WO2023101489A1 - 봉지 필름 - Google Patents

봉지 필름 Download PDF

Info

Publication number
WO2023101489A1
WO2023101489A1 PCT/KR2022/019412 KR2022019412W WO2023101489A1 WO 2023101489 A1 WO2023101489 A1 WO 2023101489A1 KR 2022019412 W KR2022019412 W KR 2022019412W WO 2023101489 A1 WO2023101489 A1 WO 2023101489A1
Authority
WO
WIPO (PCT)
Prior art keywords
encapsulation
layer
film
sealant
weight
Prior art date
Application number
PCT/KR2022/019412
Other languages
English (en)
French (fr)
Inventor
서범두
류재설
최광휘
윤진영
유동환
김연승
김경인
강호성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280061655.2A priority Critical patent/CN117941484A/zh
Publication of WO2023101489A1 publication Critical patent/WO2023101489A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details

Definitions

  • the present application relates to an encapsulation film, a manufacturing method thereof, an organic electronic device including the same, and a manufacturing method of the organic electronic device.
  • An organic electronic device refers to a device including an organic material layer generating an alternating charge using holes and electrons, examples of which include a photovoltaic device, a rectifier, and a transmitter and an organic light emitting diode (OLED).
  • an Organic Light Emitting Diode consumes less power and has a faster response speed than conventional light sources, and is advantageous for thinning a display device or lighting.
  • OLED has excellent space utilization and is expected to be applied in various fields ranging from various portable devices, monitors, laptops and TVs.
  • OLED In the commercialization and expansion of use of OLED, the most important problem is durability. Organic materials and metal electrodes included in OLED are very easily oxidized by external factors such as moisture. Therefore, an encapsulation film with maximized moisture barrier properties is required.
  • the OLED encapsulant must include a layer having moisture barrier properties as an essential component in order to secure excellent moisture barrier properties, and the layer having moisture barrier properties requires excellent adhesive properties with upper and / or lower components. do.
  • a method of separately manufacturing a layer having moisture barrier properties and a layer having adhesiveness, and then attaching the respective layers to each other to integrate them into one unit may be considered. Since it is necessary to manufacture, problems such as price increase, complexity of the process, and decrease in thinning efficiency may be caused.
  • the present application provides an encapsulation film capable of forming a structure capable of blocking moisture or oxygen flowing into an organic electronic device from the outside and maintaining durability reliability even in harsh environments. Since the sealant film according to the present application can exhibit excellent moisture barrier properties and adhesiveness with only a single layer, a device to which the sealant film according to the present application is applied can maintain thinning.
  • the encapsulation film may be applied to encapsulate or encapsulate an organic electronic device such as an OLED, for example.
  • organic electronic device refers to an article or device having a structure including an organic material layer that generates an alternating charge using holes and electrons between a pair of electrodes facing each other.
  • organic material layer may include, but are not limited to, photovoltaic devices, rectifiers, transmitters and organic light emitting diodes (OLEDs).
  • OLEDs organic light emitting diodes
  • the organic electronic device may be an OLED.
  • the OLED encapsulant must include a layer having moisture barrier properties as an essential component in order to secure excellent moisture barrier properties, and the layer having moisture barrier properties requires excellent adhesive properties with upper and/or lower components.
  • a method of separately manufacturing a layer having moisture barrier properties and a layer having adhesiveness, and then attaching the respective layers to each other and integrating them into one unit may be considered. Since it is necessary to manufacture a layer, problems such as price increase, complexity of the process, and decrease in thinning efficiency may be caused. Therefore, in order to solve this problem, the present application can provide a sealant film capable of exhibiting excellent performance in water barrier properties and adhesiveness with only a single layer.
  • An exemplary encapsulation film may include an encapsulation layer that is a cured product of an encapsulation composition, and the encapsulation composition may include an encapsulation resin and a moisture absorbent, and the encapsulation layer may be a single layer, but the thickness (depth) of the encapsulation layer may be In Gaussian curve fitting for the distribution of the moisture adsorbent, the location distribution ( ⁇ value) of the moisture adsorbent in the thickness direction may be 2 or less.
  • the position distribution ( ⁇ value) in the thickness direction of the moisture adsorbent is 1.9 or less, 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, 1.1 or less, 1 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, 0.3 or less, 0.2 or less, 0.15 or less, or 0.1 or less, the lower limit being Although not particularly limited, it may be 0.001 or more.
  • the Gaussian curve fitting represents a function for the thickness of the encapsulation layer, as shown in Equation 1 below.
  • Equation 1 A and b are constants related to the absolute amount of the moisture adsorbent, is the average position in the thickness direction of the moisture adsorbent, and ⁇ is the position distribution in the thickness direction of the moisture adsorbent.
  • the moisture adsorbent may be included in a high content in the region corresponding to the central portion of the encapsulation film in the thickness direction, and thus moisture Adsorption properties are excellent, and at the same time, adhesion properties can also be improved.
  • the encapsulation layer may include a first area, a second area, and a third area in which the concentration of the moisture adsorbent is different in the thickness direction, and the encapsulation layer is not a laminated structure having a plurality of layers as a single layer, but moisture Depending on the concentration of the adsorbent, the monolayer can be arbitrarily divided into regions.
  • the first region, the second region, and the third region constituting the single-layer encapsulation layer may have different moisture adsorbent contents.
  • the interface in each region does not necessarily need to be clearly distinguished.
  • the second region may include a higher content of the moisture adsorbent than the first region and the third region. That is, the second region may have a higher moisture adsorbent content than the first region and the second region. In this case, it is sufficient if the moisture adsorbent content of the first region and the second region is lower than that of the second region, and the moisture adsorbent contents of the first region and the second region may be the same or different.
  • the second region 22 which is a region with a high moisture absorbent content, is a first region with a low concentration of the moisture absorbent. It may be interposed between the region 21 and the third region 23 .
  • the first region 21 and the third region 23 in which the moisture adsorbent is a low-content region form the uppermost or lowermost part of the encapsulation layer 11 and are located on the upper or lower surface, respectively, and are in contact with the upper or lower portion of the encapsulation layer 11. It can come in direct contact with the component.
  • the moisture adsorbent included in the encapsulation layer may exist in a state in which it is not evenly distributed in the encapsulation layer in the form of particles.
  • distribution relates to the way particles fill a space, and is a concept distinct from dispersion.
  • the uniformly distributed state means that the moisture adsorbent is present at the same or substantially the same density in any part of the encapsulation layer or the encapsulation film, and the particles are spaced as far apart as possible to uniformly fill the space.
  • the moisture adsorbent when included in an excessive amount in an evenly distributed state in the encapsulation layer in contact with the organic electronic device, the moisture adsorbent is also present in excess on the upper and lower surfaces of the uppermost and / or lowermost encapsulation layer, in which case the encapsulation layer
  • the adhesive performance of the adhesive is very low, and durability and reliability of the organic electronic device may be deteriorated.
  • a multilayer structure including at least two or more encapsulation layers was used as an encapsulation film. That is, when the multi-layered encapsulation film is applied on the organic electronic device, the first encapsulation layer facing the organic electronic device does not contain or includes a small amount of the moisture adsorbent, and is located on the side opposite to the side facing the organic electronic device.
  • the second encapsulation layer By designing the second encapsulation layer to contain a large amount of moisture adsorbent, adhesiveness was secured from the first encapsulation layer in contact with the organic electronic element, and moisture barrier properties were secured from the second encapsulation layer.
  • the encapsulation layer according to the present application is a single layer, but contains a high concentration of the moisture adsorbent in the center in the thickness (depth) direction of the encapsulation layer and contains a low concentration of the moisture adsorbent on both surfaces of the encapsulation layer, so that the moisture adsorbent has a specific distribution
  • the present application can provide a sealant film having excellent barrier properties while exhibiting excellent adhesiveness of an appropriate level or higher without a separate adhesive layer or adhesive layer.
  • the metal adhesion of the encapsulation layer is 4,000 gf / in or more, 4,200 gf / in or more, 4,400 gf / in or more, 4,600 gf / in or more, 4,800 gf / in or more, 5,000 gf / in or more, 5,100 gf / in or more inch or more, 5,200 gf/in or more, 5,300 gf/in or more, 5,400 gf/in or more, or 5,500 gf/in or more.
  • the upper limit is not particularly limited, but may be 10,000 gf/in or less or 8,000 gf/in or less.
  • the encapsulation layer of the present application may have excellent metal adhesion.
  • the metal adhesion is the adhesion to the metal layer that can be added on the encapsulation layer, and the encapsulation film left for 30 minutes in a constant temperature and humidity room at 22 ⁇ 5 ° C and 50 ⁇ 10% is tensioned (TA, Texture). Analyser) and measured in Tension Mode at a temperature of 25 °C and a tensile speed of 5 mm/min.
  • the encapsulation layer prepared from the above may have a gel content of 60% or more as measured by Formula 1 below.
  • B is the mass of the encapsulation layer sample
  • A is the sample immersed in toluene at 60 ° C for 24 hours and then filtered through a 200 mesh net, and the insolubility of the encapsulation layer that did not pass through the net Indicates the dry mass of the seaweed.
  • the unit mesh may be an ASTM standard unit.
  • the mass B of the encapsulation layer sample can be measured as 1 g.
  • the gel content may be, for example, 63% or more, 65% or more, 67% or more, 70% or more, 72% or more, 75% or more or 78% or more, and the upper limit is, for example, 99% or less, 95% or less.
  • the present application can provide an encapsulant film having excellent curing properties as well as moisture barrier properties and stress absorption properties by adjusting the gel content.
  • the encapsulation layer according to the present application may have an acid value of 1 or less.
  • the acid value may be, for example, 0.9 or less, 0.8 or less, or 0.7 or less, and the lower limit is not particularly limited, but may be 0.1 or more.
  • white spots generated in organic electronic devices have recently become a major cause of panel defects.
  • the present application confirms that the mechanism for generating the white spots is due to the organic acid present in the encapsulation composition, and controls the acid value of the encapsulation layer itself and the degree of crosslinking of the encapsulation layer matrix to the gel content, thereby effectively suppressing the occurrence of white spots. there was.
  • the organic acid reaches the organic electronic device in the form of an ion and generates a white point by shifting a threshold voltage in a crack that may be partially formed on the device.
  • the encapsulation layer according to the present application may have excellent light transmittance in the visible ray region.
  • the composition for encapsulation of the present application may exhibit a light transmittance of 80% or more according to JIS K7105 standards after curing.
  • the composition for encapsulation may have a light transmittance of 85% or more, 90% or more, 92% or more, or 93% or more with respect to the visible ray region.
  • the encapsulation layer of the present application may exhibit low haze with excellent light transmittance.
  • the encapsulation composition may have a haze of 5% or less, 4% or less, 3% or less, or 1% or less, measured according to the standards of JIS K7105 after curing.
  • the optical properties may be measured at 550 nm using a UV-Vis Spectrometer.
  • the yellow index ( ⁇ YI, yellow index) value measured according to the ASTM D 1003 standard using a colorimetry instrument may be 1 or less, and the lower limit is greatly limited. It is not, but it can be -2 or higher.
  • the encapsulation layer is a Purge & Trap sampler (JAI JTD-505III - GC / MSD system (Agilent 7890B / 5977A) using a measuring device, purge trap for 60 minutes at 100 ° C (Purge and Trap)
  • the measured outgas amount may be less than 400 ppm, in detail, 300 ppm or less, 200 ppm or less, 100 ppm or less, 90 ppm or less, 80 ppm or less, 70 ppm or less, 50 ppm or less, 30 ppm or less, 20 ppm or less, or 10 ppm or less.That is, the encapsulation layer according to the present invention includes the composition described later, so that the amount of outgas generated from the encapsulation layer is insignificant. Therefore, the organic electronic device to which the encapsulation layer is applied may have excellent reliability.
  • the encapsulation layer may have a thickness of 30 ⁇ m or more and 500 ⁇ m or less.
  • the encapsulation layer of the present application has a thickness of 30 ⁇ m or more, 33 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, 43 ⁇ m or more, 45 ⁇ m or more, 47 ⁇ m or more, 50 ⁇ m or more, 52 ⁇ m or more, 55 ⁇ m or more, 57 ⁇ m or more. or 60 ⁇ m or more, and the upper limit is not particularly limited, but may be 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, 250 ⁇ m or less, or 200 ⁇ m or less.
  • the present application can maximize the moisture barrier by implementing the gel content at a desired level while increasing the thickness of the encapsulation layer compared to the prior art, and also, when panel warpage occurs in a harsh environment such as high temperature, stress is absorbed and highly reliable
  • An organic electronic device may be provided.
  • the encapsulation film was coated to a certain thickness or more and then UV was irradiated, but there was a problem in that the cured properties were significantly deteriorated because UV did not penetrate into the film, and the solvent remained inside the film, so that some of the volatilization was not performed. There was a problem that solvents and uncured materials damage organic electronic devices.
  • the sealing composition of the present application can be directly contacted with one surface of the organic electronic device by sealing the front surface of the organic electronic device.
  • the reliability of the organic electronic device can be further improved, and furthermore, by exhibiting an improved curing rate even at a certain thickness or more, not only moisture barrier properties and stress absorption, but also excellent cured physical properties can be implemented.
  • the encapsulation layer of the present application may be a single layer, but is not limited thereto, and may have a multi-layer structure including at least two or more encapsulation layers.
  • the encapsulation layer may include a first encapsulation layer facing the organic electronic device when encapsulating the organic electronic device, and a second encapsulation layer positioned on a surface opposite to the surface of the first encapsulation layer facing the device. may contain layers.
  • the encapsulation film includes at least two or more encapsulation layers, and the encapsulation layer may include a first encapsulation layer facing the organic electronic device during encapsulation and a second encapsulation layer not facing the organic electronic device.
  • the composition of each layer of the encapsulation layer may be the same or different.
  • the encapsulation layer may include an encapsulation resin and/or a moisture adsorbent, and the encapsulation layer may be an adhesive layer or an adhesive layer.
  • the first encapsulation layer which is an encapsulation layer facing the organic electronic device, does not contain a moisture adsorbent, or even if included, in a small amount of 5% by weight or less based on the total weight of the moisture adsorbent. It may be included, and a large amount of moisture adsorbent as described later may be included in the second encapsulation layer.
  • the encapsulation film 1 of the present application may include an encapsulation layer 11 and a base layer 12, as shown in FIG. 2 .
  • the encapsulation film may seal the front surface of the organic electronic device formed on the substrate.
  • the encapsulation composition of the present application may include an encapsulation resin.
  • the encapsulating resin may be a crosslinkable resin or a curable resin, and in embodiments, may include an olefin-based resin.
  • the sealing composition may be a solvent-free type.
  • the solvent-free type refers to a case in which a solvent is not included or a solvent is included in an amount of 0.1wt% or less or 0.01wt% or less in the total composition. That is, the sealing composition contains a solid content of 99wt% or more, 99.9wt% or more, or 100 wt%, and the present application provides a sealant film capable of forming a film only with raw materials having a solid content of 99wt% or more or 100 wt% without a separate solvent. .
  • the encapsulating resin may have a glass transition temperature of less than 0 °C, less than -10 °C or less than -30 °C, less than -50 °C or less than -60 °C.
  • the lower limit is not particularly limited and may be -150°C or higher.
  • the glass transition temperature may be a glass transition temperature after curing.
  • the encapsulating resin may be an olefin-based resin.
  • the olefin-based resin is a homopolymer of butylene monomers; copolymers obtained by copolymerization of a butylene monomer and other polymerizable monomers; reactive oligomers using butylene monomers; or a mixture thereof.
  • the butylene monomer may include, for example, 1-butene, 2-butene or isobutylene.
  • the olefin-based resin may include an isobutylene monomer as a polymerization unit.
  • the butylene monomer or derivative may include, for example, isoprene, styrene, or butadiene.
  • the copolymer it is possible to maintain physical properties such as fairness and degree of crosslinking, so that heat resistance of the adhesive itself can be secured when applied to an organic electronic device.
  • the reactive oligomer using the butylene monomer may include a butylene polymer having a reactive functional group.
  • the oligomer may have a weight average molecular weight ranging from 500 to 5000 g/mol.
  • the butylene polymer may be bonded to other polymers having reactive functional groups.
  • the other polymer may be an alkyl (meth)acrylate, but is not limited thereto.
  • the reactive functional group may be a hydroxy group, a carboxyl group, an isocyanate group or a nitrogen-containing group.
