WO2023106257A1 - 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム - Google Patents

車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム Download PDF

Info

Publication number
WO2023106257A1
WO2023106257A1 PCT/JP2022/044705 JP2022044705W WO2023106257A1 WO 2023106257 A1 WO2023106257 A1 WO 2023106257A1 JP 2022044705 W JP2022044705 W JP 2022044705W WO 2023106257 A1 WO2023106257 A1 WO 2023106257A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
light
road surface
value
vehicle lamp
Prior art date
Application number
PCT/JP2022/044705
Other languages
English (en)
French (fr)
Inventor
真也 星野
靖 喜多
能子 木村
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Publication of WO2023106257A1 publication Critical patent/WO2023106257A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution

Definitions

  • the present disclosure relates to a vehicle lamp control device, a vehicle lamp control method, and a vehicle lamp system.
  • Patent Document 1 describes a headlight device that automatically changes the brightness of the headlight in response to the running speed of the vehicle and the ambient illumination, and a control method thereof. However, since the brightness of the entire light distribution from the headlights is increased or decreased, there is room for improvement in that the driver's visibility may not necessarily improve depending on the situation.
  • One of the purposes of the specific aspects of the present disclosure is to provide a light distribution control technique for vehicle lamps that can further improve the visibility of the driver.
  • a control device for a vehicle lamp is a device that (a) controls a light irradiation state of a vehicle lamp capable of emitting light forward of a vehicle, and When the vehicle speed is equal to or less than the reference value, the road surface illumination by the light of the vehicle lamp at a position relatively close to the vehicle at the first forward distance becomes the first value, and when the vehicle speed is greater than the reference value, the The road surface illumination by the light of the vehicle lamp at the position of the first forward distance becomes a second value smaller than the first value, and the light of the vehicle lamp is at the position of the second front distance relatively far from the vehicle.
  • a control device for a vehicle lamp that controls the light irradiation state of the vehicle lamp so that the road surface illumination is substantially constant regardless of the vehicle speed.
  • a control device for a vehicle lamp according to one aspect of the present disclosure is (a) a device for controlling a light irradiation state of a vehicle lamp capable of emitting light forward of a vehicle; (c) an irradiation pattern setting unit for setting an irradiation pattern of light from the vehicle lamp according to vehicle speed; and (c) the vehicle lamp by generating a control signal based on the irradiation pattern set by the irradiation pattern setting unit.
  • the irradiation pattern setting unit when the vehicle speed of the vehicle is equal to or less than a first reference value, at a position at a first front distance relatively close to the vehicle
  • the road surface illumination by the light of the vehicle lamp becomes the first value and the vehicle speed is greater than the first reference value
  • the road surface illumination by the light of the vehicle lamp at the position of the first forward distance is the first value.
  • the irradiation pattern is adjusted so that the road surface illumination of the light from the vehicle lamp at a position at a second front distance relatively far from the vehicle is substantially constant regardless of the vehicle speed. It is a control device for a vehicle lamp that is set.
  • a method for controlling a vehicle lamp is a method for controlling a light irradiation state of a vehicle lamp capable of emitting light forward of a vehicle, comprising: setting the brightness of the light of the vehicle lamp so that the road surface illuminance by the light of the vehicle lamp at a position at a first front distance relatively close to the vehicle becomes the first value when the value is equal to or less than the value.
  • a vehicle lighting system is a vehicle lighting system including the control device of [1] or [2] and a vehicle lighting device connected to the control device. .
  • FIG. 1 is a block diagram showing the configuration of a vehicle headlamp system according to one embodiment.
  • FIG. 2 is a diagram showing a configuration example of a computer system that implements the controller.
  • FIG. 3(A) is a graph showing a control mode of irradiation light in front of the own vehicle.
  • FIG. 3B is a diagram showing an example of numerical values of road surface illumination by irradiation light at each measurement position on the road surface.
  • FIG. 4 is a diagram for explaining the forward distance.
  • FIG. 5A is a diagram showing a configuration example of irradiation light formed by a headlamp.
  • FIG. 5B is a diagram showing the structure of irradiation light in a modified embodiment.
  • FIG. 6 is a flow chart showing the operation procedure of the controller in the vehicle lamp system.
  • FIG. 7A is a diagram showing a control mode of irradiation light by the vehicle lamp system of this embodiment.
  • FIG. 7B is a diagram showing a control mode of irradiation light by the vehicle lamp system of the comparative example.
  • FIG. 8(A) is a graph showing a control mode of illumination light in front of the own vehicle in another embodiment.
  • FIG. 8B is a diagram showing an example of numerical values of the road surface illuminance by irradiation light at each measurement position on the road surface in another embodiment.
  • FIG. 9 is a flow chart showing the operation procedure of the controller in the vehicle lamp system of another embodiment.
  • FIG. 1 is a block diagram showing the configuration of a vehicle headlight system according to one embodiment.
  • the illustrated vehicle headlight system includes an imaging device 10, a vehicle speed sensor 11, a headlight (H/L) switch 12, a controller (control device) 13, and a pair of headlights 14L and 14R. .
  • the imaging device 10 captures the space in front of the vehicle and generates an image of the space. In addition, the imaging device 10 performs predetermined image recognition processing on the captured image to detect characteristic points of the oncoming vehicle (positions of the headlights of the oncoming vehicle in this embodiment). .
  • This imaging device 10 is installed, for example, above the inner side of the windshield of the own vehicle.
  • the imaging device 10 includes, for example, a camera that generates an image and an image processor that performs image recognition processing on the image.
  • the vehicle speed sensor 11 detects the vehicle speed of the own vehicle.
  • a vehicle is often equipped with a vehicle speed sensor originally, so that vehicle speed sensor can be used as the vehicle speed sensor 11 .
  • the headlight switch 12 is provided, for example, around the steering wheel of the driver's seat, and is used to turn on/off the headlights 14L and 14R according to the operation by the driver.
  • the controller 13 controls the operation of the pair of headlights 14L and 14R.
  • the controller 13 includes a vehicle detection unit 20, a light distribution pattern setting unit 21, a light distribution illuminance setting unit 22, and a control signal generation unit 23 as functional blocks.
  • the controller 13 is realized by using a computer system having, for example, a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., and executing a predetermined operation program in this computer system.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the vehicle detection unit 20 detects the presence or absence of an oncoming vehicle or the like based on the data output from the imaging device 10, and also detects a value representing the position of the oncoming vehicle or the like if it exists.
  • the oncoming vehicle or the like referred to here is, for example, an oncoming vehicle, a preceding vehicle, a pedestrian, or the like.
  • the light distribution pattern setting unit 21 sets a light distribution pattern in which the position of the oncoming vehicle detected by the vehicle detection unit 20 is a dimming range (or a light blocking range) and the other range is a light irradiation range. set.
  • a light distribution illuminance setting unit (irradiation pattern setting unit) 22 adjusts the brightness (e.g., luminous intensity or luminance ) to be variable. Thereby, the illumination of the road surface by the light emitted from each of the headlights 14L and 14R is variably set.
  • the control signal generator 23 generates a control signal corresponding to the brightness of the illumination light set by the light distribution illuminance setting unit 22, and supplies the control signal to the low beam units 30 of the headlights 14L and 14R.
  • the control signal generator 23 also generates a control signal corresponding to the light distribution pattern set by the light distribution pattern setting unit 21 and supplies the control signal to the ADB units 31 of the headlights 14L and 14R.
  • Each of the headlights 14L and 14R is provided on the left and right sides of the front of the vehicle, and is used to illuminate the front of the vehicle.
  • Each headlamp 14L, 14R has a low beam unit 30 and an ADB unit 31, respectively.
