WO2022210118A1 - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
WO2022210118A1
WO2022210118A1 PCT/JP2022/013249 JP2022013249W WO2022210118A1 WO 2022210118 A1 WO2022210118 A1 WO 2022210118A1 JP 2022013249 W JP2022013249 W JP 2022013249W WO 2022210118 A1 WO2022210118 A1 WO 2022210118A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
rotor
temperature
flow path
cooling means
Prior art date
Application number
PCT/JP2022/013249
Other languages
English (en)
French (fr)
Inventor
透 三輪田
永偉 時
祐幸 坂口
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Publication of WO2022210118A1 publication Critical patent/WO2022210118A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges

Definitions

  • the present invention relates to a vacuum pump used as gas exhaust means for process chambers and other chambers in semiconductor manufacturing equipment, flat panel display manufacturing equipment, and solar panel manufacturing equipment, and particularly to cost reduction and temperature control of vacuum pumps. This is suitable for simplification.
  • the vacuum pump of the same document has a gas flow path (R ) has an exhaust-side gas flow path (R2) formed by the downstream-side outer peripheral surface of the rotor (3) and the screw groove (8A) in the inner peripheral portion of the fixed part (8) facing thereto.
  • the stationary part (8) is insulated by the heat insulating means (10), and the insulated stationary part (8) is provided with the heating means (11), whereby the exhaust side gas flow path (R2 ) to prevent deposition of the product.
  • the cooling means (18) is provided in the pump base (B) so that the cooling means (18) absorbs the heat transmitted from the fixed blades (7) and the like to the pump base (B) by thermal conduction. ing.
  • the part to be heated like the fixed part (8) (hereinafter referred to as “heating part") and the part to be cooled like the pump base (B) (hereinafter “cooling part ”) are individually installed with temperature sensors (S1, S2), and the temperature sensors (S1, S2) individually detect the temperature of the heating part and the cooling part, and the temperature of the heating part
  • the temperature of the heating section is controlled based on the value detected by the sensor (S1)
  • the temperature of the cooling section (B1, B2) is controlled based on the value detected by the temperature sensor (S1) of the cooling section.
  • the present invention has been made to solve the above problems, and its object is to provide a vacuum pump suitable for reducing the cost of the vacuum pump and simplifying temperature control.
  • the present invention provides a base portion, a rotor arranged on the base portion, support means for supporting the rotor rotatably about its axis, and a A function of forming an exhaust-side gas flow path out of the entire gas flow path in a vacuum pump comprising a driving means that rotates around and a gas flow path that guides the gas taken in by the rotation of the rotor to an exhaust port.
  • a multifunctional fixture having a temperature adjustment function operable under a configuration comprising a temperature sensor, a heating means, and a first cooling means, the temperature being adjusted by the temperature adjustment function; and heat insulating means for insulating the part from other parts.
  • the multifunctional fixing component may be insulated from the base portion by the heat insulating means.
  • the multifunctional fixing component may further function as part of the exterior of the vacuum pump.
  • the gas flow path is a thread groove-shaped flow path formed by the outer peripheral surface of the rotor and the threaded stator facing the rotor
  • the multifunctional fixing component includes the threaded stator and the threaded stator. and a support component for supporting the threaded stator.
  • the present invention may be characterized in that the temperature sensor, the heating means, and the first cooling means are provided on the threaded stator or the support component.
  • the present invention may be characterized in that the base portion is cooled by a second cooling means.
  • the first cooling means and the second cooling means are performed by circulating a cooling liquid, and the first flow path of the first cooling means and the second cooling means of the second cooling means are cooled.
  • each of the flow channels is independent of each other.
  • the parts necessary for adjusting the temperature inside the pump are provided as multifunctional fixed parts. configuration provided.
  • a configuration is adopted in which the temperature of the exhaust-side gas flow path can be controlled by adjusting the temperature of the multifunctional fixed component with the temperature adjustment function that operates under such a configuration. Therefore, for example, there is no need to separately provide two types of sensors (specifically, a sensor for detecting the temperature of the cooling section and a sensor for detecting the temperature of the heating section) as in the conventional art. It suffices for the temperature sensor to detect the temperature of the multifunctional stationary component, and the number of temperature sensors as components of the vacuum pump can be reduced.
  • FIG. 1 is a longitudinal sectional view of a vacuum pump (first embodiment) to which the present invention is applied;
  • FIG. A circuit diagram of an amplifier circuit. The time chart which shows control when a current command value is larger than a detected value. The time chart which shows control when a current command value is smaller than a detected value.
