WO2023106200A1 - 核酸の対象塩基配列中における変異を検出するための方法、核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキット - Google Patents

核酸の対象塩基配列中における変異を検出するための方法、核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキット Download PDF

Info

Publication number
WO2023106200A1
WO2023106200A1 PCT/JP2022/044363 JP2022044363W WO2023106200A1 WO 2023106200 A1 WO2023106200 A1 WO 2023106200A1 JP 2022044363 W JP2022044363 W JP 2022044363W WO 2023106200 A1 WO2023106200 A1 WO 2023106200A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
nucleic acid
base sequence
cationic
anionic
Prior art date
Application number
PCT/JP2022/044363
Other languages
English (en)
French (fr)
Inventor
尚宏 藤村
亜美 橘
智朗 内木
実 竹内
洋子 照内
晃司 渡邉
Original Assignee
日東紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡績株式会社 filed Critical 日東紡績株式会社
Priority to JP2023528075A priority Critical patent/JP7428951B2/ja
Priority to EP22904131.4A priority patent/EP4446435A1/en
Priority to CN202280081876.6A priority patent/CN118369437A/zh
Priority to KR1020247019353A priority patent/KR20240099469A/ko
Publication of WO2023106200A1 publication Critical patent/WO2023106200A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0627Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention provides a method for detecting a mutation in a target base sequence of a nucleic acid in a sample with respect to a standard base sequence, a method for selectively inhibiting amplification of a nucleic acid having a target base sequence in a nucleic acid amplification reaction, and these. Concerning a kit for implementation.
  • nucleic acid amplification is performed in the presence of a specific amphoteric copolymer, so that the standard base in the target base sequence
  • kind Code A1 Methods for detecting mutations to sequences and methods for selectively inhibiting amplification of nucleic acids having a base sequence of interest, and kits for doing the same.
  • Gene mutations may cause cancer, and early detection of such gene mutations is expected to lead to early cancer treatment.
  • mutations in specific genes are greatly involved in susceptibility to certain diseases, therapeutic effects of drugs, strength of side effects, and the like.
  • gefitinib trade name: Iressa
  • EGFR epidermal growth factor receptor
  • mutant genes extracted from tumor specimens contain a large amount of wild-type genes and a small amount of mutant genes
  • conventional methods for detecting mutant genes are still insufficient to detect a small amount of mutant genes. They often have no sensitivity.
  • the mutant gene is distinguished from the wild-type gene by electrophoresis or hybridization. Although there are methods, it is difficult for these methods to detect a very small amount of mutant gene contained in the wild-type gene with sufficient sensitivity and accuracy.
  • an artificial oligonucleotide having a base sequence complementary to the reference sequence of the wild-type gene is used to inhibit amplification of the wild-type gene and selectively amplify the mutant gene.
  • a so-called "clamping method” has been developed to The artificial nucleic acid used in this method is called a clamp nucleic acid, and in the process of nucleic acid amplification (i) strongly hybridizes with the wild-type gene, (ii) does not strongly hybridize with the mutant-type gene, and (iii) ) It has the property of being difficult to decompose during the nucleic acid amplification process, and when real-time PCR is performed using this, it is possible to detect mutations with a frequency of mutated genes up to 1%, and furthermore, real-time PCR amplification products is said to be able to detect mutations down to a frequency of 0.1% of the mutant gene (for example, Patent Literature 1, Non-Patent Literature 2, and Non-Patent Literature 3).
  • PNA peptide nucleic acid
  • LNA locked nucleic acid
  • BNA bridged nucleic acid
  • an object of the present invention is to provide a simple method for detecting a mutant gene with a mutant gene content lower than the detection limit of the mutant gene by the clamp-PCR method, and a kit for carrying out the method.
  • Another object of the present invention is to provide a simple method capable of selectively inhibiting amplification of a target nucleotide sequence in a nucleic acid amplification reaction and a kit for carrying out the method.
  • the present inventors conducted repeated studies on techniques for increasing the detection sensitivity of mutant genes by the clamp method.
  • the effect of selectively inhibiting the amplification of the type gene was enhanced by the presence of the amphoteric copolymer, thereby successfully increasing the detection sensitivity of the mutant type gene, leading to the present invention. Accordingly, the present invention provides the following methods, kits, enhancers and uses.
  • a method for detecting a mutation in a target base sequence of a nucleic acid in a sample with respect to a standard base sequence comprising: a clamp nucleic acid comprising a base sequence complementary to the standard base sequence and containing at least one non-natural nucleotide residue; It has a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic Using an amphoteric copolymer having a structural unit (1)/anionic structural unit (2)) in the range of 0.13 to 1.62, a nucleic acid amplification reaction is performed using the nucleic acid in the sample as a template.
  • the number of amplification cycles of the nucleic acid amplification reaction until the total amount of the nucleic acid amplification product reaches the threshold value is Determining that the mutation exists in the target base sequence of the nucleic acid in the sample when the total amount of amplification products is smaller than the number of amplification cycles of the nucleic acid amplification reaction until the threshold value is reached, [1] to [ 7], the detection method according to any one of the above items.
  • a kit for detecting mutations in a target base sequence of a nucleic acid in a sample with respect to a standard base sequence comprising: a clamp nucleic acid having a base sequence complementary to the standard base sequence and containing at least one non-natural nucleotide residue; It has a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic and an amphoteric copolymer in which the structural unit (1)/anionic structural unit (2)) is in the range of 0.13 to 1.62.
  • a method for inhibiting amplification of a nucleic acid in a sample having a predetermined base sequence of interest in a nucleic acid amplification reaction comprising: a clamp nucleic acid having a base sequence complementary to the target base sequence and containing at least one non-natural nucleic acid residue; It has a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic Using an amphoteric copolymer in which the structural unit (1)/anionic structural unit (2)) is in the range of 0.13 to 1.62, a nucleic acid amplification reaction is performed using the nucleic acid in the sample as a template.
  • R 9 is hydrogen or a methyl group
  • Y is independently hydrogen, Na, K, NH 4 , 1/2Ca, 1/2Mg, 1/2Fe, 1/3Al, or 1 /3Fe.
  • a kit for inhibiting amplification of a nucleic acid having a target base sequence in a nucleic acid amplification reaction comprising: a clamp nucleic acid having a base sequence complementary to the target base sequence and containing at least one non-natural nucleotide residue; It has a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic an amphoteric copolymer in which structural unit (1)/anionic structural unit (2)) is in the range of 0.13 to 1.62.
  • the amphoteric copolymer further contains a nonionic structural unit (3).
  • at least part of the cationic structural unit (1) is general formula (Ia) or general formula (Ib) (In the formula, R 1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a hydroxyl group, a cycloalkyl group having 5 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms.
  • An agent for enhancing the effect of inhibiting nucleic acid amplification of a nucleic acid having a target base sequence by a clamp nucleic acid having a base sequence complementary to the target base sequence and containing at least one non-natural nucleotide residue There is It has a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic An enhancer comprising an amphoteric copolymer, wherein structural unit (1)/anionic structural unit (2)) is in the range of 0.13 to 1.62.
  • the enhancer according to any one of [24] to [26], which is a structural unit (2-1) represented by: [28]
  • the amphoteric copolymer has a cationic structural unit (1) containing an amino group in its structure and an anionic structural unit (2), wherein the cationic structural unit (1) ) (cationic structural unit (1)/anionic structural unit (2)) is in the range of 0.13 to 1.62.
  • R 9 is hydrogen or a methyl group
  • Y is independently hydrogen, Na, K, NH 4 , 1/2Ca, 1/2Mg, 1/2Fe, 1/3Al, or 1 /3Fe.
  • Use of an amphoteric copolymer to enhance the nucleic acid amplification inhibitory effect of a clamp nucleic acid The amphoteric copolymer has a cationic structural unit (1) containing an amino group in its structure and an anionic structural unit (2), wherein the cationic structural unit (1)
  • R 9 is hydrogen or a methyl group
  • Y is independently hydrogen, Na, K, NH 4 , 1/2Ca, 1/2Mg, 1/2Fe, 1/3Al, or 1 /3Fe.
  • the amphoteric copolymer itself does not inhibit the nucleic acid amplification reaction, but can selectively enhance the effect of the clamp nucleic acid to inhibit amplification of a nucleic acid having a sequence complementary thereto.
  • the proportion of nucleic acids having mutations in the standard base sequence is very low relative to the proportion of nucleic acids having the standard base sequence complementary to the clamp nucleic acid in the sample. Even if (for example, 0.1% or less), the clamp nucleic acid selectively inhibits the amplification of the nucleic acid having the standard base sequence, while the nucleic acid having the mutation to the standard base sequence is amplified normally, and the nucleic acid having the mutation can be detected by a very sensitive and simple method.
  • a is a nucleic acid amplification curve when using the polymer of Example 2 (copolymer of diallylmethylamine/maleic acid 1:1) as an example of a nucleic acid amplification curve when the PCR reaction is not inhibited in Test 1.
  • b is a nucleic acid amplification curve when using the polymer of Comparative Example 7 (copolymer of diallyldimethylammonium chloride/acrylamide 8:1) as an example of a nucleic acid amplification curve when PCR reaction is inhibited in Test 1. show.
  • nucleic acid amplification curve in the case of enhancing the selective amplification inhibitory effect of a wild-type gene by a clamp nucleic acid containing BNA (BNA clamp) without inhibiting amplification of a mutant-type gene is shown in the presence or absence of a BNA clamp.
  • BNA clamp clamp nucleic acid containing BNA
  • the polymer of Example 4 dimethylaminopropyl methacrylamide hydrochloride/acrylamide/acrylic acid 1:1:2 copolymer
  • real-time analysis was performed using a wild-type gene or mutant gene as a template.
  • 1 shows a nucleic acid amplification curve when performing a PCR reaction.
  • KRAS WT/Mutant plasmid DNA used in Test 5 is shown.
  • no polymer was added, or the polymers of Examples 1, 2, 4 or 6 (copolymer of diallylamine hydrochloride/maleic acid 1:1, copolymer of diallylmethylamine/maleic acid 1:1 Polymer, dimethylaminopropyl methacrylamide hydrochloride/acrylamide/acrylic acid 1:1:2 copolymer or diallylamine hydrochloride/acrylamide/acrylic acid 1:1:2 copolymer) is added to obtain a variant.
  • 5 shows a nucleic acid amplification curve when a real-time PCR reaction was performed using the plasmid DNA of FIG.
  • FIG. 5 shows the results obtained by sequencing the PCR products obtained by carrying out a real-time PCR reaction using the plasmid DNA of FIG. 4 with a KRAS gene content of 0.01% as a template.
  • nucleic acid amplification in a nucleic acid amplification method using a clamp nucleic acid, nucleic acid amplification is performed in the presence of a specific amphoteric copolymer to detect mutations in a target base sequence with respect to a standard base sequence.
  • the present invention in another embodiment, relates to a method of inhibiting amplification of a nucleic acid having a given base sequence of interest by performing nucleic acid amplification in the presence of a clamping nucleic acid and a specific amphoteric copolymer.
  • the invention also, in yet other embodiments, relates to kits for carrying out these methods.
  • the present invention also relates to an enhancer of the nucleic acid amplification inhibitory effect of a clamp nucleic acid.
  • One embodiment of the present invention relates to a method for detecting mutation in a target base sequence of nucleic acid in a sample with respect to a standard base sequence.
  • a clamp nucleic acid having a base sequence complementary to a standard base sequence and containing at least one non-natural nucleotide residue and a specific amphoteric copolymer are prepared, and using these, a sample A nucleic acid amplification reaction is performed using the nucleic acid inside as a template. If the target base sequence has a mutation with respect to the standard base sequence, the region containing the target base sequence is preferentially amplified over the standard sequence, thereby making it possible to detect the presence of the mutation.
  • sample to be subjected to the method of the present invention is, depending on the embodiment, a sample that is assumed to contain a nucleic acid having a mutation or a nucleic acid that is subject to amplification inhibition. In this embodiment, mutation detection is desired. It is a sample that is assumed to contain nucleic acids that are
  • a sample is, for example, a sample prepared from a specimen taken from a mammal, typically a human. Examples include samples prepared from liquid samples such as blood, pleural effusion, bronchial lavage fluid, bone marrow fluid, lymph fluid, or solid samples such as lymph nodes, blood vessels, bone marrow, brain, spleen, skin and the like. Since the method of the present invention can detect nucleic acid mutations with extremely high sensitivity, it can be applied not only to specimens collected from lesions such as cancer, but also to specimens such as blood that contain only trace amounts of mutant genes. can be used.
  • target base sequence means a base sequence that is the target of mutation detection or amplification inhibition, depending on the method according to the embodiment of the present invention.
  • nucleic acid in the sample is a nucleic acid that can contain a nucleotide sequence that is the target of mutation detection or amplification inhibition.
  • target base sequence does not mean that it actually has a mutation or includes a base sequence that actually inhibits amplification, and the “nucleic acid in the sample” does not mean that it actually has mutation detection or amplification inhibition. It is not meant to include the base sequence of interest.
  • the "target base sequence” is the target base sequence for detecting the presence or absence of mutation
  • the “nucleic acid in the sample” includes the target base sequence for detecting the presence or absence of mutation.
  • the "region containing the target nucleotide sequence” is a region to be amplified by the method of the present invention.
  • Nucleic acid in the sample can be DNA or RNA, any naturally occurring or non-natural nucleic acid such as genomic DNA, cDNA, plasmid DNA, cell-free DNA, circulating DNA, RNA, miRNA, mRNA can include When using a sample from a specimen taken from a mammal, typically a human, the nucleic acid to be detected for mutation is often DNA, typically a genome of great clinical significance. DNA.
  • the nucleic acid in the sample is preferably genomic DNA from the viewpoint of increasing the effect of enhancing the inhibitory effect of nucleic acid amplification by the clamp nucleic acid.
  • Genomic DNA includes, for example, genomic DNA whose mutations (congenital or acquired mutations) are associated with the development and/or therapeutic susceptibility of a particular disease. Many such diseases are known, and representative examples thereof are various cancers. Further, genes whose mutations are known to be associated with cancer development and/or treatment sensitivity include, for example, ABL/BCR fusion gene (chronic myelogenous leukemia), HER2 gene (breast cancer), EGFR gene (non small cell lung cancer), c-KIT gene (gastrointestinal stromal tumor), KRAS gene (colonic cancer, pancreatic cancer), BRAF gene (melanoma, colon cancer), PI3KCA gene (lung cancer, colon cancer), FLT3 gene (acute myeloid leukemia), MYC gene (various cancers), MYCN gene (neuroblastoma), MET gene (lung cancer, gastric cancer, melanoma), BCL2 gene (follicular B lymphoma), and EML4/ALK fusion gene
  • Standard base sequence and mutations are used as a standard for determining whether the "target base sequence” has a mutation in the method for detecting mutations in the "target base sequence”.
  • “Mutation” means that the "subject nucleotide sequence” is substituted, inserted, deleted, inverted, duplicated, translocated, or a combination of two or more of these with respect to the "standard nucleotide sequence”. It refers to the state of having a sequence difference. In the present specification, such a “mutation” refers to a base sequence difference of 20% or less, a base sequence difference of 10% or less, a base sequence difference of 5% or less, or a base sequence difference of 1% or less.
  • a “mutant nucleic acid” typically has any base(s) by substitution, insertion, deletion, inversion, duplication, translocation, or a combination of two or more thereof, relative to a base sequence derived from a wild-type nucleic acid.
  • Nucleic acids with sequence differences preferably nucleic acids with such base sequence differences relative to wild-type genes known to be associated with the development and/or susceptibility to treatment of particular diseases.
  • mutations in the 12th codon or 13th codon of the second exon of the KRAS gene are known to be associated with the response rate of the molecular target drug cetuximab.
  • mutations in the 600th codon of the 15th exon are known to be associated with response rates to molecular target drugs cetuximab and panitumumab.
  • the mutation-free target sequence (standard base sequence) contained in the nucleic acid in the sample and the mutation are included.
  • the expected ratio of the target nucleotide sequence containing the mutation to the total of the target sequence may be less than 0.1%. In a preferred embodiment, it may be 0.05% or less, and in a more preferred embodiment, it may be 0.01% or less.
  • the expected value of the ratio of target nucleotide sequences containing mutations is clinically determined for each mutation.
  • clamp nucleic acid refers to a "nucleotide sequence” targeted to inhibit nucleic acid amplification (depending on the embodiment, it may be a "standard nucleotide sequence” or a "target nucleotide sequence”). It is an artificial nucleic acid composed of an oligonucleotide having a base sequence complementary to the base sequence complementary to (possible) and containing at least one non-natural nucleotide residue.
  • a "clamp nucleic acid” hybridizes with a "nucleotide sequence” targeted to inhibit nucleic acid amplification and inhibits nucleic acid amplification, but does not strongly hybridize with a nucleic acid having a nucleotide sequence that is not complementary to the nucleic acid amplification. do not impede
  • Non-natural nucleotides include, for example, Peptide Nucleic Acid (PNA), Bridged Nucleic Acid (BNA), Peptide Nucleic Acid (PHONA) having a phosphate group, and Morpholino Nucleic Acid.
  • PNA Peptide Nucleic Acid
  • BNA Bridged Nucleic Acid
  • Peptide Nucleic Acid Peptide Nucleic Acid having a phosphate group
  • Morpholino Nucleic Acid Peptide Nucleic Acid
  • First-generation BNA is also called locked nucleic acid (LNA) (see, for example, Non-Patent Documents 2 and 3 and Patent Documents 1 and 2).
  • a clamp nucleic acid containing PNA is a fully modified artificial nucleic acid consisting of an oligonucleotide containing one or more nucleotides forming a backbone with peptide bonds instead of phosphate bonds of nucleic acids.
  • Modified nucleotides typically have a structure in which the sugar-phosphate backbone of the nucleotide is replaced with a backbone of N-(2-aminoethyl)glycine units, and bases are linked via methylenecarbonyl bonds. Details of PNA are as described in Non-Patent Document 6.
  • the PNA clamp has desirable properties as a clamp nucleic acid because it has a stronger ability to hybridize with a DNA strand having a complementary structure than natural DNA and is not subject to degradation by nucleolytic enzymes.
  • a BNA-containing clamp nucleic acid is an artificial nucleic acid composed of an oligonucleotide containing one or more non-natural nucleotides having a structure in which the oxygen atom at the 2'-position and the carbon atom at the 4'-position of ribose are bridged.
  • One-generation BNA is also referred to as Locked nucleic acid (LNA).
  • LNA Locked nucleic acid
  • the BNA clamp has a fixed helical structure and can form a very stable double strand when hybridized to a nucleic acid having a complementary strand.
  • the binding to a nucleic acid having a complementary strand increases in proportion to the number of modified nucleotides, it is possible to obtain an appropriate hybridization ability by adjusting the length of the nucleic acid and the number of modified nucleotides. It is possible to exert a clamping effect with short oligonucleotide chains.
  • a representative example of a BNA clamp is an oligonucleotide containing modified nucleotides having the following structure.
  • First generation BNA: 2',4'-BNA (LNA) (eg, Patent Document 10)
  • Base is a pyrimidine or purine nucleobase, or a hydroxyl group, a hydroxyl group protected by a protecting group for nucleic acid synthesis, an alkoxy group having 1 to 5 carbon atoms, a mercapto group, a mercapto group protected by a protecting group for nucleic acid synthesis, or 1 carbon.
  • alkylthio groups amino groups, amino groups protected by protective groups for nucleic acid synthesis, amino groups substituted with alkyl groups having 1 to 5 carbon atoms, alkyl groups having 1 to 5 carbon atoms and halogen atoms (e.g.
  • R 2 is a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, carbon an aryl group having 6 to 14 carbon atoms, an aralkyl group in which an alkyl group having 1 to 6 carbon atoms is substituted with an aryl group having 6 to 14 carbon atoms, an acyl group, a sulfonyl group, or a silyl group, or a labeling molecule; m is an integer from 0 to 2, n is an integer of 1-3. )
  • Modified nucleotides of formula (IV) preferably have Base of benzoylaminopurin-9-yl, adenynyl, 2-isobutyrylamino-6-hydroxypurin-9-yl, guanynyl, 2-oxo-4-benzoyl consisting of amino-1,2-dihydropyrimidin-1-yl, cytosinyl, 2-oxo-5-methyl-4-benzoylamino-1,2-dihydropyrimidin-1-yl, 5-methylcytosinyl, uracinyl, and thyminyl groups is selected from the group, R 1 is a methyl group, m is 0 and n is 1;
  • the BNAs used in the present invention are not limited to the above, and other BNAs (eg, 5′-amino-2′, 4′-BNA, 2′,4′-BNACOC, 2′,4 '-BNANC, etc.) may also be used.
  • BNA clamps the linkages between modified nucleotides and nucleotides or between modified nucleotides are usually phosphodiester linkages, but may include phosphorothioate linkages. Details of BNA are described in Patent Documents 1 to 10, and a person skilled in the art to which the present invention belongs can understand what kind of artificial nucleic acid corresponds to the BNA clamp from known technical matters such as these documents. Easy to understand.
  • a clamp nucleic acid can form a stable double strand with a nucleic acid having a complementary sequence with a relatively small number of nucleotides, and can selectively inhibit nucleic acid amplification of the nucleic acid (wild-type nucleic acid such as the intercalator method described later).
  • a BNA clamp is preferred, and a BNA clamp containing a modified nucleotide having the structure of formula (IV) is particularly preferred in that the ⁇ Ct value is large when a mutation detection method based on the number of gene amplification cycles is used.
  • the length of the clamp nucleic acid and the number of unnatural nucleotides are factors that determine the binding strength to the target nucleic acid to inhibit nucleic acid amplification. Therefore, these factors strongly bind to target nucleic acids for which nucleic acid amplification is to be inhibited (nucleic acids having a standard nucleotide sequence in the method of detecting mutation), and are capable of selectively inhibiting amplification of the nucleic acids. It is preferable to set appropriately. From this point, the length of the clamp nucleic acid is usually 5 to 50 mer, preferably 6 to 30 mer, more preferably 7 to 25 mer, still more preferably 8 to 20 mer, and particularly preferably are 9-15mers.
  • the ratio of the non-natural nucleic acid in the clamp nucleic acid is generally 10 to 100%, preferably 30 to 95%, more preferably 40 to 90%, and even more preferably, from the same point of view. is 50 to 85%, particularly preferably 60 to 80%.
  • Synthesis of clamp nucleic acids can be performed based on documents such as Patent Documents 7 to 10. Alternatively, the synthesis of clamp nucleic acids may be outsourced to a contractor.
  • Amphoteric copolymer in the method of the present invention, when the primer set is used to perform a nucleic acid amplification reaction using the nucleic acid in the sample as a template, the specific amphoteric copolymer is present together with the blocker nucleic acid. A nucleic acid amplification reaction is performed.
  • the amphoteric copolymer used in the present invention enhances the selective nucleic acid amplification inhibitory effect of a blocker nucleic acid, and comprises a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2) ), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic structural unit (1) / anionic structural unit (2)) is 0.13 to 1.62 It is an amphoteric copolymer in the range of
  • the cationic structural unit (1) constituting the amphoteric copolymer used in the present invention is a cationic structural unit containing an amino group in its structure.
  • the cationic structural unit (1) is not restricted except that it is a structural unit containing an amino group as a cationic functional group in its structure. Structural units having various structures can be employed as the cationic structural unit (1) as long as the conditions are satisfied.
  • the amino group in the cationic structural unit (1) is also not particularly limited, but it is preferred to be a secondary amino group or a tertiary amino group, since the inhibitory effect of the clamp nucleic acid on nucleic acid amplification is greatly enhanced. A tertiary amino group is particularly preferred.
  • Structural units that are particularly preferable as the cationic structural unit (1) include the following structural unit (1-1), structural unit (1-2), structural unit (1-3) and structural unit (1-4). can be done. Among them, the structural unit (1-1), the structural unit (1-3) or the structural unit (1-4) is preferable as the cationic structural unit (1), and the structural unit (1-1) is a cationic structural unit ( 1) is particularly preferred.
  • the amphoteric copolymer may contain only one type of cationic structural unit (1), or may contain two or more types of cationic structural units (1).
  • the two or more types of cationic structural units (1) are a combination of structural units that are both classified as structural units (1-1), and a structural unit ( 1-2), a combination of structural units that are both classified as structural units (1-3), or a combination of structural units that are both classified as structural units (1-4), Alternatively, it may be a combination of structural units classified into different groups among the structural units (1-1) to (1-4). Cationic structural units that do not correspond to any of the structural units (1-1) to (1-4) may be used in combination.
  • the structural unit (1-1) is a structural unit having a structure represented by the following general formula (Ia) or general formula (Ib), or a structure that is an acid addition salt thereof.
  • the structural unit (1-1) is particularly preferable as the cationic structural unit (1) because it has a large effect of enhancing the inhibitory effect of nucleic acid amplification by the clamp nucleic acid. That is, by using the structural unit (1-1) as the whole or part of the cationic structural unit (1), the inhibitory effect of the clamp nucleic acid on nucleic acid amplification can be further enhanced.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a hydroxyl group, a cycloalkyl group having 5 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms.
