuit 11c, and the drive circuits 12d to 16d also have the same circuit configuration as the drive circuit 11d. has the same circuit configuration as
  • the control circuit 11c includes a connector 111 for receiving a command signal from the motion control section 51 of the robot control device 50, a connector 113 for receiving a position feedback signal from the encoder 11e, a drive and a connector 114 for providing control signals to the circuit 11d. Further, the control circuit 11c has a PWM switching signal generation section 112 that generates a PWM switching signal according to a command from the operation control section 51 and various feedback signals such as a position feedback signal. Note that the PWM switching signal generator 112 may be composed of an MCU (microcontroller unit), a dedicated or custom LSI, or the like. With this configuration, the control circuit 11c executes servo control of the motor 11m according to commands (position commands, etc.) from the motion control section 51. FIG.
  • the drive circuit 11d includes a connector 121 for receiving an external power supply, a connector 127 for receiving a control signal from the control circuit 11c, and a connector 126 for outputting an AC power signal for driving the motor 11m.
  • the drive circuit 11d also has a power supply unit 122 including a smoothing capacitor 123, and an inverter unit 124 that generates U-phase, V-phase and W-phase power signals 125 according to the PWM switching signal from the control circuit 11c. Since the power supply unit 122 has a function of supplying a DC power supply, it is indicated by using a symbol of a DC power supply in this figure. In this configuration, U-phase, V-phase, and W-phase power signals 125 are output via connectors 126 .
  • the switching elements that make up the inverter section 124 are composed of power semiconductor devices such as MOSFETs, IGBTs (Insulated Gate Bipolar Transistors), and IPMs (Intelligent Power Modules).
  • control circuit 11c and the drive circuit 11d configured as described above are mounted on a substantially circular printed circuit board and arranged so as to face the end of each actuator 11-16 in the joint axis direction of each actuator 11-16 ( In other words, if the printed circuit board is arranged perpendicular to the central axis direction of the housing portion where the actuator is arranged, the area of the printed circuit board is limited to the inner diameter of the cylindrical robot arm.
  • the cylindrical extending portion of the robot arm can be divided along a cutting plane parallel to the central axis direction of the extending portion (i.e., by dividing the circular cross section into semicircles), and the internal space of the extending portion is If the printed circuit board is arranged in the middle, the printed circuit board can be made into a rectangle extending in the direction of the central axis of the extended part, and the area can be increased. may invite
  • the printed circuit board constituting the motor driving device is configured so that a motor for driving one joint shaft among a plurality of joint shafts and a motor for driving one of the joint shafts and the one joint shaft as seen from the base of the robot 1 are mounted.
  • the surface of the printed circuit board is arranged so as to be inclined with respect to the extending direction of the extending portion. That is, the printed circuit board is arranged on the extended portion such that the angle between the surface of the printed circuit board and the extending direction of the extended portion (angle ⁇ in FIG. 8) is greater than 0 degrees and less than 90 degrees. be.
  • the extending direction can also be said to be the central axis direction of the housing of the robot 1 which is formed in a substantially cylindrical shape.
  • the substrate area can be increased compared to the above example in which the printed circuit board that constitutes the motor drive device is substantially circular and arranged perpendicular to the axial direction so as to face the actuator.
  • the J2 arm 22 and the J3 arm 23 of the entire arm are the main parts that control the movement of a human arm and ensure the size of the robot's movable range. It is generally composed relatively long from the property that . Therefore, the J2 arm 22 and the J3 arm 23 can secure a relatively large internal space for arranging the components among the arms as a whole.
  • the J1 arm 21 has a large diameter and a short configuration because it is a part that supports the entire robot 1, and the J4 arm 24 and J5 arm 25 are arms close to the wrist.
  • the arm 22 is configured to be shorter than the J3 arm 23 . Since the J6 arm 26 constitutes the wrist portion, it is configured to be short.
  • a motor drive device for driving the motors in the actuators of each axis is provided in at least one of the J2 arm and the J3 arm. It is configured to be placed in
  • FIG. 4 is a perspective view showing the configuration of the robot 1 according to the first embodiment.
  • FIG. 4 also shows the layout of the printed circuit board that constitutes the motor driving device inside the arm.
  • two printed circuit boards PT1 and PT2 as a motor driving device are arranged in the J2 arm 22 driven to rotate by the actuator 12, and in the J3 arm 23 driven by the actuator 13,
  • Two printed circuit boards PT11 and PT12 are arranged as motor driving devices.
  • the printed circuit boards PT11 and PT12 are arranged in the J3 arm 23 between the actuator 13 for driving the J3 axis and the actuator 14 for driving the J4 axis.
  • the printed boards PT1 and PT2 control and drive the actuators 11-13, and the printed boards PT11 and PT12 control and drive the actuators 14-16. More specifically, the printed circuit board PT1 arranged in the J2 arm 22 carries control circuits 11c, 12c, and 13c for controlling the actuators 11-13 (see FIG. 2). Further, the printed circuit board PT2 is mounted with drive circuits 11d, 12d, and 13d for supplying power signals to the actuators 11-13.
  • the printed circuit board PT11 placed in the J3 arm 23 is equipped with control circuits 13c, 14c, and 15c for controlling the actuators 14-16. Further, the printed circuit board PT12 is mounted with drive circuits 14d, 15d, and 16d that supply power signals to the actuators 14-16 (see FIG. 2). In the housing constituting the arm of the robot 1, there are cables for supplying power and control signals from the robot controller 50 side to the printed boards PT1, PT2, PT11 and PT12, the printed boards PT1 and PT2 and the actuators 11-13. , cables between the printed circuit boards PT11 and PT12 and the actuators 14-16, and the like.
  • the housing of the robot 1 is provided with covers 31, 32, 33, and 34, and these covers are fixed to the housing by fixing members (not shown) such as screws.
  • the cover 32 is formed in such a shape that a portion of the proximal end portion of the J2 arm 22 that is closer to one side in the left-right direction in the drawing is cut with a cut surface that is inclined with respect to the direction of the central axis of the J2 arm 22 . It is That is, the cover 32 is formed so as to be separable by cutting a portion including one end portion and side surface of the J2 arm 22 along a cutting plane inclined with respect to the extending direction of the J2 arm 22 . By removing the cover 32 from the body of the J2 arm 22, the printed circuit boards PT1 and PT2 are fixed inside the body of the J2 arm 22 through the opening 22c (see FIGS. 8 and 9) of the body of the J2 arm 22.
  • the J2 arm 22 has a configuration capable of suppressing a decrease in strength as a whole.
  • the cover 33 of the J3 arm 23 has a shape in which a portion of the proximal end of the J3 arm 23, which is closer to the front side in the figure, is cut with a cut plane inclined with respect to the direction of the central axis of the J3 arm 23. formed. That is, the cover 33 is formed so as to be separable by cutting a portion including one end portion and side surface of the J3 arm 23 along a cutting plane inclined with respect to the extension direction of the J3 arm 23 .
  • the printed circuit boards PT11 and PT12 can be easily moved through the opening of the main body of J3 arm 23 in the direction in which they are fixed inside the main body of J3 arm 23. can be taken in and out.
  • the cover 33 is configured to suppress a decrease in strength as a whole.
  • FIG. 5 is a diagram showing a configuration example of the robot 1 according to the second embodiment.
  • the layout positions of the printed circuit boards PT11 and PT12 are different from those in the first embodiment. More specifically, as shown in FIG. 5, the printed circuit boards PT11 and PT12 are arranged in the inner space of the J3 arm 23 nearer to the distal end side. That is, in the J3 arm 23, the printed boards PT11 and PT12 are arranged between the actuator 14 for driving the fourth axis and the actuator 15 for driving the fifth axis.
  • the actuator 14 for rotating the J4 arm 24 is arranged in the J3 arm. ) in the J3 arm 23 at a position closer to the proximal side. Therefore, it can be said that the second embodiment is advantageous when the space between the actuators 14 and 15 in the J3 arm 23 is relatively large.
  • the cover 34 of the J3 arm 23 is formed in such a shape that a portion of the distal end of the J3 arm 23, which is closer to the front side in the drawing, is cut off with a cut plane inclined with respect to the direction of the central axis of the J3 arm 23. It is That is, the cover 34 is formed so as to be separable by cutting a portion including one end and a side surface of the J3 arm 23 along a cutting plane inclined with respect to the extending direction of the J3 arm 23 .
