WO2023109441A1 - 组合物、钙钛矿薄膜及其制备方法和应用 - Google Patents

组合物、钙钛矿薄膜及其制备方法和应用 Download PDF

Info

Publication number
WO2023109441A1
WO2023109441A1 PCT/CN2022/133462 CN2022133462W WO2023109441A1 WO 2023109441 A1 WO2023109441 A1 WO 2023109441A1 CN 2022133462 W CN2022133462 W CN 2022133462W WO 2023109441 A1 WO2023109441 A1 WO 2023109441A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
transport layer
electrode
solar cell
thin film
Prior art date
Application number
PCT/CN2022/133462
Other languages
English (en)
French (fr)
Inventor
孙建侠
陈加坡
乐嘉旭
王保增
范利生
赵亚楠
田清勇
范斌
Original Assignee
昆山协鑫光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山协鑫光电材料有限公司 filed Critical 昆山协鑫光电材料有限公司
Publication of WO2023109441A1 publication Critical patent/WO2023109441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • H10K30/65Light-sensitive field-effect devices, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the application relates to a perovskite solar cell, in particular to a composition, a perovskite thin film and a preparation method and application thereof, belonging to the technical field of solar cells.
  • perovskite solar cells At present, the efficiency of perovskite solar cells with laboratory specifications has reached 25.5%, which has already exceeded the threshold of 15% required by industrial development. Recently, many companies at home and abroad have begun to promote perovskite solar cell technology to industrialization. At the same time, many universities are also developing large-area perovskite solar cell technology. Perovskite solar modules are expected to appear in the market in a few years In terms of technology, it becomes a substitute product for crystalline silicon components.
  • perovskite solar cells since the poor stability of perovskite solar cells is still the main factor affecting the further marketization of perovskite solar cells and components, in order to further promote the industrialization of perovskite solar cells and components, it is necessary to solve the problem of calcium
  • the instability of perovskite solar cells is mainly divided into two categories. One is that the water vapor entering due to the immature packaging technology affects the stability of perovskite solar cells and components. This problem has been solved by optimizing the packaging glue. Film and improved packaging technology and other processes have been well resolved. The other type is the instability of perovskite crystals.
  • the instability of perovskite crystals is mainly due to the strong volatility of cations contained in perovskite components, especially MA ions, which lead to During the crystallization process of perovskite, MA ions volatilize, resulting in a mismatch of the stoichiometric ratio in the perovskite crystal, resulting in more iodine vacancies, which leads to the instability of the perovskite.
  • the main purpose of this application is to provide a composition, a perovskite thin film and its preparation method and application, so as to overcome the deficiencies in the prior art.
  • the embodiment of the present application provides a composition for preparing a perovskite thin film, the molar concentration of the perovskite precursor solution is 1M to 1.5M, and the hydrohalide salt in the perovskite precursor solution The molar concentration ratio of the chloromethylamine in the perovskite precursor solution is 15% to 20%.
  • the embodiment of the present application provides a method for preparing a perovskite film, including:
  • a perovskite precursor solution containing the composition is provided, and a perovskite film is formed by using the perovskite precursor solution.
  • the embodiment of the present application provides the perovskite thin film prepared by the above preparation method.
  • An embodiment of the present application provides a solar cell, including a photosensitive layer, and the photosensitive layer includes the perovskite thin film.
  • the hydrohalide salt with a hydrophobic bulky amine can effectively suppress the formation of methylamine ions in the perovskite crystal. Migration and escape, thereby stabilizing the stoichiometric ratio of the perovskite crystal components well.
  • the bulky amine selected in this application has certain hydrophobicity, it can effectively prevent water vapor from entering the perovskite crystal, improving the calcium
  • the stability of titanite crystals can effectively improve the stability of perovskite solar cells and modules.
  • FIG. 1 is a schematic structural view of a perovskite solar cell provided in a typical implementation case of the present application.
  • the preparation method of a perovskite thin film aims to improve the stability of the perovskite crystal, specifically by stabilizing MA ions (methylamine ions) and suppressing the MA ions in the perovskite component. escape, thereby effectively improving the stability of perovskite crystals, and thereby improving the stability of perovskite solar cells and components, thereby promoting the industrialization of perovskite solar cells and components.
  • MA ions methylamine ions
  • methyl chloride is used to promote the rapid crystallization of the perovskite film.
  • the ionic radius of the bulky amine cation in the hydroiodide with hydrophobic bulky amine is larger to form a larger steric hindrance, which can block methylamine Ion escape, and then effectively block the methylamine ions in the perovskite lattice, which fundamentally solves the problem of iodine vacancies caused by the migration and escape of methylamine ions during the crystallization nucleation process of perovskite, thereby ensuring the perovskite
  • the stoichiometric ratio of the components is not mismatched, greatly reducing the iodine vacancies in the perovskite crystal, thereby reducing the defects of the perovskite crystal, effectively improving the stability of the perovskite crystal and greatly improving the perovskite solar cells and components stability.
  • the bulky amine selected in the embodiment of the present application has a certain degree of hydrophobicity, which can prevent water vapor from entering the perovskite crystal, thereby protecting the perovskite crystal, and effectively improving the stability of the perovskite crystal. To achieve the effect of improving the stability of perovskite solar cells and components.
  • a certain proportion of hydrohalide salts of bulky amines and chloromethylamine are added to the perovskite precursor solution, and by having hydrophobic
  • the synergistic effect of bulky amine hydrohalide and chloromethylamine can ensure high-quality crystallization of perovskite crystals and reduce defects in perovskite crystals, thereby greatly improving the efficiency of carrier transport and increasing the perovskite photosensitive layer.
  • the absorption strength can effectively improve the short-circuit current, fill factor and open-circuit voltage in perovskite solar cells and components, thereby effectively improving the photoelectric conversion efficiency of perovskite solar cells and components.
  • the hydrohalide salt with a hydrophobic bulky amine can effectively inhibit the migration and escape of methylamine ions in the perovskite crystal, so that it is very good
  • the stoichiometric ratio of the perovskite crystal components is stabilized.
  • the bulky amine selected in this application has certain hydrophobicity, it can effectively prevent water vapor from entering the perovskite crystal, thereby improving the stability of the perovskite crystal and further improving the stability of the perovskite crystal. Effectively improve the stability of perovskite solar cells and components.
  • the embodiment of the present application provides a composition for preparing a perovskite film, including a perovskite material, a hydrohalide salt and chloromethylamine, and the composition of the perovskite material, a hydrohalide salt and chloromethylamine
  • the molar ratio is 100-150:1-2:15-20.
  • the hydrohalide salt is a hydrohalide salt having a hydrophobic bulky amine.
  • the hydrohalide salts include any one or a combination of two or more of the hydrohalide salts of anilines, benzidines, and histamines.