  • R 1 is preferably a hydrogen atom, a methyl group, an ethyl group or a benzyl group, particularly preferably a hydrogen atom or a methyl group.
  • Structural unit (1-1) is a structure that is an inorganic acid salt or an organic acid salt of the structure represented by the above structural formula (1-a) or (1-b), that is, a structure that is an acid addition salt may have
  • the amphoteric copolymer has the structural unit (1-1)
  • the process of removing an addition salt such as HCl from a polymer is complicated and causes an increase in cost. Therefore, an addition salt-type structural unit (1- Using 1) is a preferable embodiment from the viewpoint of cost and the like.
  • the inorganic acid salt or organic acid salt in the structural unit (1-1) of this embodiment is hydrochloride, carboxylate, sulfonate, or alkyl sulfate salt. is preferred, and hydrochloride is particularly preferred.
  • the structural unit (1-2) is a structural unit having a structure represented by general formula (Ic) or general formula (Id) below.
  • R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a hydroxyl group, a cycloalkyl group having 5 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms. is a group, X a- represents a counter ion, and a represents the valence of the counter ion.
  • R 2 and R 3 are preferably each independently a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and particularly preferably a hydrogen atom or a methyl group.
  • the counter ion X a- is not particularly limited, it is preferably a chloride ion, a carboxylate ion, a sulfonate ion, or an alkyl sulfate ion from the viewpoint of availability, controllability of the reaction, and the like. or ethyl sulfate ion is particularly preferred.
  • a diallylamine monomer having a counterion from the viewpoint of production cost and the like. The process of removing counter ions from the polymer is complicated and causes an increase in cost. Using an amphoteric copolymer having a
  • the structural unit (1-3) is a structural unit having a structure represented by the following general formula (Ie) or a structure that is an acid addition salt thereof.
  • R 4 and R 5 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may have a hydroxyl group, an aralkyl group having 7 to 12 carbon atoms, or a cycloalkyl group having 5 to 6 carbon atoms. indicates a group.
  • Alkyl or aralkyl groups having 1 to 12 carbon atoms which are preferable for R 4 and R 5 may be linear or branched.
  • Examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group and dodecyl group. , benzyl group, and the like.
  • Preferred examples of cycloalkyl groups having 5 to 6 carbon atoms as R 4 and R 5 include, but are not limited to, cyclopentyl and cyclohexyl groups.
  • R 4 and R 5 are each independently preferably a hydrogen atom, a methyl group, an ethyl group or a benzyl group, particularly preferably a hydrogen atom or a methyl group.
  • the type of the addition salt is not particularly limited, but availability, ease of reaction control, etc. in terms of, for example, hydrochlorides, sulfates, phosphates, nitrates, sulfites, phosphites, nitrites, hydrobromides, acetates, amidosulfates, methanesulfonates, trifluoroacetates , p-toluenesulfonate and the like can be used.
  • hydrochlorides, sulfates, phosphates and amidosulfates are preferred, and hydrochlorides, sulfates, phosphates and amidosulfates having a structure derived from monoallylamine are particularly preferred.
  • the structural unit (1-4) is a structural unit having a structure represented by the following general formula (If) or a structure that is an acid addition salt thereof.
  • R 6 is a hydrogen atom or a methyl group
  • R 7 and R 8 each independently represent a hydrogen atom or an alkyl group having 1-4 carbon atoms
  • n is an integer of 2-4.
  • R 6 is preferably a methyl group
  • n is preferably 2 to 3
  • R 7 and R 8 are each independently preferably a hydrogen atom or a methyl group.
  • the type of the addition salt is not particularly limited, but availability, ease of reaction control, etc.
  • hydrochlorides, sulfates, phosphates, nitrates, sulfites, phosphites, nitrites, hydrobromides, acetates, amidosulfates, methanesulfonates, trifluoroacetates , p-toluenesulfonate and the like can be used.
  • hydrochlorides, sulfates, phosphates and amidosulfates are preferred, and hydrochlorides, sulfates, phosphates and amidosulfates having a structure derived from monoallylamine are particularly preferred.
  • the proportion of the cationic structural unit (1) in the total structural units of the amphoteric copolymer is usually 10 to 70 mol%, preferably 15 to 60 mol%, particularly preferably 20 to 55 mol%. .
  • the above ratio is defined based on the total amount of the two or more types of cationic structural units (1).
  • the anionic structural unit (2) constituting the amphoteric copolymer used in the present invention is a structural unit having an anionic functional group in its structure.
  • the anionic structural unit (2) is not restricted except that it is a structural unit containing an anionic functional group in its structure.
  • Structural units having various structures can be employed as the anionic structural unit (2) as long as the conditions are satisfied.
  • Structural units that are particularly preferable as the anionic structural unit (2) include the following structural unit (2-1), structural unit (2-2), structural unit (2-3) and structural unit (2-4). can be done.
  • the structural unit (2-1) is particularly preferred as the anionic structural unit (2).
  • the characteristic amphoteric copolymer may contain only one type of anionic structural unit (2), or may contain two or more types of anionic structural units (2).
  • the two or more types of anionic structural units (2) are a combination of structural units that are both classified as structural units (2-1), and a structural unit ( A combination of structural units classified as 2-2), a combination of structural units that are both classified as structural units (2-3), or a combination of structural units that are both classified as structural units (2-4)
  • it may be a combination of structural units classified into different groups among the structural units (2-1) to (2-4).
  • An anionic structural unit that does not correspond to any of the structural units (2-1) to (2-4) may be used in combination.
  • Structural unit (2-1) The structural unit (2-1) is a structural unit having a structure represented by general formula (II-a) below.
  • R 9 is hydrogen or a methyl group
  • Y is independently hydrogen, Na, K, NH 4 , 1/2Ca, 1/2Mg, 1/2Fe, 1/3Al, or 1/ represents 3Fe.
  • R9 is preferably hydrogen and Y is preferably hydrogen or Na.
  • Structural unit (2-1) is particularly preferably derived from maleic acid.
  • the structural unit (2-2) is a structural unit having a structure represented by general formula (II-b) below.
  • Y independently represents hydrogen, Na, K, NH 4 , 1/2Ca, 1/2Mg, 1/2Fe, 1/3Al, or 1/3Fe for each carboxyl group to be bonded.
  • Y is preferably hydrogen or Na.
  • the structural unit (2-3) is a structural unit having a structure represented by general formula (II-c) below.
  • Y is hydrogen, Na, K, NH 4 , 1/2Ca, 1/2Mg, 1/2Fe, 1/3Al, or 1/3Fe independently for each carboxyl group to be bound.
  • Y is preferably hydrogen or Na.
  • the structural unit (2-4) is a structural unit having a structure represented by general formula (II-d) below.
  • R 10 is hydrogen or a methyl group
  • Y is independently hydrogen, Na, K, NH 4 , 1/2Ca, 1/2Mg, 1/2Fe, 1/3Al, or 1/ 3Fe.
  • R 10 is preferably hydrogen and Y is preferably hydrogen or Na.
  • the structural unit (2-4) is preferably derived from (meth)acrylic acid, and particularly preferably derived from acrylic acid.
  • amphoteric copolymer used in the present invention contains the cationic structural unit (1) and the anionic structural unit (2), it is an amphoteric copolymer having cationic and anionic properties.
  • the cationic structural unit (1) having the specific structure and the anionic structural unit (2) are included, and the molar ratio of the cationic structural unit (1)/anionic structural unit (2) is within the specific range.
  • the cationic constitutional unit having a specific structure (1) stabilizes the binding between the clamp nucleic acid and DNA due to its strong positive charge, but on the other hand, too strong a positive charge inhibits DNA double-strand formation and denaturation into single strands.
  • the structural unit (2) having an anion charge in a specific molar ratio with respect to the cationic structural unit (1) having such a specific structure results in the positive charge provided by the cationic structural unit (1). It is presumed that the function of stabilizing the binding between the clamp nucleic acid and the DNA is expressed by appropriately adjusting the .
  • the cationic structural unit (1) is preferably the structural unit (1-1), and the anionic structural unit (2) is the structural unit (2-1).
  • an amphoteric copolymer having a structural unit (1-1) as a cationic structural unit (1) and a structural unit (2-1) as an anionic structural unit (2) is prepared as a standard in a sample. Even when the content of the target nucleotide sequence having mutations in the nucleotide sequence is low, the clamp nucleic acid can be used particularly preferably because the inhibitory effect of the clamp nucleic acid on nucleic acid amplification can be sufficiently enhanced.
  • the amphoteric copolymer may have structural units other than the cationic structural unit (1) and the anionic structural unit (2).
  • Other structural units include a nonionic structural unit (3-1) described later and a cationic structural unit (3 -2) can be mentioned.
  • the amphoteric copolymer preferably further contains a nonionic structural unit (3-1).
  • Nonionic structural unit (3-1) is a structural unit derived from a nonionic monomer copolymerizable with the cationic structural unit (1) and the anionic structural unit (2).
  • More specific examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, methacrylamide, N-methylmethacrylamide, dimethylmethacrylamide, N-(3- from dimethylaminopropyl)methacrylamide, acrylamide, dimethylacrylamide, hydroxyethylacrylamide, dimethylaminopropylacrylamide, dimethylaminopropylacrylamide methyl chloride quaternary salt, acryloylmorpholine, isopropylacrylamide, 4-t-butylcyclohexyl acrylate, or sulfur dioxide Derived building blocks can be mentioned. Particular preference is given to using building blocks derived from acrylamide or methacrylamide.
  • the nonionic structural unit (3-1) can usually be introduced into the amphoteric copolymer by using a nonionic monomer as the monomer.
  • the nonionic structural unit (3-1) is derived from a methacrylic acid ester-based monomer, an acrylic acid ester-based monomer, a methacrylamide-based monomer, or an acrylamide-based monomer
  • the above ratio is 0. .1/1 to 1/1 is preferred, 0.2/1 to 0.8/1 is more preferred, 0.3/1 to 0.7/1 is even more preferred, and 0 .4/1 to 0.6/1 is particularly preferred.
  • the nonionic structural unit (3-1) is derived from sulfur dioxide, the above ratio is preferably 0.1/1 to 1/1, preferably 0.2/1 to 1/1. Especially preferred.
  • An amphoteric copolymer has a cationic structural unit (1) and an anionic structural unit (2), and is therefore composed only of the cationic structural unit (1) and the anionic structural unit (2).
  • it may have other structural units.
  • Other structural units include a nonionic structural unit (3-1) described later and a cationic structural unit (3 -2) can be mentioned.
  • the ratio of the total of the cationic structural units (1) and the anionic structural units (2) to the total structural units of the amphoteric copolymer is not particularly limited, but it is usually 67 mol % or more, preferably 75 to 75 mol %. It is 100 mol %, more preferably 80 to 100 mol %, particularly preferably 90 to 100 mol %.
  • the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) in the amphoteric copolymer is 0.13 to 1.62. in the range.
  • the molar ratio of the cationic structural unit (1)/anionic structural unit (2) in the amphoteric copolymer is 0.13 or more, the binding between the clamp nucleic acid provided in the cationic structural unit (1) and DNA is enhanced.
  • the inhibitory effect of the clamp nucleic acid on nucleic acid amplification can be enhanced without impairing the stabilizing function.
  • the molar ratio of cationic structural unit (1)/anionic structural unit (2) in the amphoteric copolymer is preferably 0.20 or more, more preferably 0.25 or more, and 0.37 or more. more preferably 0.45 or more, most preferably 0.50 or more.
  • the molar ratio of the cationic structural unit (1)/anionic structural unit (2) in the amphoteric copolymer is 1.62 or less, double strand formation or single strand formation of DNA by the cationic structural unit (1) Denaturation inhibition to the strand is suppressed, and the function of stabilizing the binding between the clamp nucleic acid and DNA can be expressed.
  • the molar ratio of cationic structural unit (1)/anionic structural unit (2) in the amphoteric copolymer is preferably 1.30 or less, more preferably 1.25 or less, and 1.13 or less. more preferably, 1.05 or less is particularly preferable, and 1.00 or less is most preferable.
  • the molar ratio of the cationic structural unit (1)/anionic structural unit (2) in the amphoteric copolymer is preferably in the range of 0.25 to 1.25, more preferably in the range of 0.50 to 1.00. It is particularly preferred to have
  • the molar ratio of the cationic structural unit (1) and the anionic structural unit (2) in the amphoteric copolymer is amphoteric when the structures of the cationic structural unit (1) and the anionic structural unit (2) are known.
  • the copolymer is reprecipitated with an organic solvent such as isopropyl alcohol or acetone, and the reprecipitate is analyzed using a Perkin Elmer 2400II CHNS/O fully automatic elemental analyzer or an apparatus with equivalent performance, depending on the structure of the structural unit. It can be specified by analyzing in an appropriate mode.
  • helium gas was used as a carrier gas
  • a solid sample was weighed into a tin capsule, dropped into a combustion tube, and the sample was burned at a combustion temperature of 1800°C or higher in pure oxygen gas. It can be performed by detecting each measurement component by a frontal chromatography method using a detector and quantifying the content of each element using a calibration coefficient.
  • 1H-NMR or 13C-NMR was used before the measurement with the above elemental analyzer.
  • the structure of each structural unit is specified by a known method.
  • the molar ratio of the cationic structural unit (1)/anionic structural unit (2) in the amphoteric copolymer depends on each monomer supplied in the production (copolymerization) of the amphoteric copolymer, especially the cationic structural unit ( Select the type and amount of the monomer that leads to 1) and the monomer that leads to the anionic structural unit (2), production (copolymerization) conditions, such as the type and amount of catalyst, copolymerization temperature and time, etc. By adjusting, it is possible to adjust as appropriate.
  • the method for producing the amphoteric copolymer is not particularly limited, and it can be produced by a method known in the art.
  • Other cationic monomers, anionic monomers having a structure corresponding to the anionic structural unit (2), and optionally nonionic monomers having a structure corresponding to the nonionic structural unit (3) It can be produced by copolymerizing monomers.
  • the solvent for copolymerizing a cationic monomer having a structure corresponding to the cationic structural unit (1), an anionic monomer having a structure corresponding to the anionic structural unit (2), etc. is not particularly limited. or organic solvents such as alcohols, ethers, sulfoxides, and amides, but water-based solvents are preferred.
  • the monomer concentration is Although it varies depending on the type of copolymer and the type of solvent for copolymerization, it is usually 10 to 75% by mass in the case of an aqueous solvent.
  • This copolymerization reaction is usually a radical polymerization reaction and is carried out in the presence of a radical polymerization catalyst.
  • the type of radical polymerization catalyst is not particularly limited, and preferred examples thereof include peroxides such as t-butyl hydroperoxide, persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate, azobis-based catalysts, Examples include water-soluble azo compounds such as diazo compounds.
  • the amount of the radical polymerization catalyst added is generally 0.1 to 20 mol%, preferably 1.0 to 10 mol%, relative to the total monomers.
  • the polymerization temperature is generally 0-100° C., preferably 5-80° C.
  • the polymerization time is generally 1-150 hours, preferably 5-100 hours.
  • the atmosphere for polymerization the atmosphere does not cause any serious problem in polymerizability, but the atmosphere can be carried out in an atmosphere of an inert gas such as nitrogen.
  • nucleic Acid Amplification Reaction In the method according to the present embodiment, a nucleic acid amplification reaction is performed using a clamp nucleic acid and an amphoteric copolymer, using the nucleic acid in the sample as a template.
  • the nucleic acid amplification method is not particularly limited, but examples include real-time PCR, digital PCR, traditional PCR, PCR methods such as RT-PCR, LAMP method, ICAN method, NASBA method, LCR method, and SDA method. , TRC method, and TMA method.
  • the nucleic acid amplification method is preferably the PCR method from the viewpoint of versatility and simplicity of the technique, and more preferably the real-time PCR method because the nucleic acid amplification product can be easily quantified.
  • the composition of the reaction solution for nucleic acid amplification varies somewhat depending on the nucleic acid amplification method used, but usually, in addition to the above-described clamp nucleic acid and amphoteric copolymer, a primer set and deoxynucleoside triphosphate as a substrate (for example, dATP, dTTP, dCTP and dGTP: hereinafter collectively referred to as dNTPs) and a nucleic acid synthetase (e.g., DNA polymerase) are contained in a buffer, and magnesium ions (e.g., at a concentration of 1 to 6 mM in the reaction solution).
  • a primer set and deoxynucleoside triphosphate as a substrate for example, dATP, dTTP, dCTP and dGTP: hereinafter collectively referred to as dNTPs
  • a nucleic acid synthetase e.g., DNA polymerase
  • an appropriate detection reagent such as an intercalator, a fluorescence-labeled probe, or a cycling probe is also included in the nucleic acid amplification reaction solution. included in
  • the primer set only needs to be able to amplify the region containing the target base sequence by the nucleic acid amplification method, and is usually designed to hybridize to a predetermined region adjacent to the region to be amplified. may contain a sequence that hybridizes to part of the target base sequence.
  • a primer can be composed of a nucleic acid such as DNA or RNA. Appropriate concentrations of the primers may be selected in the range of 20 nM to 2 ⁇ M in the reaction solution.
  • the length of the primer is usually 5-40 mer, preferably 12-35 mer, more preferably 14-30 mer, still more preferably 15-25 mer.
  • the distance between primers, that is, the region to be amplified is usually 50-5000 bases, preferably 100-2000 bases.
  • Primer design may be performed manually, or appropriate software for primer design may be used. Examples of such software include Primer3 software (http://frodo.wi.mit.edu).
  • the concentration of dNTP may usually be selected from concentrations at which the respective concentrations of dATP, dTTP, dCTP and dGTP in the reaction solution are in the range of 100-400 ⁇ M.
  • the nucleic acid synthetase includes, for example, DNA polymerase, RNA polymerase, reverse transcriptase, etc. Depending on the nucleic acid amplification method used, an enzyme with suitable properties may be used. For the PCR method, for example, Taq DNA polymerase, Pfu DNA polymerase, and various other thermostable DNA polymerases developed by bioscience-related companies are preferably used.
  • a buffer that has the optimum pH and optimum salt concentration for the DNA polymerase to be used.
  • ribonuclease H RNaseH
  • RT reverse transcriptase
  • kits are commercially available for each nucleic acid amplification method, and the nucleic acid amplification reaction solution attached to such a commercially available kit may be used.
  • the concentration of the nucleic acid that serves as the template for the nucleic acid amplification reaction, that is, the “nucleic acid in the sample” in the reaction solution is usually 0.3 ng to 3 ⁇ g per 100 ⁇ l of the reaction solution. Since the frequency of non-specific amplification increases, it is preferable to suppress the amount to 0.5 ⁇ g or less per 100 ⁇ l of the reaction solution.
  • the amount of the clamp nucleic acid in the reaction solution is determined according to the amount of the nucleic acid having the target nucleotide sequence assumed to have the mutation relative to the amount of the nucleic acid having the standard nucleotide sequence (e.g., wild-type nucleic acid) in the sample.
  • the base sequence has mutations, it is preferable to select an amount that sufficiently inhibits the amplification of the nucleic acid having the standard base sequence and preferentially amplifies the nucleic acid containing the target base sequence having the mutation.
  • the concentration is preferably 10 nM to 1 ⁇ M, more preferably 20 nM to 500 nM, and particularly preferably 50 nM to 200 nM.
  • the concentration of the amphoteric copolymer in the reaction solution is preferably selected appropriately so as to enhance the selective inhibitory effect of the clamp nucleic acid on the nucleic acid amplification reaction without adversely affecting the nucleic acid amplification reaction.
  • the concentration of the amphoteric copolymer in the reaction solution varies depending on the type of polymer, but is usually 0.001 to 0.500% by mass, preferably 0.010 to 0.300% by mass. Yes, more preferably 0.020 to 0.150% by mass, particularly preferably 0.025 to 0.100% by mass.
  • the clamp nucleic acid When a nucleic acid amplification reaction is performed using the above-mentioned clamp nucleic acid and the diallylamine/sulfur dioxide copolymer with the nucleic acid in the sample as a template, the clamp nucleic acid strongly binds to the nucleic acid having the standard base sequence, resulting in an amplification reaction.
  • the co-existing amphoteric copolymers enhance this inhibitory effect.
  • the binding force of the clamp nucleic acid is greatly reduced to base sequences having mutations relative to the standard base sequence, annealing and primer elongation are hardly inhibited, resulting in normal nucleic acid amplification reactions. Also, amphoteric copolymers by themselves do not inhibit nucleic acid amplification reactions.
  • a minute amount of nucleic acid having a mutation in the nucleic acid in the sample for example, 0.1% or less or 0.05% or less, particularly 0.02% or less
  • the amplification of the nucleic acid having the standard base sequence is selectively inhibited, and the nucleic acid having the mutation is preferentially amplified, so it is contained in a very small amount. Nucleic acids with mutations can be detected.
  • the presence of a mutation is detected using the characteristics of the nucleic acid amplification reaction described above. That is, while the amplification of a nucleic acid having a standard base sequence is selectively inhibited, when the target base sequence has mutations relative to the standard base sequence, the region containing the target base sequence is preferentially amplified, As a result, the progress rate of nucleic acid amplification reaction, the amount of reaction products, etc. differ depending on the presence or absence of mutations, and these are used to detect mutations.
  • mutation detection includes a method of detecting the final product of the amplification reaction and a method of confirming amplification over time during the amplification reaction.
  • the number of amplification cycles of the nucleic acid amplification reaction until the total amount of the nucleic acid amplification product reaches the threshold, the amount of the nucleic acid having the mutation in the nucleic acid amplification product, or the amount of the nucleic acid having the mutation in the nucleic acid amplification product reaches the threshold. Mutations can be detected based on the number of amplification cycles of the nucleic acid amplification reaction to reach.
  • a method of detecting mutation based on the number of amplification cycles of a nucleic acid amplification reaction until the total amount of nucleic acid amplification products reaches a threshold value is preferred.
  • a threshold value is preferred.
  • by confirming the base sequence of the amplification product by direct sequencing or the like accurate and highly sensitive detection can be achieved.
  • mutations can be detected accurately and with high sensitivity without relying on sequence determination.
  • the solution after the amplification reaction is deproteinized with a phenol/chloroform (1:1) solution, and the aqueous layer is treated directly, or after ethanol precipitation.
  • a method of purifying using a purification kit and measuring the absorbance of the purified solution at a wavelength of 260 nm using an absorption photometer A method of detecting by Southern hybridization using gold nanoparticles; a method of detecting by chromatohybridization using gold nanoparticles; a method of measuring the turbidity of a solution of amplified nucleic acid; Alternatively, after the amplification reaction, electrophoresis on an agarose gel or polyacrylamide gel is performed, fluorescence emission is captured in an imaging plate, and a suitable detection device is used for detection.
  • Examples of methods for detecting mutations based on the number of amplification cycles of a nucleic acid amplification reaction until the total amount of nucleic acid amplification products reaches a threshold include real-time PCR methods such as the intercalator method, the TaqManTM probe method, and the cycling probe method. .
  • the threshold can be automatically detected by a real-time PCR device (eg, Step One Plus real-time PCR system (Thermo Fisher Scientific)).
  • the intercalator method is a method that uses an intercalating fluorescent dye (sometimes called an intercalator).
  • An intercalator is a reagent that specifically binds between base pairs of a double-stranded nucleic acid to emit fluorescence, and emits fluorescence when irradiated with excitation light. Based on the detection of fluorescence intensity derived from the intercalator, the amount of primer extension product can be determined. In this embodiment, by monitoring this fluorescence intensity in real time, it is possible to know the number of amplification cycles of the nucleic acid amplification reaction until the total amount of nucleic acid amplification products reaches the threshold value.
  • any intercalator commonly used in this field can be used, for example, SYBRTM Green I (Molecular Probes), ethidium bromide, fluorene, and the like.
  • the TaqManTM probe method uses an oligo labeled with a fluorescent group (reporter) at one end (usually the 5′ end) and a quenching group at the other end (usually the 3′ end) that hybridizes to a specific region of the nucleic acid of interest.
  • a fluorescent group reporter
  • quenching group at the other end (usually the 3′ end) that hybridizes to a specific region of the nucleic acid of interest.
  • Real-time PCR using nucleotide probes is a method capable of highly sensitive and quantitative detection of a trace amount of a target nucleic acid.
  • the probe normally inhibits the fluorescence of the reporter by a quenching group. With this fluorescent probe completely hybridized to the detection region, PCR is performed from the outside thereof using DNA polymerase.
  • the fluorescent probe is hydrolyzed by its exonuclease activity, the reporter dye is released, and fluorescence is emitted.
  • the fluorescent probe is hydrolyzed by its exonuclease activity, the reporter dye is released, and fluorescence is emitted.