  • the cover 34 By removing the cover 34 from the body of the J3 arm 23, the printed circuit boards PT11 and PT12 can be easily moved through the opening of the body of the J3 arm 23 in the direction in which they are fixed inside the body of the J3 arm 23. can be taken in and out.
  • the cover 34 is configured to suppress a decrease in strength as a whole.
  • a motor driving device including the printed circuit board PT11 can also have a configuration similar to that of the motor driving device 200.
  • FIG. A motor driving device including the printed circuit board PT12 can also have the same configuration as the motor driving device 300.
  • FIG. Therefore, the arrangement and mounting structure of the motor driving device including the printed circuit board PT11 and the motor driving device including the printed circuit board PT12 in the J3 arm 23 are similar to the arrangement and mounting structure of the motor driving devices 200 and 300 in the J2 arm 22. can have the same configuration as Therefore, the motor driving devices 200 and 300 and the mounting structure in the J2 arm 22 will be described below.
  • FIG. 6A shows a perspective view of a configuration example of a motor drive device 200 having a printed circuit board PT1 on which control circuits 11c-13c are mounted.
  • FIG. 6B shows a top view (reference numeral 200A), a side view (reference numeral 200B), a bottom view (reference numeral 200C), and a front view (reference numeral 200D) of the motor drive device 200.
  • FIG. FIG. 6C shows a cross-sectional perspective view of motor drive 200 at line AA shown in FIG. 6B.
  • FIG. 7A shows a perspective view of a configuration example of a motor drive device 300 having a printed circuit board PT2 on which drive circuits 11d to 13d are mounted.
  • FIG. 7B shows a top view (reference numeral 300A), a side view (reference numeral 300B), a bottom view (reference numeral 300C), and a front view (reference numeral 300D) of the motor drive device 300.
  • FIG. FIG. 7C shows a cross-sectional perspective view of motor drive 300 at line BB shown in FIG. 7B.
  • FIG. 8 shows a state in which the motor drive devices 200 and 300 are fixed in the internal space of the J2 arm 22 as a sectional view. Note that FIG. 8 shows a state in which the cover 32 is removed. 8, the printed circuit board PT1 constituting the motor driving device 200 and the printed circuit board PT2 constituting the motor driving device 300 are inclined at an angle ⁇ with respect to the direction of the central axis C of the J2 arm 22. It is illustrated that it is arranged as FIG. 9 shows a perspective view of a state in which the motor driving devices 200 and 300 are fixed in the inner space of the J2 arm 22. As shown in FIG. 9 shows a state in which the cover 32 is separated from the J2 arm 22 and a part of the J2 arm 22 is cut to see the inner space.
  • the motor driving device 200 is composed of a printed circuit board PT1 on which control circuits 11c to 13c are mounted and a mounting part 210.
  • the side on which the mounting surface 221 is located (lower left side in the drawing) may be referred to as the front side, and the opposite side may be referred to as the rear side.
  • the attachment part 210 is composed of a first attachment member 201 and a second attachment member 202 .
  • the printed circuit board PT1 is sandwiched and held between the first mounting member 201 and the second mounting member 202 .
  • the first mounting member 201 has a flat U-shape.
  • the second mounting member 202 has a mounting edge portion 211 screwed to the first mounting member 201 and a side wall portion 212 forming a side wall.
  • the side wall portion 212 forms a flat wall surface (mounting surface 221) on the front side, forms both side walls from the front side toward the rear side, and forms a grip portion by connecting these side portions on the rear side. are doing.
  • the side wall portion 212 extends from the front side toward the rear side along the periphery of the second mounting member 202, and is formed such that the height from the mounting edge portion 211 decreases from the front side toward the rear side. (Refer to the side view (reference numeral 200B) of FIG. 6B).
  • the first mounting member 201 and the second mounting member 202 are connected to each other with five screws in this example.
  • the mounting surface 221 is formed with three screw holes 231 for screwing and fixing to the mounting portion formed on the inner wall of the J2 arm 22.
  • FIG. 6C is a cross-sectional perspective view of the motor drive device 200 taken along line AA shown in FIG. 6B.
  • the printed circuit board PT1 is held in such a manner that its peripheral portion is sandwiched between the first mounting member 201 and the mounting edge portion 211 of the second mounting member 202 .
  • Vibration absorbing members 251 and 252 are interposed between the first mounting member 201 and the mounting edge portion 211 while the printed circuit board PT1 is sandwiched between the upper and lower vibration absorbing members 251 and 252. Firmly screwed in place. This can prevent the vibration from the robot 1 side from propagating to the printed circuit board PT1.
  • various elastic members antioxidant-vibration rubber, gel-like member, etc.
  • the motor drive device 300 is composed of a printed circuit board PT2 on which drive circuits 11d to 13d are mounted and a mounting part 310.
  • the side on which the mounting surface 321 is located (lower left side in the drawing) may be called the front side, and the opposite side may be called the rear side.
  • the attachment part 310 is composed of a first attachment member 301 and a second attachment member 302 .
  • the printed board PT2 is sandwiched and held between the first mounting member 301 and the second mounting member 302 .
  • the first mounting member 301 has a flat, substantially elliptical shape.
  • the second mounting member 302 has a mounting edge portion 311 screwed to the first mounting member 301 and a side wall portion 312 forming a side wall.
  • the side wall portion 312 forms a flat wall surface (mounting surface 321) on the front side, forms both side walls of the second mounting member 302 from the front side to the rear side, and connects these side walls on the rear side. It is
  • the side wall portion 312 extends rearward along the periphery of the second mounting member 302, and is formed such that the height from the mounting edge portion 311 decreases from the front side toward the rear side (see FIG. 3). 7B side view (reference numeral 300B)).
  • the first mounting member 301 and the second mounting member 302 are connected to each other by seven screws in this example.
  • the mounting surface 321 is formed with three screw holes 331 for screwing and fixing to the mounting portion formed on the inner wall of the J2 arm 22.
  • FIG. 7C is a cross-sectional perspective view of the motor drive device 300 taken along line BB shown in FIG. 7B.
  • the printed circuit board PT2 is held in such a manner that its peripheral portion is sandwiched between the first mounting member 301 and the mounting edge portion 311 of the second mounting member 302 .
  • Vibration absorbing members 351 and 352 are interposed between the first mounting member 301 and the mounting edge portion 311 while the printed circuit board PT2 is sandwiched between the upper and lower vibration absorbing members 351 and 352. It is fixed firmly by screw 364 . This can prevent vibration from the robot side from propagating to the printed circuit board PT2.
  • the vibration absorbing materials 351 and 352 the same materials as the vibration absorbing materials 251 and 252 can be used.
  • a first protrusion 411 having a triangular cross-sectional view and formed to protrude toward the inner space for mounting the motor drive devices 200 and 300;
  • a second protrusion 412 is formed.
  • the inner wall surface 22a is made of metal, for example.
  • the motor drive device 200 may be attached to the first projection 411 and the motor drive device 300 may be attached to the second projection 412 .
  • the lower inclined surface 411 a of the first protrusion 411 is formed with screw holes at positions aligned with the three screw holes 231 formed in the mounting surface 221 of the motor drive device 200 .
  • the lower inclined surface 412 a of the second protrusion 412 is formed with screw holes at positions aligned with the three screw holes 331 formed in the front mounting surface 321 of the motor drive device 300 .
  • the opening 22c formed in the J2 arm 22 by separating the cover 32 is located on the side of the inner wall surface 22a opposite to the side on which the first projection 411 and the second projection 412 are located.
  • the front mounting surface 221 of the motor drive device 200 is abutted against the lower inclined surface 411a of the first protrusion 411, and the screw 260 and the tool (not shown) are inserted into the inner space of the J2 arm 22 from the opening 22c side. , and the motor driving device 200 is screwed and fixed to the first protrusion 411 .
  • the front end surface 210a of the attachment part 210 of the motor drive device 200 is inclined at an angle so as to come into close contact with the inner wall surface 22a of the J2 arm 22 with the attachment surface 221 abutting against the lower inclined surface 411a. It is defined. Thereby, the motor drive device 200 is firmly fixed in the inner space of the J2 arm 22 as shown.
