WO2023109360A1 - 一种多功能传感器及设备 - Google Patents

一种多功能传感器及设备 Download PDF

Info

Publication number
WO2023109360A1
WO2023109360A1 PCT/CN2022/130299 CN2022130299W WO2023109360A1 WO 2023109360 A1 WO2023109360 A1 WO 2023109360A1 CN 2022130299 W CN2022130299 W CN 2022130299W WO 2023109360 A1 WO2023109360 A1 WO 2023109360A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive
sensor
different
sensitive elements
target
Prior art date
Application number
PCT/CN2022/130299
Other languages
English (en)
French (fr)
Inventor
陈褒扬
刘闯闯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023109360A1 publication Critical patent/WO2023109360A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means

Definitions

  • the present application relates to the field of sensor technology, in particular to a multifunctional sensor and equipment.
  • Sensors such as temperature sensors and pressure sensors have been widely used in various electronic devices.
  • most sensors are packaged inside electronic devices in order to avoid noise interference.
  • the most common temperature sensors such as negative temperature coefficient (negative temperature coefficient, NTC) thermistor and temperature IC, are used as devices inside electronic equipment and related processors or analog to digital converters (ADC) ) are connected.
  • ADC analog to digital converters
  • common pressure sensors such as resistive pressure sensors and capacitive pressure sensors are usually designed inside electronic devices to minimize interference caused by other environmental factors.
  • the heat conduction path is skin ⁇ stainless steel ⁇ flexible printed circuit (FPC) ⁇ temperature sensor.
  • the heat conduction path is too complicated, resulting in the measurement of skin temperature requires all the media in the heat conduction path to transfer heat to the measurement temperature, in order to achieve accurate temperature measurement; in addition, thermal pollution such as battery heating inside the electronic device
  • thermal pollution such as battery heating inside the electronic device
  • the influence of the temperature sensor is greater than that of the skin of the object to be tested, so it is easily disturbed by the heating of the device.
  • the above-mentioned similar defects will appear, resulting in reduced measurement accuracy.
  • the embodiment of the present application provides a multifunctional sensor that can be applied to the surface of equipment.
  • the multifunctional sensor integrates various types of sensitive elements, and the response of the same sensitive element to different environmental signals (such as temperature, humidity, pressure, etc.) Sensitivity is different, and different sensitive elements have different response sensitivities to the same environmental signal.
  • the plurality of different types of sensitive elements are designed as an equidistant line structure to ensure the consistency of different sensitive elements in the sensing area.
  • the embodiment of the present application firstly provides a multifunctional sensor, which may specifically include: a substrate and a sensitive layer, wherein the sensitive layer is located on the substrate, and the sensitive layer includes at least two different sensitive elements , the at least two different sensitive elements are located on the same plane on the sensitive layer, the so-called different means that the materials used by the sensitive elements are different, and are used to respond to at least two different types of environmental signals, for example, the environmental signal can be temperature (such as human body temperature, temperature of air in the environment, etc.), humidity (such as human humidity, humidity of air in the environment, etc.), pressure, etc., the specific application does not limit this, it is determined by the material of the sensitive element.
  • the at least two different sensitive elements all have a line structure, and the line structures are arranged at equal intervals.
  • the distance between them is equal everywhere (that is, parallel).
  • the so-called equal everywhere here means that they are equal everywhere in theory.
  • the fluctuation of the distance between the lines corresponding to any two sensitive elements is within the preset
  • the line structure corresponding to each sensitive element can be any line structure, it can be a line formed by multiple line segments, or it can be serpentine, or it can be These are lines of various shapes, and this application does not limit the shape of the lines of the sensitive element.
  • the thickness of the line structure corresponding to each sensitive element can also be set to meet certain requirements, for example, the thickness of the line structure ranges from 1-1000 ⁇ m.
  • the at least two different sensitive elements are insulated from each other, and the response sensitivity of the same sensitive element to different types of environmental signals is different. For example, some materials are highly sensitive to temperature but relatively sensitive to humidity. Low; different sensitive components have different response sensitivities to the same type of environmental signal, for example, some materials are highly sensitive to temperature, and some materials are less sensitive to temperature.
  • the sensitive layer also includes at least two electrode pairs for connecting the readout circuit, one electrode pair corresponds to one sensitive element (one-to-one correspondence), and one electrode pair includes a positive electrode and a negative electrode, respectively connected to the
  • the corresponding sensitive element corresponds to both ends of the line.
  • a positive electrode and a negative electrode included in the target electrode pair can be respectively connected to the two ends of the corresponding line structure of the target sensitive element.
  • the target electrode pair is the at least two electrode pairs. One of them, the target sensitive element is one of the at least two different sensitive elements, and the readout circuit is used to obtain the respective measured values corresponding to the at least two different sensitive elements, wherein one sensitive element corresponds to one measured value (one-to-one correspondence).
  • a multifunctional sensor which integrates various types of sensitive elements, and the response sensitivity of the same sensitive element to different environmental signals (such as temperature, humidity, pressure, etc.) Different, different sensitive elements have different response sensitivities to the same environmental signal. And the plurality of different types of sensitive elements are designed as an equidistant line structure to ensure the consistency of different sensitive elements in the sensing area.
  • the specific values of various environmental signals from the multi-functional sensor from which noise interference has been removed are obtained. Simultaneous and accurate measurement of multiple sensing values can be realized at one time.
  • the readout circuit is connected to a calculation module, and the calculation module is used to calculate the value of the target environmental signal according to the target measurement value and the target conversion coefficient, and the target measurement value is at least two One or more of the measurement values corresponding to each of the different sensitive elements, the target conversion coefficient is one or more of the corresponding conversion coefficients of at least two different sensitive elements, and the target environment signal is the at least two different One or more types of environmental signals, wherein the transform coefficients are preset coefficients.
  • both the readout circuit and the calculation module can be located inside the device.
  • the value of one or more environmental signals can be obtained at one time, and the common
  • the influence is also eliminated by the difference in sensitivity of different sensitive elements.
  • temperature will affect humidity-sensitive sensors, but temperature-sensitive sensors will have a greater impact.
  • the two sets of observations are corrected for each other, resulting in more accurate observations of humidity unaffected by temperature, and more accurate observations of temperature unaffected by humidity.
  • the type of the environmental signal may be temperature (such as human body temperature, temperature of air in the environment, etc.), humidity (such as human humidity, humidity of air in the environment, etc.),
  • the pressure and the like are not specifically limited in this application, and are determined by the materials constituting the sensitive element.
  • the distance between adjacently arranged line structures is not greater than 1 cm.
  • the value range of the distance between adjacently arranged line structures is specifically given, which is feasible.
  • the multifunctional sensor described in this application can be applied to the surface of the device to improve the measurement sensitivity of external environmental signals, for example, it can be specifically applied to the surface of the wearable device;
  • the multifunctional sensor can also be applied inside the device (eg, electronic device) to improve the measurement sensitivity of detecting temperature, humidity, pressure, etc. inside the device, which is not specifically limited in this application.
  • the multi-functional sensor described in the present application can be applied to the surface of the device, or can be applied to the inside of the device, both of which can improve the measurement sensitivity and have high applicability.
  • the specific application scenarios where the sensor is applied to the surface of the device may include but not limited to the following: 1) When the device is a watch, the multi-function sensor is set on the watch The outer surface of the bottom of the watch body, or, the multifunctional sensor is arranged on the outer surface of the watch buckle, or, the multifunctional sensor is arranged at the first preset position of the watch strap, specifically, the application sets The location is not limited. 2) In the case that the device is an earphone, the multifunctional sensor is arranged at a second preset position on the surface of the earphone body, and the second preset position is the position where the earphone contacts the tragus when the earphone is worn. 3) In the case that the device is glasses, the multifunctional sensor is arranged at a third preset position on the surface of the nose pad of the glasses, and the third preset position is a position where the glasses contact the nose when wearing the glasses.
  • the sensitive layer may be formed on the substrate by sputtering, or the sensitive layer may be deployed on the substrate by gluing
  • the sensitive layer can also be formed on the substrate by deposition, and the implementation of how to deploy the sensitive layer on the substrate is not limited in this application.
  • the at least two different sensitive materials can be made into line structures by means of photolithography, or the at least two different sensitive materials can be made into line structures by means of masks.
  • the material is made into a line structure.
  • the present application does not limit how to make the sensitive element into a line structure.
  • the measured value obtained by the readout circuit may be a resistance value, a capacitance value, a voltage value, a current value, etc., which are specifically determined by the type of the multifunctional sensor. For example, assuming that the If the multifunctional sensor is a resistive sensor, then the measured value obtained by the readout circuit is the resistance value. Similarly, if the multifunctional sensor is a capacitive sensor, then the measured value obtained by the readout circuit is the capacitance value, and the measured value is the voltage value or the current value is similar, and will not be described in detail this time.
  • the multifunctional sensor may additionally include a protective layer in addition to the substrate and the sensitive layer, and the protective layer may be one or more layers of thin film materials, that is, on the substrate And the protective layer film formed above the sensitive layer is used to protect the substrate and the sensitive layer, for example, in the preparation process of the multifunctional sensor, the piezoelectric material can be protected (assuming that one of the sensitive elements is a piezoelectric material) and The corresponding electrodes are protected from oxidation during subsequent high temperature polysilicon deposition.
  • the multifunctional sensor may further include a protective layer, which is intended to protect the substrate and the sensitive layer, and enhance the stability of the multifunctional sensor.
  • the material of the protective layer may include but not limited to: aluminum oxide, chromium oxide, and the like.
  • the sensitive layer includes at least two different sensitive elements, that is to say, the sensitive layer includes a variety of materials that are sensitive to different physical properties to be measured, including but not limited to: metal , alloys, organic polymer materials and other materials.
  • materials including but not limited to temperature-sensitive platinum Pt, NTC materials, pressure-sensitive constantan materials, and the like. It should be noted that at least two different sensitive elements included in the sensitive layer may belong to different subclasses in the same class of materials.
  • the sensitive layer includes two different sensitive elements, both of which belong to metal materials, but respectively Copper and platinum belonging to the general category of metals; as another example, suppose the sensitive layer includes two different sensitive elements, both of which belong to alloy materials, but respectively belong to copper-nickel alloys (also known as Kang Copper) and Inconel.
  • the at least two different sensitive elements included in the sensitive layer may also belong to different types of materials.
  • the sensitive layer includes two different sensitive elements, which respectively belong to copper in the metal material and nichrome in the alloy material. Specifically, no examples are given here for illustration.
  • the material of the sensitive element can be selected from a variety of options, and it is possible to decide which material to choose based on requirements, which is flexible.
  • the substrate can be made of various materials, including but not limited to: silicon wafer, sapphire, stainless steel, plastic and other materials.
  • the material of the substrate can be selected from a variety of options, and it is possible to decide which material to choose based on requirements, which is flexible.
  • the second aspect of the embodiment of the present application also provides a multifunctional sensor, the multifunctional sensor includes: a substrate and a sensitive layer, wherein the sensitive layer is located on the substrate, the sensitive layer includes at least two different sensitive elements, the at least Two different sensitive elements are located on the same plane on the sensitive layer.
  • the so-called different means that the materials used by the sensitive elements are different, and are used to respond to at least two different types of environmental signals.
  • the environmental signal can be temperature (such as human Body temperature, temperature of the air in the environment, etc.), humidity (such as the humidity of people, the humidity of the air in the environment, etc.), pressure, etc., the specific application does not limit this, it is determined by the material of the sensitive element.
  • the at least two different sensitive elements are located in at least two different areas on the substrate, and one sensitive element is located in one area, for example, assuming that there are 3 sensitive elements, correspondingly there are 3 different areas on the substrate (i.e. There is no intersection between areas), each sensitive element is located in one area, and the distance between the center points of the at least two different areas is less than a first preset threshold, which can be set according to needs.
  • a first preset threshold which can be set according to needs.
  • the mentioned area refers to an area with a diameter larger than a certain preset value (excluding the line-shaped area).
  • the diameter range of each area can be set to 0.1-100mm, and the specific range can be based on Actual application settings are not limited here.
  • the at least two different sensitive elements are insulated from each other, and the response sensitivity of the same sensitive element to different types of environmental signals is different. For example, some materials are highly sensitive to temperature but relatively sensitive to humidity. Low; different sensitive components have different response sensitivities to the same type of environmental signal, for example, some materials are highly sensitive to temperature, and some materials are less sensitive to temperature.
  • the sensitive layer also includes at least two electrode pairs for connecting the readout circuit, one electrode pair corresponds to one sensitive element (one-to-one correspondence), and one electrode pair includes a positive electrode and a negative electrode, respectively connected to the The corresponding sensitive element corresponds to both ends of the line.
  • a positive electrode and a negative electrode included in the target electrode pair can be respectively connected to the two ends of the corresponding line structure of the target sensitive element.
  • the target electrode pair is the at least two electrode pairs. One of them, the target sensitive element is one of the at least two different sensitive elements, and the readout circuit is used to obtain the respective measured values corresponding to the at least two different sensitive elements, wherein one sensitive element corresponds to one measured value (one-to-one correspondence).
  • a multifunctional sensor which integrates various types of sensitive elements, and the response sensitivity of the same sensitive element to different environmental signals (such as temperature, humidity, pressure, etc.) Different, different sensitive elements have different response sensitivities to the same environmental signal.
  • the plurality of sensitive elements of different types are designed to be located on different regions of the substrate, and the distance between the center points of different regions is smaller than a first preset threshold, so as to ensure the consistency of different sensitive elements in the sensing region.
  • the shapes of the at least two different sensitive elements include at least any one of the following: a line shape, a polygon shape, a circle shape, and an ellipse shape.
  • the shape of the sensitive element can be various, because there is a limitation on the distance between the center points, so the shape of the sensitive element can be unlimited and flexible.
  • the readout circuit is connected to a calculation module, and the calculation module is used to calculate the value of the target environmental signal according to the target measurement value and the target conversion coefficient, and the target measurement value is at least two One or more of the measurement values corresponding to each of the different sensitive elements, the target conversion coefficient is one or more of the corresponding conversion coefficients of at least two different sensitive elements, and the target environment signal is the at least two different One or more types of environmental signals, wherein the transform coefficients are preset coefficients.
  • both the readout circuit and the calculation module can be located inside the device.
  • the value of one or more environmental signals can be obtained at one time, and the common
  • the influence is also eliminated by the difference in sensitivity of different sensitive elements.
  • temperature will affect humidity-sensitive sensors, but temperature-sensitive sensors will have a greater impact.
  • the two sets of observations are corrected for each other, resulting in more accurate observations of humidity unaffected by temperature, and more accurate observations of temperature unaffected by humidity.
  • the type of the environmental signal may be temperature (such as human body temperature, temperature of air in the environment, etc.), humidity (such as human humidity, humidity of air in the environment, etc.),
  • the pressure and the like are not specifically limited in this application, and are determined by the materials constituting the sensitive element.
  • the first preset threshold is not greater than 1 cm.
  • the value range of the first preset threshold is specifically given, which is feasible.
  • the multifunctional sensor described in this application can be applied to the surface of the device to improve the measurement sensitivity to external environmental signals, for example, it can be specifically applied to the surface of the wearable device;
