WO2023103770A1 - 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法 - Google Patents

一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法 Download PDF

Info

Publication number
WO2023103770A1
WO2023103770A1 PCT/CN2022/133620 CN2022133620W WO2023103770A1 WO 2023103770 A1 WO2023103770 A1 WO 2023103770A1 CN 2022133620 W CN2022133620 W CN 2022133620W WO 2023103770 A1 WO2023103770 A1 WO 2023103770A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
mother liquor
solid
sodium sulfate
ammonium
Prior art date
Application number
PCT/CN2022/133620
Other languages
English (en)
French (fr)
Inventor
张洋
范兵强
张贺东
申长帅
郑诗礼
曹宏斌
陈沛松
Original Assignee
中国科学院过程工程研究所
北京镜澄科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所, 北京镜澄科技有限公司 filed Critical 中国科学院过程工程研究所
Publication of WO2023103770A1 publication Critical patent/WO2023103770A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/16Halides of ammonium
    • C01C1/164Ammonium chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the embodiment of the present application relates to the technical field of chemical technology, for example, a method for preparing sodium carbonate and co-producing ammonium sulfate and ammonium chloride by mixing waste salt.
  • Waste salt refers to solid waste containing the main components of inorganic salts, such as various waste residues, dust and other wastes discharged in the process of industrial production.
  • the high-salt wastewater produced by many industries such as pesticides, pharmaceuticals, fine chemicals, and printing and dyeing has the characteristics of difficult disposal, high cost, and environmental hazards due to its wide range of sources, various types, and high levels of toxic and harmful substances.
  • Sodium chloride is the main method, mainly including salt nitrate separation method and nanofiltration separation method.
  • CN113060889A discloses a control method of thermal salt and nitrate separation process, including the following steps: the first step: MVR evaporation and crystallization process, the second step: control mother liquor reflux process: chlorine ion online monitoring device measures the chloride ion content in the mother liquor tank , control the return of the mother liquor to the evaporator to continue evaporation and crystallization or send it to the subsequent freezing and denitration device; the third step: cooling and freezing denitrification process, the fourth step: single-effect evaporation and crystallization process.
  • the present invention can improve the yield of salt nitrate and improve the purity of sodium chloride in mixed salt; the method solves the problem of low yield of salt nitrate and low purity of sodium chloride in mixed salt in the related art question.
  • the salt and nitrate separation method has a large amount of material circulation and high energy consumption, and the obtained products sodium sulfate and sodium chloride are of poor quality, low value, and poor market absorption capacity.
  • CN110548750A discloses a waste salt resource treatment process and its special equipment.
  • the waste salt mainly composed of sodium chloride and sodium sulfate is added with sodium chloride and sodium sulfate saturated brine and stirred continuously, and filtered to obtain the salt washing mother liquor, and the precipitated Sodium chloride and sodium sulfate solid drying treatment; freezing the salt washing mother liquor, crystal evaporation and crystallization, chemical removal of impurities in the frozen mother liquor, removal of organic and inorganic impurity ions, organic separation of impurity removal water, on-site utilization of mother liquor, oxidation treatment of produced water , oxidation product water nanofiltration salt separation, nanofiltration concentrated water returns to the salt washing system, nanofiltration product water is evaporated and dried to obtain sodium chloride solid; the method is through salt washing, freezing, organic separation, oxidation, nanofiltration salt separation and evaporation
  • CN107304090A discloses a resource treatment method for high-salt wastewater containing sodium chloride and sodium sulfate.
  • the high-salt wastewater containing sodium chloride and sodium sulfate enters a primary nanofiltration device;
  • the dilute chamber of the dialyzer, the permeate of the primary nanofiltration is concentrated by the first reverse osmosis device and then enters the concentrated chamber of the monovalent ion selective electrodialyzer; the fresh water from the outlet of the monovalent ion selective electrodialyzer enters the second reverse osmosis device,
  • the concentrated solution of the second reverse osmosis is passed through the sodium sulfate crystallization system to obtain sodium sulfate product;
  • the concentrated water from the outlet of the monovalent ion selective electrodialyzer enters the secondary nanofiltration device, and the retained liquid of the secondary nanofiltration returns to the primary nanofiltration device for processing, and the secondary nanofiltration device is processed.
  • the permeate of the sub-nanofiltration is passed through the sodium chloride evaporation crystallization system to obtain sodium chloride product; the crystallization mother liquor is returned to the inlet of the dilute chamber of the monovalent ion selective electrodialyzer; this method can obtain class I industrial anhydrous sodium sulfate and primary refining Industrial salt to realize resource utilization of waste water.
  • the nanofiltration separation method can separate sodium chloride and sodium sulfate to a certain extent, but it cannot achieve complete separation of the two ions, so high-quality sodium sulfate and sodium chloride products cannot be obtained, and the process consumes a lot of energy. economy.
  • the embodiment of this application provides a method for preparing sodium carbonate and co-producing ammonium sulfate and ammonium chloride by mixing waste salt, combining the separation and high value of sodium sulfate and sodium chloride mixed salt, mainly using two metathesis reactions to combine the mixed
  • the waste salt is prepared as sodium carbonate, and ammonium sulfate and ammonium chloride are co-produced; the purity of sodium carbonate meets the requirements of light sodium carbonate in Class II qualified products in GB/T210.1-2004, and the purity of ammonium sulfate meets the requirements of GB/T 535- According to the requirements of type I products in 2020, the purity of ammonium chloride meets the requirements of first-class ammonium chloride for agricultural use in GB/T 2946-2018.
  • the embodiment of the present application provides a method for mixing waste salt to prepare sodium carbonate and co-produce ammonium sulfate and ammonium chloride, the method comprising the following steps:
  • ammonium bicarbonate is carried out secondary reaction with sodium sulfate saturated solution described in step (2), obtains sodium bicarbonate and the 3rd mother liquor through solid-liquid separation for the 4th time; Solvent and sodium sulfate described in step (2) -enrichment after ammonium sulfate double salt is mixed, the fourth mother liquor and deammonium solid are obtained through solid-liquid separation for the fifth time;
  • step (3) Calcining the sodium bicarbonate described in step (3) to obtain sodium carbonate; evaporating and crystallizing the fourth mother liquor described in step (3), and obtaining ammonium sulfate and the fifth mother liquor through solid-liquid separation for the sixth time.
  • This application combines the separation and high value of sodium sulfate and sodium chloride mixed salt, mainly using two metathesis reactions to prepare mixed waste salt into sodium carbonate, and co-produce ammonium sulfate and ammonium chloride; the purity of sodium carbonate meets GB /T 210.1-2004 requirements for light sodium carbonate in Class II qualified products, the purity of ammonium sulfate meets the requirements for Type I products in GB/T535-2020, and the purity of ammonium chloride meets the requirements for agricultural chlorination in GB/T 2946-2018 Ammonium first-class product requirements.
  • the second mother liquor contains sodium sulfate, sodium chloride and a small amount of ammonium chloride;
  • the third mother liquor contains ammonium sulfate and a small amount of sodium bicarbonate;
  • the deammonization solid contains sodium sulfate;
  • the fifth mother liquor contains sodium sulfate and a small amount of ammonium sulfate;
  • This application has carried out a total of six solid-liquid separations, the first solid-liquid separation, the second solid-liquid separation, the third solid-liquid separation, the fourth solid-liquid separation, and the fifth solid-liquid separation
  • the method of solid-liquid separation and the sixth solid-liquid separation are any one or a combination of at least two of hydrocyclone separation, centrifugal separation, sedimentation separation or filtration separation.
  • the method described in the application adopts the mode of continuous production in practical application.
  • the first reaction solution is an additional ammonium sulfate solution
  • the second reaction solution is an additional ammonium sulfate solution. It is water; after the whole treatment process can be fully operated, stop adding ammonium sulfate solution to carry out a reaction, and mix the second mother liquor obtained by cooling crystallization and the sodium sulfate-ammonium sulfate double salt obtained by reaction crystallization as the first reaction solution; in addition, Stop adding the ammonium sulfate solution to carry out the secondary reaction, and use the third mother liquor obtained from the secondary reaction as the second reaction liquid; stop adding water, and use the fifth mother liquor obtained by evaporation and crystallization as the solvent.
  • the mass ratio of sodium sulfate to sodium chloride is (1-9):1, for example, it can be 1:1, 2:1, 3 :1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, etc., but not limited to the listed values, other unlisted values within the above range of values are also applicable.
  • the temperature of the primary reaction in step (1) is 40-60°C, for example, it can be 40°C, 42°C, 44°C, 46°C, 48°C, 50°C, 52°C, 54°C , 56°C, 58°C, 60°C, etc.
  • the time is 30-180min, such as 30min, 40min, 50min, 60min, 70min, 80min, 90min, 100min, 110min, 120min, 130min, 140min, 150min, 160min, 170min, 180min, etc., but not limited to the listed values, other unlisted values within the above range of values are also applicable.
  • the end temperature of cooling crystallization in step (2) is -5 to 40°C, for example, it can be -5°C, -2°C, 0°C, 3°C, 5°C, 10°C, 15°C, 20°C, 25° C., 30° C., 35° C., 40° C., etc., but not limited to the listed values, and other unlisted values within the above range of values are also applicable.
