WO2023109973A1 - 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用 - Google Patents

钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用 Download PDF

Info

Publication number
WO2023109973A1
WO2023109973A1 PCT/CN2023/072576 CN2023072576W WO2023109973A1 WO 2023109973 A1 WO2023109973 A1 WO 2023109973A1 CN 2023072576 W CN2023072576 W CN 2023072576W WO 2023109973 A1 WO2023109973 A1 WO 2023109973A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
quantum dot
metal halide
precursor
dimensional quantum
Prior art date
Application number
PCT/CN2023/072576
Other languages
English (en)
French (fr)
Inventor
袁明鉴
姜源植
孙长久
Original Assignee
南开大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111523387.5A external-priority patent/CN114369453A/zh
Priority claimed from CN202111522151.XA external-priority patent/CN114195650A/zh
Priority claimed from CN202111522152.4A external-priority patent/CN114149641B/zh
Application filed by 南开大学 filed Critical 南开大学
Publication of WO2023109973A1 publication Critical patent/WO2023109973A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the invention relates to the technical field of preparation of new materials, in particular to a method for preparing a perovskite metal halide zero-dimensional quantum dot composite material, the perovskite metal halide zero-dimensional quantum dot composite material prepared by the method, and Application of an organic amine salt in preparing the perovskite metal halide zero-dimensional quantum dot composite material.
  • perovskite metal halide quantum dots Compared with traditional semiconductor quantum dots, perovskite metal halide quantum dots have excellent optical properties such as high photoluminescence quantum yield, high color purity, and wide color gamut.
  • optical properties such as high photoluminescence quantum yield, high color purity, and wide color gamut.
  • by changing the composition and ratio of halogen elements in the perovskite structure its band gap can be changed, thereby achieving continuously tunable emission from violet to near-infrared.
  • the excellent optoelectronic properties of perovskite metal halide quantum dots make them a promising light-emitting material.
  • the preparation methods of perovskite metal halide quantum dots are mainly divided into solution method (mainly divided into hot injection method, ligand-assisted precipitation method) and high temperature extrusion method.
  • solution method mainly divided into hot injection method, ligand-assisted precipitation method
  • high temperature extrusion method mainly divided into high temperature extrusion method.
  • higher quality perovskite metal halide quantum dots have been prepared based on thermal injection method and ligand-assisted precipitation method.
  • the thermal injection method has the disadvantages of harsh process conditions (such as high temperature and strict anhydrous and oxygen-free conditions) and complicated processes (such as post-treatment steps such as centrifugal purification).
  • the ligand-assisted precipitation method has the disadvantages of complicated process (for example, post-treatment steps such as centrifugal purification are required), and it is difficult to synthesize perovskite metal halide quantum dots with ultra-small particle size (diameter less than 15nm).
  • the perovskite metal halide zero-dimensional quantum dot composite material obtained by the high-temperature extrusion method is mostly a sheet-like bulk material with a large number of layers, resulting in the obtained perovskite metal halide zero-dimensional quantum dot
  • the size confinement effect of composite materials is weak.
  • there are still many obvious defects and deficiencies in these three technologies leading to the controllable particle size and large-scale production of perovskite metal halide quantum dots are still challenging.
  • the perovskite metal halide quantum dots can also be prepared in a film shape by using a spin coating or scraping coating process. Due to the huge difference in the rotational linear speed between the edge of the substrate and the central region of the substrate during spin coating or scraping coating, the particle size of the prepared perovskite metal halide quantum dots cannot be adjusted.
  • the invention provides a method for preparing a perovskite metal halide zero-dimensional quantum dot composite material, comprising the following steps:
  • a first precursor, a second precursor, and a third precursor are provided, wherein the first precursor is selected from methylamine halide, formamidine halide, cesium halide, cesium trifluoroacetate, cesium stearate, and acetic acid At least one of cesium, the second precursor is selected from at least one of lead halide, stannous halide, lead stearate, and lead acetate, the third precursor is an organic amine salt, and the organic amine
  • the anion of the salt is a halide ion, and the cation of the organic amine salt contains an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure.
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dot composite material
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dot composite material
  • the cations of the organic amine salts contain aliphatic ring skeletons structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure, and at least one amine binding head and at least a hindered group bonded to the aliphatic ring skeleton structure, aromatic ring skeleton structure, or thiophene ring skeleton structure.
  • the present invention also provides a perovskite metal halide zero-dimensional quantum dot composite material, which includes perovskite quantum dots and organic amine cations coated on the surface of the perovskite quantum dots, the organic amine cations include Aliphatic ring skeleton structure, aromatic ring skeleton structure, or thiophene ring skeleton structure, and at least one amino binding head and at least one hindered group bonded to the aliphatic ring skeleton structure, aromatic ring skeleton structure, or thiophene ring skeleton structure group.
  • the present invention also provides an organic amine salt used in the preparation of the perovskite metal halide zero-dimensional quantum dot complex application of composite materials.
  • Fig. 1 is the molecular structure diagram of the skeleton structure of the organic amine cation adopted in the present invention, amine binding head and steric group.
  • Fig. 2 is the molecular structure figure of several kinds of organic amine cations adopted in the present invention.
  • Fig. 3 is a fluorescence spectrum diagram of the perovskite metal halide zero-dimensional quantum dot composite material in Example 1 of the present invention.
  • Example 4 is a transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot composite material of Example 1 of the present invention.
  • Fig. 5 is a fluorescence spectrum diagram of the perovskite metal halide zero-dimensional quantum dot composite material in Example 2 of the present invention.
  • Example 6 is a transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot composite material of Example 2 of the present invention.
  • Fig. 9 is a fluorescence spectrum diagram of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Example 3 of the present invention.
  • Fig. 10 is a transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Example 3 of the present invention.
  • Fig. 11 is a fluorescence spectrum diagram of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Example 4 of the present invention.
  • Fig. 12 is a transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Example 4 of the present invention.
  • FIG. 13 is a fluorescence spectrum diagram of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Comparative Example 2 of the present invention.
  • Fig. 15 is a fluorescence spectrum diagram of the perovskite metal halide zero-dimensional quantum dot composite material in Example 5 of the present invention.
  • Fig. 16 is a transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot composite material of Example 5 of the present invention.
  • Fig. 17 is a scanning electron micrograph of the perovskite metal halide zero-dimensional quantum dot composite material of Example 5 of the present invention.
  • the invention provides an application of an organic amine salt in the preparation of a perovskite metal halide zero-dimensional quantum dot composite material.
  • the cation of the organic amine salt contains an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a A phenene ring skeleton structure, and at least one amine binding head and at least one hindered group bonded to the aliphatic ring skeleton structure, aromatic ring skeleton structure, or thiophene ring skeleton structure.
  • the cation of the organic amine salt can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite along the out-of-plane direction to form a layered structure.
  • the organic amine cation comprises an alicyclic skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure as shown in Figure 1, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure At least one amine binding head and at least one hindered group on the The number of the amine binding head is preferably 1, and the number of the steric hindrance group can be at least one, and the amine binding head and the steric hindrance group are combined in an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or Any position of the thiophene ring skeleton structure.
  • the steric hindrance group can not only inhibit the generation of perovskite into a layered structure, but also It can promote the generation of perovskite into zero-dimensional quantum dots with strong size confinement effect. Therefore, the application of organic amine salts to the preparation of perovskite metal halide zero-dimensional quantum dot composites can realize the regulation of the particle size of perovskite metal halide zero-dimensional quantum dot composites.
  • the first embodiment of the present invention provides a method for preparing a perovskite metal halide zero-dimensional quantum dot composite material.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material comprises the following steps:
  • a first precursor, a second precursor, a third precursor, and a solvent are provided, wherein the first precursor is selected from methylamine halide, formamidine halide, cesium halide, cesium trifluoroacetate, cesium stearate, and at least one of cesium acetate, the second precursor is selected from at least one of lead halide, stannous halide, lead stearate, and lead acetate, the third precursor is an organic amine salt, the The anion of the organic amine salt is a halide ion, and the cation of the organic amine salt comprises an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene At least one amine binding head and at least one hindered group on the ring skeleton structure;
  • the perovskite metal halide zero-dimensional quantum dot composite material includes a perovskite metal halide zero-dimensional quantum dot composite material Metal halide zero-dimensional quantum dots and metal halide zero-dimensional quantum dots coated on the perovskite Organic amine salts on the surface.
  • the perovskite metal halide zero-dimensional quantum dot composite material has a film-like structure, and the film-like structure of the perovskite metal halide zero-dimensional quantum dot composite material has a thickness of 10-500 nm. For example, 10 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm or 500 nm.
  • the perovskite metal halide zero-dimensional quantum dots have a particle size of 3-15 nm, for example, 3 nm, 5 nm, 7 nm, 10 nm, or 15 nm.
  • the organic amine salt may be a bulky organic amine salt (see FIG. 2 ), and the bulky organic amine salt may be a bulky organic amine salt containing more than 3 carbon atoms. Due to the large volume, the bulky organic amine salt cannot enter the interior of the perovskite lattice, and can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite.
  • the molar ratio of the first precursor to the second precursor is 0.1 ⁇ 0.9:1.
  • the molar ratio of the second precursor to the third precursor is 0.2 ⁇ 1.4:1.
  • the size of the micelles in the precursor liquid is controlled by changing the ratio of the third precursor to the second precursor in the precursor liquid, so as to realize the adjustment of the particle size of the perovskite metal halide zero-dimensional quantum dot.
  • Low-concentration bulky organic amine salts are used to make perovskite metal halide zero-dimensional quantum dots with larger particle sizes and longer emission wavelengths, while high-concentration bulky organic amine salts are used to make perovskite metal halide zero-dimensional quantum dots with smaller particle sizes and longer emission wavelengths.
  • Perovskite metal halide zero-dimensional quantum dots with shorter emission wavelengths This is because, with the increase of the content of the bulky organic amine salt, the growth inhibition effect of the bulky organic amine salt on the perovskite metal halide zero-dimensional quantum dots is gradually obvious. Therefore, perovskite metal halide zero-dimensional quantum dots with different particle sizes and different emission wavelengths can be prepared by adjusting the content of bulky organic amine salts in the precursor solution.
  • the hindering group is at least one of methyl, methoxy and halogen.
  • the bulky organic amine salt used is 4-fluoro-alpha-phenylethylamine hydrogen bromide, 4-chloro-alpha-benzene Ethylamine Hydrogen Bromide, 4-Bromo-alpha-Phenylethylamine Hydrogen Bromide, 4-Iodo-alpha-Phenylethylamine Hydrogen Bromide, 4-Methyl-alpha-Phenylethylamine Hydrogen Bromide, Or 4-methoxy-alpha-phenethylamine hydrogen bromide salt.
  • the large Volume organic amine salt is 1-(4-fluorophenyl)-1-methylethylamine hydroiodide, 1-(4-iodophenyl)-1-methylethylamine hydroiodide, 1-( 4-chlorophenyl)-1-methylethylamine hydroiodide, 1-(4-methylbenzene)-1-methylethylamine hydroiodide, 1-(4-bromophenyl)-1 - methylethylamine hydroiodide, or 1-(4-methoxybenzene)-1-methylethylamine hydroiodide.
  • the solvent is at least one of dimethyl sulfoxide, N,N-dimethylformamide, N-methylpyrrolidone, and acetonitrile.
  • the concentration of the second precursor is 0.15 ⁇ 0.25 mol/L, preferably 0.2 mol/L.
  • the substrate is a transparent substrate, such as ordinary soda-lime glass, nano-indium tin oxide, fluorine-doped tin dioxide, quartz, or flexible polyethylene terephthalate.
  • the precursor solution can be filtered with a filter with a pore size of 0.22 ⁇ m to filter out insoluble impurities in the precursor solution, and then stored in a nitrogen environment for use.
  • the spin-coating film-forming process can be performed by using a homogenizer, the speed of the homogenizer can be set at 2000-8000 r.p.m, and the homogenization time can be 1-2 minutes.
  • the temperature of the annealing treatment is 60-80° C., and the time is 5-10 minutes.
  • the substrate can be placed in a plasma cleaning machine in advance and treated with high power for 10-15 minutes to activate the plasma surface of the substrate.
  • the first precursor, the second precursor, the third precursor and the solvent are mixed to obtain a precursor liquid, and the precursor liquid is placed on the substrate, and the The precursor solution on the surface is spin-coated to form a film to obtain a perovskite quantum dot active material, and the perovskite quantum dot active material is annealed to obtain the perovskite metal halide zero-dimensional quantum dot composite material.
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dots and organic amine salts coated on the surface of the perovskite metal halide zero-dimensional quantum dots.
  • the organic amine cations of the organic amine salt can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite along the out-of-plane direction to form a layered structure.
  • the organic amine cation comprises an alicyclic skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure as shown in Figure 1, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure At least one amine binding head and at least one hindered group on the The number of the amine binding head is preferably 1, and the number of the steric hindrance group can be at least one, and the amine binding head and the steric hindrance group are combined in an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or Any position of the thiophene ring skeleton structure.
  • the steric hindrance The group can not only inhibit the formation of perovskite into a layered structure, but also promote the formation of perovskite into zero-dimensional quantum dots with strong size confinement effect. Therefore, the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material of the present invention has the advantage of controllable particle size.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material of the present invention does not need to adopt harsh conditions such as high temperature and strict anhydrous and oxygen-free, and does not need to adopt post-processing steps such as centrifugal purification, so that the calcium of the present invention
  • the preparation method of the titanium ore metal halide zero-dimensional quantum dot composite material has the advantages of low requirements on process conditions, low cost and simple process.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material also includes the following steps:
  • the passivating agent is trimethylammonium bromide and/or tetrabutylphosphine chloride.
  • the molar ratio of the passivating agent to the second precursor is 0.05 ⁇ 0.1:1.
  • it is 0.0.5:1, 0.06:1, or 0.1:1.
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dots and organic amine salts and passivators coated on the surface of the perovskite metal halide zero-dimensional quantum dots .
  • the passivating agent may also be mixed with the first precursor, the second precursor, the third precursor and a solvent to obtain the precursor solution.
  • the passivating agent can further reduce the defect state density of the perovskite metal halide zero-dimensional quantum dot, and improve the optical performance of the perovskite metal halide zero-dimensional quantum dot, so that the perovskite metal halide zero-dimensional Quantum dots have a high photoluminescence quantum yield.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material also includes the following steps:
  • the anti-solvent is added to the substrate to obtain the perovskite metal halide zero-dimensional quantum dot composite material.