  • the low beam unit 30 has, for example, a light source bulb and a reflector, and operates in response to a control signal from the controller 13. Light emitted from the light source bulb is reflected by the reflector, and part of the reflected light is blocked by a light blocking plate. By doing so, light for forming a low beam that mainly irradiates an area relatively close to the own vehicle is generated.
  • the brightness of the light emitted from the light source bulb of the low beam unit 30 is set by the light distribution illuminance setting unit 22, and a control signal corresponding to the brightness is supplied from the control signal generation unit 23 to the low beam unit 30. By doing so, the brightness of the low beam is variably set.
  • a light source such as an LED may be used instead of the light source bulb.
  • An ADB (Adaptive Driving Beam) unit 31 receives a control signal from the controller 13 and operates to generate light for forming a high beam that mainly illuminates an area relatively far from the vehicle.
  • the high beam of this embodiment is a dimming range (or a non-illumination range) in the range where the oncoming vehicle exists, and is variable so that the other range is a light irradiation range.
  • a liquid crystal element is used to control the dimming range and the light irradiation range.
  • the light from the laser element is scanned by a movable reflector, and the laser element is turned on and off at high speed to control the dimming range and the light irradiation range.
  • ADB units of the type that control the .
  • FIG. 2 is a diagram showing a configuration example of a computer system that implements the controller.
  • the illustrated computer system includes a CPU 201, a ROM 202, a RAM 203, a storage device 204, and an external interface (I/F) 205 that are communicatively connected.
  • the CPU 201 operates based on a basic control program read out from the ROM 202, reads out a program (application program) 206 stored in the storage device 204, and executes it to implement the functions of the controller 13 described above.
  • a RAM 203 temporarily stores data to be used when the CPU 201 operates.
  • the storage device 204 is a non-volatile data storage device such as a hard disk or SSD (Solid State Drive), and stores various data such as the program 206 .
  • An external interface 205 is an interface that connects the CPU 201 and an external device. In this embodiment, it is used to connect each of the imaging device 10 , the vehicle speed sensor 11 , and the headlight switch 12 to the CPU 201
  • FIG. 3(A) is a graph showing the control mode of illumination light in front of the own vehicle.
  • the horizontal axis corresponds to the forward distance based on the position of the own vehicle
  • the vertical axis corresponds to the illuminance on the road surface (road surface illuminance).
  • the front distance is the distance from the approximate center of the vehicle 100 in the vehicle width direction to the traveling direction, as shown in FIG.
  • the front distance is 15 m
  • the measurement position (3) indicates a front distance of 60 m
  • the measurement position (4) indicates a front distance of 80 m.
  • FIG. 3B is a diagram showing numerical examples of the road surface illuminance by irradiation light at each measurement position on the road surface.
  • the irradiation pattern a shown in FIG. 3(A) is an irradiation pattern when the vehicle speed of the own vehicle is equal to or less than a predetermined reference value (eg, 60 km/h).
  • a predetermined reference value eg, 60 km/h
  • an irradiation pattern b shown in FIG. 3A is an irradiation pattern when the vehicle speed of the own vehicle is higher than a predetermined reference value (for example, 60 km/h).
  • the irradiation pattern b when the vehicle speed exceeds the predetermined reference value has a lower road surface illuminance in a range relatively closer to the own vehicle than the irradiation pattern a. In the range far from , the road surface illuminance is the same (substantially the same) as that of the irradiation pattern a.
  • the road surface illuminance of irradiation pattern a is 154 lux at a forward distance of 10 m
  • the road surface illuminance of irradiation pattern b is 95 lux. is 160 lux
  • the illumination pattern b is 91 lux. That is, the road surface illuminance in the irradiation pattern b is significantly lower than the road surface illuminance in the irradiation pattern a. It is desirable that the road surface illuminance of irradiation pattern b is reduced in the range of 50% to 70% based on the road surface illuminance of irradiation pattern a.
  • the road surface illuminance of irradiation pattern a is 63.5 lux
  • the road surface illuminance of irradiation pattern b is 60.2 lux
  • the road surface illuminance of irradiation pattern a is 38.6 lux
  • the road surface illuminance of the irradiation pattern b is 37.7 lux. That is, the road surface illuminance in the irradiation pattern b is substantially the same as the road surface illuminance in the irradiation pattern a. In other words, the road surface illuminance of irradiation pattern b is substantially the same as the road surface illuminance of irradiation pattern a within ⁇ 10%.
  • FIG. 5(A) is a diagram showing a configuration example of illumination light formed by the headlamp.
  • Irradiation light 110 shown with a pattern below the H line in the drawing is a low beam formed by the low beam unit 30 .
  • the irradiation light 111 formed by arranging a plurality of segments (rectangular regions) in three rows above the H line is a high beam formed by the ADB unit 31, and each segment is individually irradiated and dimmed (or non-irradiation) can be switched.
  • an area 120 indicated by a chain double-dashed line slightly spaced from line H indicates an area in front of the host vehicle corresponding to the light emitted at a distance of 15 m ahead.
  • a region 121 indicated by a dashed line between the line H and the region 120 indicates a region where part of the light emitted from the low beam unit 30 and part of the light emitted from the ADB unit 31 overlap.
  • the illumination light from the low beam unit 30 of the present embodiment has a portion that is illuminated farther than the front distance of 15 m, so in order to reduce the illuminance of the area 120, the brightness of the illumination light from the low beam unit 30 is reduced.
  • the illumination light 111 from the ADB unit 31 is formed in each segment of a row arranged at a position lower than the H line. As a result, it is possible to prevent a decrease in the illuminance of the irradiation light at a far forward position (a distance of 15 m or more in this example).
  • the low beam unit 30 is configured so that the area 120 within the forward distance of 15 m and the area 121 over the forward distance of 15 m can be turned on and off individually. good too.
  • the irradiation patterns a and b shown in FIG. In this case, part of the light emitted from the ADB unit 31 does not have to overlap the area 121 as shown.
  • FIG. 6 is a flow chart showing the operation procedure of the controller in the vehicle lamp system. The operation of the vehicle lamp system will be described below with reference to this flow chart. As long as there is no inconsistency or contradiction in the results of information processing, the illustrated processes are in no particular order, and other processes not illustrated may be added, and such operation modes are not excluded. Further, although the control mode of the irradiation pattern shown in FIG. 5A is assumed below, the same applies to the irradiation pattern shown in FIG. 5B.
  • the headlight switch 12 When the headlight switch 12 is switched from off (step S11; NO) to on (step S11; YES) and the vehicle speed detected by the vehicle speed sensor 11 is 60 km/h or less, the light distribution illuminance setting unit 22 (step S12; YES), the brightness of the light emitted from the low beam unit 30 is set so that the road surface illuminance becomes the first value (step S13).
  • the first value here is a value corresponding to the irradiation pattern a shown in FIG. 5A.
  • the light distribution illuminance setting unit 22 sets the brightness of the illumination light from the low beam unit 30 to the road surface illuminance higher than the first value.
  • a low second value is set (step S14).
  • the second value here is a value corresponding to the irradiation pattern b shown in FIG. 5A.
  • the light distribution illuminance setting unit 22 sets the brightness of the lowermost irradiation light in the high beam irradiation range of the ADB unit 31 as described above.
  • the brightness of the irradiation light to a range in which the front distance is relatively short is reduced, and on the other hand, the front distance is relatively small.
  • the brightness of the light emitted to a relatively distant range is maintained.
  • the control signal generation unit 23 When the brightness of the irradiation light is set by the light distribution illuminance setting unit 22, the control signal generation unit 23 generates a control signal for achieving the brightness, and outputs the control signal to each vehicle lamp 14L, 14R (step S15). As a result, illumination light capable of realizing road surface illumination corresponding to illumination pattern a or illumination pattern b is formed in front of the host vehicle. After that, the process returns to step S11.