  • the cooling and crystallization time in step (2) is 30 to 180 min, for example, 30 min, 40 min, 50 min, 60 min, 70 min, 80 min, 90 min, 100 min, 110 min, 120 min, 130 min, 140 min, 150 min, 160 min, 170 min , 180min, etc., but not limited to the listed values, other unlisted values within the above range of values are also applicable.
  • step (2) after mixing the second mother liquor obtained by cooling crystallization in step (2) and the sodium sulfate-ammonium sulfate double salt obtained by reaction crystallization, it is recycled to step (1) as the first reaction liquid one response.
  • reaction crystallization temperature in step (2) is 10-60°C, for example, 10°C, 12°C, 15°C, 18°C, 20°C, 25°C, 28°C, 30°C, 33°C, 37°C °C, 40 °C, 42 °C, 46 °C, 50 °C, 53 °C, 55 °C, 58 °C, 60 °C, etc., but are not limited to the listed values, and other values not listed in the above range of values are also applicable.
  • reaction crystallization time in step (2) is 1 to 3 hours, such as 1 hour, 1.2 hours, 1.4 hours, 1.6 hours, 1.8 hours, 2 hours, 2.2 hours, 2.4 hours, 2.6 hours, 2.8 hours, 3 hours etc., but not limited to the listed values, other unlisted values within the above range of values are also applicable.
  • the chemical formula of the sodium sulfate-ammonium sulfate double salt obtained by the reaction crystallization in step (2) is NaNH 4 SO 4 ⁇ 2H 2 O.
  • the ratio of the molar weight of the sodium atom in the saturated solution of sodium sulfate to the molar weight of the nitrogen atom in the described ammonium bicarbonate is (0.8 ⁇ 1.5 ):1, for example, it can be 0.8:1, 0.9:1, 1.0:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, etc., but not limited to the listed values, the above Other unrecited values within the range of values also apply.
  • the temperature of the secondary reaction in step (3) is 25-40°C, for example, 25°C, 26°C, 27°C, 28°C, 29°C, 30°C, 31°C, 32°C, 33°C, 34°C, 35°C, 36°C, 37°C, 38°C, 39°C, 40°C, etc., but not limited to the listed values, other values not listed within the above range of values are also applicable.
  • time for the secondary reaction in step (3) is 30-180min, for example, 30min, 40min, 50min, 60min, 70min, 80min, 90min, 100min, 110min, 120min, 130min, 140min, 150min, 160min, 170min, 180min, etc., but not limited to the listed values, other unlisted values within the above range of values are also applicable.
  • the third mother liquid obtained in step (3) is recycled to step (2) as the second reaction liquid for reaction crystallization.
  • the solvent in step (3) includes deionized water.
  • the mass ratio of the solvent to the sodium sulfate-ammonium sulfate double salt in step (3) is (0.5-2):1, for example, it can be 0.5:1, 0.6:1, 0.7:1, 0.8:1 , 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2:1, etc., But it is not limited to the enumerated numerical values, and other unenumerated numerical values within the above numerical range are also applicable.
  • the enrichment temperature in step (3) is 85-110°C, such as 85°C, 86°C, 87°C, 88°C, 89°C, 90°C, 92°C, 94°C , 5°C, 96°C, 98°C, 100°C, 102°C, 104°C, 105°C, 106°C, 108°C, 110°C, etc.
  • the time is 20-120min, for example, it can be 20min, 25min, 30min, 35min, 40min , 45min, 50min, 55min, 60min, 65min, 70min, 75min, 80min, 85min, 90min, 95min, 100min, 105min, 110min, 115min, 120min, etc., but not limited to the listed values, others not listed in the above range values are also applicable.
  • the enrichment temperature in this application is 85-110°C. In this temperature range, the solubility of ammonium sulfate is high, and ammonium sulfate can be dissolved. At this time, sodium sulfate is basically insoluble, so as to achieve the purpose of enriching ammonium sulfate and separating ammonium sulfate and sodium sulfate.
  • the deammonized solid obtained in step (3) is recycled to step (2) as the crude sodium sulfate for reaction crystallization.
  • the calcining temperature in step (4) is 150-300°C, for example, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, etc., but not limited to the listed values, and other unlisted values within the above range of values are also applicable.
  • the calcining time in step (4) is 20 to 120 min, for example, 20 min, 25 min, 30 min, 35 min, 40 min, 45 min, 50 min, 55 min, 60 min, 65 min, 70 min, 75 min, 80 min, 85 min, 90 min, 95min, 100min, 105min, 110min, 115min, 120min, etc., but not limited to the enumerated values, other unenumerated values within the above range of values are also applicable.
  • the evaporation crystallization temperature in step (4) is 60-80°C, for example, it can be 60°C, 62°C, 64°C, 65°C, 66°C, 68°C, 70°C, 72°C , 74°C, 75°C, 76°C, 78°C, 80°C, etc., but not limited to the listed values, and other unlisted values within the above range of values are also applicable.
  • the method of the sixth solid-liquid separation in step (4) is a combination of hydrocyclone separation and centrifugal separation.
  • the fifth mother liquor obtained in step (4) is recycled to step (3) as the solvent for enrichment.
  • the method includes the following steps:
  • the mass ratio of sodium sulfate and sodium chloride is (1 ⁇ 9):1;
  • ammonium bicarbonate is carried out secondary reaction 30 ⁇ 180min with sodium sulfate saturated solution described in step (2) at temperature 25 ⁇ 40 °C, obtains sodium bicarbonate and the 3rd mother liquor through solid-liquid separation for the 4th time;
  • Solvent After being mixed with the sodium sulfate-ammonium sulfate double salt described in step (2), enriching at a temperature of 85-110° C. for 20-120 minutes, and obtaining the fourth mother liquor and deammonium solid through the fifth solid-liquid separation;
  • the ratio of the molar weight of the sodium atom in the sodium sulfate saturated solution to the molar weight of the nitrogen atom in the ammonium bicarbonate is (0.8 ⁇ 1.5): 1;
  • the solvent includes deionized water;
  • the solvent and the The mass ratio of described sodium sulfate-ammonium sulfate double salt is (0.5 ⁇ 2): 1;
  • the 3rd mother liquor that step (3) gained is recycled to step (2) and carries out reaction crystallization as the second reaction liquid;
  • Step (3) The gained deammonium solid is recycled to step (2) to carry out reaction crystallization as sodium sulfate crude product;
  • step (3) Calcining the sodium bicarbonate described in step (3) at a temperature of 150-300° C. for 20-120 minutes to obtain sodium carbonate; evaporating and crystallizing the fourth mother liquor described in step (3) at a temperature of 60-80° C. Solid-liquid separation obtains ammonium sulfate and the fifth mother liquor;
  • the obtained fifth mother liquor is recycled to step (3) as a solvent for enrichment.
  • the method for preparing sodium carbonate and co-producing ammonium sulfate and ammonium chloride from mixed waste salt described in the examples of this application combines the separation and high-value of sodium sulfate and sodium chloride mixed salt, prepares mixed waste salt into sodium carbonate, and Co-production of ammonium sulfate and ammonium chloride; the purity of sodium carbonate meets the requirements of light sodium carbonate in the type II qualified product in GB/T 210.1-2004, the purity of ammonium sulfate meets the requirements of type I product in GB/T 535-2020, and the purity of chlorine The purity of the ammonium chloride meets the requirements of first-class ammonium chloride for agricultural use in GB/T 2946-2018; and the method has a simple process, low cost, and the utilization rate of sodium is greater than 90%.
  • Fig. 1 is the flowchart of the method for preparing sodium carbonate and co-producing ammonium sulfate and ammonium chloride by mixing waste salt described in the embodiment of the present application.
  • ammonium bicarbonate is carried out secondary reaction with sodium sulfate saturated solution described in step (2), obtains sodium bicarbonate and the 3rd mother liquor through solid-liquid separation for the 4th time; Solvent and sodium sulfate described in step (2) -enrichment after ammonium sulfate double salt is mixed, the fourth mother liquor and deammonium solid are obtained through solid-liquid separation for the fifth time;
  • step (3) the third mother liquor obtained in step (3) is recycled to step (2) for reaction crystallization as the second reaction liquid; the deammonium solid obtained in step (3) is recycled to step (2) as crude sodium sulfate reaction crystallization;
  • the obtained fifth mother liquor is recycled to step (3) as a solvent for enrichment.
  • the present embodiment provides a kind of method that mixed waste salt prepares sodium carbonate co-production ammonium sulfate and ammonium chloride, described method comprises the steps:
  • the mass ratio of sodium sulfate and sodium chloride is 5:1;
  • step (1) Ammonium sulfate solution and the sodium sulfate crude product described in step (1) are reacted and crystallized at a temperature of 60°C for 1h, and solid-liquid separation is performed for the second time to obtain saturated sodium sulfate solution and sodium sulfate-ammonium sulfate double salt; 1) The first mother liquor was cooled and crystallized for 180 minutes until the end point temperature was -5°C, and ammonium chloride and the second mother liquor were obtained through solid-liquid separation for the third time;
  • step (3) carry out secondary reaction 100min with ammonium bicarbonate and sodium sulfate saturated solution described in step (2) at 30 °C of temperature, obtain sodium bicarbonate and the 3rd mother liquor through solid-liquid separation for the 4th time;
  • Solvent and step (2) the sodium sulfate-ammonium sulfate double salt is mixed and enriched at a temperature of 110° C. for 20 minutes, and the fourth mother liquor and deammonization solid are obtained through solid-liquid separation for the fifth time;
  • the ratio of the molar weight of the sodium atom in the sodium sulfate saturated solution to the molar weight of the nitrogen atom in the ammonium bicarbonate is 0.8:1;
  • the solvent includes deionized water;
  • the solvent and the sodium sulfate- The mass ratio of ammonium sulfate double salt is 1:1;
  • the third mother liquor of step (3) gained is recycled to step (2) and carries out reaction crystallization as ammonium sulfate solution;
  • Step (3) gained deammonium solid is recycled to Step (2) carries out reaction crystallization as sodium sulfate crude product;
  • step (3) Calcining the sodium bicarbonate described in step (3) at a temperature of 220° C. for 80 minutes to obtain sodium carbonate; evaporating and crystallizing the fourth mother liquor described in step (3) at a temperature of 80° C., and obtaining ammonium sulfate through solid-liquid separation for the sixth time and the fifth mother liquor;
  • the obtained fifth mother liquor is recycled to step (3) as a solvent for enrichment.