  • the front mounting surface 321 of the motor drive device 300 is abutted against the lower inclined surface 412a of the second protrusion 412, and the screw 360 and a tool (not shown) are inserted into the J2 arm 22 from the opening 22c side.
  • the motor driving device 300 is screwed and fixed to the second protrusion 412 .
  • the front end surface 310a of the attachment part 310 of the motor drive device 300 is tilted at an angle of inclination so as to come into close contact with the inner wall surface 22a of the J2 arm 22 with the attachment surface 321 abutting against the lower inclined surface 412a. is defined. Thereby, the motor drive device 300 is firmly fixed in the internal space of the J2 arm 22 as shown.
  • each of the motor driving devices 200 and 300 can be moved along the direction of entering from the opening 22c of the J2 arm 22, and can be fixed by abutting against the inner wall surface 22a. Therefore, each motor driving device 200, 300 can be easily fixed in the space inside the J2 arm 22.
  • FIG. 9 shows a state in which the motor drive devices 200 and 300 are attached to the internal space of the J2 arm 22 as described above as a perspective view of the J2 arm 22 partially cut away.
  • FIG. 9 shows a state in which the cover 32 is separated, and it can be understood that the internal space of the J2 arm 22 is accessible in this state.
  • FIG. 10 is a diagram showing the vicinity of the front end portion of the cross-sectional perspective view shown in FIG. 7C (near the front end portion in FIG. 7C).
  • FIG. 7C a configuration example is shown in which the heat generated in the printed circuit board PT2 is released to the attachment component 310 side through the heat transfer component 370, thereby improving the heat dissipation characteristics. It is assumed that the mounting part 310 is made of metal.
  • the heat transfer component 370 connects the printed circuit board PT2 and the first mounting member 301, thereby conducting the heat generated on the printed circuit board PT2 to the first mounting member 301.
  • the end portion of the heat transfer component 370 on the printed circuit board PT2 side may be arranged so as to be in close contact with the heat generating component (power semiconductor device).
  • the heat transfer component 370 various members such as a thin metal plate and a film heat transfer material can be used. By arranging the heat transfer parts made of a particularly flexible material in this way, it is possible to increase the rated current of the motor drive device without interfering with the anti-vibration measures described above.
  • each of the motor driving devices 200 and 300 is configured to mount one printed circuit board in the above-described embodiment, each motor driving device is configured to mount a plurality of printed circuit boards.
  • FIG. 11 is a diagram showing a portion corresponding to the vicinity of the front end portion (near the front end portion in FIG. 7C) of the cross-sectional perspective view of the motor drive device 300 shown in FIG. 7C.
  • a holding member 381 is interposed between the first mounting member 301 and the mounting edge portion 311 .
  • the holding member 381 can be configured as a flat member having substantially the same shape as the first mounting member 301 .
  • the printed circuit board PT52 is sandwiched and held by the vibration absorbing members 353 and 354 in the groove-shaped space 391 formed between the inner peripheral edge portion of the first mounting member 301 and the inner peripheral edge portion of the holding member 381.
  • the printed circuit board PT51 can be sandwiched and held by the vibration absorbing members 351 and 352 in a groove-like space 392 formed between the inner peripheral edge portion of the mounting edge portion 311 and the inner peripheral edge portion of the holding member 381.
  • the first mounting member 301 , the holding member 381 , and the mounting edge portion 311 are collectively screwed and fixed with screws 365 .
  • the two printed circuit boards PT51 and PT52 can be mounted on the motor driving device.
  • control circuits 11c to 13c for the actuators 11 to 13 for three axes are mounted on one printed circuit board P1 (motor driving device 200) in the J2 arm 22.
  • drive circuits 11d to 13d for actuators 11 to 13 for three axes are mounted on one printed circuit board PT2 (motor drive device 300).
  • the control circuits 14c to 16c for the actuators 14 to 16 for the three axes are mounted on one printed circuit board PT11, and the actuators 14 to 16 for the three axes are The drive circuits 14d to 16d are mounted on one circuit board PT12.