  • (a) is an explanatory diagram of one embodiment of the first and second cooling means,
  • (b) is an explanatory diagram of another embodiment of the first and second cooling means.
  • FIG. 2 is a longitudinal sectional view of a vacuum pump (second embodiment) to which the present invention is applied;
  • FIG. 10 is a vertical cross-sectional view of a vacuum pump (third embodiment) to which the present invention is applied;
  • FIG. 4 is a longitudinal sectional view of a vacuum pump (fourth embodiment) to which the present invention is applied;
  • FIG. 1 is a longitudinal sectional view of a vacuum pump (first embodiment) to which the present invention is applied
  • FIG. 2 is a circuit diagram of an amplifier circuit
  • FIG. 3 shows control when the current command value is greater than the detected value
  • FIG. 4 is a time chart diagram showing control when the current command value is smaller than the detected value.
  • an intake port 101 is formed at the upper end of a cylindrical outer cylinder 127 .
  • a plurality of rotor blades 102 (102a, 102b, 102c, . hereinafter referred to as "rotating body 103").
  • the rotating body 103 has a shape in which the rotor blades 102 are formed on the outer peripheral portion of the first cylindrical portion 102e.
  • a rotor shaft 113 is attached to the center of the rotating body 103 via a fastening portion CN, and the rotor shaft 113 is levitated in the air and position-controlled by, for example, a 5-axis control magnetic bearing.
  • the rotor 103 is generally made of metal such as aluminum or aluminum alloy.
  • the upper radial electromagnets 104 have four electromagnets arranged in pairs on the X axis and the Y axis.
  • Four upper radial sensors 107 are provided adjacent to the upper radial electromagnets 104 and corresponding to the respective upper radial electromagnets 104 .
  • the upper radial sensor 107 is, for example, an inductance sensor or an eddy current sensor having a conductive winding, and detects the position of the rotor shaft 113 based on the change in the inductance of this conductive winding, which changes according to the position of the rotor shaft 113 .
  • This upper radial sensor 107 is configured to detect the radial displacement of the rotor shaft 113 , ie the rotor 103 fixed thereto, and send it to the controller 200 .
  • a compensation circuit having, for example, a PID adjustment function generates an excitation control command signal for the upper radial electromagnet 104 based on the position signal detected by the upper radial sensor 107, and the amplifier circuit shown in FIG. 150 (described later) excites and controls the upper radial electromagnet 104 based on this excitation control command signal, thereby adjusting the upper radial position of the rotor shaft 113 .
  • the rotor shaft 113 is made of a high magnetic permeability material (iron, stainless steel, etc.) or the like, and is attracted by the magnetic force of the upper radial electromagnet 104 . Such adjustments are made independently in the X-axis direction and the Y-axis direction.
  • the lower radial electromagnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107 so that the lower radial position of the rotor shaft 113 is set to the upper radial position. adjusted in the same way.
  • the metal disk 111 is made of a high magnetic permeability material such as iron.
  • An axial sensor 109 is provided to detect axial displacement of the rotor shaft 113 and is configured to transmit its axial position signal to the controller 200 .
  • a compensation circuit having, for example, a PID adjustment function generates an excitation control command signal for each of the axial electromagnets 106A and 106B based on the axial position signal detected by the axial sensor 109.
  • the amplifier circuit 150 controls the excitation of the axial electromagnets 106A and 106B, respectively.
  • the axial electromagnet 106B attracts the metal disk 111 downward, and the axial position of the rotor shaft 113 is adjusted.
  • control device 200 appropriately adjusts the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B, magnetically levitates the rotor shaft 113 in the axial direction, and holds the rotor shaft 113 in the space without contact. ing.
  • the amplifier circuit 150 that controls the excitation of the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described later.
  • the motor 121 has a plurality of magnetic poles circumferentially arranged to surround the rotor shaft 113 . Each magnetic pole is controlled by the control device 200 so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting between the magnetic poles and the rotor shaft 113 . Further, the motor 121 incorporates a rotation speed sensor (not shown) such as a Hall element, resolver, encoder, etc., and the rotation speed of the rotor shaft 113 is detected by the detection signal of this rotation speed sensor.
  • a rotation speed sensor such as a Hall element, resolver, encoder, etc.
  • phase sensor (not shown) is attached, for example, near the lower radial direction sensor 108 to detect the phase of rotation of the rotor shaft 113 .
  • the control device 200 detects the position of the magnetic pole using both the detection signals from the phase sensor and the rotational speed sensor.