  • this fluorescence intensity in real time, it is possible to know the number of amplification cycles of the nucleic acid amplification reaction until the total amount of nucleic acid amplification products reaches the threshold value.
  • the cycling probe method is a highly sensitive detection method using a combination of a chimeric probe consisting of RNA and DNA and RNase H.
  • the probe is labeled with a fluorescent substance (reporter) on one side and a substance that quenches fluorescence (quencher) on the other side with the RNA portion sandwiched therebetween. In its intact state, this probe does not fluoresce due to quenching, but after hybridizing with an amplification product whose sequence is complementary, it becomes strongly fluorescent when the RNA portion is cleaved by RNase H.
  • the total amount of nucleic acid amplification products can be determined by measuring the fluorescence intensity, and by monitoring the fluorescence intensity in real time, the nucleic acid amplification reaction can be continued until the total amount of nucleic acid amplification products reaches a threshold value.
  • the number of amplification cycles can be known. In this method, if there is a mismatch near the RNA of the cycling probe, cleavage by RNase H does not occur, so detection with very high specificity, which can recognize even a single nucleotide difference, is possible. Cycling probes can also be obtained by entrusting the design and synthesis to an appropriate company.
  • Examples of methods for detecting mutations based on the amount of nucleic acids with base mutations in nucleic acid amplification products include the Sanger sequencing method and the melting curve analysis method.
  • a probe that specifically binds to a nucleic acid having a base mutation is used. , applying the real-time PCR method.
  • the present invention provides a kit for carrying out the above-described method for detecting mutation in a target nucleotide sequence.
  • the kit according to this embodiment comprises a clamp nucleic acid having a base sequence complementary to a standard base sequence and containing at least one residue of a non-natural nucleic acid; It has a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic an amphoteric copolymer in which the structural unit (1)/anionic structural unit (2)) is in the range of 0.13 to 1.62;
  • a primer set capable of amplifying a region containing the target base sequence by a nucleic acid amplification method; and optionally other reagents for performing nucleic acid amplification reactions.
  • clamp nucleic acid amphoteric copolymer, and primer set are as described in the method for detecting mutations in the target base sequence, and preferred embodiments and specific examples are also the same as the method.
  • nucleoside triphosphates examples include nucleoside triphosphates, nucleic acid synthase, and amplification reaction buffers.
  • Nucleoside triphosphates may contain substrates (dNTPs, rNTPs, etc.) for nucleic acid synthetase enzymes.
  • the nucleic acid synthetase is an enzyme corresponding to the nucleic acid amplification method targeted by the kit, and includes DNA polymerase, RNA polymerase, reverse transcriptase, and the like.
  • Buffers for amplification reactions include, for example, Tris buffer, phosphate buffer, Veronal buffer, borate buffer, Good's buffer, etc., which are commonly used for nucleic acid amplification reactions and hybridization reactions. Buffer solutions are included, and the pH thereof is not particularly limited, but the range of 5 to 9 is usually preferred.
  • Kits according to this embodiment may also include reagents for detecting the nucleic acid amplification reaction products described above. Examples thereof include intercalators, fluorescently labeled probes, cycling probes, etc. used for real-time PCR. It may also contain other components commonly used in nucleic acid amplification reaction reagents, such as stabilizers, preservatives, and the like.
  • the primer set and other reagents for carrying out the nucleic acid amplification reaction are necessary for carrying out the nucleic acid amplification reaction, but they may not be included in the kit.
  • other components such as reagents for detecting nucleic acid amplification reaction products, stabilizers, preservatives, etc. are optional components in the nucleic acid amplification reaction and may not be included in the kit.
  • the present invention provides a method for inhibiting amplification of a nucleic acid having a predetermined target base sequence.
  • a clamp nucleic acid having a base sequence complementary to a target base sequence and containing at least one non-natural nucleic acid residue; It has a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic A nucleic acid amplification reaction is carried out using an amphoteric copolymer in which the structural unit (1)/anionic structural unit (2)) is in the range of 0.13 to 1.62, using the nucleic acid as a template.
  • the "sample” is a sample assumed to contain a nucleic acid that is the target of amplification inhibition
  • the "target base sequence” is the base sequence that is the target of amplification inhibition
  • the “in the sample “Nucleic acid” is a nucleic acid that can contain a nucleotide sequence that is subject to amplification inhibition.
  • these terms do not mean that the "nucleic acid in the sample” actually contains the base sequence that is the target of amplification inhibition.
  • the “clamp nucleic acid” in this embodiment has a base sequence complementary to the "target base sequence", and the presence of such a “clamp nucleic acid” makes it possible to amplify the nucleic acid having the "target base sequence”. inhibited.
  • the specific amphoteric copolymer inhibits amplification of a nucleic acid having a target base sequence by coexisting with a clamp nucleic acid having a base sequence complementary to the target base sequence.
  • the effect of the clamp nucleic acid is enhanced, and amplification of the nucleic acid can be selectively inhibited even when the nucleic acid having the target base sequence is present in a large amount in the sample.
  • sample and the nucleic acid in the sample are as described in the method for detecting mutations in a target base sequence, and preferred embodiments and specific examples are also the same as the method.
  • the details of the clamp nucleic acid and the amphoteric copolymer are also the same as described in the method for detecting mutations in the target nucleotide sequence, and preferred embodiments and specific examples are also the same as the method.
  • the details of the nucleic acid amplification reaction and the reagents for carrying out the nucleic acid amplification reaction are also as described in the method and kit for detecting mutations in the target base sequence, and preferred embodiments and specific examples are also the method and the kit. Same as kit.
  • kits for carrying out the method of doing.
  • the kit according to this embodiment comprises a clamp nucleic acid having a base sequence complementary to a target base sequence and containing at least one non-natural nucleotide residue; It has a cationic structural unit (1) containing an amino group in the structure and an anionic structural unit (2), and the molar ratio of the cationic structural unit (1) to the anionic structural unit (2) (cationic an amphoteric copolymer having a structural unit (1)/anionic structural unit (2)) in the range of 0.13 to 1.62;
  • a primer set capable of amplifying a region containing the target base sequence by a nucleic acid amplification method; and optionally other reagents for performing nucleic acid amplification reactions.
  • sample target base sequence
  • nucleic acid in sample and “clamp nucleic acid” in the present embodiment are described in the method for inhibiting amplification of a nucleic acid having a target base sequence in a nucleic acid amplification reaction. is the same as Other aspects of the sample and the nucleic acid in the sample are the same as those described in the method for detecting mutations in a target base sequence, and preferred embodiments and specific examples are also the same as the method.
  • the details of the clamp nucleic acid and the amphoteric copolymer are also the same as described in the method for detecting mutations in the target nucleotide sequence, and preferred embodiments and specific examples are also the same as the method.
  • nucleic acid amplification reaction and the reagents for carrying out the nucleic acid amplification reaction are also as described in the method and kit for detecting mutations in the target base sequence, and preferred embodiments and specific examples are also the methods. It is the same.
  • nucleic Acid Amplification Inhibition Enhancer for Enhancement of Nucleic Acid Amplification Inhibition by Clamp Nucleic Acid
  • An amplification inhibition enhancer is provided.
  • This enhancer has a cationic structural unit (1) containing an amino group in its structure and an anionic structural unit (2), wherein the anionic structural unit (1) is divided into the anionic structural units (2). It includes an amphoteric copolymer in which the molar ratio (cationic structural unit (1)/anionic structural unit (2)) is in the range of 0.13 to 1.62.
  • Nucleic acid amplification performed using this enhancer is performed using "a clamp nucleic acid having a base sequence complementary to the target base sequence and containing at least one non-natural nucleotide residue.”
  • the meanings of the terms “sample”, “target base sequence”, “nucleic acid in the sample” and “clamp nucleic acid” in the present embodiment are that the amplification of a nucleic acid having a target base sequence is inhibited in a nucleic acid amplification reaction. It is similar to that described in Methods.
  • the "enhancing agent for the effect of inhibiting by a clamp nucleic acid" includes the above-mentioned amphoteric copolymer, which is also as described in the method for detecting a mutation in a target base sequence, and is a preferred embodiment. and specific examples are the same as those of the method.
  • Polymer Aqueous Solution Used The polymers or monomers shown in the table below were dissolved in water to prepare a pH 7.0, 10% by mass aqueous solution. In the table, all product names are those of Nittobo Medical Co., Ltd. Polymerization conditions for Polymers 1 to 18 are as follows. Polymer 1: 160.07 g (0.80 mol) of 66.78% by mass diallylamine hydrochloride, 78.45 g (0.80 mol) of maleic anhydride are placed in a 500 mL four-necked flask equipped with a thermometer, stirrer and condenser. mol) and 91.86 g of distilled water were charged, and the internal temperature was raised to 50°C.
  • a 28.5% by mass ammonium persulfate aqueous solution was added in an amount such that the amount of ammonium persulfate in the aqueous solution was 0.5% by mass relative to the total amount of the monomers to initiate polymerization. After 4 hours, the amount of ammonium persulfate is 0.5% by mass based on the total amount of monomers. After 20 and 26 hours, the amount of ammonium persulfate is 1.0% by mass based on the total amount of monomers. After 45 and 51 hours, the total amount of monomers is The aqueous solution of ammonium persulfate was added in such an amount that the ammonium persulfate content was 1.5% by mass, and the mixture was reacted for 68 hours.
  • Polymer 2 1.86 kg (19.0 mol) of maleic anhydride and 0.34 kg of distilled water were charged into a 20 L four-necked flask equipped with a thermometer, stirrer and condenser, and 2.11 kg of diallylmethylamine ( 19.0 mol) was added dropwise under cooling. After that, the internal temperature was raised to 50°C. A 28.5% by mass ammonium persulfate aqueous solution was added in such an amount that the ammonium persulfate was 0.5% by mass with respect to the total amount of the monomers to initiate polymerization.
  • a 28.5% by mass ammonium persulfate aqueous solution was added in such an amount that the amount of ammonium persulfate would be 1 mol % with respect to the total amount of the monomers to initiate polymerization.
  • the ammonium persulfate aqueous solution was added in such an amount that the ammonium persulfate was 1 mol % based on the total amount of the monomers, and after 24 and 28 hours, the amount of ammonium persulfate was 2 mol % based on the total amount of the monomers.
  • Polymer 4 16.15 (equivalent to 0.04 mol) of dimethylaminopropyl methacrylamide hydrochloride (solid concentration: 51.2% by mass) was placed in a 300 mL four-necked flask equipped with a thermometer, stirrer, and condenser. ), 2.93 g (equivalent to 0.04 mol) of acrylamide (97% by mass of solid content), 5.82 g (equivalent to 0.08 mol) of acrylic acid (99% by mass of solid content), and 143 g of distilled water 0.86 g was charged and the temperature was raised to 60°C.
  • Polymer 6 In a 300 mL four-necked flask equipped with a thermometer, a stirrer and a condenser, 20.43 g (equivalent to 0.1 mol) of diallylamine hydrochloride (solid concentration: 65.40% by mass), distilled water was charged, and the temperature was raised to 65°C.
  • Polymer 7 29.15 g (equivalent to 0.30 mol) of diallylamine (concentration 100% by mass), fumaric acid (concentration 100% by mass), in a 300 mL four-necked flask equipped with a thermometer, stirrer and condenser and 227.45 g of distilled water were charged, and the temperature was raised to 50°C. 0.57 g (equivalent to 0.0054 mol) of sodium hypophosphite (concentration 100% by mass) is added, and 28.5% by mass of an aqueous solution of ammonium persulfate is added in an amount such that ammonium persulfate is 10% by mass with respect to the total amount of monomers.
  • Polymer 8 16.15 g (0.04 mol) of 51.2% N-dimethylaminopropyl methacrylamide hydrochloride, 97.0% acrylamide in a 300 mL 4-necked flask equipped with a thermometer, stirrer and condenser. 5.86 g (0.08 mol), 5.82 g (0.08 mol) of 99.0% acrylic acid, and 169.36 g of distilled water were charged, and the internal temperature was raised to 60°C.
  • Polymerization was initiated by adding a 28.5% by mass aqueous solution of ammonium persulfate in such an amount that the amount of ammonium persulfate would be 0.25 mol % with respect to the total amount of the monomers. After 2 and 4 hours, the ammonium persulfate aqueous solution was added in such an amount that the amount of ammonium persulfate was 0.5 mol % with respect to the total amount of monomers, and after 6 hours, the amount of ammonium persulfate was 0.75 mol % with respect to the total amount of monomers. reacted over time.
  • Polymer 9 14.13 g (0.035 mol) of 51.2% N-dimethylaminopropyl methacrylamide hydrochloride, 97.0% acrylamide in a 300 mL 4-necked flask equipped with a thermometer, stirrer and condenser. 2.56 g (0.035 mol), 10.19 g (0.140 mol) of 99.0% acrylic acid, and 171.23 g of distilled water were charged, and the internal temperature was raised to 60°C. A 28.5% by mass ammonium persulfate aqueous solution was added in such an amount that the amount of ammonium persulfate would be 0.25 mol % with respect to the total amount of the monomers to initiate polymerization.
  • ammonium persulfate aqueous solution was added in such an amount that the amount of ammonium persulfate was 0.5 mol % with respect to the total amount of monomers, and after 6 hours, the amount of ammonium persulfate was 0.75 mol % with respect to the total amount of monomers. reacted over time.
  • Polymer 10 In a 300 mL four-necked flask equipped with a thermometer, stirrer, and condenser, 18.17 g (equivalent to 0.05 mol) of dimethylaminopropyl methacrylamide hydrochloride (solid content concentration: 51.2% by mass) ), 74.86 g of distilled water was charged, and the temperature was raised to 60°C. A 28.5% by mass aqueous solution of ammonium persulfate was added every hour in amounts corresponding to 0.25, 0.5, 0.5, and 0.75 mol% of ammonium persulfate relative to the total amount of the monomer, and the mixture was heated at 60°C. The reaction was continued overnight.
  • Polymer 11 A 300 mL four-necked flask equipped with a thermometer, a stirrer, and a condenser was charged with 189.16 g of distilled water (an amount to give a monomer concentration of 10% by mass), and the temperature was raised to 60°C. After adding an amount of 28.5% by mass of ammonium persulfate aqueous solution to 3.0% by mass of ammonium persulfate with respect to the total amount of monomers, 63.06 g of 40% by mass of acrylic acid aqueous solution was added dropwise over 3 hours, and the temperature was 60 ° C. The reaction was continued overnight at .
  • Polymer 12 10.63 g (0.065 mol) of 57.22 wt% allylamine hydrochloride and 65.22 wt% diallylamine hydrochloride in a 1 L four-necked flask equipped with a thermometer, stirrer and condenser. 253.02 g (1.235 mol) and 31.35 g of distilled water were charged, and the temperature was raised to 60°C. A 28.5% by mass ammonium persulfate aqueous solution was added in such an amount that the amount of ammonium persulfate would be 0.25% by mass relative to the total amount of the monomers to initiate polymerization.
  • the amount of ammonium persulfate is 0.25% by mass with respect to the total amount of monomers.
  • the aqueous ammonium persulfate solution was added and allowed to react overnight.
  • Polymer 13 124.37 g (0.50 mol) of 65.0% diallyldimethylammonium chloride, 4.44 g (0.06 mol) of acrylamide in a 300 mL four-necked flask equipped with a thermometer, stirrer and condenser. , 0.85 g of sodium hypophosphite and 84.39 g of distilled water were charged, and the internal temperature was raised to 50°C.
  • a 28.5% by mass ammonium persulfate aqueous solution was added in such an amount that the amount of ammonium persulfate would be 0.2% by mass relative to the total amount of the monomers to initiate polymerization. After 4 hours, the amount of ammonium persulfate is 0.3% by mass based on the total amount of monomers. After 23 hours, the amount of ammonium persulfate is 0.5% by mass based on the total amount of monomers. After 28 hours, the amount of ammonium persulfate is based on the total amount of monomers. was added to the aqueous solution of ammonium persulfate in such an amount that the content was 1.0% by mass, and the reaction was allowed to proceed for 48 hours.
  • Polymer 14 209.67 g (1.3 mol) of 58.01% by mass of allylamine hydrochloride and 63.61% by mass of dimethylallylamine hydrochloride were placed in a 1 L four-necked flask equipped with a thermometer, stirrer and condenser. 248.51 g (1.3 mol) of salt was charged and the temperature was raised to 60°C. Initiator V-50 (2,2′-azobis(2-methylpropionamidine) dihydrochloride) was added in 3 divided portions so that V-50 would be 12 mol% of the total amount of monomers, and polymerization was carried out for 72 hours. did Then, it was heat-decomposed at 60° C. for 48 hours.
  • Polymer 15 25.95 g of distilled water, 0.088 mol of diallylmethylamine hydrochloride aqueous solution, and 0.011 mol of acrylamide were placed in a 100 ml three-necked flask equipped with a stirrer, thermometer and glass stopper, and the temperature was raised to 55°C. .
  • a 28.5% by mass aqueous solution of ammonium persulfate was added in 7 divided portions in such an amount that the amount of ammonium persulfate would be 4.0 mol% with respect to the total amount of the monomers, and polymerization was carried out at 55°C.
  • Polymer 16 24.71 g of distilled water, 0.06 mol of diallylmethylamine hydrochloride aqueous solution, and 0.06 mol of N-isopropylacrylamide were placed in a 100 ml three-necked flask equipped with a stirrer, thermometer and glass stopper, and heated to 55°C. heated up. A 28.5% by mass aqueous solution of ammonium persulfate was added in 7 divided portions in such an amount that the amount of ammonium persulfate would be 3.25 mol% with respect to the total amount of the monomers, and polymerization was carried out at 55°C.
  • Polymer 17 In a 300 mL four-necked flask equipped with a thermometer, stirrer, and condenser, 32.30 g (0.08 mol equivalent) of dimethylaminopropyl methacrylamide hydrochloride (solid content concentration: 51.2% by mass) ), 2.93 g (equivalent to 0.04 mol) of acrylamide (97% by mass of solid content), 2.91 g (equivalent to 0.04 mol) of acrylic acid (99% by mass of solid content), 184 g of distilled water .49 g was charged and the temperature was raised to 60°C.
  • Polymer 18 In a 300 mL four-necked flask equipped with a thermometer, stirrer, and condenser, 32.30 g (0.08 mol equivalent) of dimethylaminopropyl methacrylamide hydrochloride (solid content concentration: 51.2% by mass) ), 2.93 g (equivalent to 0.04 mol) of acrylamide (97% by mass of solid content), 3.44 g (equivalent to 0.04 mol) of methacrylic acid (99% by mass of solid content), and 189 g of distilled water 0.55 g was charged and the temperature was raised to 60°C.
  • PCR reaction solution A PCR reaction solution having the composition shown in the table below was prepared.
  • Primer and template DNA The sequences of forward and reverse primers used in the PCR reaction are shown in the table below. Each primer was designed using Primer3 (obtained from http://frodo.wi.mit.edu) targeting the KRAS gene (nucleotide sequence can be confirmed, for example, at NCBI (DB name)).
  • Primer3 obtained from http://frodo.wi.mit.edu
  • KRAS KRAS gene
  • the nucleotide sequence containing and adjacent to the above nucleotide sequence is as follows.
  • Real-Time PCR System A Step One Plus real-time PCR system (Thermo Fisher Scientific) was used.
  • PCR Reaction 20 ⁇ L of the prepared PCR reaction solution was set in a real-time PCR system, step (i) described in the table below was performed, and then steps (ii) to (iv) were repeated for 40 cycles. After 40 cycles, steps (v) to (vii) were carried out to terminate the reaction.
  • the amount of DNA amplification was monitored by measuring the fluorescence intensity of the reaction solution in each cycle. After the reaction was completed, the presence or absence of inhibition of the PCR reaction was determined based on whether or not the fluorescence intensity reached the threshold line. Threshold Line was automatically calculated by the above device. In some cases where the experiment unavoidably set the value lower than usual, the ⁇ Rn value was manually set between 0.7 and 1.2 for comparison with other experiments.
  • an amphoteric copolymer having a cationic structural unit containing an amine in its structure and an anionic structural unit, wherein the cationic structural unit/anionic structural unit is in the range of 0.25 to 1.25 did not inhibit the PCR reaction.
  • Kit Used A kit attached to BNA Clamp KRAS Enrichment Kit (Riken Genesis), which is a kit for detecting mutant KRAS genes, was used. Although the details are described below, the primer set and BNA clamp used kit attachments. In addition, the reaction conditions for real-time PCR conformed to the kit protocol.
  • MDA having a mutant KRAS gene containing the following base sequence sequence to be amplified; bases different from the base sequence of SEQ ID NO: 8 are shown in bold and underlined
  • base sequence to be amplified bases different from the base sequence of SEQ ID NO: 8 are shown in bold and underlined
  • the genome of MB-231 cells was used.
  • the above base sequence and the base sequences adjacent thereto are as follows (bases that differ from the above-described base sequence of SEQ ID NO: 9 are underlined and bold).
  • Reaction Liquid 1 or Reaction Liquid 2 BNA clamp PCR reaction solution Reaction solutions 1 to 4 having the composition shown in the table below were prepared.
  • Reaction Liquid 1 or Reaction Liquid 2 the polymer or monomer concentration was 0.025% by mass.
  • the concentration of the polymer or monomer in Reaction Liquid 1 or Reaction Liquid 2 was as shown in Table 6 above.
  • PCR reaction Weigh 20 ⁇ L of each reaction solution prepared in a PCR tube, set the PCR tube in a real-time PCR system, perform step (i) described in the table below, and then step (ii) to (iv) ) was repeated for 50 cycles. After completing 50 cycles, steps (v) to (vii) were carried out to terminate the reaction. By measuring the fluorescence intensity of the reaction solution in each cycle, the amount of DNA amplification was monitored, and the growth curve of each reaction solution was obtained.
  • ⁇ Ct in the case of no addition of polymer was calculated according to the following formula. It is understood that there is no non-specific amplification in the intercalator method when ⁇ Ct>0 in the case of no polymer addition.
  • ⁇ Ct (WT) and ⁇ Ct (Mutant) in the case of polymer addition were calculated by the following formula, and further, to confirm that there was no non-specific amplification in the intercalator method, ⁇ Ct was calculated. It can be seen that there is no non-specific amplification in the intercalator method when ⁇ Ct>0 for polymer addition.
  • ⁇ Ct was calculated by the following formula as an index for evaluating the enhancement of the selective amplification-inhibiting effect of the wild-type gene by the BNA clamp due to the addition of the polymer. Considering the fluctuation of the results that may occur in the test, when using a mutation detection method based on the number of amplification cycles of the wild-type gene such as the intercalator method, if ⁇ Ct ⁇ 1.00, BNA clamp It can be evaluated that the selective amplification inhibitory effect of the wild-type gene was sufficiently enhanced.
  • FIG. 2 shows a graph of an example of enhancing the selective amplification inhibitory effect of the wild-type gene.
  • Template DNA As a template DNA having a standard base sequence, the genome of HCC70 cells having a wild-type KRAS gene containing the base sequence of SEQ ID NO:8 was used. In addition, the genome of MDA-MB-231 cells having a mutant KRAS gene containing the nucleotide sequence of SEQ ID NO: 10 was used as a template DNA having mutations in the standard nucleotide sequence. In this test, while the total amount of template DNA was 50 ng in 2.0 ⁇ L, the wild-type gene and the template DNA of the mutant gene were mixed, and each template DNA mixture thus obtained and the template DNA of the wild-type gene were used in a PCR reaction.
  • the mutant ratio was 0.01% by mass
  • the ⁇ Ct was less than 0, and the amplification curve of the mutant gene could not be distinguished from the amplification curve of the wild-type gene. It was found that when 2, 4 or 6 polymers were added, the amplification curve of the mutant gene could be distinguished from that of the wild-type gene even at a mutant ratio of 0.01 mass %.
  • the polymer of Example 2 (the cationic structural unit is a structural unit having a structure represented by the general formula (Ia) or general formula (Ib), and the anionic structural unit is the general formula
  • the amphoteric copolymer which is the structural unit represented by (II-a)
  • the effect of enhancing the inhibitory effect on nucleic acid amplification by the clamp nucleic acid is particularly large when the mutant ratio is 0.1% or less. became apparent.
  • the BNA clamp-free reaction solution was not tested in this experiment, the results of Test 2 showed that there was no non-specific amplification in the BNA clamp-free reaction solution, regardless of the presence or absence of polymer addition. is clear.
  • Kit Used A kit attached to BNA Clamp BRAF Enrichment Kit (Riken Genesis), which is a kit for detecting mutant BRAF genes, was used. Although the details are described below, the primer set and BNA clamp used kit attachments. In addition, the reaction conditions for real-time PCR conformed to the kit protocol.
  • Template DNA As a template DNA having a standard base sequence, the genome of HCC70 cells having a wild-type BRAF gene containing the following base sequence (bases different from the base sequence of SEQ ID NO: 13 described below are shown in bold underlined letters) was used. It should be noted that the above sequences are understood to include base sequences other than the target sequence for amplification. On the other hand, as a template DNA having mutations in the standard base sequence, the genome of DU4475 cells having a mutant BRAF gene containing the following base sequence (bases different from the above-described base sequence of SEQ ID NO: 12 are underlined and bold): used. It should be noted that the above sequences are understood to include base sequences other than the target sequence for amplification.
  • BNA clamp PCR reaction solution Reaction solutions 1 to 4 having the composition shown in the table below were prepared.
  • the concentration of the polymer was as shown in Table 21 above.
  • BNA clamp PCR reaction solution Reaction solutions 1 and 2 having the composition shown in the table below were prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

