WO2023104072A1 - 钛合金及其制备方法、钛合金部件、折叠转轴和电子设备 - Google Patents

钛合金及其制备方法、钛合金部件、折叠转轴和电子设备 Download PDF

Info

Publication number
WO2023104072A1
WO2023104072A1 PCT/CN2022/137151 CN2022137151W WO2023104072A1 WO 2023104072 A1 WO2023104072 A1 WO 2023104072A1 CN 2022137151 W CN2022137151 W CN 2022137151W WO 2023104072 A1 WO2023104072 A1 WO 2023104072A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium alloy
preparation
treatment
molding
present application
Prior art date
Application number
PCT/CN2022/137151
Other languages
English (en)
French (fr)
Inventor
纪大伟
蔡明�
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023104072A1 publication Critical patent/WO2023104072A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the application relates to the field of alloy materials, in particular to a titanium alloy and a preparation method thereof, a titanium alloy component, a folding shaft and electronic equipment.
  • folding mobile phones due to the need to set more folding parts, such as folding hinges, folding mobile phones are heavier than ordinary mobile phones, and their weight has become one of the bottlenecks affecting their development.
  • Existing folding shafts are generally steel folding shafts.
  • a folding mobile phone assembled with a steel folding shaft generally weighs about 300g, which brings a lot of inconvenience to carrying and using.
  • Titanium alloy has the characteristics of good corrosion resistance, excellent mechanical properties, and no magnetism. At the same time, the density of titanium alloy is generally about 4.5g/ cm3 , which is only 60% of steel.
  • titanium alloy has become a substitute for steel folding.
  • Ideal material for shafts Since the current titanium alloys are mainly used in aerospace components, the aerospace components mainly focus on the strength, fracture toughness and high temperature resistance of the components.
  • the folding shaft requires that the titanium alloy not only have a certain strength, but also need to meet a higher modulus of elasticity to meet the force and rigidity requirements of the folding shaft. Therefore, the existing titanium alloys cannot meet the requirements of the folding shaft.
  • the present application provides a titanium alloy and its preparation method, titanium alloy parts, folding shaft and electronic equipment, so as to obtain a titanium alloy with high strength and high modulus of elasticity, which meets the use requirements of the folding shaft.
  • the present application provides a titanium alloy, which is a near-beta titanium alloy, and the titanium alloy includes the following components by weight percentage:
  • the balance includes Ti and unavoidable impurities; wherein, M is selected from at least one of B, C, Si or rare earth elements.
  • the titanium alloy provided by the application can make the obtained titanium alloy in It has a higher elastic modulus on the basis of high strength.
  • the titanium alloy of the present application has a yield strength above 1100MPa, and some can reach 1200MPa or even 1400MPa.
  • the modulus of elasticity is generally above 110GPa, and some can reach above 120GPa or even above 140GPa. Therefore, the titanium alloy provided by this application can meet the requirements of the folding shaft. At the same time, compared with the existing steel folding shaft, it can also significantly Reduce the weight of folding devices such as folding mobile phones to meet the requirements of users.
  • the M element is mainly used to increase the elastic modulus of the titanium alloy, and work together with other components to further increase the strength of the titanium alloy.
  • B in the M element can form a TiB particle reinforcement phase in situ, increase the elastic modulus of the alloy and further increase the strength
  • C can form a TiC particle reinforcement phase
  • Si can form a Ti 5 Si 3 particle reinforcement phase
  • rare earth elements such as La, Ce, Y, Gd, etc.
  • the M elements may be B and C.
  • the titanium alloy includes the following components by weight percentage:
  • the titanium alloy includes the following components by weight percentage:
  • the titanium alloy comprises the following components by weight percentage:
  • Al 6-7.5%
  • Mo 4.6-5.3%
  • V 4.8-5.2%
  • Cr 2-3%
  • Zr 1-2%
  • M 0.1-1%
  • the balance includes Ti and unavoidable Impurities.
  • the titanium alloy comprises the following components by weight percentage:
  • the unavoidable impurities include O and N
  • the Al structural equivalent value [Al]eq is 5.9% to 11.2%
  • the Al structural equivalent value [Al]eq can be used to reflect
  • the Al structural equivalent is 5.9%-11.2%, which can not only avoid insufficient solid solution strengthening effect when the Al content is too low, but also avoid excessive second phase formation when the Al content is too high, resulting in alloy brittleness.
  • the Mo structure equivalent value [Mo]eq is 10.2%-19.5%.
  • Mo structural equivalent ⁇ 10.2% can ensure that the unstable phase ⁇ phase can be kept to room temperature during quenching, avoiding the precipitation of coarse primary ⁇ phase; Mo structural equivalent ⁇ 19.5%, can avoid excessive Mo structural equivalent, which will lead to the formation of stable during quenching ⁇ phase, which in turn causes the ⁇ phase to fail to transform into a finely dispersed secondary ⁇ phase during aging strengthening, which weakens the aging strengthening effect.
  • the ⁇ phase transition temperature T ⁇ of the titanium alloy is 880-920°C.
  • T ⁇ is the transition temperature between the ⁇ phase and the ( ⁇ + ⁇ ) phase.
  • a lower T ⁇ is helpful for plastic processing and heat treatment strengthening of titanium alloys at low temperatures, reducing processing costs.
  • the yield strength of the titanium alloy is ⁇ 1100 MPa, and the elastic modulus is ⁇ 110 GPa.
  • the Vickers hardness of the titanium alloy is greater than or equal to 350.
  • Zr can be replaced by Mn; wherein, in parts by weight, 1 part by weight of Zr can be replaced by 0.5 part by weight of Mn.
  • part of Zr can be replaced by Mn, and all Zr can also be replaced by Mn, and all or part of Zr can be replaced by Mn.
  • 1 part by weight of Zr may be replaced by 0.5 part by weight of Mn.
  • the application provides a method for preparing a titanium alloy according to the first aspect of the application.
  • the preparation method includes the following steps: providing raw materials according to the composition of the titanium alloy in the first aspect of the application. After the raw materials are melted and cast into ingots, they are sequentially After shaping treatment and aging strengthening treatment, the titanium alloy is obtained.
  • one of the vacuum consumable arc melting process, electron beam melting process, plasma arc melting process, consumable electrode shell melting process or the raw materials of the above methods can be used for melting Ingot.
  • the vacuum consumable arc melting process can be used to melt the ingot.
  • the metal mixed raw material can be first melted and cast ingot, and then the ingot obtained by the initial melting ingot can be used as an electrode and placed in a vacuum consumable arc furnace for melting; the number of smelting times can be greater than or equal to 2 times, in order to achieve the purpose of homogeneous mixing of each component.
  • the shaping process is near-net shaping.
  • near-net shape refers to the forming technology that can be used as a mechanical component with only a small amount of processing or no processing after the part is formed. Therefore, when the near-net-shaping process is adopted, the amount of machining required in the subsequent process is relatively small, and the cost is relatively low. It is suitable for batch production of small structural parts to reduce the difficulty of machining.
  • the near-net molding may specifically include metal powder injection molding (metal injection molding, MIM), metal three-dimensional (three dimensional, 3D) printing molding, or drawing molding.
  • MIM metal powder injection molding
  • 3D three dimensional, 3D
  • drawing molding metal three-dimensional printing molding
  • the above three molding methods are all beneficial to the preparation of small complex structural parts, and the size of the formed structural parts is relatively close to the final size, which is convenient for subsequent processing.
  • metal 3D printing and drawing it can also help to improve the yield strength of structural parts.
  • the preparation method of the titanium alloy also includes the step of powdering treatment. Specifically, after the raw material of the titanium alloy is smelted and cast, it can be pulverized first to obtain alloy powder, and then subjected to shaping treatment and aging strengthening treatment in sequence.
  • the process of powdering treatment may include electrode induction-melting gas atomization (EIGA), plasma atomization (plasma atomization, PA), plasma rotating electrode process (plasma One or a combination of methods such as rotating electrode process, PREP).
  • EIGA electrode induction-melting gas atomization
  • plasma atomization plasma atomization
  • PA plasma rotating electrode process
  • PREP plasma rotating electrode process
  • alloy powder with a particle size of less than or equal to 25 microns can be used as the raw material to obtain parts to be processed with a rough outline; in the process of metal 3D printing, alloy powder with a particle size of 15-53 microns Alloy powder is used as a raw material to obtain parts to be processed with a rough outline.
  • drawing forming forging and rolling can be used to obtain drawing raw materials, and then the parts to be processed with the approximate outline of the parts can be obtained through the drawing process. Wherein, drawing can be cold drawing.
  • the preparation method further includes a solution treatment step.
  • the solution temperature of the solution treatment is 20-80° C. lower than the ⁇ phase transition temperature T ⁇ of the titanium alloy. After the solution treatment, a ⁇ -phase supersaturated solid solution is formed, stress is removed, components are homogenized, and the deformation resistance of the titanium alloy is improved.
  • the preparation method further includes a machining step.
  • the titanium alloy after solution treatment has better plasticity and lower strength. Machining at this time can reduce the processing energy consumption, and the processing tools have low wear and tear, and the processing efficiency is high, which can reduce the machining cost.
  • the temperature in the aging strengthening treatment is 400-650° C., and the time is 2-16 hours. Aging strengthening treatment between 400-650°C for 2-16 hours can precipitate a large amount of second phase ⁇ phase and strengthen the strength of titanium alloy. At the same time, the process parameters of the aging strengthening treatment can cooperate with the temperature in the solution treatment to further increase the yield strength of the titanium alloy.
