WO2022054717A1 - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
WO2022054717A1
WO2022054717A1 PCT/JP2021/032481 JP2021032481W WO2022054717A1 WO 2022054717 A1 WO2022054717 A1 WO 2022054717A1 JP 2021032481 W JP2021032481 W JP 2021032481W WO 2022054717 A1 WO2022054717 A1 WO 2022054717A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
vacuum pump
opening
axial direction
side stator
Prior art date
Application number
PCT/JP2021/032481
Other languages
English (en)
French (fr)
Inventor
透 三輪田
慶行 高井
祐幸 坂口
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to EP21866676.6A priority Critical patent/EP4212729A4/en
Priority to CN202180053111.7A priority patent/CN116018464A/zh
Priority to US18/042,004 priority patent/US20240011495A1/en
Priority to KR1020237005341A priority patent/KR20230062812A/ko
Priority to IL300575A priority patent/IL300575A/en
Publication of WO2022054717A1 publication Critical patent/WO2022054717A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • F04D29/5833Cooling at least part of the working fluid in a heat exchanger flow schemes and regulation thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction

Definitions

  • the present invention relates to a vacuum pump, and more particularly to a vacuum pump capable of reducing the amount of deposits (commonly known as "depot") generated by solidification of gas in the vacuum pump. be.
  • a method of processing a wafer in a processing chamber of a semiconductor manufacturing apparatus held in a high vacuum to make a semiconductor element of a product has been adopted.
  • a vacuum pump equipped with a turbo molecular pump unit, a thread groove pump unit, and the like is used in order to achieve and maintain a high degree of vacuum.
  • the turbo molecular pump part has a rotatable rotary blade made of thin metal and a fixed blade fixed to the casing inside the casing. Then, the rotary blade is operated at a high speed of, for example, several hundred m / sec, and the process gas used for the processing processing coming in from the intake port side is compressed inside the pump and exhausted from the exhaust port side.
  • the molecules of the process gas taken in from the intake port side of the vacuum pump are heated to a high temperature immediately after being taken in, and are cooled in the compression process due to the movement to the exhaust port side due to the rotation of the rotary blade in the vacuum pump. ..
  • the process gas is cooled, it solidifies, and the solidified by-products adhere to the fixed blade, the inner surface of the outer cylinder (casing), and deposit as a depot.
  • Chlorine-based or fluorine-based gas is generally used as a by-product. The sublimation temperature of these gases increases as the degree of vacuum decreases and the pressure increases, and the gases solidify and easily accumulate inside the vacuum pump.
  • the flow path of the reaction product may be narrowed and the compression performance and exhaust performance of the vacuum pump may be deteriorated.
  • the gas transfer section where aluminum, stainless steel, or the like is used for the rotary blade or the fixed blade, if the temperature becomes too high, the strength of the rotary blade or the fixed blade may decrease and break may occur during operation. Further, the electric component provided in the vacuum pump and the electric motor for rotating the rotor may not exhibit the desired performance when the temperature rises. Therefore, the vacuum pump needs to be temperature controlled so as to maintain a predetermined temperature.
  • a cooling device or a heating device is provided around the stator to control the temperature in the gas flow path, and the gas in the gas flow path is transferred without solidification.
  • a structure that enables this is also known (see, for example, Patent Document 1).
  • the gas sucked in the vacuum pump has the characteristic that the sublimation temperature rises as the degree of vacuum increases and the pressure increases, and the gas solidifies and easily accumulates inside the vacuum pump.
  • the gas transfer unit composed of rotary blades, fixed blades, and the like may have a problem that the strength decreases when the temperature becomes too high, and may adversely affect the performance of electrical components and electric motors in a vacuum pump. Therefore, the gas solidification inside the vacuum pump can be achieved while operating the vacuum pump normally without adversely affecting the performance of the electrical components and the electric motor inside the vacuum pump and without reducing the strength of the gas transfer section. It is preferable to control the temperature so that it can be suppressed.
  • the upper group gas transfer unit 11 having the cooling side stator 17A arranged in the cooling range requiring cooling and the heating range requiring heating. It is divided into a lower gas transfer section 12 having a heating side stator 17B arranged inside, a gap 15 is provided between the cooling side stator 17A and the heating side stator 17B, and the cooling side stator 17A and the heating side stator 17B are separated. They are made independent so that the temperature of the upper group gas transfer unit 11 and the temperature of the lower stage gas transfer unit 12 do not affect each other.
  • the fixed wing spacer 14 is pressed by a bolt 19 for positioning between the cooling side stator 17A and the heating side stator 17B.
  • the magnitude of the force for tightening the bolt 19 the amount of deformation of the O-ring 18 due to the tightening, or the fixed wing spacer 14
  • the size (dimension in the axial direction) of the gap 15 between the cooling side stator 17A and the heating side stator 17B changes depending on the type and the like.
  • the gas that has entered the gap 15 is cooled by the cooling side stator 17A, solidifies in the gap 15, and is deposited as a by-product.
  • This deposit narrows the width of the gap 15 to reduce the adiabatic effect and change the temperature distribution in the pump. Therefore, maintenance work is required to remove the deposits accumulated in the gap 15 by periodically disassembling the vacuum pump 10. Due to this maintenance work, there is a problem that productivity is poor.
  • the present invention has been proposed to achieve the above object, and the invention according to claim 1 is a casing having an intake port and an exhaust port, and a rotor shaft rotatably supported inside the casing.
  • a plurality of stages of rotary blades that can rotate together with the rotor shaft, a plurality of stages of fixed blades that are fixed to the casing and arranged between the plurality of stages of rotary blades, and the plurality of stages of fixed blades.
  • a vacuum pump provided with a cooling side stator and a heating side stator that hold Provided is a vacuum pump provided at a position not facing the outer peripheral surface of the rotary blade in the axial direction of the shaft.
  • an opening of a gap having a predetermined width for insulating between the cooling side stator and the heating side stator is provided at a position not facing the outer peripheral surface of the rotary blade in the axial direction of the rotor shaft. Therefore, even if a part of the gas is blown toward the inner peripheral surface of the stator by the centrifugal force due to the rotation of the rotary blade, the opening of the gap is provided at a displaced position not facing the outer peripheral surface of the rotary blade. Therefore, the amount that enters the opening of the gap is extremely small, and the amount of deposits that accumulate in the gap can be reduced. As a result, it is possible to extend the interval requiring maintenance work, which contributes to the improvement of productivity.
  • the shape of the gap includes a first gap portion horizontally extending outward in the radial direction perpendicular to the axial direction and the first gap portion.
  • a vacuum pump having a second gap portion extending from the outer end of the gap portion further outward in the radial direction and along the downstream side in the axial direction.
  • the invention according to claim 3 provides a vacuum pump in the configuration according to claim 1 or 2, wherein the shape of the gap has a third gap portion extending along the downstream side in the axial direction.
  • the third gap portion facing downward collides with the front of the opening immediately after entering the opening, and the process gas collides with the wall. Becomes the resistance of the flow toward the gap. This can reduce the amount of process gas entering the gap through the openings and further reduce the amount of deposits produced by the process gas.
  • the invention according to claim 4 has the configuration according to any one of claims 1 to 3, wherein the shape of the gap is outside in the radial direction perpendicular to the axial direction and upstream in the axial direction.
  • a vacuum pump having a fourth gap extending to the side.
  • the shape of the vertical cross section of the gap has a fourth gap portion extending outward in the radial direction perpendicular to the axial direction and upstream in the axial direction. Therefore, the process gas that has entered the gap through the opening once collides with the fourth gap portion, and becomes a resistance to the flow of the process gas toward the gap. This can reduce the amount of process gas entering the gap through the openings and further reduce the amount of deposits produced by the process gas.
  • the invention according to claim 5 has the configuration according to any one of claims 1 to 4, wherein the shape of the gap is toward the upper part of the opening and the inside of the casing rather than the opening.
  • the shape of the vertical cross section of the gap is such that when the casing is vertically crossed in the axial direction, the upper part of the opening of the gap formed on the inner peripheral surface of the casing is toward the inside of the casing rather than the opening. Since the protruding eaves are provided, the process gas flowing from the upstream side is controlled to flow to the eaves and does not proceed in the direction of the opening of the gap, but toward the downstream side different from the opening. You can make it happen. This can reduce the amount of process gas entering the gap through the openings and further reduce the amount of deposits produced by the process gas.
  • the amount of process gas that enters the gap provided for heat insulation can be reduced, and the amount of deposits produced by the process gas can be reduced.
  • This can increase productivity by extending the intervals that require maintenance work to remove deposits in the gaps.
  • the heat insulating effect of the gap is also improved, which affects the range that does not adversely affect the performance of the electrical components installed in the vacuum pump and the electric motor that rotates the rotor, and the decrease in the strength of the rotor and stator. It is possible to finely control the temperature within the range not given.
  • normal operation of the vacuum pump can be realized while controlling the solidification of the process gas.
  • turbo molecular pump shown as an example of the vacuum pump which concerns on embodiment of this invention. It is a figure which shows an example of the amplifier circuit in the above-mentioned turbo molecular pump. Same as above It is a time chart showing an example of control when the current command value detected by the amplifier circuit in the turbo molecular pump is larger than the detected value. It is a time chart which shows one control example when the current command value detected by the amplifier circuit in the turbo molecular pump is smaller than the detected value. It is a partially enlarged cross-sectional view of the turbo molecular pump shown in FIG. 1, (a) is an enlarged view of a part A of FIG.
  • FIG. 1A is a partially enlarged view corresponding to part A in FIG. 1, and FIG. be.
  • FIG. 1A is a partially enlarged view corresponding to part A in FIG. 1, and FIG. be.
  • Other modifications of the present invention are shown, (a) is a partially enlarged view corresponding to part A of FIG. 1, (b) is a further enlarged sectional view of (a) for explaining the shape of the gap.
  • Further modified examples of the present invention are shown, (a) is a partially enlarged view corresponding to part A of FIG. 1, (b) is a further enlarged cross section of (a) for explaining the shape of the gap.
  • It is a figure. It is a vertical sectional view of a turbo molecular pump shown as an example of a conventional vacuum pump. It is a partially enlarged view corresponding to the part B of FIG.
  • the present invention is produced by reducing the flow of gas (number of gas molecules) toward the gap provided for heat insulation, reducing the amount of by-products accumulated in the gap, and extending the interval requiring maintenance work.
  • a casing having an intake port and an exhaust port, a rotor shaft rotatably supported inside the casing, and the rotor shaft together with the rotor shaft.
  • a plurality of fixed blades fixed to the casing and arranged between the plurality of rotary blades, and a heating side stator and a cooling side stator that hold the plurality of stages of fixed blades at predetermined intervals are provided.