クランプ-PCR法による変異型遺伝子の検出限界より低い変異型遺伝子含有率で変異型遺伝子を検出できる簡便な方法およびそれを実施するキットを提供することを目的とする。 また、核酸増幅反応において、対象とする塩基配列の増幅を選択的に阻害することができる簡便な方法およびそれを実施するキットを提供することを目的とする。 核酸増幅反応において、アミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある両性共重合体をクランプ核酸と共存させ、クランプ核酸によるこれと相補的な塩基配列を有する核酸の増幅阻害を増強する。

Description

核酸の対象塩基配列中における変異を検出するための方法、核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキット
 本発明は、試料中の核酸の対象塩基配列中における標準塩基配列に対する変異を検出するための方法、核酸増幅反応において、対象塩基配列を有する核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキットに関する。より具体的には、クランプ核酸(ブロッカー核酸と称されることもある)を用いる核酸増幅反応において、特定の両性共重合体の存在下で核酸増幅を行うことより、対象塩基配列中における標準塩基配列に対する変異を検出する方法、および対象塩基配列を有する核酸の増幅を選択的に阻害する方法、ならびにこれらを実施するためのキットに関する。
 遺伝子の突然変異が、がんの起因となる場合があり、そのような遺伝子の突然変異を早期に発見することで、がんの早期治療に繋がることが期待されている。また、ある特定の遺伝子の変異が、ある種の病気の罹りやすさ、薬の治療効果、副作用の強弱などに大きく関与することが分かってきている。例えば、上皮増殖因子受容体(EGFR)のチロシンキナーゼ阻害剤であるゲフィチニブ(商品名:イレッサ)は、特定の遺伝子変異を持つ一部の肺がん患者には大きな奏効性を示す一方、約0.5%程度の患者に重篤な間質性肺炎を引き起こすことが知られている(非特許文献1)。また、大腸癌においては、KRAS遺伝子に変異があると分子標的薬セツキシマブ(商品名:アービタックス)の奏効率は低く、変異がないと奏効率が高いことが知られている。このため、患者ごとに奏効性や副作用が予測できれば、奏効性を期待できない患者や重篤な副作用が予想される患者への投与を控えて、副作用の少ない効果的な治療を行うことが可能となる。
 このようなことから、遺伝子の変異を明らかにすることは、がんの早期発見、治療効率の向上などの面で重要であると認識され、このようなニーズに応えるべく、遺伝子の変異を検出する様々な技術開発がなされている。特に、PCR法のような遺伝子増幅技術、およびNGSなどの網羅的な遺伝子解析技術では、目覚ましい進展が見られる。
 もっとも、腫瘍検体から抽出した遺伝子では、大量の野生型遺伝子と微量の変異型遺伝子を含むが、従来の変異型遺伝子を検出する方法では、依然として、微量の変異型遺伝子を検出するには十分な感度を有しないことが多い。例えば、遺伝子の変異を検出する手法の一つとして、変異型遺伝子と野生型遺伝子を非選択的に増幅したのちに、電気泳動法またはハイブリダイゼーション法などで変異型遺伝子を野生型遺伝子と区別する方法があるが、この方法では、野生型遺伝子中に含まれるごく少量の変異型遺伝子を十分な感度および精度で検出することは困難である。
 これに対して、遺伝子増幅の段階において、野生型遺伝子の基準配列と相補的な塩基配列を有する人工的なオリゴヌクレオチドを用いて野生型遺伝子の増幅を阻害して変異型遺伝子を選択的に増幅する、いわゆる「クランプ法」が開発されている。この方法で用いられている人工核酸は、クランプ核酸と称され、核酸増幅過程で(i)野生型遺伝子と強くハイブリダイズするが、(ii)変異型遺伝子とは強くハイブリダイズせず、(iii)核酸増幅過程で分解されにくい、という特性を有し、これを利用してreal-time PCRを実施すると、変異型遺伝子の頻度が1%まで変異を検出でき、さらにreal-time PCRの増幅産物を鋳型にダイレクトシーケンス法を実施すると変異型遺伝子の頻度が0.1%まで変異を検出できるとされる(例えば、特許文献1、非特許文献2、非特許文献3)。クランプ核酸としては、peptide nucleic acid (PNA)、locked nucleic acid (LNA)および bridged nucleic acid (BNA)が開発され、PNA-LNA clamp PCR法、BNA clamp PCR法などの増幅法が開発されている(例えば、非特許文献2、3、6および特許文献1~9参照)。
 しかし、このクランプ法によっても、試料中の野生型遺伝子の比率に対して変異型遺伝子の比率が非常に低い場合には、real-time PCRを実施すると野生型遺伝子を増幅してしまい、野生型遺伝子と変異型遺伝子を区別できない場合がある。また、clamp PCRの増幅産物を鋳型にダイレクトシーケンス法を実施すると変異型遺伝子の検出感度を上げることはできるが、シーケンス決定は、膨大な検体を即座に処理することが求められる臨床の場には不向きである。
特許第6242336号 特許第5813263号 特許第4731324号 特許第4383178号 特許第5030998号 特許第4151751号 特開第2001-89496号公報 国際公開第2003/068795号パンフレット 国際公開第2005/021570号パンフレット 特許第3756313号 国際公開第2016/167320号パンフレット
Thomas J.,et.al.,2004,The NEW ENGLAND JURNAL of MEDICINE,350;21 Nagai K.,et.al.,2005,Cancer Research,65:7276-7282 Nishino K.et al.,2019,肺癌患者におけるEGFR遺伝子変異検査の手引き 第4.1版 Luming Z.et al.,2011 BioTechniques,50:311-318 Nagakubo Y.et al.,2019,BMC Medical Genomics,12:162 Murina F.F.et al., 2020, Molecules, 25(4):786
 このように、臨床や研究の現場において、試料中の野生型遺伝子の比率に対して変異型遺伝子の比率が非常に低い場合でも、変異型遺伝子を検出できる方法に対するニーズがあり、これに対応する手法の研究が進められている(特許文献2、非特許文献4、非特許文献5)。しかし、従来の方法は、変異型遺伝子を高感度に検出するために高額な機器や2段階以上の複雑な解析ステップを必要とし(非特許文献2)、臨床の現場や研究の場では簡易な方法で試料中の変異型遺伝子を高感度で検出可能な方法が求められている。
 従って、本発明は、クランプ-PCR法による変異型遺伝子の検出限界より低い変異型遺伝子含有率で変異型遺伝子を検出できる簡便な方法およびそれを実施するキットを提供することを目的とする。
 本発明はまた、核酸増幅反応において、対象とする塩基配列の増幅を選択的に阻害することができる簡便な方法およびそれを実施するためのキットを提供することも目的とする。
 本発明者らは、クランプ法による変異型遺伝子の検出感度を上げる手法について検討を重ねる中で、クランプ核酸と特定の両性共重合体の存在下で核酸増幅反応を実施したところ、クランプ核酸による野生型遺伝子の増幅を選択的に阻害する効果が当該両性共重合体の存在により増強され、これにより変異型遺伝子の検出感度を高めることに成功し、本発明に至った。
 すなわち、本発明は、以下の方法、キット、増強剤、および使用を提供する。
[1] 試料中の核酸の対象塩基配列における標準塩基配列に対する変異を検出する方法であって、
 前記標準塩基配列に相補的な塩基配列を含み、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸と、
 構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と
を用いて、前記試料中の核酸を鋳型とした核酸増幅反応を行い、
 前記核酸増幅反応により得られた核酸増幅産物の総量、前記核酸増幅産物の総量が閾値に達するまでの前記核酸増幅反応の増幅サイクル数、前記核酸増幅産物中の前記変異を有する核酸の量、又は前記核酸増幅産物中の前記変異を有する核酸の量が閾値に達するまでの前記核酸増幅反応の増幅サイクル数に基づいて、前記変異の存在を判定する、方法。
[2] 前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、[1]に記載の検出方法。
[3] 前記両性共重合体が、さらにノニオン性構成単位(3)を含む、[1]又は[2]に記載の検出方法。
[4] 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
Figure JPOXMLDOC01-appb-C000011

(式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
 前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
Figure JPOXMLDOC01-appb-C000012

(式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)で表される構成単位(2-1)である、[1]~[3]のいずれか一項に記載の検出方法。
[5] 前記非天然型ヌクレオチドが、BNAである、[1]~[4]のいずれか1項に記載の検出方法。
[6] 前記核酸増幅を、リアルタイムPCRで行う、[1]~[5]のいずれか1項に記載の検出方法。
[7] 前記核酸サンプルが、ゲノムDNAである、[1]~[6]のいずれか1項に記載の検出方法。
[8] さらに、前記標準塩基配列を有する核酸を鋳型とした核酸増幅反応を、例えば、前記核酸増幅反応を行う際に、行い、
 前記試料中の核酸を鋳型に用いた場合の前記核酸増幅産物の総量が閾値に達するまでの前記核酸増幅反応の増幅サイクル数が、前記標準塩基配列を有する核酸を鋳型に用いた場合の前記核酸増幅産物の総量が閾値に達するまでの前記核酸増幅反応の増幅サイクル数と比較して少なかった場合に、前記試料中の核酸の対象塩基配列に前記変異が存在すると判定する、[1]~[7]のいずれか1項に記載の検出方法。
[9] 試料中の核酸の対象塩基配列における標準塩基配列に対する変異を検出するためのキットであって、
 前記標準塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸と、
 構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と、を含むキット。
[10] 前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、[9]に記載のキット。
[11] 前記両性共重合体が、さらにノニオン性構成単位(3)を含む、[9]又は[10]に記載のキット。
[12] 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
Figure JPOXMLDOC01-appb-C000013

(式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
Figure JPOXMLDOC01-appb-C000014

(式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
で表される構成単位(2-1)である、[9]~[11]のいずれか一項に記載のキット。
[13] 前記非天然型ヌクレオチドが、BNAである、[9]~[12]のいずれか1項に記載のキット。
[14] 核酸増幅反応において、所定の対象塩基配列を有する試料中の核酸の増幅を阻害する方法であって、
 前記対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型核酸を含む、クランプ核酸と、
 構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と
を用いて、前記試料中の核酸を鋳型とした核酸増幅反応を実施する、方法。
[15] 前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、[14]に記載の方法。
[16] 前記両性共重合体が、さらにノニオン性構成単位(3)を含む、[14]又は[15]に記載の方法。
[17] 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
Figure JPOXMLDOC01-appb-C000015

(式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
Figure JPOXMLDOC01-appb-C000016

(式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
で表される構成単位(2-1)である、[14]~[16]のいずれか一項に記載の方法。
[18] 前記非天然型ヌクレオチドが、BNAである、[14]~[17]のいずれか1項に記載の方法。
[19] 核酸増幅反応において、対象塩基配列を有する核酸の増幅を阻害するためのキットであって、
 前記対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸と、
 構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と、を含む、キット。
[20] 前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、[19]に記載のキット。
[21] 前記両性共重合体が、さらにノニオン性構成単位(3)を含む、[19]又は[20]に記載のキット。
[22] 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、
一般式(I-a)若しくは一般式(I-b)
Figure JPOXMLDOC01-appb-C000017

(式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
Figure JPOXMLDOC01-appb-C000018

(式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
で表される構成単位(2-1)である、[19]~[21]のいずれか一項に記載のキット。
[23] 前記非天然型ヌクレオチドが、BNAである、[19]~[22]のいずれか1項に記載のキット。
[24] 対象塩基配列を有する核酸の核酸増幅を、前記対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸により阻害する効果の増強剤であって、
 構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体を含む、増強剤。
[25] 前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、[24]に記載の増強剤。
[26] 前記両性共重合体が、さらにノニオン性構成単位(3)を含む、[24]又は[25]に記載の増強剤。
[27] 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
Figure JPOXMLDOC01-appb-C000019

(式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
Figure JPOXMLDOC01-appb-C000020

(式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
で表される構成単位(2-1)である、[24]~[26]のいずれか一項に記載の増強剤。
[28] クランプ核酸による核酸増幅阻害効果を増強する核酸増幅阻害増強剤を製造するための両性共重合体の使用であって、
 前記両性共重合体は、構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体の使用。
[29] 前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、[28]に記載の使用。
[30] 前記両性共重合体が、さらにノニオン性構成単位(3)を含む、[28]又は[29]に記載の使用。
[31] 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
Figure JPOXMLDOC01-appb-C000021

(式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
Figure JPOXMLDOC01-appb-C000022

(式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
で表される構成単位(2-1)である、[28]~[30]のいずれか一項に記載の使用。
[32] クランプ核酸による核酸増幅阻害効果を増強するための両性共重合体の使用であって、
 前記両性共重合体は、構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体の使用。
[33] 前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、[32]に記載の使用。
[34] 前記両性共重合体が、さらにノニオン性構成単位(3)を含む、[32]又は[33]に記載の使用。
[35] 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
Figure JPOXMLDOC01-appb-C000023

(式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
Figure JPOXMLDOC01-appb-C000024

(式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
で表される構成単位(2-1)である、[32]~[34]のいずれか一項に記載の使用。
 上記両性共重合体は、それ自体では核酸増幅反応を阻害しないが、クランプ核酸によるそれに相補的な配列を有する核酸の増幅を阻害する効果を選択的に増強することができる。これにより、本発明の一の実施形態によれば、試料中において、クランプ核酸に相補的な標準塩基配列を有する核酸の比率に対して、標準塩基配列に対する変異を有する核酸の比率が非常に低い場合でも(例えば、0.1%以下)、クランプ核酸により標準塩基配列を有する核酸の増幅が選択的に阻害される一方、標準塩基配列に対する変異を有する核酸が通常通り増幅され、変異を有する核酸の検出が非常に高感度で簡易な方法で可能になる。
aは、試験1において、PCR反応を阻害しない場合の核酸増幅曲線の一例として、実施例2のポリマー(ジアリルメチルアミン・マレイン酸1:1の共重合体)を用いた場合の核酸増幅曲線を示す。bは、試験1において、PCR反応を阻害する場合の核酸増幅曲線の一例として、比較例7のポリマー(ジアリルジメチルアンモニウムクロリド・アクリルアミド8:1の共重合体)を用いた場合の核酸増幅曲線を示す。 変異型遺伝子の増幅は阻害せずに、BNAを含むクランプ核酸(BNA clamp)による野生型遺伝子の選択的増幅阻害効果を増強する場合の核酸増幅曲線の一例として、BNA clampの存在下または非存在下に、実施例4のポリマー(ジメチルアミノプロピルメタクリルアミド塩酸塩・アクリルアミド・アクリル酸1:1:2の共重合体)を添加または添加せずに、野生型遺伝子または変異型遺伝子を鋳型としてリアルタイムPCR反応を実施した際の核酸増幅曲線を示す。 BNA clampの存在下、ポリマーを添加せず、あるいは実施例1、2、4または6のポリマー(ジアリルアミン塩酸塩・マレイン酸1:1の共重合体、ジアリルメチルアミン・マレイン酸1:1の共重合体、ジメチルアミノプロピルメタクリルアミド塩酸塩・アクリルアミド・アクリル酸1:1:2の共重合体またはジアリルアミン塩酸塩・アクリルアミド・アクリル酸1:1:2の共重合体)を添加して、変異型の含有率が10%、1%、0.10%、0.01%または0%(WT)のKRAS遺伝子を鋳型として、リアルタイムPCR反応を実施した際の核酸増幅曲線を示す。 試験5で用いたKRAS WT/Mutant plasmid DNAの構造を示す。 BNA clampの存在下、ポリマーを添加せず、あるいは実施例1、2、4または6のポリマー(ジアリルアミン塩酸塩・マレイン酸1:1の共重合体、ジアリルメチルアミン・マレイン酸1:1の共重合体、ジメチルアミノプロピルメタクリルアミド塩酸塩・アクリルアミド・アクリル酸1:1:2の共重合体またはジアリルアミン塩酸塩・アクリルアミド・アクリル酸1:1:2の共重合体)を添加し、変異型の含有率0.01%でKRAS遺伝子を有する図4のプラスミドDNAを鋳型として用いて、リアルタイムPCR反応を実施した際の核酸増幅曲線を示す。 BNA clampの存在下、ポリマーを添加せず、あるいは実施例1、2、4または6のポリマー(アリルアミン塩酸塩・マレイン酸1:1の共重合体、ジアリルメチルアミン・マレイン酸1:1の共重合体、ジメチルアミノプロピルメタクリルアミド塩酸塩・アクリルアミド・アクリル酸1:1:2の共重合体またはジアリルアミン塩酸塩・アクリルアミド・アクリル酸1:1:2の共重合体)を添加し、変異型の含有率が0.01%でKRAS遺伝子を有する図4のプラスミドDNAを鋳型として用いて、リアルタイムPCR反応を実施して得られたPCR産物をシーケンス決定して得られた結果を示す。
 本発明の実施の形態を詳細に説明する。但し、本発明は以下の実施の形態に限定して理解されるべきものではない。
 本発明は、一の実施形態において、クランプ核酸を用いる核酸増幅法において、特定の両性共重合体の存在下で核酸増幅を行うことより、対象塩基配列中における標準塩基配列に対する変異を検出する方法に関する。本発明は、他の実施形態において、クランプ核酸および特定の両性共重合体の存在下で核酸増幅を行うことより、所定の対象塩基配列を有する核酸の増幅を阻害する方法に関する。本発明はまた、更に他の実施形態において、これらの方法を実施するためのキットに関する。本発明はまた、更に他の実施形態において、クランプ核酸による核酸増幅阻害効果の増強剤に関する。以下、各実施形態について詳細に説明する。
1.対象塩基配列中における標準塩基配列に対する変異を検出する方法
 本発明の一実施形態は、試料中の核酸の対象塩基配列における標準塩基配列に対する変異を検出する方法に関する。この方法は、標準塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸と、特定の両性共重合体とを準備し、これらを用いて、試料中の核酸を鋳型とした核酸増幅反応を行う。対象塩基配列が標準塩基配列に対して変異を有する場合には、対象塩基配列を含む領域が標準配列より優先的に核酸増幅され、これにより、変異の存在を検出する事が可能となる。
試料
 本発明の方法に供される試料は、実施形態に応じて、変異を有する核酸または増幅阻害対象の核酸を含み得ると想定される試料であり、本実施形態においては、変異の検出が所望される核酸を含むと想定される試料である。試料は、例えば、哺乳動物、典型的にはヒトから採取された検体から調製された試料である。例えば、血液、胸水、気管支洗浄液、骨髄液、リンパ液等の液体試料、またはリンパ節、血管、骨髄、脳、脾臓、皮膚等の固形試料から調製された試料が挙げられる。本発明の方法は非常に高い感度で核酸の変異を検出し得るため、例えば癌等の病変部位から採取された検体からの試料だけでなく、血液等の変異型遺伝子が微量しか含まれない検体からの試料を用いることができる。
対象塩基配列
 本願明細書において、「対象塩基配列」とは、本発明の実施形態による方法に応じて、変異検出または増幅阻害の対象となる塩基配列を意味する。また、「試料中の核酸」は、変異検出または増幅阻害の対象となる塩基配列を含み得る核酸である。但し、「対象塩基配列」は、実際に変異を有すること、または実際に増幅阻害される塩基配列を含むことまでは意味しないし、「試料中の核酸」は、実際に変異検出または増幅阻害の対象となる塩基配列を含むことまでは意味しない。
 本実施形態による方法においては、「対象塩基配列」は、変異の有無を検出する対象となる塩基配列であり、「試料中の核酸」は、変異の有無を検出する対象となる塩基配列を含む核酸である。また、「対象塩基配列を含む領域」は、本発明の方法によって、増幅対象となる領域である。
試料中の核酸
 核酸は、DNAであってもRNAであってもよく、ゲノムDNA、cDNA、プラスミドDNA、無細胞DNA、循環DNA、RNA、miRNA、mRNAなどの天然型もしくは非天然型のあらゆる核酸を含み得る。哺乳動物、典型的にはヒトから採取された検体からの試料を用いる場合には、変異検出の対象となる核酸は、多くの場合DNAであり、典型的には、臨床上の意義が大きなゲノムDNAである。また、クランプ核酸による核酸増幅の阻害効果の増強効果が大きくなるという観点からも、試料中の核酸はゲノムDNAであることが好ましい。
 ゲノムDNAとしては、例えば、その変異(先天的又は後天的な変異)が、特定の疾患の発症および/または治療感受性に関連するゲノムDNAが挙げられる。このような疾患は、多数知られており、その代表例は各種癌である。また、その変異が癌の発症および/または治療感受性に関連することが知られている遺伝子としては、例えば、ABL/BCR融合遺伝子(慢性骨髄性白血病)、HER2遺伝子(乳癌)、EGFR遺伝子(非小細胞肺癌)、c-KIT遺伝子(消化管間質腫瘍)、KRAS遺伝子(大腸癌、膵癌)、BRAF遺伝子(メラノーマ、大腸癌)、PI3KCA遺伝子(肺癌、大腸癌)、FLT3遺伝子(急性骨髄性白血病)、MYC遺伝子(種々の癌)、MYCN遺伝子(神経芽細胞腫)、MET遺伝子(肺癌、胃癌、メラノーマ)、BCL2遺伝子(濾胞性Bリンパ腫)、およびEML4/ALK融合遺伝子(肺癌)が挙げられる。
標準塩基配列および変異
 本願明細書において、「標準塩基配列」とは、「対象塩基配列」の変異を検出する方法において、「対象塩基配列」が変異を有しているかを判断する際の基準となる塩基配列を意味し、「変異」は、「対象塩基配列」が「標準塩基配列」に対して置換、挿入、欠失、逆位、重複、転座またはこれら2つ以上の組み合わせによって何らかの塩基配列の相違を有している状態を意味する。本願明細書において、この様な「変異」は、20%以下の塩基配列の相違、10%以下の塩基配列の相違、5%以下の塩基配列の相違、又は、1%以下の塩基配列の相違であってよい。
 「標準塩基配列」は、検査目的に応じて種々の塩基配列を選択できるが、典型的には、野生型の核酸に由来する塩基配列であり、好ましくは特定の疾患の発症および/または治療感受性に関連することが知られている野生型遺伝子に由来する塩基配列である。従って、「変異型核酸」は、典型的には、野生型の核酸に由来する塩基配列に対して置換、挿入、欠失、逆位、重複、転座またはこれら2つ以上の組み合わせによって何らかの塩基配列の相違がある核酸であり、好ましくは、特定の疾患の発症および/または治療感受性に関連することが知られている野生型遺伝子に対してこのような塩基配列の相違がある核酸である。例えば、KRAS遺伝子の第2エクソンの12番目のコドンまたは13番目のコドンの変異は、分子標的薬セツキシマブの奏効率と関連することが知られている。また、BRAF遺伝子では、第15エクソンの600番目のコドンの変異は、分子標的薬セツキシマブやパニツムマブの奏効率と関連することが知られている。
 特定の両性共重合体が、クランプ核酸による核酸増幅の阻害効果を特に増大することから、前記試料中の核酸に含まれる、変異を含まない対象配列(標準塩基配列)と、前記変異が含まれる対象配列との合計に対し、前記変異が含まれる対象塩基配列の割合の期待値は、0.1%未満であってもよい。また、好ましい実施形態では、0.05%以下であってもよく、更に好ましい実施形態では、0.01%以下であってもよい。ここで、変異が含まれる対象塩基配列の割合の期待値は、各変異について臨床的に求められる。
クランプ核酸
 本願明細書において、「クランプ核酸」とは、核酸増幅を阻害する対象とした「塩基配列」(実施形態に応じて「標準塩基配列」であることも「対象塩基配列」であることも有り得る)と相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含むオリゴヌクレオチドからなる人工的な核酸である。「クランプ核酸」は、核酸増幅を阻害する対象とした「塩基配列」とハイブリダイズして核酸増幅を阻害するが、その塩基配列と相補的でない塩基配列の核酸とは強くハイブリダイズせず核酸増幅を阻害しない。
 「対象塩基配列」の変異を検出する方法においては、「クランプ核酸」により核酸増幅を阻害する対象となる「塩基配列」は、「標準塩基配列」であり、「クランプ核酸」は、「標準塩基配列」にハイブリダイズしてその核酸増幅を阻害する。
 非天然型ヌクレオチドとしては、例えば、Peptide Nucleic Acid(PNA)、Bridged nucleic acid (BNA)、ホスフェート基を有するペプチド核酸(PHONA)、モルホリノ核酸を挙げることができる。なお、第一世代のBNAは、Locked nucleic acid(LNA)とも称される(例えば、非特許文献2、3および特許文献1、2参照)。
 PNAを含むクランプ核酸(PNA clamp)は、核酸のリン酸結合に代えペプチド結合で骨格を形成している一以上のヌクレオチドを含むオリゴヌクレオチドからなる完全修飾型人工核酸である。修飾ヌクレオチドは、典型的には、ヌクレオチドの糖-リン酸骨格を、N-(2-アミノエチル)グリシンを単位とする骨格に置き換え、メチレンカルボニル結合で塩基を結合させた構造を有する。PNAについての詳細は、非特許文献6に記載する通りである。PNA clampは、相補構造のDNA鎖とのハイブリダイズ能が天然DNAよりも強く、核酸分解酵素による分解を受けないことからクランプ核酸として望ましい特性を有している。
 BNAを含むクランプ核酸(BNA clamp)は、リボースの2’位の酸素原子と4’位の炭素原子を架橋した構造を有する一以上の非天然ヌクレオチドを含むオリゴヌクレオチドからなる人工核酸であり、第一世代のBNAは、Locked nucleic acid(LNA)とも称される。BNA clampは、らせん構造が固定化され、相補鎖を有する核酸にハイブリダイズすると非常に安定な二本鎖を形成することができる。また、修飾されたヌクレオチドの数に比例して相補鎖を有する核酸に対する結合が強まるため、核酸の長さと修飾ヌクレオチドの数を調整することで適当なハイブリダイズ能を獲得することができ、比較的短いオリゴヌクレオチド鎖でクランプ効果を発揮させることが可能である。
 BNA clampの代表的な例は、以下の構造を有する修飾ヌクレオチドを含むオリゴヌクレオチドである。
Figure JPOXMLDOC01-appb-C000025