  • the reactive oligomer and the other polymer may be crosslinked by a multifunctional crosslinking agent, and the multifunctional crosslinking agent may be at least one selected from the group consisting of an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent.
  • the encapsulating resin of the present application may include a copolymer of a diene and an olefin-based compound including one carbon-carbon double bond.
  • the olefin-based compound may include butylene
  • the diene may be a monomer polymerizable with the olefin-based compound, and may include, for example, isoprene or butadiene.
  • a copolymer of a diene and an olefinic compound containing one carbon-carbon double bond may be butyl rubber.
  • the resin or elastomer component may have a weight average molecular weight (Mw) such that the pressure-sensitive adhesive composition can be molded into a film shape.
  • Mw weight average molecular weight
  • the resin or elastomer may be about 100,000 to 2,000,000 g/mol, 120,000 to 1.5 million g/mol, 150,000 to 1,000,000 g/mol, 200,000 to 700,000 g/mol, 230,000 to 60 It may have a weight average molecular weight of about 10,000 g/mol, 250,000 to 500,000 g/mol, or 300,000 to 470,000 g/mol.
  • weight average molecular weight means a value in terms of standard polystyrene measured by GPC (Gel Permeation Chromatograph), and unless otherwise specified, the unit is g / mol.
  • the resin or elastomer component does not necessarily have the aforementioned weight average molecular weight.
  • a separate binder resin may be incorporated into the pressure-sensitive adhesive composition.
  • the encapsulation resin is present in an amount of 10 wt% or more, 13 wt% or more, 15 wt% or more, 17 wt% or more, 20 wt% or more, 21 wt% or more, 22 wt% or more, 23 wt% or more in the encapsulation layer. % or more or 24% by weight or more, and the upper limit may be 90% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, or 30% or less by weight. .
  • the present application is designed to maintain heat resistance and durability at high temperature and high humidity while sufficiently implementing the moisture barrier performance of the resin itself by adjusting the content of the encapsulating resin. can do.
  • the encapsulation film may include a moisture adsorbent.
  • moisture absorbent may mean, for example, a chemically reactive adsorbent capable of removing moisture through a chemical reaction with moisture or moisture that has penetrated into a sealing film to be described later.
  • an organic acid may not exist on the surface of the moisture adsorbent.
  • the moisture adsorbent may be surface-treated with a dispersant so as to be well dispersed in the composition, and in this case, an organic acid is present on the surface of the moisture adsorbent. Since these organic acids permeate toward the element in the encapsulation layer that is in direct contact with the element, it causes a white point defect of the OLED panel.
  • the moisture adsorbent does not include a dispersant or does not contain an organic acid, thereby improving the reliability of the entire encapsulation composition and preventing OLED panel defects.
  • Examples of the moisture adsorbent that can be used in the above include metal oxides, sulfates, organic metal oxides, and the like.
  • examples of the sulfate include magnesium sulfate, sodium sulfate, or nickel sulfate
  • examples of the organic metal oxide include aluminum oxide octylate.
  • Specific examples of the metal oxide in the above include phosphorus pentoxide (P 2 O 5 ), lithium oxide (Li 2 O), sodium oxide (Na 2 O), barium oxide (BaO), calcium oxide (CaO) or magnesium oxide (MgO).
  • examples of the metal salt include lithium sulfate (Li 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), calcium sulfate (CaSO 4 ), magnesium sulfate (MgSO 4 ), cobalt sulfate (CoSO 4 ), Sulfates such as gallium sulfate (Ga2(SO 4 ) 3 ), titanium sulfate (Ti(SO 4 ) 2 ) or nickel sulfate (NiSO 4 ), calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), strontium chloride (SrCl 2 ) ), yttrium chloride (YCl 3 ), copper chloride (CuCl 2 ), cesium fluoride (CsF), tantalum fluoride (TaF 5 ), niobium fluoride (NbF 5 ), lithium bromide (LiBr), calcium bromide (CaBr 2
  • moisture adsorbent that may be included in the encapsulation layer
  • one type or two or more types may be used among the above-described configurations.
  • calcined dolomite or the like may be used.
  • the average particle diameter of the moisture absorbent may be controlled to 100 to 15000 nm, 500 nm to 10000 nm, 800 nm to 8000 nm, 1 ⁇ m to 7 ⁇ m, 2 ⁇ m to 5 ⁇ m, or 2.5 ⁇ m to 4.5 ⁇ m.
  • the moisture adsorbent having a size in the above range does not react too quickly with moisture, so it is easy to store and does not damage a device to be sealed.
  • the particle diameter may mean an average particle diameter, and may be measured by a known method using a D50 particle size analyzer.
  • the content of the moisture adsorbent is not particularly limited and may be appropriately selected in consideration of the desired barrier properties.
  • the moisture adsorbent may be included in an amount of 110 parts by weight or more based on 100 parts by weight of the encapsulating resin, and as an example, 113 to 800 parts by weight, 115 to 750 parts by weight, 117 to 700 parts by weight, 120 to 650 parts by weight, 123 to 600 parts by weight parts by weight, 125 to 550 parts by weight, 127 to 500 parts by weight, 130 to 470 parts by weight, 133 to 450 parts by weight, 135 to 430 parts by weight, 137 to 400 parts by weight, 140 to 370 parts by weight, 143 to 350 parts by weight , 145 to 330 parts by weight, 147 to 300 parts by weight, 150 to 270 parts by weight, 153 to 250 parts by weight or 155 to 240 parts by weight may be included in the range.
  • the encapsulation film according to the present application can exhibit excellent compatibility with other components in the encapsulation layer while including a larger amount of the moisture adsorbent than before, and at the same time, exhibits excellent dispersibility without a separate dispersant for the moisture adsorbent. Moisture blocking effect can be realized.
  • the sealant film may further include a tackifier.
  • the tackifier may be, for example, a compound having a softening point of 70 ° C or higher, and in embodiments, 75 ° C or higher, 78 ° C or higher, 83 ° C or higher, 85 ° C or higher, 90 ° C or higher or 95 ° C or higher.
  • °C or more and the upper limit is not particularly limited, but may be 150 °C or less, 145 °C or less, 140 °C or less, 135 °C or less, 130 °C or less, or 125 °C.
  • the tackifier may be a compound having a cyclic structure in its molecular structure, and the cyclic structure may have 5 to 15 carbon atoms. The number of carbon atoms may be within the range of, for example, 6 to 14, 7 to 13, or 8 to 12.
  • the cyclic structure may be a monocyclic compound, but is not limited thereto, and may be a bicyclic or tricyclic compound.
  • the tackifier may also be an olefin-based polymer, and the polymer may be a homopolymer or a copolymer.
  • the tackifier of the present application may be a hydrogenated compound.
  • the hydrogenated compound may be a partially or fully hydrogenated compound.
  • Such a tackifier may have good compatibility with other components in the encapsulation film, excellent moisture barrier properties, and external stress relieving properties.
  • Specific examples of the tackifier include hydrogenated terpene-based resins, hydrogenated ester-based resins, and hydrogenated dicyclopentadiene-based resins.
  • the weight average molecular weight of the tackifier may be within the range of about 200 to 5,000 g/mol, 300 to 4,000 g/mol, 400 to 3,000 g/mol or 500 to 2,000 g/mol.
  • the content of the tackifier may be appropriately adjusted as needed.
  • the content of the tackifier may be included in a ratio of 15 parts by weight to 200 parts by weight, 20 to 190 parts by weight, 25 parts by weight to 180 parts by weight, or 30 parts by weight to 150 parts by weight based on 100 parts by weight of the encapsulating resin.
  • the present application can provide an encapsulation film having excellent moisture barrier properties and external stress relaxation characteristics by using the above specific tackifier.
  • the encapsulation layer may include an agent for preventing bright spots.
  • the anti-bright spot agent may have adsorption energy for outgas of 0 eV or less, calculated by Density Functional Theory.
  • the lower limit value of the adsorption energy is not particularly limited, but may be -20 eV.
  • the type of the out gas is not particularly limited, but may include oxygen, H atoms, H 2 molecules, and/or NH 3 .
  • the encapsulant film since the encapsulant film includes the bright spot prevention agent, it is possible to prevent bright spots due to outgas generated in an organic electronic device.
  • the adsorption energy between the bright spot preventing agent and the bright spot source atoms or molecules may be calculated through electronic structure calculation based on density functional theory.
  • the calculation can be performed by a method known in the art.
  • the present application creates a two-dimensional slab structure in which a close-packed surface of a bright spot inhibitor having a crystalline structure is exposed on the surface, and then proceeds with structural optimization, and for the structure in which bright spot cause molecules are adsorbed on the vacuum surface After structural optimization, the total energy difference between the two systems minus the total energy of the molecules that cause the bright spot was defined as the adsorption energy.
  • the revised-PBE function a function of the GGA (generalized gradient approximation) series, was used as an exchange-correlation that simulates the electron-electron interaction, and the cutoff of the electron kinetic energy was 500 eV. It was calculated by including only the gamma point corresponding to the origin of the reciprocal space.
  • the conjugate gradient method was used and repeated calculations were performed until the interatomic force was less than 0.01 eV/ ⁇ . A series of calculations were performed using VASP, a commercial code.
  • the material of the bright spot prevention agent is not limited as long as the encapsulation film is applied to the organic electronic device and has an effect of preventing bright spots in the panel of the organic electronic device.
  • the bright spot prevention agent is an outgas generated from an inorganic deposition layer of silicon oxide, silicon nitride, or silicon oxynitride deposited on an electrode of an organic electronic device, for example, oxygen, H 2 gas, ammonia (NH 3 ) gas.
  • H + , NH 2+ , NHR 2 or NH 2 may be a material capable of adsorbing a material exemplified by R.
  • R may be an organic group, for example, an alkyl group, an alkenyl group, an alkynyl group, etc. may be exemplified, but is not limited thereto.
  • the material of the bright point inhibitor is not limited as long as it satisfies the adsorption energy value, and may be a metal or a non-metal.
  • the bright spot prevention agent may include, for example, Li, Ni, Ti, Rb, Be, Mg, Ca, Sr, Ba, Al, Zn, In, Pt, Pd, Fe, Cr, Si or a combination thereof, It may include an oxide or a nitride of the material, and may include an alloy of the material.
  • the anti-bright spot is nickel particles, nickel oxide particles, titanium nitride, iron-titanium titanium alloy particles, iron-manganese manganese alloy particles, magnesium-nickel magnesium alloy particles, rare earth alloy particles, Carbon nanotubes, graphite, aluminophosphate molecular sieve particles, or mesosilica particles may be included.
  • the white spot inhibitor is 3 to 150 parts by weight, 6 to 143 parts by weight, 8 to 131 parts by weight, 9 to 123 parts by weight, 10 to 116 parts by weight, 10 to 95 parts by weight, 10 parts by weight, based on 100 parts by weight of the encapsulating resin. It may be included in part to 50 parts by weight, or 10 parts by weight to 35 parts by weight.
  • the present application can realize prevention of bright spots of an organic electronic device while improving adhesion and durability of a film.
  • the particle diameter of the bright spot prevention agent is 10 nm to 30 ⁇ m, 50 nm to 21 ⁇ m, 105 nm to 18 ⁇ m, 110 nm to 12 ⁇ m, 120 nm to 9 ⁇ m, 140 nm to 4 ⁇ m, 150 nm to 2 ⁇ m, 180 nm to 900 nm, 230 nm to 700 nm or within the range of 270 nm to 400 nm.
  • the particle size may be according to D50 particle size analysis.
  • the encapsulation layer of the present application may include an active energy ray polymerizable compound having high compatibility with the encapsulation resin and capable of forming a specific crosslinked structure with the encapsulation resin.
  • the encapsulation layer of the present application may include a multifunctional active energy ray polymerizable compound that can be polymerized by irradiation of active energy rays together with the encapsulation resin.
  • the active energy ray polymerizable compound is, for example, a functional group capable of participating in a polymerization reaction by irradiation of an active energy ray, for example, a functional group containing an ethylenically unsaturated double bond such as an acryloyl group or a methacryloyl group.
  • It may mean a compound containing two or more functional groups such as an epoxy group or an oxetane group.
  • multifunctional active energy ray polymerizable compound for example, multifunctional acrylate (MFA) may be used.
  • MFA multifunctional acrylate
  • the active energy ray polymerizable compound is 0.5 parts by weight to 10 parts by weight, 0.7 parts by weight to 9 parts by weight, 1 to 8 parts by weight, 1.3 parts by weight to 7 parts by weight or 1.5 parts by weight based on 100 parts by weight of the encapsulation resin. It may be included in parts by weight to 6 parts by weight.
  • the present application provides an encapsulant film having excellent durability and reliability even under harsh conditions such as high temperature and high humidity.
  • a polyfunctional active energy ray polymerizable compound that can be polymerized by irradiation of the active energy ray may be used without limitation.
  • the compound is 1,4-butanediol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate (HDDA), 1 ,8-octanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, dicyclopentanyl di(meth)acrylate rate, cyclohexane-1,4-dimethanol di (meth) acrylate, tricyclodecane dimethanol (meth) diacrylate, dimethylol dicyclopentane di (meth) acrylate, neopentyl glycol modified trimethylpropane di( meth)acrylate, a
  • the polyfunctional active energy ray polymerizable compound a compound having a molecular weight of 100 or more and less than 1,000 g/mol and containing two or more functional groups can be used, for example.
  • the ring structure included in the multifunctional active energy ray polymerizable compound is a carbocyclic structure or a heterocyclic structure; Or any of monocyclic or polycyclic structure may be sufficient.
  • the encapsulation layer may further include a radical initiator.
  • the radical initiator may be a photoinitiator or a thermal initiator.
  • a specific type of photoinitiator may be appropriately selected in consideration of curing speed and yellowing possibility.
  • benzoin-based, hydroxy ketone-based, amino ketone-based, or phosphine oxide-based photoinitiators may be used, and specifically, benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzoin n-butyl ether benzoin isobutyl ether, acetophenone, dimethylanino acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2 -Hydroxy-2-methyl-1-phenylpropane-1one, 1-hydroxycyclohexylphenylketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propane-1- one, 4-(2-hydroxyethoxy)phenyl-2-(hydroxy-2-propyl)ketone, benzophenone, p-phenylbenzophenone, 4,4'-diethylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone,
  • the radical initiator may be included in an amount of 0.2 to 20 parts by weight, 0.5 to 18 parts by weight, 1 to 15 parts by weight, or 2 to 13 parts by weight based on 100 parts by weight of the active energy ray polymerizable compound.
  • the encapsulation layer may include various additives depending on the use and the manufacturing process of the encapsulation film to be described later.
  • the encapsulation layer may include a curable material, a crosslinking agent, or a filler in an appropriate range according to desired physical properties.
  • the encapsulating composition may have a viscosity of 1,000 to 2,000 Pa ⁇ s measured at 170°C and 50 s -1 shear rate, and for example, the lower limit of the viscosity is 1,100 Pa ⁇ s or more, 1,200 Pa ⁇ s or more, 1,300 Pa ⁇ s or more, 1,400 Pa ⁇ s or more, or 1,500 Pa ⁇ s or more.
  • the viscosity may be a value measured by ARES (Advanced Rheometric Expansion System).
  • ARES Advanced Rheometric Expansion System
  • the encapsulation film may further include a metal layer formed on the encapsulation layer.
  • the metal layer of the present application is 20 W / m K or more, 50 W / m K or more, 60 W / m K or more, 70 W / m K or more, 80 W / m K or more, 90 W / m K or more , 100 W/m K or more, 110 W/m K or more, 120 W/m K or more, 130 W/m K or more, 140 W/m K or more, 150 W/m K or more, 200 It may have a thermal conductivity of W/m ⁇ K or more or 210 W/m ⁇ K or more.
  • the upper limit of the thermal conductivity is not particularly limited and may be 800 W/m ⁇ K or less. By having such high thermal conductivity, heat generated at the bonding interface during the metal layer bonding process can be released more quickly. In addition, the high thermal conductivity quickly releases heat accumulated during operation of the organic electronic device to the outside, and accordingly, the temperature of the organic electronic device itself can be kept lower, and cracks and defects are reduced.
  • the thermal conductivity may be measured at any one temperature in the temperature range of 15 to 30 °C.
  • thermal conductivity refers to the degree of ability of a material to transfer heat by conduction, and the unit may be expressed as W/m ⁇ K.
  • the unit represents the degree of heat transfer of a material at the same temperature and distance, and means a unit of distance (meter) and a unit of heat (watt) for a unit of temperature (Kelvin).
  • the metal layer of the sealant film may be transparent or opaque.
  • the thickness of the metal layer may be within a range of 3 ⁇ m to 200 ⁇ m, 10 ⁇ m to 100 ⁇ m, 20 ⁇ m to 90 ⁇ m, 30 ⁇ m to 80 ⁇ m, or 40 ⁇ m to 75 ⁇ m.
  • the present application can provide a thin encapsulation film while sufficiently implementing a heat dissipation effect by controlling the thickness of the metal layer.
  • the metal layer may be a metal deposited on a thin metal foil or a polymer base layer.
  • the metal layer is not particularly limited as long as it satisfies the above-described thermal conductivity and includes a metal.
  • the metal layer may include any one of metal, metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxyboride, and combinations thereof.
  • the metal layer may include an alloy in which one or more metal elements or non-metal elements are added to one metal, and may include, for example, stainless steel (SUS).
  • the metal layer is iron, chromium, copper, aluminum nickel, iron oxide, chromium oxide, silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, and niobium oxide. , and combinations thereof.
  • the metal layer may be deposited by electrolytic, rolling, thermal evaporation, electron beam evaporation, sputtering, reactive sputtering, chemical vapor deposition, plasma chemical vapor deposition or electron cyclotron resonance source plasma chemical vapor deposition means.
  • the metal layer may be deposited by reactive sputtering.
  • the sealant film may have a structure in which a base film or a release film (hereinafter sometimes referred to as a "first film”) is further included, and the sealant layer is formed on the base material or the release film.
  • the structure may further include a base film, a protective film, or a release film (hereinafter sometimes referred to as a "second film”) formed on the metal layer.
  • a specific type of the first film that can be used in the present application is not particularly limited.
  • the first film for example, a general polymer film in this field may be used.
  • An ethylene-vinyl acetate film, an ethylene-propylene copolymer film, an ethylene-ethyl acrylate copolymer film, an ethylene-methyl acrylate copolymer film, or a polyimide film may be used.
