WO2023100813A1 - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
WO2023100813A1
WO2023100813A1 PCT/JP2022/043787 JP2022043787W WO2023100813A1 WO 2023100813 A1 WO2023100813 A1 WO 2023100813A1 JP 2022043787 W JP2022043787 W JP 2022043787W WO 2023100813 A1 WO2023100813 A1 WO 2023100813A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
magnetic path
magnetic
radial
force
Prior art date
Application number
PCT/JP2022/043787
Other languages
English (en)
French (fr)
Inventor
敏明 川島
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Publication of WO2023100813A1 publication Critical patent/WO2023100813A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0468Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing

Definitions

  • the present invention relates to vacuum pumps such as turbomolecular pumps.
  • a turbomolecular pump is generally known as a type of vacuum pump.
  • a rotor blade is rotated by energizing a motor in the pump body, and gas molecules of the gas (process gas) sucked into the pump body are ejected, thereby exhausting the gas.
  • a rotary shaft rotor shaft
  • a rotary body rotor having rotary blades
  • the rotary shaft and the rotary body are rotated by a motor to perform exhaust.
  • Patent Document 1 discloses a three-axis control magnetic bearing.
  • the three-axis control magnetic bearing disclosed in Patent Document 1 uses the magnetic force of the axial direction (axial direction) active magnetic bearing to passively support the axial position in the radial direction (radial direction).
  • the upper radial support is provided by the active magnetic bearing, and the lower radial support is provided passively using the magnetic force of the axial active magnetic bearing. ing.
  • Such a 3-axis control magnetic bearing can reduce the number of radial electromagnets, sensors, and control circuits compared to a general 5-axis control magnetic bearing, and can be reduced in size and cost.
  • the turbo-molecular pump is installed with the axial center of the rotor oriented in the horizontal direction, it is necessary to support the weight of the rotor in the radial direction.
  • the support in the lower radial direction (the downward direction in the radial direction, the direction in which gravity acts) is passively supported by using the magnetic force of the axial active magnetic bearing. done. For this reason, the support in the lower radial direction is more difficult to perform precise position control than the active support that accompanies a change in current, and the shaft support capability is reduced accordingly.
  • the axial center position of the rotor (and the rotor shaft) to be horizontally supported deviates greatly from the target position, and the rotor (and the rotor shaft) normally floats. It can be difficult to let go.
  • the bias current (steady exciting current) supplied to the axial electromagnet is increased to increase the attractive force in the axial direction (axial attractive force).
  • the axial support capacity in the radial direction increases, the instability in the axial direction increases, and it may not be possible to float normally in the axial direction. Therefore, when the weight of the rotor is increased, it becomes difficult for the 3-axis control magnetic bearing to cope with the horizontal levitation of the rotor compared to the 5-axis control magnetic bearing.
  • An object of the present invention is to provide a vacuum pump with high shaft support capability.
  • the present invention comprises axial direction magnetic force generating means for non-contactly supporting a rotor for exhausting gas in the axial direction with magnetic force
  • the axial direction magnetic force generating means is Having a magnetic path separation structure that separates and generates a magnetic path for axial attractive force and a magnetic path for radial passive restoring force
  • a vacuum pump characterized by:
  • FIG. 1 is an explanatory diagram schematically showing the configuration of a turbo-molecular pump according to a first embodiment of the invention
  • FIG. 3 is a circuit diagram of an amplifier circuit
  • FIG. 4 is a time chart showing control when a current command value is greater than a detected value
  • 4 is a time chart showing control when a current command value is smaller than a detected value
  • FIG. 4 is an explanatory diagram showing a state in which the turbo-molecular pump according to the first embodiment is used in a horizontal position
  • It is a perspective view which shows the armature disc which concerns on 1st Embodiment.
  • It is explanatory drawing which expands and shows a one part cross section of an armature disk typically.
  • FIG. 4 is an explanatory diagram schematically showing the relationship between an upward axial electromagnet and an armature disk;
  • FIG. 4 is an explanatory diagram schematically showing each magnetic path of the axial magnetic bearing according to the first embodiment; (a) is an explanatory view schematically showing a state in which the armature disc is in a neutral state, (b) is an explanatory view schematically showing a state in which the armature disc approaches the upward axial electromagnet, and (c) is an explanatory view schematically showing the state in which the armature disc is oriented downward.
  • FIG. 4 is an explanatory diagram schematically showing the relationship between an upward axial electromagnet and an armature disk
  • FIG. 4 is an explanatory diagram schematically showing each magnetic path of the axial magnetic bearing according to the first embodiment; (a) is an explanatory view schematically showing a state in which the armature disc is in a neutral state, (b) is an explanatory view schematically showing a state in which the armature
  • FIG. 4 is an explanatory diagram schematically showing a state approaching an axial electromagnet; It is explanatory drawing which expands and shows typically the magnetic-path passage gap for radial passive restoring forces.
  • (a) is an explanatory diagram schematically showing each magnetic path of the axial magnetic bearing according to the prior art, and (b) is an explanatory diagram schematically showing each magnetic path of the axial magnetic bearing according to the first embodiment; be.
  • FIG. 5 is an explanatory diagram schematically showing magnetic flux between an armature disk and an upward axial electromagnet when the armature disk is displaced in the radial direction;
  • FIG. 8 is an explanatory diagram schematically showing each magnetic path of the axial magnetic bearing according to the second embodiment;
  • FIG. 11 is an explanatory diagram schematically showing each magnetic path of the axial magnetic bearing according to the third embodiment;
  • FIG. 11 is an explanatory diagram schematically showing each magnetic path of an axial magnetic bearing according to a fourth embodiment;
  • FIG. 11 is an explanatory diagram schematically showing each magnetic path of an axial magnetic bearing according to a fifth embodiment;
  • FIG. 11 is an explanatory diagram schematically showing each magnetic path of an axial magnetic bearing according to a sixth embodiment;
  • FIG. 11 is an explanatory diagram schematically showing each magnetic path of an axial magnetic bearing according to a seventh embodiment;
  • FIG. 11 is an explanatory diagram schematically showing each magnetic path of an axial magnetic bearing according to an eighth embodiment;
  • FIG. 21 is an explanatory diagram schematically showing each magnetic path of an axial magnetic bearing according to a ninth embodiment
  • FIG. 20 is an explanatory diagram schematically showing each magnetic path of the axial magnetic bearing according to the tenth embodiment
  • FIG. 20 is an explanatory diagram schematically showing each magnetic path of an axial magnetic bearing according to an eleventh embodiment
  • FIG. 21 is an explanatory diagram schematically showing each magnetic path of an axial magnetic bearing according to a twelfth embodiment
  • FIG. 10 is an explanatory diagram schematically showing the magnetic flux when the width of the groove is increased compared with that before the increase
  • FIG. 10 is an explanatory diagram schematically showing magnetic flux when the width of the tip surface of the projection is reduced compared with that before the reduction; It is explanatory drawing which shows typically magnetic flux when cross-sectional shape of a convex part is changed sequentially compared with before change. It is explanatory drawing which distinguishes the magnitude
  • (a) is a graph schematically showing the relationship between the rotation speed and whirling when the bias current of the axial electromagnet is relatively small, and (b) is the rotation speed when the bias current of the axial electromagnet is relatively large.
  • FIG. 2C is a graph schematically showing the relationship between whirling and whirling, and (c) is a graph schematically showing the relationship between rotational speed and whirling when the bias current of the axial electromagnet is made variable.
  • FIG. 1 shows a turbomolecular pump 100 as a vacuum pump according to a first embodiment of the invention.
  • the turbo-molecular pump 100 is designed to be connected to a vacuum chamber (not shown) of target equipment such as semiconductor manufacturing equipment.
  • FIG. 1 A longitudinal sectional view of this turbo-molecular pump 100 is shown in FIG.
  • a turbo-molecular pump 100 has an intake port 101 formed at the upper end of a cylindrical outer cylinder 127 .
  • a rotating body (102a, 102b, 102c, .
  • a rotor 103 is provided inside the outer cylinder 127.
  • a rotor shaft 113 (rotating shaft) is attached to the center of the rotating body 103 .
  • a rotor shaft 113 integrated with the rotor 103 is levitated in the air and position-controlled by a magnetic bearing.
  • the rotor 103 is generally made of metal such as aluminum or aluminum alloy.
  • the magnetic bearing realizes three-axis control with two radial directions and one axial direction by the upper radial direction (upper radial direction) electromagnet 104 and the axial direction (axial direction) electromagnet 106 .
  • the radial direction (particularly the radial direction) may be referred to as the "radial direction”
  • the axial direction may be referred to as the "axial direction”.
  • the upper radial electromagnet 104 has four electromagnets arranged in pairs on the X-axis and the Y-axis. Although details will be described later, the axial electromagnet 106 is configured by combining two electromagnets (an upward axial electromagnet 106A and a downward axial electromagnet 106B) (FIG. 8).
  • the upper radial sensor is a displacement sensor.
  • the upper radial sensor is configured to detect the radial displacement of the rotor 103 and send it to the controller 200 .
  • As the upper radial direction sensor for example, an inductance displacement sensor, a capacitance sensor, or the like can be used.
  • a compensation circuit having a PID adjustment function generates an excitation control command signal for the upper radial electromagnet 104 based on a position signal detected by an upper radial sensor (not shown). 2 controls excitation of the upper radial electromagnet 104 based on the excitation control command signal, thereby adjusting the upper radial position of the rotor shaft 113 .
  • the rotor shaft 113 is made of a high magnetic permeability material (iron, stainless steel, etc.) or the like, and is attracted by the magnetic force of the upper radial electromagnet 104 . Such adjustments are made independently in the X-axis direction and the Y-axis direction.
  • a lower radial electromagnet and a lower radial sensor are arranged at a position near the axial electromagnet 106. Then, using the lower radial electromagnet and the lower radial sensor, the lower radial position of the rotor shaft 113 is adjusted in the same manner as the upper radial position.
  • the upper radial sensor can be arranged outside the upper radial electromagnet 104 and above the upper radial electromagnet 104 .
  • the axial electromagnets 106 are arranged to sandwich a disk-shaped metal disk (also called an "armature disk") 111 provided at the bottom of the rotor shaft 113 from above and below.
  • the metal disk 111 is made of a high magnetic permeability material such as iron.
  • An axial sensor 109 is provided to detect axial displacement of the rotor shaft 113 and is configured to transmit its axial position signal to the controller 200 .
  • a compensation circuit having, for example, a PID adjustment function generates an excitation control command signal for the coil of the axial electromagnet 106 based on the axial position signal detected by the axial sensor 109, and an amplifier circuit.
  • 150 controls the excitation of the axial electromagnet based on these excitation control command signals to attract the metal disk 111 upward and downward, thereby adjusting the axial position of the rotor shaft 113 .
  • the attraction action of the metal disk 111 by the axial electromagnet 106 will be described later.
  • the coils of the axial electromagnet 106 are the coil portion 213A of the upward axial electromagnet 106A and the coil portion 213B of the downward axial electromagnet 106B, which will also be described later.
  • the control device 200 appropriately adjusts the magnetic force exerted by the axial electromagnet 106 on the metal disk 111, magnetically levitates the rotor shaft 113 in the axial direction, and holds the rotor shaft 113 in the space without contact. .
  • the amplifier circuit 150 that controls the excitation of the upper radial electromagnet 104 and the axial electromagnet 106 will be described later.
  • the axial electromagnet 106 is devised so that it separately generates a magnetic path for axial attractive force and a magnetic path for radial passive restoring force. This point will also be described later.
  • the motor 121 has a plurality of magnetic poles circumferentially arranged to surround the rotor shaft 113 .
  • Each magnetic pole is controlled by the control device 200 so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting between the magnetic poles and the rotor shaft 113 .
  • the motor 121 incorporates a rotation speed sensor (not shown) such as a Hall element, resolver, encoder, etc., and the rotation speed of the rotor shaft 113 is detected by the detection signal of this rotation speed sensor.
  • a plurality of fixed wings 123 (123a, 123b, 123c%) are arranged with a slight gap from the rotary wings 102 (102a, 102b, 102c).
  • the rotor blades 102 (102a, 102b, 102c, . . . ) are inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to move molecules of the exhaust gas downward by collision.
  • the fixed wings 123 (123a, 123b, 123c, . . . ) are made of metal such as aluminum, iron, stainless steel, or copper, or metal such as an alloy containing these metals as components.
  • the fixed blades 123 are also inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged inwardly of the outer cylinder 127 in a staggered manner with the stages of the rotary blades 102. ing.
  • the outer peripheral end of the fixed wing 123 is supported in a state of being inserted between a plurality of stacked fixed wing spacers (reference numerals omitted).
  • the fixed wing spacer is a ring-shaped member, and is made of, for example, metals such as aluminum, iron, stainless steel, and copper, or metals such as alloys containing these metals as components.
  • An outer cylinder 127 is fixed to the outer periphery of the fixed wing spacer with a small gap therebetween.
  • a base portion 129 is provided at the bottom of the outer cylinder 127 .
  • An exhaust port 133 is formed in the base portion 129 and communicates with the outside. Exhaust gas that has entered the intake port 101 from the chamber (vacuum chamber) side and has been transferred to the base portion 129 is sent to the exhaust port 133 .
  • the base portion 129 is a disk-shaped member that constitutes the base portion of the turbomolecular pump 100, and is generally made of metal such as iron, aluminum, or stainless steel.
  • the base portion 129 physically holds the turbo-molecular pump 100 and also functions as a heat conduction path, so a metal such as iron, aluminum, or copper that has rigidity and high thermal conductivity is used. is desirable.
  • the temperature of the rotor blades 102 rises due to frictional heat generated when the exhaust gas contacts the rotor blades 102, conduction of heat generated by the motor 121, and the like. It is transmitted to the stationary blade 123 side by conduction by molecules or the like.
  • stator blade spacers that support the outer peripheral ends of the stator blades 123 are joined to each other at the outer peripheral portion, and the heat received by the stator blades 123 from the rotor blades 102, the frictional heat generated when the exhaust gas contacts the fixed blades 123, etc. to the outside.
  • the gas sucked from the intake port 101 is composed of an upper radial electromagnet 104, an upper radial sensor (not shown), a motor 121, an axial electromagnet 106, an axial sensor 109, and the like.
  • the electrical parts are covered with a stator column 122 so that the electrical parts do not enter, and the inside of the stator column 122 is kept at a predetermined pressure with purge gas.
  • a pipe (not shown) is arranged in the base portion 129, and the purge gas is introduced through this pipe.
  • the introduced purge gas is delivered to the exhaust port 133 through gaps between the protective bearing 120 and the rotor shaft 113 , between the rotor and stator of the motor 121 , and between the stator column 122 and the inner cylindrical portion of the rotor blade 102 .
  • the turbo-molecular pump 100 requires model identification and control based on individually adjusted unique parameters (for example, various characteristics corresponding to the model).
  • the turbomolecular pump 100 has an electronic circuit section 141 in its body.
  • the electronic circuit section 141 includes a semiconductor memory such as an EEP-ROM, electronic components such as semiconductor elements for accessing the same, a board (not shown) for mounting them, and the like.
  • the electronic circuit section 141 is accommodated, for example, below a rotational speed sensor (not shown) near the center of a base section 129 that constitutes the lower portion of the turbo-molecular pump 100 and is closed by an airtight bottom cover 145 .
  • some of the process gases introduced into the chamber have the property of becoming solid when their pressure exceeds a predetermined value or their temperature falls below a predetermined value. be.
  • the pressure of the exhaust gas is lowest at the inlet 101 and highest at the outlet 133 .
  • the process gas is transported from the inlet 101 to the outlet 133, if its pressure becomes higher than a predetermined value or its temperature becomes lower than a predetermined value, the process gas becomes solid and turbo molecules are formed. It adheres and deposits inside the pump 100 .
  • a solid product eg, AlCl 3
  • deposits of the process gas accumulate inside the turbo-molecular pump 100
  • the deposits narrow the pump flow path and cause the performance of the turbo-molecular pump 100 to deteriorate.
  • a heater (not shown) or an annular water cooling pipe (not shown) is wound around the outer periphery of the base portion 129 or the like, and a temperature sensor (for example, a thermistor) (not shown) is attached to the base portion 129, for example. is embedded, and based on the signal of this temperature sensor, the temperature of the base portion 129 is kept at a constant high temperature (set temperature). Temperature Management System) is being carried out.
  • an electromagnet winding 151 constituting the upper radial electromagnet 104 and the like has one end connected to a positive electrode 171a of a power source 171 via a transistor 161, and the other end connected to a current detection circuit 181 and a transistor 162. is connected to the negative electrode 171b of the power source 171 via the .
  • the transistors 161 and 162 are so-called power MOSFETs and have a structure in which a diode is connected between their source and drain.
  • the transistor 161 has its diode cathode terminal 161 a connected to the positive electrode 171 a and anode terminal 161 b connected to one end of the electromagnet winding 151 .
  • the transistor 162 has a diode cathode terminal 162a connected to the current detection circuit 181 and an anode terminal 162b connected to the negative electrode 171b.
  • the diode 165 for current regeneration has a cathode terminal 165a connected to one end of the electromagnet winding 151 and an anode terminal 165b connected to the negative electrode 171b.
  • the current regeneration diode 166 has its cathode terminal 166a connected to the positive electrode 171a and its anode terminal 166b connected to the other end of the electromagnet winding 151 via the current detection circuit 181. It has become so.
  • the current detection circuit 181 is composed of, for example, a Hall sensor type current sensor or an electric resistance element.
  • the amplifier circuit 150 configured as described above corresponds to one electromagnet. Therefore, when the magnetic bearing is controlled by three axes and there are a total of six electromagnets 104 and 106, a similar amplifier circuit 150 is configured for each of the electromagnets, and the six amplifier circuits 150 are connected in parallel to the power source 171. It is supposed to be connected.
  • the amplifier control circuit 191 is configured by, for example, a digital signal processor section (hereinafter referred to as a DSP section) not shown in the control device 200, and this amplifier control circuit 191 switches the transistors 161 and 162 on/off. It's like
  • the amplifier control circuit 191 compares the current value detected by the current detection circuit 181 (a signal reflecting this current value is called a current detection signal 191c) and a predetermined current command value. Then, based on this comparison result, the magnitude of the pulse width (pulse width times Tp1, Tp2) to be generated within the control cycle Ts, which is one cycle of PWM control, is determined. As a result, the gate drive signals 191 a and 191 b having this pulse width are output from the amplifier control circuit 191 to the gate terminals of the transistors 161 and 162 .
  • a high voltage of about 50 V is used as the power source 171 so that the current flowing through the electromagnet winding 151 can be rapidly increased (or decreased).
  • a capacitor is usually connected between the positive electrode 171a and the negative electrode 171b of the power source 171 for stabilizing the power source 171 (not shown).
  • electromagnet current iL the current flowing through the electromagnet winding 151
  • electromagnet current iL the current flowing through the electromagnet winding 151
  • flywheel current is held.
  • the hysteresis loss in the amplifier circuit 150 can be reduced, and the power consumption of the entire circuit can be suppressed.
  • high-frequency noise such as harmonics generated in the turbo-molecular pump 100 can be reduced.
  • the electromagnet current iL flowing through the electromagnet winding 151 can be detected.
  • the transistors 161 and 162 are turned off only once during the control cycle Ts (for example, 100 ⁇ s) for the time corresponding to the pulse width time Tp1. turn on both. Therefore, the electromagnet current iL during this period increases from the positive electrode 171a to the negative electrode 171b toward a current value iLmax (not shown) that can flow through the transistors 161,162.
  • both the transistors 161 and 162 are turned off only once in the control cycle Ts for the time corresponding to the pulse width time Tp2 as shown in FIG. . Therefore, the electromagnet current iL during this period decreases from the negative electrode 171b to the positive electrode 171a toward a current value iLmin (not shown) that can be regenerated via the diodes 165,166.
  • either one of the transistors 161 and 162 is turned on after the pulse width times Tp1 and Tp2 have elapsed. Therefore, the flywheel current is held in the amplifier circuit 150 during this period.
  • the upper side (intake port 101 side) in FIG. The side provided on the base portion 129 so as to protrude outward) serves as an exhaust portion connected to an auxiliary pump (back pump for rough pumping), etc., not shown.
  • the turbo-molecular pump 100 can be used not only in the vertical posture shown in FIG. 1, but also in an inverted posture, a horizontal posture (FIG. 5), and an inclined posture.
  • the axial electromagnet 106 is devised so as to be suitable for use in a horizontal posture, which will be described later.
  • turbo-molecular pump 100 the outer cylinder 127 and the base portion 129 described above are combined to form one case (both may be collectively referred to as "main body casing” below).
  • the turbo-molecular pump 100 is electrically (and structurally) connected to a box-shaped electrical case (not shown), and the control device 200 described above is incorporated in the electrical case.
  • the internal structure of the body casing (combination of the outer cylinder 127 and the base portion 129) of the turbo-molecular pump 100 consists of a rotation mechanism portion that rotates the rotor shaft 113 and the like by the motor 121, and an exhaust mechanism portion that is rotationally driven by the rotation mechanism portion.
  • the exhaust mechanism includes a turbo-molecular pump mechanism composed of the rotor blades 102 and the fixed vanes 123, etc., and although not shown, a groove exhaust mechanism composed of a cylindrical portion, threaded spacers, and the like. It may be provided.
  • the purge gas (protective gas) described above is used to protect the bearings, the rotor blades 102, etc., prevent corrosion due to the exhaust gas (process gas), cool the rotor blades 102, and the like.
  • This purge gas can be supplied by a general method.
  • a purge gas flow path extending linearly in the radial direction is provided at a predetermined portion of the base portion 129 (such as a position separated by approximately 180 degrees from the exhaust port 133). Then, the purge gas is supplied from the outside of the base portion 129 to the purge gas flow path (more specifically, the purge port serving as the gas inlet) via a purge gas cylinder (such as an N2 gas cylinder) or a flow rate controller (valve device). supply.
  • a purge gas cylinder such as an N2 gas cylinder
  • a flow rate controller valve device
  • the protective bearing 120 described above is also called a “touchdown (T/D) bearing", a “backup bearing”, or the like. These protective bearings 120 prevent the position and posture of the rotor shaft 113 from changing significantly and damage the rotor blades 102 and its surroundings even in the unlikely event that trouble occurs in the electrical system or air intrusion. It is designed not to.
  • an axial magnetic bearing 110 is provided as axial magnetic force generating means.
  • Axial magnetic bearing 110 comprises an axial electromagnet 106 .
  • the axial magnetic bearing 110 functions as an axial direction magnetic force generating means that non-contactly supports the rotating body (hereinafter referred to as "rotor") 103 for exhausting gas in the axial direction (axial direction) by magnetic force.
  • the axial direction magnetic bearing 110 includes an axial attraction magnetic path (an upward axial attraction magnetic path 218A, a downward axial attraction magnetic path 218B, etc.) related to axial support, and a radial magnetic path related to radial support. It has a magnetic path separation structure that generates a magnetic path for passive restoring force (radial passive restoring force magnetic path 226, etc.) separately.
  • the axial direction magnetic force generating means (such as the axial magnetic bearing 110) is connected to a rotating disk (such as the armature disk 111) that rotates integrally with the rotor (such as the rotor 103) and gaps (magnetic path passing gaps 230A, 232A, 230B, 232B, etc.), coils (coil portions 213A, 213B, etc.) that generate magnetism in the yokes, and non-magnetic bodies (rotating side non-magnetic , and the magnetic path separation structure separates the magnetic path for axial attractive force and the magnetic path for radial passive restoring force by the gap and the non-magnetic material.
  • a rotating disk such as the armature disk 111
  • gaps magnetic path passing gaps 230A, 232A, 230B, 232B, etc.
  • coils coil portions 213A, 213B, etc.
  • the magnetic path separation structure is formed by changing the magnetic path structure (see FIG. 13(a), which will be described later) in the conventional axial magnetic bearing.
  • the magnetic path separation structure separates and forms a magnetic path for axial attractive force and a magnetic path for radial passive restoring force.
  • the magnetic flux to each magnetic path can be adjusted. Even if the radial direction (diameter direction) shaft support capacity is increased, there is no sudden increase in the axial suction force acting in the axial direction of the rotor 103, and the axial suction force is unlikely to become excessively large. Then, the rotor (rotating body) 103 (and the rotor shaft 113) can be levitated normally in the axial direction (axial direction) without destabilizing the control of the axial axis (axis related to the axial direction). .
  • the axial magnetic bearing 110 will be described below.
  • FIG. 5 schematically shows the radial supporting force when the rotor 103 is horizontally levitated.
  • the turbo-molecular pump 100 shown in FIG. 1 is installed horizontally.
  • the left side of FIG. 5 corresponds to the upper side of FIG. 1
  • the right side of FIG. 5 corresponds to the lower side of FIG. 1, and gas is exhausted from left to right in the drawing.
  • the downward radial passive support force (lower radial passive support force, indicated by arrow A3) is offset when the center of armature disc 111 is radially displaced from the center of axial electromagnet 106. It is a force that pulls back to match.
  • the downward radial passive support force is a force that acts passively, unlike an active force that varies with current control. Therefore, the greater the external force, the greater the deviation of the center.
  • the center of the armature disc 111 can be adjusted to the center of the axial electromagnet 106 by the PID adjustment function of the compensation circuit, although it takes a certain amount of time. can be pulled back against
  • the number of armature discs 111 is one.
  • FIG. 6 shows the appearance of the armature disk 111 as viewed obliquely from above.
  • a large number of grooves 204A and projections (also referred to as "teeth") 206A are concentrically formed.
  • a large number of grooves 204B and protrusions 206B are formed on the plate surface 202A on the opposite side of the armature disk 111.
  • only some of the grooves 204A and the projections 206A are given reference numerals so as not to complicate the illustration.
  • FIG. 7 shows an enlarged cross section of a portion of the armature disc 111 .
  • the other plate surface 202B has a similar structure.
  • the grooves 204A form spaces between the protrusions 206A.
  • the grooves 204A and the protrusions 206A are alternately formed in the radial direction of the armature disk 111.