  • the printed board PT1 on which the control circuits 11c-13c are mounted and the printed board PT11 on which the control circuits 14c-16c are mounted can be of the same design, including the electrical characteristics of the parts.
  • the configuration in which the motor driving device is arranged in the J2 arm 22 or the J3 arm 23 enables the motor driving device to be arranged in a place away from the actuator, thereby reducing the heat conduction from the actuator and It also contributes to improving the rated current of the
  • the above-described embodiment in which drive circuits for three axes are realized by two printed circuit boards in each of the J2 arm 22 and J3 arm 23 is an example, and the following modifications can also be configured.
  • the number of printed circuit boards arranged on the J2 arm 22 or the J3 arm may be one. In this case, a configuration is adopted in which control circuits and drive circuits for three axes are mounted on one printed circuit board.
  • the number of printed circuit boards mounted on the J2 arm 22 or the J3 arm may be three. In this case, the control circuit and drive circuit for one axis are mounted on one printed circuit board, and three printed circuit boards for three axes are arranged in the J2 arm 22 or J3 arm. .
  • the configuration of this embodiment in which the area of the printed circuit board can be increased by arranging the printed circuit board obliquely with respect to the direction of the central axis in the arm, can be achieved by standardizing the number of printed circuit boards and the printed circuit board. To improve the degree of freedom in designing the types of circuits to be arranged.
  • the configurations of the motor drive devices 200 and 300 in the above-described embodiments are examples, and the configuration of the motor drive device includes an extension part of the robot housing between the actuator (motor) of the robot 1 and the actuator (motor). , various configurations can be obtained in which the printed circuit board can be inclined with respect to the central axis direction of the extending portion.
  • the robot control device 50 may have a general computer configuration including a CPU, ROM, RAM, storage device, operation unit, display unit, input/output interface, network interface, and the like.
  • the teaching operation panel 60 may have a general computer configuration including a CPU, ROM, RAM, storage device, operation unit, display unit, input/output interface, network interface, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

複数の関節軸を有する多関節ロボット(1)であって、複数の関節軸をそれぞれ駆動するための複数のモータ(11m-16m)と、複数の関節軸のうちの一の関節軸を駆動する第1のモータと、多関節ロボットの基部から見て上記一の関節軸の次の関節軸を駆動する第2のモータとの間の、多関節ロボットの筐体の延伸部分の内部空間に配置された、複数のモータのうちの少なくとも一つのモータを駆動するための少なくとも一つのモータ駆動装置(200、300)と、を具備し、少なくとも一つのモータ駆動装置(200、300)は、少なくとも一つのモータを駆動するための回路を搭載したプリント基板を有し、プリント基板は、当該プリント基板の表面と前記延伸部分の延伸方向との間の角度が0度よりも大きく90度よりも小さくなるように延伸方向に対して傾斜した状態で延伸部分に配置されている、多関節ロボット(1)である。

Description

多関節ロボット
 本発明は、多関節ロボットに関する。
 ロボットの関節を駆動するモータに電力を供給するモータ駆動装置を、ロボット筐体に内蔵するロボットが知られている(例えば、特許文献1)。このようなモータ駆動装置は、一般に、モータの位置、速度、トルク等を制御する制御回路と、直流から交流の電力信号を生成するインバータ回路とを含んでいる。
 特許文献2は、組立用ロボットに関し、「第1旋回アーム26には、それら第1旋回用サーボモータ32及び第2旋回用サーボモータをそれぞれ通電制御する制御装置34及び35が設けられている。」と記載する(段落0014)。
 なお、特許文献2は、ロボットの構成に関し、「第1実施形態では、センサ部S1~S6と回路基板21~34とは、配線141~146で接続されている。そして、センサ部S1~S6及び回路基板31~34は、支線141~146が捩り関節である関節J1、J4、J6を通過しないように、ロボット本体150の内部に配置されている。」と記載する(段落0025)。
 また、特許文献3は、ロボットの構成に関し、「第1モータM1には、該第1モータM1における出力軸の回転角度である絶対位置を検出するレゾルバR1が内蔵されている。レゾルバR1は、基台11の内部に配置された駆動回路基板25に接続され、該駆動回路基板25が出力する駆動電源によって駆動される。」と記載する(段落0023)。
特開平2000-25999号公報 特開平06-320475号公報 特開2019-089143号公報 特開2012-218136号公報
 特許文献1は、モータ及び減速機からなるアクチュエータの背後に、このアクチュエータに面するように略円形の制御基板及び駆動基板を配置する構成を記載している。しかしながら、このように制御基板等を円形の構成としてアクチュエータに面して配置する構成とすると、プリント基板としての面積が制限されてしまう。モータ駆動装置の基板面積を広く確保し得るロボットの構成が望まれる。
 本開示の一態様は、複数の関節軸を有する多関節ロボットであって、前記複数の関節軸をそれぞれ駆動するための複数のモータと、前記複数の関節軸のうちの一の関節軸を駆動する第1のモータと、前記多関節ロボットの基部から見て前記一の関節軸の次の関節軸を駆動する第2のモータとの間の、前記多関節ロボットの筐体の延伸部分の内部空間に配置された、前記複数のモータのうちの少なくとも一つのモータを駆動するための少なくとも一つのモータ駆動装置と、を具備し、前記少なくとも一つのモータ駆動装置は、前記少なくとも一つのモータを駆動するための回路を搭載したプリント基板を有し、前記プリント基板は、当該プリント基板の表面と前記延伸部分の延伸方向との間の角度が0度よりも大きく90度よりも小さくなるように前記延伸方向に対して傾斜した状態で前記延伸部分に配置されている、多関節ロボットである。
 上記構成によれば、多関節ロボットの関節軸のモータを駆動するための回路を搭載する基板の面積を広く確保することが可能となる。
 添付図面に示される本発明の典型的な実施形態の詳細な説明から、本発明のこれらの目的、特徴および利点ならびに他の目的、特徴および利点がさらに明確になるであろう。
本実施形態に係るロボットの外観構成を表す斜視図である。 ロボットを制御するための制御システムの構成例を表す図である。 制御回路及び駆動回路を含むモータ駆動装置の回路構成例を表す図である。 ロボットの構成の第1実施例を表す図である。 ロボットの構成の第2実施例を表す図である。 制御回路を搭載するプリント基板を有するモータ駆動装置の斜視図である。 図6Aのモータ駆動装置の上面図、側面図、底面図、及び正面図を含む図である。 図6Bに示したラインA-Aでのモータ駆動装置の断面斜視図である。 制御回路を搭載するプリント基板を有するモータ駆動装置の斜視図である。 図7Aのモータ駆動装置の上面図、側面図、底面図、及び正面図を含む図である。 図7Bに示したラインB-Bでのモータ駆動装置の断面斜視図である。 モータ駆動装置をJ2アームの内部スペースに固定した状態を断面図として表した図である。 モータ駆動装置をJ2アームの内部スペースに固定した状態の斜視図である。 モータ駆動装置において、プリント基板で発生した熱を、伝熱部品を介して取付部品側に逃がす構成例を示す図である。 モータ駆動装置において、2枚のプリント基板を搭載する構成例を表す図である。