  • an appropriate release treatment may be performed on one side or both sides of the base film or release film of the present application.
  • the release agent used in the release treatment of the base film may include alkyd, silicone, fluorine, unsaturated ester, polyolefin, or wax, among which it is preferable to use an alkyd, silicone, or fluorine release agent in terms of heat resistance. Although preferred, it is not limited thereto.
  • the thickness of the base film or release film (first film) as described above is not particularly limited and may be appropriately selected depending on the application.
  • the thickness of the first film may be about 10 ⁇ m to about 500 ⁇ m, preferably about 20 ⁇ m to about 200 ⁇ m. When the thickness is less than 10 ⁇ m, deformation of the base film may easily occur during the manufacturing process, and when the thickness exceeds 500 ⁇ m, economic efficiency is deteriorated.
  • the encapsulation layer of the encapsulation film may be an extruded product.
  • the encapsulation layer may be formed by extruding the above-described non-solvent type encapsulation composition.
  • An extruded product or an extruded product means a product in which an encapsulating composition is extruded, and in the present application, a film or sheet-shaped encapsulant film may be manufactured by extrusion.
  • the present application provides a solvent-free type film containing a large amount of moisture adsorbent compared to conventional films. Such films may be provided through extrusion.
  • This application relates to a method for manufacturing a sealing film.
  • the manufacturing method of the encapsulation film may include preparing a non-solvent type encapsulation composition by mixing the encapsulation resin and the moisture absorbent in a single step.
  • mixing the encapsulating resin and the moisture adsorbent in a single step means that the encapsulating resin and the moisture adsorbent are added at the same time or immediately after the other one is administered or continuously added and blended within at least 5 minutes, within 3 minutes, or within 100 seconds. it means.
  • the encapsulation film must necessarily include moisture penetrating into the encapsulation film or a moisture adsorbent capable of removing moisture.
  • the moisture adsorbent in order to maximize moisture barrier properties, must be sufficiently dispersed in the composition.
  • dispersion refers to a state in which particles are not aggregated and uniformly scattered, such as forming a lump, and when the dispersion is good, the particles may be separated one by one.
  • a solvent-type resin solution is prepared by dissolving an encapsulating resin in a solvent, and a mixture obtained by dispersing a moisture absorbent in a solvent using a dispersing agent is introduced into the resin solution, thereby mixing the resin and the moisture absorbent.
  • a method of forming one coating solution two or more steps were required to form the coating solution. That is, in order to increase the dispersibility of the moisture adsorbent, a separate dispersant such as an organic acid had to be used, but due to the high viscosity characteristic of the coating liquid, there was a limit to improving the dispersibility of the moisture adsorbent even when a separate dispersant was used.
  • the step of preparing the encapsulation composition may be performed under high temperature conditions, for example, at a temperature of 50 ° C or higher and a pressure of 5 bar or higher.
  • the temperature may be higher than the melting point of the resin, for example, 60 ° C or more, 70 ° C or more, 80 ° C or more, 90 ° C or more, 100 ° C or more, 110 ° C or more, 120 ° C or more, 125 °C or more, 130 °C or more, 135 °C or more, 140 °C or more, 145 °C or more, or 150 °C or more, and the upper limit of the temperature can be appropriately adjusted to a temperature at which the components introduced into the encapsulation composition do not thermally decompose.
  • the pressure may be 7 bar or more, 10 bar or more, 13 bar or more, 15 bar or more, 17 bar or more, or 20 bar or more, and the upper limit of the pressure may be appropriately adjusted according to the purpose, but as an example, 30 bar may be below.
  • the step of preparing the encapsulation composition may be kneaded by putting it into a kneader such as a kneader or banbury, and the temperature of 50 ° C or more and the pressure of 5 bar or more. may be the temperature or pressure inside the kneader.
  • the components in the encapsulation composition are melt-kneaded to further improve the dispersibility of the moisture adsorbent, and the compatibility between the components in the composition is excellent, which is useful in the extrusion process. Workability can also be excellent.
  • the method for producing an encapsulation film according to the present application includes the steps of transferring the encapsulation composition prepared in the encapsulation composition manufacturing step to an extruder for compounding, and extruding at a temperature of 90 ° C or higher to prepare an encapsulation layer.
  • the steps of transferring the encapsulation composition prepared in the encapsulation composition manufacturing step to an extruder for compounding, and extruding at a temperature of 90 ° C or higher to prepare an encapsulation layer. can include
  • the extrusion temperature in the step of preparing the encapsulation layer may mean an internal temperature of the extruder or a molding temperature.
  • the internal temperature of the extruder may refer to a temperature in a section where the encapsulating composition transferred from the kneader to the extruder is blended while moving in the direction of the discharge unit by the screw in the extruder.
  • the molding temperature refers to the temperature of the molding part mounted on the discharge part of the extruder, and may mean, for example, the temperature of the T-die.
  • the molding temperature may refer to a temperature in a section where the film is ejected and molded in the form of a film by the molding unit.
  • the encapsulating composition according to the present invention is first kneaded in a kneader to uniformly disperse the moisture adsorbent, transferred to an extruder, and secondarily kneaded by a screw installed inside the extruder, so that the degree of dispersion of the moisture adsorbent can be further improved. there is.
  • the extruder may be a single screw extruder or a twin screw extruder, but a twin screw extruder having excellent productivity and uniformity is preferred.
  • the type or direction of rotation of the screw in the twin-screw extruder can be appropriately selected according to the ingredients to be introduced.
  • the temperature at which the encapsulation layer is produced by extrusion is 100 ° C or more, 110 ° C or more, 120 ° C or more, 125 ° C or more, 130 ° C or more, 135 ° C or more, 140 ° C or more, 145 ° C or more.
  • the temperature at which this thermal decomposition does not occur may be appropriately adjusted, but as an example, it may be 200 ° C or less or 180 ° C or less.
  • the temperature inside the extruder may be 140 °C or higher, and the molding temperature may be 150 °C or higher. Also, as an example, the difference between the temperature inside the extruder and the molding temperature may be within 50 °C or 30 °C.
  • the moisture adsorbent when the internal temperature of the extruder satisfies the above range, the moisture adsorbent can be uniformly dispersed in the encapsulant composition, and the properties of the film can be improved by controlling the molding temperature within the above range.
  • the step of preparing the encapsulation layer by extrusion may be performed at a high pressure of 5 bar or more to control the viscosity of the encapsulation composition in the range described below, and thus further improve the dispersibility of the moisture adsorbent.
  • the pressure in the extrusion step is 6 bar or more, 7 bar or more, 10 bar or more, 11 bar or more, 12 bar or more, 13 bar or more, 14 bar or more, 15 bar or more, 16 bar or more bar or more, 17 bar or more, 18 bar or more, or 20 bar or more, and the upper limit of the pressure may be appropriately adjusted according to the above purpose, but may be, for example, 30 bar or less.
  • the rotation speed of the screw of the extruder may be within the range of 100 to 400 rpm, 150 to 350 rpm, 170 to 320 rpm, 200 to 300 rpm or 230 to 270 rpm.
  • the moisture adsorbent can be uniformly dispersed in the sealing composition even in a non-solvent type by using a strong shear force according to the rotation of the screw in the extruder.
  • the manufacturing method may further include, for example, a curing step of performing electron beam or UV irradiation on the extruded encapsulation layer.
  • Electron beam or UV irradiation can be performed by a known method.
  • This application also relates to organic electronic devices.
  • the organic electronic device includes a substrate 31; an organic electronic device 32 formed on the substrate 31; and an encapsulation film 33 manufactured according to the above-described manufacturing method for encapsulating the organic electronic element 32 .
  • the encapsulation film may include an encapsulation layer 33 and may further include a metal layer 34 .
  • the encapsulation film integrally including the encapsulation layer 33 and the metal layer 34 may encapsulate the organic electronic device 32 .
  • the organic electronic device includes a substrate 31; organic electronic devices 32; an encapsulation layer 33; And a metal layer 34 may be sequentially included.
  • the encapsulation film may encapsulate both the front surface of the organic electronic device formed on the substrate, for example, the top and side surfaces.
  • the encapsulation film may include an encapsulation layer containing a pressure-sensitive adhesive composition or an adhesive composition in a crosslinked or cured state.
  • the organic electronic device may be formed by sealing the encapsulation layer so as to contact the entire surface of the organic electronic device formed on the substrate.
  • the organic electronic device may include a pair of electrodes, an organic layer including at least a light emitting layer, and a passivation layer.
  • the organic electronic device includes a first electrode layer, an organic layer formed on the first electrode layer and including at least a light emitting layer, and a second electrode layer formed on the organic layer, and an electrode and an organic layer are formed on the second electrode layer. It may include a passivation film to protect.
  • the first electrode layer may be a transparent electrode layer or a reflective electrode layer
  • the second electrode layer may also be a transparent electrode layer or a reflective electrode layer.
  • the organic electronic device may include a transparent electrode layer formed on a substrate, an organic layer formed on the transparent electrode layer and including at least an emission layer, and a reflective electrode layer formed on the organic layer.
  • the organic electronic device may be, for example, an organic light emitting device.
  • the passivation layer may include an inorganic layer and an organic layer.
  • the inorganic layer may be one or more metal oxides or nitrides selected from the group consisting of Al, Zr, Ti, Hf, Ta, In, Sn, Zn, and Si.
  • the inorganic layer may have a thickness of 0.01 ⁇ m to 50 ⁇ m, or 0.1 ⁇ m to 20 ⁇ m, or 1 ⁇ m to 10 ⁇ m.
  • the inorganic layer of the present application may be an inorganic material without a dopant or an inorganic material with a dopant.
  • the dopant that may be doped is one or more elements selected from the group consisting of Ga, Si, Ge, Al, Sn, Ge, B, In, Tl, Sc, V, Cr, Mn, Fe, Co, and Ni, or the element It may be an oxide of, but is not limited thereto.
  • the organic layer is different from the aforementioned organic layer including at least the light emitting layer in that it does not include the light emitting layer, and may be an organic deposition layer including an epoxy compound.
  • the inorganic layer or organic layer may be formed by chemical vapor deposition (CVD).
  • the inorganic layer may use silicon nitride (SiNx).
  • silicon nitride (SiNx) used as the inorganic layer may be deposited to a thickness of 0.01 ⁇ m to 50 ⁇ m.
  • the thickness of the organic layer may be in the range of 2 ⁇ m to 20 ⁇ m, 2.5 ⁇ m to 15 ⁇ m, and 2.8 ⁇ m to 9 ⁇ m.
  • the present application also provides a method for manufacturing an organic electronic device.
  • the manufacturing method may include applying an encapsulation film obtained from the manufacturing method to a substrate having an organic electronic element formed thereon to cover the organic electronic element.
  • the manufacturing method may include curing the encapsulation film.
  • the curing step of the encapsulation film may mean curing of the encapsulation layer, and may be performed before or after the encapsulation film covers the organic electronic device.
  • the term "curing” may mean that the pressure-sensitive adhesive composition of the present invention forms a cross-linked structure through a heating or UV irradiation process to prepare the pressure-sensitive adhesive in the form of a pressure-sensitive adhesive.
  • the adhesive composition is solidified and attached as an adhesive.
  • an electrode is formed on a glass or polymer film used as a substrate by a method such as vacuum deposition or sputtering, and on the electrode, for example, a layer of a light-emitting organic material composed of a hole transport layer, a light emitting layer, and an electron transport layer
  • an organic electronic device may be formed by additionally forming an electrode layer thereon. Subsequently, the front surface of the organic electronic element of the substrate subjected to the process is positioned so that the encapsulation layer of the encapsulation film covers it.
  • the present application provides an encapsulation film capable of forming a structure capable of blocking moisture or oxygen flowing into an organic electronic device from the outside and ensuring long-term reliability of the organic electronic device.
  • FIG. 1 is a cross-sectional view showing an encapsulation layer according to one example of the present application.
  • FIG. 2 is a cross-sectional view showing a sealing film.
  • FIG 3 is a cross-sectional view showing an organic electronic device according to one example of the present application.
  • Butyl rubber resin (Mw: 410,000g/mol, glass transition temperature: -65°C) 100 parts by weight, tackifying resin (SU525, softening point: 125°C, Kolon) 100 parts by weight, polyfunctional acrylate (tricyclodecane) 3 parts by weight of dimethanol diacrylate, Miwon), 1 part by weight of photoinitiator (Irgacure 651, Ciba), and 200 parts by weight of CaO were put into a pressure kneader set at 150°C and 20 bar, followed by melt kneading for 30 minutes. , 170 ° C and 50 s -1 at a shear rate of 1500 Pa ⁇ s viscosity of the encapsulation composition was prepared.
  • the encapsulation composition was transferred to a twin-screw extruder (SM Platek's TEK30) set at a temperature of 180 ° C and a screw rotation speed of 250 rpm and compounded, using a T-die mounted on the twin-screw extruder at a temperature of 160 ° C and 20 bar Extruded by pressure, to prepare a film-like encapsulation layer having a thickness of 50 ⁇ m.
  • An encapsulation film was prepared by irradiating 1.5 J/cm 2 ultraviolet rays to the encapsulation layer.
  • a film was prepared in the same manner as in Example 1, except that the T-die temperature was set to 170°C.
  • a film was prepared in the same manner as in Example 1, except that the T-die temperature was set to 180°C.
  • a film was prepared in the same manner as in Example 1, except that EASTman's Kristalex F115 (softening point: 115°C) was included as a tackifier in the encapsulation composition.
  • a film was prepared in the same manner as in Example 1, except that the T-die temperature was set to 150°C.
  • Butyl rubber resin (Mw: 410,000g/mol) 100 parts by weight, tackifying resin (SU525, Melting point: 125°C, Kolon) 100 parts by weight, multifunctional acrylate (tricyclodecane dimethanol diacrylate, Miwon) 3 parts by weight of a photoinitiator (Irgacure 651, Ciba) 1 part by weight and 200 parts by weight of CaO were mixed with 600 parts by weight of toluene and thoroughly mixed to prepare a solution having a solid content of 40 wt%.
  • tackifying resin SUV525, Melting point: 125°C, Kolon
  • multifunctional acrylate tricyclodecane dimethanol diacrylate, Miwon
  • a photoinitiator Irgacure 651, Ciba
  • the solution was coated on release PET, dried in an oven at 120 °C, and then irradiated with 1.5 J/cm 2 ultraviolet rays to prepare an encapsulation film.
  • An encapsulation layer was prepared in the same manner as in Example 1, except that the moisture adsorbent was included in 80 parts by weight.
  • Gaussian curve fitting is for the distribution of the moisture adsorbent along the thickness (depth) direction of the encapsulation layer, the x-axis is the thickness of the encapsulation layer, and the f(x) function is as shown in Equation 1 below.
  • a and b are constants related to the absolute amount of the moisture adsorbent, Is the average position in the thickness (depth) direction of the moisture adsorbent, and ⁇ is the position distribution in the thickness (depth) direction of the moisture adsorbent.
  • Samples of the encapsulation films of Examples and Comparative Examples were prepared in a size of 50 mm ⁇ 50 mm, and for each encapsulation film specimen, 0.3 to 0.4 g of encapsulation film (initial weight: A) was taken, and the encapsulation film was 60 It was immersed in 70 g of toluene at °C for 3 hours. Thereafter, the gel portion was filtered with a 200 mesh wire mesh (weight of wire mesh: M), and then dried in an oven at 125°C for 1 hour.
  • A represents the initial mass of the encapsulation film specimen, and B is immersed in 70 g of toluene at 60 ° C for 3 hours and filtered through a 200 mesh (pore size 200 ⁇ m) net, It represents the dry mass of the insoluble part of the sealing film which did not pass through.
  • a certain amount of the encapsulation film according to Examples or Comparative Examples was put into a bottle, filled with toluene, and stored for 24 hours to obtain a solution in a sol-gel state. Then, the weight (X) of the gel sample was measured immediately after it was separated from the sol-gel solution using a 200 mesh (pore size 200 ⁇ m). The obtained gel sample was dried in an oven at 80 ° C for 12 hours, and the weight (Y) of the gel sample was measured immediately after drying.
  • the swelling index was calculated according to Formula 2 below using the above values.
  • Swelling index weight of gel sample immediately after separation from sol-gel solution (X) / weight of gel sample immediately after drying (Y)
  • Each of the encapsulant films according to Examples or Comparative Examples was laminated to a thickness of 600 ⁇ m to obtain a specimen, and a parallel plate in the Temp Sweep mode of ARES (Advanced Rheometric Expansion System, TA Corporation ARES-G2) as the specimen It was measured using Specifically, among the storage modulus measured after applying a strain of 15.0 rad/s at a 0.1% strain to the specimen in the temperature range of 30 to 100 °C, the value at 50 °C is shown.
  • ARES Advanced Rheometric Expansion System
  • the encapsulant films according to Examples and Comparative Examples were thermally laminated on the Cu side having a size of 200 mm ⁇ 220 mm at 75 ° C, respectively, cut into 25 mm, and then added to the Cu side using a 2 Kg roller. By laminating with, the specimen was prepared. After leaving the specimen for 30 minutes in a constant temperature and humidity room at 22 ⁇ 5 °C and 50 ⁇ 10%, the specimen is fixed in a tensioner (TA, Texture Analyzer) and stretched at 25 °C and 5 mm/min in Tension Mode. speed was measured.
  • TA Texture Analyzer
  • Example 1 Example 2 Example 3
  • Example 4 Comparative Example 1 Comparative Example 2 comparative example 3
  • Gel content (%) 78.1 78.3 77.5 78 74.5 71.2 79.8
  • Swelling index (%) 469
  • 453 450 470 612 567
  • 421 storage modulus (Pa) 331,427 335,453 335,554
  • metal adhesion (gf/in) 5,100 5,300 5,550 5,050 3,700 1,400 7,200 ⁇ 0.984 0.138 0.094 0.985 2.623 1400 3.548