  • the shapes of the grooves 204A and the projections 206A are devised so as to optimize the generated magnetic flux, which will be described later.
  • the grooves 204A and the protrusions 206A are formed not on the entire plate surface 202A but on a portion thereof.
  • the region where the groove 204A and the projection 206A are formed is hereinafter referred to as a "groove forming region" and denoted by reference numeral 209 in FIG.
  • the groove forming regions 209 are formed intermittently in the radial direction of the armature disc 111 . The same applies to the grooves 204B and the projections 206B of the other plate surface 202B.
  • a portion between the groove forming regions 209 is a flat surface that is recessed from the groove forming regions 209 .
  • a portion between the groove forming regions 209 is hereinafter referred to as a “flat region” and denoted by 210A and 210B.
  • the flat region 210 contributes to the formation of magnetic paths (upward axial attractive force magnetic path 218A and downward axial attractive force magnetic path 218B).
  • FIG. 8 schematically shows a cross section of the axial electromagnet 106 and its peripheral portion.
  • FIG. 8 shows only one side centered on the axis (which coincides with the center of the rotor shaft 113).
  • a magnetic path for axial attractive force and a magnetic path for radial passive restoring force are formed.
  • hatching indicating cross sections of parts is omitted.
  • the axial electromagnet 106 includes an upward axial electromagnet 106A and a downward axial electromagnet 106B. As shown in FIG. 5, when the turbo-molecular pump 100 is used in a horizontal position, the upward axial electromagnet 106A is positioned on the left side (intake side) of FIG. 5, and the downward axial electromagnet 106B is positioned on the right side ( exhaust side). Here, the vertical direction in FIG. 8 is aligned with the vertical direction in FIG.
  • the upward axial electromagnet 106A and the downward axial electromagnet 106B have yokes (also called “yoke”, “core”, etc.) 212A, 212B and coil portions 213A, 213B.
  • yokes also called “yoke”, “core”, etc.
  • the armature disk 111 is inserted between the upward axial electromagnet 106A and the downward axial electromagnet 106B.
  • the armature disk 111 is fixed to the rotor shaft 113 via a rotation-side non-magnetic material 201 that prevents return of magnetic flux.
  • Protective bearings 120 touchdown (T/D) bearings in FIG. 1) are provided above and below the rotation-side non-magnetic body 201 (upper and lower sides in FIG. 8), but illustration of the protective bearings 120 is omitted in FIG. ing.
  • the yoke 212A of the upward axial electromagnet 106A faces one plate surface 202A (FIG. 6) of the armature disk 111.
  • the yoke 212B of the downward axial electromagnet 106B faces the other plate surface 202B (FIG. 6) of the armature disk 111. As shown in FIG.
  • FIG. 9 shows the relationship between the yoke 212A of the upward axial electromagnet 106A and the armature disk 111 in a partially enlarged manner.
  • the yoke 212A also has a large number of grooves 214A and protrusions 216B.
  • the grooves 214A and the protrusions 216A are formed concentrically and alternately.
  • the yoke 212B of the downward axial electromagnet 106B also has a similar configuration.
  • the grooves 214A and 214B and the projections 216A and 216B of the yokes 212A and 212B have the same pitch as the grooves 204A and 204B and the projections 206A and 206B of the armature disk 111. It is formed by (period or interval).
  • the ranges in which the grooves 214A and 214B and the projections 216A and 216B of the yokes 212A and 212B are formed substantially match the ranges in which the grooves 204A and 204B and the projections 206A and 206B of the armature disk 111 are formed. .
  • the grooves 214A and 214B and the projections 216A and 216B of the yokes 212A and 212B are opposed to the grooves 204A and 204B and the projections 206A and 206B of the armature disk 111 with a predetermined gap therebetween. Magnetic path passing gaps 230A and 232A for passing axial attractive force are formed.
  • FIG. 9 only magnetic path passage gaps 230A and 232A for axial attractive force formed between the upward axial electromagnet 106A and one plate surface 202A of the armature disk 111 are shown. Magnetic path passing gaps 230B and 232B for axial attractive force between the downward axial electromagnet 106B and the other plate surface 202B of the armature disk 111 are also formed in the same manner, although they are upside down from the example of FIG. ing.
  • the sizes C1 and C2 of the magnetic path passage gaps 230A and 230B (and 232A and 232B) for axial attractive force are determined by the tip ends of the protrusions 206A and 206B of the armature disc 111 and the yoke. 212A, 212B and the distance between the tips of the projections 216A, 216B.
  • the armature disk 111 is displaced in the axial direction (thickness direction, vertical direction in FIG. 11(a)).
  • the magnitudes C1 and C2 of the magnetic path passage gaps 230A and 230B (and 232A and 232B) for axial attractive force change as the armature disk 111 is displaced in the axial direction.
  • FIG. 11(a) shows the armature disk 111 in a neutral position between the yokes 212A and 212B.
  • illustration of the axial attraction force magnetic path passage gaps 232A and 232B located radially outside (peripheral side, centrifugal side) is omitted. The same applies to the passage gaps 232A, 232B.
  • FIG. 11(b) shows the armature disk 111 as a whole approaching the upward axial electromagnet 106A.
  • the size C1 of the axial attractive force magnetic path passage gap 230A on the upward axial electromagnet 106A side is smaller than the size C2 of the axial attractive force magnetic path passage gap 230B on the downward axial electromagnet 106B side. (C1 ⁇ C2).
  • C1 ⁇ C2 the size of the axial attractive force magnetic path passage gap 230B on the downward axial electromagnet 106B side.
  • FIG. 11(c) shows the armature disk 111 as a whole approaching the downward axial electromagnet 106B.
  • the size C1 of the axial attractive force magnetic path passage gap 230A on the upward axial electromagnet 106A side is larger than the size C2 of the axial attractive force magnetic path passage gap 230B on the downward axial electromagnet 106B side. (C1>C2).
  • C1>C2 the size of the axial attractive force magnetic path passage gap 230B for axial attractive force on the outer peripheral side.
  • the yoke 212A of the upward axial electromagnet 106A and the yoke 212B of the downward axial electromagnet 106B form a radial passive magnet of a predetermined magnitude. They are opposed to each other with a magnetic path passage gap 220 for restoring force interposed therebetween.
  • the size D ( FIG. 12 ) of the magnetic path passage gap 220 for radial passive restoring force is constant in the radial direction of the axial electromagnet 106 . Furthermore, the size D of the magnetic path passage gap 220 for radial passive restoring force differs depending on the size of the axial electromagnet 106 . For example, when the outer diameter of the axial electromagnet 106 is ⁇ 80 mm, the size D of the magnetic path passage gap 220 for radial passive restoring force is about 1 mm.
  • the radial passive restoring force magnetic path passing gap 220 contributes to the formation of the radial passive restoring force magnetic path 226 (FIG. 10). 226 will be described later.
  • a disk outer peripheral gap 222 is formed at the inner peripheral side (the axial center side in the radial direction) of the radial passive restoring force magnetic path passage gap 220 .
  • the disk outer peripheral space 222 is defined by the yokes 212 A and 212 B and the outer peripheral surface 203 of the armature disk 111 .
  • a fixed-side non-magnetic material (not shown) may be arranged in the disk outer peripheral gap 222 .
  • Disk facing gaps 224A and 224B are formed inside the yokes 212A and 212B.
  • a disk-facing gap portion 224A of the upward axial electromagnet 106A is open between the magnetic path passage gaps 230A and 232A for axial attractive force and faces one flat region 210A of the armature disk 111 .
  • a disk-facing gap portion 224B of the downward axial electromagnet 106B opens between the magnetic path passage gaps 230B and 232B for axial attraction force and faces the other flat region 210B of the armature disk 111.
  • the yoke 212A and the coil portion 213A are formed so as to generate an upward axial attractive force magnetic path 218A.
  • yoke 212B and coil portion 213B are formed so as to generate downward axial attractive force magnetic path 218B.
  • the upward axial attractive force magnetic path 218A passes through the yoke 212A and the armature disk 111 around the coil portion 213A, avoiding the disk outer peripheral gap portion 222 and the disk facing gap portion 224A.
  • the upward axial attractive force magnetic path 218A axially passes through the inner peripheral side (the radially inner side, the axial side) of the coil portion 213A, and the axial attractive force magnetic path on the inner peripheral side. It reaches the armature disc 111 through the passage gap 230A.
  • the upward axial attraction force magnetic path 218A passes through the armature disk 111 in the radial direction, passes through the axial attraction force magnetic path passage gap 232A on the outer peripheral side (the radially outer side, the centrifugal side), and reaches the yoke 212A. return.
  • the upward axial attractive force magnetic path 218A axially passes through the outer peripheral side of the coil portion 213A and radially passes through the upper side (intake side) of the coil portion 213A.
  • the downward axial attractive force magnetic path 218B is formed in the opposite direction to the upward axial attractive force magnetic path 218A.
  • the downward axial attraction force magnetic path 218B avoids the disk outer peripheral air gap portion 222 and the disk facing air gap portion 224B. It passes through the armature disk 111, the magnetic path passing gap 230B for axial attraction force on the inner peripheral side, and the yoke 212B in this order.
  • the aforementioned radial passive restoring force magnetic path 226 is formed in addition to the upward axial attractive force magnetic path 218A and the downward axial attractive force magnetic path 218B.
  • the radial passive restoring force magnetic path 226 is formed separately from the upward axial attractive force magnetic path 218A and the downward axial attractive force magnetic path 218B.
  • the radial passive restoring force magnetic path 226 is formed across the upward axial electromagnet 106A and the downward axial electromagnet 106B.
  • the radial passive restoring force magnetic path 226 passes through the yoke 212A of the upward axial electromagnet 106A, the axial attractive force magnetic path passage gap 230A on the inner peripheral side of the upward axial electromagnet 106A, and extends through the armature disk 111 in the thickness direction (axis direction). direction).
  • the radial passive restoring force magnetic path 226 includes an axial attractive force magnetic path passage gap 230B on the inner peripheral side of the downward axial electromagnet 106B, a yoke 212B of the downward axial electromagnet 106B, and a radial passive restoring force magnetic path passage gap. 220 and the yoke 212A of the upward axial electromagnet 106A.
  • the radial passive restoring force magnetic path 226 is formed in this way because the radial passive restoring force magnetic path passage gap 220 is narrowed to an appropriate size, and the yoke 212A of the upward axial electromagnet 106A and the downward This is due to the fact that the yoke 212B of the axial electromagnet 106B and the yoke 212B are brought close to each other on the outer peripheral side.
  • FIGS. 13(a) and 13(b) show the prior art and the first embodiment.
  • FIG. 13(a) shows the prior art
  • FIG. 13(b) shows the first embodiment.
  • the same reference numerals are given to the same parts as in the first embodiment so as to facilitate comparison with the first embodiment.
  • a stationary non-magnetic material 236 is interposed on the outer peripheral side of the yoke 212A of the upward axial electromagnet 106A and the yoke 212B of the downward axial electromagnet 106B.
  • the fixed-side non-magnetic material 236 secures the space between the yokes 212A and 212B so that the distance between the yokes 212A and 212B is magnetically sufficiently large at the outer peripheral portion of the axial electromagnet 106 .
  • the magnetic fluxes passing through the yokes 212A and 212B of the upward axial electromagnet 106A and the downward axial electromagnet 106B are independent.
  • a current coil current
  • magnetic flux flows through the upward axial attractive force magnetic path 218A, and the armature disc 111 is attracted upward (FIG. 11(b)).
  • the magnetic flux passing through the gap between the yoke 212A and the armature disk 111 (magnetic path passing gaps 230A and 230B for axial attractive force on the inner peripheral side) generates a radial passive restoring force. More specifically, as shown with reference to FIG. 14, the radial displacement of the armature disk 111 tilts the magnetic flux 238 obliquely with respect to the axial direction, causing the magnetic flux 238 to become parallel (straight) to the axial direction. There is a force that pulls you back. The force (suction force) generated at this time becomes the radial passive restoring force.
  • the attractive force increases as the coil current increases, so the more the coil current increases, the more the radial passive restoring force increases.
  • the greater the amount of deviation the more it takes to return to the neutral position (referring to FIG. 11A).
  • the suction force applied is increased. For this reason, the greater the amount of deviation of the rotor 103, the greater the required attractive force, making it difficult to levitate the rotor 103 at the center.
  • the instability of the axial center of the rotor 103 (and the rotor shaft 113) can be explained using an unstable spring constant.
  • the attraction force F0 is increased, the axial center cannot be stabilized.
  • the magnetic resistance Rm [A/Wb] in the magnetic circuit is the value obtained by dividing the magnetomotive force NI [A] by the magnetic flux [Wb].
  • the design of the upward axial attraction force magnetic path 218A is such that the axial attraction force magnetic path passage gap 230A on the inner peripheral side and the axial attraction force magnetic path passage gap 232A on the outer peripheral side are designed.
  • the total magnetic resistance is "2" when the relative magnetic resistance of each is set to "1" as a reference value.
  • the magnetic resistance of the inner peripheral side axial attraction force magnetic path passage gap 230B and the outer peripheral side axial attraction force magnetic path passage gap 232B are each set to "1", and the total is designed so that the magnetoresistance of is equivalent to "2".
  • the yokes 212A and 212B are not magnetically insulated by the fixed-side non-magnetic material 236 as in the prior art.
  • a magnetic path passage gap 220 for radial passive restoring force is formed therebetween.
  • the magnetic path passing gap 220 for radial passive restoring force is set to a predetermined size (for example, about 1 mm), and the yokes 212A and 212B approach (approach) with an appropriate space in the outer peripheral portion. ing.
  • the design of the radial passive restoring force magnetic path passing gap 220 is such that when the magnetic resistance of the axial attraction force magnetic path passing gaps 230A and 230B on the inner circumference side is set to "1", the radial passive restoring force magnetic path passing gap 220 The magnetoresistance of the passage gap 220 is made to correspond to "2". Therefore, the total magnetic resistance of the magnetic path passing gap 220 for radial passive restoring force is "4".
  • the magnetoresistance of the armature disk 111 can be considered as approximately "0".
  • the ratio of the air gap length of the radial passive restoring force magnetic path passage gap 220 and the air gap length of the inner peripheral side axial attractive force magnetic path passage gaps 230A and 230B is set to 2:1:1.
  • the magnetic resistance of each magnetic path is set in this way, the present invention is not limited to this, and different values may be used. Thereby, the ratio of the magnetic flux passing through the radial passive restoring force magnetic path 226 on the outer peripheral side and the magnetic flux passing through the axial magnetic paths 218A and 218B on the outer peripheral side can be changed.
  • the shaft support capacity can be changed by changing the ratio between the magnetic resistance associated with the radial passive restoring force magnetic path and the magnetic resistance associated with each axial attractive force magnetic path. It is the same in that the change rate of the shaft support capacity can be adjusted.
  • the magnetic path (radial passive restoring force magnet 226) can be formed separately from the upward axial attraction magnetic path 218A and the downward axial attraction magnetic path 218B.
  • the magnetic flux of the magnetic path 226 for radial passive restoring force is in the upward Compared to the magnetic flux of the axial attractive force magnetic path 218A and the downward axial attractive force magnetic path 218B, it does not change significantly.
  • the inner circumferential side axial attraction force magnetic path passage gaps 230A and 230B (the outer circumferential side axial attraction force magnetic path passage gaps 230A and 230B) 232A, 232B) is determined by the sum of magnitudes (C1+C2). Therefore, even if the armature disc 111 is displaced in the axial direction as shown in FIGS. 11(b) and 11(c), the overall magnetic flux does not change.
  • the force that the magnetic flux of the radial passive restoring force magnetic path 226 shifts the rotor 103 up and down (left and right in FIG. 5, up and down in FIG. 10) is the upward axial attractive force magnetic path in the conventional technology (FIG. 13A) 218A and the downward axial attractive force magnetic path 218B.
  • the magnetic path is complicated by the magnetic path 226 for radial passive restoring force, but the radial restoring force is increased.
  • the magnetic force can be suppressed so that an unnecessarily large force is not generated by the upward axial attractive force magnetic path 218A and the downward axial attractive force magnetic path 218B.
  • a radial passive restoring force (radial passive A magnetic bearing with a large restoring force can be realized.
  • the radial passive restoring force (radial passive restoring force) can ), it becomes stronger, but if it is too fine, it becomes weaker.
  • the width (thinness) of the grooves 204A and 204B must be an appropriate value.
  • increasing the bias current can increase the radial shaft support capability.
  • the axial attractive force acting in the axial direction of the rotor 103 does not increase so much.
  • the gaps (the magnetic path passing gaps 230A, 232A, 230B, 232B for axial attractive force, etc.) and the non-magnetic material (rotating side non-magnetic material 201, etc.)
  • the fixed-side non-magnetic body When a non-magnetic body is arranged, the fixed-side non-magnetic body is included) rotates the axial attraction magnetic path (the upward axial attraction magnetic path 218A, the downward axial attraction magnetic path 218B, etc.).
  • a radial passive restoring force magnetic path (radial passive restoring force magnetic path 226, etc.) is formed so as to pass through the disk (armature disk 111, etc.) in the radial direction, and the rotating disk is axially (thickness direction) formed to pass through
  • the magnetic paths 218A and 218B for axial attractive force and the magnetic path 226 for radial passive restoring force are generated separately.
  • the radial passive restoring force magnetic path 226 is generated separately from the axial attractive force magnetic paths 218A and 218B, it is possible to provide a vacuum pump with a high shaft support capability.
  • the magnetic path passage gap 220 (FIGS. 10 and 12) for the radial passive restoring force of the first embodiment is not provided, and the magnetic path 218A for the upward axial attractive force and the downward axial A yoke 266 related to the formation of the attraction magnetic path 218B is integrated.
  • a portion of the yoke 266 is interposed between the two armature discs 262 and 264.
  • a portion of the yoke 266 interposed between the armature discs 262 and 264 is hereinafter referred to as an “inter-disc portion” and denoted by reference numeral 268 .
  • Magnetic path passage gaps 230C and 230D for axial attractive force are formed between the armature discs 262 and 264 and the inter-disc portion 268 . These axial attraction force magnetic path passage gaps 230C and 230D are located behind the axial attraction force magnetic path passage gaps 230A and 230C with the armature disks 262 and 264 interposed therebetween.
  • the upward axial attractive force magnetic path 218A avoids the disk outer peripheral gap 222 and the disk facing gap 224A around the coil portion 213A, and avoids the yoke 266 and the inner peripheral axial magnetic path. It passes through the magnetic path passage gap 230A for force, the first armature disk 262, the magnetic path passage gap 232A for axial attractive force on the outer peripheral side, and the yoke 266 in this order.
  • the upward axial attractive force magnetic path 218A passes through the first armature disk 262 in the radial direction.
  • the downward axial attraction force magnetic path 218B avoids the disk outer peripheral air gap portion 222 and the disk facing air gap portion 224B. It passes through the second armature disk 264, the magnetic path passage gap 230B for axial attraction force on the inner peripheral side, and the yoke 266 in this order. The downward axial attractive force magnetic path 218B passes through the second armature disk 264 in the radial direction.
  • the radial passive restoring force magnetic path 226 includes a yoke 266, an inner peripheral side axial attractive force magnetic path passage gap 230A, a first armature disk 262, an inner peripheral side axial attractive force magnetic path passage gap 230C, and an inter-disk portion. 268, the inner peripheral side axial attractive force magnetic path passing gap 230D, the second armature disk 264, the inner peripheral side axial attractive force magnetic path passing gap 230B, and the yoke 266 in this order.
  • the radial passive restoring force magnetic path 226 passes through the first armature disk 262 and the second armature disk 264 in the thickness direction (axial direction).
  • reference numeral 272 in FIG. 15 is the fixed side non-magnetic material.
  • This fixed-side non-magnetic material 272 is arranged in the disk outer peripheral gap 222 and is in contact with each portion of the yoke 266 including the inter-disk portion 268 .
  • the magnetic resistance associated with the upward axial attractive force magnetic path 218A and the relative magnetic resistance associated with the downward axial attractive force magnetic path 218B are the same as in the first embodiment. 2”.
  • the magnetic resistance associated with the radial passive restoring force magnetic path 226 is "4", which is the sum of the magnetic resistances of the axial attractive force magnetic path passage gaps 230A to 230D on the inner circumferential side.
  • the gaps axial magnetic path passing gaps 230A to 203D, 232A, 232B, etc.
  • the non-magnetic bodies rotating side non-magnetic body 201, stationary side non-magnetic body 272, etc.
  • the magnetic path for axial attraction force upward axial attraction force magnetic path 218A, downward axial attraction force magnetic path 218B, etc.
  • the rotating disk first armature disk 262, second armature disk 264, etc.
  • a radial passive restoring force magnetic path (such as the radial passive restoring force magnetic path 226) is formed to pass through the rotating disk in the axial direction (thickness direction).
  • the magnetic paths 218A and 218B for axial attractive force and the magnetic path 226 for radial passive restoring force are generated separately.
  • the radial passive restoring force magnetic path 226 is generated separately from the axial attractive force magnetic paths 218A and 218B, it is possible to provide a vacuum pump with a high shaft support capability.
  • a large number of permanent magnets 308 and 310 are incorporated in the fixed side non-magnetic body 304 and the rotating side non-magnetic body 306 .
  • six permanent magnets 308 are incorporated in the fixed-side non-magnetic body 304 .
  • Six permanent magnets 310 are also incorporated in the rotation-side non-magnetic body 306 .
  • the permanent magnet 308 of the fixed-side non-magnetic body 304 faces the permanent magnet 310 of the rotating-side non-magnetic body 306 via permanent magnet gaps 312 and 314 .
  • Letters “N” and “S” in FIG. 16 indicate polarities of some of the permanent magnets 310 .
  • the polar directions of the permanent magnet 308 of the fixed-side non-magnetic body 304 and the permanent magnet 310 of the rotating-side non-magnetic body 306 attract each other, and the magnetic path 322 for the downward axial attractive force and the radial passive restoring force It is set so that the magnetic path 324 can be generated.
  • the fixed-side non-magnetic body 304 is combined with the yoke 318B.
  • a back yoke 320 is provided on the rotation-side non-magnetic body 306 .
  • the downward axial attractive force magnetic path 322 includes the yoke 318, the permanent magnet 308 of the fixed side non-magnetic body 304, the permanent magnet gap 314, the permanent magnet 310 of the rotating side non-magnetic body 306, the back yoke 320, and the rotating side non-magnetic body. It passes through the permanent magnet 310 of the body 306, the gap 314 between the permanent magnets, the permanent magnet 308 of the stationary non-magnetic body 304, and the yoke 318 in this order.
  • a downward axial attractive force magnetic path 322 radially passes through the back yoke 320 .
  • the magnetic path 324 for radial passive restoring force is composed of the yoke 318A, the permanent magnet 308 of the fixed side non-magnetic body 304, the gap 312 between the permanent magnets, the rotation Permanent magnet 310 of side non-magnetic body 306, permanent magnet 310 of rotating side non-magnetic body 306, gap 314 between permanent magnets, permanent magnet 308 of fixed side non-magnetic body 304, yoke 318B, permanent magnet of fixed side non-magnetic body 304 308, gap between permanent magnets 314, permanent magnet 310 of rotating non-magnetic body 306, permanent magnet 310 of rotating non-magnetic body 306, gap between permanent magnets 312, permanent magnet 308 of fixed side non-magnetic body 304, and yoke Continue through 318.
  • the radial passive restoring force magnetic path 324 radially passes through the yoke 318 and axially passes through the fixed-side non-magnetic body 304 and the rotating-side non-magnetic body
  • the permanent magnets 308 and 310 are each formed in an annular shape.
  • the size of the permanent magnet gaps 312 and 314 is, for example, about 0.3 mm when the rotor 103 (and rotor shaft 113) is in a neutral state. The total size of the gaps 312 and 314 between the upper and lower permanent magnets does not change even if the first armature disk 262 and the rotation-side non-magnetic body 306 are displaced.
  • a sufficiently large air gap 326 is formed between the first armature disk 262 and the yoke 318, and the air gap 326 allows the radial passive restoring force magnetic path 324 to It is also magnetically separated from the upward axial attractive force magnetic path 218A.
  • the magnetic flux of the upward axial attractive force magnetic path 218A is kept as constant as possible, and the gaps 312, 314 between the permanent magnets are also kept constant.
  • the magnetic path separation structure of the third embodiment has permanent magnets (permanent magnets 308, 310, etc.) and non-magnetic bodies (fixed-side non-magnetic body 304, rotating-side non-magnetic body 306, etc.). Separated magnetic bodies (fixed side non-magnetic body 304, rotating side non-magnetic body 306, etc.) are further used to create an axial attraction magnetic path (downward axial attraction magnetic path 322, etc.) and a radial passive restoring force. magnetic path (radial passive restoring force magnetic path 324).
  • the downward axial attractive force magnetic path 322 and the radial passive restoring force magnetic path 324 are generated separately.
  • a vacuum pump having a high shaft supporting capacity can be provided.
  • a permanent magnet is composed of a large number of particles (magnetic domains) that are magnetized and stay in a fixed position. For this reason, since the gradient of the magnetic flux that generates the radial passive restoring force is larger in the permanent magnet than in the electromagnet, the radial passive restoring force in the permanent magnet is several times larger than that in the electromagnet if the magnitudes are about the same. Also, permanent magnets do not require a current supply unlike electromagnets. Therefore, by using the permanent magnets 308 and 310 as in the third embodiment instead of the electromagnets, it is possible to easily generate a larger magnetic path 324 for radial passive restoring force.
  • a permanent magnet 332 is provided in place of the radial passive restoring force magnetic path passing gap 220 of the first embodiment (FIG. 10).
  • the letters “N” and “S” in FIG. 17 indicate the polarities of the permanent magnets 332 .
  • one armature disk 340, magnetic path passage gaps 334A and 334B for axial attraction force, and permanent magnets 332 are used to increase the radial restoring force.
  • an upward axial attractive force magnetic path 218A and a downward axial attractive force magnetic path 218B are formed.
  • the coil portions 213A and 213B and the disk-facing gap portions 224A and 224B are arranged closer to the axial center side than in the first embodiment.
  • the radial range of the regions where the axial attraction force magnetic path passage gaps 334A and 334B on the inner circumference side are formed is smaller than the region of the outer circumference side axial attraction force magnetic path passage gaps 336A and 336B.
  • the radial passive restoring force magnetic path 338 is formed using the outer peripheral side of the armature disk 340 and the outer yokes 344A and 344B.
  • the radial passive restoring force magnetic path 338 includes a yoke 344A of an upward axial electromagnet 342A, an outer peripheral axial attractive force magnetic path passage gap 336A, an armature disk 340, an outer peripheral axial attractive force magnetic path passage gap 336B, and a lower magnetic path passage gap 336B. It passes through the yoke 344B of the directional axial electromagnet 342B, the permanent magnet 332, and the yoke 344A of the upward axial electromagnet 342A in order.
  • the radial passive restoring force magnetic path 338 passes through the armature disk 340 in the thickness direction (axial direction).