  • the perovskite material is a mixed component perovskite material comprising methylamine.
  • the composition further includes a solvent.
  • the solvent includes any one of N, N-dimethylformamide, dimethyl alum, N-ylpyrrolidone, ethylene glycol monomethyl ether, and ⁇ -butyrolactone one or a combination of two or more.
  • the embodiment of the present application provides a method for preparing a perovskite film, including:
  • a perovskite precursor solution containing the composition is provided, and a perovskite film is formed by using the perovskite precursor solution.
  • the molar concentration of the perovskite precursor solution is 1M-1.5M, and the molar concentration ratio of the hydrohalide salt in the perovskite precursor solution is 1%-5 %, the molar concentration ratio of the chloromethylamine in the perovskite precursor solution is 15% to 20%.
  • the preparation method includes: uniformly coating the perovskite precursor solution on the substrate, followed by air extraction drying and annealing treatment, and the air extraction drying time is 30s ⁇ 90s, the temperature of the annealing treatment is 100-150° C., and the time is 5-15 minutes, so as to form the perovskite film.
  • the embodiment of the present application provides the perovskite thin film prepared by the above preparation method.
  • An embodiment of the present application provides a solar cell, comprising a photosensitive layer comprising the perovskite thin film according to claim 8 .
  • the solar cell is characterized in that it includes a first electrode, an electrode transport layer, a photosensitive layer, a hole transport layer and a second electrode arranged in sequence along a specified direction, wherein the solar cell Batteries have a forward or reverse configuration.
  • the thickness of the photosensitive layer is 400-600 nm.
  • any one of the first electrode and the second electrode includes any one of FTO, ITO, ITiO, ICO, IWO, AZO, BZO conductive glass, and the other includes metal electrode.
  • the electron transport layer has a thickness of 20-100 nm.
  • the thickness of the hole transport layer is 20-40 nm.
  • a perovskite solar cell 100 includes a carrier glass 140 , a transparent conductive film electrode 120 sequentially arranged on the carrier glass 140 , a metal electrode 130 , and a metal electrode 130 located between the transparent conductive film electrode 120 and the metal electrode 130 .
  • the battery body structure 110 wherein, the battery body structure 110 includes a perovskite photosensitive layer 111, a hole transport layer 112 located on one side of the perovskite photosensitive layer 111, and an electron transport layer located on the other side of the perovskite photosensitive layer 111 Layer 113.
  • the carrier glass 140 is mainly used as the carrier of the transparent conductive thin film electrode 120, the carrier glass 140 can be selected from any base glass used in conductive glass, and the thickness of the carrier glass 140 is 1.1-2.5 mm; this can not only ensure sufficient mechanical bearing capacity, but also reduce the light absorption of the carrier glass, so that more light can enter the cell main structure 110, thereby improving the light absorption utilization rate of the perovskite solar cell.
  • the main functions of the transparent conductive film electrode 120 and the metal electrode 130 are to lead out the photo-generated current; Tin electrode; this can enhance the absorption of ultraviolet light by the transparent conductive film electrode 120, further reducing the ultraviolet light entering the electron transport layer; in addition, the FTO electrode also has the advantages of low resistivity and stable chemical properties.
  • the transparent conductive film electrodes are not limited to FTO electrodes, but can also be tin-doped indium oxide (ITO), titanium-doped indium oxide (ITiO) electrodes, cerium-doped indium oxide (ICO) electrodes, tungsten-doped Indium (IWO) electrode, aluminum-doped zinc oxide (AZO) electrode or boron-doped zinc oxide (BZO) electrode, etc.
  • ITO tin-doped indium oxide
  • ITiO titanium-doped indium oxide
  • ICO cerium-doped indium oxide
  • IWO tungsten-doped Indium
  • AZO aluminum-doped zinc oxide
  • BZO boron-doped zinc oxide
  • the metal electrode 130 may be a silver (Ag) electrode.
  • the metal electrode 130 is not limited to a silver (Ag) electrode, and may also be an electrode made of other metals. , such as gold (Au) electrodes, aluminum (A1) electrodes, etc.
  • the main function of the electron transport layer 113 is to transport electrons, and at the same time block holes, thereby reducing the recombination of holes and electrons, thereby selectively transporting electrons; preferably, the electrons
  • the thickness of the transport layer 112 is 20-100nm, which can not only ensure the quality of the film formation, reduce the defects of the electron transport layer, but also ensure that the internal series resistance is low and increase the short-circuit current; in this embodiment, the electron transport layer 112 is prepared by PCBM spin coating.
  • the main function of the hole transport layer 112 is to transport holes, and at the same time, it can also block electrons, thereby reducing the recombination of holes and electrons, and then play the role of selectively transporting holes; preferably, the The thickness of the hole transport layer 113 is 20-40nm, which can not only ensure the film forming quality, reduce the defects of the electron transport layer, but also ensure that the internal series resistance is low and improve the short-circuit current.
  • the The hole transport layer 113 is formed by vacuum deposition of NiO x .
  • the perovskite photosensitive layer 111 is the core layer of the perovskite solar cell 100, and carriers are generated in this layer, and the perovskite material used in the perovskite photosensitive layer 111 includes three The primary mixed component perovskite FA 0.85 MA 0.10 Cs 0.05 PbI 3 and the binary mixed component perovskite FA 0.85 Cs 0.15 PbI 3 , under this composition, the addition of hydroiodic acid with hydrophobic bulky amines can be ensured
  • the perovskite crystals prepared by the perovskite precursor solution of salt and methylamine chloride (MACl) are of good quality and have few perovskite crystal defects, thereby improving the stability and photoelectric conversion efficiency of perovskite solar cells.
  • the perovskite precursor solution is in a ternary mixed component perovskite FA 0.85 MA 0.10 C s0.05 PbI 3 or a binary mixed component perovskite FA 0.85 Cs 0.15 PbI 3 Added phenyltrimethylamine hydroiodide (PTAI) or benzidine hydrobromide or histamine dihydrochloride and methylamine chloride (MACl), adding specific proportions of bulky amine hydroiodide and chlorine After methylamine (MACl), chloromethylamine can promote the rapid crystallization of perovskite and promote the growth of perovskite crystals.
  • PTAI phenyltrimethylamine hydroiodide
  • MACl benzidine hydrobromide or histamine dihydrochloride and methylamine chloride
  • chloromethylamine can promote the rapid crystallization of perovskite and promote the growth of perovskite crystals.
  • the bulky amine in the hydroiodide with hydrophobic bulky amine has a larger ionic radius and has a larger
  • the large steric hindrance can effectively prevent the escape of methylamine ions, thereby inhibiting the mismatch of the stoichiometric ratio of the perovskite components, the decrease in the efficiency of the perovskite solar cell and the The problem of instability; at the same time, due to the hydrophobic bulky amine hydroiodide, the bulky amine has a certain degree of hydrophobicity, so it can prevent water vapor from entering the perovskite crystal, thereby protecting the perovskite crystal.