  • the multifunctional sensor can also be applied inside the device (eg, electronic device) to improve the measurement sensitivity of detecting temperature, humidity, pressure, etc. inside the device, which is not specifically limited in this application.
  • the multi-functional sensor described in the present application can be applied to the surface of the device, or can be applied to the inside of the device, both of which can improve the measurement sensitivity and have high applicability.
  • the specific application scenarios where the sensor is applied to the surface of the device may include but not limited to the following: 1) When the device is a watch, the multi-function sensor is set on the watch The outer surface of the bottom of the watch body, or, the multifunctional sensor is arranged on the outer surface of the watch buckle, or, the multifunctional sensor is arranged at the first preset position of the watch strap, specifically, the application sets The location is not limited. 2) In the case that the device is an earphone, the multifunctional sensor is arranged at a second preset position on the surface of the earphone body, and the second preset position is the position where the earphone contacts the tragus when the earphone is worn. 3) In the case that the device is glasses, the multifunctional sensor is arranged at a third preset position on the surface of the nose pad of the glasses, and the third preset position is a position where the glasses contact the nose when wearing the glasses.
  • the multifunctional sensor in addition to the substrate and the sensitive layer, may additionally include a protective layer, and the protective layer may be one or more layers of thin film materials, that is, on the substrate And the protective layer film formed above the sensitive layer is used to protect the substrate and the sensitive layer, for example, in the preparation process of the multifunctional sensor, the piezoelectric material can be protected (assuming that one of the sensitive elements is a piezoelectric material) and The corresponding electrodes are protected from oxidation during subsequent high temperature polysilicon deposition.
  • the protective layer may be one or more layers of thin film materials, that is, on the substrate
  • the protective layer film formed above the sensitive layer is used to protect the substrate and the sensitive layer, for example, in the preparation process of the multifunctional sensor, the piezoelectric material can be protected (assuming that one of the sensitive elements is a piezoelectric material) and The corresponding electrodes are protected from oxidation during subsequent high temperature polysilicon deposition.
  • the multifunctional sensor may further include a protective layer, which is intended to protect the substrate and the sensitive layer, and enhance the stability of the multifunctional sensor.
  • the sensitive layer may be formed on the substrate by sputtering, or the sensitive layer may be deployed on the substrate by gluing
  • the sensitive layer can also be formed on the substrate by deposition, and the implementation of how to deploy the sensitive layer on the substrate is not limited in this application.
  • the at least two different sensitive materials can be made into a line structure by photolithography, or the at least two different sensitive materials can be made into a line structure by a mask.
  • the material is made into a line structure.
  • the present application does not limit how to make the sensitive element into a line structure.
  • the measured value obtained by the readout circuit may be a resistance value, a capacitance value, a voltage value, a current value, etc., which are specifically determined by the type of the multifunctional sensor. For example, assuming that the If the multifunctional sensor is a resistive sensor, then the measured value obtained by the readout circuit is the resistance value. Similarly, if the multifunctional sensor is a capacitive sensor, then the measured value obtained by the readout circuit is the capacitance value, and the measured value is the voltage value or the current value is similar, and will not be described in detail this time.
  • the material of the protection layer may include but not limited to: aluminum oxide, chromium oxide, and the like.
  • the sensitive layer includes at least two different sensitive elements, that is to say, the sensitive layer includes a variety of materials that are sensitive to different physical properties to be measured, including but not limited to: metal , alloys, organic polymer materials and other materials.
  • materials including but not limited to temperature-sensitive platinum Pt, NTC materials, pressure-sensitive constantan materials, and the like. It should be noted that at least two different sensitive elements included in the sensitive layer may belong to different subclasses in the same class of materials.
  • the sensitive layer includes two different sensitive elements, both of which belong to metal materials, but respectively Copper and platinum belonging to the general category of metals; as another example, suppose the sensitive layer includes two different sensitive elements, both of which belong to alloy materials, but respectively belong to copper-nickel alloys (also known as Kang Copper) and Inconel.
  • the at least two different sensitive elements included in the sensitive layer may also belong to different types of materials.
  • the sensitive layer includes two different sensitive elements, which respectively belong to copper in the metal material and nichrome in the alloy material. Specifically, no examples are given here for illustration.
  • the material of the sensitive element can be selected from a variety of options, and it is possible to decide which material to choose based on requirements, which is flexible.
  • the substrate can be made of various materials, including but not limited to: silicon wafer, sapphire, stainless steel, plastic and other materials.
  • the material of the substrate can be selected from a variety of options, and it is possible to decide which material to choose based on requirements, which is flexible.
  • the third aspect of the embodiment of the present application also provides a device, which may include the pressure sensor of the above-mentioned first aspect or any of the possible implementations of the first aspect, or, the device may include the above-mentioned second aspect or any of the second aspects.
  • a device which may include the pressure sensor of the above-mentioned first aspect or any of the possible implementations of the first aspect, or, the device may include the above-mentioned second aspect or any of the second aspects.
  • the multifunctional sensor described in this application can be applied to the surface of the device to improve the measurement sensitivity to external environmental signals, for example, it can be specifically applied to the surface of the wearable device;
  • the multifunctional sensor can also be applied inside the device (eg, electronic device) to improve the measurement sensitivity of detecting temperature, humidity, pressure, etc. inside the device, which is not specifically limited in this application.
  • the multifunctional sensor described in the present application can be applied to the surface of the equipment, and can also be applied to the interior of the equipment, both of which can improve the sensitivity of the measurement and have high applicability.
  • the specific application scenarios where the sensor is applied to the surface of the device may include but not limited to the following: 1) When the device is a watch, the multi-function sensor is set on the watch The outer surface of the bottom of the watch body, or, the multifunctional sensor is arranged on the outer surface of the watch buckle, or, the multifunctional sensor is arranged at the first preset position of the watch strap, specifically, the application sets The location is not limited. 2) In the case that the device is an earphone, the multifunctional sensor is arranged at a second preset position on the surface of the earphone body, and the second preset position is the position where the earphone contacts the tragus when the earphone is worn. 3) In the case that the device is glasses, the multifunctional sensor is arranged at a third preset position on the surface of the nose pad of the glasses, and the third preset position is a position where the glasses contact the nose when wearing the glasses.
  • FIG. 1 is a schematic diagram of heat flow of a sensor for measuring skin temperature during use
  • Fig. 2 is a schematic structural diagram of the multifunctional sensor provided by the embodiment of the present application.
  • Fig. 3 is another structural schematic diagram of the multifunctional sensor provided by the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of the application circuit between the readout circuit provided by the embodiment of the present application and each sensitive element in the multifunctional sensor;
  • Fig. 5 is another structural schematic diagram of the multifunctional sensor provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an example of a multifunctional sensor provided in an embodiment of the present application.
  • Fig. 7 is another structural schematic diagram of the multifunctional sensor provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the arrangement of a plurality of different sensitive elements provided by the embodiment of the present application.
  • Fig. 9 is another schematic diagram of the arrangement of a plurality of different sensitive elements provided by the embodiment of the present application.
  • Fig. 10 is a schematic diagram of a multifunctional sensor provided on the surface of the device provided by the embodiment of the present application.
  • Fig. 11 is another schematic diagram of the multifunctional sensor provided by the embodiment of the present application provided on the surface of the device;
  • FIG. 12 is another schematic diagram of the multifunctional sensor provided by the embodiment of the present application disposed on the surface of the device.
  • the embodiment of the present application provides a multifunctional sensor and equipment.
  • the multifunctional sensor is applied to the surface of the equipment.
  • the multifunctional sensor integrates various types of sensitive elements.
  • the same sensitive element is sensitive to different environmental signals (such as temperature, humidity, Pressure, etc.) have different response sensitivities, and different sensitive elements have different response sensitivities to the same environmental signal.
  • the plurality of different types of sensitive elements are designed as an equidistant line structure to ensure the consistency of different sensitive elements in the sensing area.
  • the specific values of various environmental signals from the multi-functional sensor from which noise interference has been removed are obtained. It can accurately measure multiple sensing values at one time on the surface of the device.
  • the embodiment of the present application involves a lot of related knowledge about sensors.
  • the following first introduces related terms and concepts that may be involved in the embodiment of the present application. It should be understood that the interpretation of related concepts may be limited due to the specific conditions of the embodiment of the application, but it does not mean that the application is limited to the specific conditions, and there may be differences in the specific conditions of different embodiments. Specifically, there is no limitation here.
  • a sensor is a detection device that can sense the measured information and convert the sensed information into electrical signals or other required forms of information output according to certain rules to meet the requirements of information transmission, processing, storage, and display. , recording and control requirements.
  • the measured information sensed by the sensor is called an environmental signal, and the sensor transforms it into an electrical signal or other required information according to certain rules, which is obtained through a readout circuit connected to the electrodes of the sensor. .
  • sensors include: miniaturization, digitization, intelligence, multi-function, systemization, and networking. It is the first link to realize automatic detection and automatic control.
  • the existence and development of sensors allow objects to have senses such as touch, taste, and smell, and make objects come alive slowly.
  • it can be divided into ten categories such as thermal sensor, light sensor, gas sensor, force sensor, magnetic sensor, humidity sensor, sound sensor, radiation sensor, color sensor and taste sensor. Sensitive components.
  • FIG. 2 is a schematic structural diagram of the multifunctional sensor provided by the embodiment of the present application.
  • the surface of the device is used to improve the measurement sensitivity of external environmental signals.
  • wearable devices such as the surface of wearable devices such as watches, bracelets, earphones, and heart rate meters;
  • the multifunctional sensor can also It is applied inside the equipment (eg, electronic equipment) to improve the measurement sensitivity of detecting the temperature, humidity, pressure, etc. inside the equipment, which is not specifically limited in this application.
  • the multifunctional sensor is set on the surface of the device as an example for illustration.
  • the multifunctional sensor includes: a substrate 201 and a sensitive layer 202, wherein the sensitive layer 202 is located on the substrate 201, for example, the sensitive layer 202 can be generated on the substrate 201 by sputtering, or can be The sensitive layer 202 is deployed on the substrate 201 by gluing, and the sensitive layer 202 can also be generated on the substrate 201 by deposition.
  • the implementation manner of disposing on the substrate 201 is not limited.
  • the sensitive layer 202 includes at least two different sensitive elements, and the at least two different sensitive elements are located on the same plane on the sensitive layer, as shown in FIG. Element 2, ..., sensitive element n, n ⁇ 2, the so-called difference means that the materials used by the sensitive element are different, and are used to respond to at least two different types of environmental signals, for example, the environmental signal can be temperature (such as human body temperature , the temperature of the air in the environment, etc.), humidity (such as the humidity of people, the humidity of the air in the environment, etc.), pressure, etc., the specific application does not limit this, and it is determined by the material constituting the sensitive element.
  • the environmental signal can be temperature (such as human body temperature , the temperature of the air in the environment, etc.), humidity (such as the humidity of people, the humidity of the air in the environment, etc.), pressure, etc., the specific application does not limit this, and it is determined by the material constituting the sensitive element.
  • the at least two different sensitive elements all have a line structure, and the line structures are arranged at equal intervals between two lines.
  • the at least two different sensitive materials can be made into a line structure by photolithography, or the at least two different sensitive materials can be made into a line structure by a mask structure, specifically, the present application does not limit the implementation of how to make the sensitive element into a line structure.
  • the arrangement of lines at equal intervals means that the distances between the lines corresponding to any two sensitive elements are equal (that is, parallel), for example, between the lines formed by the sensitive element 1 and the sensitive element 2
  • the distance is equal everywhere, assuming that the spacing is h1, the distance between the two lines is equal to h1 everywhere; but it is not limited that the distance between the two lines must be h1, for example, please refer to Figure 3, assuming the multi-function
  • h2 may also be equal to h1, which is not limited in the present application.
  • the arrangement of line structures at equal intervals means that the distance between the lines corresponding to any two sensitive elements is equal everywhere (that is, parallel), and the so-called equal everywhere here means equal everywhere in theoretical conditions , in practical applications, it can be considered that the fluctuation of the distance between the lines corresponding to any two sensitive elements is also considered to be equal everywhere within a preset error range (eg, ⁇ 0.5mm).
  • the distance between the lines formed by the sensitive element 1 and the sensitive element 2 is equal everywhere, assuming that the spacing is h1, the distance between the two lines needs to be equal to h1 everywhere theoretically, if the allowable error range of ⁇ 0.5 is set mm, the distance between the two lines is in the range of [-0.5mm+h1, 0.5mm+h1], and it can also be considered that the distance between the lines formed by the sensitive element 1 and the sensitive element 2 is equal everywhere.
  • the line structure corresponding to each sensitive element can be any line structure, it can be a line formed by multiple line segments as shown in Figure 2 and Figure 3, or it can be It is meandering and serpentine, and it can also be lines of various shapes. This application does not limit the shape of the lines of the sensitive element.
  • the purpose of making each sensitive element into a parallel line structure is to keep the structural design of the multi-functional sensor highly consistent, that is, to ensure that the external stimuli felt by different sensitive elements in terms of heat conduction, etc. Be highly consistent.
  • the high degree of consistency can be reflected in: being very close in position and highly consistent in shape.
  • the thickness of the line structure corresponding to each sensitive element can also be set to meet certain requirements, for example, the thickness of the line structure ranges from 1-1000 ⁇ m.
  • the at least two different sensitive elements are insulated from each other.
  • the structural relationship between different sensitive elements can be separated by a certain distance on the basis of ensuring insulation, or Overlapping up and down.
  • different sensitive elements can be embodied in various properties such as inconsistent responses to temperature (different temperature coefficients of resistance), inconsistent responses to humidity, and inconsistent responses to pressure.
  • the response sensitivity of the same sensitive element to different types of environmental signals is different. For example, some materials are highly sensitive to temperature but relatively low to humidity; different sensitive elements are sensitive to the same type of environmental signal For example, some materials are more sensitive to temperature, while others are less sensitive to temperature.
  • the sensitive layer 202 also includes at least two electrode pairs for connecting the readout circuit, one electrode pair corresponds to one sensitive element (one-to-one correspondence), and one electrode pair includes a positive electrode and a negative electrode, respectively connected to the
  • the corresponding sensitive element corresponds to the two ends of the line, for example, a positive electrode and a negative electrode included in the target electrode pair can be respectively connected to the two ends of the target sensitive element corresponding to the line structure, and the target electrode pair is the at least two electrodes One of the pair, the target sensitive element is one of the at least two different sensitive elements, as shown in Figure 2, the two electrodes of an electrode pair are respectively connected to the two ends of the line structure corresponding to the sensitive element 1, the sensitive element 2.
  • the readout circuit is used to obtain the respective measured values corresponding to the at least two different sensitive elements, wherein one sensitive element corresponds to one measured value (one-to-one correspondence), and the readout circuit is connected to each sensitive element in the multifunctional sensor
  • the block diagram of the application circuit between can be shown in Figure 4.
  • the measured values obtained by the readout circuit may be resistance values, capacitance values, voltage values, current values, etc., which are specifically determined by the type of the multifunctional sensor. For example, assuming If the multifunctional sensor is a resistive sensor, then the measured value obtained by the readout circuit is the resistance value. Similarly, if the multifunctional sensor is a capacitive sensor, then the measured value obtained by the readout circuit is the capacitance value, and the measured value is the voltage The situation of the value or current value is similar and will not be repeated here.
  • the multifunctional sensor may additionally include a protective layer 203 in addition to the substrate 201 and the sensitive layer 202.
  • a protective layer 203 may be one or more layers of film material, that is, a protection layer film formed on the substrate 201 and the sensitive layer 202 .