  • a plurality of fixed wings 123 (123a, 123b, 123c%) are arranged with a slight gap from the rotary wings 102 (102a, 102b, 102c).
  • the rotor blades 102 (102a, 102b, 102c, . . . ) are inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to move molecules of the exhaust gas downward by collision.
  • the fixed wings 123 (123a, 123b, 123c, . . . ) are made of metal such as aluminum, iron, stainless steel, or copper, or metal such as an alloy containing these metals as components.
  • the fixed blades 123 are also inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged inwardly of the outer cylinder 127 in a staggered manner with the stages of the rotary blades 102. ing.
  • the outer peripheral end of the fixed wing 123 is supported by being inserted between a plurality of stacked fixed wing spacers 125 (125a, 125b, 125c, . . . ).
  • the fixed wing spacer 125 is a ring-shaped member, and is made of metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as components.
  • An outer cylinder 127 is fixed to the outer circumference of the stationary blade spacer 125 with a small gap therebetween.
  • a base portion 129 is provided at the bottom of the outer cylinder 127 .
  • An exhaust port 133 is formed in the base portion 129 and communicates with the outside. Exhaust gas that has entered the intake port 101 from the chamber (vacuum chamber) side and has been transferred to the base portion 129 is sent to the exhaust port 133 .
  • a threaded spacer 131 is arranged between the lower portion of the fixed blade spacer 125 and the base portion 129 depending on the application of the vacuum pump 100 .
  • the threaded spacer 131 is a cylindrical member made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals, and has a plurality of helical thread grooves 131a on its inner peripheral surface. It is stipulated.
  • the spiral direction of the thread groove 131 a is the direction in which the molecules of the exhaust gas move toward the exhaust port 133 when they move in the rotation direction of the rotor 103 .
  • a second cylindrical portion 102d is connected to the first cylindrical portion 102e and suspended from the lowermost portion of the rotor 103 following the rotor blades 102 (102a, 102b, 102c, . . . ).
  • the outer peripheral surface of the second cylindrical portion 102d is cylindrical and protrudes toward the inner peripheral surface of the threaded spacer 131, and is adjacent to the inner peripheral surface of the threaded spacer 131 with a predetermined gap. It is The exhaust gas transferred to the screw groove 131a by the rotary blade 102 and the fixed blade 123 is sent to the base portion 129 while being guided by the screw groove 131a.
  • the base portion 129 is a disk-shaped member that constitutes the base portion of the vacuum pump 100, and is generally made of metal such as iron, aluminum, or stainless steel. Since the base portion 129 physically holds the vacuum pump 100 and also functions as a heat conduction path, it is preferable to use a metal having rigidity and high thermal conductivity such as iron, aluminum, or copper. desirable.
  • the temperature of the rotor blades 102 rises due to frictional heat generated when the exhaust gas contacts the rotor blades 102, conduction of heat generated by the motor 121, and the like. It is transmitted to the stationary blade 123 side by conduction by molecules or the like.
  • the fixed blade spacers 125 are joined to each other at their outer peripheral portions, and transmit the heat received by the fixed blades 123 from the rotary blades 102 and the frictional heat generated when the exhaust gas contacts the fixed blades 123 to the outside.
  • the threaded spacer 131 is arranged on the outer circumference of the cylindrical portion 102d of the rotating body 103, and the inner peripheral surface of the threaded spacer 131 is provided with the thread groove 131a.
  • a thread groove is formed on the outer peripheral surface of the cylindrical portion 102d, and a spacer having a cylindrical inner peripheral surface is arranged around it.
  • the gas sucked from the intake port 101 may flow through the upper radial electromagnet 104, the upper radial sensor 107, the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, and the axial direction.
  • the electrical section is covered with a stator column 122, and the interior of the stator column 122 is maintained at a predetermined pressure with purge gas.
  • a pipe (not shown) is arranged in the base portion 129, and the purge gas is introduced through this pipe.
  • the introduced purge gas is delivered to the exhaust port 133 through gaps between the protective bearing 120 and the rotor shaft 113 , between the rotor and stator of the motor 121 , and between the stator column 122 and the inner cylindrical portion of the rotor blade 102 .
  • the vacuum pump 100 requires model identification and control based on individually adjusted unique parameters (for example, various characteristics corresponding to the model).
  • the vacuum pump 100 has an electronic circuit section 141 in its body.
  • the electronic circuit section 141 includes a semiconductor memory such as an EEP-ROM, electronic components such as semiconductor elements for accessing the same, a board 143 for mounting them, and the like.