  • the magnetic path separation structure of the fourth embodiment further uses permanent magnets (permanent magnet 332, etc.) and yokes (yokes 344A, 344B, etc.) to form an axial attraction magnetic path (upward axial attraction). force magnetic path 218A, downward axial attraction magnetic path 218B, etc.) and the radial passive restoring force magnetic path (radial passive restoring force magnetic path 338, etc.).
  • the upward axial attractive force magnetic path 218A, the downward axial attractive force magnetic path 218B, and the radial passive restoring force magnetic path 338 are generated separately.
  • the radial passive restoring force magnetic path 338 is generated separately from the upward axial attractive force magnetic path 218A and the downward axial attractive force magnetic path 218B, it is possible to provide a vacuum pump with a high shaft support capability. .
  • the permanent magnet 332 and the coil portions 213A and 213B are separated from each other by a sufficiently large distance in the radial direction.
  • the radial passive restoring force magnetic path 338 is formed separately from the axial attractive force magnetic paths 218A and 218B radially outside the yokes 344A and 344B. This also separates the axial attraction force magnetic paths 218A and 218B from the radial passive restoring force magnetic path 338, making it possible to provide a vacuum pump with high shaft support capability. Further, the radial passive restoring force magnetic path 338 can be formed separately from the axial attractive force magnetic paths 218A and 218B without relying only on electromagnets.
  • the radial passive restoring force magnetic path 338 is formed around the permanent magnet 332, even if the yokes 344A and 344B are small, the radial passive restoring force magnetic path 338 can be separated. can. Therefore, the size of the axial magnetic bearing 330 can be reduced.
  • the permanent magnets are not opposed to each other with a gap therebetween.
  • a radial passive restoring force magnetic path 338 in the axial magnetic bearing 330 of the fourth embodiment passes through axial attractive force magnetic path passing gaps 336A and 336B formed between the armature disk 340 and the yokes 344A and 344B. do.
  • armature disk 352 extends radially outward, and a magnetic path for radial passive restoring force passes through the outer peripheral portion of the armature disk 352, as compared with the first embodiment (FIGS. 8 and 10). Gaps 354A, 354B have been added.
  • one armature disk 352 is used, and the inner and outer rings (the radially inner side 352A and the radially outer side 352B) of the single armature disk 352 are magnetically insulated to increase the radial restoring force. ing.
  • a rotation-side non-magnetic material 356 is provided at a portion of the armature disk 352 on the inner peripheral side (axial side) of the radial passive restoring force magnetic path passage gaps 354A and 354B.
  • a fixed-side non-magnetic material 362 is provided at a portion on the outer peripheral side (radial outer side, centrifugal side) of the yoke 360A of the upward axial electromagnet 358A and the yoke 360B of the downward axial electromagnet 358B.
  • the fixed side non-magnetic body 362 although not shown, it is possible to mount the fixed side non-magnetic body 362 formed in an annular shape between the yokes 360A and 360B.
  • the radial passive restoring force magnetic path 364 includes the yoke 360A of the upward axial electromagnet 358A, the axial attractive force magnetic path passing gap 230A, the armature disk 352A, the axial attractive force magnetic path passing gap 230B, and the yoke of the downward axial electromagnet 358B. 360B, a radial passive restoring force magnetic path passing gap 354B, an armature disk 352B, a radial passive restoring force magnetic path passing gap 354A, and a yoke 360A of an upward axial electromagnet 358A.
  • the radial passive restoring force magnetic path 364 passes through the armature disk 352 in the thickness direction (axial direction).
  • both the upward direction (upward direction in FIG. 18) and the downward direction (downward direction in FIG. 18) 230B, through the magnetic path passing gaps 354A, 354B) for the radial passive restoring force are in the radial passive restoring force magnetic path 364.
  • the gaps (axial magnetic path passage gaps 230A, 230B, 232A, 232B, radial passive restoring force magnetic path passage gaps 354A, 354B, etc.)
  • the magnetic bodies 201 and 356, fixed-side non-magnetic body 362, etc.) connect the axial attractive force magnetic paths (upward axial attractive force magnetic path 218A, downward axial attractive force magnetic path 218B, etc.) to the rotating disc (armature). disk 352, etc.), and the radial passive restoring force magnetic path (radial passive restoring force magnetic path 364, etc.) is formed so as to pass through the rotating disk in the axial direction (thickness direction).
  • the axial attractive force magnetic paths 218A and 218B and the radial passive restoring force magnetic path 364 are generated separately.
  • the radial passive restoring force magnetic path 364 is generated separately from the axial attractive force magnetic paths 218A and 218B, it is possible to provide a vacuum pump with a high shaft support capability.
  • the sixth embodiment employs a form in which the second embodiment (FIG. 15) and the fifth embodiment (FIG. 18) are combined.
  • two armature discs 372, 374 are used, and the inner and outer rings (radial inner sides 372A, 374A and outer sides 372B, 374B) of the respective armature discs 372, 374 are magnetically insulated to achieve radial restoration. It is designed to increase power.
  • two armature discs 372 and 374 are provided. These armature discs 372, 374 have the same structure as the armature disc 352 of the fifth embodiment (FIG. 18). Magnetic path passage gaps 376A to 376D for radial restoring force are formed in the outer peripheral portions of the first armature disk 372 and the second armature disk 374, respectively.
  • the first armature disk 372 and the second armature disk 374 are provided with rotation-side non-magnetic bodies 380 and 382 .
  • a fixed-side non-magnetic member 384 is provided between the rotating-side non-magnetic members 380 and 382 .
  • Fixed-side non-magnetic bodies 386 and 388 are also spaced apart from each other on the radially outer sides of the first armature disk 372 and the second armature disk 374 . These stationary non-magnetic bodies 386 and 388 are fixed to the yoke 390 .
  • a magnetic path passage gap 375A for axial attractive force is located at a portion of the first armature disk 372 radially outside the flat region 210A.
  • a magnetic path passage gap 375B for axial attractive force is positioned in a portion of the first armature disk 372 radially outside the flat region 210B.
  • These axial attraction force magnetic path passage gaps 375A and 375B are larger than the axial attraction force magnetic path passage gaps 230A to 230D on the inner circumferential side.
  • the upward axial attraction force magnetic path 218A passes through the axial attraction force magnetic path passage gap 375A, and the downward axial attraction force magnetic path 218B passes through the axial attraction force magnetic path passage gap 375B.
  • the radial passive restoring force magnetic path 392 includes a yoke 390, an axial attraction force magnetic path passage gap 230A, a first armature disk 372A, an axial attraction force magnetic path passage gap 230C, an inter-disk portion 394A, and an axial attraction force magnetic path. It passes through the passage gap 230D, the second armature disk 374A, the magnetic path passage gap 230B for axial attractive force, and the yoke 390 in this order.
  • the radial passive restoring force magnetic path 392 includes a radial attraction force magnetic path passage gap 376B, a second armature disk 374A, a radial attraction force magnetic path passage gap 376D, an inter-disk portion 394, a radial attraction force magnetic path passage It passes through the gap 376C, the first armature disk 372, the magnetic path passing gap 376A for radial attractive force, and the yoke 390 in this order.
  • the radial passive restoring force magnetic path 392 passes through eight gaps (four axial attractive force magnetic path passing gaps 230A to 230D, four radial passive restoring force magnetic path passing gaps 376A to 376D). .
  • the gaps (axial magnetic path passage gaps 230A to 230D, 375A, 375B, radial passive restoring force magnetic path passage gaps 376A to 376D, etc.)
  • the magnetic bodies 201, 380, 382, fixed-side non-magnetic bodies 384, 386, 388, etc.) connect the magnetic paths 218A, 218B for axial attractive force to the rotating discs (first armature disc 372, second armature disc 374, etc.).
  • a radial passive restoring force magnetic path 392 is formed to pass axially through the rotating disc.
  • an axial magnetic bearing 400 according to a seventh embodiment will be described with reference to FIG.
  • the same reference numerals are given to the same parts as those of the embodiments described so far, and the description thereof will be omitted as appropriate.
  • three armature discs, a first armature disc 402, a second armature disc 404, and a third armature disc 406, are used to increase the radial restoring force.
  • the second armature disc 404 protrudes to the outer peripheral side compared to the other armature discs 402 and 406.
  • Magnetic path passage gaps 220 for radial passive restoring force are formed at the outer peripheral side portions of the yokes 408A and 408B.
  • the upward axial attractive force magnetic path 410A passes through the first armature disk 402 in the thickness direction (axial direction) and passes through the second armature disk 404 in the radial direction.
  • the downward axial attractive force magnetic path 410B passes through the second armature disk 404 in the radial direction and passes through the third armature disk 406 in the thickness direction (axial direction).
  • the radial passive restoring force magnetic path 412 passes through the three armature discs 402 , 404 , 406 in the thickness direction (axial direction) and passes through the radial passive restoring force magnetic path passing gap 220 .
  • a disk outer peripheral gap 222 is formed between the radial passive restoring force magnetic path passing gap 220 and the outer peripheral surface of the second armature disk 404.
  • a fixed-side non-magnetic material (not shown) may be arranged in the disk outer peripheral gap 222 .
  • Reference numerals 230A to 230F, 232E, and 232F in FIG. 20 denote magnetic path passage gaps for axial attractive force.
  • Reference numerals 414 and 416 in FIG. 20 denote fixed-side non-magnetic bodies.
  • the seventh embodiment includes a plurality of rotating discs (three armature discs 402, 404, 406, etc.), gaps (magnetic path passage gaps 230A to 230F, 232E, 232F for axial attractive force, radial passive magnetic path passage gap 220 for restoring force) and non-magnetic materials (rotation-side non-magnetic material 201, stationary-side non-magnetic materials 414 and 416, etc.).
  • fixed-side non-magnetic material are configured to rotate the axial attractive force magnetic path (upward axial attractive force magnetic path 410A, downward axial attractive force magnetic path 410B, etc.) to some of the plurality of rotating discs.
  • a magnetic path 412 for radial passive restoring force is formed to pass radially through a rotating disk (here, the second armature disk 404, etc.), and a plurality of rotating disks (here, three armature disks 402, 404, 406, etc.) are formed to pass axially.
  • a rotating disk here, the second armature disk 404, etc.
  • a plurality of rotating disks here, three armature disks 402, 404, 406, etc.
  • the radial passive restoring force magnetic path 412 can be generated separately from the upward axial attraction force magnetic path 410A and the downward axial attraction force magnetic path 410B, thereby providing a vacuum pump with high shaft support capability. It is possible to
  • an eighth embodiment (FIG. 21), and a ninth embodiment (FIG. 22), which will be described later, three armature discs (armature discs 402, 404, and 406 in the seventh embodiment) )
  • the magnetic paths in the second armature disk 404 are not limited to passing in the radial direction.
  • three armature discs 422, 424, and 426 are used to magnetically insulate the inner and outer rings (inside and outside in the radial direction) of some of the armature discs (here, the second armature disc 424). It is intended to increase the radial restoring force.
  • the second armature disc 424 protrudes to the outer peripheral side compared to the other armature discs 422, 426.
  • the second armature disk 424 projects further outward in the radial direction than in the seventh embodiment (FIG. 20). , 428B are formed.
  • a rotation-side non-magnetic material 430 is embedded in the second armature disk 424 .
  • a fixed-side nonmagnetic member 434 provided on the yoke 432 is positioned radially outside the second armature disk 424 .
  • the fixed-side nonmagnetic material 434 of the yoke 432 faces the outer peripheral surface of the second armature disk 424 with a space therebetween.
  • the upward axial attractive force magnetic path 410A and the downward axial attractive force magnetic path 410B are the same as in the seventh embodiment (FIG. 20).
  • the point that the magnetic path 436 for radial passive restoring force passes through the three armature disks 422, 424, 426 in the thickness direction (axial direction) is also the same as in the seventh embodiment.
  • a radial passive restoring force magnetic path 436 passes through the outer peripheral portion of the second armature disk 424 in the thickness direction (axial direction) via the yoke 432 .
  • the eighth embodiment includes a plurality of rotating discs (three armature discs 422, 424, 426, etc.), gaps (magnetic path passage gaps 230A to 230F, 232E, 232F for axial attractive force, radial restoration Force magnetic path passage gaps 428A, 428B, etc.) and non-magnetic bodies (rotation side non-magnetic bodies 201, 430, fixed side non-magnetic bodies 414, 416, 434, etc.) form an axial attraction magnetic path (upward axial attraction force magnetic path 410A, downward axial attractive force magnetic path 410B, etc.) are formed so as to radially pass through some of the plurality of rotating disks (second armature disk 424, etc.).
  • a radial passive restoring force magnetic path 436 is formed so as to pass through a plurality of rotating discs (here, three armature discs 422, 424, 426, etc.) in the axial direction (thickness direction).
  • the radial passive restoring force magnetic path 436 can be generated separately from the upward axial attractive force magnetic path 410A and the downward axial attractive force magnetic path 410B. It is possible to provide
  • three armature discs 442, 444, 446 are used, and the inner and outer rings (inside and outside in the radial direction) of the three armature discs 442, 444, 446 are magnetically insulated to provide a radial restoring force. is intended to increase
  • the outer diameters of the three armature discs 442, 444, 446 are substantially equal.
  • Rotation-side non-magnetic bodies 448 , 450 , 452 are provided on the respective armature disks 442 , 444 , 446 .
  • Most of the positions of the rotation-side non-magnetic bodies 450 on the second armature disk 444 are on the outer peripheral side of the positions of the rotation-side non-magnetic bodies 448 , 452 on the other armature disks 442 , 446 .
  • a stationary non-magnetic material 456 is provided between the first armature disk 442 and the second armature disk 444, and a stationary non-magnetic material 458 is provided between the second armature disk 444 and the third armature disk 446.
  • Fixed-side non-magnetic members 462 , 464 , 466 fixed to the yoke 460 are provided radially outside the armature disks 442 , 444 , 446 .
  • the upward axial attractive force magnetic path 468A passes through the first armature disk 442 in the thickness direction (axial direction) and passes through the second armature disk 444 in the radial direction.
  • the downward axial attractive force magnetic path 468B passes through the second armature disk 444 in the radial direction and passes through the third armature disk 446 in the thickness direction (axial direction).
  • the upward axial attraction force magnetic path 468A passes through radial restoring force magnetic path passage gaps 472C and 472A, and the downward axial attraction force magnetic path 468B passes through radial restoring force magnetic path passage gaps 472D and 472B.
  • a radial passive restoring force magnetic path 470 passes through the three armature discs 442, 444, 446 in the thickness direction (axial direction).
  • the radial passive restoring force magnetic path 470 returns in the thickness direction (axial direction) through the radially outer peripheral side portions of the three armature discs 442 , 444 , 446 .
  • the radial passive restoring force magnetic path 470 passes through the radial restoring force magnetic path passing gaps 472A to 472F.
  • a plurality of rotating discs (three armature discs 442, 444, 446, etc.) are provided, and gaps (magnetic path passage gaps 230A to 230F for axial attractive force, radial restoring force magnetic path passage gaps 472A to 472F, etc.) and non-magnetic bodies (rotating side non-magnetic bodies 201, 448, 450, 452, stationary side non-magnetic bodies 456, 458, 462, 464, 466, etc.) form a magnetic path for axial attractive force.
  • Upward axial attractive force magnetic path 468A, downward axial attractive force magnetic path 468B, etc. are arranged in a part of rotating disks (here, second armature disk 444, etc.) among a plurality of rotating disks.
  • the radial passive restoring force magnetic path 470 is formed to pass through in the radial direction, and the plurality of rotating discs (here, the first armature disc 442, the second armature disc 444, the third armature disc 446, etc.) are axially ( thickness direction).
  • the magnetic path for radial passive restoring force 470 can be generated separately from the magnetic path for upward axial attraction force 468A and the magnetic path for axial attraction force 468B in the downward direction, and the vacuum pump has high shaft support capability. It is possible to provide
  • an axial magnetic bearing 480 according to the tenth embodiment will be described with reference to FIG.
  • the same reference numerals are given to the same parts as those of the embodiments described so far, and the description thereof will be omitted as appropriate.
  • four armature discs ie, a first armature disc 482, a second armature disc 484, a third armature disc 486, and a fourth armature disc 488 are used to increase the radial restoring force.
  • the second armature disk 484 and the third armature disk 486 protrude to the outer peripheral side compared to the other armature disks 482 and 488.
  • Fixed side non-magnetic members 492 , 494 , 496 are provided inside the yoke 490 .
  • the upward axial attractive force magnetic path 498A passes through the first armature disk 482 in the thickness direction (axial direction) and passes through the second armature disk 484 in the radial direction.
  • the upward axial attractive force magnetic path 498A passes through the axial attractive force magnetic path passage gap 502E formed at the outer peripheral end of the second armature disk 484 and the yoke 490 .
  • the downward axial attractive force magnetic path 498B passes through the third armature disk 486 in the radial direction and passes through the fourth armature disk 488 in the thickness direction (axial direction).
  • the downward axial attractive force magnetic path 498B passes through the axial attractive force magnetic path passage gap 502F formed at the outer peripheral end of the third armature disk 486 and the yoke 490 .
  • the radial passive restoring force magnetic path 500 passes through the four armature discs 482, 484, 486, 488 in the thickness direction (axial direction). Further, the radial passive restoring force magnetic path 500 passes through the yoke 490 .
  • a plurality of rotating disks (four armature disks 482, 484, 486, 488, etc.) 230H, 502E, 502F, etc.) and non-magnetic bodies (rotation-side non-magnetic body 201, fixed-side non-magnetic bodies 492, 494, 496, etc.) form axial attraction magnetic paths (upward axial attraction magnetic paths 498A, downward axial attractive force magnetic path 498B, etc.) radially through some of the plurality of rotating discs (here, the second armature disc 484, the third armature disc 486, etc.).
  • the radial passive restoring force magnetic path 500 is formed so as to pass through a plurality of rotating discs (here, the first armature disc 482 to the fourth armature disc 488, etc.) in the axial direction (thickness direction).
  • the radial passive restoring force magnetic path 500 can be generated separately from the upward axial attraction force magnetic path 498A and the downward axial attraction force magnetic path 498B. It is possible to provide
  • the eleventh embodiment has a configuration similar to that of the fourth embodiment (FIG. 17) using permanent magnets 332 .
  • the permanent magnet 332 makes it possible to provide a vacuum pump with a simple configuration and high shaft support capability.
  • the magnetic path separation structure of the eleventh embodiment further uses permanent magnets (permanent magnet 332, etc.) and yokes (yoke 344A, etc.) to form an axial attraction magnetic path (upward axial attraction force).
  • magnetic path 218A, etc. and the radial passive restoring force magnetic path (radial passive restoring force magnetic path 338, etc.).
  • the upward axial attractive force magnetic path 218A and the radial passive restoring force magnetic path 338 are generated separately.
  • the radial passive restoring force magnetic path 338 is generated separately from the upward axial attractive force magnetic path 218A, it is possible to provide a vacuum pump with a high shaft support capability.
  • FIG. 24 shows a state in which the turbomolecular pump is in a vertical position in which gravity acts downward.
  • gravity acts equivalently to the downward axial attraction force.
  • no permanent magnet is used as in the first embodiment (FIGS. 8 and 10).
  • the magnetic path only the upward axial attractive force magnetic path 218A is formed.
  • the radial passive restoring force magnetic path 522 passes through the yoke 524 , the axial attractive force magnetic path passing gap 230 A, the armature disk 111 , the axial attractive force magnetic path passing gap 230 B, and the yoke 524 .
  • the gaps axial magnetic path passing gaps 230A, 230B, 232A, etc.
  • the non-magnetic material rotation-side non-magnetic material 201, etc.
  • the axial attractive force magnetic path upward axial attractive force magnetic path 218A, etc.
  • a radial passive restoring force magnetic path (such as the radial passive restoring force magnetic path 522) is formed to pass through the rotating disk in the axial direction (thickness direction).
  • the magnetic path 218A for axial attractive force and the magnetic path 522 for radial passive restoring force are generated separately.
  • a vacuum pump with high shaft support capability can be provided.
  • FIG. 25 shows a state in which the turbomolecular pump is in a vertical position in which gravity acts downward. Gravity works equivalently to the downward axial attraction force.
  • FIG. 26 The left and right sides of FIG. 26 show the armature disk 111 and the yoke 212A of the upward axial electromagnet 106A partially enlarged.
  • the radial passive restoring force is generated when the magnetic poles of the yoke 212A (fixed side) and the armature disk 111 (rotating side) deviate in the radial direction (horizontal direction in FIG. 26). It is generated by the oblique magnetic flux 540 between (the convex portion 206A and the convex portion 216A) shrinking and trying to become vertical. Therefore, the more magnetic flux 540 that can be bent to a greater angle, the greater the radial passive restoring force.
  • the width of the valley between the convex portions 206A (and the convex portions 216A) (the width of the groove portions 204A and the groove portions 214A) G1 is narrow, the distance (the radial distance) between the mutually adjacent convex portions 206A (and the convex portions 216A) ) is shortened.
  • the force generated obliquely with the convex portion 216A is easily synthesized. Overall, this results in a reduced radial passive restoring force.
  • the magnetic flux 540 tries to pass through the place with the shortest spatial distance (distance in space). Therefore, as shown on the right side of FIG. 26 , if the width of the valley of the convex portion 206A (the width of the groove portion 204A) is widened to G2 (>G1), the oblique force is less likely to occur, resulting in a radial passive restoring force. becomes stronger. However, if the width G2 of the groove portion 204A (and the groove portion 214A) is too wide, the size of the component increases.
  • the magnetic flux 540 tries to pass through the place with the shortest spatial distance, so it tries to flow perpendicularly to the tip surface of the convex portion 206A (and the convex portion 216A) without tilting. Therefore, in order to increase the inclination of the magnetic flux 540 and increase the radial passive restoring force, the width of the tip surface of the convex portion 206A (and the convex portion 216A) should be F2 ( ⁇ F1) on the right side of FIG. As shown, the narrower the better. However, if the width F2 is too narrow, the magnetic flux 540 will decrease.
  • the height (H in FIG. 29) of the projection 206A (and the projection 216A) is small, the difference in the magnetic flux 540 between the projection 206A (and the projection 216A) and the groove 204A (and the groove 214A) is become smaller. Therefore, it is desirable to ensure that the height of the convex portion 206A (and the convex portion 216A) is large to some extent.
  • the cross section of the root is thicker, because the magnetic flux 540 is less likely to be saturated.
  • the shape of the convex portion 206A (and the convex portion 216A) is preferably trapezoidal (center of FIG. 28) rather than rectangular (left side of FIG. 28), and hexagonal (Fig. 28) rather than trapezoidal. 28 right side).
  • the side surfaces of the convex portion 206A (and the convex portion 216A) are preferably curved rather than flat.
  • the corner 542 of the projection 206A (and the projection 216A) is also curved (on the right side in FIG. 28) because the magnetic flux at the tip (tip magnetic flux) can be effectively used.
  • the convex portion 206A (and the convex portion 216A) in consideration of these matters.
  • the gap C between the convex portion 206A and the convex portion 216A shown in FIG. (and the convex portion 216A) should preferably have a ratio of heights H of about 3:4:7:5.
  • these relationships can be set to approximately 0.3 mm:0.4 mm:0.7 mm:0.5 mm. Such a relationship is adopted in the first embodiment.
  • one plate surface 202A of armature disk 111 and yoke 212A of upward axial electromagnet 106A are described as an example, but the other plate surface 202B of armature disk 111 and downward axial electromagnet 106A are described as examples. The same applies to the relationship between electromagnet 106B and yoke 212B.
  • the turbo-molecular pump 100 in which the magnetic flux is optimized by the shapes of the grooves (the grooves 204A (and the grooves 214A)) and the projections (the projections 206A (and the projections 216A)) can be expressed as follows.
  • the turbomolecular pump 100 is provided in a rotating disk (armature disk 111, etc.) and a yoke (yokes 212A, 212B, etc.) facing the rotating disk, and has a radial passive restoring force magnetic path (radial passive restoring force magnetic path 226 etc.) that generate a radial passive restoring force (projections 216A, 216B, etc.) are at least part of the tip ( It has a substantially trapezoidal shape (or a hexagonal shape, etc.) in which the dimension (F4) of the base is larger than the dimension (F3, etc. in FIG. 29).
  • the magnetic force of the magnetic bearing is equivalently replaced by a spring and a damper.
  • a spring constant in the lower radial direction in the turbo-molecular pump 100 shown in FIG.
  • the whirling during rotation of the lower side of 103 enters a resonance state when the rotational speed f is f ⁇ (1/2 ⁇ ) ⁇ (K/M), and the whirling increases.
  • the spring constant K can be changed by increasing or decreasing the bias currents of the upper and lower axial electromagnets. As the bias current to the electromagnet of the magnetic bearing increases, the spring constant K increases, and the rotational speed at which resonance occurs can be increased.
  • FIG. 30(a) shows the relationship between the rotational speed and the whirling of the rotor when the bias current of the axial electromagnet is relatively small.
  • FIG. 30(b) shows the relationship between the rotational speed and the whirling of the rotor when the bias current of the axial electromagnet is relatively large.
  • FIG. 30(c) shows the relationship between the rotation speed and the whirling of the rotor when the bias current of the axial electromagnet is made variable.
  • switching time When changing the bias current of the axial electromagnet, by shortening the time required for change (switching time) as much as possible, it is possible to more reliably prevent contact. It normally takes about 2 to 3 minutes for the rotational speed to reach the rated value, but switching the bias current can be done in about 20 to 30 ms. Therefore, by appropriately selecting the timing of switching the bias current, it is possible to easily prevent the timing of switching the bias current from overlapping with the timing at which the vibration becomes large due to resonance.
  • the turbo-molecular pump 100 in which the whirling at the time of passing through the resonance point is improved by such a variable bias current, is achieved by changing the steady-state excitation current (bias current, etc.) flowing through the coil portions (coil portions 213A, 213B, etc.). It can be said that the support rigidity is changed by the magnetic force of the axial direction magnetic force generating means (such as the axial direction magnetic bearing 110).
  • each embodiment provides a good magnetic bearing by applying it to a 3-axis control magnetic bearing, but it can also be applied to a magnetic bearing other than 3-axis control (for example, a 1-axis control magnetic bearing). It is possible.
  • turbomolecular pump 101 intake port 102: rotor blade 103: rotating body (rotor) 104: Upper radial electromagnet 106: Axial electromagnet (axial electromagnet) 106A: upward axial electromagnet 106B: downward axial electromagnet 110: axial magnetic bearing 111: metal disk (armature disk) 113: Rotating shaft (rotor shaft) 123: Fixed blade 133: Exhaust port 200: Control device 201: Rotation-side non-magnetic bodies 204A, 204B: Grooves 206A, 206B: Protrusions 212A, 212B: Yokes 213A, 213B: Coils 214A, 214B: Grooves 216A, 216B: Convex portion 218A: Upward axial attractive force magnetic path 220: Radial passive restoring force magnetic path passing gap 226: Radial passive restoring force magnetic paths 230A to 230H: Axial attractive force magnetic path passing gaps 232A, 232