  • the present application provides a titanium alloy component, which is formed by using the titanium alloy according to the first aspect of the present application.
  • the present application provides a folding shaft, which is formed by using the titanium alloy according to the first aspect of the present application.
  • the present application provides an electronic device, the electronic device includes a first display panel, a second display panel, and the folding shaft of the present application, and the folding shaft is respectively connected to the first display panel and the second display panel.
  • the electronic device may be, for example, a foldable mobile phone, a foldable computer, a foldable screen, and the like.
  • Fig. 1 is the microstructural figure of the titanium alloy of the embodiment of the present application.
  • Fig. 2 is a schematic structural view of the folding shaft of the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a foldable electronic device according to an embodiment of the present application.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • foldable electronic devices such as foldable mobile phones
  • the folding shaft is made of steel, which seriously affects the development of such electronic devices. Therefore, how to reduce the weight of foldable electronic devices has become the focus of research.
  • titanium alloy is an ideal material to replace the steel folding shaft.
  • the folding shaft generally requires the elastic modulus of the raw material to be above 110GPa, and has strong drop resistance and deformation resistance. Therefore, the current titanium alloy cannot meet the requirements for the use of the folding shaft.
  • the embodiment of the present application provides a titanium alloy, which comprises the following components by weight percentage:
  • the balance includes Ti and unavoidable impurities; wherein, M is selected from at least one of B, C, Si or rare earth elements.
  • the Al content in the titanium alloy, by weight percentage, may be, for example, preferably 5.6-7.9%, more preferably 6-7.5%, and further preferably 6.5-7.5%.
  • the Al content may be, for example, 5%, 5.1%, 5.2%, 5.3%, 5.4%, 5.5%, 5.6%, 5.7%, 5.8%, 5.9%, 6.0%, 6.1%, 6.2%, 6.3%, 6.4%, 6.5%, 6.6% , 6.7%, 6.8%, 6.9%, 6.0%, 7.1%, 7.2%, 7.3%, 7.4%, 7.5% or the middle value of any two data listed above, it can be understood that in the application, Al
  • Al The content of Al is not limited to the values listed above, and the combination of any two values above can form the numerical range of Al.
  • Al is an ⁇ -stabilizing element in titanium alloys. For every 1% increase in weight fraction, the strength can be increased by 60MPa and the ⁇ -phase transition temperature can be increased. When the Al content exceeds 8%, the ⁇ -stabilizing elements are excessive, and the Ti 3 Al phase is easy to form, and the brittleness sensitivity increases; when the Al content is less than 5%, it has an adverse effect on the ⁇ -phase precipitation strengthening during aging strengthening. At the same time, the Al density is 2.7g/cm 3 , and an appropriate amount of Al addition helps to reduce the density of the titanium alloy and improve the weight reduction effect.
  • the content of Mo is, for example, preferably 4-5.5%, more preferably 4.5-5.5%, and even more preferably 4.6-5.3% by weight percentage.
  • the content of Mo can be 4%, 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, 5%, 5.1%, 5.2%, 5.3% %, 5.4%, 5.5%, 5.6%, 5.7%, 5.8%, 5.9%, 6.0% or the middle value of any two data listed above, it can be understood that the content of Mo in the present application is not limited to The numerical value listed above, the combination of any two numerical values above can constitute the numerical range of Mo.
  • Mo is an isomorphic ⁇ -stable element in titanium alloys. For every 1% increase in weight fraction, the strength can be increased by 50MPa and the ⁇ -phase transition temperature can be reduced. When the Mo content exceeds 6%, the ⁇ -stabilizing elements may be excessive, and the optimum hardenability cannot be achieved; when the Mo content is lower than 4%, sufficient ⁇ -phase stability of the titanium alloy cannot be guaranteed.
  • the density of Mo is 10.28g/cm 3 , and excessive Mo will increase the density of the titanium alloy and weaken the weight reduction effect.
  • the content of V is, for example, preferably 4-5.5%, more preferably 4.5-5.5%, and even more preferably 4.8-5.2% by weight percentage.
  • the content of V can be 4%, 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, 5%, 5.1%, 5.2%, 5.3% %, 5.4%, 5.5%, 5.6%, 5.7%, 5.8%, 5.9%, 6.0% or the middle value of any two data listed above, it can be understood that the content of V in the present application is not limited to The numerical values listed above and the combination of any two numerical values above can constitute the numerical range of V.
  • V is an isomorphic ⁇ -stable element in titanium alloys. For every 1% increase in weight fraction, the strength can be increased by 30MPa and the ⁇ -phase transition temperature can be reduced. When the V content exceeds 6%, ⁇ -stabilizing elements may be excessive, and optimum hardenability cannot be achieved; when V is less than 4%, sufficient ⁇ -stability cannot be ensured.
  • the content of Cr is, for example, preferably 2.2-3.8%, more preferably 2.5-3.5%, more preferably 2-3%, and still more preferably 2-2.5% by weight percentage.
  • the content of Cr can be 2%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3%, 3.1%, 3.2%, 3.3% %, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9%, 4.0% or the middle value of any two data listed above, it can be understood that the content of Cr in this application is not limited to The numerical value listed above, the combination of any two numerical values above can constitute the numerical range of Cr.
  • Cr is a slow eutectoid ⁇ -stable element in titanium alloys. For every 1% increase in weight fraction, the strength can be increased by 65MPa and the ⁇ -phase transition temperature can be reduced. When the chromium content exceeds 4%, the elongation will decrease due to the eutectoid ⁇ phase; when the Cr content is less than 2%, the hardenability will decrease.
  • the content of Zr is, for example, preferably 1-2.8%, more preferably 1-2.5%, more preferably 1-2%, and still more preferably 1.5-2% by weight percentage.
  • the content of Zr can be 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%, 2.1%, 2.2%, 2.3% %, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 4.0% or the middle value of any two data listed above, it can be understood that the content of Zr in the present application is not limited to The numerical value listed above, the combination of any two numerical values above can constitute the numerical range of Zr.
  • Zr is an alternative neutral element in titanium alloys.
  • the strength can increase by 20MPa, and has little effect on the ⁇ -phase transition temperature.
  • There is a large solid solubility in both the ⁇ phase and the ⁇ phase which increases the tensile strength of titanium at room temperature and decreases the plasticity; by stabilizing the ⁇ phase, the volume fraction of the w phase is reduced.
  • the content of M may be, for example, preferably 0.1-2%, more preferably 0.1-1%, and even more preferably 0.6-0.9% by weight percentage.
  • the content of M can be 0.02%, 0.04%, 0.06%, 0.08%, 0.1%, 0.12%, 0.14%, 0.16%, 0.18%, 0.2%, 0.25%, 0.3%, 0.5%, 0.6% %, 0.8%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%, or the middle value of any two data listed above
  • M is at least one of B, C or Si.
  • M can specifically be B, C, Si, B-C combination, B-Si combination, C-Si combination or B-C-Si combination.
  • the M element is mainly used to increase the elastic modulus of the above-mentioned titanium alloy, and to further improve the strength of the titanium alloy by working with other components to form a high-strength and high-modulus titanium alloy.
  • B in the M element can generate TiB short fiber particle reinforcement phase in situ.
  • TiB has the characteristics of high elastic modulus, high strength and high hardness, and its density and thermal expansion coefficient are similar to titanium, so it can improve the elastic modulus and strength of the alloy.
  • C can form the TiC particle reinforcement phase
  • Si can form the Ti 5 Si 3 particle reinforcement phase
  • rare earth elements such as La, Ce, Y, Gd, etc.
  • the titanium alloy of the embodiment of the present application also inevitably contains Ti and other unavoidable impurities, wherein unavoidable Impurities may include O and N, for example.
  • Zr may be replaced by Mn.
  • 1 part by weight of Zr can be replaced by 0.5 part by weight of Mn.
  • 0.5% of Mn can be used to replace Zr;
  • the content of Zr is 1% and partially replaced by Mn, for example, when 0.5% of Zr is replaced by Mn, the The added amount can be 0.25%.
  • the structural equivalent value of Al may be 5.99-11.20, and the structural equivalent value of Mo may be 10.19-19.45.
  • the ⁇ phase transition temperature T ⁇ of the titanium alloy is 880-920°C.
  • the yield strength of the titanium alloy can be ⁇ 1100 MPa, the elastic modulus can be ⁇ 110 GPa, and the Vickers hardness can be ⁇ 350.
  • the present application also provides a preparation method of the titanium alloy.
  • the preparation method may include the following steps:
  • Step S11 providing raw materials according to the following titanium alloy composition
  • M At least one of B, C, Si and rare earth elements;
  • the raw materials of the above components can be selected from elemental metal raw materials or alloy raw materials, and can also be selected from recycled cutting materials or solid block materials.
  • titanium may be selected from sponge titanium or recycled titanium alloys.
  • B is added in the form of B powder or B 4 C powder;
  • C is added in the form of C powder or B 4 C powder;
  • Si is added in the form of Si powder or Si block.
  • Step S12 after the above-mentioned raw materials are melted and cast into ingots, they are sequentially subjected to forming treatment, solution treatment and aging strengthening treatment to obtain a titanium alloy.