  • the electronic circuit section 141 is accommodated, for example, under a rotational speed sensor (not shown) near the center of a base section 129 that constitutes the lower portion of the vacuum pump 100 and is closed by an airtight bottom lid 145 .
  • some of the process gases introduced into the chamber have the property of becoming solid when their pressure exceeds a predetermined value or their temperature falls below a predetermined value. be.
  • the pressure of the exhaust gas is lowest at inlet 101 and highest at outlet 133 . If the pressure of the process gas becomes higher than a predetermined value or the temperature of the process gas becomes lower than a predetermined value while being transferred from the inlet 101 to the outlet 133, the process gas becomes solid, and the vacuum pump is discharged. It adheres and deposits inside 100 .
  • a heater (not shown) or an annular water-cooling pipe 149 is wound around the outer circumference of the base portion 129 or the like, and a temperature sensor (for example, a thermistor) (not shown) is embedded in the base portion 129, for example. Based on the signal from the temperature sensor, the heating of the heater and the cooling control by the water cooling pipe 149 are controlled (hereinafter referred to as TMS: Temperature Management System) so as to keep the temperature of the base portion 129 at a constant high temperature (set temperature). It is
  • the amplifier circuit 150 that controls excitation of the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described.
  • a circuit diagram of this amplifier circuit 150 is shown in FIG.
  • an electromagnet winding 151 constituting the upper radial electromagnet 104 and the like has one end connected to a positive electrode 171a of a power source 171 via a transistor 161, and the other end connected to a current detection circuit 181 and a transistor 162. is connected to the negative electrode 171b of the power source 171 via the .
  • the transistors 161 and 162 are so-called power MOSFETs and have a structure in which a diode is connected between their source and drain.
  • the transistor 161 has its diode cathode terminal 161 a connected to the positive electrode 171 a and anode terminal 161 b connected to one end of the electromagnet winding 151 .
  • the transistor 162 has a diode cathode terminal 162a connected to the current detection circuit 181 and an anode terminal 162b connected to the negative electrode 171b.
  • the diode 165 for current regeneration has a cathode terminal 165a connected to one end of the electromagnet winding 151 and an anode terminal 165b connected to the negative electrode 171b.
  • the current regeneration diode 166 has its cathode terminal 166a connected to the positive electrode 171a and its anode terminal 166b connected to the other end of the electromagnet winding 151 via the current detection circuit 181. It has become so.
  • the current detection circuit 181 is composed of, for example, a Hall sensor type current sensor or an electric resistance element.
  • the amplifier circuit 150 configured as described above corresponds to one electromagnet. Therefore, if the magnetic bearing is controlled by five axes and there are a total of ten electromagnets 104, 105, 106A, and 106B, a similar amplifier circuit 150 is configured for each of the electromagnets, and ten amplifier circuits are provided for the power source 171. 150 are connected in parallel.
  • the amplifier control circuit 191 is configured by, for example, a digital signal processor section (hereinafter referred to as a DSP section) (not shown) of the control device 200, and this amplifier control circuit 191 switches the transistors 161 and 162 on/off. It's like
  • the amplifier control circuit 191 compares the current value detected by the current detection circuit 181 (a signal reflecting this current value is called a current detection signal 191c) and a predetermined current command value. Then, based on this comparison result, the magnitude of the pulse width (pulse width times Tp1, Tp2) to be generated within the control cycle Ts, which is one cycle of PWM control, is determined. As a result, the gate drive signals 191 a and 191 b having this pulse width are output from the amplifier control circuit 191 to the gate terminals of the transistors 161 and 162 .
  • a high voltage of about 50 V is used as the power source 171 so that the current flowing through the electromagnet winding 151 can be rapidly increased (or decreased).
  • a capacitor (not shown) is usually connected between the positive electrode 171a and the negative electrode 171b of the power source 171 for stabilizing the power source 171 .
  • electromagnet current iL the current flowing through the electromagnet winding 151
  • electromagnet current iL the current flowing through the electromagnet winding 151
  • flywheel current is held.
  • the hysteresis loss in the amplifier circuit 150 can be reduced, and the power consumption of the entire circuit can be suppressed.
  • high-frequency noise such as harmonics generated in the vacuum pump 100 can be reduced.
  • the electromagnet current iL flowing through the electromagnet winding 151 can be detected.