  • the present embodiment provides a kind of method that mixed waste salt prepares sodium carbonate co-production ammonium sulfate and ammonium chloride, described method comprises the steps:
  • the mass ratio of sodium sulfate and sodium chloride is 1:1;
  • step (1) Ammonium sulfate solution and the sodium sulfate crude product described in step (1) are reacted and crystallized for 3h at a temperature of 10° C., and solid-liquid separation is performed for the second time to obtain saturated sodium sulfate solution and sodium sulfate-ammonium sulfate double salt; 1) The first mother liquor is cooled and crystallized for 100 minutes until the end point temperature is 20°C, and ammonium chloride and the second mother liquor are obtained through solid-liquid separation for the third time;
  • step (3) carry out secondary reaction 180min with ammonium bicarbonate and sodium sulfate saturated solution described in step (2) at 25 °C of temperature, obtain sodium bicarbonate and the 3rd mother liquor through solid-liquid separation for the 4th time;
  • Solvent and step (2) the sodium sulfate-ammonium sulfate double salt is mixed and enriched at a temperature of 85° C. for 120 minutes, and the fourth mother liquor and deammonization solid are obtained through solid-liquid separation for the fifth time;
  • the ratio of the molar weight of the sodium atom in the sodium sulfate saturated solution to the molar weight of the nitrogen atom in the ammonium bicarbonate is 1:1;
  • the solvent includes deionized water;
  • the solvent and the sodium sulfate- The mass ratio of ammonium sulfate double salt is 2:1;
  • the third mother liquor of step (3) gained is recycled to step (2) and carries out reaction crystallization as ammonium sulfate solution;
  • Step (3) gained deammonium solid is recycled to Step (2) carries out reaction crystallization as sodium sulfate crude product;
  • step (3) Calcining the sodium bicarbonate described in step (3) at a temperature of 150° C. for 120 min to obtain sodium carbonate; evaporating and crystallizing the fourth mother liquor described in step (3) at a temperature of 60° C., and obtaining ammonium sulfate through the sixth solid-liquid separation and the fifth mother liquor;
  • the obtained fifth mother liquor is recycled to step (3) as a solvent for enrichment.
  • the present embodiment provides a kind of method that mixed waste salt prepares sodium carbonate co-production ammonium sulfate and ammonium chloride, described method comprises the steps:
  • the mass ratio of sodium sulfate and sodium chloride is 9:1;
  • step (2) The ammonium sulfate solution and the crude sodium sulfate product described in step (1) are reacted and crystallized at a temperature of 10 to 60°C for 1 to 3 hours, and the saturated solution of sodium sulfate and the sodium sulfate-ammonium sulfate double salt are obtained through solid-liquid separation for the second time ;
  • the first mother liquor described in step (1) is cooled and crystallized for 30 minutes until the end point temperature is 40° C., and ammonium chloride and the second mother liquor are obtained through solid-liquid separation for the third time;
  • step (3) carry out secondary reaction 30min with ammonium bicarbonate and sodium sulfate saturated solution described in step (2) at temperature 40 °C, obtain sodium bicarbonate and the 3rd mother liquor through solid-liquid separation for the 4th time;
  • Solvent and step (2) the sodium sulfate-ammonium sulfate double salt is mixed and enriched at a temperature of 100° C. for 80 minutes, and the fourth mother liquor and deammonization solid are obtained through solid-liquid separation for the fifth time;
  • the ratio of the molar weight of the sodium atom in the sodium sulfate saturated solution to the molar weight of the nitrogen atom in the ammonium bicarbonate is 1.5:1;
  • the solvent includes deionized water;
  • the solvent and the sodium sulfate- The mass ratio of ammonium sulfate double salt is 0.5:1;
  • the third mother liquor of step (3) gained is recycled to step (2) and carries out reaction crystallization as ammonium sulfate solution;
  • Step (3) gained deammonium solid is recycled to Step (2) carries out reaction crystallization as sodium sulfate crude product;
  • step (3) Calcining the sodium bicarbonate described in step (3) at a temperature of 300° C. for 20 minutes to obtain sodium carbonate; evaporating and crystallizing the fourth mother liquor described in step (3) at a temperature of 70° C., and obtaining ammonium sulfate through the sixth solid-liquid separation and the fifth mother liquor;
  • the obtained fifth mother liquor is recycled to step (3) as a solvent for enrichment.
  • This embodiment provides a method for mixing waste salt to prepare sodium carbonate and co-produce ammonium sulfate and ammonium chloride.
  • the difference is that the second mother liquor, the third mother liquor, the deammonization solid, The fifth mother liquor is recycled; that is, the method comprises the steps of:
  • the mass ratio of sodium sulfate to sodium chloride is 5:1;
  • the ammonium sulfate solution and the crude sodium sulfate described in step (1) are reacted and crystallized at a temperature of 60° C. for 1 h, and after the second Secondary solid-liquid separation to obtain sodium sulfate saturated solution and sodium sulfate-ammonium sulfate double salt;
  • the first mother liquor described in step (1) was cooled and crystallized for 180 minutes to the end point temperature of -5°C, and the third solid-liquid separation was carried out to obtain chlorinated Ammonium and the second mother liquor;
  • step (3) carry out secondary reaction 100min with ammonium bicarbonate and sodium sulfate saturated solution described in step (2) at 30 °C of temperature, obtain sodium bicarbonate and the 3rd mother liquor through solid-liquid separation for the 4th time;
  • Solvent and step (2) the sodium sulfate-ammonium sulfate double salt is mixed and enriched at a temperature of 110° C. for 20 minutes, and the fourth mother liquor and deammonization solid are obtained through solid-liquid separation for the fifth time;
  • the ratio of the molar weight of the sodium atom in the sodium sulfate saturated solution to the molar weight of the nitrogen atom in the ammonium bicarbonate is 0.8:1;
  • the solvent includes deionized water;
  • the solvent and the sodium sulfate- The mass ratio of ammonium sulfate double salt is 1:1;
  • step (3) Calcining the sodium bicarbonate described in step (3) at a temperature of 220° C. for 80 minutes to obtain sodium carbonate; evaporating and crystallizing the fourth mother liquor described in step (3) at a temperature of 80° C., and obtaining ammonium sulfate through solid-liquid separation for the sixth time and the fifth mother liquor;
  • the second mother liquor, the third mother liquor, the deammonization solid, and the fifth mother liquor are treated as waste.
  • This comparative example provides a kind of method that mixing waste salt prepares sodium carbonate co-production ammonium sulfate, described method comprises the steps:
  • (1) Salt separation Mix the mixed waste salt and deionized water to form mixed salt wastewater, heat the mixed salt wastewater until the mixed salt wastewater boils, and obtain the first mother liquor and condensed water through the first solid-liquid separation, and the second The first mother liquor is subjected to freezing and crystallization, and the crude sodium sulfate and the second mother liquor are obtained through solid-liquid separation for the second time; the second mother liquor is subjected to secondary evaporation and crystallization, and the crude sodium chloride is obtained through solid-liquid separation for the third time;
  • step (2) reacting and crystallizing the ammonium sulfate solution and the crude sodium sulfate product described in step (1) at a temperature of 60° C. for 1 h, and obtaining saturated sodium sulfate solution and sodium sulfate-ammonium sulfate double salt through solid-liquid separation for the fourth time;
  • step (3) carry out secondary reaction 100min with ammonium bicarbonate and sodium sulfate saturated solution described in step (2) at 30 °C of temperature, obtain sodium bicarbonate and the 3rd mother liquor through solid-liquid separation for the 5th time;
  • Solvent and step (2) the sodium sulfate-ammonium sulfate double salt is mixed and enriched at a temperature of 110° C. for 20 minutes, and the fourth mother liquor and deammonization solid are obtained through the sixth solid-liquid separation;
  • the ratio of the molar weight of the sodium atom in the sodium sulfate saturated solution to the molar weight of the nitrogen atom in the ammonium bicarbonate is 0.8:1;
  • the solvent includes deionized water;
  • the solvent and the sodium sulfate- The mass ratio of ammonium sulfate double salt is 1:1;
  • the third mother liquor of step (3) gained is recycled to step (2) and carries out reaction crystallization as ammonium sulfate solution;
  • Step (3) gained deammonium solid is recycled to Step (2) carries out reaction crystallization as sodium sulfate crude product;
  • step (3) Calcining the sodium bicarbonate described in step (3) at a temperature of 220° C. for 80 minutes to obtain sodium carbonate; evaporating and crystallizing the fourth mother liquor described in step (3) at a temperature of 80° C., and obtaining ammonium sulfate through the seventh solid-liquid separation and the fifth mother liquor;
  • the obtained fifth mother liquor is recycled to step (3) as a solvent for enrichment.
  • Table 1 lists the test results of nitrogen (N) content in ammonium sulfate and ammonium chloride obtained in the above-mentioned examples and comparative examples.
  • Table 1 lists the test results of the above-mentioned embodiment and comparative example sodium utilization.
  • Example 1 is compared with Example 4, and it can be found that because Example 4 does not recycle the second mother liquor, the third mother liquor, deammonization solids, and the fifth mother liquor, a small amount of sulfuric acid in the second mother liquor Sodium, a small amount of sodium bicarbonate in the third mother liquor, sodium sulfate in the deammonization solid, and a small amount of sodium sulfate in the fifth mother liquor cannot be effectively utilized, resulting in a drop in the utilization rate of sodium to 80.2%;
  • Example 1 is compared with Comparative Example 1, and it can be found that Comparative Example 1 adopts the method of evaporative crystallization to separate sodium sulfate and sodium chloride in mixed waste salt, which has high energy consumption and poor separation effect. Contain a small amount of sodium chloride in the crude product, and then can cause the sodium carbonate purity that makes is not high, only 94.2%, nitrogen (N) content is 20.1% in the ammonium sulfate.