  • the vacuum pump is provided with an opening of a gap having a predetermined width for insulating between the heating side stator and the cooling side stator at a position not facing the outer peripheral surface of the rotary blade in the axial direction of the rotor shaft. It was realized by providing it.
  • drawings may be exaggerated by enlarging the characteristic parts in order to make the features easier to understand, and the dimensional ratios of the components are not always the same as the actual ones.
  • hatching of some components may be omitted in order to make the cross-sectional structure of the components easy to understand.
  • FIG. 1 shows an embodiment of a turbo molecular pump 100 as a vacuum pump according to the present invention, and FIG. 1 is a vertical sectional view thereof.
  • an intake port 101 is formed at the upper end of an outer cylinder 127 as a cylindrical housing.
  • a rotating body 103 having a plurality of rotary blades 102 (102a, 102b, 102c ...), which are turbine blades for sucking and exhausting gas, formed radially and in multiple stages on the peripheral portion is provided.
  • a rotor shaft 113 is attached to the center of the rotating body 103, and the rotor shaft 113 is floated and supported and position-controlled in the air by, for example, a 5-axis controlled magnetic bearing.
  • the upper radial electromagnet 104 In the upper radial electromagnet 104, four electromagnets are arranged in pairs on the X-axis and the Y-axis.
  • Four upper radial sensors 107 are provided in the vicinity of the upper radial electromagnet 104 and corresponding to each of the upper radial electromagnets 104.
  • the upper radial sensor 107 for example, an inductance sensor having a conduction winding, an eddy current sensor, or the like is used, and the position of the rotor shaft 113 is based on the change in the inductance of the conduction winding that changes according to the position of the rotor shaft 113. Is detected.
  • the upper radial sensor 107 is configured to detect the radial displacement of the rotor shaft 113, that is, the rotating body 103 fixed to the rotor shaft 113, and send it to a control device (not shown).
  • a compensation circuit having a PID adjustment function generates an excitation control command signal of the upper radial electromagnet 104 based on a position signal detected by the upper radial sensor 107, and an amplifier shown in FIG.
  • the circuit 150 (described later) excites and controls the upper radial electromagnet 104 based on this excitation control command signal, so that the upper radial position of the rotor shaft 113 is adjusted.
  • the rotor shaft 113 is made of a high magnetic permeability material (iron, stainless steel, etc.) and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is performed independently in the X-axis direction and the Y-axis direction, respectively. Further, the lower radial electric magnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electric magnet 104 and the upper radial sensor 107, and the lower radial position of the rotor shaft 113 is set to the upper radial position. It is adjusted in the same way as.
  • the axial electromagnets 106A and 106B are arranged so as to vertically sandwich the disk-shaped metal disk 111 provided in the lower part of the rotor shaft 113.
  • the metal disk 111 is made of a high magnetic permeability material such as iron.
  • An axial sensor 109 is provided to detect the axial displacement of the rotor shaft 113, and the axial position signal thereof is configured to be sent to the control device.
  • a compensation circuit having a PID adjustment function generates excitation control command signals for the axial electromagnet 106A and the axial electromagnet 106B based on the axial position signal detected by the axial sensor 109.
  • the amplifier circuit 150 excites and controls the axial electromagnet 106A and the axial electromagnet 106B based on these excitation control command signals, so that the axial electromagnet 106A attracts the metal disk 111 upward by magnetic force.
  • the axial electromagnet 106B attracts the metal disk 111 downward, and the axial position of the rotor shaft 113 is adjusted.
  • the control device appropriately adjusts the magnetic force exerted by the axial electromagnets 106A and 106B on the metal disk 111, magnetically levitates the rotor shaft 113 in the axial direction, and holds the rotor shaft 113 in the space in a non-contact manner.
  • the amplifier circuit 150 that excites and controls the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described later.
  • the motor 121 includes a plurality of magnetic poles arranged in a circumferential shape so as to surround the rotor shaft 113. Each magnetic pole is controlled by a control device so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting on the rotor shaft 113. Further, the motor 121 incorporates a rotation speed sensor such as a Hall element, a resolver, an encoder, etc. (not shown), and the rotation speed of the rotor shaft 113 is detected by the detection signal of the rotation speed sensor.
  • a rotation speed sensor such as a Hall element, a resolver, an encoder, etc.
  • a phase sensor (not shown) is attached near the lower radial sensor 108 to detect the phase of rotation of the rotor shaft 113.
  • the position of the magnetic pole is detected by using both the detection signals of the phase sensor and the rotation speed sensor.
  • a plurality of fixed wings 123 (123a, 123b, 123c ...) are arranged with a slight gap between the rotary wings 102 (102a, 102b, 102c ).
  • the rotary blades 102 are formed so as to be inclined by a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer the molecules of the exhaust gas downward by collision.
  • the fixed wing 123 is also formed so as to be inclined by a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and is arranged alternately with the steps of the rotary wing 102 toward the inside of the outer cylinder 127. ing.
  • the outer peripheral end of the fixed wing 123 is supported in a state of being fitted between a plurality of stacked fixed wing spacers 125 (125a, 125b, 125c ).
  • the fixed wing spacer 125 is a ring-shaped member, and is composed of, for example, a metal such as aluminum, iron, stainless steel, or copper, or a metal such as an alloy containing these metals as a component.
  • An outer cylinder 127 is fixed to the outer periphery of the fixed wing spacer 125 with a slight gap.
  • a base portion 129 is arranged at the bottom of the outer cylinder 127.
  • An exhaust port 133 is formed in the base portion 129 and communicates with the outside. The exhaust gas that has entered the intake port 101 from the chamber side and has been transferred to the base portion 129 is sent to the exhaust port 133.
  • a threaded spacer 131 is arranged between the lower portion of the fixed wing spacer 125 and the base portion 129.
  • the threaded spacer 131 is a cylindrical member made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and has a plurality of spiral thread grooves 131a on the inner peripheral surface thereof. It is engraved.
  • the direction of the spiral of the thread groove 131a is the direction in which the molecules of the exhaust gas are transferred toward the exhaust port 133 when the molecules of the exhaust gas move in the rotation direction of the rotating body 103.
  • a cylindrical portion 102E is hung at the lowermost portion of the rotating body 103 following the rotary blades 102 (102a, 102b, 102c ).
  • the outer peripheral surface of the cylindrical portion 102E is cylindrical and projects toward the inner peripheral surface of the threaded spacer 131, and is brought close to the inner peripheral surface of the threaded spacer 131 with a predetermined gap. There is.
  • the exhaust gas transferred to the screw groove 131a by the rotary blade 102 and the fixed blade 123 is sent to the base portion 129 while being guided by the screw groove 131a.
  • the base portion 129 is a disk-shaped member constituting the base portion of the turbo molecular pump 100, and is generally made of a metal such as iron, aluminum, or stainless steel. Since the base portion 129 physically holds the turbo molecular pump 100 and also has the function of a heat conduction path, a metal having rigidity such as iron, aluminum or copper and having high thermal conductivity is used. Is desirable.
  • the fixed wing spacers 125 are joined to each other at the outer peripheral portion, and transmit the heat received from the rotary wing 102 by the fixed wing 123 and the frictional heat generated when the exhaust gas comes into contact with the fixed wing 123 to the outside.
  • the threaded spacer 131 is arranged on the outer periphery of the cylindrical portion 102E of the rotating body 103, and the screw groove 131a is engraved on the inner peripheral surface of the threaded spacer 131.
  • a screw groove is carved on the outer peripheral surface of the cylindrical portion 102E, and a spacer having a cylindrical inner peripheral surface is arranged around the thread groove.
  • the gas sucked from the intake port 101 is the upper radial electromagnet 104, the upper radial sensor 107, the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, and the shaft.
  • the circumference of the electrical component is covered with a stator column 122 so that it does not invade the electrical component composed of the directional electromagnets 106A, 106B, the axial sensor 109, etc., and the inside of the stator column 122 is kept at a predetermined pressure by a purge gas. It may hang down.
  • a pipe (not shown) is arranged in the base portion 129, and purge gas is introduced through this pipe.
  • the introduced purge gas is sent to the exhaust port 133 through the gaps between the protective bearing 120 and the rotor shaft 113, between the rotor and the stator of the motor 121, and between the stator column 122 and the inner peripheral side cylindrical portion of the rotary blade 102.
  • the turbo molecular pump 100 requires identification of a model and control based on individually adjusted unique parameters (for example, various characteristics corresponding to the model).
  • the turbo molecular pump 100 includes an electronic circuit unit 141 in its main body.
  • the electronic circuit unit 141 is composed of a semiconductor memory such as EEP-ROM, electronic components such as semiconductor elements for accessing the semiconductor memory, and a substrate 143 for mounting them.
  • the electronic circuit portion 141 is housed in a lower portion of a rotational speed sensor (not shown) near the center of a base portion 129 constituting the lower portion of the turbo molecular pump 100, and is closed by an airtight bottom lid 145.
  • some of the process gases introduced into the chamber have the property of becoming solid when the pressure becomes higher than the predetermined value or the temperature becomes lower than the predetermined value.
  • the pressure of the exhaust gas is the lowest at the intake port 101 and the highest at the exhaust port 133. If the pressure rises above a predetermined value or the temperature drops below a predetermined value while the process gas is being transferred from the intake port 101 to the exhaust port 133, the process gas becomes a solid state and becomes a turbo molecule. It adheres to the inside of the pump 100 and accumulates.
  • a solid product for example, AlCl3 is used at a low vacuum (760 [torr] to 10-2 [torr]) and a low temperature (about 20 [° C.]).
  • a low vacuum 760 [torr] to 10-2 [torr]
  • a low temperature about 20 [° C.]
  • a heater or an annular water cooling tube 149 (not shown) is wound around the outer periphery of the base portion 129 or the like, and a temperature sensor (for example, a thermistor) (for example, not shown) is embedded in the base portion 129, for example. Based on the signal of this temperature sensor, the heating of the heater and the control of cooling by the water cooling tube 149 (hereinafter referred to as TMS; Temperature Management System) are performed so as to keep the temperature of the base portion 129 at a constant high temperature (set temperature). It has been.
  • TMS Temperature Management System
  • one end of the electromagnet winding 151 constituting the upper radial electromagnet 104 and the like is connected to the positive electrode 171a of the power supply 171 via the transistor 161 and the other end thereof is the current detection circuit 181 and the transistor 162. It is connected to the negative electrode 171b of the power supply 171 via.
  • the transistors 161 and 162 are so-called power MOSFETs, and have a structure in which a diode is connected between the source and the drain thereof.
  • the cathode terminal 161a of the diode is connected to the positive electrode 171a, and the anode terminal 161b is connected to one end of the electromagnet winding 151. Further, in the transistor 162, the cathode terminal 162a of the diode is connected to the current detection circuit 181 and the anode terminal 162b is connected to the negative electrode 171b.
  • the diode 165 for current regeneration its cathode terminal 165a is connected to one end of the electromagnet winding 151, and its anode terminal 165b is connected to the negative electrode 171b.
  • the cathode terminal 166a is connected to the positive electrode 171a, and the anode terminal 166b is connected to the other end of the electromagnet winding 151 via the current detection circuit 181. It has become so.
  • the current detection circuit 181 is composed of, for example, a hall sensor type current sensor or an electric resistance element.