  • the smelting may include one or at least two of vacuum consumable electric arc furnace smelting, electron beam smelting, plasma arc smelting or consumable electrode shell melting The combination.
  • the molding process is near-net molding, and near-net molding can include metal powder injection molding, metal 3D printing molding, or drawing molding; among them, when the near-net molding is metal powder injection molding or metal 3D printing molding, after smelting and casting , and before the molding treatment, the preparation method also includes the step of powdering treatment.
  • the preparation method specifically includes the following steps:
  • Step S21 batching: Weigh the raw materials of each component according to the composition of the titanium alloy.
  • the raw materials of each component can be selected from simple metal raw materials or alloy raw materials, and can also be selected from recycled cutting materials or solid block materials.
  • titanium may be selected from sponge titanium or recycled titanium alloys.
  • B is added in the form of B powder or B 4 C powder;
  • C is added in the form of C powder or B 4 C powder;
  • Si is added in the form of Si powder or Si block.
  • Step S22 melting the ingot: and melting the raw materials of each component; wherein, one of the vacuum consumable arc melting process, the electron beam melting process, the plasma arc melting process, and the consumable electrode shell melting process can be used Each component is smelted by one or a combination of the above methods.
  • a vacuum consumable arc melting process may be used for melting.
  • the mixed raw materials can be first melted and cast ingots, and then the ingots obtained from the first melted ingots can be used as electrodes in vacuum consumable arc furnaces for melting; the number of smelting times can be greater than or equal to 2 times, in order to achieve the purpose of homogeneous mixing.
  • Step S23 performing forming treatment on the alloy material after smelting and casting the ingot to obtain an alloy billet of a desired shape, and the forming treatment may adopt a drawing process;
  • Step S24 performing solution treatment on the formed alloy billet, the solution temperature of the solution treatment is T ⁇ -20°C to T ⁇ -80°C.
  • air cooling or furnace cooling may be used for cooling after the solution treatment is completed, and the specific cooling method is not specifically limited.
  • Step S25 machining the alloy blank after the solution treatment, so as to finely process the shape of the alloy blank to meet the final size requirements of the parts;
  • Step S26 performing aging strengthening treatment on the alloy blank after machining, so as to increase the strength of the titanium alloy.
  • air cooling or furnace cooling may be used, and the specific cooling method is not specifically limited.
  • the preparation method specifically includes the following steps:
  • Step S31 batching: Weigh the raw materials of each component according to the composition of the titanium alloy.
  • the raw materials of each component can be selected from simple metal raw materials or alloy raw materials, and can also be selected from recycled cutting materials or solid block materials.
  • titanium may be selected from sponge titanium or recycled titanium alloys.
  • B is added in the form of B powder or B 4 C powder;
  • C is added in the form of C powder or B 4 C powder;
  • Si is added in the form of Si powder or Si block.
  • Step S32 melting the ingot: and melting the raw materials of each component; wherein, one of the vacuum consumable arc melting process, the electron beam melting process, the plasma arc melting process, and the consumable electrode shell melting process can be used Each component is smelted by one or a combination of the above methods.
  • a vacuum consumable arc melting process may be used for melting.
  • the mixed raw materials can be first melted and cast ingots, and then the ingots obtained from the first melted ingots can be used as electrodes in vacuum consumable arc furnaces for melting; the number of smelting times can be greater than or equal to 2 times, in order to achieve the purpose of homogeneous mixing.
  • Step S33 powdering the alloy material after smelting and casting the ingot to obtain alloy powder.
  • the process of powder treatment may include one or a combination of two or more of plasma materialization, electrode-induced gas atomization or plasma rotating electrode process.
  • Step S34 performing forming treatment on the alloy material after smelting and casting the ingot, so as to obtain the alloy blank of the desired shape, metal plastic forming or metal 3D printing can be used in the forming treatment;
  • the alloy powder obtained in step S33 can be sieved before the forming process, and the alloy powder with a particle size of less than or equal to 25 microns can be prepared by metal injection molding (MIM); the particle size is between 15 and 53 microns
  • Alloy powders can be prepared by metal 3D printing technology to prepare alloy blanks.
  • metal 3D printing can be 3D printed by selective laser melting technology.
  • Step S35 performing solution treatment on the formed alloy billet, the solution temperature of the solution treatment is T ⁇ -20°C to T ⁇ -80°C.
  • air cooling or furnace cooling may be used for cooling after the solution treatment is completed, and the specific cooling method is not specifically limited.
  • the step of solution treatment can be selectively omitted, that is, when metal 3D printing is selected for forming, the alloy blank can be subjected to solution treatment or not. deal with.
  • Step S36 machining the alloy blank after solution treatment, so as to finely process the shape of the alloy blank to meet the final size requirement of the parts.
  • Step S37 performing aging strengthening treatment on the machined alloy blank to increase the strength of the titanium alloy.
  • air cooling or furnace cooling may be used, and the specific cooling method is not specifically limited.
  • FIG. 1 is a microscopic topography diagram of a titanium alloy according to an embodiment of the present application.
  • the structures of each phase are evenly distributed.
  • the ⁇ -phase titanium alloy matrix (gray white) and a large number of fine and dispersed ⁇ -precipitated phases (black) are uniformly distributed as the matrix of the titanium alloy to provide basic strength for the titanium alloy; at the same time, the rod-like structure (large aspect ratio)
  • the grains with bulk structure are the second phases TiB and TiC generated in situ, which are used to improve the elastic module of titanium alloy and further improve the strength of titanium alloy.
  • the aluminum alloy provided in the embodiment of the present application has higher strength, higher elastic modulus and higher hardness, and stronger drop resistance and deformation resistance, which can meet the requirements of small titanium alloy complex parts with high strength and high modulus. usage requirements.
  • the preparation method of the embodiment of the present application can use metal injection molding, metal three-dimensional printing molding or drawing molding for small parts with complex shapes, and can be machined before aging strengthening treatment, which can ensure zero While reducing the size of the part, the processing cost is reduced.
  • iron elements may exist as unavoidable impurities, and no additional iron elements are added to the components, which can prevent the segregation of the components in the titanium alloys and avoid the segregation of the titanium alloys. Reduced strength.
  • the titanium alloy of the present application will be described in detail below in combination with specific examples and comparative examples.
  • the present embodiment is a kind of titanium alloy, and the concrete composition of this titanium alloy is as follows:
  • the balance is titanium and unavoidable impurities.
  • Step S101 alloy batching: mix 0-grade sponge titanium, Al-V, Al-Mo master alloy, aluminum beans, electrolytic Cr, sponge zirconium and B powder according to the chemical composition, press them into electrode blocks, and assemble the electrode blocks Welded into electrodes for smelting.
  • Step S102 smelting ingots: using a vacuum consumable arc furnace (VAR) for smelting, placing the electrode obtained in step S101 in the VAR as a consumable electrode for smelting; repeated smelting 3 times.
  • VAR vacuum consumable arc furnace
  • Step S103 powdering treatment: Electrode Induced Gas Atomization (EIGA) is used to prepare alloy powders, and alloy powders with a particle size smaller than or equal to 25 microns are selected through sieving.
  • EIGA Electrode Induced Gas Atomization
  • Step S104 near-net-shape MIM: the obtained alloy powder is mixed with a binder, granulated, injected, degreased and sintered in sequence to obtain a metal injection molded part, the density of the metal injection molded part being ⁇ 95%.
  • Step S105 solution treatment: heat preservation at 850° C. for 2 hours, and then furnace cool to room temperature.
  • Step S106 machining: the solution-treated metal injection molded part is finely processed to ensure that the size of the metal injection molded part meets the requirements of the final part.
  • Step S107 aging strengthening treatment: performing aging treatment at 530° C. for 8 hours to obtain a titanium alloy MIM part with high modulus, high strength and high hardness.
  • Examples 2-6 are respectively a titanium alloy, and its preparation method is the same as that in Example 1, except that the components of each example are different.
  • the compositions of the specific titanium alloys of Examples 2-6 are listed in Table 1.
  • Comparative Examples 1-3 are respectively a titanium alloy, and its preparation method is the same as that in Example 1, except that the components of each example are different.
  • the compositions of the specific titanium alloys of Comparative Examples 1-3 are listed in Table 1.
  • a titanium alloy in terms of mass percentage, its composition ratio is: Al 5.5%, V 5%, Fe 0.8%, Mo 5%, Cr 2.2%, O 0.14%, the balance is Ti and incidental impurities.
  • a titanium alloy in terms of mass percentage, its composition ratio is: Al 6%, Sn 2%, Zr 3%, Mo 4.5%, V 3%, Cr 2.5%, the balance is Ti and unavoidable impurities.
  • a titanium alloy in terms of mass percentage, its composition ratio is: Al 5%, V 5%, Mo 5.2%, Cr 2.8%, Fe 0.4%, the rest is titanium and unavoidable impurities.
  • a titanium alloy TC4 by mass percentage, its composition ratio is: Al 6%, V 4%, the rest is titanium and unavoidable impurities.
  • the titanium alloy is obtained by metal injection molding.
  • the present embodiment is a kind of titanium alloy, and the concrete composition of this titanium alloy is as follows:
  • the balance is titanium and unavoidable impurities.
  • Step S101 alloy batching: mix 0-grade sponge titanium, Al-V, Al-Mo master alloy, aluminum beans, electrolytic Cr, sponge zirconium and B powder according to the chemical composition, press them into electrode blocks, and assemble the electrode blocks Welded into electrodes for smelting.