  • the transistors 161 and 162 are turned off only once during the control cycle Ts (for example, 100 ⁇ s) for the time corresponding to the pulse width time Tp1. turn on both. Therefore, the electromagnet current iL during this period increases from the positive electrode 171a to the negative electrode 171b toward a current value iLmax (not shown) that can flow through the transistors 161,162.
  • both the transistors 161 and 162 are turned off only once in the control cycle Ts for the time corresponding to the pulse width time Tp2 as shown in FIG. . Therefore, the electromagnet current iL during this period decreases from the negative electrode 171b to the positive electrode 171a toward a current value iLmin (not shown) that can be regenerated via the diodes 165,166.
  • either one of the transistors 161 and 162 is turned on after the pulse width times Tp1 and Tp2 have elapsed. Therefore, the flywheel current is held in the amplifier circuit 150 during this period.
  • the channel is a threaded channel formed by the outer peripheral surface of the rotor 103 (specifically, the outer peripheral surface of the second cylindrical portion 102d) and the threaded stator 131 facing thereto.
  • the threaded spacer 131 has the function of configuring the exhaust-side gas flow path.
  • a ring-shaped support component 300 is fastened to the outer peripheral portion of the threaded spacer 131 with bolts (not shown), and the support component 300 supports the threaded spacer 131.
  • a structure in which 300 includes temperature sensor S, heating means H, and first cooling means C1, and a structure in which such supporting part 300 and threaded spacer 131 are provided as one multifunctional fixing part 301 are adopted.
  • the multifunctional fixing component 301 in the vacuum pump 100 of FIG. The temperature sensor S, the heating means H, and the first cooling means C1 are provided to support and adjust the temperature. Additional functions of multi-function stationary component 301 are described below.
  • the support component 300 is made of an aluminum alloy, it is not limited to this. By forming the support component 300 from stainless steel, the temperature of the entire multifunctional fixing component 301 may be increased more than the support component 300 made from aluminum alloy.
  • a projection 303 corresponding to the stepped portion 302 is formed on the base portion 129, and the contact surface of the stepped portion 302 contacts the positioning reference surface of the projection 303.
  • a configuration in which the entire 301 is radially positioned is adopted.
  • the outer peripheral portion of the multifunctional fixing component 301 (specifically, the vicinity of the outer surface of the support component 301) functions in the same manner as the outer cylinder 127 described above, that is, functions as part of the exterior of the vacuum pump 100. .
  • the multifunctional fixing component 301 is equipped with the temperature sensor S, the heating means H, and the first cooling means C1, and has a temperature adjustment function operable under such a configuration.
  • the temperature adjustment function adjusts the temperature of the multifunctional stationary component 301 .
  • the temperature of the multifunctional stationary component 301 is adjusted based on the signal from the temperature sensor S, for example, by heating with the heating means H or by heating the multifunctional stationary component 301 at a constant temperature (set temperature). It may be configured such that cooling is controlled by the cooling means C1.
  • ⁇ Details of heating means H>> As a specific embodiment of the heating means H, the vacuum pump 100 shown in FIG. Although the configuration in which the heaters are arranged on the supporting component 300 at regular intervals (for example, at intervals of 90 degrees) radially when viewed from the center of the component 301 is adopted, the present invention is not limited to this. The arrangement location, arrangement interval, number, etc. of the heaters can be appropriately changed as necessary.
  • a band-type heater (band heater) is wound around the outer peripheral portion of the multifunctional fixing component 301 (specifically, the outer peripheral surface of the supporting component 300). You may employ
  • the temperature sensor S in the vacuum pump 100 of FIG. not limited.
  • the number and location of the temperature sensors S can be changed as needed.
  • the temperature sensor S As a method of installing the temperature sensor S on the multifunctional fixing component 301, there is a method of fitting it into a sensor mounting hole provided in the support component 300 as shown in FIG. In that case, a method of embedding the temperature sensor S inside the support component 300 during casting, or a method of attaching the temperature sensor S to the outer peripheral portion of the support component 300, or the like may be adopted.
  • a configuration in which the temperature sensor S is arranged near the heater H is also conceivable. Can not. For this reason, in the vacuum pump 100 of FIG. 1, the temperature sensor S is installed at a position where the effect of the heater H is minimal, specifically, at an intermediate position between the heaters H arranged radially as described above. .
  • first cooling means C1 for example, although not shown, it is possible to form a groove in the outer peripheral portion of the support component 300 and install the first water cooling pipe 304 in the groove. .
  • the multifunctional stationary component 301 is cooled by the first cooling means C1, and the base portion 129 is provided with a second water-cooled pipe 149 (hereinafter referred to as "second water-cooled pipe 149"). is cooled by the cooling means C2.