  • the anti-solvent is at least one of toluene, chlorobenzene, and chloroform.
  • the volume ratio of the anti-solvent and the precursor liquid provided on the substrate is 1 ⁇ 2:1. Preferably it is 2:1.
  • the anti-solvent may be added to the substrate 5-20 seconds after the start of the spin-coating film-forming process.
  • the anti-solvent is gradually removed during the annealing process.
  • an anti-solvent can also be added to the substrate during the spin-coating film-forming process to achieve the purpose of quickly achieving supersaturation of the precursor solution to accelerate the calcium Nucleation and crystallization of titanite metal halide zero-dimensional quantum dots.
  • the first embodiment of the present invention also provides a perovskite metal halide zero-dimensional quantum dot composite material, which can be used for the active layer in light-emitting diodes, the backlight film in display panels, the active layer of photodetectors, and the light absorption of solar cells layer, and the emitting layer of the laser.
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dots and organic amine cations coated on the surface of the perovskite metal halide zero-dimensional quantum dots, the organic
  • the amine cation comprises an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure as shown in Figure 1, and at least one amine bonded to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure group binding head and at least one hindered group.
  • the number of the amine binding head is preferably one, and the number of the steric hindrance group is at least one, and the amine binding head and the steric hindrance group are combined at any position of the skeleton structure.
  • the perovskite metal halide zero-dimensional quantum dots have a particle size of 3-15 nm, for example, 3 nm, 5 nm, 7 nm, 10 nm, or 15 nm.
  • the hindering group is at least one of methyl, methoxy and halogen.
  • the perovskite metal halide zero-dimensional quantum dot composite material has a film-like structure, and the film-like structure of the perovskite metal halide zero-dimensional quantum dot composite material has a thickness of 10-500 nm. For example, 10 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm or 500 nm.
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dots and the perovskite metal halide zero-dimensional quantum dots coated on the perovskite metal halide zero-dimensional quantum dots
  • Organic amine cations on the surface of quantum dots can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite along the out-of-plane direction to form a layered structure.
  • the organic amine cation comprises an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure as shown in Figure 1, and is bound to the aliphatic ring skeleton structure, aromatic ring skeleton structure structure, or at least one amine binding head and at least one hindered group on the thiophene ring skeleton structure, wherein the number of the amine binding head is preferably one, and the number of the hindered group is at least one, so
  • the amine binding head and the steric hindrance group are combined at any position of the backbone structure.
  • the steric hindrance group can not only inhibit the formation of the perovskite into a layered structure, but also promote the formation of the perovskite into a zero-dimensional quantum dot with a strong size confinement effect.
  • the perovskite metal halide zero-dimensional quantum dot composite material also includes a passivator bound on the surface of the perovskite metal halide zero-dimensional quantum dot in the form of a surface ligand.
  • the passivating agent is trimethylammonium bromide and/or tetrabutylphosphine chloride.
  • the passivating agent is bound to the surface of the perovskite metal halide zero-dimensional quantum dot in the form of a surface ligand, and the passivating agent reduces the perovskite metal halide
  • the defect state density of the zero-dimensional quantum dot is improved, and the optical performance of the perovskite metal halide zero-dimensional quantum dot is improved, so that the perovskite metal halide zero-dimensional quantum dot has a higher photoluminescence quantum yield.
  • the perovskite quantum dot active material is annealed to obtain the perovskite gold of embodiment 1 It belongs to a halide zero-dimensional quantum dot composite material, wherein the annealing treatment time is 10 minutes, and the temperature is 80°C.
  • the fluorescence spectrum of the perovskite metal halide zero-dimensional quantum dot composite material in Example 1 exhibits bright blue fluorescence, with a luminescence peak at 466nm and a half-maximum width of 26nm. This shows that the fluorescence emitted by the perovskite metal halide zero-dimensional quantum dot composite material in Example 1 is located in the dark blue region, and the color purity is relatively high.
  • the transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot composite material of embodiment 1 shows that the particle size of the perovskite metal halide zero-dimensional quantum dot composite material of embodiment 1 is 3 ⁇ 4nm, and the particle size distribution is narrow.
  • Cesium bromide (0.0681g), cesium chloride (0.0067g), lead bromide (0.2936g), 4-bromo-alpha-phenethylamine hydrogen bromide (0.2248g), trimethylammonium bromide (0.0056 g), tetrabutylphosphine chloride (0.0114g), and dimethylsulfoxide (2mL);
  • the perovskite quantum dot active material was annealed to obtain the perovskite metal halide zero-dimensional quantum dot composite material of Example 2, wherein the annealing time was 10 min and the temperature was 80°C.
  • the fluorescence spectrum of the perovskite metal halide zero-dimensional quantum dot composite material in Example 2 shows bright blue fluorescence, its luminescence peak is at 465nm, and its half-peak width is 23nm. This shows that the fluorescence emitted by the perovskite metal halide zero-dimensional quantum dot composite of Example 2 is located in the deep blue region range, and the color purity is high.
  • the transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot composite material of embodiment 2 shows that the particle size of the perovskite metal halide zero-dimensional quantum dot composite material of embodiment 2 is 3 ⁇ 4nm, and the particle size distribution is narrow.
  • Cesium bromide (0.0596 g), lead bromide (0.2936 g), trimethylammonium bromide (0.0056 g), tetrabutylphosphine chloride (0.0114 g), and dimethylsulfoxide (2 mL) were provided;
  • the perovskite quantum dot active material was annealed to obtain the perovskite metal halide zero-dimensional quantum dot composite material of Comparative Example 1, wherein the annealing time was 10 min and the temperature was 80°C.
  • the fluorescence spectrum of the perovskite metal halide zero-dimensional quantum dot composite material of Comparative Example 1 exhibits green fluorescence, its luminescence peak is at 520nm, and its half-peak width is 20nm. This shows that the perovskite metal halides in Comparative Example 1 do not have obvious size confinement.
  • the transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot composite material of comparative example 1 shows that the particle size of the perovskite metal halide zero-dimensional quantum dot composite material of comparative example 1 is 30 ⁇ 50nm, its particle size is much larger than the Bohr diameter of excitons, and it does not have the effect of size confinement.
  • the second embodiment of the present invention provides a method for preparing a perovskite metal halide zero-dimensional quantum dot/polymer composite material.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot/polymer composite material comprises the following steps:
  • a first precursor, a second precursor, a third precursor, and a polymer are provided, wherein the first precursor is selected from methylamine halide, formamidine halide, cesium halide, cesium trifluoroacetate, cesium stearate , and at least one of cesium acetate, the second precursor is selected from at least one of lead halide, stannous halide, lead stearate, and lead acetate, and the third precursor is an organic amine salt, so
  • the anion of the organic amine salt is a halide ion, and the cation of the organic amine salt contains an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or At least one amine binding head and at least one hindered group on the thiophene ring skeleton structure;
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material includes polymer material, perovskite metal halide zero-dimensional quantum dots uniformly dispersed in the polymer, and organic amine cations coated on the surface of the perovskite metal halide zero-dimensional quantum dots.
  • the perovskite metal halide zero-dimensional quantum dots have a particle size of 3-15 nm, for example, 3 nm, 5 nm, 7 nm, 10 nm, or 15 nm.
  • the organic amine salt may be a bulky organic amine salt (see FIG. 2 ), and the bulky organic amine salt may be a bulky organic amine salt containing more than 3 carbon atoms. Due to the large volume, the bulky organic amine salt cannot enter the interior of the perovskite lattice, and can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite.
  • the molar ratio of the first precursor to the second precursor is 0.2 ⁇ 2:1.
  • the molar ratio of the second precursor to the third precursor is 1:0.2-2.
  • the size of the micelles in the precursor liquid is controlled by changing the ratio of the third precursor to the second precursor in the precursor liquid, so as to realize the adjustment of the particle size of the perovskite metal halide zero-dimensional quantum dot.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material with different emission wavelengths is prepared by adjusting the content of the organic amine salt.
  • the hindering group is at least one of methyl, methoxy and halogen.
  • Low-concentration bulky organic amine salts are used to make perovskite metal halide zero-dimensional quantum dots with larger particle sizes and longer emission wavelengths, while high-concentration bulky organic amine salts are used to make perovskite metal halide zero-dimensional quantum dots with smaller particle sizes and longer emission wavelengths.
  • the bulky organic amine salt used is 4-fluoro-alpha-phenylethylamine hydrogen bromide, 4-chloro-alpha-benzene Ethylamine Hydrogen Bromide, 4-Bromo-alpha-Phenylethylamine Hydrogen Bromide, 4-Iodo-alpha-Phenylethylamine Hydrogen Bromide, 4-Methyl-alpha-Phenylethylamine Hydrogen Bromide, Or 4-methoxy-alpha-phenethylamine hydrogen bromide salt.
  • the bulky organic amine salt used is 1-(4-fluorophenyl)-1-methylethylamine hydroiodide, 1-(4-iodophenyl)-1-methylethylamine hydroiodide, 1-(4-chlorophenyl)-1-methylethylamine hydroiodide, 1-(4-methylbenzene )-1-methylethylamine hydroiodide, 1-(4-bromophenyl)-1-methylethylamine hydroiodide, or 1-(4-methoxybenzene)-1-methyl Ethylamine Hydroiodide.
  • the mass ratio of the polymer to the perovskite metal halide zero-dimensional quantum dot is 100:0.1 ⁇ 10.
  • the polymer is thermoplastic polyethylene, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, nylon, polycarbonate, polyurethane, polyethylene terephthalate At least one of alcohol esters and polyoxymethylene.
  • a single-screw extrusion blown film machine can be used for the high-temperature extrusion treatment.
  • the temperature of the feeding section of the single-screw extrusion blown film machine is 150-180°C, and the temperature of the compression section is 180°C. ⁇ 200°C, the temperature of the homogenization section is 200 ⁇ 220°C, and the film temperature of the single-screw extrusion film blowing machine is 190 ⁇ 220°C.
  • the rotational speed of the single-screw extruder is 200-1500 rpm, so that the perovskite precursor and the polymer are mixed uniformly.
  • the time for the high-temperature extrusion treatment is 10-100 minutes. After the high temperature extrusion process, the perovskite precursor can crystallize in situ in the polymer as the temperature decreases.
  • the speed of the single-screw extruder, the temperature of each stage, and the time of high-temperature extrusion treatment can be appropriately adjusted according to the melting point of the perovskite precursor and the polymer.
  • the first precursor, the second precursor, the third precursor, and the polymer are mixed to obtain a mixture, and the mixture is subjected to high-temperature extrusion treatment to obtain the calcium Titanium metal halide zero-dimensional quantum dots/polymer composites.
  • the perovskite metal halide The material zero-dimensional quantum dot/polymer composite material comprises a polymer, a perovskite metal halide zero-dimensional quantum dot uniformly dispersed in the polymer, and a perovskite metal halide zero-dimensional quantum dot coated on the perovskite metal halide zero-dimensional quantum dot Organic amine cations on the surface.
  • the organic amine cations of the organic amine salt can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite along the out-of-plane direction to form a layered structure.
  • the organic amine cation comprises an alicyclic skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure as shown in Figure 1, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure At least one amine binding head and at least one hindered group on the The number of the amine binding head is preferably 1, and the number of the steric hindrance group can be at least one, and the amine binding head and the steric hindrance group are combined in an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or Any position of the thiophene ring skeleton structure.
  • the steric hindrance group can not only inhibit the formation of the perovskite into a layered structure, but also promote the formation of the perovskite into a zero-dimensional quantum dot with a strong size confinement effect. Therefore, the preparation method of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of the present invention has the advantage of controllable particle size. Furthermore, the preparation method of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of the present invention does not need to use a large amount of organic solvents and strict conditions such as anhydrous and oxygen-free, and does not need to use post-processing steps such as centrifugal purification.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of the present invention has the advantages of low requirements on process conditions, low cost, simple process, not easy to pollute the environment, and can be mass-produced.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot/polymer composite material also includes the step of forming the perovskite metal halide zero-dimensional quantum dot/polymer composite material to obtain a thickness of 0 ⁇ 2 mm film-like perovskite metal halide zero-dimensional quantum dot/polymer composites.
  • the thickness of the film-like perovskite metal halide zero-dimensional quantum dot/polymer composite material can be 0.1mm, 0.2mm, 0.3mm, 0.5mm, 1mm, 2mm.
  • the molding process is injection molding, blow molding, or thermocompression molding.
  • the temperature of the injection molding treatment is 180-220° C., and the holding time is 5-15 minutes.
  • the temperature of the hot press molding treatment is 180-220° C., the pressure is 4-10 MPa, and the time is 4-10 minutes.
  • the blow molding can be performed by connecting a blown film tower to a single screw extruder.
  • the mouth film temperature of the blown film tower is 180-220°C.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material can be shaped to obtain a film-like film-like perovskite metal halide zero-dimensional quantum dot dot/polymer composites.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot/polymer composite material also includes the following steps:
  • the passivating agent is trimethylammonium bromide and/or tetrabutylphosphine chloride.
  • the molar ratio of the passivating agent to the second precursor is 0.05 ⁇ 0.1:1.
  • it is 0.0.5:1, 0.06:1, or 0.1:1.
  • the passivating agent is combined on the surface of the perovskite metal halide zero-dimensional quantum dot in the form of a surface ligand.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material includes a polymer, the perovskite metal halide zero-dimensional quantum dot uniformly dispersed in the polymer, and the perovskite metal halide zero-dimensional quantum dot coated on the perovskite Organic amine cations and passivators on the surface of metal halide zero-dimensional quantum dots.
  • the passivating agent may also be mixed with the first precursor, the second precursor, the third precursor and the polymer to obtain the mixture.
  • the passivating agent can further reduce the defect state density of the perovskite metal halide zero-dimensional quantum dot, and improve the optical performance of the perovskite metal halide zero-dimensional quantum dot, so that the perovskite metal halide zero-dimensional Quantum dots have a high photoluminescence quantum yield.
  • the second embodiment of the present invention also provides a perovskite metal halide zero-dimensional quantum dot/polymer composite material.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material is used for the active layer in light-emitting diodes, the backlight film in display panels, the active layer of photodetectors, the light-absorbing layer of solar cells, and the emission of lasers layer.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material includes a polymer, the perovskite metal halide zero-dimensional quantum dot uniformly dispersed in the polymer, and the perovskite metal halide zero-dimensional quantum dot coated on the perovskite Organic amine cations on the surface of metal halide zero-dimensional quantum dots.
  • the organic amine cation comprises an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure, and at least one amine binding head bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure and at least one hindered group.