  • the material of the protection layer 203 may include but not limited to: aluminum oxide, chromium oxide, etc., intended to protect the substrate 201 and the sensitive layer 202, for example, in the preparation process of the multifunctional sensor, the piezoelectric material can be protected (assuming one of the sensitive elements is a piezoelectric material) and the corresponding electrodes are protected from oxidation during subsequent high temperature polysilicon deposition.
  • the substrate 201 can be made of various materials, including but not limited to: silicon wafer, sapphire, stainless steel, plastic and other materials.
  • the structural shape of the substrate 201 is not limited, including but not limited to: plane and curved surface. Specifically, it is determined by the surface shape of the device to which the multifunctional sensor is applied, because the multifunctional sensor is deployed on the surface of the device.
  • the sensitive layer 202 includes at least two different sensitive elements, that is to say, the sensitive layer 202 includes a variety of materials that are sensitive to different physical properties to be measured, including but Not limited to: metals, alloys, organic polymer materials and other materials. For example, including but not limited to temperature-sensitive platinum Pt, NTC materials, pressure-sensitive constantan materials, and the like. It should be noted that at least two different sensitive elements included in the sensitive layer 202 may belong to different subclasses in the same class of materials.
  • the sensitive layer 202 includes two different sensitive elements, both of which belong to metal materials, But belong to copper and platinum under this broad category of metals respectively;
  • the sensitive layer 202 includes two different sensitive elements, both of which belong to alloy materials, but respectively belong to copper-nickel alloys under this broad category of alloys (also can known as constantan) and nickel-chromium-iron alloy.
  • the at least two different sensitive elements included in the sensitive layer 202 may also belong to different types of materials.
  • the sensitive layer 202 includes two different sensitive elements, which belong to copper in the metal material and Nichrome in the alloy material respectively. . Specifically, no examples are given here for illustration.
  • the readout circuit may be located inside the device, and the device may additionally include a calculation module inside, and the readout circuit is connected to the calculation module for Output the measured values corresponding to at least two different sensitive elements obtained by the circuit and the conversion coefficients corresponding to the at least two different sensitive elements respectively, and calculate the values of the at least two different types of environmental signals, and one sensitive element corresponds to its own The transformation coefficient of , which can be calculated in advance.
  • the substrate can be a sapphire substrate, in this example, it is assumed that the sensitive layer includes 3 different sensitive elements, which are thin film thermal resistance, pressure sheet and humidity sensitive film, wherein, in the humidity sensitive There are also a pair of electrode pads for the humidity sensitive film at both ends of the line structure corresponding to the film, and the sensitive layer also includes electrode pads for connecting the readout circuit.
  • the sensitive layer can be made by depositing or sputtering metal on the substrate.
  • the electrode material can be selected from gold, copper, etc., or only this area can be used as a contact
  • the point is connected to the readout circuit or the moisture-sensitive film through a medium such as sintered conductive ceramics as an electrode.
  • Different sensitive elements located on the substrate can be combined with the substrate by deposition, sputtering, gluing and other methods.
  • the thin-film thermal resistance can be selected from temperature-sensitive platinum metal, or materials with a negative temperature coefficient, etc., which are not limited in this application;
  • the pressure sheet can be selected from pressure-sensitive constantan, or copper-nickel alloy , wire chromium containing gold, iron-chromium-aluminum containing gold, nickel-chromium-iron alloy, platinum and platinum alloy, etc., the specific application does not limit this;
  • the moisture-sensitive film can be organic polymer moisture-sensitive film, or soaked in lithium chloride solution Various media, which are not limited in this application.
  • the protective layer film (not shown in FIG. 6 ) formed on the substrate and the sensitive layer may be an aluminum oxide film, which is used to protect the piezoelectric material and electrodes from oxidation during subsequent high-temperature polysilicon deposition.
  • the line structures of multiple materials in the sensitive layer are arranged at equal intervals to ensure that the sensitive areas of multiple sensitive materials are kept consistent to the greatest extent in the area to be tested.
  • the spacing between different line structures can be designed based on actual conditions. For example, if the area to be tested has a strong consistency in a certain direction A and a difference in another direction B, the pattern of parallel lines or non-lines along the direction A can be simplified during design. In addition, when the external conditions in the area to be tested are relatively consistent, the design can be simplified to a line structure or a non-line pattern as close as possible.
  • the multifunctional sensor shown in Figure 6 is a resistance value sensor
  • the resistance value R A measured by the most temperature-sensitive sensitive element A ie, the thin-film thermal resistance in Figure 6
  • the most sensitive humidity-sensitive element B ie, the thin-film thermal resistance in Figure 6
  • the resistance value R B measured by the humidity-sensitive film in
  • the resistance value R C measured by the most pressure-sensitive sensitive element C that is, the pressure sheet in Fig. 6 .
  • R A is related to the temperature T A , humidity H A and pressure S A at the sensitive element A, as shown in the following formula (1):
  • R A x aT *T A +x aH *H A +x aS *S A (1)
  • R A represents the resistance change at the sensitive element A
  • T A represents the temperature at the sensitive element A
  • x aT represents the conversion coefficient between the resistance R A and the temperature T A
  • H A represents the humidity at the sensitive element A
  • x aH represents the conversion coefficient between the resistance RA and the humidity HA
  • SA represents the pressure at the sensitive element A
  • x aS represents the conversion coefficient between the resistance RA and the pressure SA .
  • x aT , x aH , and x aS are parameters that can be calibrated for sensitive components under the condition of control variables. They are known quantities and can be measured and calculated in advance.
  • the situation of x aH and x aS is also similar, and will not be repeated here.
  • R B x b T*T B +x b H*H B +x bS *S B (2)
  • R C x c* T C +x cH *G C +x cS *S C (3)
  • T', H', and S' are unknown quantities in the above equations.
  • the condition for the solution of this equation is that the three sensitive elements A, B, and C respond inconsistently to temperature, humidity, and pressure, and there is no linear relationship. More accurate values of T', H', and S' (that is, the values of the environmental signal) can be obtained by solving the equations.
  • the data between various sensitive elements can be decoupled, and the values of various environmental signals can be obtained at one time, and these types of signals to be tested
  • the common influence of environmental quantity on multiple sensitive elements is also eliminated by the sensitivity difference of different sensitive elements. For example, temperature will affect humidity-sensitive sensors, but temperature-sensitive sensors will have a greater impact.
  • the two sets of observations are corrected for each other, resulting in more accurate observations of humidity unaffected by temperature, and more accurate observations of temperature unaffected by humidity.
  • the calculation module can calculate the values of all environmental signals at one time, such as the values of T', H', and S' mentioned above, and can also calculate the values of all environmental signals according to needs. For example, in some application scenarios, if only the values of the environmental signals T′ and H′ are required, then any two measured values of the resistance values R A , R B , and R C can be To obtain the value of the required environmental signal, the following equation group (5) shows that the value of the required environmental signal is obtained according to RA and R C :
  • each sensitive element included in the described multifunctional sensor is a line structure, and the consistency of different sensitive elements in the sensing area is ensured by designing different types of sensitive elements as equidistant line structures .
  • the multifunctional sensor with this structure can be applied to various devices.
  • each sensitive element may not be limited to a line structure.
  • FIG. 7 is another structural schematic diagram of the multifunctional sensor provided by the embodiment of the present application.
  • Sensitivity for example, can be specifically applied to the surface of wearable devices, such as the surface of wearable devices such as watches, bracelets, earphones, and heart rate meters; Improve the measurement sensitivity of the temperature, humidity, pressure, etc. inside the detection device, which is not specifically limited in this application.
  • the multifunctional sensor is set on the surface of the device as an example for illustration.
  • the multifunctional sensor includes: a substrate 301 and a sensitive layer 302, wherein the sensitive layer 302 is located on the substrate 301, for example, the sensitive layer 302 can be generated on the substrate 301 by sputtering, or can be The sensitive layer 302 is deployed on the substrate 301 by gluing, and the sensitive layer 302 can also be generated on the substrate 301 by deposition.
  • the implementation manner of disposing on the substrate 301 is not limited.
  • the sensitive layer 302 includes at least two different sensitive elements, and the at least two different sensitive elements are located on the same plane on the sensitive layer 302, as shown in FIG. Sensitive element 2, ..., sensitive element n, n ⁇ 2.
  • the so-called different means that the materials used by the sensitive elements are different, and are used to respond to at least two different types of environmental signals.
  • the environmental signals can be temperature (such as human body temperature, temperature of air in the environment, etc.), humidity (such as human Humidity, humidity of the air in the environment, etc.), pressure, etc., the specific application does not limit this, and it is determined by the material constituting the sensitive element.
  • the at least two different sensitive elements are located in at least two different areas on the substrate 301, and one sensitive element is located in one area, for example, assuming that there are 3 sensitive elements, respectively sensitive element 1, sensitive element 2, and sensitive element 3 , then there are three different regions on the substrate 301 (that is, there is no intersection between the regions), which are respectively region A, region B, and region C.
  • Each sensitive element is located in one region, and the at least two different The distance between the center points of the area is less than a first preset threshold, and the first preset threshold can be set as required.
  • the first preset threshold is not greater than 1 cm.
  • the mentioned area refers to an area with a diameter larger than a certain preset value (excluding the line-shaped area).
  • the diameter range of each area can be set to 0.1-100mm, and the specific range can be based on Actual application settings are not limited here.
  • the at least two different sensitive elements are insulated from each other, and the response sensitivity of the same sensitive element to different types of environmental signals is different. For example, some materials are highly sensitive to temperature but relatively sensitive to humidity. Low; different sensitive components have different response sensitivities to the same type of environmental signal, for example, some materials are highly sensitive to temperature, and some materials are less sensitive to temperature.
  • the sensitive layer 302 also includes at least two electrode pairs for connecting the readout circuit, one electrode pair corresponds to one sensitive element (one-to-one correspondence), and one electrode pair includes a positive electrode and a negative electrode, respectively connected to the
  • the corresponding sensitive element corresponds to the two ends of the line, for example, a positive electrode and a negative electrode included in the target electrode pair can be respectively connected to the two ends of the target sensitive element corresponding to the line structure, and the target electrode pair is the at least two electrodes
  • the target sensitive element is one of the at least two different sensitive elements
  • the readout circuit is used to obtain the respective measured values corresponding to the at least two different sensitive elements, wherein one sensitive element corresponds to one measured value (one-to-one correspondence).
  • the arrangement of different regions on the substrate is not limited.
  • Figure 7 shows that they are arranged side by side. In some embodiments, they can also be arranged side by side up and down, as shown in FIG.
  • Figure 8 and Figure 9 assuming that there are 4 sensitive elements in total, these 4 sensitive elements can be arranged as shown in Figure 8, or can be arranged as shown in Figure 9, and the specific application does not limit the arrangement , as long as the distance between the center points of the at least two different areas is less than a first preset threshold.
  • each sensitive element is line structures.
  • the shapes of sensitive elements can be various, including but not limited to: line-shaped, polygonal , round, oval. This is because there is a limitation on the distance from the center point, so the shape of the sensitive element is not limited.
  • a calculation module may also be included, and its specific functions are similar to those of the calculation module in the foregoing embodiment, and details are not described here.
  • the measured values obtained by the readout circuit may be resistance values, capacitance values, voltage values, current values, etc., which are specifically determined by the type of the multifunctional sensor, for example, Assuming that the multifunctional sensor is a resistive sensor, then the measured value obtained by the readout circuit is the resistance value. Similarly, assuming that the multifunctional sensor is a capacitive sensor, then the measured value obtained by the readout circuit is the capacitance value, and the measured value is The situation of the voltage value or the current value is similar and will not be repeated here.
  • the multifunctional sensor may additionally include a protective layer (not shown in FIG. Referring to FIG. 5 , similar to the protection layer 203 in FIG. 5 ), the protection layer may be one or more layers of film materials, that is, a protection layer film formed on the substrate 301 and the sensitive layer 302 .
  • the material of the protective layer may include but not limited to: aluminum oxide, chromium oxide, etc., which are intended to protect the substrate 301 and the sensitive layer 302, for example, during the preparation of the multifunctional sensor, the piezoelectric material ( Assuming that one of the sensitive elements is a piezoelectric material) and the corresponding electrodes are protected from oxidation during subsequent high-temperature polysilicon deposition.
  • the substrate 301 can be made of various materials, including but not limited to: silicon wafer, sapphire, stainless steel, plastic and other materials.
  • the structural shape of the substrate 301 is not limited, including but not limited to: plane and curved surface. Specifically, it is determined by the surface shape of the device to which the multifunctional sensor is applied, because the multifunctional sensor is deployed on the surface of the device.
  • the sensitive layer 302 includes at least two different sensitive elements, that is to say, the sensitive layer 302 includes a variety of materials that are sensitive to different physical properties to be measured, including but Not limited to: metals, alloys, organic polymer materials and other materials. For example, including but not limited to temperature-sensitive platinum Pt, NTC materials, pressure-sensitive constantan materials, and the like. It should be noted that at least two different sensitive elements included in the sensitive layer 302 may belong to different subclasses in the same class of materials.
  • the sensitive layer 302 includes two different sensitive elements, both of which belong to metal materials, However, they belong to copper and platinum under the general category of metals; as another example, assume that the sensitive layer 302 includes two different sensitive elements, both of which belong to alloy materials, but respectively belong to copper-nickel alloys under the category of alloys (also can be known as constantan) and nickel-chromium-iron alloy.
  • the at least two different sensitive elements included in the sensitive layer 302 may also belong to different types of materials.
  • the sensitive layer 302 includes two different sensitive elements, which respectively belong to copper in the metal material and Nichrome in the alloy material. . Specifically, no examples are given here for illustration.
  • a typical application scenario of the multifunctional sensor provided by the above-mentioned embodiments of the present application is to be deployed on the surface of the device, for example, it can be deployed on the surface of a wearable device (such as a bracelet, a watch, a heart rate meter, etc.), and can be directly connected to the surface of the device to be tested.
  • Media contact to achieve the most direct measurement, and to obtain the measured values of temperature, pressure, humidity, etc. at the same time, and the crosstalk between the measured values is filtered out, so that more sensitive and accurate data can be obtained, free from packaging, housing And so on.
  • the heat transmission path can be directly from the object under test - the protective layer of the multi-functional sensor - the sensitive layer, without heat conduction to the shell - thermal conductive sheet - packaging layer - sensitive layer.
  • the multi-functional sensor can be arranged on the outer surface of the bottom of the watch body, as shown in (a) sub-schematic diagram of Figure 10 on the outer surface of the bottom of the watch body In contact with the skin; the multifunctional sensor can also be arranged on the outer surface of the watch buckle, such as the outer surface of the watch buckle in (b) sub-schematic diagram of Figure 10; the multifunctional sensor can also be arranged on the outer surface of the watch buckle
  • the first preset position of the watch strap mentioned above is the place where the side frame of the watch body is in contact with the air in the sub-schematic diagram (b) of FIG. 10 , which is not limited in this application.
  • the multifunctional sensor is arranged at a second preset position on the surface of the earphone body, and the second preset position is when wearing the earphone.
  • the position where the earphone is in contact with the tragus as shown in Figure 11.
  • the multifunctional sensor is arranged at a third preset position on the surface of the nose pad of the glasses, and the third preset position is between the glasses and the nose when wearing the glasses.
  • the location of the contact is as shown in Figure 12.
  • the multifunctional sensor can be used on all devices that need to measure environmental signals, such as , can be applied to vehicles, such as steering wheels and seats on vehicles; it can also be applied to mobile robots, such as sweeping robots, wheeled robots, etc.; it can also be applied to peripheral electronic equipment, Such as mouse, keyboard, etc.; it can also be used on clothing, such as jackets, shoes, trousers, etc.
  • the application scene of the multi-function sensor is not limited in this application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种多功能传感器及设备,多功能传感器可应用于设备表面,如可穿戴设备表面,包括:衬底(201)、敏感层(202),敏感层(202)位于衬底(201)上;敏感层(202)包括至少两个不同的敏感元件(1,2……n),用于响应至少两种不同类型的环境信号,敏感元件(1,2……n)均呈线条结构且线条结构等间距排列;敏感层(202)还包括至少两个电极对,用于接读出电路,一个电极对对应一个敏感元件(1,2……n),读出电路用于获取至少两个不同的敏感元件(1,2……n)各自对应的测量值。通过将不同类型的敏感元件(1,2……n)设计为等间距线条结构来保障不同敏感元件(1,2……n)在感测区域的一致性。在使用时,基于读出电路获取的测量值解出多功能传感器的去除了噪声干扰的多种环境信号的具体取值,可在设备表面一次性实现多种传感值的同时测量。