  • the cooling by the first cooling means C1 and the second cooling means C2 is performed by the cooling liquid flowing through the water cooling pipes 304 and 149, respectively. Further, in the vacuum pump 100 of FIG. 1, as shown in FIG.
  • the channels (hereinafter referred to as "second cooling channels CR2") are independent of each other.
  • the first cooling flow path CR1 includes a portion located upstream from the multifunctional fixed component 301 (hereinafter referred to as “first supply system”) and a portion located downstream thereof (hereinafter referred to as “first return system”).
  • the second cooling flow path CR2 includes a portion located upstream from the base portion 129 (hereinafter referred to as “second supply system”) and a portion located downstream thereof (hereinafter referred to as “second return system”). Consists of In such a configuration, the above-mentioned “each independent” means that the first supply system and the second supply system are independent as shown in FIG. This means that the return system of is also independent.
  • the influence of the second cooling means C2 on the first cooling means C1 or the influence of the first cooling means C1 on the second cooling means C2 is eliminated, and the multifunctional fixed component 301 and the temperature of the base portion 129 can be adjusted precisely and finely.
  • a system in which the first supply system and the second supply system are shared can also be adopted.
  • the heat insulating means 305 As a specific embodiment of the heat insulating means 305, the vacuum pump 100 of FIG. , and a predetermined axial gap G1 (hereinafter referred to as "insulating gap G1") is formed between the multifunctional fixing component 301 and the base portion 129 by the interposition of the heat insulating ring component.
  • insulating gap G1 a predetermined axial gap G1
  • FIG. 6 is a longitudinal sectional view of a vacuum pump (second embodiment) to which the present invention is applied.
  • the multifunctional fixing component 301 is configured by connecting the support component 300 and the threaded spacer 131, but in the vacuum pump 100 of FIG. 6, as another embodiment of the multifunctional fixing component 301, By integrally forming the supporting part 300 and the threaded spacer 131, the multifunctional fixing part 301 without the connection as described above is adopted. Therefore, the detailed description is different.
  • FIG. 7 is a longitudinal sectional view of a vacuum pump (third embodiment) to which the present invention is applied.
  • the first water cooling pipe 304 is provided in the same component as the temperature sensor S and the heating means H, that is, the support component 300.
  • the vacuum pump 100 of FIG. 304 is provided in a part separate from the support part 300 (specifically, a part 306 adjacent to the fixed blade 123), thereby enhancing cooling of the fixed blade 123 and the like. Since it is the same as the vacuum pump 100 of FIG. 1 except this point, the detailed description is different.
  • FIG. 8 is a longitudinal sectional view of a vacuum pump (fourth embodiment) to which the present invention is applied.
  • the exhaust port 133 is provided in the base portion 129, but in the vacuum pump 100 shown in FIG.
  • the temperature in the vicinity of the exhaust port 133 can be adjusted.
  • it is the same as the vacuum pump 100 of FIGS. 1 and 6, so the detailed description is different.
  • the temperature sensor S parts necessary for adjusting the temperature inside the pump (specifically, the temperature sensor S, the heating means H, and the first cooling means C1) are provided.
  • the temperature of the multi-function fixing component 301 By adjusting the temperature of the multi-function fixing component 301 by adjusting the temperature of the multi-function fixing component 301 by the configuration provided in the multi-function fixing component 301 and the temperature adjustment function that operates under such configuration, the temperature of the exhaust side gas flow path, etc. can be adjusted.