Abstract

本文公布一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,将硫酸钠与氯化钠混合盐的分离与高值化结合起来,主要利用两次复分解反应将混合废盐制备为碳酸钠,并联产硫酸铵与氯化铵;碳酸钠纯度满足GB/T 210.1-2004中Ⅱ类合格品中轻质碳酸钠的要求,硫酸铵纯度满足GB/T 535-2020中Ⅰ型产品的要求,氯化铵纯度满足GB/T 2946-2018中农业用氯化铵一等品的要求;且所述方法流程简单,成本低廉,钠元素的利用率大于90%。

Description

一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法 技术领域
本申请实施例涉及化学工艺技术领域,例如一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法。
背景技术
废盐指含有无机盐主要成分的固体废弃物,如工业生产过程中排出的各种废渣、粉尘等废物,目前我们把工业生产中产生的副产结晶盐类,统称废盐,它主要来源于农药、制药、精细化工、印染等多个行业产生的高盐废水,也因为其来源广泛,种类繁多,有毒有害物质高,具有处置难度大、成本高、危害环境等特点。
以氯化钠和硫酸钠为主要成分的混合废盐产量巨大,我国每年产生量约为1000万吨,该种废盐多数被集中收集处置,混合废盐常规的处置方法以分离硫酸钠和氯化钠为主,主要包括盐硝法分离法和纳滤分离法。
CN113060889A公开了一种热法盐硝分离工艺的控制方法,包括以下步骤:第一步:MVR蒸发结晶工序,第二步:控制母液回流工序:氯离子在线监测装置测定母液罐里的氯离子含量,控制母液回流至蒸发器继续蒸发结晶或者送往后续冷冻析硝器;第三步:冷却和冷冻出硝工序,第四步:单效蒸发结晶工序。本发明可以提高盐硝的收率,提高混盐中氯化钠的纯度;该方法解决了相关技术中盐硝的收率较低,而且处理后的混盐中氯化钠的纯度较低的问题。然而,盐硝分离法物料循环量大,能耗高,且得到的产品硫酸钠和氯化钠品质较差,价值低,市场消纳能力差。
CN110548750A公开了一种废盐资源化处理工艺及其专用设备,以氯化钠和硫酸钠为主的废盐,分别加入氯化钠和硫酸钠饱和盐水不断搅拌,过滤得到洗盐母液,析出的氯化钠和硫酸钠固体干燥处理;将洗盐母液进行冷冻处理,晶体蒸发结晶,冷冻母液化学除杂,去除有机无机杂质离子,除杂出水进行有机分离,母液场内利用,产水氧化处理,氧化产水纳滤分盐,纳滤浓水返回洗盐系统,纳滤产水蒸发干燥,得到氯化钠固体;该方法通过洗盐、冷冻、有机分离、氧化、纳滤分盐以及蒸发等一系列过程的有效组合,将废盐中的氯化钠和 硫酸钠进行分离提纯,将废盐中的有机物以及其他杂质离子有效分离或去除,降低危废处置费用,实现两种废盐资源化,创造经济价值。
CN107304090A公开了一种含氯化钠与硫酸钠的高盐废水资源化处理方法,含有氯化钠与硫酸钠的高盐废水进入一次纳滤装置;一次纳滤的截留液进入单价离子选择性电渗析器的淡室,一次纳滤的透过液经第一反渗透装置浓缩后进入单价离子选择性电渗析器的浓室;单价离子选择性电渗析器的出口淡水进入第二反渗透装置,第二反渗透的浓缩液经硫酸钠结晶系统得到硫酸钠产品;单价离子选择性电渗析器的出口浓水进入二次纳滤装置,二次纳滤的截留液返回一次纳滤装置处理,二次纳滤的透过液经氯化钠蒸发结晶系统得到氯化钠产品;结晶母液返回单价离子选择性电渗析器的淡室入口;该方法可以得到Ⅰ类工业无水硫酸钠以及一级精制工业盐,实现废水的资源化利用。
纳滤分离法能够在一定程度上分离氯化钠和硫酸钠,但是并不能实现两种离子的完全分离,故无法得到品质高的硫酸钠和氯化钠产品,且过程能耗高,不具备经济性。
硫酸钠和氯化钠主要为化工行业的上游原料,作为固废处理的副产品,因缺少相关标准,故市场认可度低,市场消纳能力有限,多数以堆存为主,又因其为可溶性盐,对环境具有严重的威胁。当前,面对日益严峻的环保监管,废盐问题已然成为制约相关企业发展的重要瓶颈。
因此,亟需开发废盐处理的新技术,以期真正实现废盐的资源化利用,助力企业实现技术升级及可持续发展。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,将硫酸钠与氯化钠混合盐的分离与高值化结合起来,主要利用两次复分解反应将混合废盐制备为碳酸钠,并联产硫酸铵与氯化铵;碳酸钠纯度满足GB/T210.1-2004中Ⅱ类合格品中轻质碳酸钠的要求,硫酸铵纯度满足GB/T 535-2020中Ⅰ型产品的要求,氯化铵纯度满足GB/T 2946-2018中农业用氯化铵一等品的要求。
本申请实施例提供一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,所述方法包括如下步骤:
(1)将混合废盐与第一反应液进行一次反应,经第一次固液分离得到第一母液和硫酸钠粗品;
(2)将第二反应液与步骤(1)所述硫酸钠粗品进行反应结晶,经第二次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;将步骤(1)所述第一母液进行冷却结晶,经第三次固液分离得到氯化铵和第二母液;
(3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液进行二次反应,经第四次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后进行富集,经第五次固液分离得到第四母液和脱铵固体;
(4)将步骤(3)所述碳酸氢钠进行煅烧得到碳酸钠;将步骤(3)所述第四母液进行蒸发结晶,经第六次固液分离得到硫酸铵和第五母液。
本申请将硫酸钠与氯化钠混合盐的分离与高值化结合起来,主要利用两次复分解反应将混合废盐制备为碳酸钠,并联产硫酸铵与氯化铵;碳酸钠纯度满足GB/T 210.1-2004中Ⅱ类合格品中轻质碳酸钠的要求,硫酸铵纯度满足GB/T535-2020中Ⅰ型产品的要求,氯化铵纯度满足GB/T 2946-2018中农业用氯化铵一等品的要求。
值得说明的是,第二母液中含有硫酸钠、氯化钠及少量氯化铵;第三母液中含有硫酸铵和少量碳酸氢钠;脱铵固体中含有硫酸钠;第五母液中含有硫酸钠和少量硫酸铵;本申请进行了共六次固液分离,第一次固液分离、第二次固液分离、第三次固液分离、第四次固液分离、第五次固液分离和第六次固液分离的方式均为水力旋流分离、离心分离、沉降分离或过滤分离中的任意一种或至少两种的组合。
值得说明的是,本申请所述方法在实际应用中是采用连续性生产的方式,在开始处理时,第一反应液为外加的硫酸铵溶液,第二反应液为外加的硫酸铵溶液,溶剂为水;在整个处理流程能够完整运作后,停止外加硫酸铵溶液进行一次反应,将冷却结晶所得第二母液和反应结晶所得硫酸钠-硫酸铵复盐混合后,作为第一反应液;此外,停止外加硫酸铵溶液进行二次反应,将二次反应所得第三母液作为第二反应液;停止外加水,将蒸发结晶所得第五母液作为溶剂。
作为本申请优选的技术方案,步骤(1)所述混合废盐中,硫酸钠和与氯化 钠的质量比为(1~9):1,例如可以是1:1,2:1,3:1,4:1,5:1,6:1,7:1,8:1,9:1等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,步骤(1)所述一次反应的温度为40~60℃,例如可以是40℃,42℃,44℃,46℃,48℃,50℃,52℃,54℃,56℃,58℃,60℃等,时间为30~180min,例如可以是30min,40min,50min,60min,70min,80min,90min,100min,110min,120min,130min,140min,150min,160min,170min,180min等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
进一步地,步骤(2)所述冷却结晶的终点温度为-5~40℃,例如可以是-5℃,-2℃,0℃,3℃,5℃,10℃,15℃,20℃,25℃,30℃,35℃,40℃等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
进一步地,步骤(2)所述冷却结晶的时间为30~180min,例如可以是30min,40min,50min,60min,70min,80min,90min,100min,110min,120min,130min,140min,150min,160min,170min,180min等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,将步骤(2)中冷却结晶所得第二母液和反应结晶所得硫酸钠-硫酸铵复盐混合后,循环回用至步骤(1)作为所述第一反应液进行一次反应。
进一步地,步骤(2)所述反应结晶的温度为10~60℃,例如可以是10℃,12℃,15℃,18℃,20℃,25℃,28℃,30℃,33℃,37℃,40℃,42℃,46℃,50℃,53℃,55℃,58℃,60℃等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
进一步地,步骤(2)所述反应结晶的时间为1~3h,例如可以是1h,1.2h,1.4h,1.6h,1.8h,2h,2.2h,2.4h,2.6h,2.8h,3h等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
进一步地,步骤(2)所述反应结晶所得硫酸钠-硫酸铵复盐的化学式为NaNH 4SO 4·2H 2O。
作为本申请优选的技术方案,步骤(3)所述二次反应中,所述硫酸钠饱和溶液中钠原子的摩尔量与所述碳酸氢铵中氮原子的摩尔量之比为(0.8~1.5):1,例如可以是0.8:1,0.9:1,1.0:1,1.1:1,1.2:1,1.3:1,1.4:1,1.5:1等,但并不仅限 于所列举的数值,上述数值范围内其他未列举的数值同样适用。