  • FIG. 7(A) is a diagram showing a control mode of irradiation light by the vehicle lamp system of the present embodiment.
  • FIG. 7B is a diagram showing a control mode of irradiation light by the vehicle lamp system of the comparative example.
  • the horizontal axis corresponds to the forward distance based on the position of the own vehicle
  • the vertical axis corresponds to the road surface illumination.
  • the road surface illumination when the vehicle speed is equal to or less than a predetermined standard is the maximum value (show as "L_MAX_before" in the figure), and gradually decreases as the forward distance increases.
  • the road surface illumination reaches a maximum value (indicated as "L_MAX_after” in the figure) at a distance of 15 m ahead of the host vehicle, as indicated by the dotted line, and gradually increases as the front distance increases. declining.
  • L_MAX_after is relatively lower than the road surface illuminance L_MAX_before, while the road surface illuminance in the range of 60 m or more ahead is substantially the same regardless of the vehicle speed. .
  • the road surface illumination at this time is shown as "L_distant_before&after" in the drawing.
  • one reference value of the vehicle speed is determined, and the irradiation pattern is switched using that reference value as a boundary. .
  • An embodiment in that case will be described below. Since the configuration of the vehicle lighting system is the same as that of the above-described embodiment without any change, the control mode will be described in detail.
  • FIG. 8(A) is a graph showing a control mode of illumination light in front of the own vehicle in another embodiment.
  • the horizontal axis corresponds to the forward distance based on the position of the vehicle, and the vertical axis corresponds to the road surface illumination.
  • FIG. 8B is a diagram showing numerical examples of road surface illuminance due to irradiation light at each measurement position on the road surface in another embodiment.
  • the irradiation pattern a shown in FIG. 8(A) is an irradiation pattern when the vehicle speed of the own vehicle is equal to or lower than a predetermined first reference value (eg, 20 km/h).
  • irradiation pattern b is an irradiation pattern when the vehicle speed of the host vehicle is greater than the first reference value and equal to or less than the second reference value (for example, 60 km/h).
  • the irradiation pattern c is an irradiation pattern when the vehicle speed of the host vehicle is higher than the second reference value.
  • irradiation pattern b has lower road surface illuminance in a range relatively closer to the vehicle than irradiation pattern a, and is equivalent to irradiation pattern a in a range relatively far from the vehicle (approximately same).
  • the irradiation pattern c has low road surface illuminance in the range relatively close to the vehicle, and is equivalent to the irradiation patterns a and b in the range relatively far from the vehicle. (substantially the same) road surface illuminance.
  • the road surface illuminance of irradiation pattern a is 154 lux
  • the road surface illuminance of irradiation pattern b is 95 lux
  • the road surface illuminance of irradiation pattern c is 95 lux.
  • the road surface illuminance of irradiation pattern a is 160 lux
  • the road surface illuminance of irradiation pattern b is 91 lux
  • the road surface illuminance of irradiation pattern c is 48.7 lux.
  • the road surface illuminance in the irradiation pattern b is significantly lower than the road surface illuminance in the irradiation pattern a. It is desirable that the road surface illuminance of irradiation pattern b is reduced in the range of 50% to 70% based on the road surface illuminance of irradiation pattern a. Moreover, the road surface illuminance in the irradiation pattern c is much lower than the road surface illuminance in the irradiation pattern a. It is desirable that the road surface illuminance of the irradiation pattern c is reduced in the range of 30% to 40% based on the road surface illuminance of the irradiation pattern a.
  • the road surface illuminance of irradiation pattern a is 63.5 lux
  • the road surface illuminance of irradiation pattern b is 60.2 lux
  • the road surface illuminance of irradiation pattern c is 58.4 lux.
  • the road surface illuminance of irradiation pattern a is 38.6 lux
  • the road surface illuminance of irradiation pattern b is 37.7 lux
  • the road surface illuminance of irradiation pattern c is 37.3 lux.
  • the road surface illuminance in the irradiation pattern b is substantially the same as the road surface illuminance in the irradiation pattern a. Specifically, at a position 60 m ahead, the road surface illuminances of the irradiation patterns b and c are substantially the same within ⁇ 10% of the road surface illuminance of the irradiation pattern a. Further, at a position at a distance of 80 m ahead, the road surface illuminances of the irradiation patterns b and c are substantially the same within ⁇ 5% of the road surface illuminance of the irradiation pattern a.
  • FIG. 9 is a flow chart showing the operation procedure of the controller in the vehicle lamp system of another embodiment.
  • the operation of the vehicle lamp system will be described below with reference to this flow chart.
  • the illustrated processes are in no particular order, and other processes not illustrated may be added, and such operation modes are not excluded. Further, in order to make the explanation easier to understand, the control mode of the irradiation pattern shown in FIG. 5A is assumed below.
  • the headlight switch 12 When the headlight switch 12 is switched from the off state (step S21; NO) to the on state (step S21; YES) and the vehicle speed detected by the vehicle speed sensor 11 is 20 km/h or less, the light distribution illuminance setting unit 22 (step S22; YES), the brightness of the light emitted from the low beam unit 30 is set so that the road surface illuminance becomes the first value (step S23).
  • the first value here is a value corresponding to the irradiation pattern a shown in FIG. 8A.
  • the light distribution illuminance setting unit 22 sets the low beam unit 30 is set so that the illumination of the road surface is a second value lower than the first value (step S25).
  • the second value here is a value corresponding to the irradiation pattern b shown in FIG. 8A.
  • the light distribution illuminance setting unit 22 sets the brightness of the illumination light from the low beam unit 30 to the road surface illuminance higher than the second value.
  • a low third value is set (step S26).
  • the third value here is a value corresponding to the irradiation pattern c shown in FIG. 8A.
  • the light distribution illuminance setting unit 22 sets the brightness of the lowermost irradiation light in the high beam irradiation range of the ADB unit 31 as described above.
  • the irradiation pattern b compared to the irradiation pattern a, the irradiation light in a range in which the front distance is relatively short (within 15 m in this embodiment) is reduced in brightness, and on the other hand, the front distance is relatively small.
  • the brightness of the illumination light in a range far from the distance in this embodiment, a range exceeding 15 m) is maintained.
  • the control signal generation unit 23 When the brightness of the irradiation light is set by the light distribution illuminance setting unit 22, the control signal generation unit 23 generates a control signal for achieving the brightness, and outputs the control signal to each vehicle lamp 14L, 14R (step S27). As a result, an illumination light having a road surface illumination corresponding to one of the illumination patterns a to c is formed in front of the own vehicle. After that, the process returns to step S21.
  • the present disclosure is not limited to the contents of the above-described embodiments, and can be implemented in various modifications within the scope of the gist of the present disclosure.
  • time required for the state change when increasing or decreasing the road surface illuminance due to the irradiation light in a range relatively close to the vehicle according to the vehicle speed may be increased or decreased instantaneously, or may be increased or decreased gradually over a certain amount of time.
  • the control may be performed instantaneously, and when decreasing the brightness, the control may be performed gradually.
  • the brightness may be decreased gradually. In some cases, the control may be performed instantaneously.
  • the low beam unit and the ADB unit are configured separately in each of the above-described embodiments, they may be configured integrally.
  • the formation of the low beam is similar to the formation of the high beam, and the unit using the liquid crystal element described above, the unit using a plurality of LEDs, and the type in which the light from the laser element is scanned by a movable reflector. It is also preferable to use a unit or the like.
  • the case of performing selective light irradiation according to the position of the vehicle ahead in the irradiation range of the high beam was exemplified, but such control is not essential.
  • the content of the present disclosure can also be applied to a vehicle lighting device that emits light by simply combining a low beam and a high beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