  • the amplifier circuit 150 configured as described above corresponds to one electromagnet. Therefore, when the magnetic bearing is controlled by 5 axes and there are a total of 10 electromagnets 104, 105, 106A, and 106B, the same amplifier circuit 150 is configured for each of the electromagnets, and 10 amplifier circuits are provided for the power supply 171. 150 are connected in parallel.
  • the amplifier control circuit 191 is composed of, for example, a digital signal processor unit (hereinafter referred to as a DSP unit) (hereinafter referred to as a DSP unit) of the control device, and the amplifier control circuit 191 switches on / off of the transistors 161 and 162. It has become.
  • a DSP unit digital signal processor unit
  • the amplifier control circuit 191 is adapted to compare the current value detected by the current detection circuit 181 (a signal reflecting this current value is referred to as a current detection signal 191c) with a predetermined current command value. Then, based on this comparison result, the magnitude of the pulse width (pulse width time Tp1 and Tp2) generated in the control cycle Ts, which is one cycle by PWM control, is determined. As a result, the gate drive signals 191a and 191b having this pulse width are output from the amplifier control circuit 191 to the gate terminals of the transistors 161 and 162.
  • a high voltage of, for example, about 50 V is used as the power supply 171 so that the current flowing through the electromagnet winding 151 can be rapidly increased (or decreased).
  • a normal capacitor is normally connected between the positive electrode 171a and the negative electrode 171b of the power supply 171 for the purpose of stabilizing the power supply 171 (not shown).
  • the electromagnet current iL when both the transistors 161 and 162 are turned on, the current flowing through the electromagnet winding 151 (hereinafter referred to as the electromagnet current iL) increases, and when both are turned off, the electromagnet current iL decreases.
  • flywheel current when one of the transistors 161 and 162 is turned on and the other is turned off, the so-called flywheel current is maintained.
  • the hysteresis loss in the amplifier circuit 150 can be reduced, and the power consumption of the entire circuit can be suppressed to a low level.
  • the transistors 161 and 162 by controlling the transistors 161 and 162 in this way, it is possible to reduce high frequency noise such as harmonics generated in the turbo molecular pump 100. Further, by measuring this flywheel current with the current detection circuit 181 it becomes possible to detect the electromagnet current iL flowing through the electromagnet winding 151.
  • the transistors 161 and 162 are used only once in the control cycle Ts (for example, 100 ⁇ s) for the time corresponding to the pulse width time Tp1. Turn both on. Therefore, the electromagnet current iL during this period increases from the positive electrode 171a to the negative electrode 171b toward the current value iLmax (not shown) that can be passed through the transistors 161 and 162.
  • both the transistors 161 and 162 are turned off only once in the control cycle Ts for the time corresponding to the pulse width time Tp2. .. Therefore, the electromagnet current iL during this period decreases from the negative electrode 171b to the positive electrode 171a toward the current value iLmin (not shown) that can be regenerated via the diodes 165 and 166.
  • an upper stage having a cooling side stator 110A (fixed blades 123a to 123f) and a cooling side rotary blade 102A (rotor blades 102a to 102g) arranged in a cooling range requiring cooling.
  • the group gas transfer section and the lower group gas transfer section having a heating side stator 110B (fixed blades 123h to 123j) and a cooling side rotary blade 102B (rotor blades 102h to 102k) arranged in a heating range requiring heating.
  • an O-ring 112 is arranged between the cooling side stator 110A and the heating side stator 110B, and a gap 114 is provided between the cooling side stator 110A and the heating side stator 110B by a predetermined amount to provide the cooling side stator 110A.
  • the heating side stator 110B are made independent of each other so that the temperature of the cooling side stator 110A and the temperature of the heating side stator 110B do not affect each other.
  • the fixed wing spacer 125 is pressed by a bolt 115 for positioning between the cooling side stator 110A and the heating side stator 110B. Further, reference numeral 152 in FIG.
  • reference numeral 153 is a temperature sensor for detecting the temperature on the heating side stator 110B side
  • reference numeral 154 is for heating the heating side stator 110B
  • Reference numeral 155 is a cooling pipe for cooling the cooling side stator 110A.
  • the opening 114A of the gap 114 between the cooling side stator 110A and the heating side stator 110B and the rotor blade 102g on the cooling side of the upper group gas transfer section and the rotary blade 102h on the heating side of the lower stage group gas transfer section are close to each other.
  • the positions of the rotary blade 102g and the rotary blade 102h so that neither the outer peripheral surface of the rotary blade 102g on the cooling side nor the outer peripheral surface of the rotary blade 102h on the heating side faces the opening 114A of the gap 114 from the front.
  • a gap of a distance S is provided between the rotary blade 102g and the rotary blade 102h.
  • the distance S is positioned by pressing the cooling side stator 110A and the heating side stator 110B with the bolt 115, either or both of the cooling side stator 110A and the heating side stator 110B move in the axial direction.
  • a substantially center of the axial distance between the rotary blade 102g and the rotary blade 102h can be considered.
  • the position of the opening 114A is not limited to substantially the center, and for example, the movement of process gas molecules by the rotary blade 102g may be emphasized and may be located downstream from the substantially center position.
  • the size of the width (axis direction dimension) of the opening 114A in the gap 114 is an average value of the distances that the molecules of the process gas can travel without colliding with other molecules and changing their course. Considering the free path, heat insulating effect, etc., the size is set to a predetermined width that makes it difficult for molecules to enter.
  • the size of the gap 114 and the opening 114A is considered to be 0.1 mm to 2.0 mm, more preferably 0.5 mm to 1.0 mm.
  • a horizontal gap portion 114a as a first gap portion extending horizontally from the opening 114A toward the outside in the radial direction perpendicular to the axial direction, and further radially outside from the outer end of the horizontal gap portion 114a.
  • the upstream side in the axial direction is the intake port 101 side
  • the downstream side in the axial direction is the exhaust port 133 side.
  • the axial direction is the axial direction of the rotor shaft 113
  • the radial direction is the direction perpendicular to the axial line, that is, the radial direction of the outer cylinder 127.
  • the opening 14A of the gap 114 having a predetermined width that insulates between the cooling side stator 110A and the heating side stator 110B is rotated in the axial direction of the rotating body 103.
  • the blades 102 (rotary blades 102g and rotary blades 102h) are provided at positions that are not opposed to the outer peripheral surfaces and are offset in the axial direction.
  • the shape of the vertical cross section of the gap 114 when the outer cylinder 127 which is the casing is cross-sectionald in the axial direction is horizontally extended from the opening 114A toward the outside.
  • the portion 114a and the inclined inclined gap portion 114b extending radially outside from the outer end of the horizontal gap portion 114a and diagonally extending along the downstream side in the axial direction are integrally provided to form a substantially inverted L shape.
  • the formed structure is shown.
  • the structure of the gap 114 is not limited to the structure shown in FIGS. 1 and 5, and may be, for example, a structure as shown in FIGS. 6, 7, and 8.
  • the inclined gap portion 114b may be a gap portion extending from the outer end of the horizontal gap portion 114a to the outer side in the radial direction and diagonally upward along the upstream side in the axial direction.
  • the shape of the vertical cross section of the gap 114 when the outer cylinder 127, which is a casing, is cross-sectionald in the axial direction is the third shape toward the downstream side in the axial direction immediately after entering the opening 114A.
  • a vertical gap portion 114c as a gap portion and a horizontal gap portion 114a extending horizontally from the lower end of the vertical gap portion 114c toward the outside in the radial direction are integrally provided, and are formed in a substantially I shape from the opening 114A. It has a structure that has a part.
  • the cross-sectional shape of the gap 114 into a substantially I shape, when the process gas tries to enter the gap 114 from the opening 114A, the front surface immediately after entering the opening 114A. Since there is a wall of the vertical gap portion 114c toward the downstream side in the axial direction, the wall serves as a resistance to the inward flow of the process gas. As a result, the amount of process gas that enters the gap 114 through the opening 114A can be reduced, and at the same time, the amount of deposits that can be formed can be further reduced.
  • the vertical gap portion 114c has a structure that immediately faces the downstream side in the axial direction when the opening 114A is entered, but conversely, the structure may be such that the vertical gap portion 114c immediately faces the upstream side in the axial direction when the opening 114A is entered. ..
  • the shape of the vertical cross section of the gap 114 when the outer cylinder 127 which is the casing is cross-sectionald in the axial direction is perpendicular to the axial direction from the opening 11A immediately after entering the opening 114A.
  • the inclined gap portion 114d as a fourth gap portion extending diagonally toward the upstream side in the axial direction and the outside in the radial direction, and the inclined gap portion 114d diagonally from the outer end of the inclined gap portion 114d toward the downstream side in the axial direction.
  • An inclined gap portion 114e as an extending fifth gap portion is integrally provided, and the structure has a portion formed in a substantially inverted V shape from the opening 114A.
  • the process gas rises diagonally upward to the outside, so that the process gas entering the inclined gap portion 114d from the opening 114A inclines diagonally upward to the outside.
  • the inclined gap portion 114d is a wall and collides with the wall, and the process gas acts as a resistance to the inward flow. This makes it possible to reduce the amount of process gas entering the gap 114 through the opening 114A and further reduce the amount of deposits produced by the process gas.
  • the inclined gap portion 114d extending diagonally from the opening 114A to the outside in the radial direction perpendicular to the axial direction and diagonally toward the upstream in the axial direction, and the axial direction from the outer end of the inclined gap portion 114d.
  • a structure has a structure in which an inclined gap portion 114e extending diagonally toward the downstream side of the opening 114e is integrally provided so as to have a portion formed in a substantially inverted V shape from the opening 114A, but from the opening 114A to the upstream side.
  • a structure may be provided in which either the inclined gap portion 114d extending inclined or the inclined gap portion 114e extending inclined toward the downstream side from the opening 114A is provided.
  • the upper part of the opening 114A in the gap 114 formed on the inner peripheral surface of the outer cylinder 127 is larger than the opening 114A.
  • the structure is provided with an eaves 116 protruding toward the inside of the outer cylinder 127. That is, the eaves 116 creates a step between the eaves 116 and the opening 114A, and controls the flow so that the process gas flowing from the upstream side does not go in the direction of the opening 114A but goes straight to the downstream side. Can be done.
  • the gap 114 is horizontal toward the outside in the radial direction perpendicular to the axial direction from the lower end of the vertical gap portion 114c as a third gap portion toward the downstream side immediately after entering the opening 114A.
  • a horizontal gap portion 114a extending from the opening 114a is integrally provided so as to have a portion formed in a substantially I shape from the opening 114A.
  • the lower edge portion (lower surface of the eaves) 116a and the lower edge portion 114g of the opening 114A of the eaves 116 are each subjected to R chamfering.
  • R chamfering process when a part of the process gas that hits the rotary blade 102 in the outer cylinder 127 and bounces off hits the lower surface edge portion 116a or the lower edge portion 114g, a part of the bumped process gas. Is directed in the direction of the rotor shaft 113 different from the inside of the opening 114A so as not to enter the inside of the opening 114A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