进一步地,步骤(3)所述二次反应的温度为25~40℃,例如可以是25℃,26℃,27℃,28℃,29℃,30℃,31℃,32℃,33℃,34℃,35℃,36℃,37℃,38℃,39℃,40℃等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
进一步地,步骤(3)所述二次反应的时间为30~180min,例如可以是30min,40min,50min,60min,70min,80min,90min,100min,110min,120min,130min,140min,150min,160min,170min,180min等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,将步骤(3)所得第三母液循环回用至步骤(2)作为所述第二反应液进行反应结晶。
进一步地,步骤(3)所述溶剂包括去离子水。
进一步地,步骤(3)所述溶剂与所述硫酸钠-硫酸铵复盐的质量比为(0.5~2):1,例如可以是0.5:1,0.6:1,0.7:1,0.8:1,0.9:1,1:1,1.1:1,1.2:1,1.3:1,1.4:1,1.5:1,1.6:1,1.7:1,1.8:1,1.9:1,2:1等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,步骤(3)所述富集的温度为85~110℃,例如可以是85℃,86℃,87℃,88℃,89℃,90℃,92℃,94℃,5℃,96℃,98℃,100℃,102℃,104℃,105℃,106℃,108℃,110℃等,时间为20~120min,例如可以是20min,25min,30min,35min,40min,45min,50min,55min,60min,65min,70min,75min,80min,85min,90min,95min,100min,105min,110min,115min,120min等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
本申请中富集的温度为85~110℃,在该温度范围内,硫酸铵的溶解度大,硫酸铵可溶解,但由于硫酸钠溶解度在该范围内随温度升高而降低,在硫酸铵溶解时硫酸钠基本不溶解,从而达到富集硫酸铵并实现硫酸铵与硫酸钠分离的目的。
作为本申请优选的技术方案,将步骤(3)所得脱铵固体循环回用至步骤(2)作为所述硫酸钠粗品进行反应结晶。
进一步地,步骤(4)所述煅烧的温度为150~300℃,例如可以150℃,160℃, 170℃,180℃,190℃,200℃,210℃,220℃,230℃,240℃,250℃,260℃,270℃,280℃,290℃,300℃等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
进一步地,步骤(4)所述煅烧的时间为20~120min,例如可以是20min,25min,30min,35min,40min,45min,50min,55min,60min,65min,70min,75min,80min,85min,90min,95min,100min,105min,110min,115min,120min等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,步骤(4)所述蒸发结晶的温度为60~80℃,例如可以是60℃,62℃,64℃,65℃,66℃,68℃,70℃,72℃,74℃,75℃,76℃,78℃,80℃等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
进一步地,步骤(4)所述第六次固液分离的方式为水力旋流分离和离心分离相结合。
作为本申请优选的技术方案,将步骤(4)所得第五母液循环回用至步骤(3)作为所述溶剂进行富集。
作为本申请优选的技术方案,所述方法包括如下步骤:
(1)将混合废盐与第一反应液在温度40~60℃进行一次反应30~180min,经第一次固液分离得到第一母液和硫酸钠粗品;
其中,混合废盐中,硫酸钠和与氯化钠的质量比为(1~9):1;
(2)将第二反应液与步骤(1)所述硫酸钠粗品在温度10~60℃进行反应结晶1~3h,经第二次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;将步骤(1)所述第一母液冷却结晶30~180min至终点温度为-5~40℃,经第三次固液分离得到氯化铵和第二母液;
其中,将冷却结晶所得第二母液和反应结晶所得硫酸钠-硫酸铵复盐混合后,循环回用至步骤(1)作为第一反应液进行一次反应;
(3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液在温度25~40℃进行二次反应30~180min,经第四次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后在温度85~110℃富集20~120min,经第五次固液分离得到第四母液和脱铵固体;
其中,二次反应中硫酸钠饱和溶液中钠原子的摩尔量与碳酸氢铵中氮原子的摩尔量之比为(0.8~1.5):1;所述溶剂包括去离子水;所述溶剂与所述硫酸钠-硫酸铵复盐的质量比为(0.5~2):1;将步骤(3)所得第三母液循环回用至步骤(2)作为第二反应液进行反应结晶;将步骤(3)所得脱铵固体循环回用至步骤(2)作为硫酸钠粗品进行反应结晶;
(4)将步骤(3)所述碳酸氢钠在温度150~300℃煅烧20~120min得到碳酸钠;将步骤(3)所述第四母液在温度60~80℃蒸发结晶,经第六次固液分离得到硫酸铵和第五母液;
其中,将所得第五母液循环回用至步骤(3)作为溶剂进行富集。
本申请所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
相对于相关技术,本申请实施例具有以下有益效果:
本申请实施例所述混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法将硫酸钠与氯化钠混合盐的分离与高值化结合起来,将混合废盐制备为碳酸钠,并联产硫酸铵与氯化铵;碳酸钠纯度满足GB/T 210.1-2004中Ⅱ类合格品中轻质碳酸钠的要求,硫酸铵纯度满足GB/T 535-2020中Ⅰ型产品的要求,氯化铵纯度满足GB/T 2946-2018中农业用氯化铵一等品的要求;且所述方法流程简单,成本低廉,钠的利用率大于90%。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请实施例所述混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法的流程图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
值得说明的是,本申请所述混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法如图1所示,所述方法包括如下步骤:
(1)将混合废盐与第一反应液进行一次反应,经第一次固液分离得到第一母液和硫酸钠粗品;
(2)将第二反应液与步骤(1)所述硫酸钠粗品进行反应结晶,经第二次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;将步骤(1)所述第一母液冷却结晶,经第三次固液分离得到氯化铵和第二母液;
其中,将冷却结晶所得第二母液和反应结晶所得硫酸钠-硫酸铵复盐混合后,循环回用至步骤(1)作为第一反应液进行一次反应;
(3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液进行二次反应,经第四次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后进行富集,经第五次固液分离得到第四母液和脱铵固体;
其中,将步骤(3)所得第三母液循环回用至步骤(2)作为第二反应液进行反应结晶;将步骤(3)所得脱铵固体循环回用至步骤(2)作为硫酸钠粗品进行反应结晶;
(4)将步骤(3)所述碳酸氢钠进行煅烧得到碳酸钠;将步骤(3)所述第四母液进行蒸发结晶,经第六次固液分离得到硫酸铵和第五母液;
其中,将所得第五母液循环回用至步骤(3)作为溶剂进行富集。
实施例1
本实施例提供了一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,所述方法包括如下步骤:
(1)将混合废盐与硫酸铵溶液在温度40℃进行一次反应180min,经第一次固液分离得到第一母液和硫酸钠粗品;
其中,混合废盐中,硫酸钠和与氯化钠的质量比为5:1;
(2)将硫酸铵溶液与步骤(1)所述硫酸钠粗品在温度60℃进行反应结晶1h,经第二次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;将步骤(1)所述第一母液冷却结晶180min至终点温度为-5℃,经第三次固液分离得到氯化铵和第二母液;
其中,将冷却结晶所得第二母液和反应结晶所得硫酸钠-硫酸铵复盐混合后,循环回用至步骤(1)作为硫酸铵溶液进行一次反应;
(3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液在温度30℃进行二次反应100min,经第四次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后在温度110℃富集20min,经第五次固液分离得到第四母液和脱铵固体;