運転者の視認性をより向上させることが可能な車両用灯具の配光制御技術を提供すること。 車両の前方へ光照射可能な車両用灯具の光照射状態を制御する装置であって、前記車両の車速が基準値以下である場合に前記車両から相対的に近い第1前方距離の位置における前記車両用灯具の光による路面照度が第1値となり、前記車両の車速が基準値より大きい場合に前記第1前方距離の位置における前記車両用灯具の光による路面照度が前記第1値より小さい第2値となり、かつ、前記車両から相対的に遠い第2前方距離の位置における前記車両用灯具の光による路面照度が前記車速によらず略一定となるように前記車両用灯具による光照射状態を制御する、車両用灯具の制御装置である。

Description

車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
 本開示は、車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システムに関する。
 特許第6053615号公報(特許文献1)には、自動車の走行速度や、周辺照度に反応して、ヘッドライトの明るさを自動で変化させるヘッドライト装置及びその制御方法が記載されている。しかし、ヘッドライトからの配光全体の明るさを増減させているので、状況によっては運転者における視認性が必ずしも向上しない場合も考えられるという点で改良の余地がある。
特許第6053615号公報
 本開示に係る具体的態様は、運転者の視認性をより向上させることが可能な車両用灯具の配光制御技術を提供することを目的の1つとする。
[1]本開示に係る一態様の車両用灯具の制御装置は、(a)車両の前方へ光照射可能な車両用灯具の光照射状態を制御する装置であって、(b)前記車両の車速が基準値以下である場合に前記車両から相対的に近い第1前方距離の位置における前記車両用灯具の光による路面照度が第1値となり、前記車両の車速が基準値より大きい場合に前記第1前方距離の位置における前記車両用灯具の光による路面照度が前記第1値より小さい第2値となり、かつ、前記車両から相対的に遠い第2前方距離の位置における前記車両用灯具の光による路面照度が前記車速によらず略一定となるように前記車両用灯具による光照射状態を制御する、車両用灯具の制御装置である。
[2]本開示に係る一態様の車両用灯具の制御装置は、(a)車両の前方へ光照射可能な車両用灯具の光照射状態を制御する装置であって、(b)前記車両の車速に応じて前記車両用灯具からの光の照射パターンを設定する照射パターン設定部と、(c)前記照射パターン設定部によって設定される前記照射パターンに基づく制御信号を生成して前記車両用灯具に供給する制御信号生成部と、を含み、(d)前記照射パターン設定部は、前記車両の車速が第1基準値以下である場合に前記車両から相対的に近い第1前方距離の位置における前記車両用灯具の光による路面照度が第1値となり、前記車両の車速が前記第1基準値より大きい場合に前記第1前方距離の位置における前記車両用灯具の光による路面照度が前記第1値より小さい第2値となり、かつ、前記車両から相対的に遠い第2前方距離の位置における前記車両用灯具の光による路面照度が前記車速によらず略一定となるように、前記照射パターンを設定する、車両用灯具の制御装置である。
[3]本開示に係る一態様の車両用灯具の制御方法は、車両の前方へ光照射可能な車両用灯具の光照射状態を制御する方法であって、(a)前記車両の車速が基準値以下である場合に、前記車両から相対的に近い第1前方距離の位置における前記車両用灯具の光による路面照度が第1値となるように前記車両用灯具の光の明るさを設定すること、(b)前記車両の車速が基準値より大きい場合に、前記第1前方距離の位置における前記車両用灯具の光による路面照度が前記第1値より小さい第2値となるように前記車両用灯具の光の明るさを設定すること、(c)前記車両の車速によらず、前記車両から相対的に遠い第2前方距離の位置における前記車両用灯具の光による路面照度が略一定となるように前記車両用灯具の光の明るさを設定すること、を含む、車両用灯具の制御方法である。
[4]本開示に係る一態様の車両用灯具システムは、前記[1]又は[2]の制御装置と、前記制御装置に接続される車両用灯具と、を含む、車両用灯具システムである。
 上記構成によれば、運転者の視認性をより向上させることが可能な車両用灯具の配光制御技術が得られる。
図1は、一実施形態の車両用前照灯システムの構成を示すブロック図である。 図2は、コントローラを実現するコンピュータシステムの構成例を示す図である。 図3(A)は、自車両の前方における照射光の制御態様を示すグラフである。図3(B)は、路面上の各測定位置での照射光による路面照度の数値例を示す図である。 図4は、前方距離について説明するための図である。 図5(A)は、前照灯によって形成される照射光の構成例を示す図である。図5(B)は、変形実施例の照射光の構成を示す図である。 図6は、車両用灯具システムにおけるコントローラの動作手順を示すフローチャートである。 図7(A)は、本実施形態の車両用灯具システムによる照射光の制御態様を示す図である。図7(B)は、比較例の車両用灯具システムによる照射光の制御態様を示す図である。 図8(A)は、他の実施形態における自車両の前方における照射光の制御態様を示すグラフである。図8(B)は、他の実施形態における路面上の各測定位置での照射光による路面照度の数値例を示す図である。 図9は、他の実施形態の車両用灯具システムにおけるコントローラの動作手順を示すフローチャートである。
 図1は、一実施形態の車両用前照灯システムの構成を示すブロック図である。図示の車両用前照灯システムは、撮像装置10、車速センサ11、ヘッドライト(H/L)スイッチ12、コントローラ(制御装置)13、一対の前照灯14L、14Rを含んで構成されている。
 撮像装置10は、自車両の前方空間を撮影してその画像を生成する。また、撮像装置10は、撮影して得られた画像に対して所定の画像認識処理を行うことによって、対向車両の特徴点(本実施形態では対向車両の前照灯の位置)などを検出する。この撮像装置10は、例えば自車両のフロントガラス内側の上方に設置される。撮像装置10は、例えば画像を生成するカメラと、その画像に対して画像認識処理を行う画像処理プロセッサを含んで構成されている。
 車速センサ11は、自車両の車速を検出する。一般的に、車速センサは車両に元々備わっていることが多いので、その車速センサを車速センサ11として用いることができる。
 ヘッドライトスイッチ12は、例えば運転席のハンドル周辺に備わっており、運転者による操作に応じて前照灯14L、14Rの点消灯を切り替えるのに用いられる。