  • perovskite solar cells and components which in turn can improve the stability of perovskite crystals, thereby improving the stability of perovskite solar cells and components.
  • due to the synergistic effect of adding a specific proportion of hydrophobic bulky amine hydroiodide and methyl chloride in the perovskite precursor solution it can ensure high-quality crystallization of perovskite crystals and reduce Perovskite crystal defects greatly improve the efficiency of carrier transport, increase the absorption intensity of the perovskite photosensitive layer, and then effectively improve the short-circuit current, fill factor and open-circuit voltage in perovskite solar cells and components, and finally effectively Improve the photoelectric conversion efficiency of perovskite solar cells and components.
  • the thickness of the perovskite photosensitive layer 111 is between 400nm and 600nm. Under this thickness, the perovskite photosensitive layer can transmit carriers well and the prepared perovskite solar energy The current of the battery and components is the highest; the perovskite photosensitive layer 111 can be coated on the layer 112 by spin coating, after being pumped by a vacuum pump for 30s-90s, and then heated at 100°C-150°C Prepared in 5-15 minutes.
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a metal Ag electrode is vapor-phase-deposited on the electron transport layer to obtain a perovskite solar cell B1;
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a metal Ag electrode is vapor-phase-deposited on the electron transport layer to obtain a perovskite solar cell B2;
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a metal Ag electrode is vapor-phase-deposited on the electron transport layer to obtain a perovskite solar cell B3;
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • perovskite solution E2 Into the 1.2M FA 0.85 MA 0.10 Cs 0.05 PbI 3 mixed component perovskite solution, dope phenyltrimethylamine hydroiodide (PTAI) with a molar concentration of 2% to form perovskite solution E2;
  • PTAI phenyltrimethylamine hydroiodide
  • a method for preparing a perovskite solar cell comprising the steps of:
  • a method for preparing a perovskite solar cell comprising the steps of:
  • perovskite solution E4 Into a 1M FA 0.85 MA 0.10 Cs 0.05 PbI 3 mixed component perovskite solution was mixed with 0.5% molar concentration of phenyltrimethylamine hydroiodide (PTAI) and 10% molar concentration of methyl chloride Amine (MACl), forming perovskite solution E4;
  • PTAI phenyltrimethylamine hydroiodide
  • MACl methyl chloride Amine
  • a preparation method for a perovskite solar cell comprising the steps of:
  • a 1.5M FA 0.85 MA 0.10 Cs 0.05 PbI 3 mixed component perovskite solution was mixed with 7% molar concentration of phenyltrimethylamine hydroiodide (PTAI) and 25% molar concentration of chlorine Methylamine (MACl), forming perovskite solution E5;
  • PTAI phenyltrimethylamine hydroiodide
  • MACl chlorine Methylamine
  • a preparation method for a perovskite solar cell comprising the steps of:
  • hydrohalide salts with a specific proportion of hydrophobic bulky amines and methyl chloride to the perovskite solution can have a certain synergistic effect, ensuring high-quality crystallization of perovskite crystals
  • the applicant found that, in the perovskite solution, add hydrohalide salts (such as: phenyltrimethylamine hydroiodide PTAI) and chloromethylamine with hydrophobic bulky amines within the proportion range of the present application
  • hydrohalide salts such as: phenyltrimethylamine hydroiodide PTAI
  • chloromethylamine with hydrophobic bulky amines
  • the perovskite solar cells A1-A3 prepared by (MACl) are compared to the hydroiodide (such as: phenyltrimethylbenzene trimethyl) added with hydrophobic bulky amines beyond the scope of the application ratio in the perovskite precursor solution.
  • the perovskite solar cells E4-E5 prepared by amine hydroiodide (PTAI) and chloromethylamine (MACl) have a certain improvement in voltage and fill factor, which is mainly due to adding less than the proportion range of the application with large hydrophobicity
  • the hydrohalide salt of bulky amine and chloromethylamine (MACl) the synergistic effect of the two is hardly reflected, and the effect of adding hydrohalic acid salt or chloromethylamine with hydrophobic bulky amine is not much different; while adding Hydrohalogen salts and methylamine chloride (MACl) with hydrophobic bulky amines greater than the scope of the application ratio, hydrohalogen salts and methylamine chloride (MACl) with hydrophobic bulky amines added will interact with perovskite
  • the methylamine and formamidine ions in the components compete, and the prepared perovskite crystal changes, resulting in changes in its photoelectric properties, which eventually lead to a decrease in the open circuit voltage, short circuit current and
  • the perovskite solar cell A1 prepared by adding a perovskite solution of 2% phenyltrimethylamine hydroiodide (PTAI) and 18% methylamine chloride (MACl) to the body to account for the molar concentration of the perovskite precursor is obtained the highest photoelectric conversion efficiency.