第1世代BNA:2’,4’-BNA(LNA)(例えば、特許文献10)
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

(式中、
 Baseは、ピリミジンもしくはプリン核酸塩基、または水酸基、核酸合成の保護基で保護された水酸基、炭素数1~5のアルコキシ基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、炭素数1~5のアルキルチオ基、アミノ基、核酸合成の保護基で保護されたアミノ基、炭素数1~5のアルキル基で置換されたアミノ基、炭素数1~5のアルキル基およびハロゲン原子(例えばフッ素原子、塩素原子、臭素原子またはヨウ素原子)からなる群から選択される置換基で置換されたピリミジンもしくはプリン核酸塩基を示し、
 Rは、水素原子、炭素数1~20の直鎖または分岐鎖状のアルキル基、炭素数2~20の直鎖または分岐鎖状のアルケニル基、炭素数3~10のシクロアルキル基、炭素数6~14のアリール基、炭素数1~6のアルキル基が炭素数6~14のアリール基で置換されているアラルキル基、アシル基、スルホニル基、またはシリル基、または標識分子を示し、
 mは0~2の整数であり、
 nは、1~3の整数である。)
 式(IV)の修飾ヌクレオチドは、好ましくは、Baseが、ベンゾイルアミノプリン-9-イル、アデニニル、2-イソブチリルアミノ-6-ヒドロキシプリン-9-イル、グアニニル、2-オキソ-4-ベンゾイルアミノ-1,2-ジヒドロピリミジン-1-イル、シトシニル、2-オキソ-5-メチル-4-ベンゾイルアミノ-1,2-ジヒドロピリミジン-1-イル、5-メチルシトシニル、ウラシニル、およびチミニル基からなる群から選択され、Rがメチル基であり、mが0であり、nが1である。
 ただし、本発明で用いられるBNAは、上記に限定されるものではなく、他のBNA(例えば、5’-amino-2’、4’-BNA、2’,4’-BNACOC、2’,4’-BNANCなど)も使用し得る。また、BNA clampでは、修飾ヌクレオチドとヌクレオチド間、または修飾ヌクレオチド間の結合は、通常、リン酸ジエステル結合であるが、ホスホロチオアート結合を含み得る。BNAの詳細については、特許文献1~10に記載されており、本発明の属する技術分野の当業者は、これらの文献等の公知の技術的事項から如何なる人工核酸がBNA clampに該当するかは容易に理解し得る。
 クランプ核酸としては、比較的少ないヌクレオチドで相補的な配列の核酸と安定した二本鎖を形成して、当該核酸の核酸増幅を選択的に阻害できる(後述する、インターカレーター法のような野生型遺伝子の増幅サイクル数を基準とした変異検出法を用いた場合において、ΔΔΔCt値が大きい)点で、BNA clampが好ましく、特に式(IV)の構造の修飾ヌクレオチドを含むBNA clampが好ましい。
 クランプ核酸の長さおよび非天然型ヌクレオチドの数は、核酸増幅を阻害する対象となる核酸に対する結合力を決定する因子である。従って、これらの因子は、核酸増幅を阻害する対象となる核酸(変異を検出する方法では、標準塩基配列を有する核酸である)に強力に結合し、当該核酸の増幅を選択的に阻害できるよう適切に設定することが好ましい。この点から、クランプ核酸の長さは、通常、5~50merであり、好ましくは、6~30merであり、より好ましくは、7~25merであり、さらに好ましくは、8~20merであり、特に好ましくは、9~15merである。
 また、クランプ核酸における非天然型核酸の割合は、同様の点から、通常、10~100%であり、好ましくは、30~95%であり、より好ましくは、40~90%であり、さらに好ましくは、50~85%であり、特に好ましくは、60~80%である。
 クランプ核酸の合成は、特許文献7~10等の文献に基づいて行うことができる。また、クランプ核酸の合成を受託する業者に委託してもよい。
両性共重合体
 本発明の方法においては、上記プライマーセットを用いて、試料中の核酸を鋳型とした核酸増幅反応を行う際に、上記ブロッカー核酸と共に、特定の両性共重合体が存在する状態で核酸増幅反応を行う。本発明で使用される両性共重合体は、ブロッカー核酸による選択的核酸増幅阻害効果を増強するものであり、構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体である。
 カチオン性構成単位(1)
 本発明において用いられる両性共重合体を構成するカチオン性構成単位(1)は、その構造中にアミノ基を含むカチオン性の構成単位である。
 カチオン性構成単位(1)には、その構造中にカチオン性の官能基としてアミノ基を含む構成単位であること以外の制限は課されず、したがって構造中にアミノ基を含む構成単位であるとの条件を満たす限りにおいて、各種の構造の構成単位をカチオン性構成単位(1)として採用することができる。
 カチオン性構成単位(1)中のアミノ基にも特に制限は無いが、クランプ核酸による核酸増幅の阻害効果の増強効果が大きいことから、第2級アミノ基又は第3級アミノ基であることが好ましく、第3級アミノ基であることが特に好ましい。
 カチオン性構成単位(1)として特に好ましい構成単位として、下記の構成単位(1-1)、構成単位(1-2)、構成単位(1-3)及び構成単位(1-4)を挙げることができる。中でも、構成単位(1-1)、構成単位(1-3)又は構成単位(1-4)が、カチオン構成単位(1)として好ましく、構成単位(1-1)が、カチオン性構成単位(1)として特に好ましい。
 両性共重合体は、カチオン性構成単位(1)1種類のみを含んでいてもよく、2種類以上のカチオン性構成単位(1)を含んでいてもよい。2種類以上のカチオン性構成単位(1)を含む場合の当該2種類以上のカチオン性構成単位(1)は、ともに構成単位(1-1)に分類される構成単位の組み合わせ、ともに構成単位(1-2)に分類される構成単位の組み合わせ、ともに構成単位(1-3)に分類される構成単位の組み合わせ、又はともに構成単位(1-4)に分類される構成単位の組み合わせであってもよく、構成単位(1-1)から(1-4)のうち互いに異なるものに分類される構成単位同士の組み合わせであってもよい。構成単位(1-1)から(1-4)のいずれにも該当しないカチオン性構成単位を組み合わせて使用してもよい。
 構成単位(1-1)
 構成単位(1-1)は、下記一般式(I-a)若しくは一般式(I-b)で表される構造、又はその酸付加塩である構造、を有する構成単位である。構成単位(1-1)は、クランプ核酸による核酸増幅の阻害効果の増強効果が大きいことから、カチオン性構成単位(1)として特に好ましい構成単位である。すなわち、カチオン性構成単位(1)の全部または一部として構成単位(1-1)を使用することで、クランプ核酸による核酸増幅の阻害効果をより増強することができる。
Figure JPOXMLDOC01-appb-C000029

 式中、Rは水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。Rは、水素原子、メチル基、エチル基、又はベンジル基であることが好ましく、水素原子、又はメチル基であることが特に好ましい。
 構成単位(1-1)は、上記の構造式(1-a)、又は(1-b)で示される構造の無機酸塩、若しくは有機酸塩等である構造、すなわち酸付加塩である構造を有していてもよい。
 両性共重合体が構成単位(1-1)を有する場合、両性共重合体の製造にあたっては、製造コスト等の観点からは、付加塩を有するジアリルアミンモノマーを用いることが好ましい。重合体からHCl等の付加塩を除去するプロセスは煩雑であり、コスト増大の原因ともなることから、その様なプロセスを要さずして製造可能である、付加塩型の構成単位(1-1)を用いることは、コスト等の観点からも好ましい実施形態である。
 入手の容易さや反応の制御性等の観点から、この実施形態の構成単位(1-1)における無機酸塩、又は有機酸塩は、塩酸塩、カルボン酸塩、スルホン酸塩、又はアルキルサルフェート塩であることが好ましく、塩酸塩であることが特に好ましい。
 構成単位(1-2)
 構成単位(1-2)は、下記一般式(I-c)若しくは一般式(I-d)で表される構造を有する構成単位である。
Figure JPOXMLDOC01-appb-C000030

 式中、R及びRはそれぞれ独立に水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、又は炭素数7~10のアラルキル基であり、Xa-はカウンターイオンを示し、aは該カウンターイオンの価数を示す。
 R及びRはそれぞれ独立に水素原子、メチル基、エチル基、又はベンジル基であることが好ましく、水素原子、又はメチル基であることが特に好ましい。
 カウンターイオンXa-には特に限定はないが、入手の容易さや反応の制御性等の観点から、塩素イオン、カルボン酸イオン、スルホン酸イオン、又はアルキルサルフェートイオンであることが好ましく、塩素イオン、又はエチルサルフェートイオンであることが特に好ましい。
 両性共重合体の製造にあたっては、製造コスト等の観点からは、カウンターイオンを有するジアリルアミンモノマーを用いることが好ましい。重合体からカウンターイオンを除去するプロセスは煩雑であり、コスト増大の原因ともなることから、その様なプロセスを要さずして製造可能である、カウンターイオン型の構成単位(1-2)を有する両性共重合体を使用することは、コスト等の観点からも好ましい実施形態である。
 構成単位(1-3)
 構成単位(1-3)は、下記一般式(I-e)で表される構造、又はその酸付加塩である構造、を有する構成単位である。
Figure JPOXMLDOC01-appb-C000031

 式中、R及びRはそれぞれ独立に水素原子、水酸基を有していてもよい炭素数1~12のアルキル基、炭素数7~12のアラルキル基、又は炭素数5~6のシクロアルキル基を示す。
 R及びRとして好ましい炭素数1~12のアルキル基又はアラルキル基は、直鎖状、枝分かれ状のいずれであってもよい。その例としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、ベンジル基などが挙げられる。また、R及びRとして好ましい炭素数5~6のシクロアルキル基としては、シクロペンチル基およびシクロヘキシル基が挙げられるが、これらには限定されない。
 R及びRはそれぞれ独立に水素原子、メチル基、エチル基、又はベンジル基であることが好ましく、水素原子、またはメチル基であることが特に好ましい。
 構成単位(1-3)が一般式(I-e)で表される構造の酸付加塩である場合の付加塩の種類には特に制限はないが、入手性や反応の制御の容易さ等の観点から、例えば塩酸塩、硫酸塩、リン酸塩、硝酸塩、亜硫酸塩、亜リン酸塩、亜硝酸塩、臭化水素酸塩、酢酸塩、アミド硫酸塩、メタンスルホン酸塩、トリフルオロ酢酸塩、p-トルエンスルホン酸塩等を使用することができる。
 中でも、塩酸塩、硫酸塩、リン酸塩、及びアミド硫酸塩が好ましく、モノアリルアミンから導かれる構造の塩酸塩、硫酸塩、リン酸塩、及びアミド硫酸塩が特に好ましい。
 構成単位(1-4)
 構成単位(1-4)は、下記一般式(I-f)で表される構造、又はその酸付加塩である構造、を有する構成単位である。
Figure JPOXMLDOC01-appb-C000032

 式中Rは水素原子又はメチル基、RおよびRはそれぞれ独立に水素原子、又は炭素数1~4のアルキル基を示し、nは2~4の整数である。
 Rは、メチル基であることが好ましく、nは2~3であることが好ましく、RおよびRは、それぞれ独立に水素原子またはメチル基あることが好ましい。
 構成単位(1-4)が一般式(I-f)で表される構造の酸付加塩である場合の付加塩の種類には特に制限はないが、入手性や反応の制御の容易さ等の観点から、例えば塩酸塩、硫酸塩、リン酸塩、硝酸塩、亜硫酸塩、亜リン酸塩、亜硝酸塩、臭化水素酸塩、酢酸塩、アミド硫酸塩、メタンスルホン酸塩、トリフルオロ酢酸塩、p-トルエンスルホン酸塩等を使用することができる。
 中でも、塩酸塩、硫酸塩、リン酸塩、及びアミド硫酸塩が好ましく、モノアリルアミンから導かれる構造の塩酸塩、硫酸塩、リン酸塩、及びアミド硫酸塩が特に好ましい。
 両性共重合体の全構成単位に占めるカチオン性構成単位(1)の割合は、通常10~70モル%であり、好ましくは15~60モル%であり、特に好ましくは20~55モル%である。2種類以上のカチオン性構成単位(1)を含む場合の上記割合は、当該2種類以上のカチオン性構成単位(1)の合計量に基づいて定義される。
 アニオン性構成単位(2)
 本発明において用いられる両性共重合体を構成するアニオン性構成単位(2)は、その構造中にアニオン性の官能基を有する構成単位である。
 アニオン性構成単位(2)には、その構造中にアニオン性の官能基を含む構成単位であること以外の制限は課されず、したがって構造中にアニオン性の官能基を含む構成単位であるとの条件を満たす限りにおいて、各種の構造の構成単位をアニオン性構成単位(2)として採用することができる。
 アニオン性構成単位(2)として特に好ましい構成単位として、下記の構成単位(2-1)、構成単位(2-2)、構成単位(2-3)及び構成単位(2-4)を挙げることができる。中でも構成単位(2-1)が、アニオン性構成単位(2)として特に好ましい。
 特性両性共重合体は、アニオン性構成単位(2)1種類のみを含んでいてもよく、2種類以上のアニオン性構成単位(2)を含んでいてもよい。2種類以上のアニオン性構成単位(2)を含む場合の当該2種類以上のアニオン性構成単位(2)は、ともに構成単位(2-1)に分類される構成単位の組み合わせ、ともに構成単位(2-2)に分類される構成単位の組み合わせ、ともに構成単位(2-3)に分類される構成単位の組み合わせ、又はともに構成単位(2-4)に分類される構成単位の組み合わせであってもよく、構成単位(2-1)から(2-4)のうち互いに異なるものに分類される構成単位同士の組み合わせであってもよい。構成単位(2-1)から(2-4)のいずれにも該当しないアニオン性構成単位を組み合わせて使用してもよい。
 構成単位(2-1)
 構成単位(2-1)は、下記一般式(II-a)で表される構造を有する構成単位である。
 アニオン性構成単位(2)の全部または一部として構成単位(2-1)を使用することで、クランプ核酸による核酸増幅の阻害効果をより増強することができる。
Figure JPOXMLDOC01-appb-C000033

 式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feを表す。
 Rは、水素であることが好ましく、Yは水素またはNaであることが好ましい。構成単位(2-1)は、マレイン酸から導かれるものであることが特に好ましい。
 構成単位(2-2)
 構成単位(2-2)は、下記一般式(II-b)で表される構造を有する構成単位である。
Figure JPOXMLDOC01-appb-C000034

 式中Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feを表す。
 Yは水素またはNaであることが好ましい。
 構成単位(2-3)
 構成単位(2-3)は、下記一般式(II-c)で表される構造を有する構成単位である。
Figure JPOXMLDOC01-appb-C000035

 式中Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。
 Yは水素またはNaであることが好ましい。
 構成単位(2-4)
 構成単位(2-4)は、下記一般式(II-d)で表される構造を有する構成単位である。
Figure JPOXMLDOC01-appb-C000036