其中,二次反应中硫酸钠饱和溶液中钠原子的摩尔量与碳酸氢铵中氮原子的摩尔量之比为0.8:1;所述溶剂包括去离子水;所述溶剂与所述硫酸钠-硫酸铵复盐的质量比为1:1;将步骤(3)所得第三母液循环回用至步骤(2)作为硫酸铵溶液进行反应结晶;将步骤(3)所得脱铵固体循环回用至步骤(2)作为硫酸钠粗品进行反应结晶;
(4)将步骤(3)所述碳酸氢钠在温度220℃煅烧80min得到碳酸钠;将步骤(3)所述第四母液在温度80℃蒸发结晶,经第六次固液分离得到硫酸铵和第五母液;
其中,将所得第五母液循环回用至步骤(3)作为溶剂进行富集。
实施例2
本实施例提供了一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,所述方法包括如下步骤:
(1)将混合废盐与硫酸铵溶液在温度50℃进行一次反应100min,经第一次固液分离得到第一母液和硫酸钠粗品;
其中,混合废盐中,硫酸钠和与氯化钠的质量比为1:1;
(2)将硫酸铵溶液与步骤(1)所述硫酸钠粗品在温度10℃进行反应结晶3h,经第二次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;将步骤(1)所述第一母液冷却结晶100min至终点温度为20℃,经第三次固液分离得到氯化铵和第二母液;
其中,将冷却结晶所得第二母液和反应结晶所得硫酸钠-硫酸铵复盐混合后,循环回用至步骤(1)作为硫酸铵溶液进行一次反应;
(3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液在温度25℃进行二次反应180min,经第四次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后在温度85℃富集120min,经第五次固液分离得到第四母液和脱铵固体;
其中,二次反应中硫酸钠饱和溶液中钠原子的摩尔量与碳酸氢铵中氮原子 的摩尔量之比为1:1;所述溶剂包括去离子水;所述溶剂与所述硫酸钠-硫酸铵复盐的质量比为2:1;将步骤(3)所得第三母液循环回用至步骤(2)作为硫酸铵溶液进行反应结晶;将步骤(3)所得脱铵固体循环回用至步骤(2)作为硫酸钠粗品进行反应结晶;
(4)将步骤(3)所述碳酸氢钠在温度150℃煅烧120min得到碳酸钠;将步骤(3)所述第四母液在温度60℃蒸发结晶,经第六次固液分离得到硫酸铵和第五母液;
其中,将所得第五母液循环回用至步骤(3)作为溶剂进行富集。
实施例3
本实施例提供了一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,所述方法包括如下步骤:
(1)将混合废盐与硫酸铵溶液在温度60℃进行一次反应30min,经第一次固液分离得到第一母液和硫酸钠粗品;
其中,混合废盐中,硫酸钠和与氯化钠的质量比为9:1;
(2)将硫酸铵溶液与步骤(1)所述硫酸钠粗品在温度10~60℃进行反应结晶1~3h,经第二次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;将步骤(1)所述第一母液冷却结晶30min至终点温度为40℃,经第三次固液分离得到氯化铵和第二母液;
其中,将冷却结晶所得第二母液和反应结晶所得硫酸钠-硫酸铵复盐混合后,循环回用至步骤(1)作为硫酸铵溶液进行一次反应;
(3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液在温度40℃进行二次反应30min,经第四次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后在温度100℃富集80min,经第五次固液分离得到第四母液和脱铵固体;
其中,二次反应中硫酸钠饱和溶液中钠原子的摩尔量与碳酸氢铵中氮原子的摩尔量之比为1.5:1;所述溶剂包括去离子水;所述溶剂与所述硫酸钠-硫酸铵复盐的质量比为0.5:1;将步骤(3)所得第三母液循环回用至步骤(2)作为硫酸铵溶液进行反应结晶;将步骤(3)所得脱铵固体循环回用至步骤(2)作为硫酸钠粗品进行反应结晶;
(4)将步骤(3)所述碳酸氢钠在温度300℃煅烧20min得到碳酸钠;将步 骤(3)所述第四母液在温度70℃蒸发结晶,经第六次固液分离得到硫酸铵和第五母液;
其中,将所得第五母液循环回用至步骤(3)作为溶剂进行富集。
实施例4
本实施例提供了一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,参照实施例1所述的方法,区别在于:未将第二母液、第三母液、脱铵固体、第五母液进行循环回用;即,所述方法包括如下步骤:
(1)将混合废盐与硫酸铵溶液在温度40℃进行一次反应180min,经第一次固液分离得到第一母液和硫酸钠粗品;
其中,混合废盐中,硫酸钠和与氯化钠的质量比为5:1;(2)将硫酸铵溶液与步骤(1)所述硫酸钠粗品在温度60℃进行反应结晶1h,经第二次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;将步骤(1)所述第一母液冷却结晶180min至终点温度为-5℃,经第三次固液分离得到氯化铵和第二母液;
(3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液在温度30℃进行二次反应100min,经第四次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后在温度110℃富集20min,经第五次固液分离得到第四母液和脱铵固体;
其中,二次反应中硫酸钠饱和溶液中钠原子的摩尔量与碳酸氢铵中氮原子的摩尔量之比为0.8:1;所述溶剂包括去离子水;所述溶剂与所述硫酸钠-硫酸铵复盐的质量比为1:1;
(4)将步骤(3)所述碳酸氢钠在温度220℃煅烧80min得到碳酸钠;将步骤(3)所述第四母液在温度80℃蒸发结晶,经第六次固液分离得到硫酸铵和第五母液;
其中,将第二母液、第三母液、脱铵固体、第五母液作为废弃物进行处理。
对比例1
本对比例提供了一种混合废盐制备碳酸钠联产硫酸铵的方法,所述方法包括如下步骤:
(1)分盐:将混合废盐和去离子水混合配成混盐废水,将混盐废水进行加热至混盐废水沸腾,经第一次固液分离得到第一母液和冷凝水,将第一母液进行冷冻结晶,经第二次固液分离得到硫酸钠粗品和第二母液;将第二母液进行 二次蒸发结晶,经第三次固液分离得到氯化钠粗品;
(2)将硫酸铵溶液与步骤(1)所述硫酸钠粗品在温度60℃进行反应结晶1h,经第四次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;
(3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液在温度30℃进行二次反应100min,经第五次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后在温度110℃富集20min,经第六次固液分离得到第四母液和脱铵固体;
其中,二次反应中硫酸钠饱和溶液中钠原子的摩尔量与碳酸氢铵中氮原子的摩尔量之比为0.8:1;所述溶剂包括去离子水;所述溶剂与所述硫酸钠-硫酸铵复盐的质量比为1:1;将步骤(3)所得第三母液循环回用至步骤(2)作为硫酸铵溶液进行反应结晶;将步骤(3)所得脱铵固体循环回用至步骤(2)作为硫酸钠粗品进行反应结晶;
(4)将步骤(3)所述碳酸氢钠在温度220℃煅烧80min得到碳酸钠;将步骤(3)所述第四母液在温度80℃蒸发结晶,经第七次固液分离得到硫酸铵和第五母液;
其中,将所得第五母液循环回用至步骤(3)作为溶剂进行富集。
(一)将上述实施例与对比例所得碳酸钠的纯度进行测试,依据GB/T210.2-2004《工业碳酸钠及其试验方法第2部分:工业碳酸钠试验方法》中的方法进行测试。
将上述实施例与对比例所得碳酸钠纯度的测试结果列于表1。
(二)将上述实施例与对比例所得硫酸铵和氯化铵中氮(N)的含量进行测试,依据GB/T 535-2020《肥料级硫酸铵》中的方法进行测试。
将上述实施例与对比例所得硫酸铵和氯化铵中氮(N)含量的测试结果列于表1。
(三)将上述实施例与对比例中钠元素的回收率进行测试,测试方法如下:
使用各实施例所述分离方法将质量为M 0的混合废盐进行分离,得到质量为M 1的碳酸钠,使用电感耦合等离子体原子发射光谱(ICP-AES)分别测定混合废盐中钠元素的含量C 0和碳酸钠中钠元素的含量C 1,则钠元素利用率=[(C 1×M 1)/(C 0×M 0)]×100%。
将上述实施例与对比例钠元素利用率的测试结果列于表1。
表1
Figure PCTCN2022133620-appb-000001
由表1可以得出以下几点:
(1)由实施例1-3可以看出,采用本申请所述混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,得到了碳酸钠、硫酸铵和氯化铵,所得碳酸钠纯度≥98%,满足GB/T 535-2020中Ⅰ型产品的要求,所得硫酸铵中氮(N)含量≥20.5%,满足GB/T 535-2020中Ⅰ型产品的要求,所得氯化铵中氮(N)含量≥25.4%,满足GB/T 2946-2018中农业用氯化铵一等品的要求,且钠元素利用率>90%;
(2)将实施例1与实施例4进行对比,可以发现,由于实施例4未将第二母液、第三母液、脱铵固体、第五母液进行循环回用,第二母液中的少量硫酸钠、第三母液中的少量碳酸氢钠、脱铵固体中的硫酸钠、第五母液的少量硫酸钠无法得到有效利用,导致钠元素利用率下降至80.2%;
(3)将实施例1与对比例1进行对比,可以发现,对比例1采用蒸发结晶的方法分离混合废盐中的硫酸钠和氯化钠,能耗高,且分离效果不佳,硫酸钠粗品中含有少量氯化钠,进而会导致制得的碳酸钠纯度不高,仅为94.2%,硫酸铵中氮(N)含量为20.1%。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (10)