  • the perovskite metal halide zero-dimensional quantum dots have a particle size of 3-15 nm, for example, 3 nm, 5 nm, 7 nm, 10 nm, or 15 nm.
  • the hindering group is at least one of methyl, methoxy and halogen.
  • the mass ratio of the polymer to the perovskite metal halide zero-dimensional quantum dot is 100:0.1-10 .
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material has a film-like structure, and the perovskite metal halide zero-dimensional quantum dot/polymer composite material with the film-like structure
  • the thickness is 10-500nm. For example, 10 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm or 500 nm.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material includes a polymer, and perovskite metal halide zero-dimensional quantum dots uniformly dispersed in the polymer. points, and organic amine cations coated on the surface of the perovskite metal halide zero-dimensional quantum dots.
  • the organic amine cations of the organic amine salt can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite along the out-of-plane direction to form a layered structure.
  • the organic amine cation comprises an alicyclic skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure as shown in Figure 1, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure At least one amine binding head and at least one hindered group on the The number of the amine binding head is preferably 1, and the number of the steric hindrance group can be at least one, and the amine binding head and the steric hindrance group are combined in an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or Any position of the thiophene ring skeleton structure.
  • the steric hindrance group can not only inhibit the formation of the perovskite into a layered structure, but also promote the formation of the perovskite into a zero-dimensional quantum dot with a strong size confinement effect.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material also includes a passivator bound on the surface of the perovskite metal halide zero-dimensional quantum dot in the form of a surface ligand.
  • the passivating agent is trimethylammonium bromide and/or tetrabutylphosphine chloride.
  • the passivating agent is bound to the surface of the perovskite metal halide zero-dimensional quantum dot in the form of a surface ligand, and the passivating agent reduces the perovskite metal halide
  • the defect state density of the zero-dimensional quantum dot is improved, and the optical performance of the perovskite metal halide zero-dimensional quantum dot is improved, so that the perovskite metal halide zero-dimensional quantum dot has a higher photoluminescence quantum yield.
  • the mixture into a single-screw extruder blown film machine, and carry out heating and melting to melt the mixture, wherein, in the heating and melting treatment, the temperature of the feeding section of the single-screw extruder is 180°C , the temperature of the compression section is 190°C, the temperature of the homogenization section is 200°C, and the speed of the single-screw extruder is 900 rpm; and
  • the molten mixture is extruded from a single-screw extrusion blown film machine, and subjected to injection molding treatment, and after cooling, the perovskite metal halide zero-dimensional quantum dot/polymer composite material of embodiment 3 is obtained, wherein,
  • the mouth film temperature of the single-screw extrusion film blowing machine is 190°C
  • the temperature of the injection molding process is 200°C
  • the holding time is 10 minutes.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material in Example 3 has a film-like structure with a thickness of 0.3 mm.
  • the fluorescence spectrum of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Example 3 shows bright blue fluorescence, its luminescence peak is at 473nm, and its half-peak width is 26nm. This shows that the fluorescence emitted by the perovskite metal halide zero-dimensional quantum dot/polymer composite material in Example 3 is located in the dark blue region, and the color purity is relatively high.
  • the PLQY of the perovskite metal halide zero-dimensional quantum dot/polymer composite material in Example 3 can reach 70%.
  • the transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of embodiment 3 shows that the perovskite metal halide zero-dimensional quantum dot/polymer composite material of embodiment 3
  • the particle size is 4-5nm, and the particle size distribution is narrow. This proves that the perovskite metal halide zero-dimensional quantum dots/polymer composite of Example 3 has a strong size confinement effect.
  • Cesium iodide (0.596 g), lead iodide (2.936 g), 1-(4-bromophenyl)-1-methylethylamine hydroiodide (3.147 g), trimethylammonium bromide (0.056 g), tetrabutylphosphine chloride (0.114g), and polystyrene (74.04g);
  • the mixture into a single-screw extruder blown film machine, and carry out heating and melting to melt the mixture, wherein, in the heating and melting treatment, the temperature of the feeding section of the single-screw extruder is 180°C , the temperature of the compression section is 190°C, the temperature of the homogenization section is 200°C, and the speed of the single-screw extruder is 900 rpm; and
  • the molten mixture is extruded from a single-screw extrusion blown film machine, and subjected to thermocompression molding, and after cooling, the perovskite metal halide zero-dimensional quantum dot/polymer composite material of embodiment 4 is obtained, wherein , the mouth film temperature of the single-screw extrusion film blowing machine is 190°C, the temperature of the hot press molding treatment is 200°C, the pressure is 5MPa, and the time is 5min.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material in Example 4 has a film-like structure with a thickness of 0.2 mm.
  • the fluorescence spectrum of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Example 4 shows bright blue fluorescence, its luminescence peak is at 652nm, and its half-peak width is 36nm. This shows that the fluorescence emitted by the perovskite metal halide zero-dimensional quantum dot/polymer composite material in Example 4 is located in the dark blue region, and the color purity is relatively high.
  • the PLQY of the perovskite metal halide zero-dimensional quantum dot/polymer composite material in Example 4 can reach 80%.
  • the transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of embodiment 4 shows that the perovskite metal halide zero-dimensional quantum dot/polymer composite material of embodiment 4
  • the particle size is 5-6nm, and the particle size distribution is narrow. This proves that the perovskite metal halide zero-dimensional quantum dots/polymer composite of Example 4 has a strong size confinement effect.
  • Cesium bromide (0.596g), lead bromide (2.936g), trimethylammonium bromide (0.056g), tetrabutylphosphine chloride (0.114g), and polystyrene (74.04g) were provided;
  • the mixture into a single-screw extruder blown film machine, and carry out heating and melting to melt the mixture, wherein, in the heating and melting treatment, the temperature of the feeding section of the single-screw extruder is 180°C , the temperature of the compression section is 190°C, the temperature of the homogenization section is 200°C, and the speed of the single-screw extruder is 900 rpm; and
  • the molten mixture is extruded from a single-screw extrusion blown film machine, and subjected to injection molding treatment. After cooling, the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Comparative Example 2 is obtained, wherein, The mouth film temperature of the single-screw extrusion film blowing machine is 190°C, the temperature of the injection molding process is 200°C, and the holding time is 10 minutes.
  • the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Comparative Example 2 has a film-like structure with a thickness of 0.2 mm.
  • the fluorescence spectrum of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Comparative Example 2 shows bright green fluorescence, its luminescence peak is at 520nm, and its half-peak width is 20nm. This shows that the perovskite metal halide zero-dimensional quantum dot/polymer composite material of Comparative Example 2 does not have obvious size confinement effect.
  • the transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dot/polymer composite material of comparative example 2 shows that the perovskite metal halide zero-dimensional quantum dot/polymer composite material of comparative example 2
  • the particle size is 30-50nm, and the particle size of the perovskite metal halide zero-dimensional quantum dot/polymer composite material in Comparative Example 2 is much larger than the Bohr diameter of the excitons. This proves that the perovskite metal halide zero-dimensional quantum dots/polymer composite of Comparative Example 2 does not have the size confinement effect.
  • the third embodiment of the present invention provides a method for preparing a perovskite metal halide zero-dimensional quantum dot composite material.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material comprises the following steps:
  • a first precursor, a second precursor, a third precursor, and a polymer are provided, wherein the first precursor is selected from methylamine halide, formamidine halide, cesium halide, cesium trifluoroacetate, cesium stearate , and at least one of cesium acetate, the second precursor is selected from at least one of lead halide, stannous halide, lead stearate, and lead acetate, and the third precursor is an organic amine salt, so
  • the anion of the organic amine salt is a halide ion, and the cation of the organic amine salt contains an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or At least one amine binding head and at least one hindered group on the thiophene ring skeleton structure;
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dot composite material
  • Metal halide zero-dimensional quantum dots, and organic amine cations coated on the surface of the perovskite metal halide zero-dimensional quantum dots are included in the perovskite metal halide zero-dimensional quantum dots.
  • the perovskite metal halide zero-dimensional quantum dots have a particle size of 3-15 nm, for example, 3 nm, 5 nm, 7 nm, 10 nm, or 15 nm.
  • the organic amine salt may be a bulky organic amine salt (see FIG. 2 ), and the bulky organic amine salt may be a bulky organic amine salt containing more than 3 carbon atoms. Due to the large volume, the bulky organic amine salt cannot enter the interior of the perovskite lattice, and can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite.
  • the molar ratio of the first precursor to the second precursor is 0.2 ⁇ 2:1.
  • the molar ratio of the second precursor to the third precursor is 1:0.2-2.
  • the particle size of the perovskite metal halide zero-dimensional quantum dots is adjusted by changing the ratio of the third precursor to the second precursor.
  • the hindering group is at least one of methyl, methoxy and halogen.
  • Low-concentration bulky organic amine salts are used to make perovskite metal halide zero-dimensional quantum dots with larger particle sizes and longer emission wavelengths, while high-concentration bulky organic amine salts are used to make perovskite metal halide zero-dimensional quantum dots with smaller particle sizes and longer emission wavelengths.
  • Perovskite metal halide zero-dimensional quantum dots with shorter emission wavelengths This is because, with the increase of the content of the bulky organic amine salt, the growth inhibition effect of the bulky organic amine salt on the perovskite metal halide zero-dimensional quantum dots is gradually obvious. Therefore, perovskite metal halide zero-dimensional quantum dots with different particle sizes and different emission wavelengths can be prepared by adjusting the content of bulky organic amine salts in the precursor solution.
  • the bulky organic amine salt used is 4-fluoro-alpha-phenylethylamine hydrogen bromide, 4-chloro-alpha-benzene Ethylamine Hydrogen Bromide, 4-Bromo-alpha-Phenylethylamine Hydrogen Bromide, 4-Iodo-alpha-Phenylethylamine Hydrogen Bromide, 4-Methyl-alpha-Phenylethylamine Hydrogen Bromide, Or 4-methoxy-alpha-phenethylamine hydrogen bromide salt.
  • the bulky organic amine salt used is 1-(4-fluorophenyl)-1-methylethylamine hydroiodide, 1-(4-iodophenyl)-1-methylethylamine hydroiodide, 1-(4-chlorophenyl)-1-methylethylamine hydroiodide, 1-(4-methylbenzene )-1-methylethylamine hydrogen iodide acid salt, 1-(4-bromophenyl)-1-methylethylamine hydroiodide, or 1-(4-methoxybenzene)-1-methylethylamine hydroiodide.
  • the perovskite metal halide zero-dimensional quantum dot composite material with different emission wavelengths can be prepared by adjusting the content of the organic amine salt.
  • the perovskite metal halide zero-dimensional quantum dot composite material has a film-like structure, and the thickness of the perovskite metal halide zero-dimensional quantum dot composite material with a film-like structure is 10 ⁇ 500nm.
  • the temperature of the annealing treatment is 100-150° C., and the time is 5-30 minutes.
  • the first precursor, the second precursor, and the third precursor are mixed to obtain a perovskite quantum dot precursor, and the perovskite quantum dot precursor is Vacuum coating treatment and annealing treatment to obtain the perovskite metal halide zero-dimensional quantum dot composite material.
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dots and organic amine cations coated on the surface of the perovskite metal halide zero-dimensional quantum dots.
  • the organic amine cations of the organic amine salt can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite along the out-of-plane direction to form a layered structure.
  • the organic amine cation comprises an alicyclic skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure as shown in Figure 1, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure At least one amine binding head and at least one hindered group on the The number of the amine binding head is preferably 1, and the number of the steric hindrance group can be at least one, and the amine binding head and the steric hindrance group are combined in an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or Any position of the thiophene ring skeleton structure.
  • the steric hindrance group can not only inhibit the formation of the perovskite into a layered structure, but also promote the formation of the perovskite into a zero-dimensional quantum dot with a strong size confinement effect. Therefore, the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material of the present invention has the advantage of controllable particle size.
  • the vacuum coating treatment of the present invention is compatible with the industrial display panel preparation process, and can overcome the uneven crystallization, waste of raw materials, difficulty in preparing large-area films, and difficulty in realizing multi-
  • a perovskite metal halide zero-dimensional quantum dot/polymer composite film with large area, uniform film formation, high PLQY, and dense surface is obtained.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material of the present invention does not need to use a large amount of organic solvents and strict conditions such as anhydrous and oxygen-free, and does not need to use Centrifugal purification and other post-processing steps make the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material of the present invention have low process requirements, low cost, simple process, not easy to pollute the environment, mass production, high precision, and high repeatability.
  • the step of carrying out vacuum coating treatment to the perovskite quantum dot precursor comprises:
  • the perovskite quantum dot precursor is placed in a vacuum coating machine, and the perovskite quantum dot precursor is deposited on a substrate to obtain a perovskite quantum dot active layer.
  • the vacuum coating machine includes a heating platform and an inorganic evaporation source.
  • the substrate can be set on a heating platform, and the heating platform can heat the temperature of the substrate to 60-100°C.
  • the inorganic evaporation source can be used to vaporize and escape the atoms or molecules of the perovskite quantum dot precursor, and then deposit them on the surface of the substrate.
  • the heating stage is preferably a rotating heating stage.
  • the temperature of the vacuum coating treatment is 60-100° C.
  • the evaporation rate is 0.5-10 angstroms/s.
  • the temperature of the heating stage can be adjusted to 100-150°C to anneal the perovskite quantum dot active layer on the substrate to obtain the perovskite metal halide zero-dimensional quantum point composites.
  • the substrate is a transparent glass substrate, a flexible polyethylene terephthalate substrate, a nano-indium tin oxide conductive glass, or a fluorine-doped tin dioxide conductive glass.
  • a vacuum coating machine can be used to deposit the perovskite quantum dot precursor on the substrate to obtain the perovskite quantum dot active layer.
  • Vacuum evaporation process is the main preparation method of commercialized organic light-emitting diodes (OLEDs). With the assistance of a high-precision metal mask, the vacuum evaporation process can easily obtain side-by-side red, green and blue three primary color light-emitting pixels, thereby realizing mass production of OLED devices with high quality.
  • the perovskite quantum dot precursor is first evaporated or sublimated into gaseous particles, and then attached to the surface of the substrate to nucleate and grow into a solid film.
  • the vacuum evaporation process gets rid of the limitation of uneven coating of the liquid phase method, and is especially suitable for depositing large-scale perovskite metal halide zero-dimensional quantum dot composite materials.
  • the preparation method of the perovskite metal halide zero-dimensional quantum dot composite material also includes the following steps:
  • the passivating agent is trimethylammonium bromide and/or tetrabutylphosphine chloride.
  • the molar ratio of the passivating agent to the second precursor is 0.05 ⁇ 0.1:1.