 式中R10は、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。R10は、水素であることが好ましく、Yは水素またはNaであることが好ましい。
 構成単位(2-4)は、(メタ)アクリル酸から導かれるものであることが好ましく、アクリル酸から導かれるものであることが特に好ましい。
 本発明において用いる両性共重合体は、上記カチオン性構成単位(1)及びアニオン性構成単位(2)を含むので、カチオン性及びアニオン性を有する両性共重合体となる。
 上記特定の構造を有するカチオン性構成単位(1)、及びアニオン性構成単位(2)を含み、カチオン性構成単位(1)/アニオン性構成単位(2)のモル比が上記特定の範囲内にある両性共重合体を用いることで、クランプ核酸による核酸増幅の阻害効果を増強する等の本発明の顕著な効果が実現されるメカニズムは必ずしも明らかではないが、特定の構造を有するカチオン性構成単位(1)は、その強力なポジティブチャージによって、クランプ核酸とDNAとの結合を安定化させるが、その反面、強力すぎるポジティブチャージは、DNAの二本鎖形成や一本鎖への変性を阻害する場合がある。このような特定の構造を有するカチオン性構成単位(1)に対して、アニオンチャージを備える構成単位(2)が特定のモル比で存在することで、カチオン性構成単位(1)が備えるポジティブチャージを適度に調整し、DNAの二本鎖形成や一本鎖への変性を阻害することを抑制して、クランプ核酸とDNAとの結合を安定化させる機能を発現させるものと推定される。
 上述の様に、両性共重合体において、カチオン性構成単位(1)が構成単位(1-1)であることが好ましく、アニオン性構成単位(2)が構成単位(2-1)であることが好ましいので、カチオン性構成単位(1)として構成単位(1-1)を有し、アニオン性構成単位(2)として構成単位(2-1)を有する両性共重合体を、試料中における標準塩基配列に対する変異を備える対象塩基配列の含有率が低い場合であっても、クランプ核酸による核酸増幅の阻害効果を十分に増強可能であることから特に好ましく用いることができる。
 それ以外の構成単位(3)
 両性共重合体は、上記カチオン性構成単位(1)及びアニオン性構成単位(2)に加えて、それ以外の構成単位を有していてもよい。
 それ以外の構成単位としては、後述のノニオン性構成単位(3―1)や、カチオン性構成単位(1)には該当しない構造を有する、すなわちアミノ基を有しない、カチオン性の構成単位(3―2)を挙げることができる。
 カチオン性構成単位(1)とアニオン性構成単位(2)との距離を調整するという観点から、両性共重合体はノニオン性構成単位(3-1)を更に含むことが好ましい。
 ノニオン性構成単位(3―1)
 本実施形態におけるノニオン性構成単位(3―1)は、カチオン性構成単位(1)及びアニオン性構成単位(2)と共重合可能な非イオン性の単量体から導かれる構成単位であればよく、特にそれ以外の制限はないが、メタクリル酸エステル系単量体、アクリル酸エステル系単量体、メタクリルアミド系単量体、アクリルアミド系単量体、二酸化硫黄等から導かれる構成単位を、好ましく用いることができる。より具体的な例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリルアミド、N-メチルメタクリルアミド、ジメチルメタクリルアミド、N-(3-ジメチルアミノプロピル)メタクリルアミド、アクリルアミド、ジメチルアクリルアミド、ヒドロキシエチルアクリルアミド、ジメチルアミノプロピルアクリルアミド、ジメチルアミノプロピルアクリルアミド塩化メチル4級塩、アクリロイルモルフォリン、イソプロピルアクリルアミド、4-t-ブチルシクロヘキシルアクリレート、又は二酸化硫黄から導かれる構成単位を挙げることができる。アクリルアミド又はメタクリルアミドから導かれる構成単位を使用することが特に好ましい。
 ノニオン性構成単位(3―1)は、通常、単量体として非イオン性の単量体を用いることで、両性共重合体中に導入することができる。
 両性共重合体がノニオン性構成単位(3―1)を有する場合のノニオン性構成単位(3―1)の含有量には特に制限はなく、またノニオン性構成単位(3―1)の種類によってもその好適な量は異なるが、アニオン性構成単位(2)とのモル比が、ノニオン性構成単位(3―1)/アニオン性構成単位(2)=0.1/1~1/1であることが好ましく、0.2/1~0.8/1であることがより好ましく、0.3/1~0.7/1であることがさらに好ましく、0.4/1~0.6/1であることが特に好ましい。
 ノニオン性構成単位(3―1)がメタクリル酸エステル系単量体、アクリル酸エステル系単量体、メタクリルアミド系単量体、又はアクリルアミド系単量体から導かれる場合には、上記比率は0.1/1~1/1であることが好ましく0.2/1~0.8/1であることがより好ましく、0.3/1~0.7/1であることがさらに好ましく、0.4/1~0.6/1であることが特に好ましい。
 ノニオン性構成単位(3―1)が二酸化硫黄から導かれる場合には、上記比率は0.1/1~1/1であることが好ましく、0.2/1~1/1であることが特に好ましい。
 両性共重合体は、カチオン性構成単位(1)と、アニオン性構成単位(2)とを有するものであり、したがってカチオン性構成単位(1)及びアニオン性構成単位(2)のみで構成されていてもよく、カチオン性構成単位(1)及びアニオン性構成単位(2)に加えて、それ以外の構成単位を有していてもよい。それ以外の構成単位としては、後述のノニオン性構成単位(3―1)や、上述の様に特定の構造を有するカチオン性構成単位(1)には該当しない構造のカチオン性の構成単位(3―2)を挙げることができる。
 カチオン性構成単位(1)とアニオン性構成単位(2)との合計が両性共重合体の全構成単位に占める割合には特に制限は無いが、通常67モル%以上であり、好ましくは75~100モル%であり、より好ましくは80~100モル%であり、特に好ましくは90~100モル%である。
 両性共重合体におけるアニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))は、0.13~1.62の範囲にある。
 両性共重合体におけるカチオン性構成単位(1)/アニオン性構成単位(2)のモル比が0.13以上であることにより、カチオン性構成単位(1)の備えるクランプ核酸とDNAとの結合を安定化させる機能が損なわれず、クランプ核酸による核酸増幅の阻害効果を増強することができる。
 両性共重合体におけるカチオン性構成単位(1)/アニオン性構成単位(2)のモル比は、0.20以上であることが好ましく、0.25以上であることがより好ましく、0.37以上でることがさらに好ましく、0.45以上であることが特に好ましく、0.50以上であることが最も好ましい。
 両性共重合体におけるカチオン性構成単位(1)/アニオン性構成単位(2)のモル比が1.62以下であることにより、カチオン性構成単位(1)によるDNAの二本鎖形成や一本鎖への変性阻害が抑制され、クランプ核酸とDNAとの結合を安定化させる機能を発現させることができる。
 両性共重合体におけるカチオン性構成単位(1)/アニオン性構成単位(2)のモル比は、1.30以下であることが好ましく、1.25以下であることがより好ましく、1.13以下であることがさらに好ましく、1.05以下であることが特に好ましく、1.00以下があることが最も好ましい。
 両性共重合体におけるカチオン性構成単位(1)/アニオン性構成単位(2)のモル比は、0.25~1.25の範囲にあることが好ましく、0.50~1.00の範囲にあることが特に好ましい。
 両性共重合体における、カチオン性構成単位(1)及びアニオン性構成単位(2)のモル比は、カチオン性構成単位(1)及びアニオン性構成単位(2)の構造が既知である場合、両性共重合体をイソプロピルアルコール又はアセトン等の有機溶媒で再沈し、再沈物について、Perkin Elmer 2400II CHNS/O全自動元素分析装置又は同等の性能の装置を用いて、前記構成単位の構造に応じた適宜のモードで分析することで特定することができる。なお、測定は、キャリアーガスとしてヘリウムガスを使用し、錫カプセルに固体試料を量りとり、燃焼管内に落下して純酸素ガス中で燃焼温度1800℃以上で試料を燃焼し、分離カラム及び熱伝導検出器によるフロンタルクロマトグラフィー方式で各測定成分を検出し、校正係数を用いて各元素の含有率を定量することで行うことができる。また、両性共重合体におけるカチオン性構成単位(1)及びアニオン性構成単位(2)の構造が未知である場合、上記元素分析装置による測定の前に、1H-NMR又は13C-NMRを用いた公知の方法により、それぞれの構成単位の構造を特定する。また、両性共重合体の製造(共重合)において供給した各単量体の量、及び両性共重合体に取り込まれずに残留した各単量体の量から計算することもできる。なお、両性共重合体における各単量体から導かれる構成単位の割合(モル比)は、各構成単位の仕込み組成(モル比)とほぼ一致するため、本明細書では便宜的にモノマーの配合比を構成単位の割合(モル比)として取り扱う事がある。
 両性共重合体における、カチオン性構成単位(1)/アニオン性構成単位(2)のモル比は、両性共重合体の製造(共重合)において供給した各単量体、特にカチオン性構成単位(1)を導く単量体及びアニオン性構成単位(2)を導く単量体、の種類及び量、製造(共重合)の条件、例えば触媒の種類や量、共重合温度や時間等を選択、調整することで、適宜調整することができる。
両性共重合体の製造方法
 両性共重合体の製造方法には特に制限はなく、従来当該技術分野において公知の方法で製造することができるが、例えばカチオン性構成単位(1)に対応する構造のカチオン性単量体、及びアニオン性構成単位(2)に対応する構造のアニオン性単量体、並びに所望によりノニオン性構成単位(3)に対応する構造のノニオン性単量体等のそれ以外の単量体を共重合することにより製造することができる。
 カチオン性構成単位(1)に対応する構造のカチオン性単量体、アニオン性構成単位(2)に対応する構造のアニオン性単量体等を共重合する場合の溶媒は特に限定されず、水系の溶媒であっても、アルコール、エーテル、スルホキシド、アミド等の有機系の溶媒であってもよいが、水系の溶媒であることが好ましい。
 カチオン性構成単位(1)に対応する構造のカチオン性単量体、アニオン性構成単位(2)に対応する構造のアニオン性単量体等を共重合する場合の単量体濃度は単量体の種類により、また共重合を行う溶媒の種類により、異なるが、水系の溶媒の場合通常10~75質量%である。この共重合反応は、通常、ラジカル重合反応であり、ラジカル重合触媒の存在下に行なわれる。ラジカル重合触媒の種類は特に限定されるものでなく、その好ましい例として、t-ブチルハイドロパーオキサイドなどの過酸化物、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウムなどの過硫酸塩、アゾビス系、ジアゾ系などの水溶性アゾ化合物が挙げられる。
 ラジカル重合触媒の添加量は、一般的には全単量体に対して0.1~20モル%、好ましくは1.0~10モル%である。重合温度は一般的には0~100℃、好ましくは5~80℃であり、重合時間は一般的には1~150時間、好ましくは5~100時間である。重合雰囲気は、大気中でも重合性に大きな問題を生じないが、窒素などの不活性ガスの雰囲気で行なうこともできる。
核酸増幅反応
 本実施形態による方法では、クランプ核酸と、両性共重合体とを用いて、試料中の核酸を鋳型とした核酸増幅反応を行う。
 核酸増幅法としては、特に制限はないが、例えば、リアルタイムPCR法、デジタルPCR法、トラディショナルなPCR法、RT-PCR法等のPCR法、LAMP法、ICAN法、NASBA法、LCR法、SDA法、TRC法、TMA法を挙げることができる。核酸増幅法は、手法の汎用性・簡便性の観点から、PCR法が好ましく、核酸増幅物の定量が容易なことから、リアルタイムPCR法がより好ましい。
 核酸増幅用反応液の組成は、使用する核酸増幅法によって多少異なるが、通常は、上述したクランプ核酸、および両性共重合体に加え、プライマーセットと、基質としてのデオキシヌクレオシド三リン酸(例えば、dATP、dTTP、dCTPおよびdGTP:以下まとめてdNTPと称する)と、核酸合成酵素(例えば、DNAポリメラーゼ)とをバッファー中に含み、場合によっては、核酸合成酵素の補因子として、マグネシウムイオン(例えば、反応液中1~6mMの濃度で含む)を含んでもよい。
 また、リアルタイムPCR法等の核酸増幅と増幅された核酸の検出を同時に行う核酸増幅法を用いる場合は、インターカレーター、蛍光標識プローブ、サイクリングプローブ等の適当な検出用試薬も核酸増幅用反応液中に含む。
 プライマーセットは、対象塩基配列を含む領域を核酸増幅法によって増幅可能であればよく、通常、増幅対象とする領域に隣接する所定の領域にハイブリダイズするように設計されるが、プライマーの配列中に対象塩基配列の一部にハイブリダイズする配列を含んでいてもよい。
 プライマーは、DNA、RNA等の核酸よって構成することができる。プライマーの濃度は、通常、反応液中20nM~2μMの範囲で適切な濃度を選択すればよい。プライマーの長さは、通常5~40merであり、好ましくは12~35merであり、より好ましくは14~30merであり、さらに好ましくは15~25merである。プライマー間の距離、即ち増幅対象とする領域は通常50~5000塩基であり、好ましくは100~2000塩基である。プライマーの設計は、マニュアルで行ってもよいし、適当なプライマーデザイン用のソフトウェアを用いてもよい。このようなソフトとしては、例えば、Primer3ソフトウェア(http://frodo.wi.mit.edu)等が挙げられる。
 dNTPの濃度は、通常dATP、dTTP、dCTPおよびdGTPの反応液中のそれぞれの濃度が100~400μMの範囲となる濃度から選択すればよい。核酸合成酵素としては、例えば、DNAポリメラーゼ、RNAポリメラーゼ、逆転写酵素等が挙げられ、用いる核酸増幅法に応じて、適する性質の酵素を使用すればよい。例えば、PCR法であれば、TaqDNAポリメラーゼ、PfuDNAポリメラーゼ、その他バイオサイエンス関連の各社により開発された各種耐熱性DNAポリメラーゼが好ましく使用される。
 バッファーは、使用するDNAポリメラーゼの至適pH、および至適塩濃度を有するものを選択することが好ましい。核酸増幅法によっては、更にリボヌクレアーゼH(RNaseH)や逆転写酵素(RT)等を含んでいてもよい。なお、各核酸増幅法について、様々なキットが市販されているので、核酸増幅用反応液は、そのような市販のキットに添付されたものを用いてもよい。
 核酸増幅反応の鋳型となる核酸、すなわち「試料中の核酸」の反応液中の濃度は、通常反応液100μlあたり0.3ng~3μgとすればよいが、鋳型となる核酸の量が多すぎると非特異的増幅の頻度が増すので、反応液100μlあたり0.5μg以下に抑えることが好ましい。
 反応液中のクランプ核酸の量としては、試料中の標準塩基配列を有する核酸(例えば、野生型核酸)の量に対する変異を有すると想定される対象塩基配列を有する核酸の量に応じて、対象塩基配列が変異を有する場合に、標準塩基配列を有する核酸の増幅が十分に阻害され、変異を有する対象塩基配列を含む核酸が優先的に増幅される量を選択することが好ましい。試料中では通常、変異型核酸に対して野生型核酸が大多数であるため、10nM~1μMとすることが好ましく、20nM~500nMがより好ましく、50nM~200nMが特に好ましい。
 反応液中の両性共重合体の濃度は、核酸増幅反応に悪影響を及ぼさずに、クランプ核酸による核酸増幅反応の選択的阻害効果を増強し得るよう適切な濃度を選択することが好ましい。反応液中の両性共重合体の濃度は、重合体の種類によっても異なるが、通常、0.001~0.500質量%とすればよく、好ましくは、0.010~0.300質量%であり、より好ましくは、0.020~0.150質量%であり、特に好ましくは、0.025~0.100質量%である。
 上述したクランプ核酸と、ジアリルアミン類・二酸化硫黄共重合体とを用いて、試料中の核酸を鋳型とした核酸増幅反応を行うと、クランプ核酸は標準塩基配列を有する核酸に強く結合し、増幅反応の間のプライマーのアニーリングおよび/またはプライマーの伸長を阻害し、共存する両性共重合体はこの阻害効果を増強する。一方、クランプ核酸の結合力は標準塩基配列に対して変異を有する塩基配列に対しては大幅に低下するため、アニーリングおよびプライマーの伸長はほとんど阻害されず通常の核酸増幅反応を生じる。また、両性共重合体は、それ自体では核酸増幅反応を阻害しない。この結果、本実施形態の方法によれば、試料中の核酸中、変異を有する核酸が微量(例えば、0.1%以下または0.05%以下、特に0.02%以下の場合)で、標準塩基配列を有する核酸が支配的な場合であっても、標準塩基配列を有する核酸の増幅が選択的に阻害されて、変異を有する核酸が優先的に増幅されるため、ごく微量に含まれる変異を有する核酸の検出が可能となる。
 本実施形態の方法においては、上述した核酸増幅反応の特性を利用して変異の存在を検出する。すなわち、標準塩基配列を有する核酸の増幅が選択的に阻害される一方、対象塩基配列が標準塩基配列に対して変異を有する場合には、対象塩基配列を含む領域が優先的に増幅され、その結果、変異の有無により、核酸増幅反応の進行速度、反応産物の量等に差異を生じるため、これらを変異の検出に利用する。
 本実施形態において、変異の検出は、増幅反応の最終産物に対して検出を行う方法と、増幅反応中に経時的に増幅を確認する方法があり、例えば、得られた核酸増幅産物の総量、前記核酸増幅産物の総量が閾値に達するまでの核酸増幅反応の増幅サイクル数、前記核酸増幅産物中の前記変異を有する核酸の量、又は前記核酸増幅産物中の前記変異を有する核酸量が閾値に達するまでの核酸増幅反応の増幅サイクル数に基づいて、変異を検出することができる。特に、実施の簡便さや適応範囲の広さの点で、核酸増幅産物の総量が閾値に達するまでの核酸増幅反応の増幅サイクル数に基づいて変異を検出する方法が好ましい。
 また、ダイレクトシーケンス法等により増幅産物の塩基配列を確認することで、正確かつ高感度の検出ができる。ただし、後述する実施例で実証する通り、本発明の方法によれば、シーケンス決定に寄らずに、正確かつ高感度に変異の検出が可能である。
 核酸増幅産物の総量に基づいて変異を検出する方法としては、例えば、増幅反応後の溶液をフェノール・クロロホルム(1:1)溶液で除タンパク処理後、水層を直接、またはエタノール沈殿後に、適当な精製キットを用いて精製し、精製溶液の波長260nmの吸光度を、吸光光度計を用いて測定する方法;増幅産物を電気泳動によりアガロースゲル、またはポリアクリルアミドゲルで展開した後、適当なプローブを用いてサザンハイブリダイゼーション法によって検出する方法;金ナノ粒子を用いたクロマトハイブリダイゼーション法によって検出する方法;増幅した核酸による溶液の濁度を測定する方法;増幅プライマーの5’末端を予め蛍光標識しておき、増幅反応後にアガロースゲル、またはポリアクリルアミドゲルで電気泳動後、イメージングプレートに蛍光発光を取り込み、適当な検出装置を用いて検出する方法等が挙げられる。
 核酸増幅産物の総量が閾値に達するまでの核酸増幅反応の増幅サイクル数に基づいて変異を検出する方法としては、インターカレーター法、TaqManTMプローブ法、サイクリングプローブ法等のリアルタイムPCR法を挙げることができる。なお、前記閾値は、リアルタイムPCR装置(例えば、Step One Plus リアルタイムPCRシステム(Thermo Fisher Scientific社製))によって、自動検出することが可能である。
 インターカレーター法は、インターカレーター性蛍光色素(インターカレーターということもある)を用いる方法である。インターカレーターは、二本鎖核酸の塩基対間に特異的に結合して蛍光を発する試薬であり、励起光を照射すると蛍光を発する。インターカレーターに由来する蛍光強度の検出に基づいて、プライマー伸長産物の量を知ることができる。本実施形態においては、この蛍光強度をリアルタイムにモニタリングすることにより、核酸増幅産物の総量が閾値に達するまでの核酸増幅反応の増幅サイクル数を知ることができる。本実施形態においては、通常この分野で用いられる任意のインターカレーターを用いることができ、例えば、SYBRTM Green I(Molecular Probe社)、エチジウムブロマイド、フルオレン等が挙げられる。
 TaqManTMプローブ法は、一方の末端(通常、5’末端)を蛍光基(レポーター)で、他方の末端(通常、3’末端)を消光基で標識した、対象核酸の特定領域にハイブリダイズするオリゴヌクレオチドプローブを用いたリアルタイムPCR法により、目的の微量な核酸を高感度かつ定量的に検出できる方法である。該プローブは、通常の状態では消光基によってレポーターの蛍光が阻害されている。この蛍光プローブを検出領域に完全にハイブリダイズさせた状態で、その外側からDNAポリメラーゼを用いてPCRを行う。DNAポリメラーゼによる伸長反応が進むと、そのエキソヌクレアーゼ活性により蛍光プローブが加水分解され、レポーター色素が遊離し、蛍光を発する。本実施形態においては、この蛍光強度をリアルタイムにモニタリングすることにより、核酸増幅産物の総量が閾値に達するまでの核酸増幅反応の増幅サイクル数を知ることができる。
 サイクリングプローブ法は、RNAとDNAからなるキメラプローブとRNase Hの組み合わせによる高感度な検出方法である。該プローブは、RNA部分を挟んで一方が蛍光物質(リポーター)で、もう一方が蛍光を消光する物質(クエンチャー)で標識されている。このプローブは、インタクトな状態ではクエンチングにより蛍光を発しないが、配列が相補的な増幅産物とハイブリッドを形成した後にRNase  HによりRNA部分が切断されると、強い蛍光を発するようになる。本実施形態においては、この蛍光強度を測定することにより核酸増幅産物の総量を知ることができ、蛍光強度をリアルタイムにモニタリングすることにより、核酸増幅産物の総量が閾値に達するまでの核酸増幅反応の増幅サイクル数を知ることができる。
 この方法は、サイクリングプローブのRNA付近にミスマッチが存在すると、RNase Hによる切断は起こらないため、一塩基の違いも認識できる非常に特異性の高い検出が可能である。サイクリングプローブについても、適当な業者に設計・合成を委託する等して取得することができる。
 核酸増幅産物中の塩基変異を有する核酸量に基づいて変異を検出する方法としては、サンガーシーケンシング法、融解曲線分析法等を挙げることができる。
 核酸増幅産物中の塩基変異を有する核酸量が閾値に達するまでの核酸増幅反応の増幅サイクル数に基づいて変異を検出する方法としては、塩基変異を有する核酸に特異的に結合するプローブを用いて、前記リアルタイムPCR法を適用することを挙げることができる。
2.対象塩基配列中の変異を検出するためのキット
 本発明は、他の実施形態において、上述した対象塩基配列中の変異を検出する方法を実施するためのキットを提供する。本実施形態によるキットは、
 標準塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型核酸を含む、クランプ核酸と、
 構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と、
 場合によって、対象塩基配列を含む領域を核酸増幅法によって増幅可能なプライマーセットと、
 場合によって、核酸増幅反応を実施するためのその他の試薬とを含む。
 クランプ核酸、両性共重合体、およびプライマーセットの詳細は、対象塩基配列中の変異を検出する方法で述べた通りであり、好ましい実施形態および具体例も当該方法と同様である。
 核酸増幅反応を実施するためのその他の試薬としては、ヌクレオシド三リン酸、核酸合成酵素、および増幅反応用緩衝液が挙げられる。ヌクレオシド三リン酸は、核酸合成酵素に応じた基質(dNTP、rNTP等)を含み得る。核酸合成酵素は、キットが対象とする核酸増幅法に応じた酵素であり、DNAポリメラーゼ、RNAポリメラーゼ、逆転写酵素等が挙げられる。増幅反応用の緩衝液としては、例えば、トリス緩衝液、リン酸緩衝液、ベロナール緩衝液、ホウ酸緩衝液、グッド緩衝液等、通常の核酸増幅反応やハイブリダイゼーション反応を実施する場合に用いられる緩衝液が挙げられ、そのpHも特に限定されないが、通常5~9の範囲が好ましい。
 本実施形態によるキットはまた、上述した核酸増幅反応産物を検出するための試薬を含み得る。例えば、リアルタイムPCRのために用いられる、インターカレーター、蛍光標識プローブ、サイクリングプローブ等が挙げられる。
 また、安定化剤、防腐剤等の、核酸増幅反応試薬で一般的に用いられる他の成分も含み得る。
 なお、プライマーセットおよび核酸増幅反応を実施するためのその他の試薬は、核酸増幅反応を実施するために必要であるが、キット中に含まれない場合もある。また、核酸増幅反応産物を検出するための試薬や、安定化剤、防腐剤等の他の成分は核酸増幅反応において任意成分であり、キット中に含まれない場合もある。
3.核酸増幅反応において、所定の対象塩基配列を有する核酸の増幅を阻害する方法
 本発明は、更に他の実施形態において、所定の対象塩基配列を有する核酸の増幅を阻害する方法を提供する。この方法では、
 対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型核酸を含む、クランプ核酸と、
 構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と
を用いて前記核酸を鋳型とした核酸増幅反応を、を実施する。
 この実施形態における方法では、「試料」は、増幅阻害対象と成る核酸を含み得ると想定される試料であり、「対象塩基配列」は、増幅阻害の対象となる塩基配列であり、「試料中の核酸」は、増幅阻害の対象となる塩基配列を含み得る核酸である。但し、これらの用語は、「試料中の核酸」が、実際に増幅阻害の対象となる塩基配列を含むことまでは意味しない。
 また、この実施形態における「クランプ核酸」は、「対象塩基配列」に相補的な塩基配列を有し、このような「クランプ核酸」の存在により、当該「対象塩基配列」を有する核酸の増幅が阻害される。
 本実施形態においては、核酸増幅反応において、上記特定の両性共重合体が、対象塩基配列に相補的な塩基配列を有するクランプ核酸と共存することにより、対象塩基配列を有する核酸の増幅を阻害するクランプ核酸による効果が増強され、試料中に当該対象塩基配列を有する核酸が大量に存在する場合でも当該核酸の増幅を選択的に阻害することができる。
 試料、および試料中の核酸のその他の点は、対象塩基配列中の変異を検出する方法で述べた通りであり、好ましい実施形態および具体例も当該方法と同様である。また、クランプ核酸、および両性共重合体の詳細も、対象塩基配列中の変異を検出する方法で述べた通りであり、好ましい実施形態および具体例も当該方法と同様である。また、核酸増幅反応の実施および核酸増幅反応を実施するための試薬の詳細も、対象塩基配列中の変異を検出する方法およびキットで述べた通りであり、好ましい実施形態および具体例も当該方法およびキットと同様である。もっとも、本実施形態の方法では、所定の対象塩基配列を有する核酸の増幅阻害を検出することは必須では無く、この様な検出のために必要な工程および試薬は、必要に応じて実施若しくは使用する。
4.核酸増幅反応において、所定の対象塩基配列を有する核酸の増幅を阻害するためのキット
 本発明は、更に他の実施形態において、上述した、核酸増幅反応において、対象塩基配列を有する核酸の増幅を阻害する方法を実施するためのキットを提供する。本実施形態によるキットは、
 対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸と、
 構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と、
 場合によって、対象塩基配列を含む領域を核酸増幅法によって増幅可能なプライマーセットと、
 場合によって、核酸増幅反応を実施するためのその他の試薬とを含む。
 本実施形態における「試料」、「対象塩基配列」、「試料中の核酸」および「クランプ核酸」との用語の意義は、核酸増幅反応において対象塩基配列を有する核酸の増幅を阻害する方法で述べたものと同様である。
 また、試料、および試料中の核酸のその他の点は、対象塩基配列中の変異を検出する方法で述べた通りであり、好ましい実施形態および具体例も当該方法と同様である。また、クランプ核酸、および両性共重合体の詳細も、対象塩基配列中の変異を検出する方法で述べた通りであり、好ましい実施形態および具体例も当該方法と同様である。また、核酸増幅反応の実施および核酸増幅反応を実施するための試薬の詳細も、対象塩基配列中の変異を検出する方法およびキットで述べた通りであり、好ましい実施形態および具体例も当該方法と同様である。
5.クランプ核酸による核酸増幅阻害を増強する核酸増幅阻害増強剤
 本発明は、更に他の実施形態において、核酸増幅反応において、クランプ核酸によるそれに相補的な塩基配列を有する核酸の増幅阻害効果を増強する核酸増幅阻害増強剤を提供する。
 この増強剤は、構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体を含む。
 この増強剤を用いて行う「核酸増幅」は、「前記対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸」を用いて行われるものであり、本実施形態における「試料」、「対象塩基配列」、「試料中の核酸」および「クランプ核酸」との用語の意義は、核酸増幅反応において、対象塩基配列を有する核酸の増幅を阻害する方法で述べたものと同様である。
 また、本実施形態による「クランプ核酸により阻害する効果の増強剤」は、上記両性共重合体を含むが、これも対象塩基配列中の変異を検出する方法で述べた通りであり、好ましい実施形態および具体例も当該方法と同様である。
 以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれらに限定されるものではない。
1.ポリマー添加によるPCR反応への影響
 本発明の方法に使用可能な特定の両性共重合体(実施品)又は比較品のポリマー若しくはモノマーをPCR反応液中に添加して、PCR反応への影響を確認した。
1―1.使用したポリマー水溶液
 以下の表に示されるポリマー又はモノマーを水に溶解し、pH7.0、10質量%の水溶液を調製した。なお、表中、製品名は全てニットーボーメディカル株式会社の製品名であり、重合体1~18の重合条件は以下の通りである。
 重合体1:温度計、撹拌機、冷却管を備えた500mLの四つ口フラスコに66.78質量%ジアリルアミン塩酸塩160.07g(0.80モル)、無水マレイン酸78.45g(0.80モル)、蒸留水91.86gを仕込み、内温を50℃に昇温した。28.5質量%の過硫酸アンモニウム水溶液を、当該水溶液中の過硫酸アンモニウム量がモノマー全量に対して0.5質量%となる量だけ添加し重合を開始した。4時間後にモノマー全量に対して過硫酸アンモニウムが0.5質量%となる量、20、26時間後にモノマー全量に対して過硫酸アンモニウムが1.0質量%となる量、45、51時間後にモノマー全量に対して過硫酸アンモニウムが1.5質量%となる量の前記過硫酸アンモニウム水溶液を添加し、68時間反応させた。
 重合体2:温度計、撹拌機、冷却管を備えた20Lの四つ口フラスコに無水マレイン酸1.86kg(19.0モル)と蒸留水0.34kgを仕込み、ジアリルメチルアミン2.11kg(19.0モル)を冷却下で滴下した。その後、内温を50℃に昇温した。28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが0.5質量%となる量だけ添加し重合を開始させた。3、21、25時間後にモノマー全量に対して過硫酸アンモニウムが1.0質量%となる量の前記過硫酸アンモニウム水溶液を添加し、さらに一晩反応させた。
 重合体3:温度計、撹拌機、冷却管を備えた3Lの四つ口フラスコに蒸留水842.93g、無水マレイン酸488.34g(4.98モル)を仕込んだ。その後、冷却しながらアリルアミン342.60g(6.00モル)を滴下し、65℃に昇温した。28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが1モル%となる量だけ添加し重合を開始させた。3時間後にモノマー全量に対して過硫酸アンモニウムが1モル%、24、28時間後にモノマー全量に対して過硫酸アンモニウムが2モル%となる量の前記過硫酸アンモニウム水溶液を添加しさらに一晩反応させた。
 重合体4:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに、ジメチルアミノプロピルメタクリルアミド塩酸塩(固形分濃度51.2質量%)を16.15(0.04モル相当)、アクリルアミド(固形分濃度97質量%)を2.93g (0.04モル相当)、アクリル酸(固形分濃度99%質量%)を5.82g(0.08モル相当)、蒸留水を143.86g仕込み、60℃に昇温した。2時間毎にモノマー全量に対して過硫酸アンモニウムがそれぞれ0.25、0.5、0.5、0.75モル%となる量の、28.5質量%の過硫酸アンモニウム水溶液を添加し、一晩反応を継続した。
 重合体5:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに、ジメチルアミノプロピルメタクリルアミド塩酸塩(固形分濃度51.2質量%)を20.17g (0.05モル相当)、アクリルアミド(固形分濃度97質量%)を3.66g (0.05モル相当)、メタクリル酸(固形分濃度99質量%)を8.69g (0.10モル相当)、蒸留水を192.43g仕込み、60℃に昇温した。2時間毎にモノマー全量に対して過硫酸アンモニウムがそれぞれ0.25、0.5、0.5、0.75モル%となる量の、28.5質量%の過硫酸アンモニウム水溶液を添加し、一晩反応を継続した。
 重合体6:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに、ジアリルアミン塩酸塩 (固形分濃度65.40質量%)を20.43g(0.1モル相当)、蒸留水を110.9g仕込み、65℃に昇温した。モノマー全量に対して過硫酸アンモニウムが2.0モル%となる量の28.5質量%の過硫酸アンモニウムを添加後、30分経過してからアクリルアミド(固形分濃度97質量%)を7.11g (0.1モル相当)、アクリル酸(固形分濃度99質量%)を14.56g (0.2モル相当)、蒸留水を21.15g混合した溶液を3時間かけて滴下し、一晩反応を継続した。
 重合体7:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに、ジアリルアミン (濃度100質量%)を29.15g(0.30モル相当)、フマル酸(濃度100質量%)を27.86g(0.24モル相当)、蒸留水を227.45g仕込み、50℃に昇温した。次亜リン酸ナトリウム(濃度100質量%)を0.57g(0.0054モル相当)添加し、28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが10質量%となる量だけ8分割して添加し、50℃で重合を行った。
 重合体8:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに51.2%N-ジメチルアミノプロピルメタクリルアミド塩酸塩16.15g(0.04モル)、97.0%アクリルアミド5.86g(0.08モル)、99.0%アクリル酸5.82g(0.08モル)、蒸留水169.36gを仕込み、内温を60℃に昇温した。28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが0.25モル%となる量を添加し重合を開始した。2、4時間後にモノマー全量に対して過硫酸アンモニウムが0.5モル%となる量、6時間後にモノマー全量に対して過硫酸アンモニウムが0.75モル%となる量の前記過硫酸アンモニウム水溶液を添加し24時間反応させた。
 重合体9:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに51.2%N-ジメチルアミノプロピルメタクリルアミド塩酸塩14.13g(0.035モル)、97.0%アクリルアミド2.56g(0.035モル)、99.0%アクリル酸10.19g(0.140モル)、蒸留水171.23gを仕込み、内温を60℃に昇温した。28.5質量%過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが0.25モル%となる量だけ添加し重合を開始した。2、4時間後にモノマー全量に対して過硫酸アンモニウムが0.5モル%となる量、6時間後にモノマー全量に対して過硫酸アンモニウムが0.75モル%となる量の前記過硫酸アンモニウム水溶液を添加し24時間反応させた。
 重合体10:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに、ジメチルアミノプロピルメタクリルアミド塩酸塩(固形分濃度51.2質量%)を18.17g (0.05モル相当)、蒸留水を74.86g仕込み、60℃に昇温した。1時間毎に28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムがそれぞれ0.25、0.5、0.5、0.75モル%となる量だけ添加し、60℃で一晩反応を継続した。
 重合体11:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに、蒸留水を189.16g(単量体濃度10質量%となる量)仕込み、60℃に昇温した。28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが3.0質量%となる量だけ添加後、40質量%のアクリル酸水溶液63.06gを3時間かけて滴下し、60℃で一晩反応を継続した。
 重合体12:温度計、撹拌機、冷却管を備えた1Lの四つ口フラスコに57.22質量%のアリルアミン塩酸塩10.63g(0.065モル)と65.22質量%のジアリルアミン塩酸塩253.02g(1.235モル)と蒸留水31.35gを仕込み、60℃に昇温した。28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが0.25質量%となる量だけ添加し重合を開始させた。3、5、21時間後にモノマー全量に対して過硫酸アンモニウムが0.25質量%となる量、23、25、27、29時間後にモノマー全量に対して過硫酸アンモニウムが0.50質量%となる量の前記過硫酸アンモニウム水溶液を添加し、さらに一晩反応させた。
 重合体13:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに65.0%ジアリルジメチルアンモニウムクロリド124.37g(0.50モル)、アクリルアミド4.44g(0.06モル)、次亜リン酸ナトリウム0.85g、蒸留水84.39gを仕込み、内温を50℃に昇温した。28.5質量%過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが0.2質量%となる量だけ添加し重合を開始した。4時間後にモノマー全量に対して過硫酸アンモニウムが0.3質量%となる量、23時間後にモノマー全量に対して過硫酸アンモニウムが0.5質量%となる量、28時間後にモノマー全量に対して過硫酸アンモニウムが1.0質量%となる量の前記過硫酸アンモニウム水溶液を添加し48時間反応させた。
 重合体14:温度計、撹拌機、冷却管を備えた1Lの四つ口フラスコに58.01質量%のアリルアミン塩酸塩209.67g(1.3モル)と63.61質量%のジメチルアリルアミン塩酸塩248.51g(1.3モル)を仕込み、60℃に昇温した。開始剤V-50(2,2′-アゾビス(2-メチルプロピオンアミジン)二塩酸塩)をモノマー全量に対してV-50が12モル%となる量だけ3分割して添加し、72時間重合を行った。その後、48時間60℃で加熱分解処理した。その後、30℃以下の冷却下で濃度25質量%の水酸化ナトリウムを449.28g(2.81モル)添加し、40℃で24時間反応させた。その後、エバポレーターによる脱モノマー(50℃、3時間)を行った。脱モノマー後、濃度15%に調整して電気透析による脱塩(約3時間、電導度が下がりきってから1時間後に終了)を行った。
 重合体15:攪拌機、温度計、ガラス栓を備えた100mlの三口フラスコに蒸留水25.95gとジアリルメチルアミン塩酸塩水溶液0.088モルとアクリルアミドを0.011モル仕込み、55℃に昇温した。28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが4.0モル%となる量だけ7分割して添加し、55℃で重合を行った。
 重合体16:攪拌機、温度計、ガラス栓を備えた100mlの三口フラスコに蒸留水24.71gとジアリルメチルアミン塩酸塩水溶液0.06モルとN-イソプロピルアクリルアミドを0.06モル仕込み、55℃に昇温した。28.5質量%の過硫酸アンモニウム水溶液をモノマー全量に対して過硫酸アンモニウムが3.25モル%となる量だけ7分割して添加し、55℃で重合を行った。
 重合体17:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに、ジメチルアミノプロピルメタクリルアミド塩酸塩(固形分濃度51.2質量%)を32.30g(0.08モル相当)、アクリルアミド(固形分濃度97質量%)を2.93g (0.04モル相当)、アクリル酸(固形分濃度99%質量%)を2.91g(0.04モル相当)、蒸留水を184.49g仕込み、60℃に昇温した。2時間毎にモノマー全量に対して過硫酸アンモニウムがそれぞれ0.25、0.5、0.5、0.75モル%となる量の、28.5質量%の過硫酸アンモニウム水溶液を添加し、一晩反応を継続した。
 重合体18:温度計、撹拌機、冷却管を備えた300mLの四つ口フラスコに、ジメチルアミノプロピルメタクリルアミド塩酸塩(固形分濃度51.2質量%)を32.30g(0.08モル相当)、アクリルアミド(固形分濃度97質量%)を2.93g (0.04モル相当)、メタクリル酸(固形分濃度99%質量%)を3.44g(0.04モル相当)、蒸留水を189.55g仕込み、60℃に昇温した。2時間毎にモノマー全量に対して過硫酸アンモニウムがそれぞれ0.25、0.5、0.5、0.75モル%となる量の、28.5質量%の過硫酸アンモニウム水溶液を添加し、一晩反応を継続した。
Figure JPOXMLDOC01-appb-T000037