【課題】断熱用に設けられた隙間に向かうガスの流れ(ガス分子の数)を少なくして、隙間に堆積する副生成物の量を減らし、メンテナンスを必要とする間隔を延ばして生産性を向上させることができる真空ポンプを提供する。 【解決手段】吸気口101と排気口133を有する外筒127と、外筒127の内側に、回転自在に支持されたロータ軸113と、ロータ軸113と共に回転可能な複数段の回転翼102と、外筒に対して固定され、かつ、複数段の回転翼102間に配置される複数段の固定翼123と、複数段の固定翼123を所定間隔に保持する冷却側ステータ110A及び加熱側ステータ110Bと、を備え、冷却側ステータ110Aと加熱側ステータ110Bとの間を断熱する所定幅の隙間114の開口部114Aを、回転体103の軸方向において回転翼102の外周面と対向しない位置に設けた。

Description

真空ポンプ
 本発明は真空ポンプに関するものであり、特に、真空ポンプ内にガスが固化して生成される堆積物(通称「デポ」という)等が隙間に堆積する量を減らすことができる真空ポンプに関するものである。
 近年、被処理基板であるウエハから半導体素子を形成するプロセスにおいて、ウエハを、高真空に保持された半導体製造装置の処理室内で処理して、製品の半導体素子を作る方法が取られている。ウエハを真空室で加工処理する半導体製造装置では、高真空度を達成して保持するためにターボ分子ポンプ部及びネジ溝ポンプ部などを備えた真空ポンプが用いられている。
 ターボ分子ポンプ部は、ケーシングの内部に、薄い金属製の回転可能な回転翼とケーシングに固定された固定翼を有している。そして、回転翼を、例えば数百m/秒の高速で運転させ、吸気口側から入って来る加工処理に用いたプロセスガスをポンプ内部で圧縮して排気口側から排気するようにしている。
 ところで、真空ポンプの吸気口側より取り込まれたプロセスガスの分子は、吸気された直後は高温で、真空ポンプ内で回転翼の回転に伴う排気口側への移動に伴う圧縮過程で冷却される。プロセスガスが冷却されると固体化し、固体化された副生成物が固定翼や外筒(ケーシング)内面等に付着されてデポとして堆積する。副生成物としては、塩素系や硫化フッ素系のガスが一般的である。これらのガスは、真空度が低くなり、圧力が高くなるほど昇華温度が高くなり、真空ポンプ内部にガスが固化して堆積しやすくなる。反応生成物が真空ポンプ内部に堆積すると、反応生成物の流路を狭めて真空ポンプの圧縮性能、排気性能が低下する虞がある。一方、回転翼や固定翼にアルミニウムやステンレス材等を使用している気体移送部では、余り高い温度になると、回転翼や固定翼の強度が低下して運転中に破断を起す虞がある。また、真空ポンプ内に設けられた電装品やロータを回転させる電動モータは、温度が高くなると所望の性能を発揮しない虞等がある。そのため、真空ポンプは所定の温度を維持するように温度制御が必要となる。
 そこで、反応生成物が堆積するのを抑制する真空ポンプとして、ステータの周囲に冷却装置又は加熱装置を設けてガス流路内の温度を制御し、ガス流路内のガスが固化することなく移送できるようにした構造も知られている(例えば特許文献1参照)。
 しかしながら、真空ポンプ内の吸入されたガスは、真空度が増して圧力が高くなるほど昇華温度が高くなり、真空ポンプ内部にガスが固化して堆積しやすくなるという特性がある。一方、回転翼や固定翼等で構成される気体移送部は、余り高い温度になると強度が低下する問題や、真空ポンプ内の電装品や電動モータの性能に悪い影響を与えることがある。したがって、真空ポンプ内の電装品や電動モータの性能に悪い影響を与えずに、また、気体移送部の強度を低下させることなく、真空ポンプを正常に運転させながら真空ポンプ内部におけるガスの固化を抑制できるように温度制御を行うことが好ましい。
 そこで、例えば図9及び図10に示す真空ポンプ10のように、冷却を必要とする冷却範囲内に配置される冷却側ステータ17Aを有した上段群気体移送部11と加熱を必要とする加熱範囲内に配置される加熱側ステータ17Bを有した下段気体移送部12とに分け、冷却側ステータ17Aと加熱側ステータ17Bとの間に隙間15を設けて、冷却側ステータ17Aと加熱側ステータ17Bをそれぞれ独立化させ、上段群気体移送部11の温度と下段気体移送部12の温度が互いに影響し合わないようにしている。なお、冷却側ステータ17Aと加熱側ステータ17Bとの間は、固定翼スペーサ14をボルト19で押さえて位置決めをしている。
特開平10-205486号公報
 冷却側ステータ17Aと加熱側ステータ17Bとの間を、ボルト19で押さえて位置決めする構造にあっては、ボルト19を締め付ける力の大きさや、締め付けによるOリング18の変形量、又は固定翼スペーサ14の種類等によって、冷却側ステータ17Aと加熱側ステータ17Bとの間の隙間15の大きさ(軸方向における寸法)が変わる。そして、隙間15が、回転翼16の半径方向周面と対向した状態で位置決めされた場合、回転翼16が回転するときに、回転翼16により、接線方向及び下流方向に移送されたプロセスガスの分子は、隙間15内に向かい易くなる(ガス分子の数が増える)。そして、隙間15内に入ったガスは、冷却側ステータ17Aによって冷却され、隙間15内で固体化し、副生成物として堆積する。この堆積物は、隙間15の幅を狭めて断熱効果を低下させ、ポンプ内温度分布を変化させる。したがって、定期的に真空ポンプ10を分解する等して、隙間15に溜まった堆積物を取り除く、メンテナンス作業が必要になる。このメンテナンス作業により、生産性が悪いという問題点があった。
 そこで、断熱用に設けられた隙間に向かうガスの流れ(ガス分子の数)を少なくして、隙間に堆積する副生成物の量を減らし、メンテナンス作業を必要とする間隔を延ばして生産性を向上させることができる真空ポンプを提供するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
 本発明は上記目的を達成するために提案されたものであり、請求項1に記載の発明は、吸気口と排気口を有するケーシングと、前記ケーシングの内側に、回転自在に支持されたロータ軸と、前記ロータ軸と共に回転可能な複数段の回転翼と、前記ケーシングに対して固定され、かつ、前記複数段の回転翼間に配置される複数段の固定翼と、前記複数段の固定翼を所定間隔に保持する冷却側ステータ及び加熱側ステータと、を備えた真空ポンプであって、前記冷却側ステータと前記加熱側ステータとの間を断熱する所定幅の隙間の開口部を、前記ロータ軸の軸方向において前記回転翼の外周面と対向しない位置に設けた、真空ポンプを提供する。
 この構成によれば、冷却側ステータと加熱側ステータとの間を断熱するための所定幅の隙間の開口部を、ロータ軸の軸方向において回転翼の外周面と対向しない位置に設けている。したがって、回転翼の回転による遠心力で、ガスの一部がステータの内周面に向かって飛ばされても、隙間の開口部は、回転翼の外周面とは対向しないずれた位置に設けているので、隙間の開口に入り込む量も極めて少なく、隙間内に堆積する堆積物の量を減らすことができる。これにより、メンテナンス作業を必要とする間隔を延ばすことができ、生産性の向上に寄与する。
 請求項2に記載の発明は、請求項1に記載の構成において、前記隙間の形状は、前記軸方向と垂直な径方向の外側に向かって水平に延びる第1の隙間部分と、前記第1の隙間部分の外端から更に前記径方向の外側、かつ、前記軸方向の下流側に沿って延びる第2の隙間部分を有する、真空ポンプを提供する。
 この構成によれば、開口部から第1の隙間部分に入り込んだプロセスガスが、更に奥へ進もうとしたとき、次の第2の隙間部分の壁に一度ぶつかるので、その壁が、隙間内に向かう流れの抵抗となる。これにより、開口部から隙間内に入り込むプロセスガスの量を減らして、プロセスガスで生成される堆積物の量を更に少なくすることができる。
 請求項3に記載の発明は、請求項1又は2に記載の構成において、前記隙間の形状は、前記軸方向の下流側に沿って延びる第3の隙間部分を有する、真空ポンプを提供する。
 この構成によれば、開口部からプロセスガスが隙間内に入り込もうしたとき、開口部を入って直ぐの正面の処に、下側に向かう第3の隙間部分が壁となってぶつかり、プロセスガスが隙間内に向かう流れの抵抗となる。これにより、開口部から隙間内に入り込むプロセスガスの量を減らして、プロセスガスで生成される堆積物の量を更に少なくすることができる。
 請求項4に記載の発明は、請求項1から3までのいずれか1項に記載の構成において、前記隙間の形状は、前記軸方向と垂直な径方向の外側、かつ、前記軸方向の上流側に延びる第4の隙間部分を有する、真空ポンプを提供する。
 この構成によれば、隙間の縦断面の形状が、軸方向と垂直な径方向の外側、かつ、軸方向の上流側に延びる第4の隙間部分を有している。したがって、開口部から隙間内に入ったプロセスガスは、一度第4の隙間部分とぶつかり、プロセスガスが隙間内に向かう流れの抵抗となる。これにより、開口部から隙間内に入り込むプロセスガスの量を減らし、プロセスガスで生成される堆積物の量を更に少なくすることができる。
 請求項5に記載の発明は、請求項1から4までのいずれか1項に記載の構成において、前記隙間の形状は、前記開口部の上部に、前記開口部よりも前記ケーシングの内側に向かって突き出している軒部を有する、真空ポンプを提供する。
 この構成によれば、隙間の縦断面の形状が、ケーシングを軸方向に縦断面したとき、ケーシング内周面に形成される隙間の開口部の上部に、開口部よりもケーシングの内側に向かって突き出している軒部を設けているので、上流側から流れて来るプロセスガスは軒部に流れが制御されて、隙間の開口部の方向には進まずに、開口部とは異なる下流側に向かわせることができる。これにより、開口部から隙間内に入り込むプロセスガスの量を減らして、プロセスガスで生成される堆積物の量を更に少なくすることができる。
 発明によれば、断熱用に設けられた隙間内に入り込むプロセスガスの量を減らして、プロセスガスで生成される堆積物が、隙間内に堆積する量を減らすことができる。これにより、隙間内の堆積物を取り除くメンテナンス作業を必要とする間隔を延ばして、生産性を向上させることができる。
 また、隙間の断熱効果も向上して、真空ポンプ内に設けられた電装品やロータを回転させる電動モータの性能に悪い影響をあたえることのない範囲、及び、ロータやステータの強度低下に影響を与えない範囲で、温度を細かく制御することが可能になる。
 また、プロセスガスの固化を制御しながら真空ポンプの正常運転を実現できる。