 コントローラ13は、一対の前照灯14L、14Rの動作を制御する。このコントローラ13は、機能ブロックとして、車両検出部20、配光パターン設定部21、配光照度設定部22、制御信号生成部23を備える。コントローラ13は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するコンピュータシステムを用い、このコンピュータシステムにおいて所定の動作プログラムを実行させることによって実現される。
 車両検出部20は、撮像装置10から出力されるデータに基づいて対向車両等の有無を検出するとともに、対向車両等が存在する場合にはその位置を表す値を検出する。ここでいう対向車両等とは、例えば対向車両、先行車両、歩行者などである。
 配光パターン設定部21は、ハイビームの照射範囲について、車両検出部20によって検出される対向車両等の位置を減光範囲(または遮光範囲)としてそれ以外の範囲を光照射範囲とした配光パターンを設定する。
 配光照度設定部(照射パターン設定部)22は、車速センサ11によって検出される自車両の車速に応じて、各前照灯14L、14Rによって形成される照射光の明るさ(例えば、光度ないし輝度)を可変に設定する。それにより、各前照灯14L、14Rからの照射光による路面照度が可変に設定される。
 制御信号生成部23は、配光照度設定部22によって設定される照射光の明るさに対応した制御信号を生成して各前照灯14L、14Rのロービームユニット30へ供給する。また、制御信号生成部23は、配光パターン設定部21によって設定される配光パターンに対応した制御信号を生成して各前照灯14L、14RのADBユニット31へ供給する。
 各前照灯14L、14Rは、車両の前部の左右に1つずつ設けられ、車両の前方に光照射を行うためのものである。各前照灯14L、14Rは、それぞれロービームユニット30とADBユニット31を有する。
 ロービームユニット30は、例えば光源バルブとリフレクタを有しており、コントローラ13による制御信号を受けて動作し、光源バルブから出射する光をリフレクタによって反射させ、この反射光の一部を遮光板で遮光することにより、自車両から相対的に近い領域を主に照射するロービームを形成するための光を生成する。本実施形態では、このロービームユニット30の光源バルブから出射する光の明るさが配光照度設定部22により設定され、その明るさに対応した制御信号が制御信号生成部23からロービームユニット30へ供給されることで、ロービームの明るさが可変に設定される。なお、光源バルブに換えてLEDなどの光源が用いられていてもよい。
 ADB(Adaptive Driving Beam)ユニット31は、コントローラ13から制御信号を受けて動作し、自車両から相対的に遠い領域を主に照射するハイビームを形成するための光を生成する。本実施形態のハイビームは、対向車両等の位置に応じて、対向車両等の存在する範囲については減光範囲(ないし非照射範囲)となり、それ以外の範囲については光照射範囲となるように可変に設定される。このようなADBユニット31としては、例えば液晶素子を用いて減光範囲等と光照射範囲を制御する形式のADBユニット、複数のLEDを配列してそれらLEDを選択的に点灯/消灯させることで減光範囲等と光照射範囲を制御する形式のADBユニット、レーザー素子からの光を可動反射板によって走査し、その際にレーザー素子を高速に点消灯させることで減光範囲等と光照射範囲を制御する形式のADBユニットなど、公知の種々のタイプのADBユニットを用いることができる。
 図2は、コントローラを実現するコンピュータシステムの構成例を示す図である。図示のコンピュータシステムは、相互に通信可能に接続されたCPU201、ROM202、RAM203、記憶装置204、外部インタフェース(I/F)205を含んで構成されている。CPU201は、ROM202から読み出される基本制御プログラムをベースにして動作し、記憶装置204に格納されたプログラム(アプリケーションプログラム)206を読み出してこれを実行することにより、上記したコントローラ13の機能を実現する。RAM203は、CPU201の動作時に使用させるデータを一時的に記憶する。記憶装置204は、例えばハードディスク、SSD(Solid State Drive)などの不揮発性のデータ記憶装置であり、プログラム206など種々のデータを格納する。外部インタフェース205は、CPU201と外部装置を接続するインタフェースである。本実施形態では、撮像装置10、車速センサ11、ヘッドライトスイッチ12のそれぞれとCPU201との接続に用いられる。
 図3(A)は、自車両の前方における照射光の制御態様を示すグラフである。横軸は自車両の位置を基準とした前方距離に対応し、縦軸は路面上での照度(路面照度)に対応している。なお、前方距離は、図4に示すように自車両100の車幅方向の略中央から進行方向への距離であり、図中の測定位置(1)は前方距離10m、測定位置(2)は前方距離15m、測定位置(3)は前方距離60m、測定位置(4)は前方距離80mをそれぞれ示している。また、図3(B)は、路面上の各測定位置での照射光による路面照度の数値例を示す図である。
 図3(A)に示す照射パターンaは、自車両の車速が所定基準値(例えば、60km/h)以下である場合の照射パターンである。また、図3(A)に示す照射パターンbは、自車両の車速が所定基準値(例えば、60km/h)より大きい場合の照射パターンである。図示のように、車速が所定基準値を超えている場合の照射パターンbは、照射パターンaに比較し、相対的に自車両に近い範囲における路面照度が低くなっており、相対的に自車両から遠い範囲では照射パターンaと同等(略同一)の路面照度になっている。
 図3(B)に示した数値例でいえば、前方距離10mでは照射パターンaの路面照度が154ルクスであるのに対して照射パターンbの路面照度が95ルクス、前方距離15mでは照射パターンaの路面照度が160ルクスであるのに対して照射パターンbの路面照度が91ルクスである。すなわち、照射パターンbでの路面照度は、照射パターンaの路面照度に比べて大きく低下している。照射パターンbの路面照度は、照射パターンaの路面照度を基準にして50%~70%の範囲で低下させることが望ましい。
 他方、前方距離60mでは照射パターンaの路面照度が63.5ルクスであるのに対して照射パターンbの路面照度が60.2ルクス、前方距離80mでは照射パターンaの路面照度が38.6ルクスであるのに対して照射パターンbの路面照度が37.7ルクスである。すなわち、照射パターンbでの路面照度は、照射パターンaの路面照度とほぼ同等である。別言すれば、照射パターンbの路面照度は照射パターンaの路面照度に比して±10%内の範囲で略同一ある。