  • it is 0.0.5:1, 0.06:1, or 0.1:1.
  • the passivating agent is combined on the surface of the perovskite metal halide zero-dimensional quantum dot in the form of a surface ligand.
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dots, organic amine cations and passivation coatings on the surface of the perovskite metal halide zero-dimensional quantum dots agent.
  • a passivating agent may also be mixed with the first precursor, the second precursor, and the third precursor to obtain the perovskite quantum dot precursor.
  • the passivating agent can further reduce the defect state density of the perovskite metal halide zero-dimensional quantum dot, and improve the optical performance of the perovskite metal halide zero-dimensional quantum dot, so that the perovskite metal halide zero-dimensional Quantum dots have a high photoluminescence quantum yield.
  • the preparation of the perovskite metal halide zero-dimensional quantum dot composite material includes the steps of:
  • the grinding process can be performed on the mixture by a grinder, or the first precursor, the second precursor, and the third precursor can be manually ground by placing the first precursor, the second precursor, and the third precursor in a mortar, so that the precursors are mixed uniform.
  • the perovskite quantum dot precursors pre-crystallized and displayed bright fluorescence at different wavelengths.
  • the mixture of the first precursor, the second precursor, and the third precursor is ground, so that the first precursor, the second precursor, and the The third precursor is mixed uniformly.
  • the third embodiment of the present invention also provides a perovskite metal halide zero-dimensional quantum dot composite material.
  • the perovskite metal halide zero-dimensional quantum dot composite material includes perovskite metal halide zero-dimensional quantum dots and organic amine cations coated on the surface of the perovskite metal halide zero-dimensional quantum dots, the The organic amine cation comprises an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure, And at least one amine binding head and at least one hindered group bonded to the aliphatic ring skeleton structure, aromatic ring skeleton structure or thiophene ring skeleton structure.
  • the perovskite metal halide zero-dimensional quantum dots have a particle size of 3-15 nm, for example, 3 nm, 5 nm, 7 nm, 10 nm, or 15 nm.
  • the hindering group is at least one of methyl, methoxy and halogen.
  • the perovskite metal halide zero-dimensional quantum dot composite material has a film structure, and the thickness of the perovskite metal halide zero-dimensional quantum dot composite material with the film structure is 10-500nm .
  • the perovskite metal halide zero-dimensional quantum dot composite material includes a polymer, perovskite metal halide zero-dimensional quantum dots uniformly dispersed in the polymer, and Organic amine cations coated on the surface of the perovskite metal halide zero-dimensional quantum dots, the particle diameter of the perovskite metal halide zero-dimensional quantum dots is 3-15 nm.
  • the organic amine cations of the organic amine salt can coordinate with the halogen elements on the surface of the perovskite through electrostatic and hydrogen bond interactions, thereby inhibiting the growth of the perovskite along the out-of-plane direction to form a layered structure.
  • the organic amine cation comprises an alicyclic skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure as shown in Figure 1, and is bound to the aliphatic ring skeleton structure, an aromatic ring skeleton structure, or a thiophene ring skeleton structure At least one amine binding head and at least one hindered group on the The number of the amine binding head is preferably 1, and the number of the steric hindrance group can be at least one, and the amine binding head and the steric hindrance group are combined in an aliphatic ring skeleton structure, an aromatic ring skeleton structure, or Any position of the thiophene ring skeleton structure.
  • the steric hindrance group can not only inhibit the formation of the perovskite into a layered structure, but also promote the formation of the perovskite into a zero-dimensional quantum dot with a strong size confinement effect.
  • the perovskite metal halide zero-dimensional quantum dot composite material also includes a passivator bound on the surface of the perovskite metal halide zero-dimensional quantum dot in the form of a surface ligand.
  • the passivating agent is trimethylammonium bromide and/or tetrabutylphosphine chloride.
  • the passivating agent is bound to the surface of the perovskite metal halide zero-dimensional quantum dot in the form of a surface ligand, and the passivating agent reduces the perovskite metal halide
  • the defect state density of the zero-dimensional quantum dot is improved, and the optical performance of the perovskite metal halide zero-dimensional quantum dot is improved, so that the perovskite metal halide zero-dimensional quantum dot has a higher photoluminescence quantum yield.
  • the perovskite quantum dot precursor is stored in a nitrogen environment for use;
  • the inorganic evaporation source Place an appropriate amount of perovskite quantum dot precursor in the inorganic evaporation source in the vacuum coating equipment, perform vacuum coating, and deposit the perovskite quantum dot active layer on the transparent glass substrate, wherein, the deposition of the inorganic evaporation source The rate is 1.5 Angstroms/s, and the temperature in the vacuum coating equipment is 60°C; and
  • the perovskite quantum dot active layer is subjected to post-annealing treatment to obtain the perovskite metal halide zero-dimensional quantum dot film of Example 1, wherein the temperature of the annealing treatment is 100° C., and the time is 10min, the thickness of the perovskite metal halide zero-dimensional quantum dot thin film of Example 1 is 100nm, and the length and width are both 10cm.
  • the fluorescence spectrum of the perovskite metal halide zero-dimensional quantum dot film of Example 5 exhibits bright blue fluorescence, with a luminescence peak at 473nm and a half-maximum width of 26nm. This shows that the fluorescence emitted by the perovskite metal halide zero-dimensional quantum dot film of Example 5 is located in the dark blue region, and the color purity is relatively high.
  • the PLQY of the perovskite metal halide zero-dimensional quantum dot composite material in Example 5 can reach 70%
  • the transmission electron micrograph of the perovskite metal halide zero-dimensional quantum dots of Example 5 shows that the particle size of the perovskite metal halide zero-dimensional quantum dots of Example 5 is 3 to 4 nm, and The particle size distribution is narrow.
  • the scanning electron micrograph of the perovskite metal halide zero-dimensional quantum dots of Example 5 shows that the surface of the perovskite metal halide zero-dimensional quantum dot composite material of Example 5 is flat and uniform in film formation.
  • the perovskite quantum dot precursor is stored in a nitrogen environment for use;
  • the inorganic evaporation source Place an appropriate amount of perovskite quantum dot precursor in the inorganic evaporation source in the vacuum coating equipment, perform vacuum coating, and deposit the perovskite quantum dot active layer on the transparent glass substrate, wherein, the deposition of the inorganic evaporation source The rate is 1.5 Angstroms/s, and the temperature in the vacuum coating equipment is 60°C; and
  • the perovskite metal halide quantum dot active layer is subjected to post-annealing treatment to obtain the perovskite metal halide quantum dot thin film of Comparative Example 1, wherein the temperature of the annealing treatment is 100 ° C, The time is 10 minutes, and the thickness of the perovskite metal halide zero-dimensional quantum dot film of Comparative Example 3 is 100 nm, and the length and width are both 10 cm.
  • the fluorescence spectrum of the bulk perovskite metal halide thin film of Comparative Example 3 exhibits green fluorescence, with a luminescence peak at 520nm and a half-peak width of 20nm. This shows that the bulk perovskite metal halide of Comparative Example 3 does not have obvious size confinement.