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 출원은 봉지 필름, 이의 제조 방법, 이를 포함하는 유기전자장치 및 이를 이용한 유기전자장치의 제조 방법에 관한 것으로서, 봉지 필름은 봉지 조성물의 경화물인 봉지층을 포함하고, 봉지 조성물은 봉지 수지 및 수분 흡착제를 포함하며, 봉지층은 단일층이되, 두께 방향에 따라 수분 흡착제의 농도가 다른 제 1 영역, 제 2 영역 및 제 3 영역을 포함하여, 외부로부터 유기전자장치로 유입되는 수분 또는 산소를 차단할 수 있고, 유기전자장치의 장기 신뢰성이 확보될 수 있다.

Description

봉지 필름
본 출원은 봉지 필름, 이의 제조 방법, 이를 포함하는 유기전자장치 및 상기 유기전자장치의 제조 방법에 관한 것이다.
유기전자장치(OED; organic electronic device)는 정공 및 전자를 이용하여 전하의 교류를 발생하는 유기 재료층을 포함하는 장치를 의미하며, 그 예로는, 광전지 장치(photovoltaic device), 정류기(rectifier), 트랜스미터(transmitter) 및 유기발광다이오드(OLED; organic light emitting diode) 등을 들 수 있다.
상기 유기전자장치 중 유기발광다이오드(OLED: Organic Light Emitting Diode)는 기존 광원에 비하여, 전력 소모량이 적고, 응답 속도가 빠르며, 표시장치 또는 조명의 박형화에 유리하다. 또한, OLED는 공간 활용성이 우수하여, 각종 휴대용 기기, 모니터, 노트북 및 TV에 걸친 다양한 분야에서 적용될 것으로 기대되고 있다.
OLED의 상용화 및 용도 확대에 있어서, 가장 주요한 문제점은 내구성 문제이다. OLED에 포함된 유기재료 및 금속 전극 등은 수분 등의 외부적 요인에 의해 매우 쉽게 산화된다. 따라서, 수분 차단성이 극대화된 봉지 필름이 요구된다.
특히, OLED 봉지재는 우수한 수분 차단성을 확보하기 위해서는 수분 차단성을 갖는 층을 필수 구성으로 포함해야 하고, 상기 수분 차단성을 갖는 층은 상부 및/또는 하부 구성요소와의 우수한 접착 특성을 필요로 한다. 수분 차단성을 가지는 층과 접착성을 가지는 층을 별도로 제작한 뒤, 각각의 층을 서로 부착하여 일체로 합체하는 방법을 고려할 수도 있으나, 상기 방법에 따르면, 요구되는 기능의 확보를 위해서 다수의 층을 제작할 필요가 있으므로, 가격의 상승, 공정의 복잡화, 및 박형화 효율의 저하 등의 문제를 유발할 수 있다.
본 출원은 외부로부터 유기전자장치로 유입되는 수분 또는 산소를 차단할 수 있는 구조의 형성이 가능하고, 가혹 환경에서도 내구 신뢰성을 유지할 수 있는 봉지 필름을 제공한다. 본 출원에 따른 봉지 필름은 단일층 만으로, 수분 차단성 및 점착성을 우수하게 발휘할 수 있으므로, 본 출원에 따른 봉지 필름을 적용한 소자는 박형화를 유지할 수 있다.
본 출원의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 출원은 봉지 필름에 관한 것이다. 상기 봉지 필름은 예를 들면, OLED 등과 같은 유기전자장치를 봉지 또는 캡슐화하는 것에 적용될 수 있다.
본 명세서에서, 용어 「유기전자장치」는 서로 대향하는 한 쌍의 전극 사이에 정공 및 전자를 이용하여 전하의 교류를 발생하는 유기재료층을 포함하는 구조를 갖는 물품 또는 장치를 의미하며, 그 예로는, 광전지 장치, 정류기, 트랜스미터 및 유기발광다이오드(OLED) 등을 들 수 있으나, 이에 제한되는 것은 아니다. 본 출원의 하나의 예시에서 상기 유기전자장치는 OLED일 수 있다.
OLED 봉지재는 우수한 수분차단성을 확보하기 위해서는 수분 차단성을 갖는 층을 필수 구성으로 포함해야 하고, 상기 수분 차단성을 갖는 층은 상부 및/또는 하부 구성요소와의 우수한 접착 특성을 필요로 한다. 수분 차단성을 가지는 층과 접착성을 가지는 층 등을 별도로 제작한 뒤, 각각의 층을 서로 부착하여 일체로 합체하는 방법을 고려할 수도 있으나, 상기 방법에 따르면, 요구되는 기능의 확보를 위해서 다수의 층을 제작할 필요가 있으므로, 가격의 상승, 공정의 복잡화, 및 박형화 효율의 저하 등의 문제를 유발할 수 있다. 따라서, 이러한 문제를 해결하기 위하여, 본 출원은 단일층 만으로 수분 차단성 및 점착성을 우수한 성능으로 발휘할 수 있는 봉지 필름을 제공할 수 있다.
예시적인 봉지 필름은 봉지 조성물의 경화물인 봉지층을 포함할 수 있고, 봉지 조성물은 봉지 수지 및 수분 흡착제를 포함할 수 있으며, 봉지층은 단일층이되, 봉지층 내 두께(깊이) 방향에 따른 수분 흡착제의 분포에 대한 가우시안 커브 피팅(Gaussian curve fitting)에서, 수분 흡착제의 두께 방향에 대한 위치 분포(σ 값)가 2 이하일 수 있다.
일 예로서, 수분 흡착제의 두께 분포에 대한 가우시안 커브 피팅(Gaussian curve fitting)에서, 수분 흡착제의 두께 방향에 대한 위치 분포(σ 값)가 1.9 이하, 1.8 이하, 1.7 이하, 1.6 이하, 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 1.1 이하, 1 이하, 0.9 이하, 0.8 이하, 0.7 이하, 0.6 이하, 0.5 이하, 0.4 이하, 0.3 이하, 0.2 이하, 0.15 이하, 또는 0.1 이하일 수 있고, 하한값은 크게 제한되지 않으나 0 .001 이상일 수 있다.
여기서, 가우시안 커브 피팅은 봉지층의 두께에 대한 함수를 나타낸 것으로, 아래 식 1과 같다.
[식 1]
Figure PCTKR2022019412-appb-img-000001
식 1에서, A 및 b는 수분 흡착제의 절대량 관련 상수이고,
Figure PCTKR2022019412-appb-img-000002
는 수분 흡착제의 두께 방향에 대한 평균 위치이고, σ는 수분 흡착제의 두께 방향에 대한 위치 분포이다.
수분 흡착제의 두께 분포에 대한 가우시안 커브 피팅에서의 σ 값이 상기와 같이 특정 범위를 만족함으로써, 두께 방향에서 봉지 필름의 중앙부에 해당하는 영역에 수분 흡착제가 고함량으로 포함할 수 있고, 이에 따라 수분 흡착성이 우수하면서도, 이와 동시에 점착 특성 또한 개선될 수 있다.
즉, 상기 봉지층은 두께 방향에 따라 수분 흡착제의 농도가 다른 제 1 영역, 제 2 영역 및 제 3 영역을 포함할 수 있고, 봉지층은 단일층으로 복수 개의 층을 갖는 적층 구조가 아니나, 수분 흡착제의 농도에 따라 단일층을 임의로 영역을 구별할 수 있다. 일 예로서, 단일층의 봉지층을 이루는 제 1 영역, 제 2 영역 및 제 3영역은 수분 흡착제의 함량이 상이할 수 있다. 이 때, 수분 흡착제의 함량에 따른 영역 구별과 관련하여, 각 영역의 계면에서 수분 흡착제의 함량은 연속적으로 변화할 수 있으므로, 각 영역에서의 계면이 반드시 명확하게 구분지어질 필요는 없다.
하나의 예시에서, 제 2 영역은 제 1 영역 및 제 3 영역 대비 수분 흡착제를 고함량으로 포함할 수 있다. 즉, 제 2 영역은 제 1 영역 및 제 2 영역보다 수분 흡착제 함량이 더 많은 영역일 수 있다. 이 때, 제 1 영역과 제 2 영역은 수분 흡착제 함량이 제 2 영역보다 저함량이면 충분하고, 제 1 영역과 제 2 영역의 수분 흡착제 함량은 동일하거나 다를 수 있다.
도 1은 단일층의 봉지층을 수분 흡착제의 함량에 따라 영역을 구별하여 나타낸 것으로, 도 1을 참조하면, 수분 흡착제가 고함량 영역인 제 2 영역(22)은, 수분 흡착제 저농도 영역인 제 1 영역(21)과 제 3 영역 사이(23)에 개재될 수 있다. 다시 말해서, 수분 흡착제가 저함량 영역인 제 1 영역(21)과 제 3 영역(23)은 각각 봉지층(11)의 최상부 또는 최하부를 이루어 상면 또는 하면에 위치하고, 봉지층의 상부 또는 하부에 접하는 다른 구성요소와 직접적으로 접할 수 있다.
즉, 본 발명에 따르면, 봉지층에 포함된 수분 흡착제는 입자 형태로 봉지층 내에 고르게 분포되지 않은 상태로 존재할 수 있다. 여기서, 분포는 입자가 공간을 채우는 방식에 관한 것으로 분산과는 구별되는 개념이다. 고르게 분포된 상태는 봉지층 또는 봉지 필름의 어느 부분에서도 동일 또는 실질적으로 동일한 밀도로 수분 흡착제가 존재하여, 입자들끼리 가능한한 멀리 떨어져 있어 공간 내에 균일하게 채워진 상태를 의미한다.
한편, 유기전자소자에 접하는 봉지층에 수분 흡착제가 고르게 분포된 상태로 과량으로 포함되면, 최상부 및/또는 최하부를 이루는 봉지층의 상면 및 하면에도 수분 흡착제가 과량으로 존재하게 되고, 이 경우 봉지층의 접착 성능이 매우 떨어져 유기전자소자의 내구성 및 신뢰성이 저하되는 문제가 발생할 수 있다.
따라서, 기존에는 봉지 필름으로 적어도 2 이상의 봉지층을 포함하는 다층 구조를 이용하였다. 즉, 다층 구조의 봉지 필름이 유기전자소자 상에 적용될 때, 유기전자소자를 향하는 제1 봉지층에는 수분 흡착제를 포함하지 않거나 포함하더라도 소량으로 포함하고, 유기전자소자를 향하는 면과 반대 면에 위치하는 제2 봉지층에 수분 흡착제를 다량으로 포함하도록 설계함으로써, 유기전자소자에 접하는 제1 봉지층으로부터 접착성을 확보하고, 제2 봉지층으로부터 수분 배리어성을 확보하였다.
그러나, 본 출원에 따른 봉지층은 단일층이되, 봉지층의 두께(깊이) 방향으로 중앙부에 수분 흡착제를 고농도로 함유하고 봉지층의 양 표면에는 수분 흡착제가 저농도로 함유하여 수분 흡착제가 특정 분포 상태를 나타냄으로써, 본 출원은 별도의 점착체층이나 접착체층 없이도 적정 수준 이상의 우수한 접착성을 나타내면서도 이와 동시에 우수한 배리어성을 갖는 봉지 필름을 제공할 수 있다.
하나의 예시에서, 봉지층의 메탈 점착력이 4,000 gf/in 이상, 4,200 gf/in 이상, 4,400 gf/in 이상, 4,600 gf/in 이상, 4,800 gf/in 이상, 5,000 gf/in 이상, 5,100 gf/in 이상, 5,200 gf/in 이상, 5,300 gf/in 이상, 5,400 gf/in 이상, 또는 5,500 gf/in 이상일 수 있다. 상한은 크게 제한되지 않으나, 10,000 gf/in 이하 또는 8,000 gf/in 이하일 수 있다. 즉, 본 출원에 따른 봉지층은, 전술한 바와 같이, 두께 방향에 따라 수분 흡착제의 함량이 상이하고, 봉지층의 상면 또는 하면에는 수분 흡착제가 저함량 영역인 제 1 영역 또는 제 3 영역이 위치함에 따라, 본 출원의 봉지층은 우수한 메탈 점착력을 가질 수 있다. 상기 메탈 점착력은 후술하는 바와 같이 봉지층 상에 추가될 수 있는 메탈층에 대한 점착력으로, 22±5 °C 온도 및 50±10 % 항온 항습실에서 30분간 방치한 봉지 필름을 인장기(TA, Texture Analyser)에 고정시키고 Tension Mode에서 25 °C 온도 및 5 mm/min 인장 속도로 측정한 것일 수 있다.
하나의 예시에서, 상기로부터 제조된 봉지층은 하기 일반식 1로 측정한 겔함량이 60% 이상일 수 있다.
[일반식 1]
겔함량(%) = A/B Х 100
상기 일반식 1에서, B는 상기 봉지층 샘플의 질량이고, A는 상기 샘플을 60°C에서 톨루엔으로 24시간 침지 후 200메쉬의 망으로 여과시키고, 상기 망을 통과하지 않은 상기 봉지층의 불용해분의 건조 질량을 나타낸다. 본 명세서에서 단위 메쉬는 ASTM 기준의 단위일 수 있다. 상기 봉지층 샘플의 질량 B는 1g으로 하여 측정할 수 있다. 상기 겔함량은 예를 들어, 63% 이상, 65% 이상, 67% 이상, 70% 이상, 72% 이상, 75% 이상 또는 78% 이상일 수 있고, 상한은 예를 들어, 99% 이하, 95% 이하, 93% 이하, 89% 이하, 86% 이하, 84% 이하, 82% 이하 또는 80% 이하일 수 있다. 본 출원은 겔함량을 조절함으로써, 수분 차단성 및 스트레스 흡수성뿐만 아니라 경화 물성이 우수한 봉지 필름을 제공할 수 있다.
또한, 본 출원에 따른 봉지층은 산가(Acid value)가 1이하일 수 있다. 상기 산가는 예를 들어, 0.9 이하, 0.8 이하 또는 0.7 이하일 수 있고, 하한은 특별히 한정되지 않지만, 0.1 이상일 수 있다. 종래부터 문제가 되었던 수분 차단성 및 유기전자소자의 다크 스팟 발생과 휘점 발생과는 달리, 최근에는 유기전자소자에서 발생하는 백점이 패널 불량의 주요 원인이 되고 있다. 본 출원은 상기 백점이 발생하는 메커니즘이 봉지 조성물 내에 존재하는 유기산에 따른 것임을 확인하고, 봉지층 자체의 산가와 함께 봉지층 메트릭스의 가교 정도를 상기 겔함량으로 조절함으로써, 백점 발생을 효과적으로 억제할 수 있었다. 구체예에서, 상기 유기산은 이온 형태로 유기전자소자에 도달하며, 상기 소자 상에 일부 형성될 수 있는 크랙에서 문턱전압을 시프트시킴으로써 백점을 발생시키고 있었다. 이러한 기술적인 문제는 상기 유기전자소자의 전면을 봉지하는 봉지층의 산가와 겔함량을 조절함으로써 방지할 수 있다.
나아가, 본 출원에 따른 봉지층은 가시광선 영역에 대하여 우수한 광투과율을 가질 수 있다. 하나의 예시에서, 본 출원의 봉지용 조성물은 경화 후 JIS K7105 규격에 따른 80% 이상의 광투과율을 나타낼 수 있다. 예를 들어, 상기 봉지용 조성물은 가시광선 영역에 대하여 85% 이상, 90% 이상, 92% 이상 또는 93% 이상의 광투과율을 가질 수 있다. 본 출원의 봉지층은 우수한 광투과율과 함께 낮은 헤이즈를 나타낼 수 있다. 하나의 예시에서, 상기 봉지 조성물은 경화 후 JIS K7105의 규격에 따라 측정한 헤이즈가 5% 이하, 4% 이하, 3% 이하 또는 1% 이하일 수 있다. 상기 광학 특성은 UV-Vis Spectrometer를 이용하여 550 nm에서 측정한 것일 수 있다.
또한, 하나의 예시에서, 상기 유기전자소자 봉지층의 경화 후, 색도 측정기를 이용하여 ASTM D 1003 규격으로 측정한 황색도(△YI, yellow index) 값이 1 이하일 수 있고, 그 하한은 크게 제한되지 않으나, -2 이상일 수 있다.
하나의 예시에서, 상기 봉지층은, Purge & Trap sampler (JAI JTD-505Ⅲ - GC/MSD system (Agilent 7890B/5977A) 측정기기를 이용하여, 100 °C에서 60분 동안 퍼지트랩(Purge and Trap)을 실시한 뒤, 기체 크로마토그래피 질량분석법을 이용하여 총 아웃 가스량을 측정하였을 때, 측정된 아웃 가스량은 400 ppm 미만일 수 있고, 자세하게는, 300 ppm 이하, 200 ppm 이하, 100 ppm 이하, 90 ppm 이하, 80 ppm 이하, 70 ppm 이하, 50 ppm 이하, 30 ppm 이하, 20 ppm 이하 또는 10 ppm 이하일 수 있다. 즉, 본 발명에 따른 봉지층은 후술하는 조성을 포함함으로써, 봉지층으로부터 발생되는 아웃 가스량이 미미하기 때문에, 상기 봉지층이 적용되는 유기전자소자는 우수한 신뢰성을 가질 수 있다.
일 구체예에서, 상기 봉지층은 두께가 30㎛ 이상 500㎛ 이하일 수 있다. 본 출원의 봉지층은 두께가 30㎛ 이상, 33㎛ 이상, 35㎛ 이상, 40㎛ 이상, 43㎛ 이상, 45㎛ 이상, 47㎛ 이상, 50㎛ 이상, 52㎛ 이상, 55㎛ 이상, 57㎛ 이상, 또는 60㎛ 이상일 수 있고, 상한은 특별히 한정되지 않으나, 500㎛ 이하, 400㎛ 이하, 300㎛ 이하, 250㎛ 이하, 또는 200㎛ 이하일 수 있다. 본 출원은 봉지층의 두께를 종래 대비 두껍게 하면서도 겔함량을 목적하는 수준으로 구현하여 수분 차단성을 극대화할 수 있고, 또한, 고온 등 가혹 환경에서 패널 휨이 발생하는 경우, 스트레스를 흡수하여 신뢰성 높은 유기전자장치를 제공할 수 있다. 종래에는 봉지 필름을 일정 두께 이상으로 코팅한 후 UV를 조사하여 형성하였으나, UV가 필름 내부까지 침투하지 못해 경화 물성이 현저히 저하되는 문제가 있었고, 또한, 용제가 필름 내부에 남게 되어 일부 휘발되지 않는 용제 및 미경화 물질이 유기전자소자에 손상을 주는 문제가 있었다. 특히, 본 출원의봉지 조성물은 유기전자소자의 전면을 밀봉하여 유기전자소자의 일면과 직접적으로 접촉할 수 있는데, 상기 봉지 조성물로 후술하는 바와 같이 별도의 분산제를 포함하지 않으면서도 후술하는 조성의 무용제 타입을 이용함으로써, 유기전자소자의 신뢰성을 더욱 향상시킬 수 있고, 나아가, 일정 두께 이상에서도 향상된 경화율을 나타냄으로써, 수분 차단성 및 스트레스 흡수뿐만 아니라, 우수한 경화 물성을 구현할 수 있다.