 次に、本開示の実施形態について図面を参照して説明する。参照する図面において、同様の構成部分または機能部分には同様の参照符号が付けられている。理解を容易にするために、これらの図面は縮尺を適宜変更している。また、図面に示される形態は本発明を実施するための一つの例であり、本発明は図示された形態に限定されるものではない。
 図1は、本実施形態に係るロボット1の外観構成を表す斜視図である。なお、図1には、ロボット1のアームを構成する筐体内に配置された6つのアクチュエータ11-16も図示している。図1に示されるように、ロボット1は、断面略円形の筐体を備え、設置面に固定される基部10から先端のエンドエフェクタ取付部までの間に配置された6つのアクチュエータ11-16により駆動される6つの関節軸を備える6軸多関節ロボットである。各アクチュエータ11-16は、モータ及び減速機を含む。各関節軸を、基部側から順に、J1軸、J2軸、J3軸、J4軸、J5軸、及びJ6軸と呼ぶこととする。ロボット1は、基部側から順に、J1軸を駆動するアクチュエータ11と、J2軸を駆動するアクチュエータ12と、J3軸を駆動するアクチュエータ13と、J4軸を駆動するアクチュエータ14と、J5軸を駆動するアクチュエータ15と、J6軸を駆動するアクチュエータ16とを備える。図1には、各アクチュエータ11-16による各軸の回転方向を矢印J1からJ6で示した。
 ロボット1は、ロボット1全体を支持する土台となる基部10と、アクチュエータ11により鉛直方向のJ1軸周りに旋回するように駆動されるJ1アーム21と、アクチュエータ12により水平方向に伸びるJ2軸周りに旋回するように駆動されるJ2アーム22と、アクチュエータ13によりJ3軸周りに旋回するように駆動されるJ3アーム23と、アクチュエータ14によりJ4軸周りに旋回するように駆動されるJ4アーム24と、アクチュエータ15によりJ5軸周りに旋回するように駆動されるJ5アーム25と、アクチュエータ16によりJ6軸周りに回転するように駆動される手首部としてのJ6アーム26とを有する。
 図2は、ロボット1を制御するための制御システムの構成例を表す図である。図2に示すように、制御システムは、ロボット1と、ロボット1を制御するロボット制御装置50と、ロボット制御装置50に接続された教示操作盤60とを含む。教示操作盤60は、ロボット1の教示を行うために用いられる。ロボット制御装置50は、教示操作盤60からの指令或いは動作プログラムにしたがって、ロボット1の動作を制御する。ロボット1は、6つのアクチュエータ11-16と、それらを駆動制御するための制御回路11c-16c及び駆動回路11d-16dとを有する。
 アクチュエータ11は、モータ11mと、モータ11mの回転位置を出力するエンコーダ11eとを有する。同様に、アクチュエータ12は、モータ12mとモータ12mの回転位置を出力するエンコーダ12eとを有し、アクチュエータ13は、モータ13mとモータ13mの回転位置を出力するエンコーダ13eとを有し、アクチュエータ14は、モータ14mとモータ14mの回転位置を出力するエンコーダ14eとを有し、アクチュエータ15は、モータ15mとモータ15mの回転位置を出力するエンコーダ15eとを有し、アクチュエータ16は、モータ16mとモータ16mの回転位置を出力するエンコーダ16eとを有する。なお、一般に。モータとしては、基部側に近いほど負荷駆動能力が大きくサイズも大きい仕様のものが用いられる。
 ロボット1のアームを構成する筐体内には、アクチュエータ11に対する制御及び駆動を行うための制御回路11c及び駆動回路11d、アクチュエータ12に対する制御及び駆動を行うための制御回路12c及び駆動回路12d、アクチュエータ13に対する制御及び駆動を行うための制御回路13c及び駆動回路13d、アクチュエータ14に対する制御及び駆動を行うための制御回路14c及び駆動回路14d、アクチュエータ15に対する制御及び駆動を行うための制御回路15c及び駆動回路15d、及びアクチュエータ16に対する制御及び駆動を行うための制御回路16c及び駆動回路16dが配置される。
 各制御回路11c-16cとしては、同一の回路構成で、各部品の電気的仕様も共通のものを用いることができる。各駆動回路11d-16dとしては、同様の回路構成とすることはできるが、モータの負荷駆動能力が各アクチュエータによって異なることに伴い、出力電力が異なってくるため、搭載されるパワー半導体デバイス等として異なる電気的仕様のものが用いられる。制御回路11cは、モータ11mのサーボ制御を実行し、また、駆動回路11dは、制御回路11cからの制御信号により動作しモータ11mを駆動する電力信号を出力する。制御回路12c-16cも制御回路11cと同様な機能を有し、駆動回路12d-16dも駆動回路11dと同様な機能を有する。
 ロボット制御装置50内の動作制御部51は、動作プログラムに従って軌道計画を生成すると共に、運動学的な計算により各軸の位置を求め、各軸のアクチュエータに対する指令を送出する。各アクチュエータ11-16の制御回路11c-16cは、動作制御部51からの指令にしたがってモータに対するサーボ制御を実行し、駆動回路11d-16dは、制御回路11c-16cからの制御信号にしたがって、モータを駆動するための電力信号を出力する。
 図3は、制御回路及び駆動回路を含むモータ駆動装置の回路(すなわち、モータを駆動するための回路)の構成例を表す図である。ここでは、代表して制御回路11cと駆動回路11dの回路構成を図示しているが、制御回路12c-16cも制御回路11cと同様な回路構成を有し、駆動回路12d-16dも駆動回路11dと同様な回路構成を有する。
 図3に示すように、制御回路11cは、ロボット制御装置50の動作制御部51からの指令信号を受けるためのコネクタ111と、エンコーダ11eからの位置フィードバック信号等を受けるためのコネクタ113と、駆動回路11dに制御信号を供給するためのコネクタ114とを有する。さらに、制御回路11cは、動作制御部51からの指令と、位置フィードバック信号等の各種フィードバック信号にしたがってPWMスイッチング信号を生成するPWMスイッチング信号生成部112を有する。なお、PWMスイッチング信号生成部112は、MCU(マイクロコントローラユニット)、又は、専用或いはカスタムLSI等から構成されていても良い。この構成により、制御回路11cは、動作制御部51からの指令(位置指令等)にしたがって、モータ11mのサーボ制御を実行する。
 駆動回路11dは、外部電源を受けるためのコネクタ121と、制御回路11cからの制御信号を受けるためのコネクタ127と、モータ11mを駆動するための交流の電力信号を出力するためのコネクタ126とを含む。また、駆動回路11dは、平滑化コンデンサ123を含む電源部122と、制御回路11cからのPWMスイッチング信号にしたがってU相、V相及びW相の電力信号125を生成するインバータ部124とを有する。電源部122は、直流電源を供給する機能を担う部分であるため、本図では直流電源の記号を用いて示している。当該構成において、コネクタ126を介してU相、V相及びW相の電力信号125が出力される。インバータ部124を構成するスイッチング素子は、MOSFET、IGBT(Insulated Gate Bipolar Transistor)、IPM(Intelligent Power Module)等のパワー半導体デバイスで構成される。
 上記のような構成の制御回路11c及び駆動回路11dを略円形のプリント基板に搭載して、各アクチュエータ11-16の関節軸方向における各アクチュエータ11-16の端部に面するように配置すると(言い換えると、アクチュエータが配置された筐体部分の中心軸線方向に垂直にプリンチ基板を配置すると)、プリント基板の面積が円筒状のロボットアームの内径に制限されてしまう。他方、ロボットアームの円筒状の延伸部分を当該延伸部分の中心軸方向に平行な切断面で(すなわち、円形状の断面を半円に分けるように)分割できる構成とし、当該延伸部分の内部スペースにプリント基板を配置する構成とする場合、プリント基板を延伸部分の中心軸方向に伸びる長方形とできてその面積を増やすことができるが、このような筐体の分割方式はロボットアームの強度の低下を招来しかねない。
 そこで、本実施形態に係るロボット1は、モータ駆動装置を構成するプリント基板を、複数の関節軸のうちの一の関節軸を駆動するモータと、ロボット1の基部から見て上記一の関節軸の次の関節軸を駆動するモータとの間の、ロボット1の筐体の延伸部分において、当該プリント基板の表面が当該延伸部分の延伸方向に対して傾斜するように配置した。すなわち、当該プリント基板は、プリント基板の表面と延伸部分の延伸方向との間の角度(図8の角度α)が0度よりも大きく90度よりも小さくなる状態で、当該延伸部分に配置される。なお、延伸方向とは、略円筒型に形成されるロボット1の筐体においてその中心軸方向と言うこともできる。この構成により、モータ駆動装置を構成するプリント基板を略円形としてアクチュエータに面するように軸線方向に垂直に配置する上記のような例と比較して、基板面積を増加させることができる。
 産業用の多関節ロボット、特に6軸多関節ロボットでは、アーム全体のうちでJ2アーム22とJ3アーム23は、ヒトの腕としての動きを司りロボットの可動範囲の大きさを確保する主要な部分であるとの性質から比較的長く構成されるのが一般的である。したがって、J2アーム22とJ3アーム23は、アーム全体のうちでは、構成部品を配置するための比較的広い内部スペースを確保し得る。他方、J1アーム21は、ロボット1全体を支持する部分であるとの性質から大径で短い構成とされ、J4アーム24及びJ5アーム25は、手首部に近いアームとなるため、一般には、J2アーム22、J3アーム23より短く構成される。J6アーム26は、手首部を構成するものであるため、短く構成される。
 6軸多関節ロボットのこのような構造的な特性に鑑み、本実施形態では、各軸のアクチュエータ内のモータを駆動するためのモータ駆動装置を、J2アーム内、又はJ3アーム内の少なくともいずれかに配置する構成とする。
 以下、ロボット1の具体的な構成例(実施例)を説明する。