Description

一种多功能传感器及设备
本申请要求于2021年12月13日提交中国专利局、申请号为202111519419.4、申请名称为“一种多功能传感器及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及传感技术领域,尤其涉及一种多功能传感器及设备。
背景技术
温度传感器、压力传感器等传感器已经在多种电子设备中被广泛使用。但是大多数传感器为了避免噪声的干扰,都会被封装在电子设备的内部。例如负温度系数(negative temperature coefficient,NTC)热敏电阻和温度IC等最常见的温度传感器,都是作为电子设备内部的器件与有关的处理器或者模/数转换器(analog to digital converter,ADC)相连接。又例如,电阻式压力传感器、电容式压力传感器等常见的压力传感器,通常也都被设计在电子设备的内部来尽量减少其他环境因素带来的干扰。
然而,由于传感器大都安装在电子设备内部,因此,上述这些常规的传感器在可穿戴设备等场景下暴露出明显的缺陷,例如,目前的可穿戴腕上温度检测装置通常使用内部贴装温度传感器的方式,如图1所示,热传导的途径为皮肤→不锈钢→柔性电路板(flexible printed circuit,FPC)→温度传感器。
上述所述的传感器缺点在于:热传导路径过于复杂,导致测量皮肤温度需要热传导路径中的所有介质都传热达到测量温度时,才能实现温度的准确测量;此外,电子器件内部电池发热等热污染对温度传感器的影响,相比起待测物皮肤要更大,因此容易受到设备发热等情况的干扰。类似地,只要传感器被安转在电子设备内部,均会出现上述类似的缺陷,导致测量准确度降低。
发明内容
本申请实施例提供了一种多功能传感器,可以应用于设备表面,该多功能传感器集合了多种类型的敏感元件,同一敏感元件对不同环境信号(如,温度、湿度、压力等)的响应敏感度不同,不同敏感元件对同一环境信号的响应敏感度不同。并将这多个不同类型的敏感元件设计为等间距线条结构,来保障不同敏感元件在感测区域的一致性。在使用时,基于读出电路获取到的测量值来解出该多功能传感器的去除了噪声干扰的多种环境信号的具体取值。可一次性实现多种传感值的同时精准测量。
基于此,本申请实施例提供以下技术方案:
第一方面,本申请实施例首先提供一种多功能传感器,该多功能传感器具体可以包括:衬底以及敏感层,其中,敏感层位于衬底上,该敏感层包括至少两个不同的敏感元件,该至少两个不同的敏感元件位于该敏感层上的同一平面,所谓不同是指敏感元件所使用的材料不同,用于响应至少两种不同类型的环境信号,例如,环境信号可以是温度(如人的体 温、环境中空气的温度等)、湿度(如,人的湿度、环境中空气的湿度等)、压力等,具体本申请对此不做限定,由构成敏感元件的材料决定。所述至少两个不同的敏感元件均呈线条结构,且线条结构两两之间等间距排列,这里需要注意的是,线条结构两两之间等间距排列是指任意两个敏感元件对应的线条之间的距离处处相等(即平行),这里所谓的处处相等是指在理论情况下的处处相等,在实际应用中,可以认为任意两个敏感元件对应的线条之间的距离的波动在预设的误差范围(如,±5mm)内也认为是处处相等,每个敏感元件对应的线条结构可以是任意的线条结构,可以是多个线段形成的线条,也可以是蜿蜒蛇形,还可以是各种形状的线条,本申请对敏感元件的线条形状不做限定。这里还需要注意的是,为了使得测量的灵敏度更高,每个敏感元件对应的线条结构的粗细也可以设置为满足一定的要求,例如,线条结构的粗细范围在1-1000μm。此外,所述至少两个不同的敏感元件两两之间互相绝缘,同一敏感元件对不同类型的环境信号的响应敏感度不同,例如,有的材料对温度敏感度高,但对湿度敏感度相对较低;不同敏感元件对同一类型的环境信号的响应敏感度不同,例如,有的材料对温度敏感高,有的材料对温度敏感低。此外,敏感层还包括至少两个电极对,用于接读出电路,一个电极对对应一个敏感元件(一一对应关系),一个电极对包括一个正电极以及一个负电极,分别连接在与之对应的敏感元件对应线条的两端,例如,可以是目标电极对所包括的一个正电极以及一个负电极分别连接在目标敏感元件对应线条结构的两端,目标电极对为该至少两个电极对中的一个,目标敏感元件为该至少两个不同的敏感元件中的一个,该读出电路用于获取该至少两个不同的敏感元件各自对应的测量值,其中,一个敏感元件对应一个测量值(一一对应关系)。
在本申请上述实施方式中,提供了一种多功能传感器,该多功能传感器集合了多种类型的敏感元件,同一敏感元件对不同环境信号(如,温度、湿度、压力等)的响应敏感度不同,不同敏感元件对同一环境信号的响应敏感度不同。并将这多个不同类型的敏感元件设计为等间距线条结构,来保障不同敏感元件在感测区域的一致性。在使用时,基于读出电路获取到的测量值来解出该多功能传感器的去除了噪声干扰的多种环境信号的具体取值。可一次性实现多种传感值的同时精准测量。
在第一方面的一种可能的实现方式中,该读出电路与计算模块连接,该计算模块,用于根据目标测量值以及目标变换系数,计算目标环境信号的值,目标测量值为至少两个不同的敏感元件各自对应的测量值中的一个或多个,目标变换系数为至少两个不同的敏感元件各自对应的变换系数中的一个或多个,目标环境信号为所述至少两种不同类型的环境信号中的一种或多种,其中,变换系数是事先预设的系数。这里需要注意的是,该读出电路和计算模块都可以位于设备的内部。
在本申请上述实施方式中,通过将多种敏感元件之间的数据解耦,可以一次性获得一种或多种环境信号的数值,且这几种待测环境量对多个敏感元件的共同影响也由不同敏感元件的敏感性差异而消除。例如,温度会对湿度敏感的敏感元件造成影响,但是对温度敏感的敏感元件造成的影响更大。两组观测值互相校正,得到更精确的、未经温度影响的湿度观测值,以及更精确的、未经湿度影响的温度观测值。
在第一方面的一种可能的实现方式中,环境信号的类型可以是温度(如人的体温、环 境中空气的温度等)、湿度(如,人的湿度、环境中空气的湿度等)、压力等,具体本申请对此不做限定,由构成敏感元件的材料决定。
在本申请上述实施方式中,具体阐述了几种典型的环境信号的类型,测量类型多样,具备灵活性。
在第一方面的一种可能的实现方式中,相邻排列的线条结构之间的间距不大于1厘米。
在本申请上述实施方式中,具体给出了相邻排列的线条结构之间的间距的取值范围,具备可实现性。
在第一方面的一种可能的实现方式中,本申请所述的多功能传感器可应用于设备表面,用于提高对外界环境信号的测量灵敏度,例如,具体可应用在可穿戴设备表面;该多功能传感器也可以应用于设备(如,电子设备)内部,用于提高检测设备内部的温度、湿度、压力等的测量灵敏度,具体本申请对此不做限定。
在本申请上述实施方式中,本申请所述的多功能传感器可应用于设备表面,也可以应用于设备内部,都能提高测量的灵敏度,适用性高。
在第一方面的一种可能的实现方式中,传感器应用于设备表面的具体应用场景可以包括但不限于如下几种:1)在设备为手表的情况下,该多功能传感器设置于所述手表表体底部的外表面,或,该多功能传感器设置于所述手表表扣的外表面,或,该多功能传感器设置于所述手表表带的第一预设位置处,具体本申请对设置位置不做限定。2)在设备为耳机的情况下,该多功能传感器设置于所述耳机主体表面的第二预设位置处,该第二预设位置为佩戴所述耳机时耳机与耳屏接触的位置。3)在设备为眼镜的情况下,该多功能传感器设置于所述眼镜鼻托表面的第三预设位置处,该第三预设位置为佩戴所述眼镜时眼镜与鼻翼接触的位置。
在本申请上述实施方式中,具体阐述了多功能传感器应用于设备表面的几种典型应用场景,具备可实施性。
在第一方面的一种可能的实现方式中,可以通过溅射的方式将所述敏感层生成于所述衬底上,也可以通过胶粘的方式将所述敏感层部署于所述衬底上,还可以通过沉积的方式将所述敏感层生成于所述衬底上,具体本申请对如何将敏感层部署于衬底上的实现方式不做限定。
在本申请上述实施方式中,将敏感层生成于衬底上有多种可实现的方式,可基于需求自行选择,具备可选择性。
在第一方面的一种可能的实现方式中,可以通过光刻的方式将所述至少两种不同的敏感材料制成线条结构,也可以通过掩膜的方式将所述至少两种不同的敏感材料制成线条结构,具体本申请对如何将敏感元件制成线条结构的实现方式不做限定。
在本申请上述实施方式中,将至少两种不同的敏感材料制成线条结构有多种可实现的方式,可基于需求自行选择,具备灵活性。
在第一方面的一种可能的实现方式中,读出电路获取到的测量值可以是电阻值、电容值、电压值、电流值等,具体由该多功能传感器的类型决定,例如,假设该多功能传感器是电阻式传感器,那么读出电路获取的测量值就是电阻值,类似地,假设该多功能传感器 是电容式传感器,那么读出电路获取的测量值就是电容值,测量值为电压值或电流值的情况类似,此次不予赘述。
在本申请上述实施方式中,测量值的类型可以有多种,具备灵活性。
在第一方面的一种可能的实现方式中,该多功能传感器除了包括衬底以及敏感层,还可以额外包括防护层,该防护层可以是一层或多层的薄膜材料,即在衬底以及敏感层上方形成的保护层薄膜,用于保护该衬底以及敏感层,例如,可以在多功能传感器的制备过程中,可以保护压电材料(假设其中一种敏感元件是压电材料)和对应的电极在后续高温多晶硅沉积过程中防止氧化。
在本申请上述实施方式中,具体阐述了该多功能传感器还可以包括防护层,旨在保护衬底以及敏感层,增强了该多功能传感器的稳定性。
在第一方面的一种可能的实现方式中,该防护层的材料可以包括但不限于:氧化铝、氧化铬等。
在本申请上述实施方式中,该防护层的材料可以有多种选择,可基于需求自行决定选用何种材料,具备灵活性。
在第一方面的一种可能的实现方式中,由于敏感层包括至少两个不同的敏感元件,也就是说,敏感层包括对不同待测物理性质敏感的多种材料,包括但不限于:金属、合金、有机高分子材料等材料。例如,包括但不限于对温度敏感的铂Pt、NTC材料、对压力敏感的康铜材料等。需要注意的是,敏感层包括的至少两个不同的敏感元件可以同属于同一类材料中的不同小类,作为一个示例,假设敏感层包括两个不同的敏感元件,均属于金属材料,但分别属于金属这个大类下的铜和铂;作为另一示例,假设敏感层包括两个不同的敏感元件,均属于合金材料,但分别属于合金这个大类下的铜镍合金(也可称为康铜)和镍铬铁合金。敏感层包括的至少两个不同的敏感元件也可以属于不同类材料,作为一个示例,假设敏感层包括两个不同的敏感元件,分别属于金属材料中的铜以及合金材料中的镍铬铁合金。具体此处不再举例进行示意。
在本申请上述实施方式中,该敏感元件的材料可以有多种选择,可基于需求自行决定选用何种材料,具备灵活性。
在第一方面的一种可能的实现方式中,衬底可以选取多种材质的材料制成,包括但不限于:硅片、蓝宝石、不锈钢、塑胶等材质。
在本申请上述实施方式中,该衬底的材料可以有多种选择,可基于需求自行决定选用何种材料,具备灵活性。