本発明の実施の形態に係る真空ポンプの実施例として示すターボ分子ポンプの縦断面図である。 同上ターボ分子ポンプにおけるアンプ回路の一例を示す図である。 同上ターボ分子ポンプにおけるアンプ回路で検出した電流指令値が検出値より大きい場合の一制御例を示すタイムチャートである。 同上ターボ分子ポンプにおけるアンプ回路で検出した電流指令値が検出値より小さい場合の一制御例を示すタイムチャートである。 図1に示すターボ分子ポンプの一部拡大断面図で、(a)は図1のA部の拡大図、(b)は隙間の形状を説明するための更に一部を拡大した断面図である。 本発明の一変形例を示し、(a)は図1のA部に相当する部分拡大図、(b)は隙間の形状を説明するための更に(a)の一部を拡大した断面図である。 本発明の他の変形例を示し、(a)は図1のA部に相当する部分拡大図、(b)は隙間の形状を説明するための更に(a)の一部を拡大した断面図である。 本発明の更に他の変形例を示し、(a)は図1のA部に相当する部分拡大図、(b)は隙間の形状を説明するための更に(a)の一部を拡大した断面図である。 従来における真空ポンプの一例として示すターボ分子ポンプの縦断面図である。 図9のB部に相当する部分拡大図である。
 本発明は、断熱用に設けられた隙間に向かうガスの流れ(ガス分子の数)を少なくして、隙間に堆積する副生成物の量を減らし、メンテナンス作業を必要とする間隔を延ばして生産性を向上させることができる真空ポンプを提供するという目的を達成するために、吸気口と排気口を有するケーシングと、前記ケーシングの内側に、回転自在に支持されたロータ軸と、前記ロータ軸と共に回転可能な複数段の回転翼と、
 前記ケーシングに対して固定され、かつ、前記複数段の回転翼間に配置される複数段の固定翼と、前記複数段の固定翼を所定間隔に保持する加熱側ステータ及び冷却側ステータと、を備えた真空ポンプであって、前記加熱側ステータと前記冷却側ステータとの間を断熱する所定幅の隙間の開口部を、前記ロータ軸の軸方向において前記回転翼の外周面と対向しない位置に設けた、ことにより実現した。
 以下、本発明の実施形態に係る一実施例を添付図面に基づいて詳細に説明する。なお、以下の実施例において、構成要素の数、数値、量、範囲等に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも構わない。
 また、構成要素等の形状、位置関係に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似又は類似するもの等を含む。
 また、図面は、特徴を分かり易くするために特徴的な部分を拡大する等して誇張する場合があり、構成要素の寸法比率等が実際と同じであるとは限らない。また、断面図では、構成要素の断面構造を分かり易くするために、一部の構成要素のハッチングを省略することがある。
 また、以下の説明において、上下や左右等の方向を示す表現は、絶対的なものではなく、本発明のターボ分子ポンプの各部が描かれている姿勢である場合に適切であるが、その姿勢が変化した場合には姿勢の変化に応じて変更して解釈されるべきものである。また、実施例の説明の全体を通じて同じ要素には同じ符号を付している。
 図1は本発明に係る真空ポンプとしてのターボ分子ポンプ100の一実施例を示すもので、図1はその縦断面図である。
 図1において、ターボ分子ポンプ100は、円筒状のハウジングとしての外筒127の上端に吸気口101が形成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードである複数の回転翼102(102a、102b、102c・・・)を周部に放射状かつ多段に形成した回転体103が備えられている。この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。
 上側径方向電磁石104は、4個の電磁石がX軸とY軸とに対をなして配置されている。この上側径方向電磁石104の近接に、かつ上側径方向電磁石104のそれぞれに対応されて4個の上側径方向センサ107が備えられている。上側径方向センサ107は、例えば伝導巻線を有するインダクタンスセンサや渦電流センサなどが用いられ、ロータ軸113の位置に応じて変化するこの伝導巻線のインダクタンスの変化に基づいてロータ軸113の位置を検出する。この上側径方向センサ107はロータ軸113、すなわちそれに固定された回転体103の径方向変位を検出し、図示せぬ制御装置に送るように構成されている。
 この制御装置においては、例えばPID調節機能を有する補償回路が、上側径方向センサ107によって検出された位置信号に基づいて、上側径方向電磁石104の励磁制御指令信号を生成し、図2に示すアンプ回路150(後述する)が、この励磁制御指令信号に基づいて、上側径方向電磁石104を励磁制御することで、ロータ軸113の上側の径方向位置が調整される。
 そして、このロータ軸113は、高透磁率材(鉄、ステンレスなど)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。
 さらに、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向位置信号が制御装置に送られるように構成されている。
 そして、制御装置において、例えばPID調節機能を有する補償回路が、軸方向センサ109によって検出された軸方向位置信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bのそれぞれの励磁制御指令信号を生成し、アンプ回路150が、これらの励磁制御指令信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bをそれぞれ励磁制御することで、軸方向電磁石106Aが磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bが金属ディスク111を下方に吸引し、ロータ軸113の軸方向位置が調整される。
 このように、制御装置は、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。なお、これら上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150については、後述する。
 一方、モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、制御装置によって制御されている。また、モータ121には図示しない例えばホール素子、レゾルバ、エンコーダなどの回転速度センサが組み込まれており、この回転速度センサの検出信号によりロータ軸113の回転速度が検出されるようになっている。
 さらに、例えば下側径方向センサ108近傍に、図示しない位相センサが取り付けてあり、ロータ軸113の回転の位相を検出するようになっている。制御装置では、この位相センサと回転速度センサの検出信号を共に用いて磁極の位置を検出するようになっている。
 回転翼102(102a、102b、102c・・・)とわずかの空隙を隔てて複数枚の固定翼123(123a、123b、123c・・・)が配設されている。回転翼102は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。
 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。そして、固定翼123の外周端は、複数の段積みされた固定翼スペーサ125(125a、125b、125c・・・)の間に嵌挿された状態で支持されている。
 固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設されている。ベース部129には排気口133が形成され、外部に連通されている。チャンバ側から吸気口101に入ってベース部129に移送されてきた排気ガスは、排気口133へと送られる。
 さらに、ターボ分子ポンプ100の用途によって、固定翼スペーサ125の下部とベース部129の間には、ネジ付スペーサ131が配設される。ネジ付スペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。回転体103の回転翼102(102a、102b、102c・・・)に続く最下部には円筒部102Eが垂下されている。この円筒部102Eの外周面は、円筒状で、かつネジ付スペーサ131の内周面に向かって張り出されており、このネジ付スペーサ131の内周面と所定の隙間を隔てて近接されている。回転翼102および固定翼123によってネジ溝131aに移送されてきた排気ガスは、ネジ溝131aに案内されつつベース部129へと送られる。
 ベース部129は、ターボ分子ポンプ100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129はターボ分子ポンプ100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
 かかる構成において、回転翼102がロータ軸113と共にモータ121により回転駆動されると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバから排気ガスが吸気される。吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触する際に生ずる摩擦熱や、モータ121で発生した熱の伝導などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子などによる伝導により固定翼123側に伝達される。
 固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触する際に生ずる摩擦熱などを外部へと伝達する。
 なお、上記では、ネジ付スペーサ131は回転体103の円筒部102Eの外周に配設し、ネジ付スペーサ131の内周面にネジ溝131aが刻設されているとして説明した。しかしながら、これとは逆に円筒部102Eの外周面にネジ溝が刻設され、その周囲に円筒状の内周面を有するスペーサが配置される場合もある。
 また、ターボ分子ポンプ100の用途によっては、吸気口101から吸引されたガスが上側径方向電磁石104、上側径方向センサ107、モータ121、下側径方向電磁石105、下側径方向センサ108、軸方向電磁石106A、106B、軸方向センサ109などで構成される電装部に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、このステータコラム122内はパージガスにて所定圧に保たれる場合もある。