  • Step S102 smelting ingots: VAR smelting is used, and the electrode obtained in step S101 is placed in the VAR as a consumable electrode for smelting; repeated smelting times are 3 times.
  • Step S103 powdering treatment: the alloy powder is prepared by plasma atomization (PA), and the alloy powder with a particle size of 15-53 microns is selected by screening.
  • PA plasma atomization
  • Step S104 metal 3D printing and forming: using the alloy powder obtained in step S103 as a raw material, 3D printing is performed using selective laser melting technology to obtain metal printed parts.
  • Step S105 Machining: The metal printed part after solution treatment is finely processed to ensure that the size of the metal printed part meets the requirements of the final part.
  • Step S106 aging strengthening treatment: performing aging treatment at 530° C. for 8 hours to obtain a 3D printed part of titanium alloy with high modulus, high strength and high hardness.
  • the present embodiment is a kind of titanium alloy, and the concrete composition of this titanium alloy is as follows:
  • the balance is titanium and unavoidable impurities.
  • Step S101 alloy batching: Super 0-grade sponge titanium, Al-V, Al-Mo master alloy, aluminum beans, electrolytic Cr, sponge zirconium and C powder are mixed according to the chemical composition, pressed into an electrode block, and the electrode block Assembled and welded into electrodes for smelting.
  • Step S102 smelting ingots: using a vacuum consumable arc furnace (VAR) for smelting, placing the electrode obtained in step S101 in the VAR as a consumable electrode for smelting; repeated smelting 3 times.
  • VAR vacuum consumable arc furnace
  • Step S103 near-net shape: plastic processing-drawing forming: using the smelted ingot obtained in step S102 as raw material, the profile is obtained by plastic processing methods such as ⁇ forging blanking and ⁇ + ⁇ rolling or extrusion, and then cold drawn by the profile Obtain part blanks. Among them, the profile and the part blank have similar cross-sectional shapes.
  • Step S104 solution treatment: the part blank is kept at 845° C. for 2 hours, and then furnace cooled to room temperature.
  • Step S105 Machining: The solution-treated part blank is finely processed to ensure that the size of the part blank meets the final part requirement.
  • Step S106 aging strengthening treatment: performing aging treatment at 530° C. for 8 hours to obtain a titanium alloy drawn part with high modulus, high strength and high hardness.
  • the elastic modulus E, tensile strength R m , yield strength R p0.2 , elongation A and Vickers hardness of the titanium alloys of Examples 1-8 and Comparative Examples 1-7 were tested respectively, and the test results are listed in Table 2.
  • the shapes of the titanium alloys involved in Examples 1-8 and Comparative Examples 1-8 are all plate-like structures, and the sizes of the titanium alloys in each Example and Comparative Examples are the same.
  • titanium alloys with high elastic modulus, high strength and high hardness can be obtained by metal injection molding, metal 3D printing and drawing. Therefore, the titanium alloy of the present application can be applied to different processing methods, with wider processing methods and wider adaptability.
  • Fig. 2 is a schematic structural diagram of a folding shaft according to an embodiment of the present application.
  • the folding shaft 11 can utilize the Titanium alloy preparation and formation.
  • the folding shaft 11 made of the titanium alloy of the embodiment of the present application can significantly reduce the weight of the folding shaft 11 and increase the service life of the folding shaft 11 .
  • FIG. 3 is a schematic structural diagram of a foldable electronic device according to an embodiment of the present application.
  • the electronic device may include a first display panel 12 and a second display panel 13 Similar to the folding shaft 11 in the above embodiments of the present application, the folding shaft 11 is respectively connected to the first display panel 12 and the second display panel 13 . Since the folding rotating shaft 11 has the advantages of light weight and long service life, the electronic device of the present application also has the characteristics of light weight and long service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本申请提供了一种钛合金及其制备方法、钛合金部件、折叠转轴和电子设备。该钛合金包括以下组分:Al 5~8%、Mo 4~6%、V 4~6%、Cr 2~4%、Zr 1~3%、M 0.02~2%,余量包括Ti以及不可避免的杂质;其中,M选自B、C、Si或稀土元素中的至少一种。该钛合金具有高强度和高弹性模量的优点,满足折叠转轴的使用要求。