  • PTAI phenyltrimethylamine hydroiodide
  • MACl methylamine chloride

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种组合物、钙钛矿薄膜及其制备方法和应用。所述用于制备钙钛矿薄膜的组合物包括钙钛矿材料、氢卤酸盐和氯甲胺包括钙钛矿材料、氢卤酸盐和氯甲胺,所述钙钛矿材料、氢卤酸盐和氯甲胺的摩尔比为100~150∶1~2∶15~20。本申请实施例提供的一种钙钛矿薄膜的制备方法,采用的具有疏水性大体积胺的氢卤酸盐能够有效抑制钙钛矿晶体中的甲胺离子的迁移和逃逸,从而很好的稳定了钙钛矿晶体组分的化学计量比,同时由于本申请选择的大体积胺具有一定的疏水性,能够有效阻挡水汽进入钙钛矿晶体中,提高了钙钛矿晶体的稳定性进而有效提高了钙钛矿太阳能电池和组件的稳定性。

Description

组合物、钙钛矿薄膜及其制备方法和应用
本申请基于并要求于2021年12月14日递交的申请号为202111527388.7、申请名称为“组合物、钙钛矿薄膜及其制备方法和应用”的中国专利申请的优先权。
技术领域
本申请涉及一种钙钛矿太阳能电池,特别涉及一种组合物、钙钛矿薄膜及其制备方法和应用,属于太阳能电池技术领域。
背景技术
目前实验室规格尺寸大小的钙钛矿太阳能电池的效率已达到25.5%,早已超过产业化发展要求的15%的门槛。国内外近期有多家公司开始将钙钛矿太阳能电池技术推向产业化,同时很多高校也在做大面积钙钛矿太阳能电池技术的开发,钙钛矿太阳能组件有望在几年后出现在市场上,成为晶硅组件的替代产品。然后由于钙钛矿太阳能电池的稳定性较差仍然是影响钙钛矿太阳能电池及组件技术进一步市场化的主要因素,为了进一步推动钙钛矿太阳能电池及组件的产业化发展,有必要尽快解决钙钛矿太阳能电池及组件不稳定的技术难题。钙钛矿太阳能电池的的不稳定主要分为两大类,一是由于封装技术的不成熟导致的水汽进入而影响钙钛矿太阳能电池及组件的稳定性,这一问题目前已经通过优化封装胶膜以及改善封装技术等工艺很好的解决了。而另一类则是钙钛矿晶体的不稳定性,钙钛矿晶体的不稳定性中最主要是由于钙钛矿组分中含有的阳离子特别是MA离子具有很强的挥发性,进而导致钙钛矿在结晶过程中,MA离子挥发,导致钙钛矿晶体中的化学计量比失配,从而出现了较多的碘空位,进而导致的钙钛矿不稳定。
目前针对这一问题,很多的研究工作都是通过在钙钛矿表面用铵盐钝化的方式形成二维钙钛矿去解决,虽然这种方法有一定的效果,但是增加了制备钙钛矿太阳能电池及组件的工序, 且对溶解铵盐的溶剂要求比较高,真正在工业上应用受限很多。另外一些则是在钙钛矿体相中加入路易斯酸或碱等掺杂剂来钝化钙钛矿,这种方法也只能降低部分缺陷,并没有从实质上解决钙钛矿组分计量比失配后存在较多碘空位而引起的钙钛矿晶体的不稳定性。为了更有效的改善钙钛矿太阳能电池的稳定性,有必要针对这一问题提出有效的解决方案。
申请内容
本申请的主要目的在于提供一种组合物、钙钛矿薄膜及其制备方法和应用,以克服现有技术中的不足。
为实现前述申请目的,本申请采用的技术方案包括:
本申请实施例提供了一种用于制备钙钛矿薄膜的组合物,所述钙钛矿前驱体溶液摩尔浓度为1M~1.5M,所述氢卤酸盐于所述钙钛矿前驱体溶液中的摩尔浓度比为1%~5%,所述氯甲胺于所述钙钛矿前驱体溶液中的摩尔浓度比为15%~20%。
本申请实施例提供了一种钙钛矿薄膜的制备方法,包括:
提供包含所述组合物的钙钛矿前驱体溶液,并以所述钙钛矿前驱体溶液制备形成钙钛矿薄膜。
本申请实施例提供了由所述的制备方法制备形成的钙钛矿薄膜。
本申请实施例提供了一种太阳能电池,包括光敏层,所述光敏层包括所述的钙钛矿薄膜。
与现有技术相比,本申请实施例提供的一种钙钛矿薄膜的制备方法,所采用的具有疏水性大体积胺的氢卤酸盐能够有效抑制钙钛矿晶体中的甲胺离子的迁移和逃逸,从而很好的稳定了钙钛矿晶体组分的化学计量比,同时由于本申请选择的大体积胺具有一定的疏水性,能够有效阻挡水汽进入钙钛矿晶体中,提高了钙钛矿晶体的稳定性进而有效提高了钙钛矿太阳能电池和组件的稳定性。
附图说明
图1是本申请一典型实施案例中提供的一种钙钛矿太阳能电池的结构示意图。
具体实施方式
鉴于现有技术中的不足,本案申请人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例提供的一种钙钛矿薄膜的制备方法,旨在提高钙钛矿晶体的稳定性,具体主要是通过稳定MA离子(甲胺离子),抑制钙钛矿组分中的MA离子逃逸,从而有效提高钙钛矿晶体的稳定性,并以此改善钙钛矿太阳能电池及组件的稳定性,进而推动钙钛矿太阳能电池及组件的产业化发展。
本申请实施例通过在混合组分钙钛矿前驱体溶液中加入指定比例的具有疏水性大体积胺的氢卤酸盐和氯甲胺作为添加剂,利用氯甲胺促使钙钛矿薄膜快速结晶,从而提高钙钛矿吸光层薄膜的质量,同时,利用具有疏水性大体积胺的氢碘酸盐中的大体积胺阳离子的离子半径较大而形成较大的空间位阻,从而可以阻挡甲胺离子逃逸,进而有效将甲胺离子封锁在钙钛矿晶格内,从根本上解决了钙钛矿在结晶成核过程中甲胺离子迁移和逃逸而产生的碘空位问题,进而保证钙钛矿组分的化学计量比不失配,大大减少钙钛矿晶体中的碘空位,从而降低了钙钛矿晶体缺陷,有效提高钙钛矿晶体的稳定性进而大幅度改善钙钛矿太阳能电池及组件的稳定性。
此外,本申请实施例选择的大体积胺具有一定的疏水性,能够阻止水汽进入钙钛矿晶体内,从而具有保护钙钛矿晶体的作用,进而有效提高了钙钛矿晶体的稳定性,以达到改善钙钛矿太阳能电池及组件的稳定性的作用。
除此之外,本申请实施例提供的一种钙钛矿薄膜的制备方法,在钙钛矿前驱体溶液中加入一定比例的大体积胺的氢卤酸盐和氯甲胺,通过具有疏水性大体积胺的氢卤酸盐和氯甲胺的协同效应,可以保证钙钛矿晶体高质量结晶,减少钙钛矿晶体缺陷,从而大大提高载流子传输的效率,增加钙钛矿光敏层的吸收强度,进而有效提高钙钛矿太阳能电池及组件中的短路电流、填充因子以及开路电压,进而有效提高钙钛矿太阳能电池及组件的光电转换效率。
本申请实施例提供的一种钙钛矿薄膜的制备方法,所采用的具有疏水性大体积胺的氢卤酸盐能够有效抑制钙钛矿晶体中的甲胺离子的迁移和逃逸,从而很好的稳定了钙钛矿晶体组分的化学计量比,同时由于本申请选择的大体积胺具有一定的疏水性,能够有效阻挡水汽进入钙钛矿晶体中,提高了钙钛矿晶体的稳定性进而有效提高了钙钛矿太阳能电池和组件的稳定性。
本申请实施例提供了一种用于制备钙钛矿薄膜的组合物,包括钙钛矿材料、氢卤酸盐和氯甲胺,所述钙钛矿材料、氢卤酸盐和氯甲胺的摩尔比为100~150∶1~2∶15~20。
在一些较为具体的实施方案中,所述氢卤酸盐为具有疏水性大体积胺的氢卤酸盐。
在一些较为具体的实施方案中,所述氢卤酸盐包括苯胺类、联苯胺类、组胺类的氢卤酸盐中的任意一种或两种以上的组合。
在一些较为具体的实施方案中,所述钙钛矿材料为含有甲胺的混合组分钙钛矿材料。
在一些较为具体的实施方案中,所述的组合物还包括溶剂。
在一些较为具体的实施方案中,所述溶剂包括N,N-二甲基甲酰胺、二甲基亚矾、N-基吡咯烷酮、乙二醇单甲醚、γ-丁内酯中的任意一种或两种以上的组合。
本申请实施例提供了一种钙钛矿薄膜的制备方法,包括:
提供包含所述组合物的钙钛矿前驱体溶液,并以所述钙钛矿前驱体溶液制备形成钙钛矿薄膜。
在一些较为具体的实施方案中,所述钙钛矿前驱体溶液摩尔浓度为1M~1.5M,所述氢卤酸盐于所述钙钛矿前驱体溶液中的摩尔浓度比为1%~5%,所述氯甲胺于所述钙钛矿前驱体溶液中的摩尔浓度比为15%~20%。