  • the scanning electron micrograph of the bulk perovskite metal halide film of comparative example 3 shows that the surface of the perovskite metal halide film of comparative example 1 is rough, and the particle size of the perovskite metal halide is 100-300nm, the particle size is much larger than the Bohr diameter of excitons. This proves that the bulk perovskite metal halide film of Comparative Example 3 does not have size confinement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供一种钙钛矿金属卤化物零维量子点复合材料的制备方法,包括:混合第一前驱体、第二前驱体、及第三前驱体,得到钙钛矿量子点前驱体,第一前驱体为卤化甲胺、卤化甲脒、卤化铯、三氟乙酸铯、硬脂酸铯、及醋酸铯中的至少一种,第二前驱体为卤化铅、卤化亚锡、硬脂酸铅、及醋酸铅中的至少一种,第三前驱体为有机胺盐,其阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述骨架结构上的至少一胺基结合头和至少一位阻基团;对所述钙钛矿量子点前驱体进行真空镀膜处理和退火处理。本发明还提供一种钙钛矿金属卤化物零维量子点复合材料,和有机胺盐于制备所述钙钛矿金属卤化物零维量子点/聚合物复合材料的应用。

Description

钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用 技术领域
本发明涉及新材料制备技术领域,尤其涉及一种钙钛矿金属卤化物零维量子点复合材料的制备方法,由该方法所制得的钙钛矿金属卤化物零维量子点复合材料,及有机胺盐于制备所述钙钛矿金属卤化物零维量子点复合材料的应用。
背景技术
相比于传统半导体量子点,钙钛矿金属卤化物量子点具有高的光致发光量子产率、高色纯度、及宽色域等优异的光学性能。此外,通过改变钙钛矿结构中卤素元素的成分和比例,能够改变其带隙,进而实现从紫色到近红外的连续可调谐发射。钙钛矿金属卤化物量子点的优异的光电学性质使其成为一种极具潜力的发光材料。
目前,钙钛矿金属卤化物量子点的制备方法主要分为溶液法(主要分为热注射法、配体辅助沉淀法)和高温挤出法。虽然,基于热注射法和配体辅助沉淀法已经制备出了较高质量的钙钛矿金属卤化物量子点。然而,该热注射法具有工艺条件苛刻(如,需要高温和严格的无水无氧等苛刻条件)、和工艺复杂(如,需要离心纯化等后处理步骤)的缺点。该配体辅助沉淀法具有工艺复杂(如,需要离心纯化等后处理步骤)、及难以合成出超小粒径(直径小于15nm)的钙钛矿金属卤化物量子点的缺点。而且,由所述高温挤出法制得的钙钛矿金属卤化物零维量子点复合材料多为层数较多的片状体相材料,导致制得的钙钛矿金属卤化物零维量子点复合材料的尺寸限域效应弱。显然,这三种技术仍然存在许多明显的缺陷和不足,导致钙钛矿金属卤化物量子点的粒径可控且大规模生产仍然面临挑战。
进一步地,还可采用旋涂或刮涂工艺将所述钙钛矿金属卤化物量子点制备为膜状。由于在旋涂或刮涂的过程中,基片边缘与基片中心区域的旋转线速度存在巨大差异,导致制得的钙钛矿金属卤化物量子点的粒径不可调。
发明内容
本发明提供一种钙钛矿金属卤化物零维量子点复合材料的制备方法,包括以下步骤:
提供第一前驱体、第二前驱体、及第三前驱体,其中,所述第一前驱体选自卤化甲胺、卤化甲脒、卤化铯、三氟乙酸铯、硬脂酸铯、及醋酸铯中的至少一种,所述第二前驱体选自卤化铅、卤化亚锡、硬脂酸铅、及醋酸铅中的至少一种,所述第三前驱体为有机胺盐,所述有机胺盐的阴离子为卤素离子,所述有机胺盐的阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团;
混合所述第一前驱体、第二前驱体、及第三前驱体,得到钙钛矿量子点前驱体;及
对所述钙钛矿量子点前驱体进行成型处理,得到所述钙钛矿量子点活性层;及
对所述钙钛矿量子点活性层进行退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料,其中,所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿量子点、和包覆于所述钙钛矿量子点表面的有机胺阳离子有机胺盐于制备钙钛矿金属卤化物零维量子点复合材料的应用,所述有机胺盐的阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。
本发明还提供一种钙钛矿金属卤化物零维量子点复合材料,其包括钙钛矿量子点、和包覆于所述钙钛矿量子点表面的有机胺阳离子,所述有机胺阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。
本发明还提供一种有机胺盐于制备所述钙钛矿金属卤化物零维量子点复 合材料的应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明所采用的有机胺阳离子的骨架结构、胺基结合头及位阻基团的分子结构图。
图2为本发明所采用的若干种有机胺阳离子的分子结构图。
图3为本发明实施例1的钙钛矿金属卤化物零维量子点复合材料的荧光光谱图。
图4为本发明实施例1的钙钛矿金属卤化物零维量子点复合材料的透射电子显微照片。
图5为本发明实施例2的钙钛矿金属卤化物零维量子点复合材料的荧光光谱图。
图6为本发明实施例2的钙钛矿金属卤化物零维量子点复合材料的透射电子显微照片。
图7为本发明对比例1的体相钙钛矿金属卤化物复合膜的荧光光谱图。
图8为本发明对比例1的体相钙钛矿金属卤化物复合膜的透射电子显微照片。
图9为本发明实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料的荧光光谱图。
图10为本发明实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料的透射电子显微照片。
图11为本发明实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料的荧光光谱图。
图12为本发明实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料的透射电子显微照片。
图13为本发明对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料的荧光光谱图。
图14为本发明对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料的透射电子显微照片。
图15为本发明实施例5的钙钛矿金属卤化物零维量子点复合材料的荧光光谱图。
图16为本发明实施例5的钙钛矿金属卤化物零维量子点复合材料的透射电子显微照片。
图17为本发明实施例5的钙钛矿金属卤化物零维量子点复合材料的扫描电子显微照片。
图18为本发明对比例3的钙钛矿金属卤化物零维量子点复合材料的荧光光谱图。
图19为本发明对比例3的钙钛矿金属卤化物零维量子点复合材料的扫描电子显微照片。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提供一种有机胺盐于制备钙钛矿金属卤化物零维量子点复合材料的应用,所述有机胺盐的阳离子包含脂肪环骨架结构、芳环骨架结构、或噻 吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。
所述有机胺盐的阳离子可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿沿面外方向生长而形成层状结构。另外,所述有机胺阳离子包含如图1所示的脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。所述胺基结合头的数量优选为1个,所述位阻基团的数量可为至少一个,所述胺基结合头和位阻基团结合在脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构的任意位置。不论在旋涂法、真空镀膜法、高温挤出法等方法制备钙钛矿金属卤化物零维量子点复合材料时,所述位阻基团不仅可抑制钙钛矿生成为层状结构,还可促使钙钛矿生成为具有强尺寸限域效应的零维量子点。因此,将有机胺盐应用于制备钙钛矿金属卤化物零维量子点复合材料,则可实现调控钙钛矿金属卤化物零维量子点复合材料的粒径。
本发明第一实施例提供一种钙钛矿金属卤化物零维量子点复合材料的制备方法。所述钙钛矿金属卤化物零维量子点复合材料的制备方法包括以下步骤:
提供第一前驱体、第二前驱体、第三前驱体、及溶剂,其中,所述第一前驱体选自卤化甲胺、卤化甲脒、卤化铯、三氟乙酸铯、硬脂酸铯、及醋酸铯中的至少一种,所述第二前驱体选自卤化铅、卤化亚锡、硬脂酸铅、及醋酸铅中的至少一种,所述第三前驱体为有机胺盐,所述有机胺盐的阴离子为卤素离子,所述有机胺盐的阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团;
混合所述第一前驱体、第二前驱体、第三前驱体、及溶剂,得到前驱液;
将所述前驱液加到一基底上,对位于所述基底上的前驱液进行旋涂成膜处理,得到钙钛矿量子点活性材料;及
对所述钙钛矿量子点活性材料进行退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料,其中,所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点和包覆于所述钙钛矿金属卤化物零维量子 点表面的有机胺盐。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点复合材料具有膜状结构,该膜状结构的钙钛矿金属卤化物零维量子点复合材料的厚度为10~500nm。例如为,10nm、50nm、100nm、200nm、300nm、400nm或500nm。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点的粒径为3~15nm,例如为,3nm、5nm、7nm、10nm、或15nm。
在至少一实施例中,所述有机胺盐可为大体积有机胺盐(参图2),所述大体积有机胺盐可为含有3个碳原子以上的大体积有机胺盐。由于体积过大,所述大体积有机胺盐不能进入钙钛矿的晶格内部,可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿的生长。
在至少一实施例中,所述第一前驱体和第二前驱体的摩尔比为0.1~0.9:1。例如为,0.1:1、0.3:1、0.45:1、0.5:1、0.6:1、0.7:1、0.8:1、或0.9:1。
在至少一实施例中,所述第二前驱体与第三前驱体的摩尔比为0.2~1.4:1。例如为,0.2:1、0.5:1、0.7:1、0.9:1、1.1:1、1.3:1、或1.4:1。
通过改变所述前驱液中第三前驱体与第二前驱体的比例来控制前驱液中胶束的大小,从而实现调节钙钛矿金属卤化物零维量子点的粒径。
低浓度的大体积有机胺盐用于制作粒径较大且发射波长较长的钙钛矿金属卤化物零维量子点,而高浓度的大体积有机胺盐则用于制作粒径较小且发射波长较短的钙钛矿金属卤化物零维量子点。这是因为,随着大体积有机胺盐含量的增多,大体积有机胺盐对钙钛矿金属卤化物零维量子点的生长抑制作用逐渐明显。因此,可通过调节前驱液中的大体积有机胺盐的含量,制备出具有不同粒径大小、不同发射波长的钙钛矿金属卤化物零维量子点。
在至少一实施例中,所述位阻基团为甲基、甲氧基及卤素中的至少一种。
在至少一实施例中,对于Br体系钙钛矿金属卤化物零维量子点,使用的大体积有机胺盐为4-氟-alpha-苯乙胺溴化氢盐、4-氯-alpha-苯乙胺溴化氢盐、4-溴-alpha-苯乙胺溴化氢盐、4-碘-alpha-苯乙胺溴化氢盐、4-甲基-alpha-苯乙胺溴化氢盐、或4-甲氧基-alpha-苯乙胺溴化氢盐。
在至少一实施例中,对于I体系钙钛矿金属卤化物零维量子点,使用的大 体积有机胺盐为1-(4-氟苯基)-1-甲基乙胺氢碘酸盐、1-(4-碘苯基)-1-甲基乙胺氢碘酸盐、1-(4-氯苯基)-1-甲基乙胺氢碘酸盐、1-(4-甲基苯)-1-甲基乙胺氢碘酸盐、1-(4-溴苯基)-1-甲基乙胺氢碘酸盐、或1-(4-甲氧基苯)-1-甲基乙胺氢碘酸盐。
在至少一实施例中,所述溶剂为二甲基亚砜、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、及乙腈中的至少一种。
在至少一实施例中,所述前驱液中,所述第二前驱体的浓度为0.15~0.25mol/L,优选为0.2mol/L。
在至少一实施例中,所述基底为透明基底,为普通钠钙玻璃、纳米铟锡金属氧化物、氟掺杂二氧化锡、石英、或柔性的聚对苯二甲酸乙二醇酯。
在至少一实施例中,可采用孔径为0.22μm的过滤器过滤所述前驱液,以过滤掉所述前驱液中的不溶杂质,再储存于氮气环境中待用。
在至少一实施例中,可采用匀胶机进行所述旋涂成膜处理,所述匀胶机的转速可设置为2000~8000r.p.m,匀胶时间可为1~2min。
在至少一实施例中,所述退火处理的温度为60~80℃,时间为5~10min。
在至少一实施例中,可预先将所述基底置于等离子清洗机中,高功率处理10~15min,来等离子体表面活化所述基底。
本发明第一实施例的技术方案中,混合所述第一前驱体、第二前驱体、第三前驱体及溶剂,得到前驱液,将所述前驱液设于基底上,对位于所述基底上的前驱液进行旋涂成膜处理,得到钙钛矿量子点活性材料,对所述钙钛矿量子点活性材料进行退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料。所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺盐。所述有机胺盐的有机胺阳离子可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿沿面外方向生长而形成层状结构。另外,所述有机胺阳离子包含如图1所示的脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。所述胺基结合头的数量优选为1个,所述位阻基团的数量可为至少一个,所述胺基结合头和位阻基团结合在脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构的任意位置。所述位阻 基团不仅可抑制钙钛矿生成为层状结构,还可促使钙钛矿生成为具有强尺寸限域效应的零维量子点。因此,本发明的钙钛矿金属卤化物零维量子点复合材料的制备方法具有粒径可控的优点。再者,本发明的钙钛矿金属卤化物零维量子点复合材料的制备方法无需采用高温和严格的无水无氧等苛刻条件,也无需采用离心纯化等后处理步骤,使得本发明的钙钛矿金属卤化物零维量子点复合材料的制备方法具有工艺条件要求低、成本低、和工艺简单的优点。
所述钙钛矿金属卤化物零维量子点复合材料的制备方法还包括以下步骤:
提供钝化剂;
混合所述第一前驱体、第二前驱体、第三前驱体、钝化剂、及溶剂,得到前驱液。
在至少一实施例中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦。
在至少一实施例中,所述钝化剂与第二前驱体的摩尔比为0.05~0.1:1。例如为0.0.5:1、0.06:1、或0.1:1。
所述退火处理后,所述钝化剂以表面配体的形式结合在钙钛矿金属卤化物零维量子点的表面。所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺盐和钝化剂。
本发明第一实施例的技术方案中,还可将钝化剂与所述第一前驱体、第二前驱体、第三前驱体及溶剂混合,得到所述前驱液。所述钝化剂可进一步减少钙钛矿金属卤化物零维量子点的缺陷态密度,并提高钙钛矿金属卤化物零维量子点的光学性能,使得所述钙钛矿金属卤化物零维量子点具有较高的光致发光量子产率。
所述钙钛矿金属卤化物零维量子点复合材料的制备方法还包括以下步骤:
提供反溶剂;及
在所述旋涂成膜处理的过程中,将所述反溶剂加入至所述基底上,得到所述钙钛矿金属卤化物零维量子点复合材料。
在至少一实施例中,所述反溶剂为甲苯、氯苯、及氯仿中的至少一种。
在至少一实施例中,所述反溶剂和设于所述基底上的前驱液的体积比为 1~2:1。优选为2:1。
在至少一实施例中,可在所述旋涂成膜处理开始后的5~20s,将所述反溶剂加入至所述基底上。
所述反溶剂在所述退火处理的过程中逐渐被去除。
本发明第一实施例的技术方案中,还可将反溶剂在所述旋涂成膜处理的过程中加入至所述基底上,达到使前驱液迅速达到过饱的目的,来加快所述钙钛矿金属卤化物零维量子点的成核结晶过程。
本发明第一实施例还提供一种钙钛矿金属卤化物零维量子点复合材料,可用于发光二极管中的活性层、显示面板中的背光膜、光电探测器的活性层、太阳能电池的吸光层、及激光器的发射层中。
所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子,所述有机胺阳离子包含如图1所示的脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。其中,所述胺基结合头的数量优选为一个,所述位阻基团的数量至少为一个,所述胺基结合头和位阻基团结合在骨架结构的任意位置。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点的粒径为3~15nm,例如为,3nm、5nm、7nm、10nm、或15nm。
在至少一实施例中,所述位阻基团为甲基、甲氧基及卤素中的至少一种。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点复合材料具有膜状结构,该膜状结构的钙钛矿金属卤化物零维量子点复合材料的厚度为10~500nm。例如为,10nm、50nm、100nm、200nm、300nm、400nm或500nm。
本发明第一实施例的技术方案中,所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子。所述有机胺阳离子可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿沿面外方向生长而形成层状结构。另外,所述有机胺阳离子包含如图1所示的脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结 构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团,其中,所述胺基结合头的数量优选为一个,所述位阻基团的数量至少为一个,所述胺基结合头和位阻基团结合在骨架结构的任意位置。所述位阻基团不仅可抑制钙钛矿生成为层状结构,还可促使钙钛矿生成为具有强尺寸限域效应的零维量子点。