  1. 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法,其包括如下步骤:
    (1)将混合废盐与第一反应液进行一次反应,经第一次固液分离得到第一母液和硫酸钠粗品;
    (2)将第二反应液与步骤(1)所述硫酸钠粗品进行反应结晶,经第二次固液分离得到硫酸钠饱和溶液和硫酸钠-硫酸铵复盐;将步骤(1)所述第一母液进行冷却结晶,经第三次固液分离得到氯化铵和第二母液;
    (3)将碳酸氢铵与步骤(2)所述硫酸钠饱和溶液进行二次反应,经第四次固液分离得到碳酸氢钠和第三母液;将溶剂与步骤(2)所述硫酸钠-硫酸铵复盐混合后进行富集,经第五次固液分离得到第四母液和脱铵固体;
    (4)将步骤(3)所述碳酸氢钠进行煅烧得到碳酸钠;将步骤(3)所述第四母液进行蒸发结晶,经第六次固液分离得到硫酸铵和第五母液。
  2. 根据权利要求1所述的方法,其中,步骤(1)所述混合废盐中,硫酸钠与氯化钠的质量比为(1~9):1。
  3. 根据权利要求1或2所述的方法,其中,步骤(1)所述一次反应的温度为40~60℃,时间为30~180min。
  4. 根据权利要求1所述的方法,其中,将步骤(2)中冷却结晶所得第二母液和反应结晶所得硫酸钠-硫酸铵复盐混合后,循环回用至步骤(1)作为所述第一反应液进行一次反应。
  5. 根据权利要求1所述的方法,其中,步骤(3)所述二次反应中,所述硫酸钠饱和溶液中钠原子的摩尔量与所述碳酸氢铵中氮原子的摩尔量之比为(0.8~1.5):1。
  6. 根据权利要求1或5所述的方法,其中,将步骤(3)所得第三母液循环回用至步骤(2)作为所述第二反应液进行反应结晶。
  7. 根据权利要求1所述的方法,其中,步骤(3)所述富集的温度为85~110℃,时间为20~120min。
  8. 根据权利要求1所述的方法,其中,将步骤(3)所得脱铵固体循环回用至步骤(2)作为所述硫酸钠粗品进行反应结晶。
  9. 根据权利要求1所述的方法,其中,步骤(4)所述蒸发结晶的温度为60~80℃。
  10. 根据权利要求1或9所述的方法,其中,将步骤(4)所得第五母液循 环回用至步骤(3)作为所述溶剂进行富集。
PCT/CN2022/133620 2021-12-09 2022-11-23 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法 WO2023103770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111499199.3 2021-12-09
CN202111499199.3A CN113896210B (zh) 2021-12-09 2021-12-09 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法

Publications (1)

Publication Number Publication Date
WO2023103770A1 true WO2023103770A1 (zh) 2023-06-15

Family

ID=79025721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133620 WO2023103770A1 (zh) 2021-12-09 2022-11-23 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法

Country Status (2)