 この場合には、ベース部129には図示しない配管が配設され、この配管を通じてパージガスが導入される。導入されたパージガスは、保護ベアリング120とロータ軸113間、モータ121のロータとステータ間、ステータコラム122と回転翼102の内周側円筒部の間の隙間を通じて排気口133へ送出される。
 ここに、ターボ分子ポンプ100は、機種の特定と、個々に調整された固有のパラメータ(例えば、機種に対応する諸特性)に基づいた制御を要する。この制御パラメータを格納するために、上記ターボ分子ポンプ100は、その本体内に電子回路部141を備えている。電子回路部141は、EEP-ROM等の半導体メモリ及びそのアクセスのための半導体素子等の電子部品、それらの実装用の基板143等から構成される。この電子回路部141は、ターボ分子ポンプ100の下部を構成するベース部129の例えば中央付近の図示しない回転速度センサの下部に収容され、気密性の底蓋145によって閉じられている。
 ところで、半導体の製造工程では、チャンバに導入されるプロセスガスの中には、その圧力が所定値よりも高くなり、或いは、その温度が所定値よりも低くなると、固体となる性質を有するものがある。ターボ分子ポンプ100内部では、排気ガスの圧力は、吸気口101で最も低く排気口133で最も高い。プロセスガスが吸気口101から排気口133へ移送される途中で、その圧力が所定値よりも高くなったり、その温度が所定値よりも低くなったりすると、プロセスガスは、固体状となり、ターボ分子ポンプ100内部に付着して堆積する。
 例えば、Alエッチング装置にプロセスガスとしてSiCl4が使用された場合、低真空(760[torr]~10-2[torr])かつ、低温(約20[℃])のとき、固体生成物(例えばAlCl3)が析出し、ターボ分子ポンプ100内部に付着堆積することが蒸気圧曲線からわかる。これにより、ターボ分子ポンプ100内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプ100の性能を低下させる原因となる。そして、前述した生成物は、排気口付近やネジ付スペーサ131付近の圧力が高い部分で凝固、付着し易い状況にあった。
 そのため、この問題を解決するために、従来はベース部129等の外周に図示しないヒータや環状の水冷管149を巻着させ、かつ例えばベース部129に図示しない温度センサ(例えばサーミスタ)を埋め込み、この温度センサの信号に基づいてベース部129の温度を一定の高い温度(設定温度)に保つようにヒータの加熱や水冷管149による冷却の制御(以下TMSという。TMS;Temperature Management System)が行われている。
 次に、このように構成されるターボ分子ポンプ100に関して、その上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150について説明する。このアンプ回路150の回路図を図2に示す。
 図2において、上側径方向電磁石104等を構成する電磁石巻線151は、その一端がトランジスタ161を介して電源171の正極171aに接続されており、また、その他端が電流検出回路181及びトランジスタ162を介して電源171の負極171bに接続されている。そして、トランジスタ161、162は、いわゆるパワーMOSFETとなっており、そのソース-ドレイン間にダイオードが接続された構造を有している。
 このとき、トランジスタ161は、そのダイオードのカソード端子161aが正極171aに接続されるとともに、アノード端子161bが電磁石巻線151の一端と接続されるようになっている。また、トランジスタ162は、そのダイオードのカソード端子162aが電流検出回路181に接続されるとともに、アノード端子162bが負極171bと接続されるようになっている。
 一方、電流回生用のダイオード165は、そのカソード端子165aが電磁石巻線151の一端に接続されるとともに、そのアノード端子165bが負極171bに接続されるようになっている。また、これと同様に、電流回生用のダイオード166は、そのカソード端子166aが正極171aに接続されるとともに、そのアノード端子166bが電流検出回路181を介して電磁石巻線151の他端に接続されるようになっている。そして、電流検出回路181は、例えばホールセンサ式電流センサや電気抵抗素子で構成されている。
 以上のように構成されるアンプ回路150は、一つの電磁石に対応されるものである。そのため、磁気軸受が5軸制御で、電磁石104、105、106A、106Bが合計10個ある場合には、電磁石のそれぞれについて同様のアンプ回路150が構成され、電源171に対して10個のアンプ回路150が並列に接続されるようになっている。
 さらに、アンプ制御回路191は、例えば、制御装置の図示しないディジタル・シグナル・プロセッサ部(以下、DSP部という)によって構成され、このアンプ制御回路191は、トランジスタ161、162のon/offを切り替えるようになっている。
 アンプ制御回路191は、電流検出回路181が検出した電流値(この電流値を反映した信号を電流検出信号191cという)と所定の電流指令値とを比較するようになっている。そして、この比較結果に基づき、PWM制御による1周期である制御サイクルTs内に発生させるパルス幅の大きさ(パルス幅時間Tp1、Tp2)を決めるようになっている。その結果、このパルス幅を有するゲート駆動信号191a、191bを、アンプ制御回路191からトランジスタ161、162のゲート端子に出力するようになっている。
 なお、回転体103の回転速度の加速運転中に共振点を通過する際や定速運転中に外乱が発生した際等に、高速かつ強い力での回転体103の位置制御をする必要がある。そのため、電磁石巻線151に流れる電流の急激な増加(あるいは減少)ができるように、電源171としては、例えば50V程度の高電圧が使用されるようになっている。また、電源171の正極171aと負極171bとの間には、電源171の安定化のために、通常コンデンサが接続されている(図示略)。
 かかる構成において、トランジスタ161、162の両方をonにすると、電磁石巻線151に流れる電流(以下、電磁石電流iLという)が増加し、両方をoffにすると、電磁石電流iLが減少する。
 また、トランジスタ161、162の一方をonにし他方をoffにすると、いわゆるフライホイール電流が保持される。そして、このようにアンプ回路150にフライホイール電流を流すことで、アンプ回路150におけるヒステリシス損を減少させ、回路全体としての消費電力を低く抑えることができる。また、このようにトランジスタ161、162を制御することにより、ターボ分子ポンプ100に生じる高調波等の高周波ノイズを低減することができる。さらに、このフライホイール電流を電流検出回路181で測定することで電磁石巻線151を流れる電磁石電流iLが検出可能となる。
 すなわち、検出した電流値が電流指令値より小さい場合には、図3に示すように制御サイクルTs(例えば100μs)中で1回だけ、パルス幅時間Tp1に相当する時間分だけトランジスタ161、162の両方をonにする。そのため、この期間中の電磁石電流iLは、正極171aから負極171bへ、トランジスタ161、162を介して流し得る電流値iLmax(図示せず)に向かって増加する。
 一方、検出した電流値が電流指令値より大きい場合には、図4に示すように制御サイクルTs中で1回だけパルス幅時間Tp2に相当する時間分だけトランジスタ161、162の両方をoffにする。そのため、この期間中の電磁石電流iLは、負極171bから正極171aへ、ダイオード165、166を介して回生し得る電流値iLmin(図示せず)に向かって減少する。
 そして、いずれの場合にも、パルス幅時間Tp1、Tp2の経過後は、トランジスタ161、162のどちらか1個をonにする。そのため、この期間中は、アンプ回路150にフライホイール電流が保持される。
 ところで、ケーシングとしての外筒127内においては、冷却を必要とする冷却範囲内に配置した冷却側ステータ110A(固定翼123a~123f)及び冷却側回転翼102A(回転翼102a~102g)を有する上段群気体移送部と、加熱を必要とする加熱範囲内に配置した加熱側ステータ110B(固定翼123h~123j)及び冷却側回転翼102B(回転翼102h~102k)を有する下段群気体移送部とでなる。そして、冷却側ステータ110Aと加熱側ステータ110Bの間にOリング112を配設して、冷却側ステータ110Aと加熱側ステータ110Bの間を所定量離して隙間114を設けることにより、冷却側ステータ110Aと加熱側ステータ110Bをそれぞれ独立化させ、冷却側ステータ110Aの温度と加熱側ステータ110Bの温度が互いに影響し合わないようにしている。なお、冷却側ステータ110Aと加熱側ステータ110Bとの間は、固定翼スペーサ125をボルト115で押さえて位置決めをしている。また、図1中の符号152は、冷却側ステータ110A側の温度を検出する温度センサ、符号153は、加熱側ステータ110B側の温度を検出する温度センサ、符号154は加熱側ステータ110Bを加熱するためのヒータ、符号155は冷却側ステータ110Aを冷却する冷却管である。
 一方、冷却側ステータ110Aと加熱側ステータ110Bの間の隙間114の開口部114Aと近接する上段群気体移送部の冷却側の回転翼102gと下段群気体移送部の加熱側の回転翼102hとの間は、冷却側の回転翼102gの外周面と加熱側の回転翼102hの外周面のどちらも、隙間114の開口部114Aと真っ正面から向き合わないように、回転翼102gと回転翼102hの位置をそれぞれ開口部114Aに対して軸方向、すなわち上下方向にずらし、回転翼102gと回転翼102hとの間に距離Sの隙間を設けている。その距離Sは、冷却側ステータ110Aと加熱側ステータ110Bとの間を、ボルト115で押さえて位置決めした際、冷却側ステータ110A又は加熱側ステータ110Bのいずれか一方あるいは両方が軸方向に移動しても、隙間114の開口部114Aと真っ正面から向き合わないだけの大きさを確保するのが好ましい。
 また、開口部114Aの好ましい位置としては、回転翼102gと回転翼102hによるプロセスガスの分子の移動を考慮し、回転翼102gと回転翼102hの軸方向距離の略中央が考えられる。ただし、開口部114Aの位置は略中央に限定されず、例えば、回転翼102gによるプロセスガスの分子の移動を重視し、略中央位置から下流側にあってもよい。
 また、隙間114における開口部114Aの幅の大きさ(軸方向の寸法)は、プロセスガスの分子が他の分子に衝突して進路を変えられることなく進むことのできる距離の平均値である平均自由行程や、断熱効果等を考慮して、分子ができるだけ入り込みにくい所定幅の大きさに設定される。例えば、隙間114および開口部114Aの大きさとしては、0.1mmから2.0mmであり、より好ましくは、0.5mmから1.0mmが考えられる。