在一些较为具体的实施方案中,所述的制备方法包括;将所述钙钛矿前驱体溶液均匀涂布在基底上,之后进行抽气干燥、退火处理,所述抽气干燥的时间为30s~90s,所述退火处理的温度为100~150℃,时间为5~15min,从而形成钙钛矿薄膜。
本申请实施例提供了由所述的制备方法制备形成的钙钛矿薄膜。
本申请实施例提供了一种太阳能电池,包括光敏层,所述光敏层包括权利要求8所述的钙钛矿薄膜。
在一些较为具体的实施方案中,所述的太阳能电池,其特征在于包括沿指定方向依次设置的第一电极、电极传输层、光敏层、空穴传输层和第二电极,其中,所述太阳能电池具有正向结构或反向结构。
在一些较为具体的实施方案中,所述光敏层的厚度为400~600nm。
在一些较为具体的实施方案中,所述第一电极和第二电极中的任一者包括FTO、ITO、ITiO、ICO、IWO、AZO、BZO导电玻璃中的任意一种,另一者包括金属电极。
在一些较为具体的实施方案中,所述电子传输层的厚度为20~100nm。
在一些较为具体的实施方案中,所述空穴传输层的厚度为20~40nm。
为了使本申请的目的,技术方案及优点更加清楚明白,以下结合具体实施方式,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本申请,并不用于限定本申请。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限定本申请。本文所使用的术语“及/或”包含一个或多个相关的所列项目的任意的和所有的组合。
请参见图1,一种钙钛矿太阳能电池100,包括载体玻璃140、依次设置在载体玻璃140上的透明导电薄膜电极120、金属电极130以及位于透明导电薄膜电极120与金属电极130之间的电池主体结构110;其中,所述电池主体结构110包括钙钛矿光敏层111、位于钙钛矿光敏层111一侧的空穴传输层112以及位于钙钛矿光敏层111另一侧的电子传输层113。
在本实施例中,所述载体玻璃140的主要作为透明导电薄膜电极120的载体,所述载体玻璃140可以选用任一导电玻璃中用的基体玻璃,所述载体玻璃140的厚度为1.1~2.5mm;这样既可以保证足够的机械承载力,又可以减少载体玻璃对光的吸收,以使更多的光进入电池主体结构110中,从而提高钙钛矿太阳能电池对光的吸收利用率。
在本实施例中,所述透明导电薄膜电极120与金属电极130的主要作用都是将光生电流导出;在本实施例中,所述透明导电薄膜电极120可以是FTO电极,也即掺氟氧化锡电极;这样可使透明导电薄膜电极120对紫外光的吸收增强,进一步减少紫外光进入电子传输层;另外,FTO电极还具有电阻率低、化学性能稳定的优点。当然,可以理解的是,透明导电薄膜电极并不局限于FTO电极,还可以是掺锡氧化铟(ITO)、掺钛氧化铟(ITiO)电极、掺铈氧化铟(ICO)电极、掺钨氧化铟(IWO)电极、掺铝氧化锌(AZO)电极或掺硼氧化锌(BZO)电极等。
在本实施例中,所述金属电极130可以为银(Ag)电极,当然,可以理解的是,所述金属电极130并不局限于银(Ag)电极,还可以是其他金属制成的电极,例如金(Au)电极、铝(A1)电极等。
在本实施例中,所述电子传输层113的主要作用是传输电子,同时还可以阻挡空穴,从而减少空穴电子的复合,进而起到选择性传输电子的作用;优选地,所述电子传输层112的厚度为20~100nm,这样既可以保障成膜质量、减少电子传输层的缺陷,又可以确保内部的串联电阻较低,提升短路电流;在本实施例中,所述电子传输层112是采用PCBM旋涂制备形成的。
在本实施例中,所述空穴传输层112的主要作用是传输空穴,同时还可以阻挡电子,从而减少空穴电子的复合,进而起到选择性传输空穴的作用;优选地,所述空穴传输层113的厚度为20~40nm,这样既可以保障成膜质量,减少电子传输层的缺陷,又可以确保内部的串联电阻较低,提高短路电流,在本实施例中,所述空穴传输层113是采用NiO x真空沉积制备形成的。
在本实施例中,所述钙钛矿光敏层111为钙钛矿太阳能电池100的核心层,在该层产生载流子,所述钙钛矿光敏层111所采用的钙钛矿材料包括三元混合组分钙钛矿FA 0.85MA 0.10Cs 0.05PbI 3和二元混合组分钙钛矿FA 0.85Cs 0.15PbI 3,在此组分下,能够保证加入具有疏水性大体积胺的氢碘酸盐和氯甲胺(MACl)的钙钛矿前驱体溶液制备的钙钛矿晶体质量很好,钙钛矿晶体缺陷很少,从而提高钙钛矿太阳能电池的稳定性和光电转换效率。
在本实施例中,所述钙钛矿前驱体溶液是在三元混合组分钙钛矿FA 0.85MA 0.10C s0.05PbI 3或二元混合组分钙钛矿FA 0.85Cs 0.15PbI 3中加入了苯三甲基胺氢碘酸盐(PTAI)或联苯胺氢溴酸盐或组胺二盐酸盐和氯甲胺(MACl),加入特定比例的大体积胺的氢碘酸盐和氯甲胺(MACl)后,氯甲胺能够促进钙钛矿快速结晶,促进钙钛矿晶体长大,具有疏水性大体积胺的氢碘酸盐中的大体积胺的离子半径较大,具有较大的空间位阻,能够有效阻止甲胺离子逃逸,从而抑制由于钙钛矿晶体中的甲胺离子迁移和逃逸所导致钙钛矿组分化学计量比失配、钙钛矿太阳能电池效率降低和不稳定的问题;同时,由于具有疏水性大体积胺氢碘酸盐中的大体积胺具有一定的疏水性,因此能够阻止水汽进入钙钛矿晶体中,从而起到保护钙钛矿晶体的作用,进而可以提高钙钛矿晶体的稳定性,以此改善钙钛矿太阳能电池及组件的稳定性。此外,由于在钙钛矿前驱体溶液中加入的具有特定比例的具有疏水性的大体积胺氢碘酸盐和氯甲胺具有一定的协同 效应,可以保证钙钛矿晶体的高质量结晶,减少钙钛矿晶体缺陷,大大提高了载流子传输的效率,增加了钙钛矿光敏层的吸收强度,进而有效提高钙钛矿太阳能电池及组件中的短路电流、填充因子以及开路电压,最终有效提高钙钛矿太阳能电池及组件的光电转换效率。
在本实施例中,所述钙钛矿光敏层111的厚度为400nm~600nm之间,在此厚度下,钙钛矿光敏层能很好的将载流子传出且制备的钙钛矿太阳能电池及组件的电流最高;所述钙钛矿光敏层111可以是采用旋涂的方式涂覆在112层上,经过真空抽气装置抽气30s~90s后,然后在100℃~150℃下加热5~15min制备的。
如下将结合具体实施案例对该技术方案、其实施过程及原理等作进一步的解释说明,除非特别说明的之外,本申请实施例中用于制备钙钛矿太阳能电池的蒸镀、溅射、旋涂等工艺均可以采用本领域技术人员已知的工艺实现。
实施例1
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后通过物理气相沉积(PVD)等方式在FTO透明电极上真空溅射40nm的NiO x,从而得到空穴传输层;
在浓度为1.2M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为2%的苯三甲基胺的氢碘酸盐(PTAI)和摩尔浓度比例为18%的氯甲胺(MACl)形成钙钛矿溶液A1;
在空穴传输层上旋涂钙钛矿溶液A1,在抽气装置下抽气60s后,然后在150℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池A1。
实施例2
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后通过物理气相沉积(PVD)等方式在FTO透明电极上真空溅射40nm的NiO x,从而得到空穴传输层;
在浓度为1M的FA 0.85MA 0.10C s0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为1%的苯三甲基胺的氢碘酸盐(PTAI)和摩尔浓度比例为15%的氯甲胺(MACl)形成钙钛矿溶液A2;