Country Link
CN (1) CN113896210B (zh)
WO (1) WO2023103770A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014338A (zh) * 2021-10-20 2022-02-08 中新国际联合研究院 一种有机废盐热解提纯氯化钠同时制取掺杂碳的方法
CN117446830A (zh) * 2023-12-25 2024-01-26 中国科学院过程工程研究所 一种利用氯化钠废盐制备高纯度碳酸钠和氯化铵的方法
CN117446829A (zh) * 2023-12-25 2024-01-26 中国科学院过程工程研究所 一种利用氯化钠废盐短流程制备碳酸钠和氯化铵的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896210B (zh) * 2021-12-09 2022-03-08 中国科学院过程工程研究所 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法
CN114538471B (zh) * 2022-01-13 2023-08-01 宁波弗镁瑞环保科技有限公司 一种硫酸钠-氯化钠混合盐综合利用的方法
CN114715921B (zh) * 2022-06-07 2022-08-26 中国科学院过程工程研究所 一种混合钠盐高值转化的方法
CN114702047B (zh) * 2022-06-07 2022-08-23 中国科学院过程工程研究所 一种利用硫酸钠制备碳酸钠联产硫酸铵的方法
CN114715919B (zh) * 2022-06-07 2022-09-06 中国科学院过程工程研究所 一种利用氯化钠废盐制备碳酸氢钠联产氯化铵的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190926263A (en) * 1909-11-12 1910-09-29 Francis Arthur Freeth Improvements in the Manufacture of Ammonium Chloride from Ammonium Sulphate and Common Salt.
TW201540656A (zh) * 2014-04-17 2015-11-01 Rui-Xiong Xu 回收硫酸銨廢液之方法
CN109019638A (zh) * 2018-09-06 2018-12-18 四川金象赛瑞化工股份有限公司 一种以芒硝为原料制备纯碱的母液处理方法
CN109384250A (zh) * 2018-11-20 2019-02-26 黄河三角洲京博化工研究院有限公司 一种混合钠盐直接资源化利用的方法
RU2696450C1 (ru) * 2019-01-09 2019-08-01 Сергей Васильевич Афанасьев Совмещённый способ получения гидрокарбоната натрия и азотного удобрения смешанного типа
CN111039305A (zh) * 2018-10-12 2020-04-21 中国科学院过程工程研究所 一种硫酸钠短流程制备碳酸氢钠与硫酸铵的方法
CN112225235A (zh) * 2020-10-14 2021-01-15 中国科学院过程工程研究所 一种从硫酸钠制备碳酸氢钠和硫酸氢钠的方法
CN113336246A (zh) * 2021-06-24 2021-09-03 国能龙源环保有限公司 一种废盐的资源化处理方法
CN113896210A (zh) * 2021-12-09 2022-01-07 中国科学院过程工程研究所 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX159779A (es) * 1983-07-12 1989-08-18 Alcali Ind Sa Metodo mejorado para la obtencion secundaria de carbonato de sodio a partir de un licor residual que contiene bicarbonato de amonio,cloruro de amonio y de sodio y bioxido de carbono
CN1146972A (zh) * 1995-06-08 1997-04-09 蔺向阳 一种硝酸钾和硝酸钠的制备方法
CN102107889B (zh) * 2011-01-21 2015-02-18 衡阳市春茂化工有限公司 常温处理小苏打母液中氯化铵的方法
CN102432131B (zh) * 2011-11-02 2013-11-06 攀钢集团研究院有限公司 钠化焙烧-浸出-酸性铵盐沉钒废水的资源化处理设备
CN113636576B (zh) * 2021-10-15 2022-05-27 国能龙源环保有限公司 一种煤化工杂盐处置及资源化利用的系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190926263A (en) * 1909-11-12 1910-09-29 Francis Arthur Freeth Improvements in the Manufacture of Ammonium Chloride from Ammonium Sulphate and Common Salt.
TW201540656A (zh) * 2014-04-17 2015-11-01 Rui-Xiong Xu 回收硫酸銨廢液之方法
CN109019638A (zh) * 2018-09-06 2018-12-18 四川金象赛瑞化工股份有限公司 一种以芒硝为原料制备纯碱的母液处理方法
CN111039305A (zh) * 2018-10-12 2020-04-21 中国科学院过程工程研究所 一种硫酸钠短流程制备碳酸氢钠与硫酸铵的方法
CN109384250A (zh) * 2018-11-20 2019-02-26 黄河三角洲京博化工研究院有限公司 一种混合钠盐直接资源化利用的方法
RU2696450C1 (ru) * 2019-01-09 2019-08-01 Сергей Васильевич Афанасьев Совмещённый способ получения гидрокарбоната натрия и азотного удобрения смешанного типа
CN112225235A (zh) * 2020-10-14 2021-01-15 中国科学院过程工程研究所 一种从硫酸钠制备碳酸氢钠和硫酸氢钠的方法
CN113336246A (zh) * 2021-06-24 2021-09-03 国能龙源环保有限公司 一种废盐的资源化处理方法
CN113896210A (zh) * 2021-12-09 2022-01-07 中国科学院过程工程研究所 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014338A (zh) * 2021-10-20 2022-02-08 中新国际联合研究院 一种有机废盐热解提纯氯化钠同时制取掺杂碳的方法
CN114014338B (zh) * 2021-10-20 2024-03-22 中新国际联合研究院 一种有机废盐热解提纯氯化钠同时制取掺杂碳的方法
CN117446830A (zh) * 2023-12-25 2024-01-26 中国科学院过程工程研究所 一种利用氯化钠废盐制备高纯度碳酸钠和氯化铵的方法
CN117446829A (zh) * 2023-12-25 2024-01-26 中国科学院过程工程研究所 一种利用氯化钠废盐短流程制备碳酸钠和氯化铵的方法
CN117446830B (zh) * 2023-12-25 2024-03-01 中国科学院过程工程研究所 一种利用氯化钠废盐制备高纯度碳酸钠和氯化铵的方法
CN117446829B (zh) * 2023-12-25 2024-04-05 中国科学院过程工程研究所 一种利用氯化钠废盐短流程制备碳酸钠和氯化铵的方法

Also Published As

Publication number Publication date
CN113896210B (zh) 2022-03-08
CN113896210A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2023103770A1 (zh) 一种混合废盐制备碳酸钠联产硫酸铵与氯化铵的方法
JP6770676B2 (ja) リチウムの回収方法
CN113336246B (zh) 一种废盐的资源化处理方法
CN113912084B (zh) 一种利用硫酸钠与氯化钠混盐制备碳酸钠、硫酸铵与氯化铵的方法
CN107720782A (zh) 一种从高盐废水分盐制取硫酸钾的工艺及所用系统
CN108658345B (zh) 一种高盐废水精制盐的方法及系统
CN102320629B (zh) 利用白炭黑母液水生产试剂级硫酸钠的方法
CN114715920B (zh) 一种利用混合钠盐制备碳酸钠联产硫酸铵和氯化铵的方法
CN112299634B (zh) 一种提高pta高盐废水蒸发结晶分盐品质的方法及装置
CN111039305B (zh) 一种硫酸钠短流程制备碳酸氢钠与硫酸铵的方法
CN114715921B (zh) 一种混合钠盐高值转化的方法
CN106865859A (zh) 一种综合处理化工浓盐水的方法
CN110950357A (zh) 一种氯化铵和氯化钠混盐的分离方法
CN113896209B (zh) 一种废盐制备碳酸钠副产硫酸钾、硫酸铵和氯化铵的方法
CN113636576A (zh) 一种煤化工杂盐处置及资源化利用的系统及方法
CN112794534A (zh) 飞灰资源化利用处理系统及方法
CN105540545A (zh) 一种废弃氯化钠和废酸的资源化处理方法
CN110002649A (zh) 一种石墨烯废酸资源化利用的方法
CN114011835B (zh) 一种工业废盐资源化利用处理系统及其工艺
CN110015796A (zh) 混合高盐体系镍湿法冶金废水的零排放处理系统及工艺
CN110790331A (zh) 含硝酸盐cod盐硝废水蒸发分离硝酸盐cod盐硝工艺
CN105645644A (zh) 一种用两段扩散渗析、两段电渗析及双极膜回收含硫酸和硫酸钠废水中硫酸的工艺
CN108751229B (zh) 一种二环己基二硫化物母液的回收方法
CN114769293A (zh) 一种工业固废协同处置与资源化利用工业废盐的方法
JP4588045B2 (ja) 廃液の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903193

Country of ref document: EP

Kind code of ref document: A1