所述钙钛矿金属卤化物零维量子点复合材料还包括以表面配体的形式结合在所述钙钛矿金属卤化物零维量子点的表面的钝化剂。
在至少一实施例中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦。
本发明第一实施例的技术方案中,所述钝化剂以表面配体的形式结合在所述钙钛矿金属卤化物零维量子点的表面,所述钝化剂减少钙钛矿金属卤化物零维量子点的缺陷态密度,并提高钙钛矿金属卤化物零维量子点的光学性能,使得所述钙钛矿金属卤化物零维量子点具有较高的光致发光量子产率。
下面通过具体的实施例来对本发明第一实施例的技术方案进行具体说明。
实施例1
提供溴化铯(0.0596g)、溴化铅(0.2936g)、4-溴-alpha-苯乙胺溴化氢盐(0.3147g)、三甲基溴化铵(0.0056g)、四丁基氯化膦(0.0114g)、和二甲基亚砜(2mL);
将所述溴化铯、溴化铅、4-溴-alpha-苯乙胺溴化氢盐、三甲基溴化铵、和四丁基氯化膦溶于二甲基亚砜中,并在密封条件下震荡4h使其充分溶解,得到前驱液;
采用孔径为0.22μm的过滤器过滤所述前驱液,并储存于氮气环境中待用;
提供经等离子体表面活化处理的透明玻璃基底、匀胶机、及氯苯(200μL);
取100μL前驱液并滴加于所述经等离子体表面活化处理的透明玻璃基底上,通过所述匀胶机以6000r.p.m的转速对前驱液进行旋涂处理,旋涂开始15s后,向所述透明玻璃基底上滴加氯苯,得到钙钛矿量子点活性材料,其中,所述旋涂处理的时间为1min;及
对所述钙钛矿量子点活性材料进行退火处理,得到实施例1的钙钛矿金 属卤化物零维量子点复合材料,其中,所述退火处理的时间为10min,温度为80℃。
参图3,实施例1的钙钛矿金属卤化物零维量子点复合材料的荧光光谱中呈现出明亮的蓝色荧光,其发光峰位于466nm,半峰宽为26nm。这说明了实施例1的钙钛矿金属卤化物零维量子点复合材料所发射的荧光位于深蓝区域,且色纯度较高。
参图4,实施例1的钙钛矿金属卤化物零维量子点复合材料的透射电子显微照片表明,实施例1的钙钛矿金属卤化物零维量子点复合材料的粒径大小为3~4nm,且粒径分布窄。
实施例2
溴化铯(0.0681g)、氯化铯(0.0067g)、溴化铅(0.2936g)、4-溴-alpha-苯乙胺溴化氢盐(0.2248g)、三甲基溴化铵(0.0056g)、四丁基氯化膦(0.0114g)、和二甲基亚砜(2mL);
将所述溴化铯、氯化铯、溴化铅、4-溴-alpha-苯乙胺溴化氢盐、三甲基溴化铵、和四丁基氯化膦溶于二甲基亚砜中,并在密封条件下震荡4h使其充分溶解,得到前驱液;
采用孔径为0.22μm的过滤器过滤所述前驱液,并储存于氮气环境中待用;
提供经等离子体表面活化处理的透明玻璃基底、匀胶机、及氯苯(200μL);
取100μL前驱液并滴加于所述经等离子体表面活化处理的透明玻璃基底上,通过所述匀胶机以6000r.p.m的转速对前驱液进行旋涂处理,旋涂开始15s后,向所述透明玻璃基底上滴加氯苯,得到钙钛矿量子点活性材料,其中,所述旋涂处理的时间为1min;及
对所述钙钛矿量子点活性材料进行退火处理,得到实施例2的钙钛矿金属卤化物零维量子点复合材料,其中,所述退火处理的时间为10min,温度为80℃。
参图5,实施例2的钙钛矿金属卤化物零维量子点复合材料的荧光光谱中呈现出明亮的蓝色荧光,其发光峰位于465nm,半峰宽为23nm。这说明了实施例2的钙钛矿金属卤化物零维量子点复合材料所发射的荧光位于深蓝区 域,且色纯度较高。
参图6,实施例2的钙钛矿金属卤化物零维量子点复合材料的透射电子显微照片表明,实施例2的钙钛矿金属卤化物零维量子点复合材料的粒径大小为3~4nm,且粒径分布窄。
对比例1
提供溴化铯(0.0596g)、溴化铅(0.2936g)、三甲基溴化铵(0.0056g)、四丁基氯化膦(0.0114g)、和二甲基亚砜(2mL);
将所述溴化铯、溴化铅、三甲基溴化铵、和四丁基氯化膦溶于二甲基亚砜中,并在密封条件下震荡4h使其充分溶解,得到前驱液;
采用孔径为0.22μm的过滤器过滤所述前驱液,并储存于氮气环境中待用;
提供经等离子体表面活化处理的透明玻璃基底、匀胶机、及氯苯(200μL);
取100μL前驱液并滴加于所述经等离子体表面活化处理的透明玻璃基底上,通过所述匀胶机以6000r.p.m的转速对前驱液进行旋涂处理,旋涂开始15s后,向所述透明玻璃基底上滴加氯苯,得到钙钛矿量子点活性材料,其中,所述旋涂处理的时间为1min;及
对所述钙钛矿量子点活性材料进行退火处理,得到对比例1的钙钛矿金属卤化物零维量子点复合材料,其中,所述退火处理的时间为10min,温度为80℃。
参图7,对比例1的钙钛矿金属卤化物零维量子点复合材料的荧光光谱中呈现出绿色荧光,其发光峰位于520nm,半峰宽为20nm。这说明了对比例1中的钙钛矿金属卤化物不具备明显的尺寸限域作用。
参图8,对比例1的钙钛矿金属卤化物零维量子点复合材料的透射电子显微照片表明,对比例1的钙钛矿金属卤化物零维量子点复合材料的粒径大小为30~50nm,其粒径大小远大于激子的波尔直径,不具备尺寸限域作用。
本发明第二实施例提供一种钙钛矿金属卤化物零维量子点/聚合物复合材料的制备方法。所述钙钛矿金属卤化物零维量子点/聚合物复合材料的制备方法包括以下步骤:
提供第一前驱体、第二前驱体、第三前驱体、及聚合物,其中,所述第一前驱体选自卤化甲胺、卤化甲脒、卤化铯、三氟乙酸铯、硬脂酸铯、及醋酸铯中的至少一种,所述第二前驱体选自卤化铅、卤化亚锡、硬脂酸铅、及醋酸铅中的至少一种,所述第三前驱体为有机胺盐,所述有机胺盐的阴离子为卤素离子,所述有机胺盐的阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团;
混合所述第一前驱体、第二前驱体、第三前驱体、及聚合物,得到混合物;及
对所述混合物进行高温挤出处理,得到所述钙钛矿金属卤化物零维量子点/聚合物复合材料,其中,所述钙钛矿金属卤化物零维量子点/聚合物复合材料包括聚合物、均匀分散于所述聚合物中的钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点的粒径为3~15nm,例如为,3nm、5nm、7nm、10nm、或15nm。
在至少一实施例中,所述有机胺盐可为大体积有机胺盐(参图2),所述大体积有机胺盐可为含有3个碳原子以上的大体积有机胺盐。由于体积过大,所述大体积有机胺盐不能进入钙钛矿的晶格内部,可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿的生长。
在至少一实施例中,所述第一前驱体和第二前驱体的摩尔比为0.2~2:1。例如为,0.2:1、0.5:1、1:1、1.5:1、或2:1。
在至少一实施例中,所述第二前驱体和第三前驱体的摩尔比为1:0.2~2。例如为,1:0.2、1:0.5、1:1、1:1.5、或1:2。
通过改变所述前驱液中第三前驱体与第二前驱体的比例来控制前驱液中胶束的大小,从而实现调节钙钛矿金属卤化物零维量子点的粒径。
通过调整有机胺盐的含量,以制备出具有不同发射波长的钙钛矿金属卤化物零维量子点/聚合物复合材料。
在至少一实施例中,所述位阻基团为甲基、甲氧基及卤素中的至少一种。
低浓度的大体积有机胺盐用于制作粒径较大且发射波长较长的钙钛矿金属卤化物零维量子点,而高浓度的大体积有机胺盐则用于制作粒径较小且发 射波长较短的钙钛矿金属卤化物零维量子点。这是因为,随着大体积有机胺盐含量的增多,大体积有机胺盐对钙钛矿金属卤化物零维量子点的生长抑制作用逐渐明显。因此,可通过调节前驱体中的大体积有机胺盐的含量,制备出具有不同粒径大小、不同发射波长的钙钛矿金属卤化物零维量子点。
在至少一实施例中,对于Br体系钙钛矿金属卤化物零维量子点,使用的大体积有机胺盐为4-氟-alpha-苯乙胺溴化氢盐、4-氯-alpha-苯乙胺溴化氢盐、4-溴-alpha-苯乙胺溴化氢盐、4-碘-alpha-苯乙胺溴化氢盐、4-甲基-alpha-苯乙胺溴化氢盐、或4-甲氧基-alpha-苯乙胺溴化氢盐。
在至少一实施例中,对于I体系钙钛矿金属卤化物零维量子点,使用的大体积有机胺盐为1-(4-氟苯基)-1-甲基乙胺氢碘酸盐、1-(4-碘苯基)-1-甲基乙胺氢碘酸盐、1-(4-氯苯基)-1-甲基乙胺氢碘酸盐、1-(4-甲基苯)-1-甲基乙胺氢碘酸盐、1-(4-溴苯基)-1-甲基乙胺氢碘酸盐、或1-(4-甲氧基苯)-1-甲基乙胺氢碘酸盐。
在至少一实施例中,所述的钙钛矿金属卤化物零维量子点/聚合物复合材料中,所述聚合物与钙钛矿金属卤化物零维量子点的质量比为100:0.1~10。例如为,100:0.1、100:1、100:5、或100:10。
在至少一实施例中,所述聚合物为热塑性的聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙烯、尼龙、聚碳酸酯、聚氨酯、聚对苯二甲酸乙二醇酯、及聚甲醛中的至少一种。
在至少一实施例中,可采用单螺杆挤出吹膜机进行所述高温挤出处理,所述单螺杆挤出吹膜机的加料段的温度为150~180℃,压缩段的温度为180~200℃,均化段的温度200~220℃,所述单螺杆挤出吹膜机的口膜温度为190~220℃。所述单螺杆挤出机的转速为200~1500转/min,以使钙钛矿前驱体和聚合物混合均匀。所述高温挤出处理的时间为10~100min。在所述高温挤出处理后,随着温度的降低,所述钙钛矿前驱体可在聚合物中的原位结晶。
所述单螺杆挤出机的转速、各段温度、及高温挤出处理的时间可根据钙钛矿前驱体和聚合物的熔点高低进行适当调整。
本发明第二实施例的技术方案中,混合所述第一前驱体、第二前驱体、第三前驱体、及聚合物,得到混合物,对所述混合物进行高温挤出处理,得到所述钙钛矿金属卤化物零维量子点/聚合物复合材料。所述钙钛矿金属卤化 物零维量子点/聚合物复合材料包括聚合物、均匀分散于所述聚合物中的钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子。所述有机胺盐的有机胺阳离子可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿沿面外方向生长而形成层状结构。另外,所述有机胺阳离子包含如图1所示的脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。所述胺基结合头的数量优选为1个,所述位阻基团的数量可为至少一个,所述胺基结合头和位阻基团结合在脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构的任意位置。所述位阻基团不仅可抑制钙钛矿生成为层状结构,还可促使钙钛矿生成为具有强尺寸限域效应的零维量子点。因此,本发明的钙钛矿金属卤化物零维量子点/聚合物复合材料的制备方法具有粒径可控的优点。再者,本发明的钙钛矿金属卤化物零维量子点/聚合物复合材料的制备方法无需采用大量的有机溶剂和严格的无水无氧等苛刻条件,也无需采用离心纯化等后处理步骤,使得本发明的钙钛矿金属卤化物零维量子点/聚合物复合材料的制备方法具有工艺条件要求低、成本低、工艺简单、不易污染环境和可大批量生产的优点。
所述钙钛矿金属卤化物零维量子点/聚合物复合材料的制备方法还包括对所述钙钛矿金属卤化物零维量子点/聚合物复合材料进行成型处理的步骤,得到厚度为0~2mm的膜状钙钛矿金属卤化物零维量子点/聚合物复合材料。
所述膜状的钙钛矿金属卤化物零维量子点/聚合物复合材料的厚度可为0.1mm、0.2mm、0.3mm、0.5mm、1mm、2mm。
在至少一实施例中,所述成型处理为注塑成型、吹塑成型、或热压成型。所述注塑成型处理的温度为180~220℃,保压时间为5~15min。所述热压成型处理的温度为180~220℃,压力为4~10MPa,时间为4~10min。可将吹膜塔与单螺杆挤出机连接,来进行所述吹塑成型。所述吹膜塔的口膜温度为180~220℃。
本发明第二实施例的技术方案中,可对所述钙钛矿金属卤化物零维量子点/聚合物复合材料进行成型处理,以获得膜状的膜状钙钛矿金属卤化物零维量子点/聚合物复合材料。
所述钙钛矿金属卤化物零维量子点/聚合物复合材料的制备方法还包括以下步骤:
提供钝化剂;及
混合所述第一前驱体、第二前驱体、第三前驱体、钝化剂、及聚合物,得到所述混合物。
在至少一实施例中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦。
在至少一实施例中,所述钝化剂与第二前驱体的摩尔比为0.05~0.1:1。例如为0.0.5:1、0.06:1、或0.1:1。
所述钝化剂以表面配体的形式结合在钙钛矿金属卤化物零维量子点的表面。所述钙钛矿金属卤化物零维量子点/聚合物复合材料包括聚合物、均匀分散于所述聚合物中的钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子和钝化剂。
本发明第二实施例的技术方案中,还可将钝化剂与所述第一前驱体、第二前驱体、第三前驱体及聚合物混合,得到所述混合物。所述钝化剂可进一步减少钙钛矿金属卤化物零维量子点的缺陷态密度,并提高钙钛矿金属卤化物零维量子点的光学性能,使得所述钙钛矿金属卤化物零维量子点具有较高的光致发光量子产率。
本发明第二实施例还提供一种钙钛矿金属卤化物零维量子点/聚合物复合材料。所述钙钛矿金属卤化物零维量子点/聚合物复合材料用于发光二极管中的活性层、显示面板中的背光膜、光电探测器的活性层、太阳能电池的吸光层、以及激光器的发射层中。
所述钙钛矿金属卤化物零维量子点/聚合物复合材料包括聚合物、均匀分散于所述聚合物中的钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子。所述有机胺阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点的粒径为3~15nm,例如为,3nm、5nm、7nm、10nm、或15nm。
在至少一实施例中,所述位阻基团为甲基、甲氧基及卤素中的至少一种。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点/聚合物复合材料中,所述聚合物与钙钛矿金属卤化物零维量子点的质量比为100:0.1~10。例如为,100:0.1、100:1、100:5、或100:10。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点/聚合物复合材料具有膜状结构,具有该膜状结构的钙钛矿金属卤化物零维量子点/聚合物复合材料的厚度为10~500nm。例如为,10nm、50nm、100nm、200nm、300nm、400nm或500nm。
本发明第二实施例的技术方案中,所述钙钛矿金属卤化物零维量子点/聚合物复合材料包括聚合物、均匀分散于所述聚合物中的钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子。所述有机胺盐的有机胺阳离子可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿沿面外方向生长而形成层状结构。另外,所述有机胺阳离子包含如图1所示的脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。所述胺基结合头的数量优选为1个,所述位阻基团的数量可为至少一个,所述胺基结合头和位阻基团结合在脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构的任意位置。所述位阻基团不仅可抑制钙钛矿生成为层状结构,还可促使钙钛矿生成为具有强尺寸限域效应的零维量子点。
所述钙钛矿金属卤化物零维量子点/聚合物复合材料还包括以表面配体的形式结合在所述钙钛矿金属卤化物零维量子点的表面的钝化剂。
在至少一实施例中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦。
本发明第二实施例的技术方案中,所述钝化剂以表面配体的形式结合在所述钙钛矿金属卤化物零维量子点的表面,所述钝化剂减少钙钛矿金属卤化物零维量子点的缺陷态密度,并提高钙钛矿金属卤化物零维量子点的光学性能,使得所述钙钛矿金属卤化物零维量子点具有较高的光致发光量子产率。
下面通过具体的实施例来对本发明第二实施例的技术方案进行具体说明。
实施例3
提供溴化铯(0.0596g)、溴化铅(0.2936g)、4-溴-alpha-苯乙胺溴化氢盐(0.3147g)、三甲基溴化铵(0.0056g)、四丁基氯化膦(0.0114g)、和聚苯乙烯(7.404g);
混合所述溴化铯、溴化铅、4-溴-alpha-苯乙胺溴化氢盐、三甲基溴化铵、四丁基氯化膦、和聚苯乙烯,得到混合物;
将所述混合物置入单螺杆挤出吹膜机内,进行升温熔融,以使所述混合物熔融,其中,所述升温熔融处理中,所述单螺杆挤出机的加料段的温度为180℃,压缩段的温度为190℃,均化段的温度200℃,所述单螺杆挤出机的转速为900转/min;及
将所述熔融的混合物从单螺杆挤出吹膜机中挤出,并进行注塑成型处理,冷却后,得到实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料,其中,所述单螺杆挤出吹膜机的口膜温度为190℃,所述注塑成型处理的温度为200℃,保压时间为10min。
实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料具有膜状结构,其厚度为0.3mm。
参图9,实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料的荧光光谱中呈现出明亮的蓝色荧光,其发光峰位于473nm,半峰宽为26nm。这说明了实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料所发射的荧光位于深蓝区域,且色纯度较高。经测试,实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料的PLQY可达70%。
参图10,实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料的透射电子显微照片表明,实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料的粒径大小为4~5nm,且粒径分布窄。这证明了实施例3的钙钛矿金属卤化物零维量子点/聚合物复合材料具有强烈的尺寸限域效应。
实施例4
提供碘化铯(0.596g)、碘化铅(2.936g)、1-(4-溴苯基)-1-甲基乙胺氢碘酸盐(3.147g)、三甲基溴化铵(0.056g)、四丁基氯化膦(0.114g)、和聚苯乙烯(74.04g);
混合所述碘化铯、碘化铅、1-(4-溴苯基)-1-甲基乙胺氢碘酸盐、三甲基溴 化铵、四丁基氯化膦、和聚苯乙烯,得到混合物;
将所述混合物置入单螺杆挤出吹膜机内,进行升温熔融,以使所述混合物熔融,其中,所述升温熔融处理中,所述单螺杆挤出机的加料段的温度为180℃,压缩段的温度为190℃,均化段的温度200℃,所述单螺杆挤出机的转速为900转/min;及
将所述熔融的混合物从单螺杆挤出吹膜机中挤出,并进行热压成型处理,冷却后,得到实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料,其中,所述单螺杆挤出吹膜机的口膜温度为190℃,所述热压成型处理的温度为200℃,压力为5MPa,时间为5min。