또한, 하나의 예시에서, 본 출원의 봉지층은 단일층일 수도 있으나, 이에 한정되지 않고, 적어도 2 이상의 봉지층을 포함하는 다층 구조일 수 있다. 상기 2 이상의 봉지층을 포함하는 경우, 상기 봉지층은 상기 유기전자소자 봉지 시에 소자를 향하는 제 1 봉지층 및 상기 제 1 봉지층의 상기 소자를 향하는 면과는 반대 면에 위치하는 제 2 봉지층을 포함할 수 있다. 일 구체예에서, 봉지 필름은 적어도 2 이상의 봉지층을 포함하고, 상기 봉지층은 봉지 시 유기전자소자를 향하는 제 1 봉지층 및 상기 유기전자소자를 향하지 않는 제 2 봉지층을 포함할 수 있다. 또한, 2 이상의 층이 봉지층을 구성할 경우, 상기 봉지층의 각 층의 조성은 동일하거나 상이할 수 있다. 하나의 예시에서, 상기 봉지층은 봉지 수지 및/또는 수분 흡착제를 포함할 수 있으며, 상기 봉지층은 점착제층 또는 접착제층일 수 있다. 일 예로서, 봉지 필름이 유기전자소자 상에 적용될 때, 유기전자소자를 향하는 봉지층인 제 1 봉지층은 수분 흡착제를 포함하지 않거나, 포함하더라도 전체 수분 흡착제 중량 기준에서 5 중량% 이하의 소량으로 포함할 수 있고, 후술하는 바와 같은 다량의 수분 흡착제는 제 2 봉지층에 포함될 수 있다.
하나의 구체예에서, 본 출원의 봉지 필름(1)은, 도 2에 도시된 바와 같이, 봉지층(11) 및 기재층(12)을 포함할 수 있다. 상기 봉지필름은 기판 상에 형성된 유기전자소자의 전면을 밀봉할 수 있다.
하나의 예시에서, 본 출원의 봉지 조성물은 봉지 수지를 포함할 수 있다. 상기 봉지 수지는 가교 가능한 수지 또는 경화성 수지일 수 있고, 구체예에서, 올레핀계 수지를 포함할 수 있다.
하나의 예시에서, 상기 봉지 조성물은 무용제 타입일 수 있다. 본 명세서에서, 무용제 타입은 용제를 포함하지 않거나, 용제를 전체 조성물 내에서 0.1wt% 이하 또는 0.01wt% 이하로 포함하는 경우를 의미한다. 즉, 상기 봉지 조성물은 고형분을 99wt% 이상, 99.9wt% 이상 또는 100 wt%으로 포함하는 것으로, 본 출원은 별도의 용제 없이 고형분 99wt% 이상 또는 100 wt%의 원료만으로 제막 가능한 봉지 필름을 제공한다.
하나의 예시에서, 상기 봉지 수지는 유리전이온도가 0°C 미만, -10°C 미만 또는 -30°C 미만, -50°C 미만 또는 -60°C 미만일 수 있다. 하한은 특별히 제한되지 않고 -150°C 이상일 수 있다. 상기에서 유리전이온도란, 경화 후의 유리전이온도일 수 있다.
본 출원의 일구체예에서, 상기 봉지 수지는 올레핀계 수지일 수 있다. 하나의 예시에서, 올레핀계 수지는 부틸렌 단량체의 단독 중합체; 부틸렌 단량체와 중합 가능한 다른 단량체를 공중합한 공중합체; 부틸렌 단량체를 이용한 반응성 올리고머; 또는 이들의 혼합물일 수 있다. 상기 부틸렌 단량체는 예를 들어, 1-부텐, 2-부텐 또는 이소부틸렌을 포함할 수 있다. 일 예시에서, 상기 올레핀계 수지는 이소부틸렌 단량체를 중합 단위로 포함할 수 있다.
상기 부틸렌 단량체 혹은 유도체와 중합 가능한 다른 단량체는, 예를 들면, 이소프렌, 스티렌 또는 부타디엔 등을 포함할 수 있다. 상기 공중합체를 사용함으로써, 공정성 및 가교도와 같은 물성을 유지할 수 있어 유기전자장치에 적용 시 점착제 자체의 내열성을 확보할 수 있다.
또한, 부틸렌 단량체를 이용한 반응성 올리고머는 반응성 관능기를 갖는 부틸렌 중합체를 포함할 수 있다. 상기 올리고머는 중량평균 분자량 500 내지 5000g/mol의 범위를 가질 수 있다. 또한, 상기 부틸렌 중합체는 반응성 관능기를 갖는 다른 중합체와 결합되어 있을 수 있다. 상기 다른 중합체는 알킬 (메타)아크릴레이트일 수 있으나 이에 한정되는 것은 아니다. 상기 반응성 관능기는 히드록시기, 카르복실기, 이소시아네이트기 또는 질소 함유기일 수 있다. 또한, 상기 반응성 올리고머와 상기 다른 중합체는 다관능성 가교제에 의해 가교되어 있을 수 있고, 상기 다관능성 가교제는 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제 및 금속 킬레이트 가교제로 이루어진 그룹 중에서 선택된 하나 이상일 수 있다.
하나의 예시에서, 본 출원의 봉지 수지는 디엔과 하나의 탄소-탄소 이중결합을 포함하는 올레핀계 화합물의 공중합체를 포함할 수 있다. 여기서, 올레핀계 화합물은 부틸렌 등을 포함할 수 있고, 디엔은 상기 올레핀계 화합물과 중합 가능한 단량체일 수 있으며, 예를 들어, 이소프렌 또는 부타디엔 등을 포함할 수 있다. 예를 들어, 하나의 탄소-탄소 이중결합을 포함하는 올레핀계 화합물 및 디엔의 공중합체는 부틸 고무일 수 있다.
봉지층에서 상기 수지 또는 엘라스토머 성분은 점착제 조성물이 필름 형상으로 성형이 가능한 정도의 중량평균분자량(Mw: Weight Average Molecular Weight)을 가질 수 있다. 예를 들면, 상기 수지 또는 엘라스토머는 약 10만 내지 200만g/mol, 12만 내지 150만g/mol, 15만 내지 100 만g/mol, 20만 내지 70 만g/mol, 23만 내지 60 만g/mol, 25만 내지 50 만g/mol 또는 30만 내지 47만g/mol 정도의 중량평균분자량을 가질 수 있다. 본 명세서에서 용어 중량평균분자량은, GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미하고 달리 규정하지 않는 한 단위는 g/mol이다. 다만, 상기 언급된 중량평균분자량을 상기 수지 또는 엘라스토머 성분이 반드시 가져야 하는 것은 아니다. 예를 들어, 수지 또는 엘라스토머 성분의 분자량이 필름을 형성할 정도의 수준이 되지 않는 경우에는 별도의 바인더 수지가 점착제 조성물에 배합될 수 있다.
하나의 예시에서, 상기 봉지 수지는 봉지층 내에서 10 중량% 이상, 13 중량% 이상, 15 중량% 이상, 17 중량% 이상, 20 중량% 이상, 21 중량% 이상, 22 중량% 이상, 23 중량% 이상 또는 24 중량% 이상 포함될 수 있고, 그 상한은 90 중량% 이하, 80 중량% 이하, 70 중량% 이하, 60 중량% 이하, 50 중량% 이하, 40 중량% 이하 또는 30 중량% 이하일 수 있다. 상기 봉지 수지는 수분 차단성은 좋으나 내열 내구성이 떨어지는 단점이 있기 때문에, 본 출원은 상기 봉지 수지의 함량을 조절함으로써, 수지 자체가 갖는 수분 차단 성능을 충분히 구현하면서도 고온 고습에서의 내열 내구성을 같이 유지하도록 할 수 있다.
하나의 예시에서, 봉지 필름은 수분 흡착제를 포함할 수 있다. 본 명세서에서 용어 「수분 흡착제(moisture absorbent)」는, 예를 들면, 후술하는 봉지 필름으로 침투한 수분 내지는 습기와의 화학적 반응을 통해 상기를 제거할 수 있는 화학 반응성 흡착제를 의미할 수 있다.
하나의 예시에서, 상기 수분 흡착제는 표면에 유기산이 존재하지 않을 수 있다. 일반적으로 수분 흡착제는 조성물 내에 분산이 잘되도록 분산제로 표면 처리할 수 있고, 이 경우 수분 흡착제의 표면에 유기산이 존재한다. 이러한 유기산은 소자와 직접 닿는 봉지층 내에서 소자를 향해 침투하기 때문에, OLED 패널의 백점 불량을 발생시킨다. 본 출원은 수분 흡착제가 분산제를 포함하지 않거나, 유기산을 포함하지 않음으로써, 봉지 조성물 전체의 신뢰성을 향상시켜, OLED 패널 불량을 방지한다.
상기에서 사용될 수 있는 수분 흡착제로는, 예를 들면, 금속 산화물, 황산염 또는 유기 금속 산화물 등을 들 수 있다. 구체적으로, 상기 황산염의 예로는, 황산마그네슘, 황산나트륨 또는 황산니켈 등을 들 수 있으며, 상기 유기 금속 산화물의 예로는 알루미늄 옥사이드 옥틸레이트 등을 들 수 있다. 상기에서 금속산화물의 구체적인 예로는, 오산화인(P2O5), 산화리튬(Li2O), 산화나트륨(Na2O), 산화바륨(BaO), 산화칼슘(CaO) 또는 산화마그네슘(MgO) 등을 들 수 있고, 금속염의 예로는, 황산리튬(Li2SO4), 황산나트륨(Na2SO4), 황산칼슘(CaSO4), 황산마그네슘(MgSO4), 황산코발트(CoSO4), 황산갈륨(Ga2(SO4)3), 황산티탄(Ti(SO4)2) 또는 황산니켈(NiSO4) 등과 같은 황산염, 염화칼슘(CaCl2), 염화마그네슘(MgCl2), 염화스트론튬(SrCl2), 염화이트륨(YCl3), 염화구리(CuCl2), 불화세슘(CsF), 불화탄탈륨(TaF5), 불화니오븀(NbF5), 브롬화리튬(LiBr), 브롬화칼슘(CaBr2), 브롬화세슘(CeBr3), 브롬화셀레늄(SeBr4), 브롬화바나듐(VBr3), 브롬화마그네슘(MgBr2), 요오드화바륨(BaI2) 또는 요오드화마그네슘(MgI2) 등과 같은 금속할로겐화물; 또는 과염소산바륨(Ba(ClO4)2) 또는 과염소산마그네슘(Mg(ClO4)2) 등과 같은 금속염소산염 등을 들 수 있으나, 이에 제한되는 것은 아니다. 봉지층에 포함될 수 있는 수분 흡착제로는 상술한 구성 중 1 종을 사용할 수도 있고, 2 종 이상을 사용할 수도 있다. 하나의 예시에서 수분 흡착제로 2 종 이상을 사용하는 경우 소성돌로마이트(calcined dolomite) 등이 사용될 수 있다.
이러한 수분 흡착제는 용도에 따라 적절한 크기로 제어될 수 있다. 하나의 예시에서 수분 흡착제의 평균 입경이 100 내지 15000 nm, 500 nm 내지 10000 nm, 800 nm 내지 8000 nm, 1㎛ 내지 7㎛, 2㎛ 내지 5㎛ 또는 2.5㎛ 내지 4.5㎛로 제어될 수 있다. 상기 범위의 크기를 가지는 수분 흡착제는 수분과의 반응 속도가 너무 빠르지 않아 보관이 용이하고, 봉지하려는 소자에 손상을 주지 않는다. 본 명세서에서, 입경은 달리 규정하지 않는 한, 평균입경을 의미할 수 있고, D50 입도분석기로 공지의 방법으로 측정한 것일 수 있다.
수분 흡착제의 함량은, 특별히 제한되지 않고, 목적하는 차단 특성을 고려하여 적절하게 선택될 수 있다. 상기 수분 흡착제는 봉지 수지 100 중량부에 대해 110 중량부 이상으로 포함될 수 있고, 일 예로서 113 내지 800 중량부, 115 내지 750 중량부, 117 내지 700 중량부, 120 내지 650 중량부, 123 내지 600 중량부, 125 내지 550 중량부, 127 내지 500 중량부, 130 내지 470 중량부, 133 내지 450 중량부, 135 내지 430 중량부, 137 내지 400 중량부, 140 내지 370 중량부, 143 내지 350 중량부, 145 내지 330 중량부, 147 내지 300 중량부, 150 내지 270 중량부, 153 내지 250 중량부 또는 155 내지 240 중량부의 범위 내로 포함될 수 있다. 즉, 본 출원에 따른 봉지 필름은 수분 흡착제를 종래 보다 다량으로 포함하면서도, 봉지층 내 다른 조성들과 우수한 상용성을 나타낼 수 있고, 이와 동시에 수분 흡착제에 대한 별도의 분산제 없이도 우수한 분산성을 나타내어 우수한 수분 차단 효과를 구현할 수 있다.
하나의 예시에서, 봉지 필름은 점착 부여제를 추가로 포함할 수 있다. 상기 점착 부여제는 예를 들어, 연화점이 70°C 이상인 화합물일 수 있고, 구체예에서, 75°C 이상, 78°C 이상, 83°C 이상, 85°C 이상, 90°C 이상 또는 95°C 이상일 수 있고, 그 상한은 특별히 제한되지 않지만 150°C 이하, 145°C 이하, 140°C 이하, 135°C 이하, 130°C 이하 또는 125°C일 수 있다. 상기 점착 부여제는 분자 구조 내에 환형 구조를 갖는 화합물일 수 있고, 상기 환형 구조는 탄소수가 5 내지 15의 범위내일 수 있다. 상기 탄소수는 예를 들어, 6 내지 14, 7 내지 13 또는 8 내지 12의 범위 내일 수 있다. 상기 환형 구조는 일고리 화합물일 수 있으나, 이에 한정되지 않고, 이고리식 또는 삼고리식 화합물일 수 있다. 상기 점착 부여제는 또한, 올레핀계 중합체일 수 있고, 상기 중합체는 단독 중합체 또는 공중합체일 수 있다. 또한, 본 출원의 점착 부여제는 수소 첨가 화합물일 수 있다. 상기 수소 첨가 화합물은 부분적으로 또는 완전히 수소화된 화합물일 수 있다. 이러한 점착 부여제는 봉지 필름 내에서 다른 성분들과 상용성이 좋으면서도 수분 차단성이 우수하고, 외부 응력 완화 특성을 가질 수 있다. 점착 부여제의 구체적인 예로는, 수소화된 테르펜계 수지, 수소화된 에스테르계 수지 또는 수소화된 다이사이클로펜타디엔계 수지 등을 들 수 있다. 상기 점착 부여제의 중량평균분자량은 약 200 내지 5,000g/mol, 300 내지 4,000 g/mol, 400 내지 3,000 g/mol 또는 500 내지 2,000 g/mol의 범위 내일 수 있다. 상기 점착 부여제의 함량은 필요에 따라 적절하게 조절할 수 있다. 예를 들면, 점착 부여제의 함량은 봉지 수지 100 중량부 대비 15 중량부 내지 200 중량부, 20 내지 190 중량부, 25 중량부 내지 180 중량부 또는 30 중량부 내지 150 중량부의 비율로 포함될 수 있다. 본 출원은 상기의 특정 점착 부여제를 사용함으로써, 수분 차단성이 우수하면서도 외부 응력 완화 특성을 가지는 봉지 필름을 제공할 수 있다.
본 출원의 봉지 필름은 봉지층이 휘점 방지제를 포함할 수 있다. 상기 휘점 방지제는 밀도 범함수론 근사법(Density Functional Theory)에 의해 계산된, 아웃 가스에 대한 흡착 에너지가 0eV 이하일 수 있다. 상기 흡착 에너지의 하한 값은 특별히 한정되지 않으나, -20eV일 수 있다. 상기 아웃 가스의 종류는 특별히 제한되지 않으나, 산소, H원자, H2 분자 및/또는 NH3를 포함할 수 있다. 본 출원은 봉지 필름이 상기 휘점 방지제를 포함함으로써, 유기전자장치에서 발생하는 아웃 가스로 인한 휘점을 방지할 수 있다.
본 출원의 구체예에서, 휘점 방지제와 휘점 원인 원자 또는 분자들간의 흡착에너지를 범밀도함수론(density functional theory) 기반의 전자구조계산을 통해 계산할 수 있다. 상기 계산은 당업계의 공지의 방법으로 수행할 수 있다. 예를 들어, 본 출원은 결정형 구조를 가지는 휘점 방지제의 최밀충진면이 표면으로 드러나는 2차원 slab구조를 만든 다음 구조 최적화를 진행하고, 이 진공 상태의 표면 상에 휘점 원인 분자가 흡착된 구조에 대한 구조최적화를 진행한 다음 이 두 시스템의 총에너지(total energy) 차이에 휘점 원인 분자의 총에너지를 뺀 값을 흡착에너지로 정의했다. 각각의 시스템에 대한 총에너지 계산을 위해 전자-전자 사이의 상호작용을 모사하는 exchange-correlation으로 GGA(generalized gradient approximation) 계열의 함수인 revised-PBE함수를 사용했고, 전자 kinetic energy의 cutoff는 500eV를 사용했으며 역격자공간(reciprocal space)의 원점에 해당되는 gamma point만을 포함시켜 계산했다. 각 시스템의 원자구조를 최적화하기 위해 conjugate gradient법을 사용했으며 원자간의 힘이 0.01 eV/Å 이하가 될 때까지 반복계산을 수행했다. 일련의 계산은 상용코드인 VASP을 통해 수행되었다.
휘점 방지제의 소재는 상기 봉지 필름이 유기전자장치에 적용되어 유기전자장치의 패널에서 휘점을 방지하는 효과를 가지는 물질이라면 그 소재는 제한되지 않는다. 예를 들어, 휘점 방지제는 유기전자소자의 전극 상에 증착되는 산화규소, 질화규소 또는 산질화규소의 무기 증착층에서 발생하는 아웃 가스로서, 예를 들어, 산소, H2 가스, 암모니아(NH3) 가스, H+, NH2+, NHR2 또는 NH2R로 예시되는 물질을 흡착할 수 있는 물질일 수 있다. 상기에서, R을 유기기일 수 있고, 예를 들어, 알킬기, 알케닐기, 알키닐기 등이 예시될 수 있으나, 이에 제한되지 않는다.