Abstract

【課題】軸支持能力が高い真空ポンプを提供する。 【解決手段】軸方向磁気軸受110は、磁路分離構造を有する。軸方向磁気軸受110は、ヨーク212A、212Bと、ヨーク212A、212Bに磁気を発生させるコイル部213A、213Bと、磁路を遮断する回転側非磁性体201と、を有する。磁路分離構造は、アキシャル吸引力用磁路通過ギャップ230A、232A、230B、232Bと回転側非磁性体201により、アキシャル吸引力用磁路218A、218Bとラジアル受動復元力用磁路226とを分離する。

Description

真空ポンプ
 本発明は、例えばターボ分子ポンプ等の真空ポンプに関する。
 一般に、真空ポンプの一種としてターボ分子ポンプが知られている。このターボ分子ポンプにおいては、ポンプ本体内のモータへの通電により回転翼を回転させ、ポンプ本体に吸い込んだガス(プロセスガス)の気体分子を弾き飛ばすことによりガスを排気するようになっている。また、このようなターボ分子ポンプにおいては、回転翼が形成された回転体(ロータ)に回転軸(ロータ軸)が結合され、モータにより回転軸と回転体を回転させて排気を行うようになっている(特許文献1)。
 特許文献1には、3軸制御磁気軸受が開示されている。特許文献1に開示された3軸制御磁気軸受は、アキシャル方向(軸方向)能動型磁気軸受の磁力を流用してラジアル方向(径方向)の軸位置を受動的に支持する。特許文献1の3軸制御磁気軸受では、上側ラジアル方向の支持は、能動型磁気軸受により行われ、下側ラジアル方向の支持は、アキシャル能動型磁気軸受の磁力を流用して受動的に行われている。このような3軸制御磁気軸受は、一般的な5軸制御磁気軸受に比べ、ラジアル方向の電磁石、センサ、制御回路を削減でき、小型化、低コスト化が可能である。
特開2018-179262号公報
 ところで、ターボ分子ポンプの設置が、ロータの軸心が水平方向に向くようにして行われる場合、ロータの重量をラジアル方向に支持する必要がある。前述のような3軸制御磁気軸受では、下側ラジアル方向(ラジアル方向のうち下側を向く方向、重力が作用する方向)の支持は、アキシャル能動型磁気軸受の磁力を流用して受動的に行われる。このため、 下側ラジアル方向の支持は、電流変化を伴う能動的な支持に比べて、緻密な位置制御を行い難く、その分、軸支持能力が低くなる。
 また、ロータが大型化され、ロータの重量が大きい場合には、水平支持しようとするロータ(及びロータ軸)の軸心の位置が目標位置から大きくずれ、ロータ(及びロータ軸)を正常に浮上させるのが困難になることがある。
 ロータをラジアル方向に正常に浮上させるための策として、アキシャル方向の支持に用られるアキシャル電磁石の磁力を増強することが挙げられる。この場合、アキシャル電
磁石に供給されるバイアス電流(定常励磁電流)を増大し、アキシャル方向の吸引力(アキシャル吸引力)を増加させる。しかし、ラジアル方向の軸支持能力は高まるが、アキシャル方向に関しては不安定性が増加し、アキシャル方向に正常に浮上できなくなることがある。したがって、3軸制御磁気軸受は、5軸制御磁気軸受けに比べ、ロータの重量が大きくなると、ロータの水平浮上への対応が困難になる。
 本発明の目的とするところは、軸支持能力が高い真空ポンプを提供することにある。
 上記目的を達成するために本発明は、ガスを排気するロータをアキシャル方向に磁力で非接触支持するアキシャル方向磁力発生手段を備え、
 前記アキシャル方向磁力発生手段は、
  アキシャル吸引力用磁路と、ラジアル受動復元力用磁路とを分離して発生させる磁路分離構造を有する、
ことを特徴とする真空ポンプにある。
 上記発明によれば、軸支持能力が高い真空ポンプを提供することができる。
本発明の第1実施形態に係るターボ分子ポンプの構成を模式的に示す説明図である。 アンプ回路の回路図である。 電流指令値が検出値より大きい場合の制御を示すタイムチャートである。 電流指令値が検出値より小さい場合の制御を示すタイムチャートである。 第1実施形態に係るターボ分子ポンプを水平姿勢で使用した状態を示す説明図である。 第1実施形態に係るアーマチャディスクを示す斜視図である。 アーマチャディスクの一部の断面を拡大して模式的に示す説明図である。 第1実施形態に係る軸方向磁気軸受の一部とその周辺部を模式的に示す説明図である。 上方向アキシャル電磁石とアーマチャディスクとの関係を模式的に示す説明図である。 第1実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 (a)はアーマチャディスクが中立な状態を模式的に示す説明図、(b)はアーマチャディスクが上方向アキシャル電磁石に近づいた状態を模式的に示す説明図、(c)はアーマチャディスクが下方向アキシャル電磁石に近づいた状態を模式的に示す説明図である。 ラジアル受動復元力用磁路通過ギャップを拡大して模式的に示す説明図である。 (a)は従来技術に係る軸方向磁気軸受の各磁路を模式的に示す説明図、(b)は第1実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 アーマチャディスクが径方向に変位した場合における上方向アキシャル電磁石との間の磁束を模式的に示す説明図である。 第2実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第3実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第4実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第5実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第6実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第7実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第8実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第9実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第10実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第11実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 第12実施形態に係る軸方向磁気軸受の各磁路を模式的に示す説明図である。 溝部の幅を拡大した場合の磁束を拡大前と比較して模式的に示す説明図である。 凸部の先端面の幅を縮小した場合の磁束を縮小前と比較して模式的に示す説明図である。 凸部の断面形状を順次変更した場合の磁束を変更前と比較して模式的に示す説明図である。 溝部と凸部に係る各部の大きさを記号で区別して示す説明図である。 (a)はアキシャル電磁石のバイアス電流が相対的に小さい場合における回転速度と振れ回りとの関係を模式的に示すグラフ、(b)はアキシャル電磁石のバイアス電流が相対的に大きい場合における回転速度と振れ回りとの関係を模式的に示すグラフ、(c)はアキシャル電磁石のバイアス電流を可変にした場合における回転速度と振れ回りとの関係を模式的に示すグラフである。
 以下、本発明の各実施形態に係る真空ポンプについて、図面に基づき説明する。以下では、先ず、真空ポンプの全体構成について説明し、その後に、各実施形態に係る軸方向磁気軸受の詳細について説明する。
<真空ポンプの基本構成>
 図1は、本発明の第1実施形態に係る真空ポンプとしてのターボ分子ポンプ100を示している。このターボ分子ポンプ100は、例えば、半導体製造装置等のような対象機器の真空チャンバ(図示略)に接続されるようになっている。
 このターボ分子ポンプ100の縦断面図を図1に示す。図1において、ターボ分子ポンプ100は、円筒状の外筒127の上端に吸気口101が形成されている。そして、外筒127の内方には、ガスを吸引排気するためのタービンブレードである複数の回転翼102(102a、102b、102c・・・)を周部に放射状かつ多段に形成した回転体(「ロータ」ともいう)103が備えられている。この回転体103の中心にはロータ軸113(回転軸)が取り付けられている。回転体103に一体化されたロータ軸113は、磁気軸受により空中に浮上支持かつ位置制御されている。回転体103は、一般的に、アルミニウム又はアルミニウム合金などの金属によって構成されている。
 磁気軸受は、上側径方向(上側ラジアル方向)電磁石104と軸方向(アキシャル方向)電磁石106とにより、径方向に2軸、軸方向に1軸の3軸制御を実現している。なお、以下では、径方向(特に半径方向)を「ラジアル方向」と称し、軸方向を「アキシャル方向」と称する場合がある。
 上側径方向電磁石104は、4個の電磁石がX軸とY軸とに対をなして配置されている。軸方向電磁石106は、詳細は後述するが、2つの電磁石(上方向アキシャル電磁石106A、下方向アキシャル電磁石106B)を組み合わせて構成されている(図8)。
 上側径方向電磁石104の内部には、4個の上側径方向センサ(図示略)が備えられている。上側径方向センサは変位センサである。上側径方向センサは、回転体103の径方向変位を検出し、制御装置200に送るように構成されている。上側径方向センサとしては、例えば、インダクタンス型変位センサや、静電容量センサ等を採用できる。
 制御装置200においては、例えばPID調節機能を有する補償回路が、上側径方向センサ(図示略)によって検出された位置信号に基づいて、上側径方向電磁石104の励磁制御指令信号を生成し、図2に示すアンプ回路150(後述する)が、この励磁制御指令信号に基づいて、上側径方向電磁石104を励磁制御することで、ロータ軸113の上側の径方向位置が調整される。
 そして、このロータ軸113は、高透磁率材(鉄、ステンレスなど)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。
 ここで、磁気軸受を、5軸制御を実現するものとする場合には、図示は省略するが、例えば、軸方向電磁石106寄りの位置に下側径方向電磁石及び下側径方向センサを配置する。そして、下側径方向電磁石及び下側径方向センサを用いて、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整する。この場合、上側径方向センサを上側径方向電磁石104の外側であって、且つ、上側径方向電磁石104よりも上側に配置することが可能である。
 さらに、軸方向電磁石106が、ロータ軸113の下部に備えた円板状の金属ディスク(「アーマチャディスク」などともいう)111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向位置信号が制御装置200に送られるように構成されている。
 そして、制御装置200において、例えばPID調節機能を有する補償回路が、軸方向センサ109によって検出された軸方向位置信号に基づいて、軸方向電磁石106のコイルの励磁制御指令信号を生成し、アンプ回路150が、これらの励磁制御指令信号に基づいて、軸方向電磁石を励磁制御することで、金属ディスク111を上方及び下方に吸引し、ロータ軸113の軸方向位置が調整される。軸方向電磁石106による金属ディスク111の吸引作用については後述する。本実施形態において、軸方向電磁石106のコイルは、上方向アキシャル電磁石106Aのコイル部213A、及び、下方向アキシャル電磁石106Bのコイル部213Bであるが、これらについても後述する。
 このように、制御装置200は、この軸方向電磁石106が金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。なお、これら上側径方向電磁石104、及び軸方向電磁石106を励磁制御するアンプ回路150については、後述する。さらに、各実施形態では、軸方向電磁石106が、アキシャル吸引力用磁路と、ラジアル受動復元力用磁路とを分離して発生させるよう、軸方向電磁石106に工夫が施されているが、この点についても後述する。
 一方、モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、制御装置200によって制御されている。また、モータ121には図示しない例えばホール素子、レゾルバ、エンコーダなどの回転速度センサが組み込まれており、この回転速度センサの検出信号によりロータ軸113の回転速度が検出されるようになっている。
 回転翼102(102a、102b、102c・・・)とわずかの空隙を隔てて複数枚の固定翼123(123a、123b、123c・・・)が配設されている。回転翼102(102a、102b、102c・・・)は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。固定翼123(123a、123b、123c・・・)は、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。そして、固定翼123の外周端は、複数の段積みされた固定翼スペーサ(符号省略)の間に嵌挿された状態で支持されている。
 固定翼スペーサはリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。固定翼スペーサの外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設されている。ベース部129には排気口133が形成され、外部に連通されている。チャンバ(真空チャンバ)側から吸気口101に入ってベース部129に移送されてきた排気ガスは、排気口133へと送られる。
 ベース部129は、ターボ分子ポンプ100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129はターボ分子ポンプ100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
 かかる構成において、回転翼102がロータ軸113と共にモータ121により回転駆動されると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバから排気ガスが吸気される。回転翼102の回転速度は通常20000rpm~90000rpmであり、回転翼102の先端での周速度は200m/s~400m/sに達する。吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触する際に生ずる摩擦熱や、モータ121で発生した熱の伝導などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子などによる伝導により固定翼123側に伝達される。
 固定翼123の外周端を支持する固定翼スペーサは、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触する際に生ずる摩擦熱などを外部へと伝達する。
 また、ターボ分子ポンプ100の用途によっては、吸気口101から吸引されたガスが上側径方向電磁石104、上側径方向センサ(図示略)、モータ121、軸方向電磁石106、軸方向センサ109などで構成される電装部に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、このステータコラム122内はパージガスにて所定圧に保たれる場合もある。
 この場合には、ベース部129には図示しない配管が配設され、この配管を通じてパージガスが導入される。導入されたパージガスは、保護ベアリング120とロータ軸113間、モータ121のロータとステータ間、ステータコラム122と回転翼102の内周側円筒部の間の隙間を通じて排気口133へ送出される。
 ここに、ターボ分子ポンプ100は、機種の特定と、個々に調整された固有のパラメータ(例えば、機種に対応する諸特性)に基づいた制御を要する。この制御パラメータを格納するために、上記ターボ分子ポンプ100は、その本体内に電子回路部141を備えている。電子回路部141は、EEP-ROM等の半導体メモリ及びそのアクセスのための半導体素子等の電子部品、それらの実装用の基板(図示略)等から構成される。この電子回路部141は、ターボ分子ポンプ100の下部を構成するベース部129の例えば中央付近の図示しない回転速度センサの下部に収容され、気密性の底蓋145によって閉じられている。
 ところで、半導体の製造工程では、チャンバに導入されるプロセスガスの中には、その圧力が所定値よりも高くなり、或いは、その温度が所定値よりも低くなると、固体となる性質を有するものがある。ターボ分子ポンプ100内部では、排気ガスの圧力は、吸気口101で最も低く排気口133で最も高い。プロセスガスが吸気口101から排気口133へ移送される途中で、その圧力が所定値よりも高くなったり、その温度が所定値よりも低くなったりすると、プロセスガスは、固体状となり、ターボ分子ポンプ100内部に付着して堆積する。
 例えば、Alエッチング装置にプロセスガスとしてSiClが使用された場合、低真空(760[torr]~10-2[torr])かつ、低温(約20[℃])のとき、固体生成物(例えばAlCl)が析出し、ターボ分子ポンプ100内部に付着堆積することが蒸気圧曲線からわかる。これにより、ターボ分子ポンプ100内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプ100の性能を低下させる原因となる。
 そのため、この問題を解決するために、従来はベース部129等の外周に図示しないヒータや環状の水冷管(図示略)を巻着させ、かつ例えばベース部129に図示しない温度センサ(例えばサーミスタ)を埋め込み、この温度センサの信号に基づいてベース部129の温度を一定の高い温度(設定温度)に保つようにヒータの加熱や水冷管(図示略)による冷却の制御(以下TMSという。TMS;Temperature Management System)が行われている。
 次に、このように構成されるターボ分子ポンプ100に関して、その上側径方向電磁石104、及び軸方向電磁石106を励磁制御するアンプ回路150について説明する。このアンプ回路150の回路図を図2に示す。
 図2において、上側径方向電磁石104等を構成する電磁石巻線151は、その一端がトランジスタ161を介して電源171の正極171aに接続されており、また、その他端が電流検出回路181及びトランジスタ162を介して電源171の負極171bに接続されている。そして、トランジスタ161、162は、いわゆるパワーMOSFETとなっており、そのソース-ドレイン間にダイオードが接続された構造を有している。
 このとき、トランジスタ161は、そのダイオードのカソード端子161aが正極171aに接続されるとともに、アノード端子161bが電磁石巻線151の一端と接続されるようになっている。また、トランジスタ162は、そのダイオードのカソード端子162aが電流検出回路181に接続されるとともに、アノード端子162bが負極171bと接続されるようになっている。
 一方、電流回生用のダイオード165は、そのカソード端子165aが電磁石巻線151の一端に接続されるとともに、そのアノード端子165bが負極171bに接続されるようになっている。また、これと同様に、電流回生用のダイオード166は、そのカソード端子166aが正極171aに接続されるとともに、そのアノード端子166bが電流検出回路181を介して電磁石巻線151の他端に接続されるようになっている。そして、電流検出回路181は、例えばホールセンサ式電流センサや電気抵抗素子で構成されている。
 以上のように構成されるアンプ回路150は、一つの電磁石に対応されるものである。そのため、磁気軸受が3軸制御で、電磁石104、106が合計6個ある場合には、電磁石のそれぞれについて同様のアンプ回路150が構成され、電源171に対して6個のアンプ回路150が並列に接続されるようになっている。
 さらに、アンプ制御回路191は、例えば、制御装置200の図示しないディジタル・シグナル・プロセッサ部(以下、DSP部という)によって構成され、このアンプ制御回路191は、トランジスタ161、162のon/offを切り替えるようになっている。
 アンプ制御回路191は、電流検出回路181が検出した電流値(この電流値を反映した信号を電流検出信号191cという)と所定の電流指令値とを比較するようになっている。そして、この比較結果に基づき、PWM制御による1周期である制御サイクルTs内に発生させるパルス幅の大きさ(パルス幅時間Tp1、Tp2)を決めるようになっている。その結果、このパルス幅を有するゲート駆動信号191a、191bを、アンプ制御回路191からトランジスタ161、162のゲート端子に出力するようになっている。
 なお、回転体103の回転速度の加速運転中に共振点を通過する際や定速運転中に外乱が発生した際等に、高速かつ強い力での回転体103の位置制御をする必要がある。そのため、電磁石巻線151に流れる電流の急激な増加(あるいは減少)ができるように、電源171としては、例えば50V程度の高電圧が使用されるようになっている。また、電源171の正極171aと負極171bとの間には、電源171の安定化のために、通常コンデンサが接続されている(図示略)。
 かかる構成において、トランジスタ161、162の両方をonにすると、電磁石巻線151に流れる電流(以下、電磁石電流iLという)が増加し、両方をoffにすると、電磁石電流iLが減少する。
 また、トランジスタ161、162の一方をonにし他方をoffにすると、いわゆるフライホイール電流が保持される。そして、このようにアンプ回路150にフライホイール電流を流すことで、アンプ回路150におけるヒステリシス損を減少させ、回路全体としての消費電力を低く抑えることができる。また、このようにトランジスタ161、162を制御することにより、ターボ分子ポンプ100に生じる高調波等の高周波ノイズを低減することができる。さらに、このフライホイール電流を電流検出回路181で測定することで電磁石巻線151を流れる電磁石電流iLが検出可能となる。
 すなわち、検出した電流値が電流指令値より小さい場合には、図3に示すように制御サイクルTs(例えば100μs)中で1回だけ、パルス幅時間Tp1に相当する時間分だけトランジスタ161、162の両方をonにする。そのため、この期間中の電磁石電流iLは、正極171aから負極171bへ、トランジスタ161、162を介して流し得る電流値iLmax(図示せず)に向かって増加する。
 一方、検出した電流値が電流指令値より大きい場合には、図4に示すように制御サイクルTs中で1回だけパルス幅時間Tp2に相当する時間分だけトランジスタ161、162の両方をoffにする。そのため、この期間中の電磁石電流iLは、負極171bから正極171aへ、ダイオード165、166を介して回生し得る電流値iLmin(図示せず)に向かって減少する。
 そして、いずれの場合にも、パルス幅時間Tp1、Tp2の経過後は、トランジスタ161、162のどちらか1個をonにする。そのため、この期間中は、アンプ回路150にフライホイール電流が保持される。
 このような基本構成を有するターボ分子ポンプ100は、図1中の上側(吸気口101の側)が対象機器の側に繋がる吸気部となっており、下側(排気口133が図中の左側に突出するようベース部129に設けられた側)側が、図示を省略する補助ポンプ(粗引きするバックポンプ)等に繋がる排気部となっている。そして、ターボ分子ポンプ100は、図1に示すような鉛直方向の垂直姿勢のほか、倒立姿勢や水平姿勢(図5)、傾斜姿勢でも用いることが可能となっている。各実施形態では、水平姿勢での使用に適するよう、軸方向電磁石106に工夫が施されているが、この点については後述する。
 また、ターボ分子ポンプ100においては、前述の外筒127とベース部129とが組み合わさって1つのケース(以下では両方を合わせて「本体ケーシング」などと称する場合がある)を構成している。また、ターボ分子ポンプ100は、箱状の電装ケース(図示略)と電気的(及び構造的)に接続されており、電装ケースには前述の制御装置200が組み込まれている。
 ターボ分子ポンプ100の本体ケーシング(外筒127とベース部129の組み合わせ)の内部の構成は、モータ121によりロータ軸113等を回転させる回転機構部と、回転機構部より回転駆動される排気機構部に分けることができる。また、排気機構部には、回転翼102や固定翼123等により構成されるターボ分子ポンプ機構部のほか、図示は省略するが、円筒部やネジ付スペーサ等により構成される溝排気機構部が備えられる場合もある。
 また、前述のパージガス(保護ガス)は、軸受部分や回転翼102等の保護のために使用され、排気ガス(プロセスガス)に因る腐食の防止や、回転翼102の冷却等を行う。このパージガスの供給は、一般的な手法により行うことが可能である。
 例えば、図示は省略するが、ベース部129の所定の部位(排気口133に対してほぼ180度離れた位置など)に、径方向に直線状に延びるパージガス流路を設ける。そして、このパージガス流路(より具体的にはガスの入り口となるパージポート)に対し、ベース部129の外側からパージガスボンベ(N2ガスボンベなど)や、流量調節器(弁装置)などを介してパージガスを供給する。
 前述の保護ベアリング120は、「タッチダウン(T/D)軸受」、「バックアップ軸受」などとも呼ばれる。これらの保護ベアリング120により、例えば万が一電気系統のトラブルや大気突入等のトラブルが生じた場合であっても、ロータ軸113の位置や姿勢を大きく変化させず、回転翼102やその周辺部が損傷しないようになっている。