实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料具有膜状结构,其厚度为0.2mm。
参图11,实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料的荧光光谱中呈现出明亮的蓝色荧光,其发光峰位于652nm,半峰宽为36nm。这说明了实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料所发射的荧光位于深蓝区域,且色纯度较高。经测试,实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料的PLQY可达80%。
参图12,实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料的透射电子显微照片表明,实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料的粒径大小为5~6nm,且粒径分布窄。这证明了实施例4的钙钛矿金属卤化物零维量子点/聚合物复合材料具有强烈的尺寸限域效应。
对比例2
提供溴化铯(0.596g)、溴化铅(2.936g)、三甲基溴化铵(0.056g)、四丁基氯化膦(0.114g)、和聚苯乙烯(74.04g);
混合所述溴化铯、溴化铅、4-溴-alpha-苯乙胺溴化氢盐、三甲基溴化铵、四丁基氯化膦、和聚苯乙烯,得到混合物;
将所述混合物置入单螺杆挤出吹膜机内,进行升温熔融,以使所述混合物熔融,其中,所述升温熔融处理中,所述单螺杆挤出机的加料段的温度为180℃,压缩段的温度为190℃,均化段的温度200℃,所述单螺杆挤出机的转速为900转/min;及
将所述熔融的混合物从单螺杆挤出吹膜机中挤出,并进行注塑成型处理,冷却后,得到对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料,其中,所述单螺杆挤出吹膜机的口膜温度为190℃,所述注塑成型处理的温度为200℃,保压时间为10min。
对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料具有膜状结构,其厚度为0.2mm。
参图13,对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料的荧光光谱中呈现出明亮的绿色荧光,其发光峰位于520nm,半峰宽为20nm。这说明了对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料不具备明显的尺寸限域作用。
参图14,对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料的透射电子显微照片表明,对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料的粒径大小为30~50nm,对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料的粒径远大于激子的波尔直径。这证明了对比例2的钙钛矿金属卤化物零维量子点/聚合物复合材料不具有尺寸限域效应。
本发明第三实施例提供还一种钙钛矿金属卤化物零维量子点复合材料的制备方法。所述钙钛矿金属卤化物零维量子点复合材料的制备方法包括以下步骤:
提供第一前驱体、第二前驱体、第三前驱体、及聚合物,其中,所述第一前驱体选自卤化甲胺、卤化甲脒、卤化铯、三氟乙酸铯、硬脂酸铯、及醋酸铯中的至少一种,所述第二前驱体选自卤化铅、卤化亚锡、硬脂酸铅、及醋酸铅中的至少一种,所述第三前驱体为有机胺盐,所述有机胺盐的阴离子为卤素离子,所述有机胺盐的阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团;
混合所述第一前驱体、第二前驱体、及第三前驱体,得到钙钛矿量子点前驱体;及
对所述钙钛矿量子点前驱体进行真空镀膜处理,得到所述钙钛矿量子点活性层;
对所述钙钛矿量子点活性层进行退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料,其中,所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点的粒径为3~15nm,例如为,3nm、5nm、7nm、10nm、或15nm。
在至少一实施例中,所述有机胺盐可为大体积有机胺盐(参图2),所述大体积有机胺盐可为含有3个碳原子以上的大体积有机胺盐。由于体积过大,所述大体积有机胺盐不能进入钙钛矿的晶格内部,可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿的生长。
在至少一实施例中,所述第一前驱体和第二前驱体的摩尔比为0.2~2:1。例如为,0.2:1、0.5:1、1:1、1.5:1、或2:1。
在至少一实施例中,所述第二前驱体和第三前驱体的摩尔比为1:0.2~2。例如为,1:0.2、1:0.5、1:1、1:1.5、或1:2。
通过改变所述第三前驱体与第二前驱体的比例来调节钙钛矿金属卤化物零维量子点的粒径。
在至少一实施例中,所述位阻基团为甲基、甲氧基及卤素中的至少一种。
低浓度的大体积有机胺盐用于制作粒径较大且发射波长较长的钙钛矿金属卤化物零维量子点,而高浓度的大体积有机胺盐则用于制作粒径较小且发射波长较短的钙钛矿金属卤化物零维量子点。这是因为,随着大体积有机胺盐含量的增多,大体积有机胺盐对钙钛矿金属卤化物零维量子点的生长抑制作用逐渐明显。因此,可通过调节前驱液中的大体积有机胺盐的含量,制备出具有不同粒径大小、不同发射波长的钙钛矿金属卤化物零维量子点。
在至少一实施例中,对于Br体系钙钛矿金属卤化物零维量子点,使用的大体积有机胺盐为4-氟-alpha-苯乙胺溴化氢盐、4-氯-alpha-苯乙胺溴化氢盐、4-溴-alpha-苯乙胺溴化氢盐、4-碘-alpha-苯乙胺溴化氢盐、4-甲基-alpha-苯乙胺溴化氢盐、或4-甲氧基-alpha-苯乙胺溴化氢盐。
在至少一实施例中,对于I体系钙钛矿金属卤化物零维量子点,使用的大体积有机胺盐为1-(4-氟苯基)-1-甲基乙胺氢碘酸盐、1-(4-碘苯基)-1-甲基乙胺氢碘酸盐、1-(4-氯苯基)-1-甲基乙胺氢碘酸盐、1-(4-甲基苯)-1-甲基乙胺氢碘 酸盐、1-(4-溴苯基)-1-甲基乙胺氢碘酸盐、或1-(4-甲氧基苯)-1-甲基乙胺氢碘酸盐。
可通过调整有机胺盐的含量,以制备出具有不同发射波长的钙钛矿金属卤化物零维量子点复合材料。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点复合材料具有膜状结构,所述具有膜状结构的钙钛矿金属卤化物零维量子点复合材料的厚度为10~500nm。例如为10nm、50nm、100nm、200nm、300nm、400nm或500nm。
在至少一实施例中,所述退火处理的温度为100~150℃,时间为5~30min。
本发明第三实施例的技术方案中,混合所述第一前驱体、第二前驱体、及第三前驱体,得到钙钛矿量子点前驱体,对所述钙钛矿量子点前驱体进行真空镀膜处理和退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料。所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子。所述有机胺盐的有机胺阳离子可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿沿面外方向生长而形成层状结构。另外,所述有机胺阳离子包含如图1所示的脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。所述胺基结合头的数量优选为1个,所述位阻基团的数量可为至少一个,所述胺基结合头和位阻基团结合在脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构的任意位置。所述位阻基团不仅可抑制钙钛矿生成为层状结构,还可促使钙钛矿生成为具有强尺寸限域效应的零维量子点。因此,本发明的钙钛矿金属卤化物零维量子点复合材料的制备方法具有粒径可控的优点。再者,采用本发明的真空镀膜处理可与工业化的显示面板制备工艺兼容,并可以克服现有的旋涂或刮涂工艺具有的结晶不均匀、原料浪费、难以制备大面积薄膜、难以实现多层涂覆的缺点,获得面积大、成膜均匀、PLQY高、和表面致密的钙钛矿金属卤化物零维量子点/聚合物复合膜。另外,本发明的钙钛矿金属卤化物零维量子点复合材料的制备方法无需采用大量的有机溶剂和严格的无水无氧等苛刻条件,也无需采用 离心纯化等后处理步骤,使得本发明的钙钛矿金属卤化物零维量子点复合材料的制备方法具有工艺条件要求低、成本低、工艺简单、不易污染环境、可大批量生产、精度高、及重复性高的优点。
对所述钙钛矿量子点前驱体进行真空镀膜处理的步骤包括:
提供基片;
将所述钙钛矿量子点前驱体置于真空镀膜机中,将所述钙钛矿量子点前驱体沉积于基片上,得到钙钛矿量子点活性层。
在至少一实施例中,所述真空镀膜机包括加热台、和无机蒸发源。所述基片可设于加热台上,所述加热台可将所述基片的温度加热至60~100℃。所述无机蒸发源可用于将钙钛矿量子点前驱体的原子或分子汽化逸出后,沉积到基片表面。
在至少一实施例中,所述加热台优选为旋转加热台。
在至少一实施例中,所述真空镀膜处理的温度为60~100℃,蒸发速率为0.5~10埃/s。
在至少一实施例中,可将所述加热台的温度调节至100~150℃,以对基片上的钙钛矿量子点活性层进行退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料。
在至少一实施例中,所述基片为透明玻璃基片、柔性聚对苯二甲酸乙二醇酯基片、纳米铟锡金属氧化物导电玻璃、或氟掺杂二氧化锡导电玻璃。
本发明第三实施例的技术方案中,可采用真空镀膜机将钙钛矿量子点前驱体沉积于基片上,得到钙钛矿量子点活性层。真空蒸镀工艺是已商业化的有机发光二极管(OLED)的主要制备方法。在高精度金属掩膜的辅助下,真空蒸镀工艺可很容易地获得并排的红绿蓝三基色发光像素点,进而实现OLED器件大批量、高质量生产。在所述真空蒸镀处理的过程中,钙钛矿量子点前驱体首先蒸发或升华为气态粒子,而后附着在基片的表面形核、长大成固体薄膜。真空蒸镀工艺摆脱了液相法镀膜不均匀的限制,特别适合沉积大尺寸钙钛矿金属卤化物零维量子点复合材料。
所述钙钛矿金属卤化物零维量子点复合材料的制备方法还包括以下步骤:
提供钝化剂;及
混合所述第一前驱体、第二前驱体、第三前驱体、及钝化剂,得到所述钙钛矿量子点前驱体。
在至少一实施例中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦。
在至少一实施例中,所述钝化剂与第二前驱体的摩尔比为0.05~0.1:1。例如为0.0.5:1、0.06:1、或0.1:1。
所述钝化剂以表面配体的形式结合在钙钛矿金属卤化物零维量子点的表面。所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子和钝化剂。
本发明第三实施例的技术方案中,还可将钝化剂与所述第一前驱体、第二前驱体、及第三前驱体混合,得到所述钙钛矿量子点前驱体。所述钝化剂可进一步减少钙钛矿金属卤化物零维量子点的缺陷态密度,并提高钙钛矿金属卤化物零维量子点的光学性能,使得所述钙钛矿金属卤化物零维量子点具有较高的光致发光量子产率。
所述混合所述第一前驱体、第二前驱体、及第三前驱体后,所述得到钙钛矿量子点前驱体前,所述钙钛矿金属卤化物零维量子点复合材料的制备方法还包括以下步骤:
对所述第一前驱体、第二前驱体、及第三前驱体的混合物进行研磨处理。
可通过研磨机对所述混合物进行所述研磨处理,或可通过将所述第一前驱体、第二前驱体、及第三前驱体置于研钵中,手动研磨,以使各前驱体混合均匀。
在所述研磨过程中,钙钛矿量子点前驱体预先结晶并显示出不同波长的明亮荧光。
本发明第三实施例的技术方案中,对所述第一前驱体、第二前驱体、及第三前驱体的混合物进行研磨处理,以使所述第一前驱体、第二前驱体、及第三前驱体混合均匀。
本发明第三实施例的还提供一种钙钛矿金属卤化物零维量子点复合材料。所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子,所述有机胺阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构, 和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点的粒径为3~15nm,例如为,3nm、5nm、7nm、10nm、或15nm。
在至少一实施例中,所述位阻基团为甲基、甲氧基及卤素中的至少一种。
在至少一实施例中,所述钙钛矿金属卤化物零维量子点复合材料具有膜状结构,具有该膜状结构的钙钛矿金属卤化物零维量子点复合材料的厚度为10~500nm。例如为,10nm、50nm、100nm、200nm、300nm、400nm或500nm。
本发明第三实施例的技术方案中,所述钙钛矿金属卤化物零维量子点复合材料包括聚合物、均匀分散于所述聚合物中的钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子,所述钙钛矿金属卤化物零维量子点的粒径为3~15nm。所述有机胺盐的有机胺阳离子可与钙钛矿表面的卤素元素通过静电和氢键相互作用配位,进而抑制钙钛矿沿面外方向生长而形成层状结构。另外,所述有机胺阳离子包含如图1所示的脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。所述胺基结合头的数量优选为1个,所述位阻基团的数量可为至少一个,所述胺基结合头和位阻基团结合在脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构的任意位置。所述位阻基团不仅可抑制钙钛矿生成为层状结构,还可促使钙钛矿生成为具有强尺寸限域效应的零维量子点。
所述钙钛矿金属卤化物零维量子点复合材料还包括以表面配体的形式结合在所述钙钛矿金属卤化物零维量子点的表面的钝化剂。
在至少一实施例中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦。
本发明第三实施例的技术方案中,所述钝化剂以表面配体的形式结合在所述钙钛矿金属卤化物零维量子点的表面,所述钝化剂减少钙钛矿金属卤化物零维量子点的缺陷态密度,并提高钙钛矿金属卤化物零维量子点的光学性能,使得所述钙钛矿金属卤化物零维量子点具有较高的光致发光量子产率。
下面通过具体的实施例来对本发明第三实施例的技术方案进行具体说 明。
实施例5:
提供溴化铯(0.0596g)、溴化铅(0.2936g)、4-溴-alpha-苯乙胺溴化氢盐(0.3147g)、三甲基溴化铵(0.0056g)、及四丁基氯化膦(0.0114g);
均匀混合所述溴化铯、溴化铅、4-溴-alpha-苯乙胺溴化氢盐、三甲基溴化铵、和四丁基氯化膦,于研钵中研磨30min,得到钙钛矿量子点前驱体;
将所述钙钛矿量子点前驱体储存于氮气环境中待用;
提供表面清洗过的透明玻璃基板(长和宽均为10cm)、真空镀膜设备、及置于所述真空镀膜设备中的加热台;
将适量钙钛矿量子点前驱体置于真空镀膜设备中的无机蒸发源中,进行真空镀膜,于所述透明玻璃基板上沉积钙钛矿量子点活性层,其中,所述无机蒸发源的沉积速率为1.5埃/s,所述真空镀膜设备中的温度为60℃;及
在氮气环境中,对所述钙钛矿量子点活性层进行退火后处理,得到实施例1的钙钛矿金属卤化物零维量子点薄膜,其中,所述退火处理的温度为100℃,时间为10min,实施例1的钙钛矿金属卤化物零维量子点薄膜的厚度为100nm,长和宽均为10cm。
参图15,实施例5的钙钛矿金属卤化物零维量子点膜的荧光光谱中呈现出明亮的蓝色荧光,其发光峰位于473nm,半峰宽为26nm。这说明了实施例5的钙钛矿金属卤化物零维量子点膜所发射的荧光位于深蓝区域,且色纯度较高。经测试,实施例5的钙钛矿金属卤化物零维量子点复合材料的PLQY可达到70%
参图16,实施例5的钙钛矿金属卤化物零维量子点的透射电子显微照片表明,实施例5的钙钛矿金属卤化物零维量子点的粒径大小为3~4nm,且粒径分布窄。
参图17,实施例5的钙钛矿金属卤化物零维量子点的扫描电子显微照片表明,实施例5的钙钛矿金属卤化物零维量子点复合材料的表面平整,成膜均匀。
对比例3:
提供溴化铯(0.0596g)、溴化铅(0.2936g)、三甲基溴化铵(0.0056g)、 及四丁基氯化膦(0.0114g);
均匀混合所述溴化铯、溴化铅、三甲基溴化铵、和四丁基氯化膦,于研钵中研磨30min,得到钙钛矿量子点前驱体;
将所述钙钛矿量子点前驱体储存于氮气环境中待用;
提供表面清洗过的透明玻璃基板(长和宽均为10cm)、真空镀膜设备、及置于所述真空镀膜设备中的加热台;
将适量钙钛矿量子点前驱体置于真空镀膜设备中的无机蒸发源中,进行真空镀膜,于所述透明玻璃基板上沉积钙钛矿量子点活性层,其中,所述无机蒸发源的沉积速率为1.5埃/s,所述真空镀膜设备中的温度为60℃;及
在氮气环境中,对所述钙钛矿金属卤化物量子点活性层进行退火后处理,得到对比例1的钙钛矿金属卤化物子点薄膜,其中,所述退火处理的温度为100℃,时间为10min,对比例3的钙钛矿金属卤化物零维量子点薄膜的厚度为100nm,长和宽均为10cm。
参图18,对比例3的体相钙钛矿金属卤化物薄膜的荧光光谱中呈现出绿色荧光,其发光峰位于520nm,半峰宽为20nm。这说明了对比例3的体相钙钛矿金属卤化物不具备明显的尺寸限域作用。
参图19,对比例3的体相钙钛矿金属卤化物薄膜的扫描电子显微照片表明,对比例1的钙钛矿金属卤化物薄膜表面粗糙,钙钛矿金属卤化物的粒径大小为100~300nm,粒径大小远大于激子的波尔直径。这证明了对比例3的体相钙钛矿金属卤化物薄膜不具备尺寸限域作用。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (20)

  1. 一种钙钛矿金属卤化物零维量子点复合材料的制备方法,包括以下步骤:
    提供第一前驱体、第二前驱体、及第三前驱体,其中,所述第一前驱体选自卤化甲胺、卤化甲脒、卤化铯、三氟乙酸铯、硬脂酸铯、及醋酸铯中的至少一种,所述第二前驱体选自卤化铅、卤化亚锡、硬脂酸铅、及醋酸铅中的至少一种,所述第三前驱体为有机胺盐,所述有机胺盐的阴离子为卤素离子,所述有机胺盐的阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团;
    混合所述第一前驱体、第二前驱体、及第三前驱体,得到钙钛矿量子点前驱体;及
    对所述钙钛矿量子点前驱体进行成型处理,得到所述钙钛矿量子点活性层;及
    对所述钙钛矿量子点活性层进行退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料,其中,所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿量子点、和包覆于所述钙钛矿量子点表面的有机胺阳离子。