Description

钛合金及其制备方法、钛合金部件、折叠转轴和电子设备
相关申请的交叉引用
本申请要求在2021年12月09日提交中国专利局、申请号为202111498160.X、申请名称为“钛合金及其制备方法、钛合金部件、折叠转轴和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及合金材料领域,具体涉及一种钛合金及其制备方法、钛合金部件、折叠转轴和电子设备。
背景技术
目前电子产品一直朝着轻薄化的方向发展,电子产品,例如手机的重量是用户考量的一个重要指标。在一些电子产品中,例如折叠手机中,由于需要设置较多的折叠部件,如折叠转轴,致使折叠手机比普通手机的重量更重,其重量问题已成为影响其发展的瓶颈问题之一。现有的折叠转轴一般为钢制折叠转轴,利用钢制折叠转轴组装的折叠手机,重量一般在300g左右,给携带和使用带来很多不便。钛合金由于具有耐腐蚀性能好、力学性能优良、无磁性等特点,同时钛合金的密度一般为4.5g/cm 3左右,仅为钢的60%,因此,钛合金目前已成为代替钢制折叠转轴的理想材料。由于目前的钛合金由于主要应用于航空部件中,航空部件主要关注部件的强度、断裂韧性和耐高温性能。而折叠转轴对于钛合金的要求除具有一定的强度外,还需要满足较高的弹性模量,以满足折叠转轴的受力和刚性要求。因此,现有的钛合金还无法满足折叠转轴的使用要求。
发明内容
本申请提供了一种钛合金及其制备方法、钛合金部件、折叠转轴和电子设备,以获得一种高强度和高弹性模量的钛合金,满足折叠转轴的使用要求。
第一方面,本申请提供一种钛合金,该钛合金为近β钛合金,按重量百分比计,该钛合金包括以下组分:
Al:5~8%;
Mo:4~6%;
V:4~6%;
Cr:2~4%;
Zr:1~3%;
M:0.02~2%;
余量包括Ti以及不可避免的杂质;其中,M选自B、C、Si或稀土元素中的至少一种。
本申请提供的钛合金,通过在Ti中加入特定含量的Al、Mo、V、Cr、Zr和M元素,其中M元素可为B、C或Si中的至少一种,可使所得钛合金在具备高强度的基础上具有更高的弹性模量。本申请的钛合金,其屈服强度在1100MPa以上,有的可达1200MPa甚 至1400MPa。弹性模量一般在110GPa以上,有的可达120GPa甚至140GPa以上,由此,本申请提供的钛合金可满足折叠转轴的使用要求,同时,相对于现有钢制折叠转轴而言,还可以显著降低折叠设置如折叠手机的重量,满足用户的使用要求。
其中,M元素主要用于提高钛合金的弹性模量,并与其他成分共同作用进一步提高钛合金的强度。以B为例,M元素中的B,可原位生成TiB颗粒增强相,提高合金弹性模量和进一步提高强度,类似地,C可形成TiC颗粒增强相,Si可形成Ti 5Si 3颗粒增强相,稀土元素(如La、Ce、Y、Gd等)可形成第二相增强颗粒,均在保护范围之内。过高的M含量会造成合金过脆,失去工程应用的意义。在本申请一种优选实现方式中,M元素可选为B和C。
在本申请一种可能的实施方式中,按重量百分比计钛合金包括以下组分:
Al:5.6~7.9%、Mo:4.5~5.5%、V:4.5~5.5%、Cr:2~4%、Zr:1~3%和M:0.02~2%;余量包括Ti以及不可避免的杂质。
在本申请另一种可能的实现方式中,按重量百分比计钛合金包括以下组分:
Al:5.6~7.9%、Mo:4.5~5.5%、V:4.5~5.5%、Cr:2~4%、Zr:1~2%和M:0.02~2%;余量包括Ti以及不可避免的杂质。
在本申请进一步优选实施例中,按重量百分比计钛合金包括以下组分:
Al:6~7.5%、Mo:4.6~5.3%、V:4.8~5.2%、Cr:2~3%、Zr:1~2%和M:0.1~1%;余量包括Ti以及不可避免的杂质。
在本申请进一步优选实施例中,按重量百分比计钛合金包括以下组分:
Al:6.5~7.5%、Mo:4.6~5.3%、V:4.8~5.2%、Cr:2~2.5%、Zr:1.5~2%和M:0.6~0.9%;余量包括Ti以及不可避免的杂质。
在本申请一种可能的实现方式中,不可避免的杂质包括O以及N,Al结构当量值[Al]eq为5.9%~11.2%;其中,Al结构当量值[Al]eq可用于体现钛合金中α相的占比,Al结构当量值[Al]eq可基于以下公式计算得到:[Al]eq=Al+Zr/6+10[O]eq,[O]eq=O+2N。
Al结构当量为5.9%-11.2%,既可避免Al含量过低时固溶强化效应不足,又可避免Al含量过高时形成过量的第二相,造成合金脆性。
在本申请一种可能的实现方式中,Mo结构当量值[Mo]eq为10.2%~19.5%。其中,Mo结构当量值[Mo]eq可用于体现钛合金中β相的占比,Mo结构当量值[Mo]eq可基于以下公式计算得到:[Mo]eq=Mo+V/1.4+Cr/0.6+Mn/0.6。Mo结构当量≥10.2%,可确保淬火时不稳定相β相可保留至室温,避免粗大的初生α相析出;Mo结构当量≤19.5%,可避免Mo结构当量过高会导致淬火时形成稳定的β相,进而造成时效强化时β相不能转变为细小分散的次生α相,减弱时效强化效应。
在本申请一种可能的实现方式中,该钛合金的β稳定系数K β为1.0~1.8;其中,β稳定系数可基于以下公式计算得到:K β=Mo/10%+V/15%+Cr/6.3%+Mn/6.5%。K β过低,则固溶化处理不能充分转变为不稳定β相,易形成大量初生的α相,即淬透性不好;K β过高,则固溶化处理中易于形成稳定的β相,在后续时效强化中难以转变为次生的细小α相,影响强化效果。
在本申请一种可能的实现方式中,钛合金的β相转变温度T β为880~920℃。其中,T β为β相与(α+β)相两相区间的转变温度,较低的T β有助于在低温下对钛合金进行塑性加工和热处理强化,降低加工成本。
在本申请一种可能的实现方式中,钛合金的屈服强度≥1100MPa,弹性模量≥110GPa。在本申请一种可能的实现方式中,钛合金的维氏硬度≥350。
在本申请一种可能的实现方式中,Zr能够被Mn替代;其中,按重量份数计,1重量份的Zr能够被0.5重量份的Mn替代。在用Mn替代Zr时,可用Mn替代部分Zr,也可用Mn替代全部Zr,Zr可全部或部分被Mn替代。在替代时,按重量份数计,1重量份的Zr可被0.5重量份的Mn替代。
第二方面,本申请提供一种本申请第一方面钛合金的制备方法,该制备方法包括以下步骤:按照本申请第一方面钛合金的组成提供原料,其原料经熔炼铸锭后,再依次经成型处理和时效强化处理,以获得所述钛合金。
在本申请一种可能的实现方式中,可采用真空自耗电弧熔炼工艺、电子束熔炼工艺、等离子弧熔炼工艺、自耗电极凝壳熔炼工艺中的一种或上述方法的原料进行熔炼铸锭。优选的,作为一种示例性说明,可采用真空自耗电弧熔炼工艺进行熔炼铸锭。在利用真空自耗电弧熔炼工艺进行熔炼前,可先将金属混合原料初熔铸锭,然后将初熔铸锭所得锭子作为电极置于真空自耗电弧炉内再进行熔炼;熔炼次数可大于等于2次,以达到各组分均化混合的目的。
在本申请一种可能的实现方式中,所述成型处理为近净成型。其中,近净成型是指零件成形后,仅需少量加工或不再加工,就可用作机械构件的成型技术。由此,采用近净成型工艺时,后续工艺中需要进行机加工的量比较少,成本比较低,适合批量制备小型结构件,以降低机加工的难度。
在本申请一种可能的实现方式中,近净成型具体可包括金属粉末注塑成型(metal injection molding,MIM)、金属三维(three dimensional,3D)打印成型或拉拔成型。以上三种成型方法均可有利于制备小型复杂结构件,且成型后的结构件的尺寸与最终尺寸较为接近,便于后续加工。另外,当采用金属3D打印成型和拉拔成型时,还可有助于提高结构件的屈服强度。
其中,当近净成型为MIM或金属3D打印成型时,在熔炼铸锭后,该钛合金的制备方法还包括粉末化处理的步骤。具体地,钛合金的原料在经过熔炼铸锭后,可先经粉末化处理获得合金粉末后,再依次经成型处理和时效强化处理。
在本申请一种可能的实现方式中,粉末化处理的工艺可包括电极感应气体雾化(electrode induction–melting gas atomization,EIGA)、等离子雾化(plasma atomization,PA)、等离子旋转电极工艺(plasma rotating electrode process,PREP)等方法中的一种或其组合。
其中,在MIM中,可利用粒径小于等于25微米以下的合金粉末作为制备原料获得具有大致外形轮廓的待加工零部件;在金属3D打印成型过程中,可利用粒径为15~53微米的合金粉末作为制备原料获得具有大致外形轮廓的待加工零部件。在拉拔成型中,可采用锻造和轧制的方式获得拉拔原料,然后通过拉拔工艺获得具有部件大致外形轮廓的待加工零部件。其中,拉拔可为冷拉拔。
在本申请一种可能的实现方式中,在成型处理后并在时效强化处理前,该制备方法还包括固溶化处理的步骤。在本申请一种可能的实现方式中,固溶化处理时,固溶化处理的固溶温度比钛合金的β相转变温度T β低20~80℃。经过该固溶化处理形成β相过饱和固溶体,去除应力,使成分均匀化,提高钛合金的抗形变能力。
在本申请一种可能的实现方式中,在固溶化处理之后,并在时效强化处理之前,该制 备方法还包括机加工的步骤。固溶化处理后的钛合金,塑性较好,强度较低,此时进行机加工,可降低加工能耗,且加工机具磨损低,加工效率高,可降低机加工成本。
在本申请一种可能的实现方式中,时效强化处理中的温度为400~650℃,时间为2~16h。在400~650℃之间进行2~16h时效强化处理,可析出大量第二相α相,强化钛合金强度。同时,该时效强化处理的工艺参数可与固溶化处理中的温度相互配合,以进一步增大钛合金的屈服强度。
其中,本申请上述各可能实现方式中的数据,例如钛合金中各组分的含量、相变温度以及钛合金制备方法中的温度、时间等数据,在测量时,工程测量误差范围内的数值均应理解为在本申请所限定的范围内。
第三方面,本申请提供一种钛合金部件,钛合金部件利用如本申请第一方面的钛合金制备形成。
第四方面,本申请提供一种折叠转轴,折叠转轴利用如本申请第一方面的钛合金制备形成。
第五方面,本申请提供一种电子设备,电子设备包括第一显示面板、第二显示面板和本申请的折叠转轴,折叠转轴分别连接第一显示面板和第二显示面板。
其中,该电子设备例如可为折叠手机、折叠电脑、折叠屏幕等等。
上述第二方面至第五方面可以达到的技术效果,可以参照上述第一方面中的相应效果描述,这里不再重复赘述。