하나의 예시에서, 휘점 방지제의 소재는 상기 흡착 에너지 값을 만족하는 한 제한되지 않으며, 금속 또는 비금속일 수 있다. 상기 휘점 방지제는 예를 들어, Li, Ni, Ti, Rb, Be, Mg, Ca, Sr, Ba, Al, Zn, In, Pt, Pd, Fe, Cr, Si 또는 그 배합물을 포함할 수 있으며, 상기 소재의 산화물 또는 질화물을 포함할 수 있고, 상기 소재의 합금을 포함할 수 있다. 하나의 예시에서, 휘점 방지제는 니켈 입자, 산화니켈 입자, 질화티탄, 철-티탄의 티탄계 합금 입자, 철-망간의 망간계 합금 입자, 마그네슘-니켈의 마그네슘계 합금 입자, 희토류계 합금 입자, 탄소나노튜브, 그라파이트, 알루미노포스페이트 분자체 입자 또는 메조실리카 입자를 포함할 수 있다. 상기 휘점 방지제는 봉지 수지 100 중량부 대비 3 내지 150 중량부, 6 내지 143 중량부, 8 내지 131 중량부, 9 내지 123 중량부, 10 내지 116중량부, 10 중량부 내지 95중량부, 10 중량부 내지 50중량부, 또는 10 중량부 내지 35중량부로 포함될 수 있다. 본 출원은 상기 함량 범위에서, 필름의 접착력 및 내구성을 향상시키면서 유기전자장치의 휘점 방지를 구현할 수 있다. 또한, 상기 휘점 방지제의 입경은 10nm 내지 30㎛, 50nm 내지 21㎛, 105nm 내지 18㎛, 110nm 내지 12㎛, 120nm 내지 9㎛, 140nm 내지 4㎛, 150nm 내지 2㎛, 180nm 내지 900nm, 230nm 내지 700nm 또는 270nm 내지 400nm의 범위 내일 수 있다. 상기 입경은 D50 입도 분석에 따른 것일 수 있다. 본 출원은 상기의 휘점 방지제를 포함함으로써, 유기전자장치 내에서 발생하는 수소를 효율적으로 흡착하면서도, 봉지 필름의 수분 차단성 및 내구 신뢰성을 함께 구현할 수 있다.
또한, 하나의 예시에서, 본 출원의 봉지층은 봉지 수지와 상용성이 높고, 상기 봉지 수지와 함께 특정 가교 구조를 형성할 수 있는 활성 에너지선 중합성 화합물을 포함할 수 있다.
예를 들어, 본 출원의 봉지층은 봉지 수지와 함께 활성 에너지선의 조사에 의해 중합될 수 있는 다관능성의 활성 에너지선 중합성 화합물을 포함할 수 있다. 상기 활성 에너지선 중합성 화합물은, 예를 들면, 활성에너지선의 조사에 의한 중합 반응에 참여할 수 있는 관능기, 예를 들면, 아크릴로일기 또는 메타크릴로일기 등과 같은 에틸렌성 불포화 이중결합을 포함하는 관능기, 에폭시기 또는 옥세탄기 등의 관능기를 2개 이상 포함하는 화합물을 의미할 수 있다.
다관능성의 활성에너지선 중합성 화합물로는, 예를 들면, 다관능성 아크릴레이트(MFA; Multifunctional acrylate)를 사용할 수 있다.
또한, 상기 활성 에너지선 중합성 화합물은 봉지 수지 100 중량부에 대하여 0.5 중량부 내지 10 중량부, 0.7 중량부 내지 9 중량부, 1 중량부 내지 8 중량부, 1.3 중량부 내지 7 중량부 또는 1.5 중량부 내지 6 중량부로 포함될 수 있다. 본 출원은 상기 범위 내에서, 고온 고습 등 가혹 조건에서도 내구 신뢰성이 우수한 봉지 필름을 제공한다.
상기 활성 에너지선의 조사에 의해 중합될 수 있는 다관능성의 활성 에너지선 중합성 화합물은 제한 없이 사용될 수 있다. 예를 들어, 상기 화합물은 1,4-부탄디올 디(메타)아크릴레이트, 1,3-부틸렌 글리콜 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트(HDDA), 1,8-옥탄디올 디(메타)아크릴레이트, 1,12-도데세인디올(dodecanediol) 디(메타)아크릴레이트, 네오펜틸글리콜 디(메타)아크릴레이트, 디시클로펜타닐(dicyclopentanyl) 디(메타)아크릴레이트, 시클로헥산-1,4-디메탄올 디(메타)아크릴레이트, 트리시클로데칸디메탄올(메타)디아크릴레이트, 디메틸롤 디시클로펜탄 디(메타)아크릴레이트, 네오펜틸글리콜 변성 트리메틸프로판 디(메타)아크릴레이트, 아다만탄(adamantane) 디(메타)아크릴레이트, 트리메틸롤프로판 트리(메타)아크릴레이트(TMPTA) 또는 이들의 혼합물을 포함할 수 있다.
다관능성의 활성에너지선 중합성 화합물로는, 예를 들면, 분자량이 100 이상 1,000g/mol 미만이며, 관능기를 2개 이상 포함하는 화합물을 사용할 수 있다. 상기 다관능성의 활성에너지선 중합성 화합물에 포함되는 고리 구조는 탄소환식 구조 또는 복소환식 구조; 또는 단환식 또는 다환식 구조의 어느 것이어도 된다.
본 출원의 구체예에서, 봉지층은 라디칼 개시제를 추가로 포함할 수 있다. 라디칼 개시제는 광개시제 또는 열개시제일 수 있다. 광개시제의 구체적인 종류는 경화 속도 및 황변 가능성 등을 고려하여 적절히 선택될 수 있다. 예를 들면, 벤조인계, 히드록시 케톤계, 아미노 케톤계 또는 포스핀 옥시드계 광개시제 등을 사용할 수 있고, 구체적으로는, 벤조인, 벤조인 메틸에테르, 벤조인 에틸에테르, 벤조인 이소프로필에테르, 벤조인 n-부틸에테르, 벤조인 이소부틸에테르, 아세토페논, 디메틸아니노 아세토페논, 2,2-디메톡시-2-페닐아세토페논, 2,2-디에톡시-2-페닐아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1온, 1-히드록시시클로헥실페닐케톤, 2-메틸-1-[4-(메틸티오)페닐]-2-몰포리노-프로판-1-온, 4-(2-히드록시에톡시)페닐-2-(히드록시-2-프로필)케톤, 벤조페논, p-페닐벤조페논, 4,4'-디에틸아미노벤조페논, 디클로로벤조페논, 2-메틸안트라퀴논, 2-에틸안트라퀴논, 2-t-부틸안트라퀴논, 2-아미노안트라퀴논, 2-메틸티오잔톤(thioxanthone), 2-에틸티오잔톤, 2-클로로티오잔톤, 2,4-디메틸티오잔톤, 2,4-디에틸티오잔톤, 벤질디메틸케탈, 아세토페논 디메틸케탈, p-디메틸아미노 안식향산 에스테르, 올리고[2-히드록시-2-메틸-1-[4-(1-메틸비닐)페닐]프로판논] 및 2,4,6-트리메틸벤조일-디페닐-포스핀옥시드 등을 사용할 수 있다.
라디칼 개시제는 활성에너지선 중합성 화합물 100 중량부에 대하여 0.2 중량부 내지 20 중량부, 0.5 내지 18 중량부, 1 내지 15 중량부, 또는 2 중량부 내지 13 중량부의 비율로 포함될 수도 있다. 이를 통해 활성에너지선 중합성 화합물의 반응을 효과적으로 유도하고, 또한 경화 후에 잔존 성분으로 인해 봉지층 조성물의 물성이 악화되는 것을 방지할 수 있다.
봉지층에는 상술한 구성 외에도 용도 및 후술하는 봉지 필름의 제조 공정에 따라 다양한 첨가제가 포함될 수 있다. 예를 들어, 봉지층은 경화성 물질, 가교제 또는 필러 등을 목적하는 물성에 따라 적정 범위의 함량으로 포함할 수 있다.
하나의 예시에서, 상기 봉지 조성물은 170°C 및 50s-1 전단속도에서 측정한 점도가 1,000 내지 2,000 Pa·s 범위 내일 수 있고, 일 예로서, 점도의 하한은 1,100 Pa·s 이상, 1,200 Pa·s 이상, 1,300 Pa·s 이상, 1,400 Pa·s 이상 또는 1,500 Pa·s 이상일 수 있다. 이에 제한되는 것은 아니나, 점도는 ARES(Advanced Rheometric Expansion System)로 측정한 값일 수 있다. 이와 같이 상기 봉지 조성물은 고점도의 액상임에도 불구하고, 본 출원은 전술하는 바와 같이 압출 공정을 통해 수분 흡착제가 봉지 조성물 내 균일한 분산성을 나타낼 수 있다.
본 출원의 구체예에서, 봉지 필름은 상기 봉지층 상에 형성된 메탈층을 추가로 포함할 수 있다. 본 출원의 메탈층은 20W/m·K 이상, 50W/m·K 이상, 60W/m·K 이상, 70 W/m·K 이상, 80 W/m·K 이상, 90 W/m·K 이상, 100 W/m·K 이상, 110 W/m·K 이상, 120 W/m·K 이상, 130 W/m·K 이상, 140 W/m·K 이상, 150 W/m·K 이상, 200 W/m·K 이상 또는 210 W/m·K 이상의 열전도도를 가질 수 있다. 상기 열전도도의 상한은 특별히 한정되지 않고, 800 W/m·K 이하일 수 있다. 이와 같이 높은 열전도도를 가짐으로써, 메탈층 접합 공정시 접합계면에서 발생된 열을 보다 빨리 방출시킬 수 있다. 또한 높은 열전도도는 유기전자장치 동작 중 축적되는 열을 신속히 외부로 방출시키고, 이에 따라 유기전자장치 자체의 온도는 더욱 낮게 유지시킬 수 있고, 크랙 및 결함 발생은 감소된다. 상기 열전도도는 15 내지 30°C의 온도 범위 중 어느 한 온도에서 측정한 것일 수 있다.
본 명세서에서 용어 「열전도도」란 물질이 전도에 의해 열을 전달할 수 있는 능력을 나타내는 정도이며, 단위는 W/m·K로 나타낼 수 있다. 상기 단위는 같은 온도와 거리에서 물질이 열전달하는 정도를 나타낸 것으로서, 거리의 단위(미터)와 온도의 단위(캘빈)에 대한 열의 단위(와트)를 의미한다.
본 출원의 구체예에서, 상기 봉지 필름의 메탈층은 투명할 수 있고, 불투명할 수 있다. 상기 메탈층의 두께는 3㎛ 내지 200㎛, 10㎛ 내지 100㎛, 20㎛ 내지 90㎛, 30㎛ 내지 80㎛ 또는 40㎛ 내지 75㎛의 범위 내일 수 있다. 본 출원은 상기 메탈층의 두께를 제어함으로써, 방열 효과가 충분히 구현되면서 박막의 봉지 필름을 제공할 수 있다. 상기 메탈층은 박막의 메탈 포일(Metal foil) 또는 고분자 기재층에 메탈이 증착되어 있을 수 있다. 상기 메탈층은 전술한 열전도도를 만족하고, 금속을 포함하는 소재이면 특별히 제한되지 않는다. 메탈층은 금속, 산화금속, 질화금속, 탄화금속, 옥시질화금속, 옥시붕화금속, 및 그의 배합물 중에서 어느 하나를 포함할 수 있다. 예컨대, 메탈층은 하나의 금속에 1 이상의 금속 원소 또는 비금속원소가 첨가된 합금을 포함할 수 있고, 예를 들어, 스테인레스 스틸(SUS)을 포함할 수 있다. 또한, 하나의 예시에서 메탈층은 철, 크롬, 구리, 알루미늄 니켈, 산화철, 산화크롬, 산화실리콘, 산화알루미늄, 산화티타늄, 산화인듐, 산화 주석, 산화주석인듐, 산화탄탈룸, 산화지르코늄, 산화니오븀, 및 그들의 배합물을 포함할 수 있다. 메탈층은 전해, 압연, 가열증발, 전자빔 증발, 스퍼터링, 반응성 스퍼터링, 화학기상증착, 플라즈마 화학기상증착 또는 전자 사이클로트론 공명 소스 플라즈마 화학기상 증착 수단에 의해 증착될 수 있다. 본 출원의 일 실시예에서, 메탈층은 반응성 스퍼터링에 의해 증착될 수 있다.
봉지 필름은, 기재 필름 또는 이형 필름(이하, 「제 1 필름」이라 칭하는 경우가 있다.)을 추가로 포함하고, 상기 봉지층이 상기 기재 또는 이형 필름상에 형성되어 있는 구조를 가질 수 있다. 상기 구조는 또한 상기 메탈층 상에 형성된 기재 필름, 보호 필름 또는 이형 필름(이하, 「제 2 필름」이라 칭하는 경우가 있다.)을 추가로 포함할 수 있다.
본 출원에서 사용할 수 있는 상기 제 1 필름의 구체적인 종류는 특별히 한정되지 않는다. 본 출원에서는 상기 제 1 필름으로서, 예를 들면, 이 분야의 일반적인 고분자 필름을 사용할 수 있다. 본 출원에서는, 예를 들면, 상기 기재 또는 이형 필름으로서, 폴리에틸렌테레프탈레이트 필름, 폴리테트라플루오르에틸렌 필름, 폴리에틸렌 필름, 폴리프로필렌 필름, 폴리부텐 필름, 폴리부타디엔 필름, 염화비닐 공중합체 필름, 폴리우레탄 필름, 에틸렌-비닐 아세테이트 필름, 에틸렌-프로필렌 공중합체 필름, 에틸렌-아크릴산 에틸 공중합체 필름, 에틸렌-아크릴산 메틸 공중합체 필름 또는 폴리이미드 필름 등을 사용할 수 있다. 또한, 본 출원의 상기 기재 필름 또는 이형 필름의 일면 또는 양면에는 적절한 이형 처리가 수행되어 있을 수도 있다. 기재 필름의 이형 처리에 사용되는 이형제의 예로는 알키드계, 실리콘계, 불소계, 불포화에스테르계, 폴리올레핀계 또는 왁스계 등을 사용할 수 있고, 이 중 내열성 측면에서 알키드계, 실리콘계 또는 불소계 이형제를 사용하는 것이 바람직하지만, 이에 제한되는 것은 아니다.
본 출원에서 상기와 같은 기재 필름 또는 이형 필름(제 1 필름)의 두께는 특별히 한정되지 않고, 적용되는 용도에 따라서 적절히 선택될 수 있다. 예를 들면, 본 출원에서 상기 제 1 필름의 두께는 10 ㎛ 내지 500 ㎛, 바람직하게는 20 ㎛ 내지 200 ㎛ 정도일 수 있다. 상기 두께가 10 ㎛ 미만이면 제조 과정에서 기재 필름의 변형이 쉽게 발생할 우려가 있고, 500 ㎛를 초과하면, 경제성이 떨어진다.
본 출원의 구체예에서, 상기 봉지 필름의 봉지층은 압출품일 수 있다. 하나의 예시에서, 상기 봉지층은 전술한 무용제 타입의 봉지 조성물을 압출하여 형성된 것일 수 있다. 압출물 또는 압출품은 봉지 조성물이 압출된 제품을 의미하며, 본 출원은 압출시켜 필름 또는 시트 형상의 봉지 필름을 제조할 수 있다. 본 출원은 무용제 타입으로 종래의 필름 대비 수분 흡착제를 다량 포함하는 필름을 제공한다. 이러한 필름은 압출을 통해 제공될 수 있다.
본 출원은 봉지 필름의 제조 방법에 관한 것이다.
본 출원의 구체예에서, 봉지 필름의 제조 방법은 봉지 수지 및 수분 흡착제를 단일 단계로 혼합하여 무용제 타입의 봉지 조성물을 제조하는 단계를 포함할 수 있다. 여기서, 봉지 수지 및 수분 흡착제를 단일 단계로 혼합한다는 것은 봉지 수지와 수분 흡착제가 동시에 투입되거나 다른 하나가 투여된 직후 또는 적어도 적어도 5분 이나, 3분 이내 또는 100초 이내에 연속적으로 투입되어 배합되는 것을 의미한다. 즉, 용제 등을 이용하여 수분 흡착제를 용해시켜 별도의 혼합물을 제조하고 상기 수분 흡착제가 용해된 혼합물을 수지 또는 수지가 용해된 용액과 혼합하여 밀봉재 조성물을 제조하는 공정과는 구별된다.
OLED용 봉지 필름의 주요한 핵심 과제 중 하나는 수분 차단성을 극대화하여 장기 신뢰성을 확보하는 것이다. 수분 차단성을 확보하기 위해서는 봉지 필름은 봉지 필름으로 침투한 수분 내지는 습기를 제거할 수 있는 수분 흡착제를 필수적으로 포함하여야 한다. 특히, 수분 차단성을 극대화하기 위해서, 수분 흡착제는 조성물 내에서 충분히 분산되어야 한다. 여기서, 분산은 입자들이 모여 덩어리를 만드는 등 응집되어 있지 않고 균일하게 흩어져 있는 상태를 의미하는 것으로, 분산이 잘 되면 입자들 하나하나가 떨어져 있는 상태일 수 있다.
종래에는 봉지 조성물을 제조하기 위해서는 봉지 수지를 용제에 용해하여 용제 타입의 수지 용액을 제조하고, 분산제를 이용하여 수분 흡착제를 용제에 분산시킨 혼합물을 상기 수지 용액에 투입함으로써, 수지와 수분 흡착제를 배합한 코팅액을 형성하는 방식을 채택하여, 코팅액을 형성하는 데에 2단계 이상의 공정이 요구되었다. 즉, 수분 흡착제의 분산성을 높이기 위하여, 유기산 등의 별도의 분산제를 이용해야 했으나, 상기 코팅액의 고점성 특성에 의하여 별도의 분산제를 이용하더라도 수분 흡착제의 분산성을 향상시키는 데에 한계가 있었다. 나아가, 용제를 이용하여 혼합물을 형성하는 경우, 이후 용제 건조 공정을 수행한다고 하더라도 용제가 필름 내부에 남게 되어, 일부 휘발되지 않는 용제로 인해 유기전자소자에 손상을 주는 문제가 발생하였다. 따라서, 본 출원은 봉지 수지와 수분 흡착제를 단일 단계로 혼합하여 무용제 타입의 봉지 조성물을 이용하면서도 후술하는 바와 같이 압출을 통해 봉지층을 제조함으로써, 수분 흡착제의 분산성이 극대화되면서도 장기 신뢰성을 효과적으로 확보가능한 유기전자소자를 제공할 수 있다.
하나의 예시에서, 상기 봉지 조성물을 제조하는 단계는 고온 조건 하에서 수행될 수 있고, 일 예로서, 50°C 이상의 온도 및 5 bar 이상의 압력에서 수행될 수 있다. 상기 온도는 수지의 융점보다 높을 수 있는데, 일 예로서 60°C 이상, 70°C 이상, 80°C 이상, 90°C 이상, 100°C 이상, 110°C 이상, 120°C 이상, 125°C 이상, 130°C 이상, 135°C 이상, 140°C 이상, 145°C 이상 또는 150°C 이상일 수 있고, 온도의 상한은 봉지 조성물 내에 투입된 성분이 열분해되지 않는 온도로 적절하게 조절할 수 있으나, 일 예로서, 200°C 이하 또는 180°C 이하일 수 있다. 또한, 상기 압력은 7 bar 이상, 10 bar 이상, 13 bar 이상, 15 bar 이상, 17 bar 이상 또는 20 bar 이상일 수 있고, 압력의 상한은 목적에 따라 적절하게 조절할 수 있으나, 일 예로서, 30 bar 이하일 수 있다. 이에 제한되는 것은 아니나, 일 예로서, 봉지 조성물을 제조하는 단계는 니더(kneader) 또는 반바리(banbury) 등의 혼련기에 투입되어 혼련되는 것일 수 있고, 상기 50°C 이상의 온도 및 5 bar 이상의 압력은 혼련기 내부의 온도 또는 압력일 수 있다. 본 출원은 상기와 같이 특정 온도 이상에서 봉지 조성물 제조 단계를 수행함에 따라, 봉지 조성물 내 성분들이 용융 혼련되어 수분 흡착제의 분산성이 더욱 향상되고, 조성물 내 성분들 간 상용성이 우수하여 압출 공정에 대한 작업성 또한 우수하게 나타날 수 있다.