 なお、本実施例の構造では、図5に図1のA部を拡大して示しているように、ケーシングである外筒127を軸方向に縦断面したときにおける、隙間114の縦断面の形状は、開口部114Aから軸方向と垂直な径方向の外側に向かって水平に延びる第1の隙間部分としての水平隙間部分114aと、水平隙間部分114aの外側端から更に径方向の外側、かつ、軸方向の下流側に沿って斜め下側に延びる傾斜した第2の隙間部分としての傾斜隙間部分14bとを一体に有して、開口部114Aから逆L字状に形成された部分を有する構造とした。以下の説明では、軸方向の上流側とは吸気口101側で、軸方向の下流側とは排気口133側とする。また、軸方向とは、ロータ軸113の軸線方向で、径方向とは軸線に対して垂直な方向、すなわち外筒127の径方向である。
 この実施例のように構成された真空ポンプ10では、冷却側ステータ110Aと加熱側ステータ110Bとの間を断熱している所定幅の隙間114の開口部14Aを、回転体103の軸方向において回転翼102(回転翼102gと回転翼102h)の外周面と対向しない、軸方向にずれた位置に設けている。したがって、回転翼102の回転による遠心力で、プロセスガスの一部が、円筒部102Eの冷却側ステータ110Aと加熱側ステータ110Bの内周面に向かって飛ばされても、隙間114の開口部114Aに入り込むプロセスガスの量も極めて少なく、隙間114内に堆積する堆積物の量を減らすことができる。これにより、隙間114内に堆積した堆積物等を除去するためのメンテナンス作業を必要とする間隔を延ばすことができ、生産性の向上に寄与することになる。
 なお、図1及び図5に示す実施例では、ケーシングである外筒127を軸方向に断面したときの、隙間114の縦断面の形状を、開口部114Aから外側に向かって水平に延びる水平隙間部分114aと、水平隙間部分114aの外端から更に径方向の外側、かつ、軸方向の下流側に沿って斜めに延びる傾斜した傾斜隙間部分114bとを一体に設けて、概略逆L字状に形成してなる構造を示した。
 この図1及び図5に示す構造では、開口部114Aから水平隙間部分114a内に入ると、次に水平隙間部分114aの外側端から外側に向かって斜め下側に折れ曲がって延びる傾斜した傾斜隙間部分114bがあるので、開口部114Aから水平隙間部分114aに入って、次に傾斜隙間部分114bに流れ込むとき、傾斜隙間部分114bが壁となってぶつかり、プロセスガスが更に内側に向かう流れの抵抗となる。これにより、開口部114Aから隙間114内に入り込むプロセスガスの量を減らし、プロセスガスで生成される堆積物の量を更に少なくすることができる。
 なお、隙間114の構造は、図1及び図5に示す構造に限ることなく、例えば、図6、図7、図8に示すような構造にしてもよい。また、傾斜隙間部分114bは、水平隙間部分114aの外端から更に径方向の外側、かつ、軸方向の上流側に沿って斜め上側に向かって延びる隙間部分としてもよい。
 図6に示す隙間114の構造では、ケーシングである外筒127を軸方向に断面したときの、隙間114の縦断面の形状を、開口部114Aを入ると直ぐに軸方向の下流側に向かう第3の隙間部分としての垂直隙間部分114cと、垂直隙間部分114cの下端から径方向の外側に向かって水平に延びる水平隙間部分114aを一体に設けて、開口部114Aから略I字状に形成している部分を有する構造にしている。
 この図6の構造では、隙間114の断面形状を略I字状に形成することにより、開口部114Aからプロセスガスが隙間114内に入り込もうとしたとき、開口部114Aを入って直ぐの正面の処に、軸方向の下流側に向かう垂直隙間部分114cの壁が存在するので、その壁が、プロセスガスが内側に向かう流れの抵抗となる。これにより、開口部114Aから隙間114内に入り込むプロセスガスの量を減らし、同時に、堆積物ができる量を更に少なくすることができる。なお、垂直隙間部分114cは、開口部114Aを入ると直ぐに軸方向の下流側に向かう構造にしているが、反対に、開口部114Aを入ると直ぐに軸方向の上流側に向かう構造にしてもよい。
 図7に示す隙間114の構造では、ケーシングである外筒127を軸方向に断面したときの、隙間114の縦断面の形状を、開口部114Aを入ると直ぐに、開口部11Aから軸方向と垂直な径方向の外側、かつ、軸方向の上流側に向かって斜めに延びる第4の隙間部分としての傾斜隙間部分114dと、傾斜隙間部分114dの外端から軸方向の下流側に向かって斜めに延びる第5の隙間部分としての傾斜隙間部分114eとを一体に設けて、開口部114Aから略逆V字状に形成している部分を有する構造にしている。
 この図7の構造では、開口部114Aから傾斜隙間部分114d内に入ると直ぐに、外側斜め上方に昇るので、開口部114Aから傾斜隙間部分114d内に入ったプロセスガスは、外側斜め上方に傾斜している傾斜隙間部分114dが壁となってぶつかり、プロセスガスが内側に向かう流れの抵抗となる。これにより、開口部114Aから隙間114内に入り込むプロセスガスの量を減らし、プロセスガスで生成される堆積物の量を更に少なくすることができる。
 なお、図7の構成では、開口部114Aから軸方向と垂直な径方向の外側、かつ、軸方向の上流に向かって斜めに延びる傾斜隙間部分114dと、傾斜隙間部分114dの外端から軸方向の下流側に向かって斜めに延びる傾斜隙間部分114eとを一体に設けて、開口部114Aから略逆V字状に形成している部分を有する構造にしているが、開口部114Aから上流側に傾斜して延びる傾斜隙間部分114d、又は、開口部114Aから下流側に向かって傾斜して延びる傾斜隙間部分114eのいずれか一方を設けた構造にしてもよいものである。
 図8に示す隙間114の構造では、ケーシングである外筒127を軸方向に断面したとき、外筒127の内周面に形成される隙間114における開口部114Aの上部に、開口部114Aよりも外筒127の内側に向かって突き出している軒部116を設けた構造にしている。すなわち、軒部116は、開口部114Aとの間に段差を作り、上流側から流れて来るプロセスガスが開口部114Aの方向へは向かわずに、真っ直ぐ下流側へ進むように流れを制御することができる。また、隙間114は、開口部114Aを入ると直ぐに下流側へ向かう第3の隙間部分としての垂直隙間部分114cと、垂直隙間部分114cの下端から軸方向と垂直な径方向の外側に向かって水平に延びる水平隙間部分114aとを一体に設けて、開口部114Aから略I字状に形成している部分を有する構造にしている。
 図8の構造では、隙間114の断面形状を略I字状に形成することにより、開口部114Aからプロセスガスが隙間114内に入り込もうとしたとき、開口部114Aを入って直ぐの正面の処に、下側に向かう垂直隙間部分114cの壁が存在するので、その壁にプロセスガスがぶつかり、プロセスガスが内側に向かう流れの抵抗となる。これにより、開口部114Aから隙間114内に入り込むプロセスガスの量を減らし、プロセスガスで生成される堆積物の量を更に少なくすることができる。また、軒部116の下面エッジ部分(軒先下面)116aと開口部114Aの下側エッジ部分114gには、それぞれR面取り加工を施している。R面取り加工は、下面エッジ部分116a又は下側エッジ部分114gに、外筒127内で回転翼102にぶつかって跳ね返って来たプロセスガスの一部がぶつかったとき、そのぶつかったプロセスガスの一部を開口部114A内とは異なるロータ軸113の方向に向け、開口部114A内に入り込まないようにするものである。
 なお、本発明は、本発明の精神を逸脱しない限り種々の改変を成すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
100   :ターボ分子ポンプ
101   :吸気口
102   :回転翼
102A  :冷却側回転翼
102B  :冷却側回転翼
102E  :円筒部
102a  :回転翼
102b  :回転翼
102c  :回転翼
102d  :回転翼
102e  :回転翼
102f  :回転翼
102g  :回転翼
103   :回転体
104   :上側径方向電磁石
105   :下側径方向電磁石
106A  :軸方向電磁石
106B  :軸方向電磁石
107   :上側径方向センサ
108   :下側径方向センサ
109   :軸方向センサ
110A  :冷却側ステータ(上段群気体移送部)
110B  :加熱側ステータ(下段群気体移送部)
111   :金属ディスク
112   :Oリング
113   :ロータ軸
114   :隙間
114A  :開口部
114a  :水平隙間部分(第1の隙間部分)
114b  :傾斜隙間部分(第2の隙間部分)
114c  :垂直隙間部分(第3の隙間部分)
114d  :傾斜隙間部分(第4の隙間部分)
114e  :傾斜隙間部分(第5の隙間部分)
114g  :下側エッジ部分
115   :ボルト
116   :軒部
116a  :下面エッジ部分
120   :保護ベアリング
121   :モータ
122   :ステータコラム
123   :固定翼
123a  :固定翼
123b  :固定翼
123c  :固定翼
123d  :固定翼
123e  :固定翼
123f  :固定翼
123g  :固定翼
123h  :固定翼
123i  :固定翼
125   :固定翼スペーサ
127   :外筒
129   :ベース部
131   :ネジ付スペーサ
131a  :ネジ溝
133   :排気口
141   :電子回路部
143   :基板
145   :底蓋
149   :水冷管
150   :アンプ回路
151   :電磁石巻線
152   :温度センサ
153   :温度センサ
154   :電磁石巻線
155   :水冷管
161   :ヒータ
161a  :カソード端子
161b  :アノード端子
162   :トランジスタ
162a  :カソード端子
162b  :アノード端子
165   :ダイオード
165a  :カソード端子
165b  :アノード端子
166   :ダイオード
166a  :カソード端子
166b  :アノード端子
171   :電源
171a  :正極
171b  :負極
181   :電流検出回路
191   :アンプ制御回路
191a  :ゲート駆動信号
191b  :ゲート駆動信号
191c  :電流検出信号
S     :距離
Tp1   :パルス幅時間
Tp2   :パルス幅時間
Ts    :制御サイクル
iL    :電磁石電流
iLmax :電流値
iLmin :電流値