 図5(A)は、前照灯によって形成される照射光の構成例を示す図である。ここでは自車両の前方にて鉛直方向に想定される仮想スクリーン上での配光分布例が示されている。図中においてH線よりも下側に模様付きで示されている照射光110はロービームユニット30によって形成されるロービームである。また、H線よりも上側に複数のセグメント(矩形領域)を3列に配列してなる照射光111はADBユニット31によって形成されるハイビームであり、各セグメントはそれぞれ個別に照射と減光(ないし非照射)を切り替え可能な領域である。
 図中、H線から少し離間してその下側に二点鎖線で示されている領域120は、自車両の前方において前方距離15mよりも手前に照射される光に対応する領域を示している。また、H線と領域120との間に一点鎖線で示されている領域121は、ロービームユニット30による照射光の一部とADBユニット31による照射光の一部とが重なる領域を示している。図示のように本実施形態のロービームユニット30による照射光は、前方距離15mよりも遠方に照射される部分もあるため、領域120の照度を低下させるためにロービームユニット30による照射光の明るさを低下させると、領域121の照度も低下することになる。この領域121での照度低下を補うために、本実施形態ではADBユニット31による照射光111のうち、H線よりも低い位置に配置された列の各セグメントに照射光を形成する。それにより、前方距離が遠い位置(本例では15m以上の遠方)における照射光の照度低下を防ぐことができる。
 なお、図5(B)に示す変形実施例の照射光のように、前方距離15m以内の領域120と前方距離15m超の領域121をそれぞれ個別に点消灯可能にロービームユニット30が構成されていてもよい。この場合には、領域120の照射光を制御することで上記した図3(A)に示した照射パターンa、bを実現できる。また、この場合には、図示のようにADBユニット31による照射光の一部が領域121に重なっていなくてもよい。
 図6は、車両用灯具システムにおけるコントローラの動作手順を示すフローチャートである。以下、このフローチャートを参照しながら車両用灯具システムの動作について説明する。なお、情報処理の結果に不整合、矛盾を生じない限りにおいて図示の処理は順不同であり、また図示しない他の処理が加えられてもよく、そのような動作態様も排除されない。また、以下では上記した図5(A)に示した照射パターンの制御態様を前提にするが図5(B)に示した照射パターンでも同様である。
 配光照度設定部22は、ヘッドライトスイッチ12がオフの状態(ステップS11;NO)からオンに切り替わり(ステップS11;YES)、かつ、車速センサ11によって検出される車速が60km/h以下である場合には(ステップS12;YES)、ロービームユニット30による照射光の明るさを路面照度が第1値となるように設定する(ステップS13)。ここでいう第1値とは、上記した図5(A)に示した照射パターンaに対応する値である。
 また、配光照度設定部22は、車速センサ11によって検出される車速が60km/hより大きい場合には(ステップS12;NO)、ロービームユニット30による照射光の明るさを路面照度が第1値より低い第2値となるように設定する(ステップS14)。ここでいう第2値とは、上記した図5(A)に示した照射パターンbに対応する値である。
 なお、照射パターンbに設定する場合には、配光照度設定部22により、上記のようにADBユニット31によるハイビームの照射範囲のうち最下段の照射光は明るさが増加するように設定される。それにより、照射パターンbにおいては、照射パターンaに比較して、前方距離が相対的に近い範囲(本実施形態では15m以内)への照射光は明るさが低下し、他方、前方距離が相対的に遠い範囲(本実施形態では15mを超える範囲)への照射光は明るさが維持される。
 配光照度設定部22により照射光の明るさが設定されると、制御信号生成部23は、その明るさを実現するための制御信号を生成し、各車両用灯具14L、14Rへ出力する(ステップS15)。それにより、照射パターンa又は照射パターンbに対応した路面照度を実現し得る照射光が自車両の前方に形成される。その後、ステップS11へ戻る。
 図7(A)は、本実施形態の車両用灯具システムによる照射光の制御態様を示す図である。図7(B)は、比較例の車両用灯具システムによる照射光の制御態様を示す図である。各図において横軸は自車両の位置を基準とした前方距離に対応し、縦軸は路面照度に対応している。図7(A)に示すように、本実施形態の車両用灯具システムでは、車速が所定基準以下である場合の路面照度は、実線で示されるように自車両の前方距離15mあたりで最大値(図中、「L_MAX_before」と示す)となり、前方距離が増加するにつれて徐々に低下している。また、車速が所定基準を超える場合の路面照度は、点線で示されるように自車両の前方距離15mあたりで最大値(図中、「L_MAX_after」と示す)となり、前方距離が増加するにつれて徐々に低下している。このとき、路面照度L_MAX_beforeより路面照度L_MAX_afterのほうが相対的に低い値となっているのに対して、前方距離が60mかそれ以上の範囲での路面照度は車速によらず略同一となっている。このときの路面照度を図中では「L_遠方_before&after」と示している。
 このように、車速が速くなった際には、自車両から相対的に近い範囲では路面照度が低下する一方で自車両から相対的に遠い範囲では路面照度が変わらないので、運転者の注視点が自車両から近い位置に誘目されにくくなり、本来注視したいであろう遠方へ注視点が向かいやすくなる効果が得られる。それにより、運転者はより安心感を得られ、より前方を視認しやすくなる。これに対して図7(B)に示す比較例では、車速に応じて照射光による路面照度を全体的に低下させていることから、遠方における路面照度L_遠方_beforeと路面照度L_遠方_afterとの差が大きくなるので、本実施形態に比較して遠方での視認性に劣るといえる。
 ところで、上記した実施形態では車速の基準値を1つ定め、その基準値を境界にして照射パターンを切り替えていたが、基準値を2つ定め、それぞれを境界にして照射パターンを切り替えてもよい。このような実施形態によれば、車速に応じてより細やかに照射パターンを切り替えて、運転者の前方視認性(特に遠方)の向上に資することができる。以下にその場合の実施形態を説明する。なお、車両用灯具システムの構成は変更がなく上記した実施形態と同様であるので、制御態様について詳細に説明する。
 図8(A)は、他の実施形態における自車両の前方における照射光の制御態様を示すグラフである。横軸は自車両の位置を基準とした前方距離に対応し、縦軸は路面照度に対応している。また、図8(B)は、他の実施形態における路面上の各測定位置での照射光による路面照度の数値例を示す図である。