附图说明
图1为本申请实施例的钛合金的显微结构图;
图2为本申请实施例的折叠转轴的结构示意图;
图3为本申请实施例的可折叠的电子设备的结构示意图。
附图标记:11-折叠转轴;12-第一显示面板;13-第二显示面板。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
目前可折叠的电子设备,以折叠手机为例,由于折叠转轴为钢制结构,重量较重,严 重影响了该类电子设备的发展。由此,如何降低可折叠电子设备的重量已成为研究的重点。钛合金以其高强度、低密度成为取代钢制折叠转轴的理想材料。而折叠转轴一般要求制备原料的弹性模量在110GPa以上,且具有较强的抗跌落和抗形变能力,因此,目前的钛合金还无法满足折叠转轴的使用要求。
为解决上述技术问题,本申请实施例提供一种钛合金,该钛合金按重量百分比计包括以下组分:
Al:5~8%;
Mo:4~6%;
V:4~6%;
Cr:2~4%;
Zr:1~3%;
M:0.02~2%;
余量包括Ti以及不可避免的杂质;其中,M选自B、C、Si或稀土元素中的至少一种。
其中,该钛合金中,按重量百分比计,Al的含量例如可优选为5.6~7.9%、进一步优选为6~7.5%,进一步优选为6.5~7.5%,作为举例说明,Al的含量例如可为5%、5.1%、5.2%、5.3%、5.4%、5.5%、5.6%、5.7%、5.8%、5.9%、6.0%、6.1%、6.2%、6.3%、6.4%、6.5%、6.6%、6.7%、6.8%、6.9%、6.0%、7.1%、7.2%、7.3%、7.4%、7.5%或为上述所列任一两个数据的中间值,可以理解的是,本申请中Al的含量并非限定在上述所列举数值,以上任意两个数值的组合均可组成Al的数值范围。
Al是钛合金中α稳定元素,重量分数每增加1%,强度可增加60MPa,提高β相转变温度。当Al含量超出8%时,α稳定元素过量,易形成Ti 3Al相,脆性敏感度上升;当Al含量低于5%时,在时效强化时对α相析出强化产生不利影响。同时,Al密度为2.7g/cm 3,合适的Al添加量有助于降低钛合金的密度,提升减重效果。
该钛合金中,按重量百分比计,Mo的含量例如可优选为4~5.5%、进一步优选为4.5~5.5%,更进一步优选为4.6~5.3%。作为举例说明,Mo的含量例如可为4%、4.1%、4.2%、4.3%、4.4%、4.5%、4.6%、4.7%、4.8%、4.9%、5%、5.1%、5.2%、5.3%、5.4%、5.5%、5.6%、5.7%、5.8%、5.9%、6.0%或为上述所列任一两个数据的中间值,可以理解的是,本申请中Mo的含量并非限定在上述所列举数值,以上任意两个数值的组合均可组成Mo的数值范围。
Mo是钛合金中同晶型β稳定元素,重量分数每增加1%,强度可增加50MPa,降低β相转变温度。当Mo含量超出6%时,β稳定元素可能过量,不能达到最优的淬透性;当Mo含量低于4%时,不能保证钛合金具有足够β相稳定性。Mo的密度为10.28g/cm 3,过量的Mo则会造成钛合金的密度增加,减弱减重效果。
该钛合金中,按重量百分比计,V的含量例如可优选为4~5.5%、进一步优选为4.5~5.5%,更进一步优选为4.8~5.2%。作为举例说明,V的含量例如可为4%、4.1%、4.2%、4.3%、4.4%、4.5%、4.6%、4.7%、4.8%、4.9%、5%、5.1%、5.2%、5.3%、5.4%、5.5%、5.6%、5.7%、5.8%、5.9%、6.0%或为上述所列任一两个数据的中间值,可以理解的是,本申请中V的含量并非限定在上述所列举数值,以上任意两个数值的组合均可组成V的数值范围。
V是钛合金中同晶型β稳定元素,重量分数每增加1%,强度可增加30MPa,降低β 相转变温度。当V含量超出6%时,β稳定元素可能过量,不能达到最优的淬透性;当V低于4%时,不能保证足够的β稳定性。
该钛合金中,按重量百分比计,Cr的含量例如可优选为2.2~3.8%、进一步优选为2.5~3.5%,进一步优选为2~3%,进一步优选为2~2.5%。作为举例说明,Cr的含量例如可为2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4.0%或为上述所列任一两个数据的中间值,可以理解的是,本申请中Cr的含量并非限定在上述所列举数值,以上任意两个数值的组合均可组成Cr的数值范围。
Cr是钛合金中慢共析型β稳定元素,重量分数每增加1%,强度可增加65MPa,降低β相转变温度。当铬含量超出4%时,由于共析型β相存在,伸长率会降低;当Cr含量低于2%时,淬透性则会下降。
该钛合金中,按重量百分比计,Zr的含量例如可优选为1~2.8%、进一步优选为1~2.5%,进一步优选为1~2%,进一步优选为1.5~2%。作为举例说明,Zr的含量例如可为1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、4.0%或为上述所列任一两个数据的中间值,可以理解的是,本申请中Zr的含量并非限定在上述所列举数值,以上任意两个数值的组合均可组成Zr的数值范围。
Zr是钛合金中替代式中性元素,重量分数每增加1%,强度可增加20MPa,对β相转变温度影响不大。在α相和β相中均有较大的固溶度,使钛的室温抗拉强度升高,塑性下降;通过稳定β相的作用,减少w相的体积分数。
该钛合金中,按重量百分比计,M的含量例如可优选为0.1~2%、进一步优选为0.1~1%,进一步优选为0.6%~0.9%。作为举例说明,M的含量例如可为0.02%、0.04%、0.06%、0.08%、0.1%、0.12%、0.14%、0.16%、0.18%、0.2%、0.25%、0.3%、0.5%、0.6%、0.8%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%或为上述所列任一两个数据的中间值,可以理解的是,本申请中M的含量并非限定在上述所列举数值,以上任意两个数值的组合均可组成M的数值范围。其中,M为B、C或Si中的至少一种,作为示例性说明,M具体可为B、C、Si、B-C组合、B-Si组合、C-Si组合或B-C-Si组合。
M元素主要用于提高上述钛合金的弹性模量,并与其他成分共同作用进一步提高钛合金的强度,以形成高强度高模量钛合金。其中,M元素中的B,可原位生成TiB短纤维颗粒增强相,TiB具有高弹性模量、高强度、高硬度特点,密度和热膨胀系数与钛相近,因此可提高合金弹性模量和强度。类似地,C可形成TiC颗粒增强相,Si可形成Ti 5Si 3颗粒增强相,稀土元素(如La、Ce、Y、Gd等)可形成第二相增强颗粒,均在保护范围之内。过高的M含量会造成合金过脆,失去工程应用的意义。
其中,需要说明的是,本申请实施例的钛合金,除包括上述Al、Mo、V、Cr、Zr和M元素外,还不可避免地含有Ti以及其他不可避免的杂质,其中,不可避免的杂质例如可包括O和N。
在本申请一种实施例中,Zr可被Mn替代。其中,Zr在被Mn替代时,1重量份的Zr能够被0.5重量份的Mn替代。例如,当Zr的含量为1%且全部被Mn取代时,可用0.5%的Mn替代Zr;当Zr的含量为1%且部分被Mn取代时,例如0.5%的Zr被Mn替代时,Mn的添加量可为0.25%。
在本申请一种实施例中,Al结构当量值可为5.99~11.20,Mo结构当量值可为10.19~19.45。在本申请一种实施例中,钛合金的β相转变温度T β为880~920℃。在本申请一种实施例中,钛合金的屈服强度可≥1100MPa,弹性模量可≥110GPa,维氏硬度可≥350。
基于钛合金的上述成分,本申请还提供一种钛合金的制备方法。在本申请一种实施例中,该制备方法可包括以下步骤:
步骤S11、按照以下钛合金的组成提供原料;
Al 5~8%、Mo 4~6%、V 4~6%、Cr 2~4%、Zr 1~3%、M 0.02~2%;余量包括Ti和不可避免的杂质;其中,M选自B、C、Si和稀土元素中的至少一种;
其中,上述各组分原料可选自单质金属原料或合金原料,还可选自回收的切削料或固体块料。例如,钛可选自海绵钛或回收的钛合金。B以B粉或者B 4C粉末形式添加;C以C粉或者B 4C粉末形式添加;Si以Si粉或者Si块的形式添加。
步骤S12、上述原料经熔炼铸锭后,再依次经成型处理、固溶化处理和时效强化处理,以获得钛合金。
其中,在本申请一种实施例中,上述步骤S12中,熔炼可包括真空自耗电弧炉熔炼、电子束熔炼、等离子弧熔炼或自耗电极凝壳熔炼中的一种或至少两种的组合。成型处理为近净成型,近净成型看可包括金属粉末注塑成型、金属3D打印成型或拉拔成型;其中,当近净成型为金属粉末注塑成型或金属3D打印成型时,在熔炼铸锭后,且在成型处理前,该制备方法还包括粉末化处理的步骤。
作为一种示例性说明,在本申请一种实施例中,该制备方法具体包括以下步骤:
步骤S21、配料:按照钛合金的组分称取各组分的原料,各组分原料可选自单质金属原料或合金原料,还可选自回收的切削料或固体块料。例如,钛可选自海绵钛或回收的钛合金。B以B粉或者B 4C粉末形式添加;C以C粉或者B 4C粉末形式添加;Si以Si粉或者Si块的形式添加。
步骤S22、熔炼铸锭:并对各组分的原料进行熔炼;其中,可采用真空自耗电弧熔炼工艺、电子束熔炼工艺、等离子弧熔炼工艺、自耗电极凝壳熔炼工艺中的一种或上述方法的组合对各组分进行熔炼。其中,作为一种示例性说明,可采用真空自耗电弧熔炼工艺进行熔炼。在利用真空自耗电弧熔炼工艺进行熔炼铸锭前,可先将混合原料初熔铸锭,然后将初熔铸锭所得锭子作为电极置于真空自耗电弧炉内进行熔炼;熔炼次数可大于等于2次,以达到均化混合的目的。
步骤S23、对熔炼铸锭后的合金料进行成型处理,以获得所需形状的合金坯料,成型处理可采用拉拔工艺;
步骤S24、对经成型处理后的合金坯料进行固溶化处理,固溶化处理的固溶温度为T β-20℃~T β-80℃。其中,固溶化处理完成后可采用空气冷却或炉冷方式进行冷却,具体的冷却方式不做具体的限定。
步骤S25、对经固溶化处理后的合金坯料进行机加工,以对合金坯料的形状进行精细加工,满足零部件的最终尺寸要求;
步骤S26、对经机加工后的合金坯料进行时效强化处理,以提高钛合金的强度。其中,时效强化处理后对钛合金进行冷却时,可采用空冷或炉冷方式,具体的冷却方式不做具体的限定。
作为另一种示例性说明,在本申请另一种实施例中,该制备方法具体包括以下步骤:
步骤S31、配料:按照钛合金的组分称取各组分的原料,各组分原料可选自单质金属原料或合金原料,还可选自回收的切削料或固体块料。例如,钛可选自海绵钛或回收的钛合金。B以B粉或者B 4C粉末形式添加;C以C粉或者B 4C粉末形式添加;Si以Si粉或者Si块的形式添加。