 なお、ターボ分子ポンプ100の構造を示す各図(図1、図5、図8、図10、図13、図14等)では、部品の断面を示すハッチングの記載は、図面が煩雑になるのを避けるため省略している。
<第1実施形態に係る軸方向磁気軸受110>
 次に、第1実施形態に係る軸方向磁気軸受110について、図5~図14に基づき説明する。第1実施形態のターボ分子ポンプ100においては、アキシャル方向磁力発生手段として、軸方向磁気軸受110が備えられている。軸方向磁気軸受110は、アキシャル電磁石106を備えている。
 軸方向磁気軸受110は、ガスを排気する回転体(以下では「ロータ」と称する)103をアキシャル方向(軸方向)に磁力で非接触支持するアキシャル方向磁力発生手段として機能する。軸方向磁気軸受110は、軸方向の支持に係るアキシャル吸引力用磁路(上方向アキシャル吸引力用磁路218A、下方向アキシャル吸引力用磁路218Bなど)と、径方向の支持に係るラジアル受動復元力用磁路(ラジアル受動復元力用磁路226など)とを分離して発生させる磁路分離構造を有する。
 アキシャル方向磁力発生手段(軸方向磁気軸受110など)は、ロータ(ロータ103など)と一体に回転する回転円板(アーマチャディスク111など)と隙間(アキシャル吸引力用磁路通過ギャップ230A、232A、230B、232Bなど)を介して対向するヨーク(ヨーク212A、212Bなど)と、ヨークに磁気を発生させるコイル(コイル部213A、213Bなど)と、磁路を遮断する非磁性体(回転側非磁性体201など)と、を有し、磁路分離構造は、隙間と非磁性体により、アキシャル吸引力用磁路とラジアル受動復元力用磁路とを分離する。
 第1実施形態では、従来の軸方向磁気軸受における磁路構造(後述する、図13(a))の変更により、磁路分離構造が形成されている。磁路分離構造は、アキシャル吸引力用磁路と、ラジアル受動復元力用磁路とを、分離して形成する。
 このように磁路の分離を行うことにより、それぞれの磁路への磁束を調整できることから、軸方向磁気軸受110におけるアキシャル電磁石(上方向アキシャル電磁石106A、下方向アキシャル電磁石106B)106のバイアス電流を増加させ、ラジアル方向(径方向)の軸支持能力を増加しても、ロータ103の軸方向に働くアキシャル吸引力の急激な増加はなく、アキシャル吸引力は過大とはなり難い。そして、アキシャル軸(軸方向に係る軸)の制御を不安定とすることなく、ロータ(回転体)103(及びロータ軸113)を、アキシャル方向(軸方向)に、正常に浮上させることができる。以下に、このような軸方向磁気軸受110について説明する。
 図5は、ロータ103を水平浮上させた場合のラジアル方向支持力について模式的に示している。図5においては、図1に示したターボ分子ポンプ100が水平姿勢で設置されている。図5の左側が、図1の上側に対応し、図5の右側が、図1の下側に対応しており、図中の左から右へガスが排気される。
 図5に示すような水平姿勢においては、ロータ103に対し、矢印A1で示すような下向きの重力が作用する。また、ロータ103に対し、上側径方向電磁石104により矢印A2で示すように、ロータ103を上に持ち上げるラジアル方向支持力が作用する。さらに、ロータ103に対し、軸方向電磁石(以下では「アキシャル電磁石」と称する)106により矢印A3で示すように、ロータ103を水平に保つ下向きのラジアル方向受動支持力が作用する。ロータ103の重心の位置(重心位置)は、アキシャル電磁石106、及び、上側径方向電磁石104よりも、吸気口101の側(吸気側)に在る。
 ロータ103が平衡点(傾かず水平な状態を保つ点)からラジアル方向に振れた場合、ロータ103の吸気側の部位(図5の左側の部位)には、上側径方向電磁石104によってロータ103を平衡点に引き戻そうとする復元力(吸気側復元力)が作用する。また、ロータ103の下部には、アキシャル電磁石106の磁気抵抗に起因する復元力(排気側復元力)とロータ103が傾斜することに起因する傾斜力とが、ロータ103に対して同じ向きに作用する。このため、ロータ103の振れや振動を効率的に制震でき、ロータ103の振れや振動を短時間で収束させることができる。
 下向きのラジアル方向受動支持力(下側ラジアル方向の受動支持力、矢印A3で示す)は、アーマチャディスク111の中心が、アキシャル電磁石106の中心に対して径方向にずれた場合、互いの中心が一致するように引戻すように働く力である。下向きのラジアル方向受動支持力は、電流制御により変化する能動的な力とは異なり、受動的に働く力である。このため、外力が大きいほど、中心のずれが大きくなる。これに対し、電磁石を追加した5軸能動制御を採用した場合には、補償回路によるPID調節機能により、或る程度の時間を要しながらも、アーマチャディスク111の中心を、アキシャル電磁石106の中心に対し引戻すことができる。
 第1実施形態において、アーマチャディスク111の数は1枚である。図6は、アーマチャディスク111の外観を、斜め上から見た状態を示している。アーマチャディスク111の板面202Aには、多数の溝部204Aと凸部(「歯」ともいう)206Aが同心円状に形成されている。また、アーマチャディスク111の反対側の板面202Aにも同様に、多数の溝部204Bと凸部206Bが形成されている。図6では、図示が煩雑にならないよう、一部の溝部204Aと凸部206Aにのみ符号を付している。
 図7は、アーマチャディスク111の一部の断面を拡大して示している。図7には、一方の板面202Aのみが示されているが、他方の板面202Bも同様の構造を有している。図7に示すように、溝部204Aは、凸部206Aの間の空間を構成している。溝部204Aと凸部206Aは、アーマチャディスク111の径方向に交互に形成されている。溝部204Aや凸部206Aの形状は、発生する磁束を最適化できるよう工夫されているが、この点については後述する。
 図6に示すように、溝部204Aと凸部206Aは、板面202Aの全体ではなく、部分的に形成されている。溝部204Aと凸部206Aが形成された領域を、以下では「溝部形成領域」と称し、図6には符号209を付す。溝部形成領域209は、アーマチャディスク111の径方向に間欠的に形成されている。他方の板面202Bの溝部204Bと凸部206Bについても同様である。
 溝部形成領域209の間の部位は、溝部形成領域209よりも凹んだ平坦面となっている。溝部形成領域209の間の部位について、以下では「平坦領域」と称し、符号210A、210Bを付す。詳細は図8や図10に基づいて後述するが、平坦領域210は磁路(上方向アキシャル吸引力用磁路218A、下方向アキシャル吸引力用磁路218B)の形成に寄与する。
 図8は、アキシャル電磁石106とその周辺部の断面を模式的に示している。図8に示すのは、軸心(ロータ軸113の中心に一致する)を中心とした片側のみである。図示を省略した反対側においても、後述するようなアキシャル方向吸引力用磁路と、ラジアル受動復元力用磁路が形成される。なお、図示が煩雑にならないよう、部品の断面を示すハッチングの記載は省略されている。
 アキシャル電磁石106は、上方向アキシャル電磁石106Aと、下方向アキシャル電磁石106Bとを備えている。図5に示すように、ターボ分子ポンプ100を水平姿勢で使用する場合には、上方向アキシャル電磁石106Aは図5の左側(吸気側)に位置し、下方向アキシャル電磁石106Bは図5の右側(排気側)に位置する。ここでは、図8の上下方向を、図1の上下方向に一致させている。
 図8に示すように、上方向アキシャル電磁石106Aと、下方向アキシャル電磁石106Bは、ヨーク(「継鉄」、「コア」などともいう)212A、212Bと、コイル部213A、213Bとを有している。上方向アキシャル電磁石106Aと、下方向アキシャル電磁石106Bとの間には、1枚のアーマチャディスク111が入り込んでいる。アーマチャディスク111は、磁束の戻りを防ぐ回転側非磁性体201を介して、ロータ軸113に固定されている。回転側非磁性体201の上下(図8の上下)には保護ベアリング120(図1、タッチダウン(T/D)軸受)が設けられているが、図8では保護ベアリング120の図示は省略されている。
 上方向アキシャル電磁石106Aのヨーク212Aは、アーマチャディスク111の一方の板面202A(図6)に対向している。下方向アキシャル電磁石106Bのヨーク212Bは、アーマチャディスク111の他方の板面202B(図6)に対向している。
 図9には、上方向アキシャル電磁石106Aのヨーク212Aと、アーマチャディスク111との関係が、部分的に拡大して示されている。ヨーク212Aにも、アーマチャディスク111と同様に、多数の溝部214Aや凸部216Bが形成されている。溝部214Aや凸部216Aは、同心円状に、且つ、交互に形成されている。図示は省略するが、下方向アキシャル電磁石106Bのヨーク212Bも、同様の構成を有している。
 上方向アキシャル電磁石106A及び下方向アキシャル電磁石106Bについて、各ヨーク212A、212Bの溝部214A、214Bや、凸部216A、216Bは、アーマチャディスク111の溝部204A、204Bや凸部206A、206Bと同様のピッチ(周期や間隔)で形成されている。各ヨーク212A、212Bの、溝部214A、214Bや凸部216A、216Bが形成された範囲は、アーマチャディスク111の、溝部204A、204Bや凸部206A、206Bが形成された範囲とほぼ一致している。
 各ヨーク212A、212Bの溝部214A、214Bや凸部216A、216Bは、アーマチャディスク111の溝部204A、204Bや凸部206A、206Bと、所定の間隔を空けて対向し、アキシャル吸引力用磁路が通過するアキシャル吸引力用磁路通過ギャップ230A、232Aを構成している。
 図9では、上方向アキシャル電磁石106Aと、アーマチャディスク111の一方の板面202Aとの間に形成されたアキシャル吸引力用磁路通過ギャップ230A、232Aのみが示されている。下方向アキシャル電磁石106Bと、アーマチャディスク111の他方の板面202Bとの間のアキシャル吸引力用磁路通過ギャップ230B、232Bも、図9の例とは上下が逆になるものの、同様に形成されている。
 図8及び図10においては、上方向アキシャル電磁石106Aの側のアキシャル吸引力用磁路通過ギャップ230A、232Aと、下方向アキシャル電磁石106Bの側のアキシャル吸引力用磁路通過ギャップ230B、232Bが、模式的に示されている。
 図11(a)に示すように、アキシャル吸引力用磁路通過ギャップ230A、230B(及び、232A、232B)の大きさC1、C2は、アーマチャディスク111の凸部206A、206Bの先端と、ヨーク212A、212Bの凸部216A、216Bの先端との間の間隔である。
 ヨーク212A、212Bの間において、アーマチャディスク111は、軸方向(厚さ方向、図11(a)の上下方向)に変位する。アキシャル吸引力用磁路通過ギャップ230A、230B(及び、232A、232B)の大きさC1、C2は、アーマチャディスク111の軸方向の変位に伴って変化する。
 図11(a)は、アーマチャディスク111が、ヨーク212A、212Bの間において、中立な位置に在る状態を示している。このとき、上方向アキシャル電磁石106Aの側のアキシャル吸引力用磁路通過ギャップ230Aの大きさC1と、下方向アキシャル電磁石106Bの側のアキシャル吸引力用磁路通過ギャップ230Bの大きさC2は等しくなる(C1=C2)。図11(a)では、径方向の外側(外周側、遠心側)に位置するアキシャル吸引力用磁路通過ギャップ232A、232Bの図示は省略されているが、外周側のアキシャル吸引力用磁路通過ギャップ232A、232Bについても同様である。
 図11(b)は、アーマチャディスク111が、全体的に、上方向アキシャル電磁石106Aに近付いた状態を示している。このとき、上方向アキシャル電磁石106Aの側のアキシャル吸引力用磁路通過ギャップ230Aの大きさC1は、下方向アキシャル電磁石106Bの側のアキシャル吸引力用磁路通過ギャップ230Bの大きさC2よりも小となる(C1<C2)。外周側のアキシャル吸引力用磁路通過ギャップ232A、232Bについても同様である。
 図11(c)は、アーマチャディスク111が、全体的に、下方向アキシャル電磁石106Bに近付いた状態を示している。このとき、上方向アキシャル電磁石106Aの側のアキシャル吸引力用磁路通過ギャップ230Aの大きさC1は、下方向アキシャル電磁石106Bの側のアキシャル吸引力用磁路通過ギャップ230Bの大きさC2よりも大となる(C1>C2)。外周側のアキシャル吸引力用磁路通過ギャップ232A、232Bについても同様である。
 アキシャル電磁石106の外周側の部位においては、図8及び図10に示すように、上方向アキシャル電磁石106Aのヨーク212Aと、下方向アキシャル電磁石106Bのヨーク212Bとは、所定量の大きさのラジアル受動復元力用磁路通過ギャップ220を介して対向している。
 ラジアル受動復元力用磁路通過ギャップ220の大きさD(図12)は、アキシャル電磁石106の径方向に関して一定である。さらに、ラジアル受動復元力用磁路通過ギャップ220の大きさDは、アキシャル電磁石106の大きさに応じて異なる。例えば、アキシャル電磁石106の外径をφ80mmとした場合には、ラジアル受動復元力用磁路通過ギャップ220の大きさDは1mm程度である。ラジアル受動復元力用磁路通過ギャップ220は、ラジアル受動復元力用磁路226(図10)の形成に寄与するが、ラジアル受動復元力用磁路通過ギャップ220や、ラジアル受動復元力用磁路226については後述する。
 図8及び図10に示すように、ラジアル受動復元力用磁路通過ギャップ220の内周側(径方向の軸心側)の部位には、ディスク外周空隙部222が形成されている。ディスク外周空隙部222は、ヨーク212A、212Bと、アーマチャディスク111の外周面203とにより区画されている。ディスク外周空隙部222に、固定側非磁性体(図示略)を配置してもよい。
 ヨーク212A、212Bの内側には、ディスク対向空隙部224A、224Bが形成されている。上方向アキシャル電磁石106Aのディスク対向空隙部224Aは、アキシャル吸引力用磁路通過ギャップ230A、232Aの間で開口し、アーマチャディスク111における一方の平坦領域210Aに面している。
 下方向アキシャル電磁石106Bのディスク対向空隙部224Bは、アキシャル吸引力用磁路通過ギャップ230B、232Bの間で開口し、アーマチャディスク111における他方の平坦領域210Bに面している。
 図10に示すように、上方向アキシャル電磁石106Aにおいては、ヨーク212Aとコイル部213Aとが、上方向アキシャル吸引力用磁路218Aが発生するように形成されている。下方向アキシャル電磁石106Bにおいては、ヨーク212Bとコイル部213Bとが、下方向アキシャル吸引力用磁路218Bが発生するように形成されている。
 上方向アキシャル吸引力用磁路218Aは、コイル部213Aの周囲において、ディスク外周空隙部222、及び、ディスク対向空隙部224Aを避け、ヨーク212Aとアーマチャディスク111を通る。
 より具体的には、上方向アキシャル吸引力用磁路218Aは、コイル部213Aの内周側(径方向の内側、軸心側)を軸方向に通り、内周側のアキシャル吸引力用磁路通過ギャップ230Aを通過してアーマチャディスク111に達している。上方向アキシャル吸引力用磁路218Aは、アーマチャディスク111を径方向に通過し、外周側(径方向の外側、遠心側)のアキシャル吸引力用磁路通過ギャップ232Aを通過して、ヨーク212Aに戻る。さらに、上方向アキシャル吸引力用磁路218Aは、コイル部213Aの外周側を軸方向に通り、コイル部213Aの上側(吸気側)を径方向に通る。
 下方向アキシャル吸引力用磁路218Bは、上方向アキシャル吸引力用磁路218Aに対して逆向きに形成されている。下方向アキシャル吸引力用磁路218Bは、コイル部213Bの周囲において、ディスク外周空隙部222、及び、ディスク対向空隙部224Bを避け、ヨーク212B、外周側のアキシャル吸引力用磁路通過ギャップ232B、アーマチャディスク111、内周側のアキシャル吸引力用磁路通過ギャップ230B、及び、ヨーク212Bを順に通る。
 第1実施形態では、これらの上方向アキシャル吸引力用磁路218A、及び、下方向アキシャル吸引力用磁路218Bに加えて、前述したラジアル受動復元力用磁路226が形成される。このラジアル受動復元力用磁路226は、上方向アキシャル吸引力用磁路218A、及び、下方向アキシャル吸引力用磁路218Bとは分離して形成される。
 ラジアル受動復元力用磁路226は、上方向アキシャル電磁石106Aと下方向アキシャル電磁石106Bに跨って形成される。ラジアル受動復元力用磁路226は、上方向アキシャル電磁石106Aのヨーク212A、上方向アキシャル電磁石106Aの内周側のアキシャル吸引力用磁路通過ギャップ230Aを通り、アーマチャディスク111を厚さ方向(軸方向)に通る。
 さらに、ラジアル受動復元力用磁路226は、下方向アキシャル電磁石106Bの内周側のアキシャル吸引力用磁路通過ギャップ230B、下方向アキシャル電磁石106Bのヨーク212B、ラジアル受動復元力用磁路通過ギャップ220、及び、上方向アキシャル電磁石106Aのヨーク212Aを順に通る。
 このようにラジアル受動復元力用磁路226が形成されるのは、ラジアル受動復元力用磁路通過ギャップ220を適正な大きさで狭幅化し、上方向アキシャル電磁石106Aのヨーク212Aと、下方向アキシャル電磁石106Bのヨーク212Bとを、外周側において、適度に接近させたことによる。
 図13(a)、(b)は、従来技術と第1実施形態とを示している。図13(a)が従来技術を示しており、図13(b)が第1実施形態を示している。図13(a)では、第1実施形態との比較が容易なように、第1実施形態と同様の部品については同一符号が付されている。
 図13(a)に示す従来技術においては、上方向アキシャル電磁石106Aのヨーク212Aと、下方向アキシャル電磁石106Bのヨーク212Bとの外周側に、固定側非磁性体236が介在している。固定側非磁性体236は、アキシャル電磁石106の外周部において、ヨーク212A、212Bの間の距離が磁気的に十分に大きくなるよう、ヨーク212A、212Bの間隔を確保している。
 従来技術では、上方向アキシャル電磁石106Aと、下方向アキシャル電磁石106Bのヨーク212A、212Bを通過する磁束はそれぞれ独立している。上方向アキシャル電磁石106Aのコイル部213Aに電流(コイル電流)が流されると、上方向アキシャル吸引力用磁路218Aに磁束が流れ、アーマチャディスク111は、上方に吸引される(図11(b)を援用する)。
 その際、ヨーク212Aとアーマチャディスク111との間のギャップ(内周側のアキシャル吸引力用磁路通過ギャップ230A、230B)を通る磁束により、ラジアル受動復元力が発生する。より具体的には、図14を援用して示すように、アーマチャディスク111の径方向のずれにより、軸方向に対して磁束238が斜めに傾き、磁束238を軸方向に平行に(真っ直ぐに)戻そうとする力が発生する。このときに発生する力(吸引力)が、ラジアル受動復元力となる。
 吸引力は、コイル電流を増加するほど増えるため、コイル電流を増加するほど、ラジアル受動復元力が増加する。援用する図5に示す水平姿勢において、ロータ103が中心位置から上下(径方向)にずれた場合、ずれ量が大きくなるほど、中立位置(図11(a)を援用する)に戻すのに必要とされる吸引力が大きくなる。このため、ロータ103のずれ量が大きくなるほど、必要な吸引力が大きくなり、ロータ103を中心に浮上させることが困難になる。
 ロータ103(及びロータ軸113)の軸心が不安定になることについては、不安定バネ定数を用いて説明できる。一般に、電磁石の吸引力をF、エアギャップをδとすると、不安定バネ定数Kdは以下のようになる。
 Kd=2×F/δ (極性を、Kd>0にとっている)
 したがって、電磁石の吸引力Fが大きいほど(或いは、エアギャップδが小さいほど)不安定バネ定数Kdは大きくなり、ロータ103(及びロータ軸113)の軸心を安定させることが困難になる。そして、従来技術では、吸引力Fを大きくすると、軸心を安定させることはできない。
 以上は、上方向アキシャル電磁石106Aについての説明であるが、下方向アキシャル電磁石106Bについても、方向が下向き(図5における右向き)ではあるものの、それ以外については同様のことがいえる。
 また、一般に磁気回路は、等価な電気回路により表すことができ、磁気回路における磁気抵抗Rm[A/Wb]は、電気回路における電気抵抗R[Ω](=起電力E[V]/電流I[A])に対応する。そして、磁気回路における磁気抵抗Rm[A/Wb]は、起磁力NI[A]を磁束[Wb]で除した値になる。
 図13(a)に示す従来技術において、上方向アキシャル吸引力用磁路218Aの設計は、内周側のアキシャル吸引力用磁路通過ギャップ230A、外周側のアキシャル吸引力用磁路通過ギャップ232Aの相対的な磁気抵抗を、それぞれ基準値の「1」とした場合に、合計の磁気抵抗が「2」になるように行われている。
 下方向アキシャル吸引力用磁路218Bについても、内周側のアキシャル吸引力用磁路通過ギャップ230B、外周側のアキシャル吸引力用磁路通過ギャップ232Bの磁気抵抗を、それぞれ「1」とし、合計の磁気抵抗が「2」に相当するよう、設計が行われている。
 これに対し、図13(b)に示す第1実施形態では、従来技術のように固定側非磁性体236によりヨーク212A、212Bの磁気的な絶縁が行われるのではなく、ヨーク212A、212Bの間に、ラジアル受動復元力用磁路通過ギャップ220が形成されている。さらに、ラジアル受動復元力用磁路通過ギャップ220は、所定の大きさ(例えば1mm程度)に設定されており、ヨーク212A、212Bは、外周部において、適正な間隔を空けて接近(近接)している。
 さらに、ラジアル受動復元力用磁路通過ギャップ220の設計は、内周側のアキシャル吸引力用磁路通過ギャップ230A、230Bの磁気抵抗をそれぞれ「1」とした場合に、ラジアル受動復元力用磁路通過ギャップ220の磁気抵抗が「2」に相当するように行われている。このため、ラジアル受動復元力用磁路通過ギャップ220の合計の磁気抵抗は、「4」となる。アーマチャディスク111の磁気抵抗はほぼ「0」として考えることができる。
 なお、ここでは、ラジアル受動復元力用磁路通過ギャップ220のエアギャップ長と、内周側のアキシャル吸引力用磁路通過ギャップ230A、230Bのエアギャップ長の比率を2:1:1にすることで各磁路の磁気抵抗を設定したが、これに限定せず、異なる値にしても良い。それにより、外周側のラジアル受動復元力用磁路226を通る磁束と、外周側のアキシャル吸引力用磁路218A、218Bを通る磁束の比率を変えることができる。そして、下方向アキシャル電磁石106Bのコイル部213Bに流す電流によるラジアル方向(径方向)の軸支持能力と、アキシャル方向の軸支持能力とを変更することができる。また、コイル電流を増加したときにおける軸支持能力の変化率を調整することができる。
 また、以降に説明する各実施形態についても、このようにラジアル受動復元力用磁路に係る磁気抵抗と、各アキシャル吸引力用磁路に係る磁気抵抗との比率によって、軸支持能力を変更できる点や、軸支持能力の変化率を調整できる点は同様である。
 したがって、上方向アキシャル吸引力用磁路218Aと下方向アキシャル吸引力用磁路218Bとを残しつつ、上方向アキシャル電磁石106Aと、下方向アキシャル電磁石106Bとに跨る磁路(ラジアル受動復元力用磁路226)を、上方向アキシャル吸引力用磁路218A、及び、下方向アキシャル吸引力用磁路218Bと分離して形成できる。
 ラジアル受動復元力用磁路226の磁束は、図11(b)、(c)に示すように、ロータ103が中心位置から上下にずれても、従来技術(図13(a))における上方向アキシャル吸引力用磁路218Aや下方向アキシャル吸引力用磁路218Bの磁束に比べれば、大きくは変化しない。
 具体的には、ラジアル受動復元力用磁路226は、アーマチャディスク111を通過するため、内周側のアキシャル吸引力用磁路通過ギャップ230A、230B(外周側のアキシャル吸引力用磁路通過ギャップ232A、232Bも同様)の磁束は、大きさの合計(C1+C2)により決まる。このため、アーマチャディスク111が、図11(b)、(c)に示すように軸方向に変位しても、全体としては磁束に変化がない。
 ラジアル受動復元力用磁路226の磁束が、ロータ103を上下(図5の左右、図10の上下)にずらす力は、従来技術(図13(a))における上方向アキシャル吸引力用磁路218Aや下方向アキシャル吸引力用磁路218Bに比べて、小さくなる。しかし、ラジアル受動復元力用磁路226を形成することにより、径方向復元力は、従来技術よりも大となる。従来技術と比べて、ラジアル受動復元力用磁路226の分だけ磁路は複雑になるが、径方向復元力は大となる。
 また、第1実施形態における上方向アキシャル吸引力用磁路218Aや下方向アキシャル吸引力用磁路218Bには、コイル電流により発生する磁束の一部分のみが流れる。このため、上方向アキシャル吸引力用磁路218Aや下方向アキシャル吸引力用磁路218Bによって必要以上に大きな力が発生しないように、磁力を抑制することができる。
 これらのことから、第1実施形態のターボ分子ポンプ100によれば、必要な上下方向(図5の左右方向、図10の上下方向)の吸引力に対して、径方向受動復元力(ラジアル受動復元力)の大きい磁気軸受を実現できる。径方向受動復元力(ラジアル受動復元力)は、内周側のアキシャル吸引力用磁路通過ギャップ230A、230Bの溝部204A、204Bが、ある程度細かければ(一定距離内における本数が十分に多ければ)、強くなるが、細かすぎると弱くなる。溝部204A、204Bの幅(細さ)は、適度な値であることが必要である。