 図8(A)に示す照射パターンaは、自車両の車速が所定の第1基準値(例えば、20km/h)以下である場合の照射パターンである。また、照射パターンbは、自車両の車速が第1基準値より大きく第2基準値(例えば、60km/h)以下である場合の照射パターンである。また、照射パターンcは、自車両の車速が第2基準値より大きい場合の照射パターンである。図示のように、照射パターンbは、照射パターンaに比較し、相対的に自車両に近い範囲における路面照度が低くなっており、相対的に自車両から遠い範囲では照射パターンaと同等(略同一)の路面照度になっている。同様に、照射パターンcは、照射パターンa、bに比較し、相対的に自車両に近い範囲における路面照度が低くなっており、相対的に自車両から遠い範囲では照射パターンa、bと同等(略同一)の路面照度になっている。
 図8(B)に示した数値例でいえば、前方距離10mでは照射パターンaの路面照度が154ルクスであるのに対して照射パターンbの路面照度が95ルクス、照射パターンcの路面照度が60.2ルクス、前方距離15mでは照射パターンaの路面照度が160ルクスであるのに対して照射パターンbの路面照度が91ルクス、照射パターンcの路面照度が48.7ルクスである。すなわち、照射パターンbでの路面照度は、照射パターンaの路面照度に比べて大きく低下している。照射パターンbの路面照度は、照射パターンaの路面照度を基準にして50%~70%の範囲で低下させることが望ましい。また、照射パターンcでの路面照度は、照射パターンaの路面照度に比べてさらに大きく低下している。照射パターンcの路面照度は照射パターンaの路面照度を基準にして30%~40%の範囲で低下させることが望ましい。
 他方、前方距離60mでは照射パターンaの路面照度が63.5ルクスであるのに対して照射パターンbの路面照度が60.2ルクス、照射パターンcの路面照度が58.4ルクスであり、前方距離80mでは照射パターンaの路面照度が38.6ルクスであるのに対して照射パターンbの路面照度が37.7ルクス、照射パターンcの路面照度が37.3ルクス、である。すなわち、照射パターンbでの路面照度は照射パターンaの路面照度とほぼ同等(略同一)である。詳細には、前方距離60mの位置において、照射パターンb、cの路面照度は照射パターンaの路面照度に比して±10%の範囲内で略同一である。また、前方距離80mの位置において、照射パターンb、cの路面照度は照射パターンaの路面照度に比して±5%の範囲内で略同一である。
 図9は、他の実施形態の車両用灯具システムにおけるコントローラの動作手順を示すフローチャートである。以下、このフローチャートを参照しながら車両用灯具システムの動作について説明する。なお、情報処理の結果に不整合、矛盾を生じない限りにおいて図示の処理は順不同であり、また図示しない他の処理が加えられてもよく、そのような動作態様も排除されない。また、以下では説明を分かりやすくするために上記した図5(A)に示した照射パターンの制御態様を前提にする。
 配光照度設定部22は、ヘッドライトスイッチ12がオフの状態(ステップS21;NO)からオンに切り替わり(ステップS21;YES)、かつ、車速センサ11によって検出される車速が20km/h以下である場合には(ステップS22;YES)、ロービームユニット30による照射光の明るさを路面照度が第1値となるように設定する(ステップS23)。ここでいう第1値とは、上記した図8(A)に示した照射パターンaに対応する値である。
 また、配光照度設定部22は、車速センサ11によって検出される車速が20km/hより大きく(ステップS22;NO)、かつ60km/h以下である場合には(ステップS24;YES)、ロービームユニット30による照射光の明るさを路面照度が第1値より低い第2値となるように設定する(ステップS25)。ここでいう第2値とは、上記した図8(A)に示した照射パターンbに対応する値である。
 また、配光照度設定部22は、車速センサ11によって検出される車速が60km/hより大きい場合には(ステップS24;NO)、ロービームユニット30による照射光の明るさを路面照度が第2値より低い第3値となるように設定する(ステップS26)。ここでいう第3値とは、上記した図8(A)に示した照射パターンcに対応する値である。
 なお、照射パターンbに設定する場合には、配光照度設定部22により、上記のようにADBユニット31によるハイビームの照射範囲のうち最下段の照射光は明るさが増加するように設定される。それにより、照射パターンbにおいては、照射パターンaに比較して、前方距離が相対的に近い範囲(本実施形態では15m以内)の照射光は明るさが低下し、他方、前方距離が相対的に遠い範囲(本実施形態では15mを超える範囲)の照射光は明るさが維持される。
 配光照度設定部22により照射光の明るさが設定されると、制御信号生成部23は、その明るさを実現するための制御信号を生成し、各車両用灯具14L、14Rへ出力する(ステップS27)。それにより、照射パターンa~cの何れかに対応した路面照度の照射光が自車両の前方に形成される。その後、ステップS21へ戻る。
 以上のような各実施形態等によれば、運転者の視認性をより向上させることが可能な車両用灯具の配光制御技術を得ることができる。
 なお、本開示は上記した実施形態の内容に限定されるものではなく、本開示の要旨の範囲内において種々に変形して実施をすることが可能である。例えば、上記した各実施形態等では、車速に応じて自車両から相対的に近い範囲の照射光による路面照度を増減する際の状態変化に要する時間については特に言及していなかったが、照射光の明るさを瞬時に増減させてもよいし、ある程度の時間をかけて徐々に増減させてもよい。その際、例えば明るさを増加させる際は瞬時に行い、明るさを減じる際には徐々に行うといった制御としてもよいし、その逆に明るさを増加させる際は徐々に行い、明るさを減じる際には瞬時に行うといった制御としてもよい。
 また、上記した各実施形態等ではロービームユニットとADBユニットが別体に構成されていたが、これらが一体に構成されていてもよい。この場合においては、ロービームの形成についてもハイビームの形成と同様に、上記した液晶素子を用いるタイプのユニット、複数のLEDを用いるタイプのユニット、レーザー素子からの光を可動反射板によって走査するタイプのユニットなどで行うことも好ましい。
 また、上記した実施形態ではハイビームの照射範囲において前方車両等の位置に応じた選択的な光照射を行う場合を例示していたがこのような制御は必須ではない。単純なロービームとハイビームの組み合わせで照射光を形成するタイプの車両用灯具においても本開示の内容を適用することが可能である。
 10:撮像装置、11:車速センサ、12:ヘッドライトスイッチ、13:コントローラ、14L、14R:前照灯、20:車両検出部、21:配光パターン設定部、22:配光照度設定部、23:制御信号生成部、30:ロービームユニット、31:ADBユニット