步骤S32、熔炼铸锭:并对各组分的原料进行熔炼;其中,可采用真空自耗电弧熔炼工艺、电子束熔炼工艺、等离子弧熔炼工艺、自耗电极凝壳熔炼工艺中的一种或上述方法的组合对各组分进行熔炼。其中,作为一种示例性说明,可采用真空自耗电弧熔炼工艺进行熔炼。在利用真空自耗电弧熔炼工艺进行熔炼铸锭前,可先将混合原料初熔铸锭,然后将初熔铸锭所得锭子作为电极置于真空自耗电弧炉内进行熔炼;熔炼次数可大于等于2次,以达到均化混合的目的。
步骤S33、对熔炼铸锭后的合金料进行粉末化处理得到合金粉末。其中,粉末化处理的工艺可包括等离子物化、电极感应气体雾化或等离子旋转电极工艺中的一种或两种以上的组合。
步骤S34、对熔炼铸锭后的合金料进行成型处理,以获得所需形状的合金坯料,成型处理中可采用金属塑性成型或金属3D打印;
其中,在成型处理前可对步骤S33所得的合金粉末先进行筛分,粒径小于等于25微米的合金粉末可利用金属注塑成型工艺(MIM)制备合金坯料;粒径在15~53微米之间的合金粉末可采用金属3D打印工艺制备合金坯料,金属3D打印例如可选用选择性激光熔融技术进行3D打印。
步骤S35、对经成型处理后的合金坯料进行固溶化处理,固溶化处理的固溶温度为T β-20℃~T β-80℃。其中,固溶化处理完成后可采用空气冷却或炉冷方式进行冷却,具体的冷却方式不做具体的限定。其中,当成型处理中采用金属3D打印时,可选择性地省略固溶化处理的步骤,即当选用金属3D打印进行成型时,可对合金坯料进行固溶化处理,也可不对合金坯料进行固溶化处理。
步骤S36、对经固溶化处理后的合金坯料进行机加工,以对合金坯料的形状进行精细加工,满足零部件的最终尺寸要求。
步骤S37、对经机加工的合金坯料进行时效强化处理,以提高钛合金的强度。其中,时效强化处理后对钛合金进行冷却时,可采用空冷或炉冷方式,具体的冷却方式不做具体的限定。
图1为本申请一种实施例的钛合金的微观形貌图,如图1所示,本申请一种实施例的钛合金中,各相结构均匀分布。其中,β相钛合金基体(灰白色),和大量细小弥散的α析出相(黑色),作为钛合金的基体均匀分布,用于为钛合金提供基础强度;同时,棒状结构(长宽比大)和块状结构(长宽比小)的晶粒为原位生成的第二相TiB和TiC,用于提高钛合金的弹性模块和进一步提高钛合金的强度。
本申请实施例提供的铝合金,具有较高的强度、较高的弹性模量以及较高的硬度,抗跌落以及抗形变能力更强,可满足高强度高模量的小型钛合金复杂零部件的使用要求。同时,本申请实施例的制备方法,可针对复杂形状的小型零部件,使用金属注塑成型、金属三维打印成型或拉拔成型等工艺,并可在时效强化处理前进行机加工,可在确保零部件尺寸的同时,降低加工成本。此外,需要说明的是,本申请实施例提供的钛合金,铁元素可以不可避免的杂质存在,其组分中未额外添加铁元素,可防止钛合金中的组分出现偏析, 避免钛合金的强度降低。
以下将结合具体的实施例和对比例对本申请的钛合金做详细说明。
实施例1
本实施例为一种钛合金,该钛合金的具体成分如下:
Al 6.5%、Mo 5%、V 5%、Cr 3%、Zr 2%和B 0.2%;
余量为钛和不可避免的杂质。
具体的该钛合金的制备方法如下:
步骤S101、合金配料:将0级海绵钛、Al-V、Al-Mo中间合金、铝豆、电解Cr和海绵锆以及B粉按照化学成分配料并混合,压制成电极块,并将电极块组焊成用于熔炼的电极。
步骤S102、熔炼铸锭:采用真空自耗电弧炉(vacuum consumable arc furnace,VAR)熔炼,将步骤S101所得电极置于VAR中作为自耗电极进行熔炼;反复熔炼3次。
步骤S103、粉末化处理:采用电极感应气体雾化(EIGA)制备合金粉末,通过筛分,选取粒径小于等于25微米的合金粉末。
步骤S104、近净成型MIM:所得合金粉末与粘接剂混合后依次经造粒、注塑、脱脂和烧结后获得金属注塑件,金属注塑件的致密度≥95%。
步骤S105、固溶化处理:在850℃下保温2h,然后炉冷至室温。
步骤S106、机加工:固溶化处理后的金属注塑件进行精细加工,确保金属注塑件的尺寸满足最终零件需求。
步骤S107、时效强化处理:在530℃下进行8h时效处理,获得一种高模量高强度高硬度钛合金MIM零件。
实施例2-6
实施例2-6分别为一种钛合金,其制备方法与实施例1中的相同,不同之处在于各实施例的成分不同。实施例2-6的具体钛合金的成分列于表1。
对比例1-3
对比例1-3分别为一种钛合金,其制备方法与实施例1中的相同,不同之处在于各实施例的成分不同。对比例1-3的具体钛合金的成分列于表1。
对比例4
一种钛合金,按质量百分比计,其组分配比为:Al 5.5%、V 5%、Fe 0.8%、Mo 5%、Cr 2.2%、O 0.14%,余量为Ti和附带杂质。
对比例5
一种钛合金,按质量百分比计,其组分配比为:Al 6%,Sn 2%,Zr 3%,Mo 4.5%,V 3%,Cr 2.5%,余量为Ti和不可避免的杂质。
对比例6
一种钛合金,按质量百分比计,其组分配比为:Al 5%、V 5%、Mo 5.2%、Cr 2.8%、Fe 0.4%,其余为钛和不可避免的杂质。
对比例7
一种钛合金TC4,按质量百分比计,其组分配比为:Al 6%、V 4%,其余为钛和不可避免的杂质。该钛合金利用金属注塑成型方式获得。
实施例7
本实施例为一种钛合金,该钛合金的具体成分如下:
Al 7.5%、Mo 4%、V 4%、Cr 2%、Mn 0.5%和B 2%;
余量为钛和不可避免的杂质。
具体的该钛合金的制备方法如下:
步骤S101、合金配料:将0级海绵钛、Al-V、Al-Mo中间合金、铝豆、电解Cr和海绵锆以及B粉按照化学成分配料并混合,压制成电极块,并将电极块组焊成用于熔炼的电极。
步骤S102、熔炼铸锭:采用VAR熔炼,将步骤S101所得电极置于VAR中作为自耗电极进行熔炼;反复熔炼次数3次。
步骤S103、粉末化处理:采用等离子雾化(PA)制备合金粉末,通过筛分,选取粒径15~53微米的合金粉末。
步骤S104、金属3D打印成型:利用步骤S103所得合金粉末为原料,采用选择性激光熔融技术进行3D打印,获得金属打印件。
步骤S105、机加工:固溶化处理后的金属打印件进行精细加工,确保金属打印件的尺寸满足最终零件需求。
步骤S106、时效强化处理:在530℃下进行8h时效处理,获得一种高模量高强度高硬度钛合金3D打印零件。
实施例8
本实施例为一种钛合金,该钛合金的具体成分如下:
Al 5%、Mo 6%、V 6%、Cr 4%、Zr 3%和C 0.02%;
余量为钛和不可避免的杂质。
具体的该钛合金的制备方法如下:
步骤S101、合金配料:将超0级海绵钛、Al-V、Al-Mo中间合金、铝豆、电解Cr和海绵锆以及C粉按照化学成分配料并混合,压制成电极块,并将电极块组焊成用于熔炼的电极。
步骤S102、熔炼铸锭:采用真空自耗电弧炉(vacuum consumable arc furnace,VAR)熔炼,将步骤S101所得电极置于VAR中作为自耗电极进行熔炼;反复熔炼3次。
步骤S103、近净成型:塑性加工-拉拔成型:以步骤S102所得熔炼锭子为原料,通过β锻造开坯以及α+β轧制或挤压等塑性加工方式获得型材,然后通过型材冷拉拔获得零件毛坯料。其中型材与零件毛坯料具有类似的截面形状。
步骤S104、固溶化处理:零件毛坯料在845℃下保温2h,然后炉冷至室温。
步骤S105、机加工:固溶化处理后的零件毛坯料进行精细加工,确保零件毛坯料的尺寸满足最终零件需求。
步骤S106、时效强化处理:在530℃下进行8h时效处理,获得一种高模量高强度高硬度钛合金拉拔零件。
表1
Figure PCTCN2022137151-appb-000001
Figure PCTCN2022137151-appb-000002
分别测试实施例1-8以及对比例1-7的钛合金的弹性模量E、抗拉强度R m、屈服强度R p0.2、延伸率A以及维氏硬度,测试结果列于表2。其中,为方便测试分析,实施例1-8以及对比例1-8所涉及的钛合金的形状均为板状结构,各实施例和对比例的钛合金的尺寸均相同。
表2
Figure PCTCN2022137151-appb-000003
从表2中实施例1-8以及对比例1-3中的测试数据可以看出,当改变钛合金中的各金属元素含量时,所获得的钛合金的综合性能要远低于本申请实施例的钛合金。另外,从实施例1-8以及对比例4-7的对比数据可以看出,本申请实施例的钛合金,其弹性模量均高于对比例4-7,由此,本申请实施例的钛合金,在具有高强度的基础上还具有高弹性模量和高硬度的特性,可有效解决现有钛合金抗跌性能和刚性差的问题。
另外,从实施例1-8的测试数据可知,利用金属注塑成型、金属3D打印以及拉拔成型方式,均可获得高弹性模量、高强度以及高硬度的钛合金。由此,本申请的钛合金可适用于不同的加工方式,加工方式更广泛,适应性更广。
基于钛合金的上述性能,本申请还提供一种折叠转轴,图2为本申请一种实施例的折叠转轴的结构示意图,如图2所示,该折叠转轴11可利用本申请上述实施例的钛合金制备形成。利用本申请实施例的钛合金制备的折叠转轴11,可显著降低折叠转轴11的重量,并提高折叠转轴11的使用寿命。
基于上述折叠转轴的结构以及类似结构,本申请还提供一种可折叠的电子设备,如折叠手机、折叠电脑、折叠面板等。图3为本申请一种实施例的可折叠的电子设备的结构示意图,如图3所示,在本申请一种实施例中,该电子设备可包括第一显示面板12、第二显示面板13和本申请上述实施例的折叠转轴11,折叠转轴11分别连接第一显示面板12和第二显示面板13。由于折叠转轴11具重量轻和使用寿命长的优点,因此,本申请的电子设备同样具有重量轻和使用寿命长的特点。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种钛合金,其特征在于,按重量百分比计包括以下组分:
    Al:5~8%;
    Mo:4~6%;
    V:4~6%;
    Cr:2~4%;
    Zr:1~3%;
    M:0.02~2%;
    余量包括Ti以及不可避免的杂质;其中,所述M选自B、C、Si或稀土元素中的至少一种。
  2. 根据权利要求1所述的钛合金,其特征在于,所述不可避免的杂质包括O以及N,Al结构当量值为5.9%~11.20%;其中,所述Al结构当量值基于以下公式计算得到:[Al]eq=Al+Zr/6+10[O]eq,[O]eq=O+2N。