本申请实施例第二方面还提供一种多功能传感器,该多功能传感器包括:衬底以及敏感层,其中,敏感层位于衬底上,该敏感层包括至少两个不同的敏感元件,该至少两个不同的敏感元件位于该敏感层上的同一平面,所谓不同是指敏感元件所使用的材料不同,用于响应至少两种不同类型的环境信号,例如,环境信号可以是温度(如人的体温、环境中空气的温度等)、湿度(如,人的湿度、环境中空气的湿度等)、压力等,具体本申请对此不做限定,由构成敏感元件的材料决定。所述至少两个不同的敏感元件位于衬底上至少两个不同的区域,一个敏感元件位于一个区域,例如,假设有3个敏感元件,则对应在衬底 上有3个不同的区域(即区域间无交集),每个敏感元件各自位于一个区域,且所述至少两个不同的区域的中心点的距离小于第一预设阈值,该第一预设阈值可以根据需要自行设定。需要注意的是,所述的区域是指直径大于一定预设值的区域(不包括线条形的区域),例如,每个区域的直径取值范围可以设定为0.1-100mm,具体范围可基于实际应用设定,此处不做限定。此外,所述至少两个不同的敏感元件两两之间互相绝缘,同一敏感元件对不同类型的环境信号的响应敏感度不同,例如,有的材料对温度敏感度高,但对湿度敏感度相对较低;不同敏感元件对同一类型的环境信号的响应敏感度不同,例如,有的材料对温度敏感高,有的材料对温度敏感低。此外,敏感层还包括至少两个电极对,用于接读出电路,一个电极对对应一个敏感元件(一一对应关系),一个电极对包括一个正电极以及一个负电极,分别连接在与之对应的敏感元件对应线条的两端,例如,可以是目标电极对所包括的一个正电极以及一个负电极分别连接在目标敏感元件对应线条结构的两端,目标电极对为该至少两个电极对中的一个,目标敏感元件为该至少两个不同的敏感元件中的一个,该读出电路用于获取该至少两个不同的敏感元件各自对应的测量值,其中,一个敏感元件对应一个测量值(一一对应关系)。
在本申请上述实施方式中,提供了一种多功能传感器,该多功能传感器集合了多种类型的敏感元件,同一敏感元件对不同环境信号(如,温度、湿度、压力等)的响应敏感度不同,不同敏感元件对同一环境信号的响应敏感度不同。并将这多个不同类型的敏感元件设计为位于衬底的不同区域上,且不同区域的中心点的距离小于第一预设阈值,据此来保障不同敏感元件在感测区域的一致性。在使用时,基于读出电路获取到的测量值来解出该多功能传感器的去除了噪声干扰的多种环境信号的具体取值。可一次性实现多种传感值的同时精准测量。
在第二方面的一种可能的实现方式中,所述至少两个不同的敏感元件的形状至少包括如下任意一种:线条形、多边形、圆形、椭圆形。
在本申请上述实施方式中,具体阐述了敏感元件的形状可以多种多样,这是因为有中心点距离的限制,因此敏感元件的形状可以不做限定,具备灵活性。
在第二方面的一种可能的实现方式中,该读出电路与计算模块连接,该计算模块,用于根据目标测量值以及目标变换系数,计算目标环境信号的值,目标测量值为至少两个不同的敏感元件各自对应的测量值中的一个或多个,目标变换系数为至少两个不同的敏感元件各自对应的变换系数中的一个或多个,目标环境信号为所述至少两种不同类型的环境信号中的一种或多种,其中,变换系数是事先预设的系数。这里需要注意的是,该读出电路和计算模块都可以位于设备的内部。
在本申请上述实施方式中,通过将多种敏感元件之间的数据解耦,可以一次性获得一种或多种环境信号的数值,且这几种待测环境量对多个敏感元件的共同影响也由不同敏感元件的敏感性差异而消除。例如,温度会对湿度敏感的敏感元件造成影响,但是对温度敏感的敏感元件造成的影响更大。两组观测值互相校正,得到更精确的、未经温度影响的湿度观测值,以及更精确的、未经湿度影响的温度观测值。
在第二方面的一种可能的实现方式中,环境信号的类型可以是温度(如人的体温、环 境中空气的温度等)、湿度(如,人的湿度、环境中空气的湿度等)、压力等,具体本申请对此不做限定,由构成敏感元件的材料决定。
在本申请上述实施方式中,具体阐述了几种典型的环境信号的类型,测量类型多样,具备灵活性。
在第二方面的一种可能的实现方式中,第一预设阈值不大于1厘米。
在本申请上述实施方式中,具体给出了第一预设阈值的取值范围,具备可实现性。
在第二方面的一种可能的实现方式中,本申请所述的多功能传感器可应用于设备表面,用于提高对外界环境信号的测量灵敏度,例如,具体可应用在可穿戴设备表面;该多功能传感器也可以应用于设备(如,电子设备)内部,用于提高检测设备内部的温度、湿度、压力等的测量灵敏度,具体本申请对此不做限定。
在本申请上述实施方式中,本申请所述的多功能传感器可应用于设备表面,也可以应用于设备内部,都能提高测量的灵敏度,适用性高。
在第二方面的一种可能的实现方式中,传感器应用于设备表面的具体应用场景可以包括但不限于如下几种:1)在设备为手表的情况下,该多功能传感器设置于所述手表表体底部的外表面,或,该多功能传感器设置于所述手表表扣的外表面,或,该多功能传感器设置于所述手表表带的第一预设位置处,具体本申请对设置位置不做限定。2)在设备为耳机的情况下,该多功能传感器设置于所述耳机主体表面的第二预设位置处,该第二预设位置为佩戴所述耳机时耳机与耳屏接触的位置。3)在设备为眼镜的情况下,该多功能传感器设置于所述眼镜鼻托表面的第三预设位置处,该第三预设位置为佩戴所述眼镜时眼镜与鼻翼接触的位置。
在本申请上述实施方式中,具体阐述了多功能传感器应用于设备表面的几种典型应用场景,具备可实施性。
在第二方面的一种可能的实现方式中,该多功能传感器除了包括衬底以及敏感层,还可以额外包括防护层,该防护层可以是一层或多层的薄膜材料,即在衬底以及敏感层上方形成的保护层薄膜,用于保护该衬底以及敏感层,例如,可以在多功能传感器的制备过程中,可以保护压电材料(假设其中一种敏感元件是压电材料)和对应的电极在后续高温多晶硅沉积过程中防止氧化。
在本申请上述实施方式中,具体阐述了该多功能传感器还可以包括防护层,旨在保护衬底以及敏感层,增强了该多功能传感器的稳定性。
在第二方面的一种可能的实现方式中,可以通过溅射的方式将所述敏感层生成于所述衬底上,也可以通过胶粘的方式将所述敏感层部署于所述衬底上,还可以通过沉积的方式将所述敏感层生成于所述衬底上,具体本申请对如何将敏感层部署于衬底上的实现方式不做限定。
在本申请上述实施方式中,将敏感层生成于衬底上有多种可实现的方式,可基于需求自行选择,具备可选择性。
在第二方面的一种可能的实现方式中,可以通过光刻的方式将所述至少两种不同的敏感材料制成线条结构,也可以通过掩膜的方式将所述至少两种不同的敏感材料制成线条结 构,具体本申请对如何将敏感元件制成线条结构的实现方式不做限定。
在本申请上述实施方式中,将至少两种不同的敏感材料制成线条结构有多种可实现的方式,可基于需求自行选择,具备灵活性。
在第二方面的一种可能的实现方式中,读出电路获取到的测量值可以是电阻值、电容值、电压值、电流值等,具体由该多功能传感器的类型决定,例如,假设该多功能传感器是电阻式传感器,那么读出电路获取的测量值就是电阻值,类似地,假设该多功能传感器是电容式传感器,那么读出电路获取的测量值就是电容值,测量值为电压值或电流值的情况类似,此次不予赘述。
在本申请上述实施方式中,测量值的类型可以有多种,具备灵活性。
在第二方面的一种可能的实现方式中,该防护层的材料可以包括但不限于:氧化铝、氧化铬等。
在本申请上述实施方式中,该防护层的材料可以有多种选择,可基于需求自行决定选用何种材料,具备灵活性。
在第二方面的一种可能的实现方式中,由于敏感层包括至少两个不同的敏感元件,也就是说,敏感层包括对不同待测物理性质敏感的多种材料,包括但不限于:金属、合金、有机高分子材料等材料。例如,包括但不限于对温度敏感的铂Pt、NTC材料、对压力敏感的康铜材料等。需要注意的是,敏感层包括的至少两个不同的敏感元件可以同属于同一类材料中的不同小类,作为一个示例,假设敏感层包括两个不同的敏感元件,均属于金属材料,但分别属于金属这个大类下的铜和铂;作为另一示例,假设敏感层包括两个不同的敏感元件,均属于合金材料,但分别属于合金这个大类下的铜镍合金(也可称为康铜)和镍铬铁合金。敏感层包括的至少两个不同的敏感元件也可以属于不同类材料,作为一个示例,假设敏感层包括两个不同的敏感元件,分别属于金属材料中的铜以及合金材料中的镍铬铁合金。具体此处不再举例进行示意。
在本申请上述实施方式中,该敏感元件的材料可以有多种选择,可基于需求自行决定选用何种材料,具备灵活性。
在第二方面的一种可能的实现方式中,衬底可以选取多种材质的材料制成,包括但不限于:硅片、蓝宝石、不锈钢、塑胶等材质。
在本申请上述实施方式中,该衬底的材料可以有多种选择,可基于需求自行决定选用何种材料,具备灵活性。
本申请实施例第三方面还提供一种设备,该设备可以包括上述第一方面或第一方面任意一种可能实现方式的压力传感器,或,该设备可以包括上述第二方面或第二方面任意一种可能实现方式的多功能传感器。
在第三方面的一种可能的实现方式中,本申请所述的多功能传感器可应用于设备表面,用于提高对外界环境信号的测量灵敏度,例如,具体可应用在可穿戴设备表面;该多功能传感器也可以应用于设备(如,电子设备)内部,用于提高检测设备内部的温度、湿度、压力等的测量灵敏度,具体本申请对此不做限定。
在本申请上述实施方式中,本申请所述的多功能传感器可应用于设备表面,也可以应 用于设备内部,都能提高测量的灵敏度,适用性高。
在第三方面的一种可能的实现方式中,传感器应用于设备表面的具体应用场景可以包括但不限于如下几种:1)在设备为手表的情况下,该多功能传感器设置于所述手表表体底部的外表面,或,该多功能传感器设置于所述手表表扣的外表面,或,该多功能传感器设置于所述手表表带的第一预设位置处,具体本申请对设置位置不做限定。2)在设备为耳机的情况下,该多功能传感器设置于所述耳机主体表面的第二预设位置处,该第二预设位置为佩戴所述耳机时耳机与耳屏接触的位置。3)在设备为眼镜的情况下,该多功能传感器设置于所述眼镜鼻托表面的第三预设位置处,该第三预设位置为佩戴所述眼镜时眼镜与鼻翼接触的位置。
在本申请上述实施方式中,具体阐述了多功能传感器应用于设备表面的几种典型应用场景,具备可实施性。
附图说明
图1为用于测量皮肤温度的传感器在使用时热流动的一种示意图;
图2为本申请实施例提供的多功能传感器的一个结构示意图;
图3为本申请实施例提供的多功能传感器的另一结构示意图;
图4为本申请实施例提供的读出电路与多功能传感器内各个敏感元件之间的应用电路的一个结构示意图;
图5为本申请实施例提供的多功能传感器的另一结构示意图;
图6为本申请实施例提供的一种多功能传感器的实例的一个结构示意图;
图7为本申请实施例提供的多功能传感器的另一结构示意图;
图8为本申请实施例提供的多个不同敏感元件的排列方式的一个示意图;
图9为本申请实施例提供的多个不同敏感元件的排列方式的另一示意图;
图10为本申请实施例提供的多功能传感器设置于设备表面的一个示意图;
图11为本申请实施例提供的多功能传感器设置于设备表面的另一示意图;
图12为本申请实施例提供的多功能传感器设置于设备表面的另一示意图。
具体实施方式
本申请实施例提供了一种多功能传感器及设备,该多功能传感器应用于设备表面,该多功能传感器集合了多种类型的敏感元件,同一敏感元件对不同环境信号(如,温度、湿度、压力等)的响应敏感度不同,不同敏感元件对同一环境信号的响应敏感度不同。并将这多个不同类型的敏感元件设计为等间距线条结构,来保障不同敏感元件在感测区域的一致性。在使用时,基于读出电路获取到的测量值来解出该多功能传感器的去除了噪声干扰的多种环境信号的具体取值。可在设备表面一次性实现多种传感值的同时精准测量。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方 式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请实施例涉及了许多关于传感器的相关知识,为了更好地理解本申请实施例的方案,下面先对本申请实施例可能涉及的相关术语和概念进行介绍。应理解的是,相关的概念解释可能会因为本申请实施例的具体情况有所限制,但并不代表本申请仅能局限于该具体情况,在不同实施例的具体情况可能也会存在差异,具体此处不做限定。