在空穴传输层上旋涂钙钛矿溶液A2,在抽气装置下抽气30s后,然后在150℃下加热5min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池A2。
实施例3
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后通过物理气相沉积(PVD)等方式在FTO透明电极上真空溅射40nm的NiO x,从而得到空穴传输层;
在浓度为1.5M的FA 0.85MA 0.10C s0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为5%的苯三甲基胺的氢碘酸盐(PTAI)和摩尔浓度比例为20%的氯甲胺(MACl)形成钙钛矿溶液A3;
在空穴传输层上旋涂钙钛矿溶液A3,在抽气装置下抽气90s后,然后在150℃下加热15min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池A3。
实施例4
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1.2M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为3%的联苯胺的氢溴酸和摩尔浓度比例为17%的氯甲胺(MACl)形成钙钛矿溶液B1;
在空穴传输层上旋涂钙钛矿溶液B1,在抽气装置下抽气60s后,然后在150℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池B1;
实施例5
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为1%的联苯胺的氢溴酸和摩尔浓度比例为15%的氯甲胺(MACl)形成钙钛矿溶液B2;
在空穴传输层上旋涂钙钛矿溶液B2,在抽气装置下抽气30s后,然后在150℃下加热5min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池B2;
实施例6
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1.5M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为5%的联苯胺的氢溴酸和摩尔浓度比例为20%的氯甲胺(MACl)形成钙钛矿溶液B3;
在空穴传输层上旋涂钙钛矿溶液B3,在抽气装置下抽气90s后,然后在150℃下加热15min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池B3;
实施例7
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1.2M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为2%的组胺二盐酸盐和摩尔浓度比例为17%的氯甲胺(MACl)形成钙钛矿溶液C1;
在空穴传输层上旋涂钙钛矿溶液C1,在抽气装置下抽气60s后,然后在150℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池C1。
实施例8
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为1%的组胺二盐酸盐和摩尔浓度比例为15%的氯甲胺(MACl)形成钙钛矿溶液C2;
在空穴传输层上旋涂钙钛矿溶液C2,在抽气装置下抽气30s后,然后在150℃下加热5min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池C2。
实施例9
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1.5M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿中加入摩尔浓度比例为5%的组胺二盐酸盐和摩尔浓度比例为20%的氯甲胺(MACl)形成钙钛矿溶液C3;
在空穴传输层上旋涂钙钛矿溶液C3,在抽气装置下抽气90s后,然后在150℃下加热15min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池C3。
实施例10
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1.2M的FA 0.85Cs 0.15PbI 3混合组分钙钛矿中加入摩尔浓度比例为2%的苯三甲基胺的氢碘酸盐(PTAI)和摩尔浓度比例为18%的氯甲胺(MACl)形成钙钛矿溶液D1;
在空穴传输层上旋涂钙钛矿溶液D1,在抽气装置下抽气60s后,然后在100℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池D1。
实施例11
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1M的FA 0.85Cs 0.15PbI 3混合组分钙钛矿中加入摩尔浓度比例为1%的苯三甲基胺的氢碘酸盐(PTAI)和摩尔浓度比例为15%的氯甲胺(MACl)形成钙钛矿溶液D2;
在空穴传输层上旋涂钙钛矿溶液D2,在抽气装置下抽气30s后,然后在100℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池D2。
实施例12
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1.5M的FA 0.85Cs 0.15PbI 3混合组分钙钛矿中加入摩尔浓度比例为5%的苯三甲基胺的氢碘酸盐(PTAI)和摩尔浓度比例为20%的氯甲胺(MACl)形成钙钛矿溶液D3;
在空穴传输层上旋涂钙钛矿溶液D3,在抽气装置下抽气90s后,然后在100℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液90s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池D3。
对比例1
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在空穴传输层上旋涂1.2M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿溶液,在抽气装置下抽气60s后,然后在150℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池E1。
对比例2
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1.2M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿溶液中掺入摩尔浓度为2%的苯三甲基胺的氢碘酸盐(PTAI),形成钙钛矿溶液E2;
在NiO x上旋涂钙钛矿溶液E2,在抽气装置下抽气60s后,然后在150℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池E2。
对比例3
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiOx,得到空穴传输层;
在1.2M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿溶液中掺入摩尔浓度为18%的氯甲胺(MACl),形成钙钛矿溶液E3;