Figure JPOXMLDOC01-appb-T000038
1-2.PCR反応液
 下記の表に示す組成のPCR反応液を調製した。
Figure JPOXMLDOC01-appb-T000039
1-3.プライマーおよび鋳型DNA
 PCR反応で使用したフォワードプライマーおよびリバースプライマーの配列は下記表に示す通りである。
Figure JPOXMLDOC01-appb-T000040

 各プライマーはKRAS遺伝子(塩基配列は、例えば、NCBI(DB名)で確認できる)をターゲットとして、Primer3(http://frodo.wi.mit.eduから入手)を使用して設計した。
 鋳型DNAとして、以下の塩基配列(増幅対象配列)を含む、HCC70細胞から抽出したゲノムを使用した。
Figure JPOXMLDOC01-appb-C000041

 なお、HCC70細胞ゲノム中、上記塩基配列を含み、これに隣接する塩基配列は以下の通りである。
Figure JPOXMLDOC01-appb-C000042
1-4.リアルタイムPCRシステム
 Step One Plus リアルタイムPCRシステム(Thermo Fisher Scientific)を使用した。
1-5.PCR反応
 調製したPCR反応溶液20μLを、リアルタイムPCRシステムにセットし、下記表に記載のステップ(i)を行った後、ステップ(ii)~(iv)を40サイクル繰り返した。
Figure JPOXMLDOC01-appb-T000043

 40サイクル終了後、ステップ(v)~(vii)を行い、反応を終了した。サイクル毎に反応液の蛍光強度を測定することで、DNA増幅量をモニターした。また、反応の終了後、蛍光強度がThreshold Lineに達しているか否かで、PCR反応の阻害の有無を判定した。Threshold Lineは、上記装置により自動算出した。一部、実験によりやむを得ず通常より低く設定されてしまう場合は、ほかの実験と同列に比較するため、手動にてΔRn値0.7~1.2の間に設定した。
1-5.結果
 PCR反応の成否を下記の表に示す。
Figure JPOXMLDOC01-appb-T000044

Figure JPOXMLDOC01-appb-T000045

 また、PCR反応を阻害しない場合の核酸増幅曲線の例(実施例2のジアリルメチルアミン・マレイン酸1:1の共重合体)と阻害する場合の核酸増幅曲線の例(比較例7のジアリルジメチルアンモニウムクロリド・アクリルアミド8:1の共重合体)をそれぞれ図1に示す。
 上記の通り、構造中にアミンを含むカチオン性構成単位と、アニオン性構成単位とを有し、カチオン性構成単位/アニオン性構成単位が0.25~1.25の範囲にある、両性共重合体である、実施例1~9のポリマーを添加した場合、又は、比較例13又は14のモノマーを添加した場合には、PCR反応を阻害しなかった。
2.BNA clampによる野生型遺伝子の選択的増幅阻害効果のポリマーによる増強
 試験1でPCR反応を阻害しないことを確認した実施例1~9のポリマー並びに比較例13及び14のモノマーを、BNA clamp PCRにおける野生型KRAS遺伝子の増幅阻害効果の増強について評価した。
2-1.使用したポリマー又はモノマー
 実施例1~9のポリマー並びに比較例13及び14のモノマーを使用した。各ポリマー又はモノマーをヌクレアーゼフリーの水に溶解し、pH7.0で、濃度が10%のポリマー又はモノマーの水溶液を調製して使用した。
 得られた10%濃度のポリマー水溶液又はモノマー水溶液は、それぞれ、試験1の結果からPCR反応を阻害しない範囲の濃度に希釈した。下記表に本試験で使用した各ポリマー又はモノマーの水溶液の濃度および反応液中のポリマー又はモノマーの濃度を示す。
Figure JPOXMLDOC01-appb-T000046
2-2.使用したキット
 変異型KRAS遺伝子を検出するためのキットである、BNA Clamp KRAS Enrichment Kit(理研ジェネシス社)の付属物を使用した。詳細は、以下に記載するが、Primer set、及びBNA clampは、キット付属物を用いた。また、real-time PCRの反応条件はキットプロトコールに準拠した。
2-3.プライマー、BNA clampおよび鋳型DNA
 以下の表に示すフォワードプライマー、リバースプライマーおよびBNA clampを使用した。
Figure JPOXMLDOC01-appb-T000047

 また、標準塩基配列を有する鋳型DNAとして、以下の塩基配列(増幅対象配列;後述する配列番号10の塩基配列と異なる塩基を下線太字で示した)を含む、野生型KRAS遺伝子を有するHCC70細胞のゲノムを使用した。
Figure JPOXMLDOC01-appb-C000048

 なお、HCC70細胞ゲノム中、上記塩基配列とそれに隣接する塩基配列は以下の通りである(後述する配列番号11の塩基配列と異なる塩基を下線太字で示した)。
Figure JPOXMLDOC01-appb-C000049

 他方、標準塩基配列に対する変異を有する鋳型DNAとして、以下の塩基配列(増幅対象配列;前述の配列番号8の塩基配列と異なる塩基を下線太字で示した)を含む、変異型KRAS遺伝子を有するMDA-MB-231細胞のゲノムを使用した。
Figure JPOXMLDOC01-appb-C000050

 なお、MDA-MB-231細胞ゲノム中、上記塩基配列およびそれに隣接する塩基配列は以下の通りである(前述の配列番号9の塩基配列と異なる塩基を下線太字で示した)。
Figure JPOXMLDOC01-appb-C000051
2-4.BNA clamp PCR反応液
 下記の表に示す組成の反応液1~4を調製した。反応液1又は反応液2において、ポリマー又はモノマーの濃度は0.025質量%であった。反応液1又は反応液2において、ポリマー又はモノマーの濃度は、前記表6に示すとおりであった。
Figure JPOXMLDOC01-appb-T000052

Figure JPOXMLDOC01-appb-T000053

Figure JPOXMLDOC01-appb-T000054

Figure JPOXMLDOC01-appb-T000055
2-5.リアルタイムPCRシステム
 Step One Plus リアルタイムPCRシステム(Thermo Fisher Scientific)を使用した。
2-6.PCR反応
 調製した各反応溶液20μLを、PCR用チューブに秤取し、PCR用チューブをリアルタイムPCRシステムにセットし、下記表に記載のステップ(i)を行った後、ステップ(ii)~(iv)を50サイクル繰り返した。50サイクル終了後、ステップ(v)~(vii)を行い、反応を終了した。サイクル毎に反応液の蛍光強度を測定することで、DNA増幅量をモニターし、各反応液の増殖曲線を得た。
Figure JPOXMLDOC01-appb-T000056
2-7.ポリマー添加または無添加の場合のΔCt(WT)およびΔCt(Mutant)の算出、ポリマー添加または無添加の場合のΔΔCtの算出、ならびにΔΔΔCtの算出
 反応液1(ポリマー添加、BNA clamp添加)、反応液2(ポリマー添加、BNA clamp無添加)、反応液3(ポリマー無添加、BNA clamp添加)、および反応液4(ポリマー無添加、BNA clamp無添加)を、テンプレートDNAとして、野生型KRAS遺伝子又は変異型KRAS遺伝子を用いて、上記PCR反応を行って増幅曲線を得、各条件の増幅曲線から、設定したThreshold LineよりそれぞれのCt値を得た(ほとんどの実験区分において、Threshold Lineは、装置により自動算出した。一部、実験によりやむを得ず通常より低く設定されてしまう場合は、ほかの実験と同列に比較するため、手動にてΔRn値を0.7~1.2の間に設定した)。
 次いで、以下の式により、ポリマー無添加の場合のΔCt(WT)およびΔCt(Mutant)を算出した。
Figure JPOXMLDOC01-appb-M000057

Figure JPOXMLDOC01-appb-M000058
 更に、インターカレーター法における非特異的な増幅が無いことの確認のため、以下の式によりポリマー無添加の場合のΔΔCtを算出した。
Figure JPOXMLDOC01-appb-M000059

 ポリマー無添加の場合のΔΔCt>0の場合、インターカレーター法における非特異的な増幅が無いことが理解される。
 次に、以下の式により、ポリマー添加の場合のΔCt(WT)およびΔCt(Mutant)を算出し、更に、インターカレーター法における非特異的な増幅が無いことの確認のため、ポリマー添加の場合のΔΔCtを算出した。
Figure JPOXMLDOC01-appb-M000060

Figure JPOXMLDOC01-appb-M000061

Figure JPOXMLDOC01-appb-M000062

 ポリマー添加の場合のΔΔCt>0の場合、インターカレーター法における非特異的な増幅が無いことが理解される。
 最後に、BNA clampによる野生型遺伝子の選択的増幅阻害効果のポリマー添加による増強を評価するための指標として、下記式によりΔΔΔCtを算出した。
Figure JPOXMLDOC01-appb-M000063