 また、コイル電流に関して、バイアス電流を増加することで、ラジアル方向の軸支持能力を増加させることができる。第1実施形態においては、バイアス電流を従来よりも増加し、ラジアル方向の軸支持能力を増やしても、ロータ103のアキシャル方向に働くアキシャル吸引力は、さほど大きくならない。
 このため、ロータ103の大型化によりロータ103の重量が大となっても、アキシャル方向の制御が不安定になることなく、重いロータ103を水平に浮上させることができる。このことにより、重い大型ポンプに、5軸制御磁気軸受ではなく、小型で低コストの3軸制御磁気軸受を採用することが可能となる。そして、小型化、低コスト化、及び、部品点数削減が可能となり、故障率の低減を実現できる。
 このように、第1実施形態において、隙間(アキシャル吸引力用磁路通過ギャップ230A、232A、230B、232Bなど)と非磁性体(回転側非磁性体201など、ディスク外周空隙部222に固定側非磁性体を配置した場合には当該固定側非磁性体を含む)は、アキシャル吸引力用磁路(上方向アキシャル吸引力用磁路218A、下方向アキシャル吸引力用磁路218Bなど)を回転円板(アーマチャディスク111など)の中で径方向に通るよう形成し、ラジアル受動復元力用磁路(ラジアル受動復元力用磁路226など)を、回転円板を軸方向(厚さ方向)に通過するよう形成する。
 これにより、アキシャル吸引力用磁路218A、218Bと、ラジアル受動復元力用磁路226とが分離して発生する。そして、ラジアル受動復元力用磁路226を、アキシャル吸引力用磁路218A、218Bと分離して発生させることにより、軸支持能力が高い真空ポンプを提供できる。
<第2実施形態に係る軸方向磁気軸受260>
 次に、第2実施形態に係る軸方向磁気軸受260について、図15に基づき説明する。なお、第1実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第1実施形態(図8、図10)においては、アーマチャディスク111の枚数が1枚であった。これに対して、第2実施形態(図15)では、第1アーマチャディスク262、及び、第2アーマチャディスク264の2枚のアーマチャディスクを用いて、径方向復元力の増大が図られている。
 また、第1実施形態のラジアル受動復元力用磁路通過ギャップ220(図10、図12)に相当するものは設けられておらず、上方向アキシャル吸引力用磁路218A、及び、下方向アキシャル吸引力用磁路218Bの形成に係るヨーク266が一体である。
 2枚のアーマチャディスク262、264の間には、ヨーク266の一部が介在している。以下では、ヨーク266の、アーマチャディスク262、264の間に介在する部位を「ディスク間部位」と称し、符号268を付す。
 アーマチャディスク262、264と、ディスク間部位268との間には、アキシャル吸引力用磁路通過ギャップ230C、230Dが形成されている。これらのアキシャル吸引力用磁路通過ギャップ230C、230Dは、アーマチャディスク262、264を挟んで、アキシャル吸引力用磁路通過ギャップ230A、230Cの裏側に位置している。
 第2実施形態においては、上方向アキシャル吸引力用磁路218Aは、コイル部213Aの周囲において、ディスク外周空隙部222、及び、ディスク対向空隙部224Aを避け、ヨーク266、内周側のアキシャル吸引力用磁路通過ギャップ230A、第1アーマチャディスク262、外周側のアキシャル吸引力用磁路通過ギャップ232A、及び、ヨーク266を順に通る。上方向アキシャル吸引力用磁路218Aは、第1アーマチャディスク262を径方向に通る。
 下方向アキシャル吸引力用磁路218Bは、コイル部213Bの周囲において、ディスク外周空隙部222、及び、ディスク対向空隙部224Bを避け、ヨーク266、外周側のアキシャル吸引力用磁路通過ギャップ232B、第2アーマチャディスク264、内周側のアキシャル吸引力用磁路通過ギャップ230B、ヨーク266を順に通る。下方向アキシャル吸引力用磁路218Bは、第2アーマチャディスク264を径方向に通る。
 ラジアル受動復元力用磁路226は、ヨーク266、内周側のアキシャル吸引力用磁路通過ギャップ230A、第1アーマチャディスク262、内周側のアキシャル吸引力用磁路通過ギャップ230C、ディスク間部位268、内周側のアキシャル吸引力用磁路通過ギャップ230D、第2アーマチャディスク264、内周側のアキシャル吸引力用磁路通過ギャップ230B、及び、ヨーク266を順に通る。ラジアル受動復元力用磁路226は、第1アーマチャディスク262及び第2アーマチャディスク264を、厚さ方向(軸方向)に通る。
 ここで、図15に符号272で示すのは固定側非磁性体である。この固定側非磁性体272は、ディスク外周空隙部222内に配置され、ディスク間部位268を含むヨーク266の各部位に接している。このように固定側非磁性体272を備えることで、不必要な磁路が形成されるのを防止できる。
 第2実施形態において、上方向アキシャル吸引力用磁路218Aに係る磁気抵抗、及び、下方向アキシャル吸引力用磁路218Bに係る相対的な磁気抵抗は、第1実施形態と同様に、それぞれ「2」となる。ラジアル受動復元力用磁路226に係る磁気抵抗は、内周側のアキシャル吸引力用磁路通過ギャップ230A~230Dの磁気抵抗を合計した「4」となる。
 このように、第2実施形態において、隙間(アキシャル吸引力用磁路通過ギャップ230A~203D、232A、232Bなど)と非磁性体(回転側非磁性体201、固定側非磁性体272など)は、アキシャル吸引力用磁路(上方向アキシャル吸引力用磁路218A、下方向アキシャル吸引力用磁路218Bなど)を回転円板(第1アーマチャディスク262、第2アーマチャディスク264など)の中で径方向に通るよう形成し、ラジアル受動復元力用磁路(ラジアル受動復元力用磁路226など)を、回転円板を軸方向(厚さ方向)に通過するよう形成する。
 これにより、アキシャル吸引力用磁路218A、218Bと、ラジアル受動復元力用磁路226とが分離して発生する。そして、ラジアル受動復元力用磁路226を、アキシャル吸引力用磁路218A、218Bと分離して発生させることにより、軸支持能力が高い真空ポンプを提供できる。
<第3実施形態に係る軸方向磁気軸受300>
 次に、第3実施形態に係る軸方向磁気軸受300について、図16に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第3実施形態においては、第1実施形態の下方向アキシャル電磁石106Bに代えて、永久磁石の組み合わせを用いた下方向アキシャル軸受部302により、径方向復元力の増大が図られている。
 第3実施形態においては、固定側非磁性体304と、回転側非磁性体306に、多数の永久磁石308、310が組み込まれている。図16の例では、固定側非磁性体304に6個(上側2個、下側4個)の永久磁石308が組み込まれている。回転側非磁性体306にも、6個(上側2個、下側4個)の永久磁石310が組み込まれている。
 固定側非磁性体304の永久磁石308は、回転側非磁性体306の永久磁石310に、永久磁石間ギャップ312、314を介して対向している。図16における「N」、「S」の文字は、一部の永久磁石310の極性を示している。固定側非磁性体304の永久磁石308と、回転側非磁性体306の永久磁石310に係る極性の向きは、互いに吸引し合い、且つ、下方向アキシャル吸引力用磁路322とラジアル受動復元力用磁路324を発生させることができるよう設定されている。
 固定側非磁性体304は、ヨーク318Bに組み合わされている。回転側非磁性体306には、バックヨーク320が設けられている。
 下方向アキシャル吸引力用磁路322は、ヨーク318、固定側非磁性体304の永久磁石308、永久磁石間ギャップ314、回転側非磁性体306の永久磁石310、バックヨーク320、回転側非磁性体306の永久磁石310、永久磁石間ギャップ314、固定側非磁性体304の永久磁石308、及び、ヨーク318を順に通る。下方向アキシャル吸引力用磁路322は、バックヨーク320を径方向に通る。
 ラジアル受動復元力用磁路324は、下方向アキシャル吸引力用磁路322よりも径方向の外側の部位において、ヨーク318A、固定側非磁性体304の永久磁石308、永久磁石間ギャップ312、回転側非磁性体306の永久磁石310、回転側非磁性体306の永久磁石310、永久磁石間ギャップ314、固定側非磁性体304の永久磁石308、ヨーク318B、固定側非磁性体304の永久磁石308、永久磁石間ギャップ314、回転側非磁性体306の永久磁石310、回転側非磁性体306の永久磁石310、永久磁石間ギャップ312、固定側非磁性体304の永久磁石308、及び、ヨーク318を順に通る。ラジアル受動復元力用磁路324は、ヨーク318を径方向に通り、固定側非磁性体304及び回転側非磁性体306を軸方向に通る。
 ここで、永久磁石308、310は、それぞれ環状に形成されている。第3実施形態において、永久磁石間ギャップ312、314の大きさは、ロータ103(及びロータ軸113)が中立な状態にある場合に、例えば0.3mm程度である。上下の永久磁石間ギャップ312、314の大きさの合計は、第1アーマチャディスク262及び回転側非磁性体306が変位しても変わらない。
 第3実施形態においては、第1アーマチャディスク262と、ヨーク318との間には、十分な大きさの空隙326が形成されており、この空隙326によって、ラジアル受動復元力用磁路324は、上方向アキシャル吸引力用磁路218Aとも磁気的に分離されている。上方向アキシャル吸引力用磁路218Aの磁束は、可能な限り一定に保たれ、永久磁石間ギャップ312、314も一定に保たれる。
 このように、第3実施形態の磁路分離構造は、永久磁石(永久磁石308、310など)と、非磁性体(固定側非磁性体304、回転側非磁性体306など)により前記ヨークと区分けされた磁性体(固定側非磁性体304、回転側非磁性体306など)と、を更に用いてアキシャル吸引力用磁路(下方向アキシャル吸引力用磁路322など)とラジアル受動復元力用磁路(ラジアル受動復元力用磁路324)とを分離する。
 これにより、下方向アキシャル吸引力用磁路322と、ラジアル受動復元力用磁路324とが分離して発生する。そして、ラジアル受動復元力用磁路324を、下方向アキシャル吸引力用磁路322と分離して発生させることにより、軸支持能力が高い真空ポンプを提供できる。
 ここで、永久磁石は、磁性を帯び一定の位置に留る多数の粒子(磁区)により構成されている。このため、永久磁石はラジアル受動復元力を発生させる磁束の傾きが電磁石より大きいので、同程度の大きさであれば、ラジアル受動復元力は、永久磁石の方が電磁石よりも数倍大きい。また、永久磁石には、電磁石のような電流供給が不要である。したがって、電磁石に代えて、第3実施形態のように永久磁石308、310を用いることにより、より大きなラジアル受動復元力用磁路324を容易に発生させることができる。
<第4実施形態に係る軸方向磁気軸受330>
 次に、第4実施形態に係る軸方向磁気軸受330について、図17に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第4実施形態においては、第1実施形態(図10)のラジアル受動復元力用磁路通過ギャップ220に代えて、永久磁石332が備えられている。図17における「N」、「S」の文字は、永久磁石332の極性を示している。
 第4実施形態においては、1枚のアーマチャディスク340、アキシャル吸引力用磁路通過ギャップ334A、334B、及び、永久磁石332を用いて、径方向復元力の増大が図られている。
 第4実施形態においては、上方向アキシャル吸引力用磁路218Aと、下方向アキシャル吸引力用磁路218Bが形成される。しかし、コイル部213A、213Bや、ディスク対向空隙部224A、224Bが、第1実施形態よりも、相対的に、軸心側に近づけて配置されている。さらに、内周側のアキシャル吸引力用磁路通過ギャップ334A、334Bが形成された領域の、径方向の範囲は、外周側のアキシャル吸引力用磁路通過ギャップ336A、336Bの領域よりも小さい。
 第4実施形態において、ラジアル受動復元力用磁路338は、アーマチャディスク340の外周側と、その外側のヨーク344A、344Bを利用して形成されている。ラジアル受動復元力用磁路338は、上方向アキシャル電磁石342Aのヨーク344A、外周側のアキシャル吸引力用磁路通過ギャップ336A、アーマチャディスク340、外周側のアキシャル吸引力用磁路通過ギャップ336B、下方向アキシャル電磁石342Bのヨーク344B、永久磁石332、及び、上方向アキシャル電磁石342Aのヨーク344Aを順に通る。ラジアル受動復元力用磁路338は、アーマチャディスク340を厚さ方向(軸方向)に通る。
 このように、第4実施形態の磁路分離構造は、永久磁石(永久磁石332など)と、ヨーク(ヨーク344A、344Bなど)と、を更に用いてアキシャル吸引力用磁路(上方向アキシャル吸引力用磁路218A、下方向アキシャル吸引力用磁路218Bなど)とラジアル受動復元力用磁路(ラジアル受動復元力用磁路338など)とを分離する。
 これにより、上方向アキシャル吸引力用磁路218A及び下方向アキシャル吸引力用磁路218Bと、ラジアル受動復元力用磁路338とが分離して発生する。そして、ラジアル受動復元力用磁路338を、上方向アキシャル吸引力用磁路218A及び下方向アキシャル吸引力用磁路218Bと分離して発生させることにより、軸支持能力が高い真空ポンプを提供できる。
 また、第4実施形態においては、永久磁石332と、コイル部213A、213Bとが、径方向に十分に大きく離間している。ラジアル受動復元力用磁路338は、アキシャル吸引力用磁路218A、218Bに対し、ヨーク344A、344Bの径方向の外側に分離して形成される。このことによっても、アキシャル吸引力用磁路218A、218Bと、ラジアル受動復元力用磁路338とが分離され、軸支持能力が高い真空ポンプを提供することが可能である。また、電磁石のみに頼らずに、ラジアル受動復元力用磁路338を、アキシャル吸引力用磁路218A、218Bと分離して、形成することができる。
 さらに、第4実施形態では、永久磁石332の周りにラジアル受動復元力用磁路338が形成されるので、ヨーク344A、344Bが小さくても、ラジアル受動復元力用磁路338を分離させることができる。このため、軸方向磁気軸受330を小型化することが可能である。
 なお、第4実施形態の軸方向磁気軸受330は、第3実施形態の軸方向磁気軸受300とは異なり、永久磁石同士を、ギャップを介して対向させているわけではない。第4実施形態の軸方向磁気軸受330におけるラジアル受動復元力用磁路338は、アーマチャディスク340とヨーク344A、344Bとの間に形成された、アキシャル吸引力用磁路通過ギャップ336A、336Bを通過する。
 永久磁石332の磁力特性には、個体差(ばらつき)が生じることがある。しかし、永久磁石332によるラジアル受動復元力用磁路338は、上述のように、アキシャル吸引力用磁路通過ギャップ336A、336Bを通過するよう発生する。このため、永久磁石332のばらつきは、アキシャル吸引力用磁路通過ギャップ336A、336Bにより吸収される。そして、永久磁石332のばらつきが調整され、加速時の触れ回りの大きさのばらつきが抑制される。
<第5実施形態に係る軸方向磁気軸受350>
 次に、第5実施形態に係る軸方向磁気軸受350について、図18に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第5実施形態においては、第1実施形態(図8、図10)に比べ、アーマチャディスク352が、径方向の外側に延伸され、アーマチャディスク352の外周部に、ラジアル受動復元力用磁路通過ギャップ354A、354Bが追加されている。
 第5実施形態においては、1枚のアーマチャディスク352を用い、1枚のアーマチャディスク352の内外輪(径方向の内側352Aと外側352B)を磁気絶縁して、径方向復元力の増大が図られている。
 アーマチャディスク352の、ラジアル受動復元力用磁路通過ギャップ354A、354Bよりも内周側(軸心側)の部位には、回転側非磁性体356が設けられている。
 上方向アキシャル電磁石358Aのヨーク360Aと下方向アキシャル電磁石358Bのヨーク360Bとの外周側(径方向の外側、遠心側)の部位においては、固定側非磁性体362が設けられている。固定側非磁性体362を設けるにあたっては、図示は省略するが、ヨーク360A、360Bの間に、環状に形成された固定側非磁性体362を装着することが可能である。
 ラジアル受動復元力用磁路364は、上方向アキシャル電磁石358Aのヨーク360A、アキシャル吸引力用磁路通過ギャップ230A、アーマチャディスク352A、アキシャル吸引力用磁路通過ギャップ230B、下方向アキシャル電磁石358Bのヨーク360B、ラジアル受動復元力用磁路通過ギャップ354B、アーマチャディスク352B、ラジアル受動復元力用磁路通過ギャップ354A、及び、上方向アキシャル電磁石358Aのヨーク360Aを順に通る。ラジアル受動復元力用磁路364は、アーマチャディスク352を厚さ方向(軸方向)に通る。
 ラジアル受動復元力用磁路364は、上方向(図18の上方向)に向かう部分も、下方向(図18の下方向)に向かう部分も、ギャップ(アキシャル吸引力用磁路通過ギャップ230A、230B、ラジアル受動復元力用磁路通過ギャップ354A、354B)を通る。
 このように、第5実施形態において、隙間(アキシャル吸引力用磁路通過ギャップ230A、230B、232A、232B、ラジアル受動復元力用磁路通過ギャップ354A、354Bなど)と非磁性体(回転側非磁性体201、356、固定側非磁性体362など)は、アキシャル吸引力用磁路(上方向アキシャル吸引力用磁路218A、下方向アキシャル吸引力用磁路218Bなど)を回転円板(アーマチャディスク352など)の中で径方向に通るよう形成し、ラジアル受動復元力用磁路(ラジアル受動復元力用磁路364など)を、回転円板を軸方向(厚さ方向)に通過するよう形成する。
 これにより、アキシャル吸引力用磁路218A、218Bと、ラジアル受動復元力用磁路364とが分離して発生する。そして、ラジアル受動復元力用磁路364を、アキシャル吸引力用磁路218A、218Bと分離して発生させることにより、軸支持能力が高い真空ポンプを提供できる。
<第6実施形態に係る軸方向磁気軸受370>
 次に、第6実施形態に係る軸方向磁気軸受370について、図19に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第6実施形態では、第2実施形態(図15)と、第5実施形態(図18)とを組み合わせた形態が採用されている。第6実施形態では、2枚のアーマチャディスク372、374を用い、各のアーマチャディスク372、374の内外輪(径方向の内側372A、374Aと外側372B、374B)を磁気絶縁して、径方向復元力の増大が図られている。
 第6実施形態においては、第1アーマチャディスク372、及び、第2アーマチャディスク374の、2枚のアーマチャディスク372、374が備えられている。これらのアーマチャディスク372、374は、第5実施形態(図18)のアーマチャディスク352と同様の構造を有している。第1アーマチャディスク372、及び、第2アーマチャディスク374の外周部には、ラジアル復元力用磁路通過ギャップ376A~376Dが形成されている。
 第1アーマチャディスク372、及び、第2アーマチャディスク374には、回転側非磁性体380、382が設けられている。回転側非磁性体380、382の間には、固定側非磁性体384が設けられている。
 第1アーマチャディスク372、及び、第2アーマチャディスク374の、径方向に係る外側にも、固定側非磁性体386、388が離間して設けられている。これらの固定側非磁性体386、388は、ヨーク390に固定されている。
 第1アーマチャディスク372の、平坦領域210Aよりも径方向の外側の部位には、アキシャル吸引力用磁路通過ギャップ375Aが位置している。第1アーマチャディスク372の、平坦領域210Bよりも径方向の外側の部位には、アキシャル吸引力用磁路通過ギャップ375Bが位置している。これらのアキシャル吸引力用磁路通過ギャップ375A、375Bの大きさは、内周側のアキシャル吸引力用磁路通過ギャップ230A~230Dよりも大きい。
 上方向アキシャル吸引力用磁路218Aは、アキシャル吸引力用磁路通過ギャップ375Aを通り、下方向アキシャル吸引力用磁路218Bは、アキシャル吸引力用磁路通過ギャップ375Bを通る。
 ラジアル受動復元力用磁路392は、ヨーク390、アキシャル吸引力用磁路通過ギャップ230A、第1アーマチャディスク372A、アキシャル吸引力用磁路通過ギャップ230C、ディスク間部位394A、アキシャル吸引力用磁路通過ギャップ230D、第2アーマチャディスク374A、アキシャル吸引力用磁路通過ギャップ230B、及び、ヨーク390を順に通る。さらに、ラジアル受動復元力用磁路392は、ラジアル吸引力用磁路通過ギャップ376B、第2アーマチャディスク374A、ラジアル吸引力用磁路通過ギャップ376D、ディスク間部位394、ラジアル吸引力用磁路通過ギャップ376C、第1アーマチャディスク372、ラジアル吸引力用磁路通過ギャップ376A、及び、ヨーク390を順に通る。
 ラジアル受動復元力用磁路392は、8カ所のギャップ(4か所のアキシャル吸引力用磁路通過ギャップ230A~230D、4か所のラジアル受動復元力用磁路通過ギャップ376A~376D)を通る。
 このように、第6実施形態において、隙間(アキシャル吸引力用磁路通過ギャップ230A~230D、375A、375B、ラジアル受動復元力用磁路通過ギャップ376A~376Dなど)と非磁性体(回転側非磁性体201、380、382、固定側非磁性体384、386、388など)は、アキシャル吸引力用磁路218A、218Bを回転円板(第1アーマチャディスク372、第2アーマチャディスク374など)の中で径方向に通るよう形成し、ラジアル受動復元力用磁路392を、回転円板を軸方向に通過するよう形成する。
 したがって、ラジアル受動復元力用磁路392を、アキシャル吸引力用磁路218A、218Bと分離して発生させることができ、軸支持能力が高い真空ポンプを提供することが可能である。
<第7実施形態に係る軸方向磁気軸受400>
 次に、第7実施形態に係る軸方向磁気軸受400について、図20に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第7実施形態では、第1アーマチャディスク402、第2アーマチャディスク404、及び、第3アーマチャディスク406の、3枚のアーマチャディスクを用いて、径方向復元力の増大が図られている。
 第2アーマチャディスク404は、他のアーマチャディスク402、406と比べて、外周側に張り出している。ヨーク408A、408Bの外周側の部位には、ラジアル受動復元力用磁路通過ギャップ220が形成されている。
 上方向アキシャル吸引力用磁路410Aは、第1アーマチャディスク402を厚さ方向(軸方向)に通り、第2アーマチャディスク404を径方向に通る。下方向アキシャル吸引力用磁路410Bは、第2アーマチャディスク404を径方向に通り、第3アーマチャディスク406を厚さ方向(軸方向)に通る。
 ラジアル受動復元力用磁路412は、3枚のアーマチャディスク402、404、406を厚さ方向(軸方向)に通り、ラジアル受動復元力用磁路通過ギャップ220を通る。ラジアル受動復元力用磁路通過ギャップ220と、第2アーマチャディスク404の外周面との間には、ディスク外周空隙部222が形成されている。このディスク外周空隙部222には、固定側非磁性体(図示略)を配置してもよい。図20に符号230A~230F、232E、232Fで示すのは、アキシャル吸引力用磁路通過ギャップである。図20に符号414、416で示すのは、固定側非磁性体である。
 このように、第7実施形態は、回転円板(3枚のアーマチャディスク402、404、406など)を複数備え、隙間(アキシャル吸引力用磁路通過ギャップ230A~230F、232E、232F、ラジアル受動復元力用磁路通過ギャップ220など)と非磁性体(回転側非磁性体201、固定側非磁性体414、416など、ディスク外周空隙部222に固定側非磁性体を配置した場合には当該固定側非磁性体を含む)は、アキシャル吸引力用磁路(上方向アキシャル吸引力用磁路410A、下方向アキシャル吸引力用磁路410Bなど)を、複数の回転円板のうち一部の回転円板(ここでは第2アーマチャディスク404など)の中で径方向に通過するよう形成し、ラジアル受動復元力用磁路412を、複数の回転円板(ここでは3枚のアーマチャディスク402、404、406など)を軸方向に通過するよう形成する。
 したがって、ラジアル受動復元力用磁路412を、上方向アキシャル吸引力用磁路410A、下方向アキシャル吸引力用磁路410Bと分離して発生させることができ、軸支持能力が高い真空ポンプを提供することが可能である。
 なお、第7実施形態や、後述する第8実施形態(図21)、及び、第9実施形態(図22)のように3枚のアーマチャディスク(第7実施形態ではアーマチャディスク402、404、406)を用いる場合、第2アーマチャディスク404において、磁路(第7実施形態では上方向アキシャル吸引力用磁路410A、下方向アキシャル吸引力用磁路410B)が径方向に通ることに限定されない。例えば、第1アーマチャディスク402、及び、第3アーマチャディスク406に径方向の磁束を通し、中央の第2アーマチャディスク404には、軸方向の磁束のみを通すよう、磁路を形成することも可能である。
<第8実施形態に係る軸方向磁気軸受420>