在NiOx上旋涂钙钛矿溶液E3,在抽气装置下抽气60s后,然后在150℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池E3。
对比例4
一种钙钛矿太阳能电池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiO x,得到空穴传输层;
在1M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿溶液中掺入摩尔浓度为0.5%的苯三甲基胺的氢碘酸盐(PTAI)和摩尔浓度比例为10%的氯甲胺(MACl),形成钙钛矿溶液E4;
在NiOx上旋涂钙钛矿溶液E4,在抽气装置下抽气30s后,然后在150℃下加热5min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池E4。
对比例5
一种钙钛矿太阳能池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiOx,得到空穴传输层;
在1.5M的FA 0.85MA 0.10Cs 0.05PbI 3混合组分钙钛矿溶液中掺入摩尔浓度为7%的苯三甲基胺的氢碘酸盐(PTAI)和摩尔浓度比例为25%的氯甲胺(MACl),形成钙钛矿溶液E5;
在NiOx上旋涂钙钛矿溶液E5,在抽气装置下抽气90s后,然后在150℃下加热15min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池E5。
对比例6
一种钙钛矿太阳能池的制备方法,包括如下步骤:
在干净的透明基底玻璃上蒸镀FTO透明电极,然后在FTO透明电极上通过物理气相沉积(PVD)真空溅射40nm的NiOx,得到空穴传输层;
在空穴传输层上旋涂1.2M的FA 0.85Cs 0.15PbI 3混合组分钙钛矿溶液,在抽气装置下抽气60 s后,然后在100℃下加热10min,形成钙钛矿光敏层;
在钙钛矿光敏层上以2000r/s旋涂用CB溶解的20mg/mL的PCBM溶液30s,然后在100℃下加热5min,得到电子传输层;
最后在电子传输层上气相沉积金属Ag电极,得到钙钛矿太阳能电池E6。
将实施例1-12的电池A1-A3、B1-B3、C1-C3、D1-D3和对比例1-5的电池E1-E6共18种钙钛矿太阳能电池采用模拟光源系统进行测试,相关测试结果如下表1所示,测试所采用的设备和方法均是本领域技术人员已知的:
表1 18种钙钛矿太阳能电池的光伏性能测试结果
Figure PCTCN2022133462-appb-000001
从表1中可以看出,采用本申请实施例所提供的钙钛矿薄膜的制备方法,在相同组分的钙钛矿前驱体溶液中加入指定比例的具有疏水性大体积胺的氢卤酸盐和氯甲胺(MACl)制备的钙钛矿太阳能电池的开路电压(Voc)、短路电流(Jsc)以及填充因子(FF)相比于对比例制备获得的钙钛矿太阳能电池的相应光伏参数提高了很多(三元组分:A1-A3、B1-B3、C1-C3九种 电池与对比例1制备的E1电池对比;二元组分:D1-D3三种电池与对比例6制备的E6电池对比),这主要是由于在钙钛矿前驱体溶液中加入的MACl能够促进钙钛矿晶体快速结晶成核生长,从而形成的钙钛矿薄膜质量很好,钙钛矿晶体晶界孔洞较少,从而减少了载流子复合,进而有效提高了钙钛矿太阳能电池的短路电流和填充因子;同时在钙钛矿溶液中加入具有疏水性大体积胺的氢卤酸盐后,由于大体积胺的离子半径较大,具有较大的空间位阻,阻止了MA离子逃逸,从而将MA离子锁定在钙钛矿晶体内,从而稳定了钙钛矿组分中的化学计量比,大大减少了钙钛矿组分中的碘空位,降低了钙钛矿晶体中的缺陷,使得制备的钙钛矿太阳能电池的开路电压,短路电流以及填充因子都有提升;同时具有疏水性大体积胺的氢卤酸盐疏水性的大体积胺具有一定的疏水性,可以阻止水汽进入钙钛矿晶体中,从而保护钙钛矿晶体,提高钙钛矿晶体的稳定性,以此改善钙钛矿太阳能电池及组件的稳定性。
此外,本申请人研究发现,通过在钙钛矿溶液中加入本申请范围内的具有疏水性大体积胺的氢卤酸盐(如:苯三甲基胺氢碘酸盐PTAI)和氯甲胺(MACl)制备的钙钛矿太阳能电池A1-A3相比于在钙钛矿前驱体溶液中只加入具有疏水性大体积胺的氢卤酸盐(如:苯三甲基胺氢碘酸盐PTAI)或氯甲胺(MACl)其中一种制备的钙钛矿太阳能电池E2-E3,采用本申请制备的钙钛矿太阳能的开路电压和短路电流以及填充因子有着明显的提高,这主要是由于在钙钛矿溶液中同时加入具有特定比例的具有疏水性大体积胺的氢卤酸盐和氯甲胺能够具有一定的协同效应,保证了钙钛矿晶体的高质量结晶,减少了钙钛矿晶体缺陷,从而大大提高了载流子传输的效率,增加了钙钛矿光敏层的吸收强度,进而有效提高了钙钛矿太阳能电池及组件中的短路电流,填充因子以及开路电压。
同时,本申请人研究发现,在钙钛矿溶液中加入本申请比例范围内的具有疏水性大体积胺的氢卤酸盐(如:苯三甲基胺氢碘酸盐PTAI)和氯甲胺(MACl)制备的钙钛矿太阳能电池A1-A3相比于在钙钛矿前驱体溶液中加入超出本申请比例范围的具有疏水性的大体积胺的氢碘酸盐(如:苯三甲基胺氢碘酸盐PTAI)和氯甲胺(MACl)制备的钙钛矿太阳能电池E4-E5,电压和填充因子有着一定的提升,这主要是由于加入少于本申请比例范围的具有疏水性大体积胺的氢卤酸盐和氯甲胺(MACl),两者的协同作用几乎没有体现出来,跟加入具有疏水性大体积胺的氢卤酸盐或氯甲胺的效果相差不大;而加入大于本申请比例范围的具有疏水性大体积 胺的氢卤酸盐和氯甲胺(MACl),加入的具有疏水性大体积胺的氢卤酸盐和氯甲胺(MACl)会与钙钛矿组分中的甲胺以及甲脒离子竞争,制备的钙钛矿晶体发生改变,导致其光电性能发生变化,最终导致制备的钙钛矿太阳能电池的开路电压、短路电流以及填充因子下降。通过优化在钙钛矿溶液中加入的具有大体积胺的氢卤酸盐的种类以及加入大体积胺的氢卤酸盐和氯甲胺(MACl)的比例,本申请人发现在钙钛矿前驱体中加入占钙钛矿前驱体摩尔浓度比为2%苯三甲基胺氢碘酸盐(PTAI)和18%氯甲胺(MACl)的钙钛矿溶液制备的钙钛矿太阳能电池A1获得了最高的光电转换效率。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种用于制备钙钛矿薄膜的组合物,其特征在于包括钙钛矿材料、氢卤酸盐和氯甲胺,所述钙钛矿材料、氢卤酸盐和氯甲胺的摩尔比为100~150∶1~2∶15~20。
  2. 根据权利要求1所述的组合物,其特征在于:所述氢卤酸盐为具有疏水性大体积胺的氢卤酸盐;优选的,所述氢卤酸盐包括苯胺类、联苯胺类、组胺类的氢卤酸盐中的任意一种或两种以上的组合。
  3. 根据权利要求1所述的组合物,其特征在于:所述钙钛矿材料为含有甲胺的混合组分钙钛矿材料。
  4. 根据权利要求1所述的组合物,其特征在于还包括溶剂,优选的,所述溶剂包括N,N-二甲基甲酰胺、二甲基亚矾、N-甲基吡咯烷酮、乙二醇单甲醚、γ-丁内酯中的任意一种或两种以上的组合。
  5. 一种钙钛矿薄膜的制备方法,其特征在于包括:
    提供包含权利要求1-4中任一项所述组合物的钙钛矿前驱体溶液,并以所述钙钛矿前驱体溶液制备形成钙钛矿薄膜。
  6. 根据权利要求5所述的制备方法,其特征在于;所述钙钛矿前驱体溶液摩尔浓度为1M~1.5M,所述氢卤酸盐于所述钙钛矿前驱体溶液中的摩尔浓度比为1%~5%,所述氯甲胺于所述钙钛矿前驱体溶液中的摩尔浓度比为15%~20%。