(1)传感器(transducer/sensor)
传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。在本申请实施例中,传感器所能感受到的被测量的信息称为环境信号,传感器按照一定规律变换成为电信号或其他所需形式的信息则通过与传感器的电极连接的读出电路获取到。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类敏感元件。
接下来对本申请实施例提供的多功能传感器进行介绍,具体请参阅图2,图2为本申请实施例提供的多功能传感器的一个结构示意图,该结构示意图为俯视图,该多功能传感器可以设置于设备的表面,用于提高对外界环境信号的测量灵敏度,例如,具体可应用在可穿戴设备表面,如,手表、手环、耳机、心率计等可穿戴设备的表面;该多功能传感器也可以应用于设备(如,电子设备)内部,用于提高检测设备内部的温度、湿度、压力等的测量灵敏度,具体本申请对此不做限定。为便于阐述,在本申请下述实施例中,均以该多功能传感器设置于设备的表面为例进行说明。该多功能传感器包括:衬底201以及敏感层202,其中,敏感层202位于衬底201上,例如,可以通过溅射的方式将所述敏感层202生成于所述衬底201上,也可以通过胶粘的方式将所述敏感层202部署于所述衬底201上,还可以通过沉积的方式将所述敏感层202生成于所述衬底201上,具体本申请对如何将敏感层202部署于衬底201上的实现方式不做限定。
此外,在本申请实施例中,该敏感层202包括至少两个不同的敏感元件,该至少两个不同的敏感元件位于该敏感层上的同一平面,如图2所示的敏感元件1、敏感元件2、……、敏感元件n,n≥2,所谓不同是指敏感元件所使用的材料不同,用于响应至少两种不同类型的环境信号,例如,环境信号可以是温度(如人的体温、环境中空气的温度等)、湿度(如,人的湿度、环境中空气的湿度等)、压力等,具体本申请对此不做限定,由构成敏感元件的材料决定。所述至少两个不同的敏感元件均呈线条结构,且线条结构两两之间等间距排列。在本申请的一些实施方式中,可以通过光刻的方式将所述至少两种不同的敏感材料制成线条结构,也可以通过掩膜的方式将所述至少两种不同的敏感材料制成线条结构,具体本申 请对如何将敏感元件制成线条结构的实现方式不做限定。
这里需要注意的是,线条结构两两之间等间距排列是指任意两个敏感元件对应的线条之间的距离处处相等(即平行),例如,敏感元件1和敏感元件2构成的线条之间的距离处处相等,假设间距为h1,则两个线条之间的距离处处都等于h1;但并不限定两个线条之间的距离必须均为h1,例如,请参阅图3,假设该多功能传感器中的敏感元件为3个,分别为敏感元件1、敏感元件2以及敏感元件3,其中,敏感元件1和敏感元件2构成的线条之间的距离为h1,敏感元件2和敏感元件3构成的线条之间的距离为h2,h2≠h1。在本申请的另一些实施方式中,h2也可以等于h1,本申请对此不做限定。这里需要注意的是,线条结构两两之间等间距排列是指任意两个敏感元件对应的线条之间的距离处处相等(即平行),这里所谓的处处相等是指在理论情况下的处处相等,在实际应用中,可以认为任意两个敏感元件对应的线条之间的距离的波动在预设的误差范围(如,±0.5mm)内也认为是处处相等。例如,敏感元件1和敏感元件2构成的线条之间的距离处处相等,假设间距为h1,则两个线条之间的距离理论上需要处处都等于h1,若设置了可允许的误差范围±0.5mm,则两个线条之间的距离在[-0.5mm+h1,0.5mm+h1]范围内,也可认为是敏感元件1和敏感元件2构成的线条之间的距离处处相等。
还需要注意的是,在本申请的一些实施方式中,每个敏感元件对应的线条结构可以是任意的线条结构,可以是如图2、图3所示的多个线段形成的线条,也可以是蜿蜒蛇形,还可以是各种形状的线条,本申请对敏感元件的线条形状不做限定。需要进一步说明的是,将各个敏感元件制作成平行的线条结构的目的是使得该多功能传感器在结构设计上的一致性保持高度一致,即保障不同的敏感元件在热传导等上感受到的外界刺激保持高度一致。在本申请的一些实施方式中,高度一致可以体现在:在位置上非常接近,在形状上高度一致。这里还需要注意的是,为了使得测量的灵敏度更高,每个敏感元件对应的线条结构的粗细也可以设置为满足一定的要求,例如,线条结构的粗细范围在1-1000μm。
此外,在本申请实施例中,所述至少两个不同的敏感元件两两之间互相绝缘,具体地,不同敏感元件之间的结构关系在保证绝缘的基础上可以为相距一定距离,或是上下重叠。其中,不同的敏感元件具体可以体现在:对温度的响应不一致(电阻温度系数不一),对湿度的响应不一致、对压力的响应不一致等多种性质。具体地,同一敏感元件对不同类型的环境信号的响应敏感度不同,例如,有的材料对温度敏感度高,但对湿度敏感度相对较低;不同敏感元件对同一类型的环境信号的响应敏感度不同,例如,有的材料对温度敏感高,有的材料对温度敏感低。
此外,敏感层202还包括至少两个电极对,用于接读出电路,一个电极对对应一个敏感元件(一一对应关系),一个电极对包括一个正电极以及一个负电极,分别连接在与之对应的敏感元件对应线条的两端,例如,可以是目标电极对所包括的一个正电极以及一个负电极分别连接在目标敏感元件对应线条结构的两端,目标电极对为该至少两个电极对中的一个,目标敏感元件为该至少两个不同的敏感元件中的一个,如图2所示,一个电极对的两个电极分别连接在敏感元件1对应的线条结构的两端,敏感元件2、……、敏感元件n的连接方式类似,详见图2,此处不予赘述。该读出电路用于获取该至少两个不同的敏感 元件各自对应的测量值,其中,一个敏感元件对应一个测量值(一一对应关系),该读出电路与该多功能传感器内各个敏感元件之间的应用电路的结构图可图4所示。
需要说明的是,在本申请的一些实施方式中,读出电路获取到的测量值可以是电阻值、电容值、电压值、电流值等,具体由该多功能传感器的类型决定,例如,假设该多功能传感器是电阻式传感器,那么读出电路获取的测量值就是电阻值,类似地,假设该多功能传感器是电容式传感器,那么读出电路获取的测量值就是电容值,测量值为电压值或电流值的情况类似,此次不予赘述。
还需要说明的是,在本申请的一些实施方式中,该多功能传感器除了包括衬底201以及敏感层202,还可以额外包括防护层203,具体请参阅图5,图5示意的是侧面视图,该防护层203可以是一层或多层的薄膜材料,即在衬底201以及敏感层202上方形成的保护层薄膜。该防护层203的材料可以包括但不限于:氧化铝、氧化铬等,旨在用于保护该衬底201以及敏感层202,例如,可以在多功能传感器的制备过程中,可以保护压电材料(假设其中一种敏感元件是压电材料)和对应的电极在后续高温多晶硅沉积过程中防止氧化。
还需要说明的是,在本申请的一些实施方式中,衬底201可以选取多种材质的材料制成,包括但不限于:硅片、蓝宝石、不锈钢、塑胶等材质。此外,在本申请的另一些实施方式中,对衬底201的结构形状也不做限定,包括但不限于:平面、曲面。具体由该多功能传感器所应用在的设备的表面形状决定,因为该多功能传感器是部署于设备的表面的。
还需要说明的是,在本申请的一些实施方式中,由于敏感层202包括至少两个不同的敏感元件,也就是说,敏感层202包括对不同待测物理性质敏感的多种材料,包括但不限于:金属、合金、有机高分子材料等材料。例如,包括但不限于对温度敏感的铂Pt、NTC材料、对压力敏感的康铜材料等。需要注意的是,敏感层202包括的至少两个不同的敏感元件可以同属于同一类材料中的不同小类,作为一个示例,假设敏感层202包括两个不同的敏感元件,均属于金属材料,但分别属于金属这个大类下的铜和铂;作为另一示例,假设敏感层202包括两个不同的敏感元件,均属于合金材料,但分别属于合金这个大类下的铜镍合金(也可称为康铜)和镍铬铁合金。敏感层202包括的至少两个不同的敏感元件也可以属于不同类材料,作为一个示例,假设敏感层202包括两个不同的敏感元件,分别属于金属材料中的铜以及合金材料中的镍铬铁合金。具体此处不再举例进行示意。
还需要说明的是,在本申请的一些实施方式中,该读出电路可以位于设备的内部,且该设备内部还可以额外包括一个计算模块,该读出电路与计算模块连接,用于根据读出电路获取的至少两个不同的敏感元件各自对应的测量值以及该至少两个不同的敏感元件各自对应的变换系数,计算该至少两种不同类型的环境信号的值,一个敏感元件对应有自身的变换系数,该变换系数可事先计算得到。
为便于理解上述计算模块的计算过程,下面以一个具体的实例举例进行说明:请参阅图6,图6为本申请实施例提供的一种多功能传感器的实例的俯视图,该多功能传感器包括衬底以及敏感层,该衬底可以是蓝宝石衬底,在本实例中,假设的是敏感层包括3种不同的敏感元件,分别为薄膜热电阻、压力片以及湿敏薄膜,其中,在湿敏薄膜对应的线条结构的两端还有一对用于湿敏薄膜的电极片,该敏感层还包括用于接读出电路的电极片。 在本申请实施例中,不管是哪种用途的电极片,均可以通过在衬底上沉积或溅射金属的方式制成,电极材料可以选择金、铜等,也可以仅将该区域作为接触点,通过烧结的导电陶瓷等介质作为电极来连接读出电路或湿敏薄膜。位于衬底上的不同的敏感元件则可以通过沉积、溅射、胶粘等方式与衬底结合。其中,薄膜热电阻可以选取对温度敏感的铂金属,也可以选取负温度系数的材料等,具体本申请对此不做限定;压力片可以选取对压力敏感的康铜,也可以选取铜镍合金、线铬系含金、铁铬铝含金,镍铬铁合金、铂及铂合金等,具体本申请对此不做限定;湿敏薄膜可以选取有机高分子湿敏薄膜,或者浸透氯化锂溶液的各种介质,具体本申请对此不做限定。
在衬底以及敏感层上方形成的防护层薄膜(图6中未示出),可以选择氧化铝薄膜,用于保护压电材料和电极在后续高温多晶硅沉积过程中防止氧化。
敏感层的多种材料的线条结构之间等间距排列,以保证多种敏感材料的敏感区域在待测区域内最大限度的保持一致。不同线条结构之间的间距可基于实际情况设计。例如,如果待测区域在某一方向A上存在很强的一致性,而在另一方向B上存在差异,则在设计时可以简化沿着方向A的平行线条或非线条的图案。另外,待测区域内的外界条件都比较一致时,可以在设计时简化为尽量靠近的线条结构或非线条的图案。
假设该图6所示的多功能传感器为电阻值传感器,温度最敏感的敏感元件A(即图6中的薄膜热电阻)测的电阻值R A,湿度最敏感的敏感元件B(即图6中的湿敏薄膜)测的电阻值R B,压力最敏感的敏感元件C(即图6中的压力片)测得电阻值R C。已知R A与敏感元件A处的温度T A、湿度H A、压力S A有关,即如下式(1)所示:
R A=x aT*T A+x aH*H A+x aS*S A      (1)