  2. 如权利要求1所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,满足以下条件至少一种:
    所述钙钛矿金属卤化物零维量子点的粒径为3~15nm;
    所述位阻基团为甲基、甲氧基及卤素中的至少一种;
    所述第一前驱体和第二前驱体的摩尔比为0.2~2:1;
    所述第二前驱体和第三前驱体的摩尔比为1:0.2~2;
    所述钙钛矿金属卤化物零维量子点复合材料具有膜状结构,所述具有膜状结构的钙钛矿金属卤化物零维量子点复合材料的厚度为10~500nm。
  3. 如权利要求1所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,所述成型处理为真空镀膜处理,所述真空镀膜处 理包括以下步骤:
    提供基片;及
    将所述钙钛矿量子点前驱体置于真空镀膜机中,将所述钙钛矿量子点前驱体沉积于基片上,其中,所述真空镀膜处理的温度为60~100℃,蒸发速率为0.5~10埃/s。
  4. 如权利要求1所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,所述退火处理的温度为100~150℃,时间为5~30min。
  5. 如权利要求1所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,所述钙钛矿金属卤化物零维量子点复合材料的制备方法还包括以下步骤:
    提供钝化剂;
    混合所述第一前驱体、第二前驱体、第三前驱体、及钝化剂,得到混合物,其中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦,所述钝化剂与第二前驱体的摩尔比为0.05~0.1:1;及
    对所述混合物进行成型处理和退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料,其中,所述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿金属卤化物零维量子点、和包覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子和钝化剂。
  6. 如权利要求1所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,还包括以下步骤:
    提供聚合物;
    混合所述第一前驱体、第二前驱体、第三前驱体、及聚合物,得到混合物;及
    对所述混合物进行成型处理和退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料,其中,所述钙钛矿金属卤化物零维量子点复合材料包括聚合物、分散于所述聚合物中的钙钛矿金属卤化物零维量子点、和包 覆于所述钙钛矿金属卤化物零维量子点表面的有机胺阳离子。
  7. 如权利要求6所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,
    所述钙钛矿金属卤化物零维量子点复合材料中,所述聚合物与钙钛矿金属卤化物零维量子点的质量比为100:0.1~10;和/或
    所述聚合物为热塑性的聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙烯、尼龙、聚碳酸酯、聚氨酯、聚对苯二甲酸乙二醇酯、及聚甲醛中的至少一种。
  8. 如权利要求6所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,所述成型处理包括高温挤出处理,采用挤出吹膜机进行所述高温挤出处理,所述挤出吹膜机的加料段的温度为150~180℃,压缩段的温度为180~200℃,均化段的温度200~220℃,口膜温度为190~220℃,转速为700~1000转/min。
  9. 如权利要求8所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,所述成型处理还包括:在所述高温挤出处理后对所述钙钛矿金属卤化物零维量子点复合材料进行成膜处理的步骤,得到厚度为10~400nm的膜状钙钛矿金属卤化物零维量子点复合材料,其中,所述成膜处理为注塑成型、吹塑成型、或热压成型。
  10. 如权利要求6所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,所述钙钛矿金属卤化物零维量子点复合材料的制备方法还包括以下步骤:
    提供钝化剂;及
    混合所述第一前驱体、第二前驱体、第三前驱体、钝化剂、及聚合物,得到所述混合物,其中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦,所述钝化剂与第二前驱体的摩尔比为0.05~0.1:1。
  11. 如权利要求1所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,还包括以下步骤:
    提供溶剂,所述溶剂为二甲基亚砜、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、及乙腈中的至少一种;
    混合所述第一前驱体、第二前驱体、第三前驱体、及溶剂,得到前驱液;及
    对所述前驱液进行成型处理和退火处理,得到所述钙钛矿金属卤化物零维量子点复合材料。
  12. 如权利要求11所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,所述钙钛矿金属卤化物零维量子点复合材料的制备方法还包括以下步骤:
    提供钝化剂;及
    混合所述第一前驱体、第二前驱体、第三前驱体、钝化剂、及溶剂,得到前驱液,其中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦,所述钝化剂与第二前驱体的摩尔比为0.05~0.1:1。
  13. 如权利要求11所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,所述成型处理包括:
    将所述前驱液加到一基底上,对位于所述基底上的前驱液进行旋涂成膜处理,得到钙钛矿量子点活性层。
  14. 如权利要求13所述的钙钛矿金属卤化物零维量子点复合材料的制备方法,其特征在于,还包括以下步骤:
    提供反溶剂;及
    在所述旋涂成膜处理的过程中,将所述反溶剂加入至所述基底上,得到所述钙钛矿量子点活性层,其中,所述反溶剂为甲苯、氯苯、及氯仿中的至少一种,所述反溶剂和设于所述基底上的前驱液的体积比为1~2:1。
  15. 一种钙钛矿金属卤化物零维量子点复合材料,其特征在于,所 述钙钛矿金属卤化物零维量子点复合材料包括钙钛矿量子点、和包覆于所述钙钛矿量子点表面的有机胺阳离子,所述有机胺阳离子包含脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构,和结合于所述脂肪环骨架结构、芳环骨架结构、或噻吩环骨架结构上的至少一胺基结合头和至少一位阻基团。
  16. 如权利要求15所述的钙钛矿金属卤化物零维量子点复合材料,其特征在于,满足以下条件的至少一种:
    所述位阻基团为甲基、甲氧基及卤素中的至少一种;
    所述钙钛矿金属卤化物零维量子点复合材料具有膜状结构,该膜状结构的钙钛矿金属卤化物零维量子点复合材料的厚度为10~500nm;
    所述钙钛矿金属卤化物零维量子点的粒径为3~15nm。
  17. 如权利要求15所述的钙钛矿金属卤化物零维量子点复合材料,其特征在于,所述钙钛矿金属卤化物零维量子点复合材料还包括包覆于所述钙钛矿金属量子点表面的钝化剂,其中,所述钝化剂为三甲基溴化铵和/或四丁基氯化膦。
  18. 如权利要求17所述的钙钛矿金属卤化物零维量子点复合材料,其特征在于,所述钙钛矿金属卤化物零维量子点复合材料还包括聚合物,所述钙钛矿金属卤化物零维量子点均匀分散于所述聚合物中,其中,
    所述钙钛矿金属卤化物零维量子点复合材料中,所述聚合物与钙钛矿金属卤化物零维量子点的质量比为100:0.1~10;或
    所述聚合物为热塑性的聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙烯、尼龙、聚碳酸酯、聚氨酯、聚对苯二甲酸乙二醇酯、及聚甲醛中的至少一种。
  19. 一种有机胺盐于制备如权利要求15-18任一项所述的钙钛矿金属卤化物零维量子点复合材料的应用。
  20. 如权利要求19所述的有机胺盐于制备所述钙钛矿金属卤化物零维量子点复合材料的应用,其特征在于,所述有机胺盐的阴离子为卤素离子。
PCT/CN2023/072576 2021-12-13 2023-01-17 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用 WO2023109973A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111523387.5A CN114369453A (zh) 2021-12-13 2021-12-13 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用
CN202111522151.XA CN114195650A (zh) 2021-12-13 2021-12-13 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用
CN202111522152.4A CN114149641B (zh) 2021-12-13 2021-12-13 钙钛矿金属卤化物零维量子点/聚合物复合材料及其制备方法、及有机胺盐的应用
CN202111522151.X 2021-12-13
CN202111523387.5 2021-12-13
CN202111522152.4 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109973A1 true WO2023109973A1 (zh) 2023-06-22

Family

ID=86774917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072576 WO2023109973A1 (zh) 2021-12-13 2023-01-17 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用

Country Status (1)

Country Link
WO (1) WO2023109973A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法
US20200255727A1 (en) * 2018-04-20 2020-08-13 Boe Technology Group Co., Ltd. Perovskite film and method for manufacturing the same, perovskite electroluminescent device and method for manufacturing the same, and display device
CN113278419A (zh) * 2021-05-18 2021-08-20 吉林大学 一种钙钛矿-PbS量子点多晶膜及其制备方法和应用、近红外光探测器
CN113437227A (zh) * 2020-03-23 2021-09-24 京东方科技集团股份有限公司 发光薄膜及制备方法、电致发光器件
CN114149641A (zh) * 2021-12-13 2022-03-08 南开大学 钙钛矿金属卤化物零维量子点/聚合物复合材料及其制备方法、及有机胺盐的应用
CN114195650A (zh) * 2021-12-13 2022-03-18 南开大学 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用
CN114369453A (zh) * 2021-12-13 2022-04-19 南开大学 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法
US20170233645A1 (en) * 2014-11-04 2017-08-17 Shenzhen Tcl New Technology Co., Ltd Perovskite quantum dot material and preparation method thereof
US20200255727A1 (en) * 2018-04-20 2020-08-13 Boe Technology Group Co., Ltd. Perovskite film and method for manufacturing the same, perovskite electroluminescent device and method for manufacturing the same, and display device
CN113437227A (zh) * 2020-03-23 2021-09-24 京东方科技集团股份有限公司 发光薄膜及制备方法、电致发光器件
WO2021190169A1 (zh) * 2020-03-23 2021-09-30 京东方科技集团股份有限公司 发光薄膜及制备方法、电致发光器件
CN113278419A (zh) * 2021-05-18 2021-08-20 吉林大学 一种钙钛矿-PbS量子点多晶膜及其制备方法和应用、近红外光探测器
CN114149641A (zh) * 2021-12-13 2022-03-08 南开大学 钙钛矿金属卤化物零维量子点/聚合物复合材料及其制备方法、及有机胺盐的应用
CN114195650A (zh) * 2021-12-13 2022-03-18 南开大学 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用
CN114369453A (zh) * 2021-12-13 2022-04-19 南开大学 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PI HUI-HUI, LI GUO-HUI, ZHOU BO-LIN, CUI YAN-XIA: "Progress of High-efficiency Perovskite Quantum Dot Light-emitting Diodes", CHINESE JOURNAL OF LUMINESCENCE, GAI KAN BIANJIBU, CHANGCHUN, CN, vol. 42, no. 05, 1 January 2021 (2021-01-01), CN , pages 650 - 667, XP093073150, ISSN: 1000-7032, DOI: 10.37188/CJL.20200406 *

Similar Documents

Publication Publication Date Title
CN114149641B (zh) 钙钛矿金属卤化物零维量子点/聚合物复合材料及其制备方法、及有机胺盐的应用
Zeng et al. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings
WO2021212942A1 (zh) 一种低温掺杂、高光致发光量子产率的钙钛矿薄膜及其制备方法
Wang et al. Growth of metal halide perovskite materials
US11832459B2 (en) Method for producing a light absorbing film with a perovskite-like structure
Jung et al. Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions
CN108922972A (zh) 钙钛矿薄膜、钙钛矿太阳能电池及其制备方法
CN107442183A (zh) 一种石墨烯/纳米晶/钙钛矿光催化膜及其制备方法
WO2023109973A1 (zh) 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用
CN114369453A (zh) 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用
CN114195650A (zh) 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用
KR101804173B1 (ko) BaSnO3 박막 및 이의 저온 제조 방법
CN107119256A (zh) 一种锡基钙钛矿薄膜的制备方法
He et al. Polymer-assisted complexing controlled orientation growth of ZnO nanorods
Han et al. Recent Progress of Organic–Inorganic Hybrid Perovskite Quantum Dots: Preparation, Optical Regulation, and Application in Light‐Emitting Diodes
KR101757324B1 (ko) Vo2 박막의 제조방법, 이를 통해 제조된 vo2 박막 및 이를 포함하는 스마트 유리
CN112640140A (zh) 一种形成类似钙钛矿材料的薄膜的方法
Nuket et al. Influence of Annealing Temperature on Structural Properties and Stability of CsPbBr3/TiO2 Core/Shell
CN115312667A (zh) 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法
KR101912735B1 (ko) BaSnO3 박막 및 이의 저온 제조 방법
CN112159425A (zh) 高质量甲脒基钙钛矿FAPbI3胶体量子点及其制备方法
CN110824594B (zh) 一种全二氧化钛一维光子晶体及其制备方法
Davletiyarov et al. Investigation of Synthesis and Deposition Methods for Cesium-Based Perovskite Quantum Dots for Solar Cell Applications
TWI753551B (zh) 鈣鈦礦膜及其製造方法
CN115108917B (zh) 一种钙钛矿前驱体溶液及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23731489

Country of ref document: EP

Kind code of ref document: A1