  7. 根据权利要求5所述的制备方法,其特征在于包括;将所述钙钛矿前驱体溶液均匀涂布在基底上,之后进行抽气干燥、退火处理,所述抽气干燥的时间为30s~90s,所述退火处理的温度为100~150℃,时间为5~15min,从而形成钙钛矿薄膜。
  8. 由权利要求5-7中任一项所述的制备方法制备形成的钙钛矿薄膜。
  9. 一种太阳能电池,包括光敏层,其特征在于:所述光敏层包括权利要求8所述的钙钛矿薄膜。
  10. 据权利要求9所述的太阳能电池,其特征在于包括沿指定方向依次设置的第一电极、电极传输层、光敏层、空穴传输层和第二电极,其中,所述太阳能电池具有正向结构或反向结构;
    优选的,所述光敏层的厚度为400~600nm;
    优选的,所述第一电极和第二电极中的任一者包括FTO、ITO、ITiO、ICO、IWO、AZO、BZO导电玻璃中的任意一种,另一者包括金属电极;
    优选的,所述电子传输层的厚度为20~100nm,优选的,所述空穴传输层的厚度为20~40nm。
PCT/CN2022/133462 2021-12-14 2022-11-22 组合物、钙钛矿薄膜及其制备方法和应用 WO2023109441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111527388.7 2021-12-14
CN202111527388.7A CN114220921A (zh) 2021-12-14 2021-12-14 组合物、钙钛矿薄膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023109441A1 true WO2023109441A1 (zh) 2023-06-22

Family

ID=80701824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133462 WO2023109441A1 (zh) 2021-12-14 2022-11-22 组合物、钙钛矿薄膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114220921A (zh)
WO (1) WO2023109441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220921A (zh) * 2021-12-14 2022-03-22 昆山协鑫光电材料有限公司 组合物、钙钛矿薄膜及其制备方法和应用
CN114685373B (zh) * 2022-03-23 2024-04-30 陕西师范大学 一种组胺双碘盐及其制备方法,及钙钛矿太阳电池和制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742245A (zh) * 2019-01-10 2019-05-10 苏州大学 苯酚取代的富勒烯衍生物在钙钛矿太阳能电池中的应用、钙钛矿太阳能电池及其制备方法
CN111029463A (zh) * 2019-10-28 2020-04-17 南开大学 一种钙钛矿薄膜及具有钙钛矿薄膜的太阳能电池
CN113644206A (zh) * 2021-07-07 2021-11-12 西湖大学 一种微米级钙钛矿厚膜及其制备方法和应用
CN114220921A (zh) * 2021-12-14 2022-03-22 昆山协鑫光电材料有限公司 组合物、钙钛矿薄膜及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742245A (zh) * 2019-01-10 2019-05-10 苏州大学 苯酚取代的富勒烯衍生物在钙钛矿太阳能电池中的应用、钙钛矿太阳能电池及其制备方法
CN111029463A (zh) * 2019-10-28 2020-04-17 南开大学 一种钙钛矿薄膜及具有钙钛矿薄膜的太阳能电池
CN113644206A (zh) * 2021-07-07 2021-11-12 西湖大学 一种微米级钙钛矿厚膜及其制备方法和应用
CN114220921A (zh) * 2021-12-14 2022-03-22 昆山协鑫光电材料有限公司 组合物、钙钛矿薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN114220921A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2023109441A1 (zh) 组合物、钙钛矿薄膜及其制备方法和应用
CN109686843B (zh) 钙钛矿太阳能电池及其制备方法
CN112117379A (zh) 一种双钝化层钙钛矿太阳能电池
CN114447126B (zh) 一种太阳能电池及其制备方法
Chen et al. Synergistic improvements in the performance and stability of inverted planar MAPbI 3-based perovskite solar cells incorporating benzylammonium halide salt additives
CN115347121A (zh) 一种基于dds表面修饰的钙钛矿太阳能电池
CN115440894A (zh) 一种电子传输薄膜层和应用
CN111933802B (zh) 离子液体于制备钙钛矿光敏层、钙钛矿太阳能电池的用途
CN114373871A (zh) 叠层电池用高开压宽带隙钙钛矿顶电池的制备方法
CN111223993B (zh) 一种高开路电压的半透明钙钛矿太阳能电池
CN112126425A (zh) 钙钛矿薄膜及其制作方法和应用
CN115172609A (zh) 钙钛矿光敏层及其制备用组合物、制备方法和应用
Werner et al. Perovskite/silicon tandem solar cells: challenges towards high-efficiency in 4-terminal and monolithic devices
CN111063806A (zh) 一种钙钛矿太阳能电池及其制备方法
CN114447234B (zh) 有机无机杂化钙钛矿表界面处理方法、材料及应用
CN112133835A (zh) 一种钙钛矿前驱体溶液及使用其制备钙钛矿太阳能电池的方法
CN114678391A (zh) 一种叠层太阳电池
CN114447127A (zh) 一种太阳能电池及其制备方法
CN112133829A (zh) 一种具有表面活性剂双修饰层的钙钛矿太阳能电池
WO2023143207A1 (zh) 一种太阳能电池及其制备方法
CN117939978B (zh) 一种钙钛矿/电子传输层一体化成膜方法及叠层电池
CN117279464A (zh) 一种梯度共蒸制备钙钛矿吸收层的方法及叠层太阳能电池
Zhu et al. Surface Modification of Mesoporous TiO2 with Potassium ion Enhances Photo-Voltage in Perovskite Solar Cell
CN114420847A (zh) 一种钙钛矿太阳能电池
CN116347902A (zh) 一种掺杂3-氨基-2-噻吩甲酸甲酯的钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10202400000348

Country of ref document: CH