하나의 구체예에서, 본 출원에 따른 봉지 필름의 제조 방법은 상기 봉지 조성물 제조 단계에서 제조된 봉지 조성물을 압출기로 이송하여 컴파운딩하고, 90°C 이상의 온도에서 압출하여 봉지층을 제조하는 단계를 포함할 수 있다.
상기 봉지층을 제조하는 단계에서의 압출 온도는 압출기 내부 온도 또는 성형 온도를 의미할 수 있다. 여기서 압출기 내부 온도는 혼련기로부터 압출기로 이송된 봉지 조성물이 압출기 내의 스크루에 의해 토출부 방향으로 이동하면서 블렌딩되는 구간에서의 온도를 의미할 수 있다. 또한, 성형 온도는 압출기의 토출부에 장착된 성형부의 온도를 일컫는 것으로, 일 예로서, T-다이의 온도를 의미할 수 있다. 성형 온도는 성형부에 의해 필름 형태로 토출 및 성형되는 구간에서의 온도를 의미할 수 있다.
즉, 본 발명에 따른 봉지 조성물은 1차로 니더에서 혼련하여 수분 흡착제를 균일하게 분산시켜 압출기로 이송되고, 압출기 내부에 장착된 스크루에 의하여 2차로 혼련되어, 수분 흡착제의 분산도가 더욱 향상될 수 있다.
이에 제한되는 것은 아니나, 일 예로서, 압출기는 일축 압출기 또는 이축 압출기일 수 있으나, 우수한 생산성과 균일성을 갖는 이축 압출기가 바람직하다. 또한, 이축 압출기 내 스크류의 종류나 회전 방향 등은 투입되는 성분에 따라 적절하게 선택할 수 있다.
하나의 예시에서, 압출하여 봉지층을 제조하는 온도는 100°C 이상, 110°C 이상, 120°C 이상, 125°C 이상, 130°C 이상, 135°C 이상, 140°C 이상, 145°C 이상, 150°C 이상, 155°C 이상, 160°C 이상, 165°C 이상, 170°C 이상, 175°C 이상 또는 180°C 이상일 수 있고, 온도의 상한은 봉지 조성물 내에 투입된 성분이 열분해되지 않는 온도로 적절하게 조절할 수 있으나, 일 예로서, 200°C 이하 또는 180°C 이하일 수 있다. 일 예로서, 압출기 내부 온도는 140°C 이상일 수 있고, 성형 온도는 150°C 이상일 수 있다. 또한, 일 예로서, 압출기 내부 온도와 성형 온도의 차이는 50°C 또는 30°C 이내일 수 있다. 본 출원은 압출기 내부 온도가 상기 범위를 만족함으로써 봉지 조성물 내에 수분 흡착제가 균일하게 분산될 수 있고, 성형 온도가 상기 범위로 제어됨으로써 필름의 특성이 개선될 수 있다.
하나의 예시에서, 압출하여 봉지층을 제조하는 단계는 5 bar 이상의 고압에서 수행하여 봉지 조성물의 점도를 후술하는 범위로 제어할 수 있고, 이에 따라 수분 흡착제의 분산성을 더욱 향상시킬 수 있다. 이에 제한되는 것은 아니나, 일 예로서, 상기 압출 단계에서의 압력은 6 bar 이상, 7 bar 이상, 10 bar 이상, 11 bar 이상, 12 bar 이상, 13 bar 이상, 14 bar 이상, 15 bar 이상, 16 bar 이상, 17 bar 이상, 18 bar 이상 또는 20 bar 이상일 수 있고, 압력의 상한은 상기 목적에 따라 적절하게 조절할 수 있으나, 일 예로서, 30 bar 이하일 수 있다.
하나의 예시에서, 압출기의 스크루의 회전 속도는 100 내지 400 rpm, 150 내지 350 rpm, 170 내지 320 rpm, 200 내지 300 rmp 또는 230 내지 270 rpm 의 범위 내일 수 있다. 본 출원은 압출기 내 스크루 회전에 따른 강력한 전단력을 이용하여 무용제 타입에서도 봉지 조성물 내에 수분 흡착제가 균일하게 분산될 수 있다.
또한, 상기 제조 방법은 예를 들어, 압출된 봉지층에 대해 전자선 또는 UV 조사를 진행하는 경화 단계를 추가로 포함할 수 있다. 전자선 또는 UV 조사는 공지의 방법으로 수행할 수 있다.
본 출원은 또한 유기전자장치에 관한 것이다.
유기전자장치는, 도 3에 도시된 바와 같이, 기판(31); 상기 기판(31) 상에 형성된 유기전자소자(32); 및 상기 유기전자소자(32)를 봉지하는 전술한 제조방법에 따라 제조한 봉지필름(33)을 포함할 수 있다. 상기 봉지 필름은 봉지층(33)을 포함할 수 있고, 추가하여 메탈층(34)을 포함할 수도 있다. 이 경우, 봉지층(33) 및 메탈층(34)이 일체로 포함된 봉지 필름이 상기 유기전자소자(32)를 봉지할 수 있다. 봉지 필름이 메탈층을 포함하는 경우, 유기전자장치는 기판(31); 유기전자소자(32); 봉지층(33); 및 메탈층(34)을 순차로 포함할 수 있다.
일 예로, 상기 봉지 필름은 기판 상에 형성된 유기전자소자의 전면, 예를 들면 상부 및 측면을 모두 봉지하고 있을 수 있다. 상기 봉지 필름은 점착제 조성물 또는 접착제 조성물을 가교 또는 경화된 상태로 함유하는 봉지층을 포함할 수 있다. 또한, 상기 봉지층이 기판 상에 형성된 유기전자소자의 전면에 접촉하도록 밀봉하여 유기전자장치가 형성되어 있을 수 있다.
본 출원의 구체예에서, 유기전자소자는 한 쌍의 전극, 적어도 발광층을 포함하는 유기층 및 패시베이션막을 포함할 수 있다. 구체적으로, 상기 유기전자소자는 제 1 전극층, 상기 제 1 전극층 상에 형성되고 적어도 발광층을 포함하는 유기층 및 상기 유기층상에 형성되는 제 2 전극층을 포함하고, 상기 제 2 전극층 상에 전극 및 유기층을 보호하는 패시베이션막을 포함할 수 있다. 상기 제 1 전극층은 투명 전극층 또는 반사 전극층일 수 있고, 제 2 전극층 또한, 투명 전극층 또는 반사 전극층일 수 있다. 보다 구체적으로, 상기 유기전자소자는 기판 상에 형성된 투명 전극층, 상기 투명 전극층 상에 형성되고 적어도 발광층을 포함하는 유기층 및 상기 유기층 상에 형성되는 반사 전극층을 포함할 수 있다.
상기에서 유기전자소자는 예를 들면, 유기발광소자일 수 있다.
상기 패시베이션 막은 무기막과 유기막을 포함할 수 있다. 일 구체예에서 상기 무기막은 Al, Zr, Ti, Hf, Ta, In, Sn, Zn 및 Si로 이루어진 군으로부터 선택된 하나 이상의 금속 산화물 또는 질화물일 수 있다. 상기 무기막의 두께는 0.01㎛ 내지 50㎛ 또는 0.1㎛ 내지 20㎛ 또는 1㎛ 내지 10㎛일 수 있다. 하나의 예시에서, 본 출원의 무기막은 도판트가 포함되지 않은 무기물이거나, 또는 도판트가 포함된 무기물일 수 있다. 도핑될 수 있는 상기 도판트는 Ga, Si, Ge, Al, Sn, Ge, B, In, Tl, Sc, V, Cr, Mn, Fe, Co 및 Ni로 이루어진 군에서 선택된 1종 이상의 원소 또는 상기 원소의 산화물일 수 있으나, 이에 한정되지 않는다. 상기 유기막은 발광층을 포함하지 않는 점에서, 전술한 적어도 발광층을 포함하는 유기층과는 구별되며, 에폭시 화합물을 포함하는 유기 증착층일 수 있다.
상기 무기막 또는 유기막은 화학 기상 증착(CVD, chemical vapor deposition)에 의해 형성될 수 있다. 예를 들어, 상기 무기막은 실리콘 나이트라이드(SiNx)를 사용할 수 있다. 하나의 예시에서, 상기 무기막으로 사용되는 실리콘 나이트라이드(SiNx)를 0.01㎛ 내지 50㎛의 두께로 증착할 수 있다. 하나의 예시에서, 상기 유기막의 두께는 2㎛ 내지 20㎛, 2.5㎛ 내지 15㎛, 2.8㎛ 내지 9㎛의 범위내일 수 있다.
본 출원은 또한, 유기전자장치의 제조방법을 제공한다. 상기 제조방법은, 상부에 유기전자소자가 형성된 기판에 상기 제조방법으로부터 얻어진 봉지 필름이 상기 유기전자소자를 커버하도록 적용하는 단계를 포함할 수 있다. 또한, 상기 제조 방법은 상기 봉지 필름을 경화하는 단계를 포함할 수 있다. 상기 봉지 필름의 경화 단계는 봉지층의 경화를 의미할 수 있고, 상기 봉지 필름이 유기전자소자를 커버하기 전 또는 후에 진행될 수 있다.
본 명세서에서 용어 「경화」란 가열 또는 UV 조사 공정 등을 거쳐 본 발명의 점착제 조성물이 가교 구조를 형성하여 점착제의 형태로 제조하는 것을 의미할 수 있다. 또는, 접착제 조성물이 접착제로서 고화 및 부착되는 것을 의미할 수 있다.
구체적으로, 기판으로 사용되는 글라스 또는 고분자 필름상에 진공 증착 또는 스퍼터링 등의 방법으로 전극을 형성하고, 상기 전극상에 예를 들면, 정공 수송층, 발광층 및 전자 수송층 등으로 구성되는 발광성 유기 재료의 층을 형성한 후에 그 상부에 전극층을 추가로 형성하여 유기전자소자를 형성할 수 있다. 이어서, 상기 공정을 거친 기판의 유기전자소자의 전면을, 상기 봉지 필름의 봉지층이 덮도록 위치시킨다.
본 출원은 외부로부터 유기전자장치로 유입되는 수분 또는 산소를 차단할 수 있는 구조의 형성이 가능하고, 유기전자장치의 장기 신뢰성이 확보될 수 있는 봉지 필름을 제공한다.
그러나, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 출원의 하나의 예시에 따른 봉지층을 나타내는 단면도이다.
도 2는 봉지 필름을 나타내는 단면도이다.
도 3은 본 출원의 하나의 예시에 따른 유기전자장치를 나타내는 단면도이
도 4 내지 7은 각각 실시예 1, 실시예 2, 실시예 3 및 비교예 1에 따른 가우시안 커브 피팅(Gaussian curve fitting)에 따른 그래프를 나타낸 것이다.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
부틸 고무 수지(Mw: 410,000g/mol, 유리전이온도: -65°C ) 100 중량부, 점착부여 수지(SU525, 연화점: 125°C, 코오롱) 100 중량부, 다관능성 아크릴레이트(트리싸이클로데칸 디메탄올 디아크릴레이트, 미원) 3 중량부, 광개시제(Irgacure 651, Ciba) 1 중량부 및 CaO 200 중량부를 150°C 및 20 bar로 설정된 가압 니더(Kneader)에 투입한 후 30분 동안 용융 혼련하여, 170°C 및 50s-1 전단속도에서 1500Pa·s 점도의 봉지 조성물을 제조하였다.
상기 봉지 조성물을 온도 180°C 및 스크루 회전 속도 250rpm으로 설정된 이축 압출기(SM Platek사의 TEK30)로 이송하여 컴파운딩하였고, 상기 이축 압출기에 장착된 T-다이를 이용하여 160°C 온도, 및 20 bar 압력으로 압출하여, 50 ㎛ 두께의 필름 형상의 봉지층을 제조하였다. 상기 봉지층에 1.5 J/cm2 자외선을 조사하여 봉지 필름을 제조하였다.
실시예 2
T-다이 온도를 170°C 온도로 설정한 것을 제외하고는, 실시예 1과 동일한 방법으로 필름을 제조하였다.
실시예 3
T-다이 온도를 180°C 온도로 설정한 것을 제외하고는, 실시예 1과 동일한 방법으로 필름을 제조하였다.
실시예 4
봉지 조성물에서 점착 부여제로 EASTman社의 Kristalex F115 (연화점: 115°C) 를 포함하는 것을 제외하고는, 실시예 1과 동일한 방법으로 필름을 제조하였다.
비교예 1
T-다이 온도를 150°C 온도로 설정한 것을 제외하고는, 실시예 1과 동일한 방법으로 필름을 제조하였다.
비교예 2
부틸 고무 수지(Mw: 410,000g/mol) 100 중량부, 점착부여 수지(SU525, Melting point: 125°C, 코오롱) 100 중량부, 다관능성 아크릴레이트(트리싸이클로데칸 디메탄올 디아크릴레이트, 미원) 3 중량부, 광개시제(Irgacure 651, Ciba) 1 중량부 및 CaO 200 중량부를 톨루엔 600 중량부에 배합하고 충분히 혼합하여, 고형분 40 wt%의 용액을 제조하였다.
상기 용액을 이형 PET에 코팅하고, 120°C 오븐에서 건조한 후, 1.5 J/cm2 자외선을 조사하여 봉지 필름을 제조하였다.
비교예 3
수분 흡착제의 함량을 80 중량부로 포함한 것을 제외하고는, 실시예 1과 동일한 방법으로 봉지층을 제조하였다.
실험예 1 - 가우시안 커브 피팅에서의 σ
가우시안 커브 피팅은 봉지층의 두께(깊이) 방향에 따른 수분 흡착제의 분포에 대한 것으로, x 축은 봉지층의 두께이고, f(x) 함수는 아래 식 1와 같다.
[식 1]
Figure PCTKR2022019412-appb-img-000003
여기서, A 및 b는 수분 흡착제의 절대량 관련 상수이고,
Figure PCTKR2022019412-appb-img-000004
는 수분 흡착제의 두께(깊이) 방향에 대한 평균 위치이고, σ는 수분 흡착제의 두께(깊이) 방향에 대한 위치 분포이다.
도 4 내지 7은 각각 실시예 1, 실시예 2, 실시예 3 및 비교예 1에 따른 가우시안 커브 피팅(Gaussian curve fitting)에 따른 그래프를 나타낸 것이다.
실험예 2 - 겔 함량 측정
실시예들 및 비교예들의 봉지 필름을 50 mm Х 50mm 크기로 시편을 제조하여, 각각의 봉지 필름 시편에 대하여, 0.3~0.4g의 봉지 필름(초기 무게: A)을 채취하고, 봉지 필름을 60°C에서 톨루엔 70 g에 3시간 동안 침지시켰다. 이후, 200 메쉬 철망(철망의 무게: M)으로 겔 부분을 여과한 후, 125°C 오븐에서 1시간 동안 건조하였다. 겔과 철망을 합한 무게(G)를 측정한 후, 망을 통과하지 않는 봉지 필름의 불용해분의 건조 질량(B=G-M)하기 일반식 1에 따라 겔 함량(단위:%)을 계산하였다.
[일반식 1]
겔 함량 (단위:%) = (B/A) Х 100
상기 일반식 1에서 A는 봉지 필름 시편의 초기 질량을 나타내고, B는 봉지 필름 시편을 60°C에서 톨루엔 70 g에 3시간 침지 후 200메쉬(pore size 200 ㎛)의 망으로 여과시키고, 상기 망을 통과하지 않은 봉지 필름의 불용해분의 건조 질량을 나타낸다.
실험예 3 - 팽윤 지수 측정
실시예 또는 비교예들에 따른 봉지 필름 일정량을 각각 병(bottle)에 넣고 톨루엔을 채워 24시간 보관하여 sol-gel 상태의 용액을 얻었다. 이후, 200 메쉬(pore size 200 ㎛)를 이용하여 sol-gel 용액으로부터 분리된 직후 gel 시료의 무게(X)를 측정하였다. 얻어진 gel 시료를 80°C 오븐에서 12시간 동안 건조하여 건조된 직후 gel 시료의 무게(Y)를 측정하였다. 상기 값을 이용하여 아래 일반식 2에 따라 팽윤지수를 계산하였다.
[일반식 2]
팽윤지수 = sol-gel 용액으로부터 분리된 직후 gel 시료의 무게(X) / 건조된 직후 gel 시료의 무게(Y)
실험예 4 - 저장 탄성률 측정
실시예 또는 비교예들에 따른 봉지 필름을 각각 600 ㎛ 두께로 라미네이팅하여 시편으로 얻고, 상기 시편으로 ARES(Advanced Rheometric Expansion System, TA사 ARES-G2) 의 Temp Sweep 모드에서 평행판(parallel plate)을 이용하여 측정하였다. 구체적으로, 30 내지 100°C 온도 범위에서 상기 시편에 0.1% 변형률(strain)로 15.0 rad/s의 변형을 가한 후 측정한 저장 탄성률 중, 50°C 온도에서의 값을 나타내었다.
실험예 5 - 투습 거리
실시예들 및 비교예들의 봉지 필름 30 mm Х 60mm을 각각 85°C 온도 및 85% 상대습도의 항온 항습 챔버에서 895시간 방치한 후, 수분이 침투된 거리를 현미경으로 측정하였다.
실험예 6 - 메탈 점착력
200 mm Х 220mm 크기의 Cu 면에 실시예들 및 비교예들에 따른 봉지 필름을 각각 75°C 조건으로 열 라미네이팅하고, 25mm로 절단한 뒤, Cu 면에 2 Kg 롤러(Roller)를 이용하여 추가로 라미네이팅하여, 시편을 준비하였다. 상기 시편을 22±5 °C 온도 및 50±10 % 항온 항습실에서 30분간 방치한 후, 상기 시편을 인장기(TA, Texture Analyser)에 고정시키고 Tension Mode에서 25 °C 온도 및 5 mm/min 인장 속도로 측정하였다.
하기 표 1은 실시예 및 비교예에서 제조한 봉지 필름에 대해 상기 실험예에 따른 결과를 정리한 것이다.
실시예 1 실시예 2 실시예 3 실시예
4
비교예 1 비교예 2 비교예
3
겔 함량(%) 78.1 78.3 77.5 78 74.5 71.2 79.8
팽윤 지수(%) 469 453 450 470 612 567 421
저장 탄성률
(Pa)
331,427 335,453 335,554 332,937 243,291 283,575 207,921
투습 거리(mm) 1.8 1.8 1.8 1.8 2.4 2.2 2.6
메탈 점착력
(gf/in)
5,100 5,300 5,550 5,050 3,700 1,400 7,200
σ 0.984 0.138 0.094 0.985 2.623 1400 3.548
[부호의 설명]
1: 봉지 필름
11: 봉지층
12: 기재층
21, 23 : 제 1 영역 또는 제 3 영역
22 : 제 2 영역
3: 유기전자장치
31: 기판
32: 유기전자소자
33: 봉지층
34: 메탈층