 次に、第8実施形態に係る軸方向磁気軸受420について、図21に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第8実施形態では、第1アーマチャディスク422、第2アーマチャディスク424、及び、第3アーマチャディスク426の、3枚のアーマチャディスクが備えられている。
 第8実施形態では、3枚のアーマチャディスク422、424、426を用い、一部のアーマチャディスク(ここでは第2アーマチャディスク424)の内外輪(径方向の内側と外側)を磁気絶縁して、径方向復元力の増大が図られている。
 第2アーマチャディスク424は、他のアーマチャディスク422、426と比べて、外周側に張り出している。第2アーマチャディスク424は、第7実施形態(図20)と比べて、更に径方向の外側に張り出しており、第2アーマチャディスク424には、外周側において、ラジアル復元力用磁路通過ギャップ428A、428Bが形成されている。
 第2アーマチャディスク424には、回転側非磁性体430が埋め込まれている。第2アーマチャディスク424よりも径方向の外側の部位には、ヨーク432に設けられた固定側非磁性体434が位置している。ヨーク432の固定側非磁性体434は、第2アーマチャディスク424の外周面に、離間して対向している。
 上方向アキシャル吸引力用磁路410A、下方向アキシャル吸引力用磁路410Bは、第7実施形態(図20)と同様である。ラジアル受動復元力用磁路436が、3枚のアーマチャディスク422、424、426を厚さ方向(軸方向)に通る点も、第7実施形態と同様である。ラジアル受動復元力用磁路436は、ヨーク432を経て、第2アーマチャディスク424の外周部分を厚さ方向(軸方向)に通る。
 このように、第8実施形態は、回転円板(3枚のアーマチャディスク422、424、426など)を複数備え、隙間(アキシャル吸引力用磁路通過ギャップ230A~230F、232E、232F、ラジアル復元力用磁路通過ギャップ428A、428Bなど)と非磁性体(回転側非磁性体201、430、固定側非磁性体414、416、434など)は、アキシャル吸引力用磁路(上方向アキシャル吸引力用磁路410A、下方向アキシャル吸引力用磁路410Bなど)を、複数の回転円板のうち一部の回転円板(第2アーマチャディスク424など)の中で径方向に通過するよう形成し、ラジアル受動復元力用磁路436を、複数の回転円板(ここでは3枚のアーマチャディスク422、424、426など)を軸方向(厚さ方向)に通過するよう形成する。
 したがって、ラジアル受動復元力用磁路436を、上方向アキシャル吸引力用磁路410A、及び、下方向アキシャル吸引力用磁路410Bと分離して発生させることができ、軸支持能力が高い真空ポンプを提供することが可能である。
 <第9実施形態に係る軸方向磁気軸受440>
 次に、第9実施形態に係る軸方向磁気軸受440について、図22に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第9実施形態では、第1アーマチャディスク442、第2アーマチャディスク444、及び、第3アーマチャディスク446の、3枚のアーマチャディスクが備えられている。
 第9実施形態では、3枚のアーマチャディスク442、444、446を用い、3枚のアーマチャディスク442、444、446の内外輪(径方向の内側と外側)を磁気絶縁して、径方向復元力の増大が図られている。
 第9実施形態においては、3枚のアーマチャディスク442、444、446の外径はほぼ等しい。各アーマチャディスク442、444、446には、回転側非磁性体448、450、452が設けられている。第2アーマチャディスク444における回転側非磁性体450の大部分の位置は、他のアーマチャディスク442、446における回転側非磁性体448、452の位置よりも外周側である。
 第1アーマチャディスク442と第2アーマチャディスク444の間には固定側非磁性体456が設けられ、第2アーマチャディスク444と第3アーマチャディスク446の間には固定側非磁性体458が設けられている。各アーマチャディスク442、444、446より径方向の外側の部位に、ヨーク460に固定された固定側非磁性体462、464、466が設けられている。
 上方向アキシャル吸引力用磁路468Aは、第1アーマチャディスク442を厚さ方向(軸方向)に通り、第2アーマチャディスク444を径方向に通る。下方向アキシャル吸引力用磁路468Bは、第2アーマチャディスク444を径方向に通り、第3アーマチャディスク446を厚さ方向(軸方向)に通る。上方向アキシャル吸引力用磁路468Aは、ラジアル復元力用磁路通過ギャップ472C、472Aを通り、下方向アキシャル吸引力用磁路468Bは、ラジアル復元力用磁路通過ギャップ472D、472Bを通る。
 ラジアル受動復元力用磁路470は、3枚のアーマチャディスク442、444、446を厚さ方向(軸方向)に通る。ラジアル受動復元力用磁路470は、3枚のアーマチャディスク442、444、446における径方向の外周側の部位を厚さ方向(軸方向)に戻る。その際に、ラジアル受動復元力用磁路470は、ラジアル復元力用磁路通過ギャップ472A~472Fを通る。
 このように、第9実施形態においては、回転円板(3枚のアーマチャディスク442、444、446など)を複数備え、隙間(アキシャル吸引力用磁路通過ギャップ230A~230F、ラジアル復元力用磁路通過ギャップ472A~472Fなど)と非磁性体(回転側非磁性体201、448、450、452、固定側非磁性体456、458、462、464、466など)は、アキシャル吸引力用磁路(上方向アキシャル吸引力用磁路468A、下方向アキシャル吸引力用磁路468Bなど)を、複数の回転円板のうち一部の回転円板(ここでは第2アーマチャディスク444など)の中で径方向に通過するよう形成し、ラジアル受動復元力用磁路470を、複数の回転円板(ここでは第1アーマチャディスク442、第2アーマチャディスク444、第3アーマチャディスク446など)を軸方向(厚さ方向)に通過するよう形成する。
 したがって、ラジアル受動復元力用磁路470を、上方向アキシャル吸引力用磁路468A、及び、下方向アキシャル吸引力用磁路468Bと分離して発生させることができ、軸支持能力が高い真空ポンプを提供することが可能である。
 <第10実施形態に係る軸方向磁気軸受480>
 次に、第10実施形態に係る軸方向磁気軸受480について、図23に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第10実施形態では、第1アーマチャディスク482、第2アーマチャディスク484、第3アーマチャディスク486、第4アーマチャディスク488の、4枚のアーマチャディスクを用いて、径方向復元力の増大が図られている。
 第10実施形態においては、第2アーマチャディスク484、及び、第3アーマチャディスク486は、他のアーマチャディスク482、488と比べて、外周側に張り出している。ヨーク490の内側には、固定側非磁性体492、494、496が設けられている。
 上方向アキシャル吸引力用磁路498Aは、第1アーマチャディスク482を厚さ方向(軸方向)に通り、第2アーマチャディスク484を径方向に通る。上方向アキシャル吸引力用磁路498Aは、第2アーマチャディスク484の外周端部に形成されたアキシャル吸引力用磁路通過ギャップ502E、及び、ヨーク490を通る。
 下方向アキシャル吸引力用磁路498Bは、第3アーマチャディスク486を径方向に通り、第4アーマチャディスク488を厚さ方向(軸方向)に通る。下方向アキシャル吸引力用磁路498Bは、第3アーマチャディスク486の外周端部に形成されたアキシャル吸引力用磁路通過ギャップ502F、及び、ヨーク490を通る。
 ラジアル受動復元力用磁路500は、4枚のアーマチャディスク482、484、486、488を厚さ方向(軸方向)に通る。さらに、ラジアル受動復元力用磁路500は、ヨーク490を通る。
 このように、第10実施形態の磁路分離構造においては、回転円板(4枚のアーマチャディスク482、484、486、488など)を複数備え、隙間(アキシャル吸引力用磁路通過ギャップ230A~230H、502E、502Fなど)と非磁性体(回転側非磁性体201、固定側非磁性体492、494、496など)は、アキシャル吸引力用磁路(上方向アキシャル吸引力用磁路498A、下方向アキシャル吸引力用磁路498Bなど)を、複数の回転円板のうち一部の回転円板(ここでは第2アーマチャディスク484、第3アーマチャディスク486など)の中で径方向に通過するよう形成し、ラジアル受動復元力用磁路500を、複数の回転円板(ここでは第1アーマチャディスク482~第4アーマチャディスク488など)を軸方向(厚さ方向)に通過するよう形成する。
 したがって、ラジアル受動復元力用磁路500を、上方向アキシャル吸引力用磁路498A、及び、下方向アキシャル吸引力用磁路498Bと分離して発生させることができ、軸支持能力が高い真空ポンプを提供することが可能である。
<第11実施形態に係る軸方向磁気軸受510>
 次に、第11実施形態に係る軸方向磁気軸受510について、図24に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。第11実施形態では、永久磁石332を用いた第4実施形態(図17)に似た構成を有している。
 第11実施形態では、アキシャル吸引力用磁路に関しては、上方向アキシャル吸引力用磁路218Aのみが形成される。ラジアル受動復元力用磁路338は、第4実施形態(図17)と同様である。
 第11実施形態によれば、永久磁石332により、簡便な構成で、軸支持能力が高い真空ポンプを提供することが可能となる。
 このように、第11実施形態の磁路分離構造は、永久磁石(永久磁石332など)と、ヨーク(ヨーク344Aなど)と、を更に用いてアキシャル吸引力用磁路(上方向アキシャル吸引力用磁路218Aなど)とラジアル受動復元力用磁路(ラジアル受動復元力用磁路338など)とを分離する。
 これにより、上方向アキシャル吸引力用磁路218Aと、ラジアル受動復元力用磁路338とが分離して発生する。そして、ラジアル受動復元力用磁路338を、上方向アキシャル吸引力用磁路218Aと分離して発生させることにより、軸支持能力が高い真空ポンプを提供できる。
 ここで、図24は、ターボ分子ポンプを、重力が下向きに作用する垂直姿勢としている状態を示している。図24に示す状態では、重力が下方向アキシャル吸引力と等価の働きをする。
<第12実施形態に係る軸方向磁気軸受520>
 次に、第12実施形態に係る軸方向磁気軸受520について、図25に基づき説明する。なお、これまでに説明した実施形態と同様の部分については、同一符号を付し、その説明は適宜省略する。
 第12実施形態では、第1実施形態(図8、図10)と同様に永久磁石は用いられていないが、永久磁石を用いた第11実施形態(図24)と同様に、アキシャル吸引力用磁路に関しては、上方向アキシャル吸引力用磁路218Aのみが形成される。ラジアル受動復元力用磁路522は、ヨーク524、アキシャル吸引力用磁路通過ギャップ230A、アーマチャディスク111、アキシャル吸引力用磁路通過ギャップ230B、及び、ヨーク
524を通る。
 このように、第12実施形態において、隙間(アキシャル吸引力用磁路通過ギャップ230A、230B、232Aなど)と非磁性体(回転側非磁性体201など、ディスク外周空隙部526に固定側非磁性体を配置した場合には当該固定側非磁性体を含む)は、アキシャル吸引力用磁路(上方向アキシャル吸引力用磁路218Aなど)を回転円板(アーマチャディスク111など)の中で径方向に通るよう形成し、ラジアル受動復元力用磁路(ラジアル受動復元力用磁路522など)を、回転円板を軸方向(厚さ方向)に通過するよう形成する。
 これにより、アキシャル吸引力用磁路218Aと、ラジアル受動復元力用磁路522とが分離して発生する。そして、ラジアル受動復元力用磁路522を、アキシャル吸引力用磁路218Aと分離して発生させることにより、軸支持能力が高い真空ポンプを提供できる。
 第12実施形態と第11実施形態とを比較すると、第11実施形態では、永久磁石を用いないことから、部品コストを削減できる。ここで、図25は、ターボ分子ポンプを、重力が下向きに作用する垂直姿勢としている状態を示している。重力が下方向アキシャル吸引力と等価の働きをする。
<溝部や凸部の形状による磁束の最適化>
 次に、各種のアーマチャディスクやヨークに形成される溝部や凸部について、磁束を最適化するための技術について説明する。このような溝部や凸部の最適化は、これまでに説明したいずれの実施形態にも適用が可能であるが、ここでは、第1実施形態(図8、図101)に適用して説明する。
 図26の左側及び右側は、アーマチャディスク111と、上方向アキシャル電磁石106Aのヨーク212Aとを部分的に拡大して示している。図26の左側に示すように、ラジアル受動復元力は、ヨーク212A(固定側)とアーマチャディスク111(回転側)の磁極が径方向(図26の左右方向)にずれた場合に、上下の歯(凸部206A、凸部216A)の間で斜めになった磁束540が縮んで垂直になろうとすることによって発生する。したがって、できるだけ多くの磁束540が大きい角度に曲がるほど、ラジアル受動復元力は大きくなる。
 また、凸部206A(及び凸部216A)の間の谷の幅(溝部204A及び溝部214Aの幅)G1が狭いと、互いに隣接する凸部206A(及び凸部216A)の距離(径方向の距離)が短くなる。隣接する凸部206A(及び凸部216A)の距離が短いと、対向する凸部216A(及び206A)との間に発生する力(引戻す力)と、これに隣接する(凸部206Aが斜めに向かい合った)凸部216Aとの間で斜めに発生する力(引き離す力、磁束544により発生する力)とが合成され易くなる。この結果、全体として、ラジアル受動復元力が減ってしまう。
 磁束540は、空間距離(空間中の距離)が最短の場所を通ろうとする。したがって、図26の右側に示すように、凸部206Aの谷の幅(溝部204Aの幅)をG2(>G1)として広く確保した方が、斜めの力が発生し難くなり、ラジアル受動復元力が強くなる。ただし、溝部204A(及び溝部214A)の幅G2が広過ぎると、部品が大型化する。
 また、上述のように磁束540は空間距離が最短の場所を通ろうとするため、傾かずに、凸部206A(及び凸部216A)の先端面に垂直に流れようとする。このため、磁束540の傾きを大きくして、ラジアル受動復元力を増大させるためには、凸部206A(及び凸部216A)の先端面の幅は、図27の右側にF2(<F1)で示すように、狭い方が良い。ただし、幅F2が狭すぎると、磁束540が少なくなる。
 また、凸部206A(及び凸部216A)の高さ(図29のH)が小さい場合には、凸部206A(及び凸部216A)と、溝部204A(及び溝部214A)における磁束540の差が小さくなる。このため、凸部206A(及び凸部216A)の高さは、ある程度大きく確保することが望ましい。
 また、磁束540に関しては、根元の断面が太い方が、磁束540が飽和しにくくなるので、好ましい。このため、凸部206A(及び凸部216A)の形状を、長方形(図28の左側)とするよりは、台形(図28の中央)とした方が好ましく、台形とするよりは六角形(図28の右側)などの形状としたほうが好ましい。凸部206A(及び凸部216A)の側面は、平坦面とするよりも、曲面とするほうが好ましい。また、凸部206A(及び凸部216A)の角部542も、曲面(図28の右側)とする方が、先端の磁束(先端磁束)を有効に使うことができ好ましい。
 これらのことを踏まえて、凸部206A(及び凸部216A)を形成することが好ましい。例えば、図29に示す、凸部206Aと凸部216AのギャップC、凸部206A(及び凸部216A)の先端面の幅F、溝部204A(及び溝部214A)の幅G、及び、凸部206A(及び凸部216A)の高さHの比を、3:4:7:5程度とすることが望ましい。具体的には、これらの関係を、0.3mm:0.4mm:0.7mm:0.5mm程度とすることが可能である。第1実施形態では、このような関係が採用されている。
 なお、ここでは、アーマチャディスク111の一方の板面202Aと、上方向アキシャル電磁石106Aのヨーク212Aとを例に挙げて説明しているが、アーマチャディスク111の他方の板面202Bと、下方向アキシャル電磁石106Bのヨーク212Bとの関係についても、同様のことがいえる。
 このような、溝部や凸部の形状による磁束の最適化は、必ずしも全ての凸部206A(及び凸部216A)に行う必要はなく、一部の凸部206A(及び凸部216A)に対して行ってもよい。
 溝部(溝部204A(及び溝部214A))や凸部(凸部206A(及び凸部216A))の形状による磁束の最適化が行われたターボ分子ポンプ100は、以下のように表すことができる。ターボ分子ポンプ100は、回転円板(アーマチャディスク111など)および回転円板に対向するヨーク(ヨーク212A、212Bなど)に設けられ、ラジアル受動復元力用磁路(ラジアル受動復元力用磁路226など)のラジアル受動復元力を発生させる凸部(凸部216A、216Bなど)の少なくとも一部は、軸方向断面(図8、図10、図27、図28に示す縦断面)において、先端(図29における寸法F3など)よりも根元の寸法(F4)が大きい略台形形状(六角形状などでもよい)のものである。
<バイアス電流可変による共振点通過時の振れ回りの改善>
 次に、電磁石(ここではコイル部213A、213B)に対するバイアス電流を変更して共振状態を回避する方法について説明する。
 磁気軸受の磁力は、等価的に、バネとダンパーで置き換えられる。例えば、図1に示すターボ分子ポンプ100における下側ラジアル方向のばね定数をK、下側ラジアル軸受部が負担するロータ103の質量(ここではロータ軸113を加えた質量)をMとすると、ロータ103の下側の回転時の振れ回りは、回転速度fがf≒(1/2π)√(K/M)の時に共振状態になり、振れが増大してしまう。
 下側ラジアル方向を受動的に支持する3軸制御では、ダンピングを与え難いため、共振状態の振れを抑制し難い傾向がある。ただし、下側ラジアル方向を受動的に支持する3軸制御でも、上下のアキシャル電磁石のバイアス電流を増減することで、ばね定数Kを変更することができる。磁気軸受の電磁石に対するバイアス電流を大きくするほど、ばね定数Kが大きくなり、共振する回転速度を高くすることができる。
 そこで、回転速度が低い間はバイアス電流を大きくし、回転数が高いときにバイアス電流を小さくすることで、回転速度の加減速時に、共振状態を回避することができる。
 図30(a)は、アキシャル電磁石のバイアス電流が相対的に小さい場合における、回転速度とロータの振れ回りとの関係を示している。図30(b)は、アキシャル電磁石のバイアス電流が相対的に大きい場合における、回転速度とロータの振れ回りとの関係を示している。図30(c)は、アキシャル電磁石のバイアス電流を可変にした場合における、回転速度とロータの振れ回りとの関係を示している。
 図30(a)、(b)を比較すると、アキシャル電磁石のバイアス電流が相対的に小さい時には、共振点の回転数は低くなり、アキシャル電磁石のバイアス電流が相対的に大きい時には、共振点の回転数は高くなる。
 これに対し、アキシャル電磁石のバイアス電流を変更できるようにし、図30(c)に示すようにバイアス電流を変化させることにより、共振点が表れるのを回避し、ロータの触れ回りを抑制することが可能となる。例えば、制御装置200(図1)に、このようなバイアス電流の調整機能を組み込むことで、ターボ分子ポンプ100におけるロータ103(及びロータ軸113)の触れ回りを防止することができる。
 アキシャル電磁石のバイアス電流を変更において、変更に要する時間(切り換え時間)を可能な限り短くすることで、より確実に触れ回りを防止することができる。回転速度が定格に達するのには、通常2~3分程度を要するが、バイアス電流の切り換えは、20~30ms程度あれば可能である。このため、バイアス電流の切り換えのタイミングを適切に選択することで、バイアス電流の切り換えのタイミングと、共振により触れ回りが大きくなるタイミングとが重なることを容易に防止できる。
 このようなバイアス電流可変による共振点通過時の振れ回りの改善を行ったターボ分子ポンプ100は、コイル部(コイル部213A、213Bなど)に流す定常励磁電流(バイアス電流など)を変えることで、アキシャル方向磁力発生手段(軸方向磁気軸受110など)の磁力による支持剛性を変化させるものであるといえる。
 以上、各実施形態や、各実施形態に適用可能な改善策について説明した。しかし、本発明は、これまでに説明した事項に限定されるものではなく、本発明の技術的思想の範囲内であれば、当業者の通常の創作能力によって多くの変形や各実施形態の組合せが可能である。
 例えば、各実施形態は、3軸制御の磁気軸受に適用することで良好な磁気軸受を提供するが、3軸制御以外の磁気軸受(例えば1軸制御の磁気軸受)などにも適用することが可能である。
100   :ターボ分子ポンプ
101   :吸気口
102   :回転翼
103   :回転体(ロータ)
104   :上側径方向電磁石
106   :軸方向電磁石(アキシャル電磁石)
106A  :上方向アキシャル電磁石
106B  :下方向アキシャル電磁石
110   :軸方向磁気軸受
111   :金属ディスク(アーマチャディスク)
113   :回転軸(ロータ軸)
123   :固定翼
133   :排気口
200   :制御装置
201   :回転側非磁性体
204A、204B:溝部
206A、206B:凸部
212A、212B:ヨーク
213A、213B:コイル部
214A、214B:溝部
216A、216B:凸部
218A  :上方向アキシャル吸引力用磁路
220   :ラジアル受動復元力用磁路通過ギャップ
226   :ラジアル受動復元力用磁路
230A~230H:アキシャル吸引力用磁路通過ギャップ
232A、232B:アキシャル吸引力用磁路通過ギャップ
236   :固定側非磁性体
238   :磁束
260   :軸方向磁気軸受
262   :第1アーマチャディスク
264   :第2アーマチャディスク
266   :ヨーク
268   :ディスク間部位
272   :固定側非磁性体
300   :軸方向磁気軸受
302   :下方向アキシャル軸受部
304   :固定側非磁性体
306   :回転側非磁性体
308、310:永久磁石
312、314:永久磁石間ギャップ
318   :ヨーク
320   :バックヨーク
322   :下方向アキシャル吸引力用磁路
324   :ラジアル受動復元力用磁路
326   :空隙
330   :軸方向磁気軸受
332   :永久磁石
334A、334B:アキシャル吸引力用磁路通過ギャップ
336A、336B:アキシャル吸引力用磁路通過ギャップ
338   :ラジアル受動復元力用磁路
340   :アーマチャディスク
342A  :上方向アキシャル電磁石
342B  :下方向アキシャル電磁石
344A、344B:ヨーク
350   :軸方向磁気軸受
352   :アーマチャディスク
354A、354B:ラジアル受動復元力用磁路通過ギャップ
356   :回転側非磁性体
358A  :上方向アキシャル電磁石
358B  :下方向アキシャル電磁石
360A、360B:ヨーク
362   :固定側非磁性体
364   :ラジアル受動復元力用磁路
370   :軸方向磁気軸受
372   :第1アーマチャディスク
374   :第2アーマチャディスク
375A、375B:アキシャル吸引力用磁路通過ギャップ
376A~376D:ラジアル吸引力用磁路通過ギャップ
380、382:回転側非磁性体
384、386、388:固定側非磁性体
390   :ヨーク
392   :ラジアル受動復元力用磁路
394   :ディスク間部位
400   :軸方向磁気軸受
402   :第1アーマチャディスク
404   :第2アーマチャディスク
406   :第3アーマチャディスク
408A、408B:ヨーク
410A、410B:上方向アキシャル吸引力用磁路
412   :ラジアル受動復元力用磁路
414、416:固定側非磁性体
420   :軸方向磁気軸受
422   :第1アーマチャディスク
424   :第2アーマチャディスク
426   :第3アーマチャディスク
428A、428B:ラジアル受動復元力用磁路通過ギャップ
430   :回転側非磁性体
432   :ヨーク
434   :固定側非磁性体
436   :ラジアル受動復元力用磁路
440   :軸方向磁気軸受
442   :第1アーマチャディスク
444   :第2アーマチャディスク
446   :第3アーマチャディスク
448、450、452:回転側非磁性体
456、458:固定側非磁性体
460   :ヨーク
462、464、466:固定側非磁性体
468A  :上方向アキシャル吸引力用磁路
468B  :下方向アキシャル吸引力用磁路
470   :ラジアル受動復元力用磁路
472A~472F:ラジアル受動復元力用磁路通過ギャップ
480   :軸方向磁気軸受
482   :第1アーマチャディスク
484   :第2アーマチャディスク
486   :第3アーマチャディスク
488   :第4アーマチャディスク
490   :ヨーク
492、494、496:固定側非磁性体
498A、498B:上方向アキシャル吸引力用磁路
500   :ラジアル受動復元力用磁路
502E、502F:アキシャル吸引力用磁路通過ギャップ
510   :軸方向磁気軸受
520   :軸方向磁気軸受
522   :ラジアル受動復元力用磁路
524   :ヨーク
526   :ディスク外周空隙部
540   :磁束
542   :角部
544   :磁束
 