  3. 根据权利要求1或2所述的钛合金,其特征在于,Mo结构当量值为10.2%~19.5%;其中,所述Mo结构当量值基于以下公式计算得到:[Mo]eq=Mo+V/1.4+Cr/0.6+Mn/0.6。
  4. 根据权利要求1-3任一项所述的钛合金,其特征在于,所述Zr能够被Mn替代;其中,按重量份数计,1重量份的所述Zr能够被0.5重量份的所述Mn替代。
  5. 根据权利要求1-4任一项所述的钛合金,其特征在于,所述钛合金的β稳定系数K β为1.0~1.8;其中,所述β稳定系数基于以下公式计算得到K β=Mo/10%+V/15%+Cr/6.3%+Mn/6.5%。
  6. 根据权利要求1-5任一项所述的钛合金,其特征在于,所述钛合金的屈服强度≥1100MPa,弹性模量≥110GPa。
  7. 根据权利要求6所述的钛合金,其特征在于,所述钛合金的维氏硬度≥350。
  8. 一种如权利要求1-7任一项所述的钛合金的制备方法,其特征在于,包括:
    按照权利要求1-7任一项所述的钛合金的组成提供原料,所述原料经熔炼铸锭后,再依次经成型处理和时效强化处理。
  9. 根据权利要求8所述的制备方法,其特征在于,所述熔炼包括真空自耗电弧炉熔炼、电子束熔炼、等离子弧熔炼或自耗电极凝壳熔炼中的一种或至少两种的组合。
  10. 根据权利要求8或9所述的制备方法,其特征在于,所述成型处理为近净成型,所述近净成型包括金属粉末注塑成型、金属3D打印成型或拉拔成型;
    其中,所述近净成型为金属粉末注塑成型或金属3D打印成型时,在所述熔炼铸锭后,且在所述成型处理前,所述制备方法还包括粉末化处理的步骤。
  11. 根据权利要求8-10任一项所述的制备方法,其特征在于,在所述成型处理后并在所述时效强化处理前,所述制备方法还包括固溶化处理的步骤。
  12. 根据权利要求11所述的制备方法,其特征在于,所述固溶化处理的固溶温度比所述钛合金的β相转变温度T β低20~80℃。
  13. 根据权利要求11或12所述的制备方法,其特征在于,在所述固溶化处理之后,并在所述时效强化处理之前,所述制备方法还包括机加工的步骤。
  14. 根据权利要求8-13任一项所述的制备方法,其特征在于,所述时效强化处理中的温度为400~650℃,时间为2~16h。
  15. 一种钛合金部件,其特征在于,所述钛合金部件利用如权利要求1-7任一项所述的钛合金制备形成。
  16. 一种折叠转轴,其特征在于,所述折叠转轴利用如权利要求1-7任一项所述的钛合金制备形成。
  17. 一种电子设备,其特征在于,所述电子设备包括第一显示面板、第二显示面板和如权利要求16所述的折叠转轴,所述折叠转轴分别连接所述第一显示面板和所述第二显示面板。
PCT/CN2022/137151 2021-12-09 2022-12-07 钛合金及其制备方法、钛合金部件、折叠转轴和电子设备 WO2023104072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111498160.XA CN116254438A (zh) 2021-12-09 2021-12-09 钛合金及其制备方法、钛合金部件、折叠转轴和电子设备
CN202111498160.X 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023104072A1 true WO2023104072A1 (zh) 2023-06-15

Family

ID=86684788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137151 WO2023104072A1 (zh) 2021-12-09 2022-12-07 钛合金及其制备方法、钛合金部件、折叠转轴和电子设备

Country Status (2)

Country Link
CN (1) CN116254438A (zh)
WO (1) WO2023104072A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117551904A (zh) * 2024-01-12 2024-02-13 成都先进金属材料产业技术研究院股份有限公司 一种低成分极差的钛合金熔炼锻造方法
CN117802351A (zh) * 2024-02-29 2024-04-02 成都先进金属材料产业技术研究院股份有限公司 高强耐蚀钛合金管材及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395443B2 (ja) * 1994-08-22 2003-04-14 住友金属工業株式会社 高クリープ強度チタン合金とその製造方法
CN1978681A (zh) * 2005-12-06 2007-06-13 北京有色金属研究总院 一种高强度高弹性模量的钛合金
CN108838301A (zh) * 2018-05-31 2018-11-20 中国科学院金属研究所 一种高疲劳性能钛合金弹簧的制备方法
CN111306229A (zh) * 2020-03-03 2020-06-19 沈阳和世泰通用钛业有限公司 一种小线径钛合金弹簧及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395443B2 (ja) * 1994-08-22 2003-04-14 住友金属工業株式会社 高クリープ強度チタン合金とその製造方法
CN1978681A (zh) * 2005-12-06 2007-06-13 北京有色金属研究总院 一种高强度高弹性模量的钛合金
CN108838301A (zh) * 2018-05-31 2018-11-20 中国科学院金属研究所 一种高疲劳性能钛合金弹簧的制备方法
CN111306229A (zh) * 2020-03-03 2020-06-19 沈阳和世泰通用钛业有限公司 一种小线径钛合金弹簧及其制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117551904A (zh) * 2024-01-12 2024-02-13 成都先进金属材料产业技术研究院股份有限公司 一种低成分极差的钛合金熔炼锻造方法
CN117551904B (zh) * 2024-01-12 2024-04-23 成都先进金属材料产业技术研究院股份有限公司 一种低成分极差的钛合金熔炼锻造方法
CN117802351A (zh) * 2024-02-29 2024-04-02 成都先进金属材料产业技术研究院股份有限公司 高强耐蚀钛合金管材及其制备方法

Also Published As

Publication number Publication date
CN116254438A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2023104072A1 (zh) 钛合金及其制备方法、钛合金部件、折叠转轴和电子设备
CN104862510B (zh) 一种高熵合金颗粒增强铝基复合材料及其制备方法
CN112391556B (zh) 一种双峰晶粒尺寸、双尺度纳米相强化的高强高导Cu-Cr-Nb合金
CN110512116A (zh) 一种多组元高合金化高Nb-TiAl金属间化合物
CN108504890A (zh) 一种有基高熵合金复合材料及其制备方法
CN111500911A (zh) 一种高强韧纳米增强金属基复合材料的制备方法
CN102154596A (zh) 一种锆基非晶合金及其制备方法
CN112063870A (zh) 一种TiC强化CoCrNi中熵合金复合材料及其制备方法
US20090087341A1 (en) Reinforced aluminum alloy with high electrical and thermal conductivity and its manufacturing process thereof
CN102534334B (zh) 一种高强高韧钼合金的制备方法
CN107779712B (zh) 一种超高强高模量Mg-Gd-Y-Zn-Si-Ti-B镁合金及其制备方法
CN105695799B (zh) 一种Ti‑Al‑Nb系金属间化合物高温结构材料
KR20190143164A (ko) 금속간화합물 강화된 고엔트로피 합금, 및 그 제조방법
CN108342635A (zh) 一种高强度难熔六元高熵合金CoCrFeNiVAlx及其制备方法
CN103339274A (zh) 含有(4.0-6.0)%Al-(4.5-6.0)%Mo-(4.5-6.0)%V-(2.0-3.6)%Cr-(0.2-0.5)%Fe-(0.1-2.0)%Zr的近β钛合金的熔炼方法
LU502642A1 (en) High-entropy cast iron and manufacturing method thereof
CN101624668B (zh) 一种低成本易生产β钛合金及其制造方法
CN114318039B (zh) 三峰晶粒结构金属基复合材料的元素合金化制备方法
Tang et al. Effect on mechanical and thermodynamic properties of Al-10Si-0.8 Fe alloys with Al-Ti-C and Ce compound additions
CN101633990A (zh) 一种Al-Mo-W-Ti四元合金
Yu et al. Microstructure and properties of titanium matrix composites synergistically reinforced by graphene oxide and alloying elements
CN104532042A (zh) 一种立方氮化硼颗粒增强Cu基电极复合材料及其制备方法
CN112063885A (zh) 一种适用于800℃的含钌多组元TiAl合金
CN113897520A (zh) 发动机活塞用高强耐热铸造铝硅合金
CN108486402B (zh) 一种TiN颗粒增强镍基复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903494

Country of ref document: EP

Kind code of ref document: A1