 図4は、第1実施例に係るロボット1の構成を表す斜視図である。図4には、アーム内部における、モータ駆動装置を構成するプリント基板の配置も図示している。図4に示されるように、アクチュエータ12で旋回駆動されるJ2アーム22内に、モータ駆動装置としての2枚のプリント基板PT1、PT2を配置し、アクチュエータ13で駆動されるJ3アーム23内に、モータ駆動装置としての2枚のプリント基板PT11、PT12を配置する。プリント基板PT11、PT12は、J3アーム23内であって、J3軸を駆動するためのアクチュエータ13と、J4軸を駆動するためのアクチュエータ14との間に配置されている。
 プリント基板PT1、PT2は、アクチュエータ11-13を制御駆動し、プリント基板PT11、PT12は、アクチュエータ14-16を制御駆動する。より具体的には、J2アーム22内に配置されたプリント基板PT1は、アクチュエータ11-13の制御を行うための制御回路11c、12c、13cを搭載する(図2参照)。また、プリント基板PT2は、アクチュエータ11-13に電力信号を供給する駆動回路11d、12d、13dを搭載する。
 J3アーム23内に配置されたプリント基板PT11は、アクチュエータ14-16の制御を行うための制御回路13c、14c、15cを搭載する。また、プリント基板PT12は、アクチュエータ14-16に電力信号を供給する駆動回路14d、15d、16dを搭載する(図2参照)。ロボット1のアームを構成する筐体内には、ロボット制御装置50側からプリント基板PT1、PT2、PT11、PT12へ電源や制御信号を供給するためのケーブルや、プリント基板PT1及びPT2とアクチュエータ11-13との間のケーブル、プリント基板PT11及びPT12とアクチュエータ14-16との間のケーブル等が付設される。
 ロボット1の筐体には、カバー31、32、33、34が設けられ、これらおカバーはねじ等の固定部材(不図示)により筐体に固定されている。
 カバー32は、J2アーム22の基端側の端部にける図示左右方向の一方側に寄った部分を、J2アーム22の中心軸線方向に対して傾斜した切断面で切り取ったような形状に形成されている。すなわち、カバー32は、J2アーム22の一方の側の端部及び側面を含む部分をJ2アーム22の延伸方向に対して傾斜した切断面で切断するように分離可能に形成されている。このカバー32をJ2アーム22本体から取り外すことで、J2アーム22本体の開口部22c(図8、図9参照)を介して、プリント基板PT1及びPT2を、それらがJ2アーム22本体内部で固定される姿勢に沿った方向で容易に出し入れすることができる。カバー32を上記のように形成することで、分離体としてのカバー32の大きさを最小限度に抑えることができ、それにより、カバー32とJ2アーム22本体とを分離可能な構造としたことによるJ2アーム22全体としての強度の低下を抑制できる構成としている。
 J3アーム23のカバー33は、J3アーム23の基端側の端部にける図示手前側に寄った部分を、J3アーム23の中心軸線方向に対して傾斜した切断面で切り取ったような形状に形成されている。すなわち、カバー33は、J3アーム23の一方の側の端部及び側面を含む部分をJ3アーム23の延伸方向に対して傾斜した切断面で切断するように分離可能に形成されている。このカバー33をJ3アーム23本体から取り外すことで、J3アーム23本体の開口部を介して、プリント基板PT11、PT12を、それらがJ3アーム23本体内部で固定される姿勢に沿った方向で容易に出し入れすることができる。カバー33を上記のように形成することで、分離体としてのカバー33の大きさを最小限度に抑えることができ、それにより、カバー33とJ3アーム23本体とを分離可能な構造としたことによるJ3アーム23全体としての強度の低下を抑制できる構成としている。
 図5は、第2実施例に係るロボット1の構成例を表す図である。第2実施例では、プリント基板PT11、PT12の配置位置を、第1実施例の場合と異なる場所としている。具体的には、図5に示すように、プリント基板PT11、PT12の配置位置を、J3アーム23の内部スペースにおいて先端側寄りの位置に配置している。すなわち、J3アーム23内において、プリント基板PT11、PT12は、第4軸を駆動するためのアクチュエータ14と第5軸を駆動するためのアクチュエータ15との間に配置されている。
 J4アーム24を旋回駆動するためのアクチュエータ14は、J3アーム内に配置されるが、アーム先端側の慣性モーメントを低減する観点から、アクチュエータ14は、一般には、本実施形態(図4及び図5)における場合のようにJ3アーム23内において基端側寄りの位置に配置される場合がある。したがって、本第2実施例は、J3アーム23内においてアクチュエータ14とアクチュエータ15との間のスペースが比較的大きい場合に有利な構成であると言える。
 J3アーム23のカバー34は、J3アーム23の先端側の端部にける図示手前側に寄った部分を、J3アーム23の中心軸方向に対して傾斜した切断面で切り取ったような形状に形成されている。すなわち、カバー34は、J3アーム23の一方の側の端部及び側面を含む部分をJ3アーム23の延伸方向に対して傾斜した切断面で切断するように分離可能に形成されている。このカバー34をJ3アーム23本体から取り外すことで、J3アーム23本体の開口部を介して、プリント基板PT11、PT12を、それらがJ3アーム23本体内部で固定される姿勢に沿った方向で容易に出し入れすることができる。カバー34を上記のように形成することで、分離体としてのカバー34の大きさを最小限度に抑えることができ、それにより、カバー34とJ3アーム23本体とを分離可能な構造としたことによるJ3アーム23全体としての強度の低下を抑制できる構成としている。
 以下、プリント基板PT1を含むモータ駆動装置200、及び、プリント基板PT2を含むモータ駆動装置300の構成と、これらのモータ駆動装置200、300のJ2アーム22内への取付構造について説明する。なお、プリント基板PT11を含むモータ駆動装置も、モータ駆動装置200と同様の構成をとり得る。また、プリント基板PT12を含むモータ駆動装置もモータ駆動装置300と同様の構成をとり得る。よって、プリント基板PT11を含むモータ駆動装置と、プリント基板PT12を含むモータ駆動装置のJ3アーム23内への配置及び取付構造は、モータ駆動装置200、300のJ2アーム22内への配置及び取付構造と同様の構成をとり得る。よって、以下では、モータ駆動装置200、300及びそのJ2アーム22内への取付構造について説明を行うこととする。
 図6Aに、制御回路11c-13cを搭載するプリント基板PT1を有するモータ駆動装置200の構成例の斜視図を示す。図6Bには、モータ駆動装置200の上面図(符号200A)、側面図(符号200B)、底面図(符号200C)、及び正面図(符号200D)を示す。図6Cに、図6Bに示したラインA-Aでのモータ駆動装置200の断面斜視図を示す。
 また、図7Aに駆動回路11d-13dを搭載するプリント基板PT2を有するモータ駆動装置300の構成例の斜視図を示す。図7Bには、モータ駆動装置300の上面図(符号300A)、側面図(符号300B)、底面図(符号300C)、及び正面図(符号300D)を示す。図7Cに、図7Bに示したラインB-Bでのモータ駆動装置300の断面斜視図を示す。
 図8に、モータ駆動装置200、300をJ2アーム22の内部スペースに固定した状態を断面図として表した。なお、図8では、カバー32を取り外した状態を示す。なお、図8には、モータ駆動装置200を構成するプリント基板PT1と、モータ駆動装置300を構成するプリント基板PT2とが、それぞれ、J2アーム22の中心軸線Cの方向に対して角度αだけ傾斜して配置されていることを図示している。図9には、モータ駆動装置200、300をJ2アーム22の内部スペースに固定した状態の斜視図を示した。なお、図9では、カバー32をJ2アーム22から分離し、J2アーム22の一部を切断して内部スペースが見える状態を図示している。
 図6Aに示すように、モータ駆動装置200は、制御回路11c-13cを搭載したプリント基板PT1と取付部品210とから構成される。なお、以下では、説明の便宜上、取付面221がある側(図中左下側)を前方側、その反対側を後方側と称する場合がある。取付部品210は、第1取付部材201と第2取付部材202とから構成される。プリント基板PT1は、第1取付部材201と第2取付部材202に挟持され保持される。第1取付部材201は、扁平なU字形状を有する。第2取付部材202は、第1取付部材201にネジ止め固定される取付縁部211と、側壁を構成する側壁部212とを有する。側壁部212は、前方側において、平坦な壁面(取付面221)を構成すると共に、前方側から後方側に向かって両側壁を構成し、後方側においてこれら両側部が連結されて把持部を構成している。側壁部212は、第2取付部材202の周囲に沿って前方側から後方側に向かって延長され、取付縁部211からみた高さが前方側から後方側に向かうにしたがって減少するように形成される(図6Bの側面図(符号200B)参照)。
 第1取付部材201と第2取付部材202は、本例では、5個のねじで互いに連結される。図6Bの正面図(符号200D)に示されるように、取付面221には、J2アーム22の内壁に形成された取付部分にネジ止め固定するための3つのネジ穴231が形成されている。
 図6Cは、図6Bに示したラインA-Aでのモータ駆動装置200の断面斜視図である。図6Cに示すようにプリント基板PT1は、その周縁部を第1取付部材201と第2取付部材202の取付縁部211とにより挟持される態様で保持される。また、図6Cにおいて前方部分における断面に示されるように、プリント基板PT1の周縁部と第1取付部材201との間、及び、プリント基板PT1の周縁部と第2取付部材202の取付縁部211と間には、振動吸収材251、252がそれぞれ介在し、プリント基板PT1は、上下の振動吸収材251、252により挟み込まれた状態で、第1取付部材201と取付縁部211との間にしっかりとネジ止め固定される。これにより、ロボット1側からの振動がプリント基板PT1に伝播することを防ぐことができる。振動吸収材251、252としては、各種弾性部材(防振ゴム、ゲル状部材等)を用いることができる。このように振動対策を行うことで、モータ駆動装置としての信頼性を向上させることができる。