 試験上起こり得る結果の揺らぎを考慮しても、インターカレーター法のような野生型遺伝子の増幅サイクル数を基準とした変異検出法を用いた場合において、ΔΔΔCt≧1.00であれば、BNA clampによる野生型遺伝子の選択的増幅阻害効果を十分に増強したと評価できる。また、インターカレーター法のような野生型遺伝子の増幅サイクル数を基準とした変異検出法を用いた場合において、ΔΔΔCt≧3.20であれば、BNA clampによる野生型遺伝子の選択的増幅阻害効果を著しく増強したと評価できる。なお、ΔΔΔCt=3.20が、感度が約10倍向上する目安となる。
2-8.結果
 試験結果を以下に纏めて示す。
Figure JPOXMLDOC01-appb-T000064
 上記の試験結果から、実施例1~9のポリマーを添加すると、変異型遺伝子の増幅は阻害せずに、BNA clampによる野生型遺伝子の選択的増幅阻害効果を増強することが明らかとなった。また、実施例1、2、4~9のポリマー(カチオン性構成単位が第2級アミノ基又は第3級アミノ基を有する両性共重合体)は、実施例3のポリマー(カチオン性構成単位が第1級アミノ基を有する両性共重合体)よりも、クランプ核酸による核酸増幅の阻害効果の増強効果が大きいことが明らかとなった。このように野生型遺伝子の選択的増幅阻害効果を増強する一例のグラフを図2に示す。
3.ポリマー添加によるBNA clamp PCRの高感度化
 上記試験でBNA clampによる野生型遺伝子の選択的増幅阻害効果を増強する効果が確認された実施例1、2、4および6のポリマーを用いて、BNA clamp PCRの高感度化を試みた。
3-1.使用ポリマー
 実施例1、2、4および6のポリマーを用いた。各ポリマー溶液の濃度及びPCR反応液中における最終濃度を以下の表に示す。
Figure JPOXMLDOC01-appb-T000065
3-2.使用したキット
 試験2と同じキットの付属物を使用した。
3-3.鋳型DNA
 標準塩基配列を有する鋳型DNAとして、配列番号8の塩基配列を含む、野生型KRAS遺伝子を有するHCC70細胞のゲノムを使用した。また、標準塩基配列に対する変異を有する鋳型DNAとして、配列番号10の塩基配列を含む、変異型KRAS遺伝子を有するMDA-MB-231細胞のゲノムを使用した。
 本試験では、鋳型DNA全体の量が、2.0μL中に50ngとなるようにしながら、全鋳型DNA中の変異型遺伝子の鋳型DNAの質量%が、以下の表となるように、野生型遺伝子の鋳型DNAと変異型遺伝子の鋳型DNAを混合し、得られた各鋳型DNA混合物と、野生型遺伝子の鋳型DNAをPCR反応に使用した。
Figure JPOXMLDOC01-appb-T000066
3-4.プライマー、およびBNA clamp
 試験2と同じプライマー、およびBNA clampを使用した。
3-5.BNA clamp PCR反応液
 下記の表に示す組成の反応液1および2を調製した。なお、反応液1において、ポリマーの濃度は、前記表14に示すとおりであった。
Figure JPOXMLDOC01-appb-T000067

Figure JPOXMLDOC01-appb-T000068
3-6.リアルタイムPCRシステムおよびPCR反応
 試験2と同じリアルタイムPCRシステムを使用して、試験2と同じ条件でPCR反応を実施した。
3-7.ポリマー添加または無添加の場合のδCt(Mutant10%~0.01%)の決定、ならびにポリマー添加または無添加の場合のδδCt(Mutant10%~0.01%)の算出
 反応液1(ポリマー添加、BNA clamp添加)、および反応液2(ポリマー無添加、BNA clamp添加)を、鋳型DNAまたは各鋳型DNA混合物を用いて、上記PCR反応に供して増幅曲線を得、各条件の増幅曲線から、試験2と同様にして、Ct(Mutant10%~0%)を決定し、以下の表に示すように、Ct(Mutant0%、WT)から各変異型遺伝子テンプレート濃度のCt(Mutant10%~0.01%)を引いて、各ポリマー添加または無添加の場合のδCt(Mutant10%~0.01%)を算出した。
Figure JPOXMLDOC01-appb-T000069

Figure JPOXMLDOC01-appb-T000070

 最後に、それぞれ、ポリマー添加の場合のδCt(Mutant10%~0.01%)からポリマー無添加の場合のδCt(Mutant10%~0.01%)を引いて、δδCt(Mutant10%~0.01%)を算出した。
 インターカレーター法のような野生型遺伝子の増幅サイクル数を基準とした変異検出法を用いた場合において、δδCt>0の場合、ポリマーを添加することで、変異型遺伝子が特異的に検出され、変異型遺伝子の増幅曲線が野生型遺伝子の増幅曲線から区別されていることを意味する(参考文献:特許文献11)。
3-8.結果
 試験結果を以下の表および図3に纏めて示す。なお、Mutant比率0.01%の場合のポリマー無添加時δCtは、-0.68であった。
Figure JPOXMLDOC01-appb-T000071
本試験の結果、ポリマー無添加の場合では、Mutant比率が0.01質量%で、δCtが0未満となり、変異型遺伝子の増幅曲線を野生型遺伝子の増幅曲線から区別できないが、実施例1、2、4または6のポリマーを添加した場合では、0.01質量%のMutant比率でも変異型遺伝子の増幅曲線を野生型遺伝子の増幅曲線から区別できることが明らかとなった。また、特に実施例2のポリマー(カチオン性構成単位が前記一般式(I-a)若しくは一般式(I-b)で表される構造を有する構成単位であり、アニオン性構成単位が前記一般式(II-a)で表される構成単位である両性共重合体)を添加した場合では、Mutant比率が0.1%以下の条件において、クランプ核酸による核酸増幅の阻害効果の増強効果が特に大きくなることが明らかになった。なお、本実験においては、BNA clamp無添加反応液について試験していないものの、試験2の結果から、BNA clamp無添加反応液においてもポリマー添加の有無に関わらず、非特異的な増幅が無いことは明らかである。
4.KRAS以外の変異型遺伝子への適応可能性1(BNA clampによる野生型遺伝子の選択的増幅阻害効果のポリマーによる増強)
4-1.使用したポリマー
 試験2で用いたポリマーのうち、実施例1、2、4、6および7のポリマーを使用した。それぞれのポリマー溶液濃度及びPCR反応液中におけるポリマー濃度は、下記表の通りとした。
Figure JPOXMLDOC01-appb-T000072
4-2.使用したキット
 変異型BRAF遺伝子を検出するためのキットである、BNA Clamp BRAF Enrichment Kit(理研ジェネシス社)の付属物を使用した。詳細は、以下に記載するが、Primer set及び、BNA clampは、キット付属物を用いた。また、real-time PCRの反応条件はキットプロトコールに準拠した。
4-3.鋳型DNA
 標準塩基配列を有する鋳型DNAとして、以下の塩基配列(後述する配列番号13の塩基配列と異なる塩基を下線太字で示した)を含む、野生型BRAF遺伝子を有するHCC70細胞のゲノムを使用した。
Figure JPOXMLDOC01-appb-C000073

 なお、上記配列は、増幅対象配列以外の塩基配列を含むと理解されることに留意すべきである。
 他方、標準塩基配列に対する変異を有する鋳型DNAとして、以下の塩基配列(前述の配列番号12の塩基配列と異なる塩基を下線太字で示した)を含む、変異型BRAF遺伝子を有するDU4475細胞のゲノムを使用した。
Figure JPOXMLDOC01-appb-C000074

 なお、上記配列は、増幅対象配列以外の塩基配列を含むと理解されることに留意すべきである。
4-4.BNA clamp PCR反応液
 下記の表に示す組成の反応液1~4を調製した。なお、反応液1又は反応液2において、ポリマーの濃度は、前記表21に示すとおりであった。
Figure JPOXMLDOC01-appb-T000075

Figure JPOXMLDOC01-appb-T000076

Figure JPOXMLDOC01-appb-T000077

Figure JPOXMLDOC01-appb-T000078
4-5.リアルタイムPCRシステムおよびPCR反応
 試験2と同じシステムを用い、試験2と同様にしてPCR反応を実施した。
4-6.ポリマー添加または無添加の場合のΔCt(WT)およびΔCt(Mutant)の算出、ポリマー添加または無添加の場合のΔΔCtの算出、ならびにΔΔΔCtの算出
 試験2と同様に実施した。
4-7.結果
 試験結果を以下に纏めて示す。
Figure JPOXMLDOC01-appb-T000079
 上記の通り、いずれのポリマーもKRAS遺伝子と同様にBNA clampによる野生型遺伝子の選択的増幅阻害効果を増強した。増幅阻害効果は、いずれも10倍感度上昇の目安であるΔΔΔCt=3.2よりも大きいことが分かった。
5.plasmid DNAを用いたBNA clamp PCRの高感度化確認とPCR産物のシーケンス解析
5-1.使用したポリマー
 試験3と同じポリマー(実施例1、2、4および6のポリマー)を用いた。各ポリマー溶液の濃度及びPCR反応液中における濃度を以下の表に示す。
Figure JPOXMLDOC01-appb-T000080
5-2.使用したキット
 試験2と同じキットの付属物を使用した。
5-3.鋳型DNA
 鋳型DNAは、図4に示すKRAS WT/Mutant plasmid DNAを用いた。鋳型DNAにおけるMutant DNAの含有率(Mutant比率)は0.01%とした。なお、図4中、KRAS WT plasmid DNAの場合、挿入配列は、以下の配列番号14に示す配列であり、KRAS Mutant plasmid DNAの場合、以下の配列番号15に示す配列であった。なお、いずれの配列においても、最後の6塩基(AAGCTT)が、Hind IIIの認識配列である。
Figure JPOXMLDOC01-appb-C000081

Figure JPOXMLDOC01-appb-C000082
5-4.プライマー、およびBNA clamp
 試験2と同じプライマー、およびBNA clampを使用した。
5-5.BNA clamp PCR反応液
 下記の表に示す組成の反応液1および2を調製した。
Figure JPOXMLDOC01-appb-T000083

Figure JPOXMLDOC01-appb-T000084
5-6.リアルタイムPCRシステムおよびPCR反応
 試験2と同じプリアルタイムPCRシステムを使用して、試験2と同じ条件でPCR反応を実施した。
5-7.ポリマー添加または無添加の場合のδCt(WT)およびδCt(Mutant)の決定、ならびにポリマー添加または無添加の場合のδδCtの算出
 試験3と同様に実施した。
5-8.PCR産物のシーケンス解析
 PCR反応で得られたPCR産物を、Fasmac社に委託して、ダイレクトシーケンス法にて配列解析を行った(図6)。
5-9.結果
5-9―1.BNA clamp PCRの高感度化検討
 試験結果を以下の表及び図5に示す。
Figure JPOXMLDOC01-appb-T000085

 本試験の結果、ポリマー無添加の場合では、Mutant比率0.01%で、変異型遺伝子の検出は困難であるが、実施例1、2、4または6のポリマーを添加した場合では、Mutant比率0.01%でも変異型遺伝子を確実に検出できた。
5-9―1.PCR産物のシーケンス解析
 図6に示されるように、Mutant比率0.01%においては、ポリマーが無添加の場合でも変異は検出可能であるが、破線の枠で囲んだ塩基のピークから理解される通り、全体として、ポリマーを添加した際のPCR産物の方が、有意に変異含有量が多く見られ、ポリマー無添加よりも明らかに高感度化を達成していると理解される。

Claims (27)

  1.  試料中の核酸の対象塩基配列における標準塩基配列に対する変異を検出する方法であって、
     前記標準塩基配列に相補的な塩基配列を含み、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸と、
     構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と
    を用いて、前記試料中の核酸を鋳型とした核酸増幅反応を行い、
     前記核酸増幅反応により得られた核酸増幅産物の総量、前記核酸増幅産物の総量が閾値に達するまでの前記核酸増幅反応の増幅サイクル数、前記核酸増幅産物中の前記変異を有する核酸の量、又は前記核酸増幅産物中の前記変異を有する核酸の量が閾値に達するまでの前記核酸増幅反応の増幅サイクル数に基づいて、前記変異の存在を判定する、方法。
  2.  前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、請求項1に記載の検出方法。
  3.  前記両性共重合体が、さらにノニオン性構成単位(3)を含む、請求項1又は2に記載の検出方法。
  4.  前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
    で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
     前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
    Figure JPOXMLDOC01-appb-C000002

    (式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)で表される構成単位(2-1)である、請求項1~3のいずれか一項に記載の検出方法。
  5.  前記非天然型ヌクレオチドが、BNAである、請求項1~4のいずれか1項に記載の検出方法。
  6.  前記核酸増幅を、リアルタイムPCRで行う、請求項1~5のいずれか1項に記載の検出方法。
  7.  前記核酸サンプルが、ゲノムDNAである、請求項1~6のいずれか1項に記載の検出方法。
  8.  さらに、前記標準塩基配列を有する核酸を鋳型とした核酸増幅反応を行い、
     前記試料中の核酸を鋳型に用いた場合の前記核酸増幅産物の総量が閾値に達するまでの前記核酸増幅反応の増幅サイクル数が、前記標準塩基配列を有する核酸を鋳型に用いた場合の前記核酸増幅産物の総量が閾値に達するまでの前記核酸増幅反応の増幅サイクル数と比較して少なかった場合に、前記試料中の核酸の対象塩基配列に前記変異が存在すると判定する、請求項1~7のいずれか1項に記載の検出方法。
  9.  試料中の核酸の対象塩基配列における標準塩基配列に対する変異を検出するためのキットであって、
     前記標準塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸と、
     構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と、を含むキット。
  10.  前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、請求項9に記載のキット。
  11.  前記両性共重合体が、さらにノニオン性構成単位(3)を含む、請求項9又は10に記載のキット。
  12. 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
    Figure JPOXMLDOC01-appb-C000003

    (式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
    で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
    前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
    Figure JPOXMLDOC01-appb-C000004

    (式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
    で表される構成単位(2-1)である、請求項9~11のいずれか一項に記載のキット。
  13.  前記非天然型ヌクレオチドが、BNAである、請求項9~12のいずれか1項に記載のキット。
  14.  核酸増幅反応において、所定の対象塩基配列を有する試料中の核酸の増幅を抑制する方法であって、
     前記対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型核酸を含む、クランプ核酸と、
     構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と
    を用いて、前記試料中の核酸を鋳型とした核酸増幅反応を実施する、方法。
  15.  前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、請求項14に記載の方法。
  16.  前記両性共重合体が、さらにノニオン性構成単位(3)を含む、請求項14又は15に記載の方法。
  17.  前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
    Figure JPOXMLDOC01-appb-C000005

    (式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
    で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
    前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
    Figure JPOXMLDOC01-appb-C000006

    (式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
    で表される構成単位(2-1)である、請求項14~16のいずれか一項に記載の方法。
  18.  前記非天然型ヌクレオチドが、BNAである、請求項14~17のいずれか1項に記載の方法。
  19.  核酸増幅反応において、対象塩基配列を有する核酸の増幅を抑制するためのキットであって、
     前記対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸と、
     構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体と、を含む、キット。
  20.  前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、請求項19に記載のキット。
  21.  前記両性共重合体が、さらにノニオン性構成単位(3)を含む、請求項19又は20に記載のキット。
  22. 前記両性共重合体において、前記カチオン性構成単位(1)の少なくとも一部が、
    一般式(I-a)若しくは一般式(I-b)
    Figure JPOXMLDOC01-appb-C000007

    (式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
    で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
    前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
    Figure JPOXMLDOC01-appb-C000008

    (式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
    で表される構成単位(2-1)である、請求項19~21のいずれか一項に記載のキット。
  23.  前記非天然型ヌクレオチドが、BNAである、請求項19~22のいずれか1項に記載のキット。
  24.  対象塩基配列を有する核酸の核酸増幅を、前記対象塩基配列に相補的な塩基配列を有し、少なくとも1残基の非天然型ヌクレオチドを含む、クランプ核酸により阻害する効果の増強剤であって、
     構造中にアミノ基を含むカチオン性構成単位(1)と、アニオン性構成単位(2)とを有し、前記アニオン性構成単位(2)に対するカチオン性構成単位(1)のモル比(カチオン性構成単位(1)/アニオン性構成単位(2))が0.13~1.62の範囲にある、両性共重合体を含む、増強剤。
  25.  前記カチオン性構成単位(1)の少なくとも一部が、第2級アミノ基又は第3級アミノ基を有する、請求項24に記載の増強剤。
  26.  前記両性共重合体が、さらにノニオン性構成単位(3)を含む、請求項24又は25に記載の増強剤。
  27. 前記両性共重合体において、前記カチオン性構成単位(1))の少なくとも一部が、一般式(I-a)若しくは一般式(I-b)
    Figure JPOXMLDOC01-appb-C000009

    (式中、Rは、水素原子、水酸基を有していてもよい炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、または炭素数7~10のアラルキル基を示す。)
    で表される構造、又はその酸付加塩である構造、を有する構成単位(1-1)であり、
    前記アニオン性構成単位(2)の少なくとも一部が、一般式(II-a)
    Figure JPOXMLDOC01-appb-C000010

    (式中Rは、水素又はメチル基、Yは結合するカルボキシ基ごとにそれぞれ独立に水素、Na、K、NH、1/2Ca、1/2Mg、1/2Fe、1/3Al、又は1/3Feである。)
    で表される構成単位(2-1)である、請求項24~26のいずれか一項に記載の増強剤。
     
PCT/JP2022/044363 2021-12-10 2022-12-01 核酸の対象塩基配列中における変異を検出するための方法、核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキット WO2023106200A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023528075A JP7428951B2 (ja) 2021-12-10 2022-12-01 核酸の対象塩基配列中における変異を検出するための方法、核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキット
EP22904131.4A EP4446435A1 (en) 2021-12-10 2022-12-01 Method for detecting mutations in target base sequence of nucleic acid, method for selectively inhibiting amplification of nucleic acid, and kit for implementing same
CN202280081876.6A CN118369437A (zh) 2021-12-10 2022-12-01 用于检测核酸的对象碱基序列中的变异的方法、选择性地抑制核酸的扩增的方法、及用于实施这些的试剂盒
KR1020247019353A KR20240099469A (ko) 2021-12-10 2022-12-01 핵산의 대상 염기 서열 중에 있어서의 변이를 검출하기 위한 방법, 핵산의 증폭을 선택적으로 저해하는 방법, 및 이것들을 실시하기 위한 키트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201177 2021-12-10
JP2021-201177 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023106200A1 true WO2023106200A1 (ja) 2023-06-15

Family

ID=86730249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044363 WO2023106200A1 (ja) 2021-12-10 2022-12-01 核酸の対象塩基配列中における変異を検出するための方法、核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキット

Country Status (5)

Country Link
EP (1) EP4446435A1 (ja)
JP (1) JP7428951B2 (ja)
KR (1) KR20240099469A (ja)
CN (1) CN118369437A (ja)
WO (1) WO2023106200A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018841A1 (fr) * 2001-08-24 2003-03-06 The Circle For The Promotion Of Science And Engineering Procede de determination d'un mesappariement entre des molecules d'acide nucleique monobrin
JP2004537263A (ja) * 2000-12-14 2004-12-16 ジェン−プローブ・インコーポレーテッド ポリヌクレオチドの会合速度を増強するための方法およびキット
WO2016167320A1 (ja) * 2015-04-14 2016-10-20 凸版印刷株式会社 遺伝子変異の検出方法
JP2018104850A (ja) * 2016-12-27 2018-07-05 日東紡績株式会社 セルロース系繊維用染料固着剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030998B1 (ja) 1970-03-11 1975-10-06
JPS4731324U (ja) 1971-05-06 1972-12-08
JPS6020520Y2 (ja) 1981-07-20 1985-06-19 タカタ株式会社 シ−トベルト装置における緩衝装置
JPH0431625Y2 (ja) 1985-08-30 1992-07-29
JP3756313B2 (ja) 1997-03-07 2006-03-15 武 今西 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体
JP4151751B2 (ja) 1999-07-22 2008-09-17 第一三共株式会社 新規ビシクロヌクレオシド類縁体
EP2354148B1 (en) 2002-02-13 2013-09-04 Takeshi Imanishi Nucleoside analogues and oligonucleotide derivative comprising nucleotide analogue thereof
KR100809988B1 (ko) 2002-04-02 2008-03-07 컨베이 테크놀로지 인코포레이티드 표면 세정 및 입자 계수
JP4731324B2 (ja) 2003-08-28 2011-07-20 武 今西 N−o結合性架橋構造型新規人工核酸

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537263A (ja) * 2000-12-14 2004-12-16 ジェン−プローブ・インコーポレーテッド ポリヌクレオチドの会合速度を増強するための方法およびキット
WO2003018841A1 (fr) * 2001-08-24 2003-03-06 The Circle For The Promotion Of Science And Engineering Procede de determination d'un mesappariement entre des molecules d'acide nucleique monobrin
WO2016167320A1 (ja) * 2015-04-14 2016-10-20 凸版印刷株式会社 遺伝子変異の検出方法
JP2018104850A (ja) * 2016-12-27 2018-07-05 日東紡績株式会社 セルロース系繊維用染料固着剤

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
JIALUN HAN, WU JINCAI, DU JIE: "Fluorescent DNA Biosensor for Single-Base Mismatch Detection Assisted by Cationic Comb-Type Copolymer", MOLECULES, SPRINGER VERLAG, BERLIN, DE, vol. 24, no. 3, DE , pages 575, XP055556584, ISSN: 1433-1373, DOI: 10.3390/molecules24030575 *
LUMING Z. ET AL., BIOTECHNIQUES, vol. 50, 2011, pages 311 - 318
MURINA F.F. ET AL., MOLECULES, vol. 25, no. 4, 2020, pages 786
NAGAI K., CANCER RESEARCH, vol. 65, 2005, pages 7276 - 7282
NAGAKUBO Y. ET AL., BMC MEDICAL GENOMICS, vol. 12, 2019, pages 162
SAKAKI S, NAKABAYASHI N: "MPC polymer ni yoru 1 enki takata (SNPs) no kokateki na ninshiki / EFFECTIVE RECOGNITION OF SINGLE NUCLEOTIDE POLYMORPHISM (SNPs) BY USE OF MPC POLYMERS", POLYMER PREPRINTS. JAPAN, SOCIETY OF POLYMER SCIENCE., JP, vol. 50, no. 5, 1 May 2001 (2001-05-01), JP , pages 992, XP002960296 *
TACHIBANA AMI, FUJIMURA NAHOHIRO, TAKEUCHI MINORU, WATANABE KOJI, TERUUCHI YOKO, UCHIKI TOMOAKI: "Cationic copolymers that enhance wild-type-specific suppression in BNA-clamp PCR and preferentially increase the T m of fully matched complementary DNA and BNA strands", BIOLOGY METHODS AND PROTOCOLS, vol. 7, no. 1, 10 January 2022 (2022-01-10), XP093068867, DOI: 10.1093/biomethods/bpac009 *
THOMAS J., THE NEW ENGLAND JURNAL OF MEDICINE, vol. 350, 2004, pages 21

Also Published As

Publication number Publication date
CN118369437A (zh) 2024-07-19
EP4446435A1 (en) 2024-10-16
JP7428951B2 (ja) 2024-02-07
JPWO2023106200A1 (ja) 2023-06-15
KR20240099469A (ko) 2024-06-28

Similar Documents

Publication Publication Date Title
US12077811B2 (en) Compositions of toehold primer duplexes and methods of use
CN108251522B (zh) 人类mthfr和mtrr基因检测试剂盒及其用途
EP2615171B1 (en) Method for inhibiting nucleic acid amplification using light and highly sensitive method for selective nucleic acid amplification
WO2016167317A1 (ja) 遺伝子変異の検出方法
CN111349692A (zh) 进行聚合酶链式反应的方法及其相关应用
CN108642153B (zh) 一种高灵敏的突变位点检测体系、方法及应用
WO2023106200A1 (ja) 核酸の対象塩基配列中における変異を検出するための方法、核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキット
AU2013204483B2 (en) Probe, and polymorphism detection method using the same
WO2023106198A1 (ja) 核酸の対象塩基配列中における変異を検出するための方法、核酸の増幅を選択的に阻害する方法、およびこれらを実施するためのキット
EP4317455A1 (en) Target nucleic acid amplification method using guide probe and clamping probe and composition for amplifying target nucleic acid comprising same
JP2003159100A (ja) 改良された遺伝子の変異検出方法
CN110997938A (zh) Abl1 t315i突变的表达水平的测定方法
JP5530185B2 (ja) 核酸検出方法及び核酸検出用キット
EP4253564A1 (en) Target nucleic acid amplification method with high specificity and target nucleic acid amplifying composition using same
JP2024035173A (ja) 高感度pcr法
JP2021019550A (ja) ヒトbrafのv600変異検出用プローブ及びヒトbrafのv600変異の検出方法
JP2008136436A (ja) 1本鎖dna結合蛋白質を用いた核酸の変異検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023528075

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020247019353

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022904131

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022904131

Country of ref document: EP

Effective date: 20240710