Claims (10)

  1.  車両の前方へ光照射可能な車両用灯具の光照射状態を制御する装置であって、
     前記車両の車速が基準値以下である場合に前記車両から相対的に近い第1前方距離の位置における前記車両用灯具の光による路面照度が第1値となり、前記車両の車速が基準値より大きい場合に前記第1前方距離の位置における前記車両用灯具の光による路面照度が前記第1値より小さい第2値となり、かつ、前記車両から相対的に遠い第2前方距離の位置における前記車両用灯具の光による路面照度が前記車速によらず略一定となるように前記車両用灯具による光照射状態を制御する、
     車両用灯具の制御装置。
  2.  車両の前方へ光照射可能な車両用灯具の光照射状態を制御する装置であって、
     前記車両の車速に応じて前記車両用灯具からの光の照射パターンを設定する照射パターン設定部と、
     前記照射パターン設定部によって設定される前記照射パターンに基づく制御信号を生成して前記車両用灯具に供給する制御信号生成部と、
    を含み、
     前記照射パターン設定部は、前記車両の車速が第1基準値以下である場合に前記車両から相対的に近い第1前方距離の位置における前記車両用灯具の光による路面照度が第1値となり、前記車両の車速が前記第1基準値より大きい場合に前記第1前方距離の位置における前記車両用灯具の光による路面照度が前記第1値より小さい第2値となり、かつ、前記車両から相対的に遠い第2前方距離の位置における前記車両用灯具の光による路面照度が前記車速によらず略一定となるように、前記照射パターンを設定する、
     車両用灯具の制御装置。
  3.  前記照射パターン設定部は、前記車両の車速が前記第1基準値よりも大きい第2基準値以下である場合に前記第1前方距離の位置における前記路面照度が前記第2値となり、前記車両の車速が前記第2基準値よりも大きい場合には前記第1前方距離の位置における前記路面照度が前記第2値よりも小さい第3値となるように前記照射パターンを設定する、
     請求項2に記載の車両用灯具の制御装置。
  4.  前記第2前方距離の位置における前記路面照度は、±5%~±10%の範囲内で略一定である、
     請求項1~3の何れか1項に記載の車両用灯具の制御装置。
  5.  前記路面照度の前記第2値は、前記第1値を基準にして50%以上70%以下の値である、
     請求項1~4の何れか1項に記載の車両用灯具の制御装置。
  6.  前記路面照度の前記第3値は、前記第1値を基準にして30%以上40%以下の値である、
     請求項1~5の何れか1項に記載の車両用灯具の制御装置。
  7.  前記第1前方距離が10m~15mの範囲内に設定され、前記第2前方距離が60m~80mの範囲内に設定される、
     請求項1~6の何れか1項に記載の車両用灯具の制御装置。
  8.  前記第1基準値が時速20kmに設定され、前記第2基準値が時速60kmに設定される、
     請求項1~7の何れか1項に記載の車両用灯具の制御装置。
  9.  車両の前方へ光照射可能な車両用灯具の光照射状態を制御する方法であって、
    (a)前記車両の車速が基準値以下である場合に、前記車両から相対的に近い第1前方距離の位置における前記車両用灯具の光による路面照度が第1値となるように前記車両用灯具の光の明るさを設定すること、
    (b)前記車両の車速が基準値より大きい場合に、前記第1前方距離の位置における前記車両用灯具の光による路面照度が前記第1値より小さい第2値となるように前記車両用灯具の光の明るさを設定すること、
    (c)前記車両の車速によらず、前記車両から相対的に遠い第2前方距離の位置における前記車両用灯具の光による路面照度が略一定となるように前記車両用灯具の光の明るさを設定すること、
    を含む、車両用灯具の制御方法。
  10.  請求項1~8の何れかに記載の制御装置と、
     前記制御装置に接続される車両用灯具と、
    を含む、車両用灯具システム。
PCT/JP2022/044705 2021-12-09 2022-12-05 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム WO2023106257A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-200366 2021-12-09
JP2021200366A JP2023086003A (ja) 2021-12-09 2021-12-09 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム

Publications (1)

Publication Number Publication Date
WO2023106257A1 true WO2023106257A1 (ja) 2023-06-15

Family

ID=86730481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044705 WO2023106257A1 (ja) 2021-12-09 2022-12-05 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム

Country Status (2)

Country Link
JP (1) JP2023086003A (ja)
WO (1) WO2023106257A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123326A (ja) * 2020-02-07 2021-08-30 三菱自動車工業株式会社 可変配光システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123326A (ja) * 2020-02-07 2021-08-30 三菱自動車工業株式会社 可変配光システム

Also Published As

Publication number Publication date
JP2023086003A (ja) 2023-06-21

Similar Documents

Publication Publication Date Title
US9878655B2 (en) Vehicle lamp
JP6506956B2 (ja) 車両用灯具システム
JP7186713B2 (ja) 車両用灯具
JP6218499B2 (ja) 車両用前照灯の点灯制御装置、車両用前照灯システム
JP6889588B2 (ja) 車両用灯具
JP7111708B2 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
JP6215882B2 (ja) 車両用灯具および車両灯具システム
JP6571384B2 (ja) 車両用前照灯の点灯制御装置、車両用前照灯システム
US20150003100A1 (en) Light-emitting apparatus and vehicle headlamp system
JP7260341B2 (ja) 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
JP2013154741A (ja) 車両用前照灯の点灯制御装置、車両用前照灯システム
WO2023106257A1 (ja) 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
JP2015058731A (ja) 車両用前照灯の点灯制御装置、車両用前照灯システム
WO2022196296A1 (ja) 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
WO2022085302A1 (ja) 可変配光システム
JP2015033954A (ja) 車両用前照灯の点灯制御装置、車両用前照灯システム
WO2024095633A1 (ja) 車両用前照灯の制御装置、車両用前照灯の制御方法、車両用前照灯システム
WO2024095634A1 (ja) 車両用前照灯の制御装置、車両用前照灯の制御方法、車両用前照灯システム
US20240116429A1 (en) Headlight controller, headlight control method, and headlight system
WO2023181816A1 (ja) 配光制御装置、車両用灯具システムおよび配光制御方法
WO2022185887A1 (ja) 車両用灯具
JP6162012B2 (ja) 車両用前照灯の点灯制御装置、車両用前照灯システム
JP7260340B2 (ja) 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
JP2022139713A (ja) 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
JP2021187353A (ja) 車両用前照灯の制御装置、車両用前照灯の制御方法、車両用灯具システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904186

Country of ref document: EP

Kind code of ref document: A1