Claims (25)

  1. 봉지 조성물의 경화물인 봉지층을 포함하고,
    상기 봉지 조성물은 봉지 수지 및 수분 흡착제를 포함하며,
    상기 봉지층은 단일층이되, 두께 방향에 따라 수분 흡착제의 농도가 다른 제 1 영역, 제 2 영역 및 제 3 영역을 포함하는 봉지 필름.
  2. 제 1 항에 있어서, 제 1 영역, 제 2 영역 및 제 3 영역을 순차로 포함하는 봉지 필름.
  3. 제 1 항에 있어서, 제 2 영역은 제 1 영역 및 제 3 영역보다 수분 흡착제 함량이 더 많은 봉지 필름.
  4. 제 1 항에 있어서, 상기 봉지층 내 두께 방향에 따른 수분 흡착제의 분포에 대한 가우시 커브 피팅(Gaussian curve fitting)에서, 수분 흡착제의 두께 방향에 대한 위치 분포(σ 값)가 2 이하인 봉지 필름.
  5. 제 1 항에 있어서, 봉지 조성물은 무용제 타입인 봉지 필름.
  6. 제 1 항에 있어서, 메탈 점착력이 4,000 gf/in 이상인 봉지 필름.
  7. 제 1 항에 있어서, 봉지 수지는 올레핀계 수지를 포함하는 봉지 필름.
  8. 제 1 항에 있어서, 봉지 수지는 봉지재 내에서 10 중량% 이상 포함되는 봉지 필름.
  9. 제 1 항에 있어서, 수분 흡착제는 화학 반응성 흡착제인 봉지 필름.
  10. 제 1 항에 있어서, 수분 흡착제는 봉지수지 100 중량부에 대해 90 중량부 이상으로 포함되는 봉지 필름.
  11. 제 1 항에 있어서, 봉지 조성물은 점착 부여제를 추가로 포함하는 봉지 필름.
  12. 제 11 항에 있어서, 점착 부여제는 봉지 수지 100 중량부에 대하여 15 내지 200 중량부의 범위 내로 포함되는 봉지 필름.
  13. 제 1 항에 있어서, 봉지 조성물은 활성에너지선 중합성 화합물을 추가로 포함하는 봉지 필름.
  14. 제 13 항에 있어서, 활성에너지선 중합성 화합물은 봉지 수지 100 중량부에 대하여 0.5 내지 10 중량부의 범위 내로 포함되는 봉지 필름.
  15. 제 1 항에 있어서, 봉지 조성물은 라디칼 개시제를 추가로 포함하는 봉지 필름.
  16. 제 1 항에 있어서,
    상기 봉지층은 하기 일반식 1로 측정한 겔함량이 60% 이상인 봉지 필름:
    [일반식 1]
    겔함량(%) = A/B Х 100
    상기 일반식 1에서, B는 상기 봉지층 샘플의 질량이고, A는 상기 샘플을 60°C에서 톨루엔으로 24시간 침지 후 200메쉬의 망으로 여과시키고, 상기 망을 통과하지 않은 상기 봉지층의 불용해분의 건조 질량을 나타낸다.
  17. 제 1 항에 있어서,
    상기 봉지 조성물은 170°C 및 50s-1 전단속도에서 측정한 점도가 1,000 내지2,000 Pa·s 범위 내인 봉지 필름.
  18. 제 1 항에 있어서, 봉지층은 압출품인 봉지 필름.
  19. 제 1 항에 있어서, 메탈층을 추가로 포함하는 봉지 필름.
  20. 봉지 조성물을 압출하여 봉지층을 제조하는 단계를 포함하는 제 1 항에 따른 봉지 필름의 제조 방법.
  21. 제 20 항에 있어서, 봉지 조성물은 봉지 수지 및 수분 흡착제를 단일 단계로 혼합하여 제조하는 봉지 필름의 제조 방법.
  22. 제 20 항에 있어서,
    상기 봉지 조성물을 제조하는 단계는 50°C 이상의 온도 및 5 bar 이상의 압력에서 수행되는 봉지 필름의 제조 방법.
  23. 제 20 항에 있어서,
    상기 압출하여 봉지층을 제조하는 단계는 5 bar 이상의 압력에서 수행되는 봉지 필름의 제조 방법.
  24. 기판; 기판 상에 형성된 유기전자소자; 및 상기 유기전자소자의 전면을 봉지하는 제 1 항에 따른 봉지 필름을 포함하는 유기전자장치.
  25. 상부에 유기전자소자가 형성된 기판에 제 1 항에 따른 봉지 필름이 상기 유기전자소자를 커버하도록 적용하는 단계를 포함하는 유기전자장치의 제조 방법.
PCT/KR2022/019412 2021-12-01 2022-12-01 봉지 필름 WO2023101489A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280061655.2A CN117941484A (zh) 2021-12-01 2022-12-01 封装膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210170472 2021-12-01
KR10-2021-0170472 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023101489A1 true WO2023101489A1 (ko) 2023-06-08

Family

ID=86612814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019412 WO2023101489A1 (ko) 2021-12-01 2022-12-01 봉지 필름

Country Status (4)

Country Link
KR (1) KR20230082595A (ko)
CN (1) CN117941484A (ko)
TW (1) TW202330864A (ko)
WO (1) WO2023101489A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603428B2 (ja) * 1995-07-17 2004-12-22 大日本インキ化学工業株式会社 成分濃度傾斜構造を有する有機高分子と金属酸化物との複合体の製造方法
KR20140136902A (ko) * 2013-05-21 2014-12-01 주식회사 엘지화학 봉지 필름 및 이를 이용한 유기전자장치의 봉지 방법
KR20150016922A (ko) * 2013-08-05 2015-02-13 주식회사 엘지화학 점착제 조성물, 점착 필름 및 이를 이용한 유기전자장치의 제조방법
KR20190065662A (ko) * 2017-12-04 2019-06-12 주식회사 케이씨씨 접착제 키트, 이를 포함하는 접착필름 및 봉지재, 및 유기전자장치의 봉지방법
KR20200033816A (ko) * 2010-11-02 2020-03-30 주식회사 엘지화학 접착 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603428B2 (ja) * 1995-07-17 2004-12-22 大日本インキ化学工業株式会社 成分濃度傾斜構造を有する有機高分子と金属酸化物との複合体の製造方法
KR20200033816A (ko) * 2010-11-02 2020-03-30 주식회사 엘지화학 접착 필름
KR20140136902A (ko) * 2013-05-21 2014-12-01 주식회사 엘지화학 봉지 필름 및 이를 이용한 유기전자장치의 봉지 방법
KR20150016922A (ko) * 2013-08-05 2015-02-13 주식회사 엘지화학 점착제 조성물, 점착 필름 및 이를 이용한 유기전자장치의 제조방법
KR20190065662A (ko) * 2017-12-04 2019-06-12 주식회사 케이씨씨 접착제 키트, 이를 포함하는 접착필름 및 봉지재, 및 유기전자장치의 봉지방법

Also Published As

Publication number Publication date
CN117941484A (zh) 2024-04-26
KR20230082595A (ko) 2023-06-08
TW202330864A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
TWI612112B (zh) 感壓性黏著劑組成物
WO2015020411A1 (ko) 점착제 조성물, 점착 필름 및 이를 이용한 유기전자장치의 제조방법
WO2015009129A1 (ko) 봉지 조성물
WO2014204256A2 (ko) 봉지재 필름의 신뢰 수명을 평가하는 방법 및 상기 필름의 신뢰도 평가 장치
WO2017155367A1 (ko) 봉지 필름
WO2016153296A1 (ko) 접착제 조성물
WO2015126176A1 (ko) 봉지 필름 및 이를 포함하는 유기전자장치
WO2014021696A1 (ko) 접착 필름 및 이를 이용한 유기전자장치의 봉지 제품
WO2023101489A1 (ko) 봉지 필름
WO2023101482A1 (ko) 봉지 필름의 제조 방법
WO2019235850A1 (ko) 봉지 필름
WO2021137673A1 (ko) 봉지 필름
US20220154054A1 (en) Encapsulation film
WO2021137672A1 (ko) 봉지 필름
WO2021230717A1 (ko) 봉지 필름
WO2022039492A1 (ko) 열경화성 수지 조성물, 및 이를 이용한 봉지 필름
KR102626267B1 (ko) 봉지 조성물
WO2021086007A1 (ko) 봉지 필름
KR102672308B1 (ko) 봉지재
KR20230082504A (ko) 봉지 필름
KR20230082503A (ko) 봉지 필름
KR20230171193A (ko) 봉지 필름
KR20230046690A (ko) 봉지 필름
KR20230046691A (ko) 봉지 필름
KR20220043758A (ko) 봉지 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061655.2

Country of ref document: CN