  • a control configuration was adopted. Therefore, for example, there is no need to separately provide two types of sensors (specifically, a sensor for detecting the temperature of the cooling section and a sensor for detecting the temperature of the heating section) as in the conventional art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

【課題】真空ポンプのコスト低減と温度制御の簡素化を図るのに好適な真空ポンプを提供する。 【解決手段】真空ポンプ100は、ベース部129と、ベース部上に配置されたロータ103と、ロータをその軸心周りに回転可能に支持する支持手段(磁気軸受)と、ロータをその軸心周りに回転駆動する駆動手段(モータ121)と、ロータの回転により吸気したガスを排出口133に導くガス流路と、多機能固定部品301と、断熱手段305とを具備する。多機能固定部品301は、ガス流路全体のうち排気側ガス流路を構成する機能、および、温度センサS、加熱手段H、第1の冷却手段C1を備える構成の下で作動可能な温度調整機能を有し、その温度調整機能によって温度が調節される。断熱手段305は多機能固定部品をそれ以外の部品から断熱する。

Description

真空ポンプ
 本発明は、半導体製造装置、フラット・パネル・ディスプレイ製造装置、ソーラー・パネル製造装置におけるプロセスチャンバその他のチャンバのガス排気手段として利用される真空ポンプに関し、特に、真空ポンプのコスト低減と温度制御の簡素化を図るのに好適なものである。
 従来、この種の真空ポンプとしては、例えば特許文献1に記載された真空ポンプが知られている。同文献の例えば図2を参照すると、同文献の真空ポンプ(以下「従来の真空ポンプ」という)は、ロータ(4)の回転により吸気したガスを排出口(2)に導くガス流路(R)として、ロータ(3)の下流側外周面とこれに対向する固定部品(8)内周部のネジ溝(8A)とで形成される排気側ガス流路(R2)を有している。
 また、従来の真空ポンプでは、固定部品(8)を断熱手段(10)で断熱し、かつ断熱された固定部品(8)に加熱手段(11)を設けることで、排気側ガス流路(R2)における生成物の堆積を防止している。更に、従来の真空ポンプでは、ポンプベース(B)に冷却手段(18)設けることで、固定翼(7)などから熱伝導でポンプベース(B)に伝わる熱を冷却手段(18)で吸収している。
 しかしながら、従来の真空ポンプ(P1)では、固定部品(8)のように加熱される部分(以下「加熱部」という)と、ポンプベース(B)のように冷却される部分(以下「冷却部」という)のそれぞれに温度センサ(S1、S2)を個別に設置し、それぞれの温度センサ(S1、S2)で加熱部と冷却部の温度を個別に検出する構成、および、その加熱部の温度センサ(S1)で検出した値に基づいて加熱部の温度を制御し、冷却部の温度センサ(S1)で検出した値に基づいて冷却部(B1、B2)の温度を制御する構成を採用しているため、少なくとも2つの温度センサが必要になること、および、真空ポンプの温度制御系が2系統、すなわち、加熱部の温度制御系と冷却部の温度制御系が必要になることから、真空ポンプのコストが高くならざるを得ず、また、真空ポンプの温度制御が複雑になるという問題点を有している。
特開2015-31153号
 本発明は前記問題点を解決するためになされたもので、その目的は、真空ポンプのコスト低減と温度制御の簡素化を図るのに好適な真空ポンプを提供することである。
 前記目的を達成するために、本発明は、ベース部と、前記ベース部上に配置されたロータと、前記ロータをその軸心周りに回転可能に支持する支持手段と、前記ロータをその軸心周りに回転駆動する駆動手段と、前記ロータの回転により吸気したガスを排出口に導くガス流路と、を具備した真空ポンプにおいて、前記ガス流路全体のうち排気側ガス流路を構成する機能、および、温度センサ、加熱手段、第1の冷却手段を備える構成の下で作動可能な温度調整機能を有し、その温度調整機能によって温度が調節される多機能固定部品と、前記多機能固定部品をそれ以外の部品から断熱する断熱手段と、を備えたことを特徴とする。
 前記本発明において、前記多機能固定部品は、前記断熱手段によって、前記ベース部と断熱されていることを特徴としてもよい。
 前記本発明において、前記多機能固定部品は、更に、真空ポンプの外装の一部として機能していることを特徴としてもよい。
 前記本発明において、前記ガス流路は、前記ロータの外周面とこれに対向するネジ付ステータとにより形成されるネジ溝状の流路であり、前記多機能固定部品は、前記ネジ付ステータと該ネジ付ステータを支持する支持部品と、を含むことを特徴としてもよい。
 前記本発明において、前記ネジ付ステータまたは前記支持部品に、前記温度センサ、前記加熱手段、前記第1の冷却手段が設けられていることを特徴としてもよい。
 前記本発明において、前記ベース部は、第2の冷却手段で冷却されていることを特徴としてもよい。
 前記本発明において、前記第1の冷却手段と前記第2の冷却手段は、冷却液の流通によって行われ、前記第1の冷却手段の第1の流路と前記第2の冷却手段の第2の流路は、各々独立していることを特徴としてもよい。