其中,R A表示敏感元件A处的电阻变化量,T A表示敏感元件A处的温度,x aT表示电阻R A与温度T A之间的变换系数;H A表示敏感元件A处的湿度,x aH表示电阻R A与湿度H A之间的变换系数,S A表示敏感元件A处的压力量,x aS表示电阻R A与压力量S A之间的变换系数。x aT、x aH、x aS都是敏感元件在控制变量的情况下可以标定出的参数,为已知量,可事先测量计算得到。
需要说明的是,在本申请的一些实施方式中,x aT可以表示为一个常数,如,x aT=k,k为常数,x aT也可以表示为温度T A的因变量,如,x aT=f(T A),f(T A)中除T A外其他参数为常数,x aT的具体表达方式由测量计算结果决定,此处不予赘述。x aH、x aS也是类似的情况,此处不予赘述。
同理,可得出与R B、R C有关的公式(2)和公式(3):
R B=x bT*T B+x bH*H B+x bS*S B      (2)
R C=x c*T C+x cH*G C+x cS*S C       (3)
又由读出电路可以得到三个敏感元件A、B、C的电阻值R A、R B、R C。而由上文提到 的敏感层及待测区域设计方法可以得到,A、B、C这3个敏感元件受温度、湿度、压力的影响是高度一致的,即T A=T B=T C=T′,H A=H B=H C=H′,S A=S B=S C=S′因此,可以得出如下方程组(4):
Figure PCTCN2022130299-appb-000001
以上方程组仅有T′、H′、S′为未知量,该方程有解的条件为A、B、C三种敏感元件对于温度、湿度、压力的响应不一致,且无线性关系。通过解方程可以得到更精确的T′、H′、S′数值(即环境信号的数值)。
本申请实施例通过将多种因素带来的观测值影响联立为方程组,将多种敏感元件之间的数据解耦,可以一次性获得多种环境信号的数值,且这几种待测环境量对多个敏感元件的共同影响也由不同敏感元件的敏感性差异而消除。例如,温度会对湿度敏感的敏感元件造成影响,但是对温度敏感的敏感元件造成的影响更大。两组观测值互相校正,得到更精确的、未经温度影响的湿度观测值,以及更精确的、未经湿度影响的温度观测值。
需要说明的是,在本申请的一些实施方式中,该计算模块可以一次性计算出所有的环境信号的数值,如上述所述的T′、H′、S′数值,也可以根据需要计算所需的环境信号的数值,例如,在某些应用场景中,如果仅需要环境信号T′、H′的值,那么则可以根据电阻值R A、R B、R C中的任意两个测量值来得到需要的环境信号的值,如下方程组(5)示意的就就是根据R A、R C来得到需要的环境信号的值:
Figure PCTCN2022130299-appb-000002
在本申请上述实施方式中,阐述的多功能传感器所包括的每个敏感元件都是线条结构,通过将不同类型的敏感元件设计为等间距线条结构来保障不同敏感元件在感测区域的一致性。这种结构的多功能传感器可以应用于各种设备。而在本申请的另一些实施方式中,如果各个敏感元件靠的比较近,在能保障不同敏感元件在感测区域的一致性的前提下,则各个敏感元件也可以不限定是线条结构。
具体请参阅图7,图7为本申请实施例提供的多功能传感器的另一个结构示意图,该结构示意图为俯视图,该多功能传感器可以设置于设备的表面,用于提高对外界环境信号的测量灵敏度,例如,具体可应用在可穿戴设备表面,如,手表、手环、耳机、心率计等可穿戴设备的表面;该多功能传感器也可以应用于设备(如,电子设备)内部,用于提高检测设备内部的温度、湿度、压力等的测量灵敏度,具体本申请对此不做限定。为便于阐述,在本申请下述实施例中,均以该多功能传感器设置于设备的表面为例进行说明。该多功能传感器包括:衬底301以及敏感层302,其中,敏感层302位于衬底301上,例如,可以通过溅射的方式将所述敏感层302生成于所述衬底301上,也可以通过胶粘的方式将所述敏感层302部署于所述衬底301上,还可以通过沉积的方式将所述敏感层302生成于所述衬底301上,具体本申请对如何将敏感层302部署于衬底301上的实现方式不做限定。
此外,在本申请实施例中,该敏感层302包括至少两个不同的敏感元件,该至少两个不同的敏感元件位于该敏感层302上的同一平面,如图7所示的敏感元件1、敏感元件2、……、敏感元件n,n≥2。所谓不同是指敏感元件所使用的材料不同,用于响应至少两种不同类型的环境信号,例如,环境信号可以是温度(如人的体温、环境中空气的温度等)、湿度(如,人的湿度、环境中空气的湿度等)、压力等,具体本申请对此不做限定,由构成敏感元件的材料决定。所述至少两个不同的敏感元件位于衬底301上至少两个不同的区域,一个敏感元件位于一个区域,例如,假设有3个敏感元件,分别为敏感元件1、敏感元件2、敏感元件3,则对应在衬底301上有3个不同的区域(即区域间无交集),分别为区域A、区域B、区域C,每个敏感元件各自位于一个区域,且所述至少两个不同的区域的中心点的距离小于第一预设阈值,该第一预设阈值可以根据需要自行设定。例如,第一预设阈值不大于1厘米。
需要注意的是,所述的区域是指直径大于一定预设值的区域(不包括线条形的区域),例如,每个区域的直径取值范围可以设定为0.1-100mm,具体范围可基于实际应用设定,此处不做限定。此外,所述至少两个不同的敏感元件两两之间互相绝缘,同一敏感元件对不同类型的环境信号的响应敏感度不同,例如,有的材料对温度敏感度高,但对湿度敏感度相对较低;不同敏感元件对同一类型的环境信号的响应敏感度不同,例如,有的材料对温度敏感高,有的材料对温度敏感低。此外,敏感层302还包括至少两个电极对,用于接读出电路,一个电极对对应一个敏感元件(一一对应关系),一个电极对包括一个正电极以及一个负电极,分别连接在与之对应的敏感元件对应线条的两端,例如,可以是目标电极对所包括的一个正电极以及一个负电极分别连接在目标敏感元件对应线条结构的两端,目标电极对为该至少两个电极对中的一个,目标敏感元件为该至少两个不同的敏感元件中的一个,该读出电路用于获取该至少两个不同的敏感元件各自对应的测量值,其中,一个敏感元件对应一个测量值(一一对应关系)。
还需要说明的是,在本申请的一些实施方式中,衬底上的不同区域的排列方式不做限定,图7示意的是并排排列,在一些实施方式中,也可以上下并排排列,如图8和图9所示,假设共有4个敏感元件,那么这4个敏感元件可以如图8所示的方式排列,也可以如图9所示的方式排列,具体本申请对排列方式不做限定,只要满足所述至少两个不同的区域的中心点的距离小于第一预设阈值这一条件即可。
还需要说明的是,在图7-图9中的示意图中,各个敏感元件的形状均为线条结构,在实际应用中,敏感元件的形状可以多种多样,包括但不限于:线条形、多边形、圆形、椭圆形。这是因为有中心点距离的限制,因此敏感元件的形状可以不做限定。
还需要说明的是,在本申请实施例中,也可以包括计算模块,具体功能与上述实施例的计算模块的功能类似,此处不予赘述。
还需要说明的是,在本申请的一些实施方式中,读出电路获取到的测量值可以是电阻值、电容值、电压值、电流值等,具体由该多功能传感器的类型决定,例如,假设该多功能传感器是电阻式传感器,那么读出电路获取的测量值就是电阻值,类似地,假设该多功能传感器是电容式传感器,那么读出电路获取的测量值就是电容值,测量值为电压值或电 流值的情况类似,此次不予赘述。
还需要说明的是,在本申请的一些实施方式中,与上述实施例类似,该多功能传感器除了包括衬底301以及敏感层302,还可以额外包括防护层(图7中未示出,可参阅图5,与图5中的防护层203类似),该防护层可以是一层或多层的薄膜材料,即在衬底301以及敏感层302上方形成的保护层薄膜。该防护层的材料可以包括但不限于:氧化铝、氧化铬等,旨在用于保护该衬底301以及敏感层302,例如,可以在多功能传感器的制备过程中,可以保护压电材料(假设其中一种敏感元件是压电材料)和对应的电极在后续高温多晶硅沉积过程中防止氧化。
还需要说明的是,在本申请的一些实施方式中,衬底301可以选取多种材质的材料制成,包括但不限于:硅片、蓝宝石、不锈钢、塑胶等材质。此外,在本申请的另一些实施方式中,对衬底301的结构形状也不做限定,包括但不限于:平面、曲面。具体由该多功能传感器所应用在的设备的表面形状决定,因为该多功能传感器是部署于设备的表面的。
还需要说明的是,在本申请的一些实施方式中,由于敏感层302包括至少两个不同的敏感元件,也就是说,敏感层302包括对不同待测物理性质敏感的多种材料,包括但不限于:金属、合金、有机高分子材料等材料。例如,包括但不限于对温度敏感的铂Pt、NTC材料、对压力敏感的康铜材料等。需要注意的是,敏感层302包括的至少两个不同的敏感元件可以同属于同一类材料中的不同小类,作为一个示例,假设敏感层302包括两个不同的敏感元件,均属于金属材料,但分别属于金属这个大类下的铜和铂;作为另一示例,假设敏感层302包括两个不同的敏感元件,均属于合金材料,但分别属于合金这个大类下的铜镍合金(也可称为康铜)和镍铬铁合金。敏感层302包括的至少两个不同的敏感元件也可以属于不同类材料,作为一个示例,假设敏感层302包括两个不同的敏感元件,分别属于金属材料中的铜以及合金材料中的镍铬铁合金。具体此处不再举例进行示意。
本申请上述各个实施例提供的多功能传感器一种典型的应用场景是部署于设备表面,如,可以部署于可穿戴设备(如,手环、手表、心率计等)表面,可以直接与待测介质接触,实现最直接的测量,并可以实现同时获取温度、压力、湿度等的测量值,且测量值之间的互相串扰被滤除,从而可以得到更灵敏准确的数据,免受封装、外壳等影响。例如,在测量温度时,热量的传输途径可以直接由待测物-多功能传感器的防护层-敏感层,而不需要热量传导到外壳-导热片-封装层-敏感层。
需要说明的是,设备不同,该多功能传感器部署在设备表面的位置也略有不同,下面对几种典型的应用场景以及部署位置进行阐述,包括但不限于:
(1)设备为手表的情况
在设备为手表(也可包括智能手环)的情况下,该多功能传感器可以设置于所述手表表体底部的外表面,如图10中的(a)子示意图中手表表体底部外表面与皮肤接触处;该多功能传感器也可以设置于所述手表表扣的外表面,如图10中的(b)子示意图中手表的表扣外表面处;该多功能传感器还可以设置于所述手表表带的第一预设位置处,如图10中的(b)子示意图中手表表体侧框与空气接触处,具体本申请对此不做限定。
(2)设备为耳机的情况
在设备为耳机(包括无线耳机、有线耳机、骨传导耳机等)的情况下,该多功能传感器设置于所述耳机主体表面的第二预设位置处,第二预设位置为佩戴所述耳机时所述耳机与耳屏接触的位置,如图11中所示的位置。
(3)设备为眼镜的情况
在设备为眼镜(包括骨传导眼镜)的情况下,该多功能传感器设置于所述眼镜鼻托表面的第三预设位置处,第三预设位置为佩戴所述眼镜时所述眼镜与鼻翼接触的位置,如图12中所示的位置。
需要说明的是,在本申请的一些实施方式中,该多功能传感器除了可以用于上述手表、耳机、眼镜等可穿戴设备上之外,还可以用于一切需要测量环境信号的设备上,例如,可以应用于车辆上,如应用于车辆上的方向盘、座椅等上;还可以应用于可移动机器人上,如应用于扫地机器人、轮式机器人等上;还可以应用于外围电子设备上,如鼠标、键盘等上;还可以用于衣物上,如冲锋衣、鞋子、裤子上等,具体本申请实对该多功能传感器的应用场景不做限定。