 図7Aに示すように、モータ駆動装置300は、駆動回路11d-13dを搭載したプリント基板PT2と取付部品310とから構成される。なお、以下では、説明の便宜上、取付面321がある側(図中左下側)を前方側、その反対側を後方側と称する場合がある。取付部品310は、第1取付部材301と第2取付部材302とから構成される。プリント基板PT2は、第1取付部材301と第2取付部材302に挟持され保持される。第1取付部材301は、扁平な略楕円形状を有する。第2取付部材302は、第1取付部材301にネジ止め固定される取付縁部311と、側壁を構成する側壁部312とを有する。側壁部312は、前方側において、平坦な壁面(取付面321)を構成すると共に、前方側から後方側に向かって第2取付部材302の両側壁を構成し、後方側においてこれら両側壁が連結されている。側壁部312は、第2取付部材302の周囲に沿って後方側に向かって延長され、取付縁部311からみた高さが前方側から後方側に向かうにしたがって減少するように形成される(図7Bの側面図(符号300B)参照)。
 第1取付部材301と第2取付部材302は、本例では、7個のネジで互いに連結される。図7Bの正面図(符号300D)に示されるように、取付面321には、J2アーム22の内壁に形成された取付部分にネジ止め固定するための3つのネジ穴331が形成されている。
 図7Cは、図7Bに示したラインB-Bでのモータ駆動装置300の断面斜視図である。図7Cに示すようにプリント基板PT2は、その周縁部を第1取付部材301と第2取付部材302の取付縁部311とにより挟持される態様で保持される。また、図7Cにおいて前方部分における断面に示されるように、プリント基板PT2の周縁部と第1取付部材301との間、及び、プリント基板PT2の周縁部と第2取付部材302の取付縁部311と間には、振動吸収材351、352がそれぞれ介在し、プリント基板PT2は、上下の振動吸収材351、352により挟み込まれた状態で、第1取付部材301と取付縁部311との間にネジ364によりしっかりと固定される。これにより、ロボット側からの振動がプリント基板PT2に伝播することを防ぐことができる。振動吸収材351、352としては、振動吸収材251、252と同様のものを用いることができる。
 図8に示すようにJ2アーム22の内壁面22aには、モータ駆動装置200、300を取り付けるための、内部スペース側に突出するように形成された、断面視三角形状の第1突起部411及び第2突起部412が形成されている。内壁面22aは、例えば金属で形成される。図示のように第1突起部411にモータ駆動装置200を取り付け、第2突起部412にモータ駆動装置300を取り付けても良い。第1突起部411の下側傾斜面411aには、モータ駆動装置200の取付面221に形成された3つのネジ穴231と整合する位置にネジ穴が形成されておいる。また、第2突起部412の下側傾斜面412aには、モータ駆動装置300の前方の取付面321に形成された3つのネジ穴331と整合する位置にネジ穴が形成されている。カバー32を分離することでJ2アーム22に形成される開口部22cは、内壁面22aにおける第1突起部411及び第2突起部412がある側と対向する側にある。
 上記構成において、モータ駆動装置200の前方の取付面221を第1突起部411の下側傾斜面411aに突き当てて開口部22c側からネジ260及び工具(不図示)をJ2アーム22の内部空間に進入させて、モータ駆動装置200を第1突起部411にネジ止め固定する。なお、モータ駆動装置200の取付部品210の前方側の端面210aは、取付面221を下側傾斜面411aに突き当てた状態で、J2アーム22の内壁面22aに密接するようにその傾斜角度が定められている。これにより、モータ駆動装置200は、図示のように、J2アーム22の内部スペースにしっかりと固定されることなる。
 また、上記構成において、モータ駆動装置300の前方の取付面321を第2突起部412の下側傾斜面412aに突き当てて開口部22c側からネジ360及び工具(不図示)をJ2アーム22の内部空間に進入させて、モータ駆動装置300を第2突起部412にネジ止め固定する。なお、モータ駆動装置300の取付部品310の前方側の端面310aは、取付面321面を下側傾斜面412aに突き当てた状態で、J2アーム22の内壁面22aに密接するようにその傾斜角度が定められている。これにより、モータ駆動装置300は、図示のように、J2アーム22の内部スペースにしっかりと固定されることなる。
 このように各モータ駆動装置200、300は、J2アーム22の開口部22cから進入させる方向に沿ってそのまま移動させて内壁面22aに突き当てて固定することができる。したがって、各モータ駆動装置200、300を容易にJ2アーム22内のスペースに固定することができる。
 図9では、上述のようにモータ駆動装置200、300をJ2アーム22の内部スペースに取り付けた状態を、J2アーム22の一部を切断した斜視図として表している。図9では、カバー32を分離した状態を示しており、この状態で、J2アーム22の内部スペースにアクセス可能であることが理解できる。
 プリント基板上の回路素子は発熱体となり得るため、モータ駆動装置200或いは300は、放熱のための構成を有していても良い。ここでは、モータ駆動装置300に放熱のための構成を施した例を、図10を参照して説明する。図10は、図7Cに示した断面斜視図の断面部分の前方端部付近(図7Cにおいて手前側の端部付近)を示した図である。ここでは、プリント基板PT2で発生した熱を、伝熱部品370を介して取付部品310側に逃がすことで放熱特性を向上させる構成例を示す。取付部品310は、金属で形成されているものとする。
 図10において、伝熱部品370は、プリント基板PT2と、第1取付部材301とを接続することで、プリント基板PT2上で発生した熱を第1取付部材301に伝導させる機能を担う。伝熱部品370のプリント基板PT2側の端部は、発熱部品(パワー半導体デバイス)に密着するように配置されていても良い。なお、伝熱部品370としては、薄い金属板、フィルム状の伝熱材などの各種部材を用いることができる。このように特に柔軟な素材の伝熱部品を配置することで、上述したような振動対策を妨げることなく、モータ駆動装置としての定格電流を上げることが可能になる。
 モータ駆動装置200、300の各々は、上述の実施例では、それぞれ1枚のプリント基板を搭載する構成を示しているが、各モータ駆動装置は、複数のプリント基板を搭載するように構成されていても良い。ここでは、モータ駆動装置300の構成をベースとして2枚のプリント基板を搭載する構成とした例を、図11を参照して説明する。なお、図11は、図7Cに示したモータ駆動装置300の断面斜視図の断面部分の前方端部付近(図7Cにおいて手前側の端部付近)に相当する部分を示した図である。
 本例では、第1取付部材301と取付縁部311との間に保持部材381を介在させる。保持部材381は、第1取付部材301と概ね同様な形状の扁平の部材として構成することができる。これにより、第1取付部材301の内側周縁部と、保持部材381の内側周縁部との間に形成される溝状の空間391において振動吸収材353、354でプリント基板PT52を挟持して保持し、取付縁部311の内側周縁部と、保持部材381の内側周縁部との間に形成された溝状の空間392において振動吸収材351、352でプリント基板PT51を挟持して保持することができる。第1取付部材301と、保持部材381と、取付縁部311とをねじ365により一括してねじ止め固定する。これにより、2枚のプリント基板PT51、PT52をモータ駆動装置に搭載できる構成とすることができる。
 図4及び図5に示したロボット1の各実施例では、J2アーム22内において一つのプリント基板P1(モータ駆動装置200)に3軸分のアクチュエータ11~13の制御回路11c~13cを搭載し、また、一つのプリント基板PT2(モータ駆動装置300)に3軸分のアクチュエータ11~13の駆動回路11d~13dを搭載する構成としている。同様に、J3アーム23に搭載するモータ駆動装置に関しても、3軸分のアクチュエータ14~16の制御回路14c~16cを一つのプリント基板PT11に搭載し、また、3軸分のアクチュエータ14~16の駆動回路14d~16dを一つの回路基板PT12に搭載する構成とした。
 このような構成の場合、制御回路11c-13cを搭載するプリント基板PT1と、制御回路14c-16cを搭載するプリント基板PT11とは部品の電気的特性も含めて同一設計とすることができる。また、上記構成によれば、3軸分のアクチュエータを駆動制御するためのモータ制御回路(回路基板)を2枚構成とすることができる。この構成は、モータ駆動装置の基板面積を省スペース化するのに有用である。また、モータ駆動装置をJ2アーム22内或いはJ3アーム23内に配置する構成は、モータ駆動装置をアクチェータから離れた場所に配置することを可能とし、アクチュエータからの熱伝導を低減し、モータ駆動装置の定格電流を向上させることにも寄与する。
 J2アーム22、J3アーム23の各々において3軸分の駆動回路を2枚のプリント基板構成で実現するという上述の実施例は、例示であり、次のような変形例を構成することもできる。例えば、(1)J2アーム22或いはJ3アームに配置するプリント基板の枚数は1枚でも良い。この場合には、1枚のプリント基板に3軸分の制御回路及び駆動回路を搭載する構成とする。或いは、(2)J2アーム22或いはJ3アームに搭載するプリント基板の枚数を3枚としても良い。この場合には、一つの軸についての制御回路及び駆動回路を1枚のプリント基板に搭載する構成とし、3軸分の3枚のプリント基板をJ2アーム22或いはJ3アーム内に配置する構成とする。このように、アーム内にプリント基板を中心軸方向に対して斜めに配置することでプリント基板の面積を増加し得るという本実施形態の構成は、プリント基板の枚数やプリント基板上に共通化して配置する回路の種類等に関し設計の自由度を向上させる。
 以上説明したように、本実施形態によれば、多関節ロボットの関節軸のモータを駆動するための回路を搭載する基板の面積を広く確保することが可能となる。
 以上、典型的な実施形態を用いて本発明を説明したが、当業者であれば、本発明の範囲から逸脱することなしに、上述の各実施形態に変更及び種々の他の変更、省略、追加を行うことができるのを理解できるであろう。
 上述した実施形態におけるモータ駆動装置200、300の構成は例示であり、モータ駆動装置の構成としては、ロボット1のアクチュエータ(モータ)とアクチェータ(モータ)との間のロッボトの筐体の延伸部分において、プリント基板を当該延伸部分の中心軸線方向に対して傾斜して配置し得る様々な構成をとり得ることができる。
 ロボット制御装置50は、CPU、ROM、RAM、記憶装置、操作部、表示部、入出力インタフェース、ネットワークインタフェース等を有する一般的なコンピュータとしての構成を有していても良い。教示操作盤60は、CPU、ROM、RAM、記憶装置、操作部、表示部、入出力インタフェース、ネットワークインタフェース等を有する一般的なコンピュータとしての構成を有していても良い。
 1  ロボット
 10  基部