Claims (5)

  1.  吸気口と排気口を有するケーシングと、
     前記ケーシングの内側に、回転自在に支持されたロータ軸と、
     前記ロータ軸と共に回転可能な複数段の回転翼と、
     前記ケーシングに対して固定され、かつ、前記複数段の回転翼間に配置される複数段の固定翼と、
     前記複数段の固定翼を所定間隔に保持する冷却側ステータ及び加熱側ステータと、
     を備えた真空ポンプであって、
     前記冷却側ステータと前記加熱側ステータとの間を断熱する所定幅の隙間の開口部を、
    前記ロータ軸の軸方向において前記回転翼の外周面と対向しない位置に設けた、
     ことを特徴とする真空ポンプ。
  2.  前記隙間の形状は、前記軸方向と垂直な径方向の外側に向かって水平に延びる第1の隙間部分と、前記第1の隙間部分の外端から更に前記径方向の外側、かつ、前記軸方向の下流側に沿って延びる第2の隙間部分を有する、ことを特徴とする請求項1に記載の真空ポンプ。
  3.  前記隙間の形状は、前記軸方向の下流側に沿って延びる第3の隙間部分を有する、ことを特徴とする請求項1又は2に記載の真空ポンプ。
  4.  前記隙間の形状は、前記軸方向と垂直な径方向の外側、かつ、前記軸方向の上流側に延びる第4の隙間部分を有する、ことを特徴とする請求項1から3までのいずれか1項に記載の真空ポンプ。
  5.  前記隙間の形状は、前記開口部の上部に、前記開口部よりも前記ケーシングの内側に向かって突き出している軒部を有する、ことを特徴とする請求項1から4までのいずれか1項に記載の真空ポンプ。
PCT/JP2021/032481 2020-09-10 2021-09-03 真空ポンプ WO2022054717A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21866676.6A EP4212729A4 (en) 2020-09-10 2021-09-03 VACUUM PUMP
CN202180053111.7A CN116018464A (zh) 2020-09-10 2021-09-03 真空泵
US18/042,004 US20240011495A1 (en) 2020-09-10 2021-09-03 Vacuum pump
KR1020237005341A KR20230062812A (ko) 2020-09-10 2021-09-03 진공 펌프
IL300575A IL300575A (en) 2020-09-10 2021-09-03 Vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-152347 2020-09-10
JP2020152347A JP7566540B2 (ja) 2020-09-10 2020-09-10 真空ポンプ

Publications (1)

Publication Number Publication Date
WO2022054717A1 true WO2022054717A1 (ja) 2022-03-17

Family

ID=80631800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032481 WO2022054717A1 (ja) 2020-09-10 2021-09-03 真空ポンプ

Country Status (7)

Country Link
US (1) US20240011495A1 (ja)
EP (1) EP4212729A4 (ja)
JP (1) JP7566540B2 (ja)
KR (1) KR20230062812A (ja)
CN (1) CN116018464A (ja)
IL (1) IL300575A (ja)
WO (1) WO2022054717A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508082A (ja) * 1992-06-19 1995-09-07 ライボルト アクチエンゲゼルシヤフト 気体摩擦真空ポンプ
JPH10205486A (ja) 1997-01-24 1998-08-04 Pfeiffer Vacuum Gmbh 真空ポンプ
JP2015031153A (ja) * 2013-07-31 2015-02-16 エドワーズ株式会社 真空ポンプ
JP2015086856A (ja) * 2013-09-24 2015-05-07 株式会社島津製作所 ターボ分子ポンプ
WO2019188732A1 (ja) * 2018-03-30 2019-10-03 エドワーズ株式会社 真空ポンプ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783883B1 (fr) * 1998-09-10 2000-11-10 Cit Alcatel Procede et dispositif pour eviter les depots dans une pompe turbomoleculaire a palier magnetique ou gazeux
JP4504476B2 (ja) * 1999-07-23 2010-07-14 キヤノンアネルバ株式会社 分子ポンプ
JP4211320B2 (ja) * 2002-08-22 2009-01-21 株式会社島津製作所 真空ポンプ
JP6706553B2 (ja) * 2015-12-15 2020-06-10 エドワーズ株式会社 真空ポンプ及び該真空ポンプに搭載される回転翼、反射機構
EP3447299A1 (de) * 2017-08-23 2019-02-27 Pfeiffer Vacuum Gmbh Einstellring
EP3462034B1 (de) * 2017-09-28 2024-09-11 Pfeiffer Vacuum Gmbh Vakuumpumpe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508082A (ja) * 1992-06-19 1995-09-07 ライボルト アクチエンゲゼルシヤフト 気体摩擦真空ポンプ
JPH10205486A (ja) 1997-01-24 1998-08-04 Pfeiffer Vacuum Gmbh 真空ポンプ
JP2015031153A (ja) * 2013-07-31 2015-02-16 エドワーズ株式会社 真空ポンプ
JP2015086856A (ja) * 2013-09-24 2015-05-07 株式会社島津製作所 ターボ分子ポンプ
WO2019188732A1 (ja) * 2018-03-30 2019-10-03 エドワーズ株式会社 真空ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212729A4

Also Published As

Publication number Publication date
JP7566540B2 (ja) 2024-10-15
IL300575A (en) 2023-04-01
JP2022046347A (ja) 2022-03-23
KR20230062812A (ko) 2023-05-09
CN116018464A (zh) 2023-04-25
US20240011495A1 (en) 2024-01-11
EP4212729A4 (en) 2024-08-14
EP4212729A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2022054717A1 (ja) 真空ポンプ
WO2022210118A1 (ja) 真空ポンプ
WO2022038996A1 (ja) 真空ポンプ、固定翼、およびスペーサ
WO2022163341A1 (ja) 真空ポンプ及びスペーサ
WO2024135679A1 (ja) 真空ポンプ
US20230250826A1 (en) Vacuum pump and vacuum pump rotor blade
JP7531313B2 (ja) 真空ポンプおよび真空ポンプの回転体
WO2022264925A1 (ja) 真空ポンプ
WO2022255202A1 (ja) 真空ポンプ、スペーサ及びケーシング
JP7378447B2 (ja) 真空ポンプおよび固定部品
WO2022075228A1 (ja) 真空ポンプ、および真空ポンプに備わる回転円筒体
WO2023282147A1 (ja) 真空ポンプ
WO2022124240A1 (ja) 真空ポンプ
WO2022186075A1 (ja) 真空ポンプ
JP2022094272A (ja) 真空ポンプ
JP2023017160A (ja) 真空ポンプ
JP2022110190A (ja) 真空ポンプとその回転体
IL301277A (en) A vacuum pump and a vacuum exhaust system that uses a vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18042004

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866676

Country of ref document: EP

Effective date: 20230411

WWE Wipo information: entry into national phase

Ref document number: 11202301163R

Country of ref document: SG