Claims (24)

  1. 一种多功能传感器,其特征在于,包括:
    衬底、敏感层,所述敏感层位于所述衬底上;
    所述敏感层包括至少两个不同的敏感元件,用于响应至少两种不同类型的环境信号,所述至少两个不同的敏感元件均呈线条结构,且所述线条结构等间距排列,所述至少两个不同的敏感元件两两之间互相绝缘,其中,不同敏感元件对同一类型的环境信号的响应敏感度不同;
    所述敏感层还包括至少两个电极对,用于接读出电路,目标电极对所包括的一个正电极以及一个负电极分别连接在目标敏感元件对应线条结构的两端,所述目标电极对为所述至少两个电极对中的一个,所述目标敏感元件为所述至少两个不同的敏感元件中的一个,所述读出电路用于获取所述至少两个不同的敏感元件各自对应的测量值。
  2. 根据权利要求1所述的传感器,其特征在于,所述读出电路与计算模块连接,所述计算模块,用于:
    根据目标测量值以及目标变换系数,计算目标环境信号的值,所述目标测量值为所述至少两个不同的敏感元件各自对应的测量值中的一个或多个,所述目标变换系数为所述至少两个不同的敏感元件各自对应的变换系数中的一个或多个,所述目标环境信号为所述至少两种不同类型的环境信号中的一种或多种,所述变换系数事先预设。
  3. 根据权利要求1-2中任一项所述的传感器,其特征在于,所述环境信号的类型至少包括如下任意一种:
    温度、湿度、压力。
  4. 根据权利要求1-3中任一项所述的传感器,其特征在于,相邻排列的线条结构之间的间距不大于1厘米。
  5. 根据权利要求1-4中任一项所述的传感器,其特征在于,所述传感器应用于设备表面。
  6. 根据权利要求5所述的传感器,其特征在于,所述传感器应用于设备表面包括:
    在所述设备为手表的情况下,所述传感器设置于所述手表表体底部的外表面,或,所述传感器设置于所述手表表扣的外表面,或,所述传感器设置于所述手表表带的第一预设位置处;
    或,
    在所述设备为耳机的情况下,所述传感器设置于所述耳机主体表面的第二预设位置处,所述第二预设位置为佩戴所述耳机时所述耳机与耳屏接触的位置;
    或,
    在所述设备为眼镜的情况下,所述传感器设置于所述眼镜鼻托表面的第三预设位置处,所述第三预设位置为佩戴所述眼镜时所述眼镜与鼻翼接触的位置。
  7. 根据权利要求1-6中任一项所述的传感器,其特征在于,所述敏感层位于所述衬底上包括:
    通过溅射的方式将所述敏感层生成于所述衬底上;
    或,
    通过胶粘的方式将所述敏感层部署于所述衬底上;
    或,
    通过沉积的方式将所述敏感层生成于所述衬底上。
  8. 根据权利要求1-7中任一项所述的传感器,其特征在于,所述至少两种不同的敏感元件均呈线条结构包括:
    通过光刻的方式将所述至少两种不同的敏感材料制成线条结构;
    或,
    通过掩膜的方式将所述至少两种不同的敏感材料制成线条结构。
  9. 根据权利要求1-8中任一项所述的传感器,其特征在于,所述测量值的类型至少包括如下任意一种:
    电阻、电容、电压、电流。
  10. 根据权利要求1-9中任一项所述的传感器,其特征在于,所述传感器还包括:
    防护层,用于保护所述衬底以及所述敏感层。
  11. 根据权利要求10所述的传感器,其特征在于,所述防护层的材料至少包括如下任意一种:
    氧化铝、氧化铬。
  12. 根据权利要求1-11中任一项所述的传感器,其特征在于,所述敏感层的材料至少包括如下任意一种:
    金属、合金、有机高分子材料。
  13. 根据权利要求1-12中任一项所述的传感器,其特征在于,所述衬底的材料至少包括如下任意一种:
    硅片、蓝宝石、不锈钢、塑胶。
  14. 一种多功能传感器,其特征在于,包括:
    衬底、敏感层,所述敏感层位于所述衬底上;
    所述敏感层包括至少两个不同的敏感元件,用于响应至少两种不同类型的环境信号,所述至少两个不同的敏感元件位于所述衬底上至少两个不同的区域,一个敏感元件位于一个区域,所述至少两个不同的区域的中心点的距离小于第一预设阈值,所述至少两个不同的敏感元件两两之间互相绝缘,其中,不同敏感元件对同一类型的环境信号的响应敏感度不同;
    所述敏感层还包括至少两个电极对,用于接读出电路,目标电极对所包括的一个正电极以及一个负电极分别连接在目标敏感元件的两端,所述目标电极对为所述至少两个电极对中的一个,所述目标敏感元件为所述至少两个不同的敏感元件中的一个,所述读出电路用于获取所述至少两个不同的敏感元件各自对应的测量值。
  15. 根据权利要求14所述的传感器,其特征在于,所述至少两个不同的敏感元件的形状至少包括如下任意一种:
    线条形、多边形、圆形、椭圆形。
  16. 根据权利要求14-15中任一项所述的传感器,其特征在于,所述读出电路与计算模块连接,所述计算模块,用于:
    根据目标测量值以及目标变换系数,计算目标环境信号的值,所述目标测量值为所述至少两个不同的敏感元件各自对应的测量值中的一个或多个,所述目标变换系数为所述至少两个不同的敏感元件各自对应的变换系数中的一个或多个,所述目标环境信号为所述至少两种不同类型的环境信号中的一种或多种,所述变换系数事先预设。
  17. 根据权利要求14-16中任一项所述的传感器,其特征在于,所述环境信号的类型至少包括如下任意一种:
    温度、湿度、压力。
  18. 根据权利要求14-17中任一项所述的传感器,其特征在于,所述第一预设阈值不大于1厘米。
  19. 根据权利要求14-18中任一项所述的传感器,其特征在于,所述传感器应用于设备表面。
  20. 根据权利要求19所述的传感器,其特征在于,所述传感器应用于设备表面包括:
    在所述设备为手表的情况下,所述传感器设置于所述手表表体底部的外表面,或,所述传感器设置于所述手表表扣的外表面,或,所述传感器设置于所述手表表带的第一预设位置处;
    或,
    在所述设备为耳机的情况下,所述传感器设置于所述耳机主体表面的第二预设位置处,所述第二预设位置为佩戴所述耳机时所述耳机与耳屏接触的位置;
    或,
    在所述设备为眼镜的情况下,所述传感器设置于所述眼镜鼻托表面的第三预设位置处,所述第三预设位置为佩戴所述眼镜时所述眼镜与鼻翼接触的位置。
  21. 根据权利要求14-20中任一项所述的传感器,其特征在于,所述传感器还包括:
    防护层,用于保护所述衬底以及所述敏感层。
  22. 一种设备,其特征在于,所述设备包括如权利要求1-21中任一项所述的多功能传感器。
  23. 根据权利要求22所述的设备,其特征在于,所述多功能传感器设置于所述设备的表面。
  24. 根据权利要求23所述的设备,其特征在于,所述传感器设置于设备表面包括:
    在所述设备为手表的情况下,所述传感器设置于所述手表表体底部的外表面,或,所述传感器设置于所述手表表扣的外表面,或,所述传感器设置于所述手表表带的第一预设位置处;
    或,
    在所述设备为耳机的情况下,所述传感器设置于所述耳机主体表面的第二预设位置处,所述第二预设位置为佩戴所述耳机时所述耳机与耳屏接触的位置;
    或,
    在所述设备为眼镜的情况下,所述传感器设置于所述眼镜鼻托表面的第三预设位置处,所述第三预设位置为佩戴所述眼镜时所述眼镜与鼻翼接触的位置。
PCT/CN2022/130299 2021-12-13 2022-11-07 一种多功能传感器及设备 WO2023109360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111519419.4 2021-12-13
CN202111519419.4A CN116263344A (zh) 2021-12-13 2021-12-13 一种多功能传感器及设备

Publications (1)

Publication Number Publication Date
WO2023109360A1 true WO2023109360A1 (zh) 2023-06-22

Family

ID=86723184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130299 WO2023109360A1 (zh) 2021-12-13 2022-11-07 一种多功能传感器及设备

Country Status (2)

Country Link
CN (1) CN116263344A (zh)
WO (1) WO2023109360A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280911A (ja) * 1996-04-16 1997-10-31 Toyota Motor Corp 圧力、歪、温度の同時計測方法
JP2000111368A (ja) * 1998-10-08 2000-04-18 Nippon Soken Inc 圧力、歪み及び温度の同時測定装置、同時測定方法及び薄膜センサ
CN1974372A (zh) * 2006-12-15 2007-06-06 沈阳仪表科学研究院 差压/绝压/温度三参数单片集成传感器芯片及其制备方法
CN203940940U (zh) * 2014-06-13 2014-11-12 江苏多维科技有限公司 一种用于多物理量测量的传感器芯片
CN112230763A (zh) * 2020-09-27 2021-01-15 西安交通大学 一种多参数测量的智能手套
US20210102851A1 (en) * 2019-10-03 2021-04-08 Ricoh Company, Ltd. Sensor sheet, robot hand, and glove
CN213738599U (zh) * 2020-06-01 2021-07-20 罕王微电子(辽宁)有限公司 一种mems单芯片集成流量温度湿度化学传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280911A (ja) * 1996-04-16 1997-10-31 Toyota Motor Corp 圧力、歪、温度の同時計測方法
JP2000111368A (ja) * 1998-10-08 2000-04-18 Nippon Soken Inc 圧力、歪み及び温度の同時測定装置、同時測定方法及び薄膜センサ
CN1974372A (zh) * 2006-12-15 2007-06-06 沈阳仪表科学研究院 差压/绝压/温度三参数单片集成传感器芯片及其制备方法
CN203940940U (zh) * 2014-06-13 2014-11-12 江苏多维科技有限公司 一种用于多物理量测量的传感器芯片
US20210102851A1 (en) * 2019-10-03 2021-04-08 Ricoh Company, Ltd. Sensor sheet, robot hand, and glove
CN213738599U (zh) * 2020-06-01 2021-07-20 罕王微电子(辽宁)有限公司 一种mems单芯片集成流量温度湿度化学传感器
CN112230763A (zh) * 2020-09-27 2021-01-15 西安交通大学 一种多参数测量的智能手套

Also Published As

Publication number Publication date
CN116263344A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US10129676B2 (en) MEMS microphone, apparatus comprising a MEMS microphone and method for fabricating a MEMS microphone
US9945884B2 (en) System and method for a wind speed meter
US11781919B2 (en) Temperature gradient sensing in portable electronic devices
JP2009222543A (ja) 体温計
EP2400283B1 (en) Sensor temperatur sensing device
KR20140111714A (ko) 열 이미징 센서들
US6589433B2 (en) Accelerometer without proof mass
JP6468398B2 (ja) 深部体温計
TWI477779B (zh) 熱對流式線性加速儀
US11268867B2 (en) Strain gauge structure for a sensor
EP3726187B1 (en) Thermopile-based flow sensing device
WO2023109360A1 (zh) 一种多功能传感器及设备
CN110179444B (zh) 一种婴幼儿体温检测脚环系统及其检测方法
CN109827674B (zh) 一种一体化高精度的柔性温度传感器及其制备方法
Middelhoek et al. Microprocessors get integrated sensors: Sensing devices and signal processing built into one silicon chip portend a new class of ‘smart’sensors
JPH0510826A (ja) アレイセンサ
US11771329B2 (en) Flexible temperature sensing devices for body temperature sensing
KR101996046B1 (ko) 항암제 반응을 실시간 모니터링하는 바이오 센서 키트
CN110108751A (zh) 一种可测量热导率和热扩散率的触觉传感器及测量方法
JP2793615B2 (ja) 赤外線センサ
CN216246824U (zh) 一种温度传感器以及电子设备
JP7032432B2 (ja) 熱伝達率測定素子
JP7367878B2 (ja) 測定装置
US20230190112A1 (en) Low-cost and scalable screen printed wearable human body temperature sensor
CN112781482B (zh) 可变形曲面的空间曲率的测量方法以及电感式空间曲率测量敏感元件的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906112

Country of ref document: EP

Kind code of ref document: A1