Claims (8)

  1.  ガスを排気するロータをアキシャル方向に磁力で非接触支持するアキシャル方向磁力発生手段を備え、
     前記アキシャル方向磁力発生手段は、
      アキシャル吸引力用磁路と、ラジアル受動復元力用磁路とを分離して発生させる磁路分離構造を有する、
    ことを特徴とする真空ポンプ。
  2.  前記アキシャル方向磁力発生手段は、
      前記ロータと一体に回転する回転円板と隙間を介して対向するヨークと、
      前記ヨークに磁気を発生させるコイルと、
      磁路を遮断する非磁性体と、を有し、
     前記磁路分離構造は、
      前記隙間と前記非磁性体により、前記アキシャル吸引力用磁路と前記ラジアル受動復元力用磁路とを分離する、
    ことを特徴とする請求項1に記載の真空ポンプ。
  3.  前記隙間と前記非磁性体は、
      前記アキシャル吸引力用磁路を前記回転円板の中で径方向に通るよう形成し、
      前記ラジアル受動復元力用磁路を、前記回転円板を軸方向に通過するよう形成することを特徴とする請求項2に記載の真空ポンプ。
  4.  前記磁路分離構造は、
      永久磁石と、
      前記非磁性体により前記ヨークと区分けされた磁性体と、
    を更に用いて前記アキシャル吸引力用磁路と前記ラジアル受動復元力用磁路とを分離する、
    ことを特徴とする請求項2に記載の真空ポンプ。
  5.  前記磁路分離構造は、
      永久磁石と、
      前記ヨークと、
    を更に用いて前記アキシャル吸引力用磁路と前記ラジアル受動復元力用磁路とを分離する、
    ことを特徴とする請求項2に記載の真空ポンプ。
  6.  前記回転円板を複数備え、
     前記隙間と前記非磁性体は、
      前記アキシャル吸引力用磁路を、前記複数の回転円板のうち一部の回転円板の中で径方向に通過するよう形成し、
      前記ラジアル受動復元力用磁路を、前記複数の回転円板を軸方向に通過するよう形成する、
    ことを特徴とする請求項2に記載の真空ポンプ。
  7.  前記回転円板および前記回転円板に対向する前記ヨークに設けられ、前記ラジアル受動復元力用磁路のラジアル受動復元力を発生させる凸部の少なくとも一部は、
      軸方向断面において、先端よりも根元の寸法が大きい略台形形状であることを特徴とする請求項2から6のいずれか一項に記載の真空ポンプ。
  8.  前記コイルに流す定常励磁電流を変えることで、
     前記アキシャル方向磁力発生手段の前記磁力による支持剛性を変化させることを特徴とする請求項2から7のいずれか一項に記載の真空ポンプ。
     
PCT/JP2022/043787 2021-12-01 2022-11-28 真空ポンプ WO2023100813A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021195059 2021-12-01
JP2021-195059 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023100813A1 true WO2023100813A1 (ja) 2023-06-08

Family

ID=81851875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043787 WO2023100813A1 (ja) 2021-12-01 2022-11-28 真空ポンプ

Country Status (3)

Country Link
JP (3) JP2023081876A (ja)
GB (1) GB202206036D0 (ja)
WO (1) WO2023100813A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116928229B (zh) * 2023-09-13 2023-12-26 泰州市美鑫铸造有限公司 一种紧卷机轴承用冷却装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093428A1 (ja) * 2008-01-24 2009-07-30 Tokyo University Of Science Educational Foundation Administrative Organization ベアリングレスモータ
CN204371939U (zh) * 2015-01-05 2015-06-03 山东大学 一种由轴向混合磁轴承实现转子五自由度悬浮结构
JP2018179262A (ja) * 2017-04-20 2018-11-15 エドワーズ株式会社 真空ポンプ、磁気軸受装置及びロータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093428A1 (ja) * 2008-01-24 2009-07-30 Tokyo University Of Science Educational Foundation Administrative Organization ベアリングレスモータ
CN204371939U (zh) * 2015-01-05 2015-06-03 山东大学 一种由轴向混合磁轴承实现转子五自由度悬浮结构
JP2018179262A (ja) * 2017-04-20 2018-11-15 エドワーズ株式会社 真空ポンプ、磁気軸受装置及びロータ

Also Published As

Publication number Publication date
GB202206036D0 (en) 2022-06-08
JP2023081876A (ja) 2023-06-13
JP2023081877A (ja) 2023-06-13
JP2023081875A (ja) 2023-06-13

Similar Documents

Publication Publication Date Title
EP2239831B1 (en) Magnetic levitaion motor and pump
RU1831589C (ru) Вакуумный насос дл чистого молекул рного вакуума
JP3923696B2 (ja) 基板回転装置
JP2003532838A (ja) 減衰部を有するマグネットベアリング
WO2023100813A1 (ja) 真空ポンプ
WO2010016176A1 (ja) モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ
JP2015108434A (ja) 保護ベアリング、軸受装置及び真空ポンプ
US8110955B2 (en) Magnetic bearing device of a rotor shaft against a stator with rotor disc elements, which engage inside one another, and stator disc elements
JP4481124B2 (ja) 磁気軸受装置及び該磁気軸受装置が搭載されたターボ分子ポンプ
JPH04219494A (ja) 高速度回転真空ポンプの磁気軸受構造
EP3805568A1 (en) Vacuum pump and sensor target
WO2022075228A1 (ja) 真空ポンプ、および真空ポンプに備わる回転円筒体
JP7463332B2 (ja) 真空ポンプ、真空ポンプの軸受保護構造、及び真空ポンプの回転体
WO2022163341A1 (ja) 真空ポンプ及びスペーサ
CN220254374U (zh) 磁悬浮装置及半导体加工设备
WO2022038996A1 (ja) 真空ポンプ、固定翼、およびスペーサ
JP2004286175A (ja) 磁気軸受装置
WO2022054717A1 (ja) 真空ポンプ
JPH01260301A (ja) 磁気軸受用位置検出装置
CN116783391A (zh) 真空泵
TW202305240A (zh) 渦輪分子幫浦
KR20230079352A (ko) 진공 펌프와 이것을 이용한 진공 배기 시스템
KR20230154001A (ko) 진공 펌프
JP2021191950A (ja) 真空ポンプおよび真空ポンプの回転体
JP2023032716A (ja) 真空ポンプおよび固定部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901245

Country of ref document: EP

Kind code of ref document: A1