 11-16  アクチュエータ
 11c-16c  制御回路
 11d-16d  駆動回路
 21  J1アーム
 22  J2アーム
 23  J3アーム
 24  J4アーム
 25  J5アーム
 26  J6アーム
 31-34  カバー
 50  ロボット制御装置
 51  動作制御部
 60  教示操作盤
 111、113、114  コネクタ
 112  PWMスイッチング信号生成部
 121、126、127  コネクタ
 122  電源部
 123  平滑化コンデンサ
 124  インバータ部
 125  電力信号
 PT1、PT2、PT11、PT12  プリント基板
 200  モータ駆動装置
 201  第1取付部材
 202  第2取付部材
 221  取付面
 210  取付部品
 251、252  振動吸収材
 300  モータ駆動装置
 301  第1取付部材
 302  第2取付部材
 321  取付面
 310  取付部品
 351、352  振動吸収材
 364  ネジ
 411  第1突起部
 411a  下側傾斜面
 412  第2突起部
 412a  下側傾斜面

Claims (12)

  1.  複数の関節軸を有する多関節ロボットであって、
     前記複数の関節軸をそれぞれ駆動するための複数のモータと、
     前記複数の関節軸のうちの一の関節軸を駆動する第1のモータと、前記多関節ロボットの基部から見て前記一の関節軸の次の関節軸を駆動する第2のモータとの間の、前記多関節ロボットの筐体の延伸部分の内部空間に配置された、前記複数のモータのうちの少なくとも一つのモータを駆動するための少なくとも一つのモータ駆動装置と、を具備し、
     前記少なくとも一つのモータ駆動装置は、前記少なくとも一つのモータを駆動するための回路を搭載したプリント基板を有し、
     前記プリント基板は、当該プリント基板の表面と前記延伸部分の延伸方向との間の角度が0度よりも大きく90度よりも小さくなるように前記延伸方向に対して傾斜した状態で前記延伸部分に配置されている、多関節ロボット。
  2.  前記少なくとも一つのモータ駆動装置は、1又は複数の前記プリント基板と、該プリント基板を保持する取付部品とを有し、該取付部品が前記延伸部分の内壁面に固定されている、請求項1に記載の多関節ロボット。
  3.  前記取付部品は、前記内壁面に取り付けるための取付面を有し、
     前記内壁面には、前記延伸方向に対して傾斜した傾斜面を有する突起部が形成され、
     前記取付部品は、前記取付面を前記傾斜面に突き当てた状態で、前記内壁面に固定されている、請求項2に記載の多関節ロボット。
  4.  前記少なくとも一つのモータ駆動装置は、前記延伸部分の前記延伸方向における一方の側の端部寄りの位置に配置されており、
     前記延伸部分には、当該延伸部分の前記一方の側の端部及び側面を含む部分を前記延伸方向に対して傾斜した切断面で切断するように分離可能なカバーが形成されている、請求項3に記載の多関節ロボット。
  5.  前記カバーを前記延伸部分から分離した状態において前記延伸部分の前記一方の側に形成される開口部は、前記内壁面における前記突起部がある側と対向する側にある、請求項4に記載の多関節ロボット。
  6.  前記取付部品は、前記プリント基板の周縁部を挟持して保持する第1取付部材と第2取付部材とを有し、
     前記プリント基板は、前記第1取付部材と前記プリント基板の一方の面との間に介在する第1振動吸収材と、前記第2取付部材と前記プリント基板の他方の面との間に介在する第2振動吸収材との間で挟持されている、請求項2から5のいずれか一項に記載の多関節ロボット。
  7.  前記プリント基板と前記取付部品とを結合する伝熱部品を備える、請求項2から6のいずれか一項に記載の多関節ロボット。
  8.  前記少なくとも一つのモータ駆動装置は、前記プリント基板として、前記少なくとも一つのモータのサーボ制御を実行するための制御回路を搭載した第1プリント基板と、前記制御回路からの制御信号に応じて前記少なくとも一つのモータを駆動する電力信号を出力する駆動回路を搭載する第2プリント基板とを備える、請求項1に記載の多関節ロボット。
  9.  前記第1プリント基板は、前記複数のモータの2以上に対する前記制御回路を搭載する、請求項8に記載の多関節ロボット。
  10.  前記第2プリント基板は、前記複数のモータの2以上に対する前記駆動回路を搭載する、請求項8又は9に記載の多関節ロボット。
  11.  前記少なくとも一つのモータ駆動装置は、前記多関節ロボットを構成する筐体において、前記多関節ロボットの基部側から見て2番目の関節軸を駆動するモータと3番目の関節軸を駆動するモータとの間の前記筐体の延伸部分と、前記3番目の関節軸を駆動するモータと4番目の関節軸を駆動するモータとの間の前記筐体の延伸部分の少なくともいずれかに配置されている、請求項1から10のいずれか一項に記載の多関節ロボット。
  12.  前記少なくとも一つのモータ駆動装置は、前記多関節ロボットを構成する筐体において、前記多関節ロボットの基部側から見て2番目の関節軸を駆動するモータと3番目の関節軸を駆動するモータとの間の前記筐体の延伸部分と、4番目の関節軸を駆動するモータと5番目の関節軸を駆動するモータとの間の前記筐体の延伸部分の少なくともいずれかに配置されている、請求項1から10のいずれか一項に記載の多関節ロボット。
PCT/JP2021/045869 2021-12-13 2021-12-13 多関節ロボット WO2023112093A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/045869 WO2023112093A1 (ja) 2021-12-13 2021-12-13 多関節ロボット
TW111143594A TW202322998A (zh) 2021-12-13 2022-11-15 多關節機器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045869 WO2023112093A1 (ja) 2021-12-13 2021-12-13 多関節ロボット

Publications (1)

Publication Number Publication Date
WO2023112093A1 true WO2023112093A1 (ja) 2023-06-22

Family

ID=86774025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045869 WO2023112093A1 (ja) 2021-12-13 2021-12-13 多関節ロボット

Country Status (2)

Country Link
TW (1) TW202322998A (ja)
WO (1) WO2023112093A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045232A (ja) * 2002-07-12 2004-02-12 Fujitsu Ten Ltd 筐体構造および筐体の取付構造
JP2008300864A (ja) * 2008-07-28 2008-12-11 Sharp Corp 通信装置
JP2012218136A (ja) * 2011-04-14 2012-11-12 Seiko Epson Corp ロボット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045232A (ja) * 2002-07-12 2004-02-12 Fujitsu Ten Ltd 筐体構造および筐体の取付構造
JP2008300864A (ja) * 2008-07-28 2008-12-11 Sharp Corp 通信装置
JP2012218136A (ja) * 2011-04-14 2012-11-12 Seiko Epson Corp ロボット

Also Published As

Publication number Publication date
TW202322998A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
Wright et al. Design of a modular snake robot
US9452529B2 (en) Robot, robot control device, and robot system
US7463002B2 (en) Robot controller system
JP7130932B2 (ja) ロボット
US9168660B2 (en) Scara robot
US9327402B2 (en) Robot, robot control device, and robot system
EP3251806B1 (en) Motor unit and robot
US9302389B2 (en) Robot, robot control device, and robot system
JP7176330B2 (ja) ロボット
US9895800B2 (en) Robot, robot control device, and robot system
US10836033B2 (en) Robot
JP2005125489A (ja) スカラタイプのロボット
WO2012176382A1 (en) Robot hand with fully integrated exchangeable fingers
JP6892080B2 (ja) ロボットアーム及びロボット
JP5279769B2 (ja) 外付け式人間型手のためのアクチュエータおよび電子機器のパッケージング
WO2023112093A1 (ja) 多関節ロボット
WO2023112102A1 (ja) 6軸多関節ロボット
WO2021144969A1 (ja) 2軸一体型モジュール及び多関節ロボットアーム装置
JP2016203344A (ja) ロボット
JP2003136454A (ja) マニピュレータ
JP7152238B2 (ja) ロボット制御装置
JP2019076985A (ja) ロボットおよびロボットシステム
CN114931439A (zh) 手术机器人及保持位姿形态的主手机械臂
JP7069757B2 (ja) 水平多関節ロボット
WO2023073843A1 (ja) 基板固定構造、機械、及びロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567284

Country of ref document: JP