 本発明では、真空ポンプの具体的な構成として、前述の通り、ポンプ内部の温度の調節に必要な部品(具体的には、温度センサ、加熱手段、第1の冷却手段)を多機能固定部品が備える構成。および、かかる構成の下で作動する温度調整機能よって多機能固定部品の温度を調節することで、排気側ガス流路の温度を制御できる構成を採用した。このため、例えば、従来のように、2種類のセンサ(具体的には、冷却部の温度を検出するセンサと、加熱部の温度を検出するセンサ)を個別に設ける必要がなく、1種類の前記温度センサ
で多機能固定部品の温度を検出するだけで足り、真空ポンプ構成部品としての温度センサの個数を減らすことができる。これに加えて更に、従来のように、冷却部の温度を調節したり加熱部の温度を調節したりする等、煩雑な温度の調節処理は不要となり、多機能固定部品の温度を調節するだけで済むことから、真空ポンプのコスト低減と温度制御の簡素化を図るのに好適な真空ポンプを提供し得る。
本発明を適用した真空ポンプ(第1の実施形態)の縦断面図。 アンプ回路の回路図。 電流指令値が検出値より大きい場合の制御を示すタイムチャート。 電流指令値が検出値より小さい場合の制御を示すタイムチャート。 (a)は第1及び第2の冷却手段の一実施形態の説明図、(b)は第1及び第2の冷却手段の他の実施形態の説明図。 本発明を適用した真空ポンプ(第2の実施形態)の縦断面図。 本発明を適用した真空ポンプ(第3の実施形態)の縦断面図。 本発明を適用した真空ポンプ(第4の実施形態)の縦断面図。
 図1は、本発明を適用した真空ポンプ(第1の実施形態)の縦断面図、図2は、アンプ回路の回路図、図3は、電流指令値が検出値より大きい場合の制御を示すタイムチャート図、図4は、電流指令値が検出値より小さい場合の制御を示すタイムチャート図である。
 図1を参照すると、同図の真空ポンプ100において、円筒状の外筒127の上端には、吸気口101が形成されている。そして、外筒127の内方には、ガスを吸引排気するためのタービンブレードである複数の回転翼102(102a、102b、102c・・・)を周部に放射状かつ多段に形成したロータ103(以下「回転体103」という)が備えられている。この回転体103の具体的な構成例として、図1の真空ポンプ100では、かかる回転体103は第1の円筒部102eの外周部に回転翼102を形成した形状になっている。
 回転体103の中心には締結部CNを介してロータ軸113が取り付けられており、ロータ軸113は、例えば5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。回転体103は、一般的に、アルミニウム又はアルミニウム合金などの金属によって構成されている。
 磁気軸受の具体的な構成例として、図1の真空ポンプ100では、上側径方向電磁石104は、4個の電磁石がX軸とY軸とに対をなして配置されている。この上側径方向電磁石104に近接して、かつ上側径方向電磁石104のそれぞれに対応して、4個の上側径方向センサ107が備えられている。上側径方向センサ107は、例えば伝導巻線を有するインダクタンスセンサや渦電流センサなどが用いられ、ロータ軸113の位置に応じて変化するこの伝導巻線のインダクタンスの変化に基づいてロータ軸113の位置を検出する。この上側径方向センサ107はロータ軸113、すなわちそれに固定された回転体103の径方向変位を検出し、制御装置200に送るように構成されている。
 制御装置200において、例えばPID調節機能を有する補償回路が、上側径方向センサ107によって検出された位置信号に基づいて、上側径方向電磁石104の励磁制御指令信号を生成し、図2に示すアンプ回路150(後述する)が、この励磁制御指令信号に基づいて、上側径方向電磁石104を励磁制御することで、ロータ軸113の上側の径方向位置が調整される。
 ロータ軸113は、高透磁率材(鉄、ステンレスなど)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。
 さらに、磁気軸受の具体的な構成例として、図1の真空ポンプ100では、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向位置信号が制御装置200に送られるように構成されている。
 そして、制御装置200において、例えばPID調節機能を有する補償回路が、軸方向センサ109によって検出された軸方向位置信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bのそれぞれの励磁制御指令信号を生成し、アンプ回路150が、これらの励磁制御指令信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bをそれぞれ励磁制御することで、軸方向電磁石106Aが磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bが金属ディスク111を下方に吸引し、ロータ軸113の軸方向位置が調整される。
 以上のように、制御装置200は、軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。なお、これら上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150については、後述する。
 図1の真空ポンプ100において、モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、制御装置200によって制御されている。また、モータ121には図示しない例えばホール素子、レゾルバ、エンコーダなどの回転速度センサが組み込まれており、この回転速度センサの検出信号によりロータ軸113の回転速度が検出されるようになっている。
 さらに、例えば下側径方向センサ108近傍に、図示しない位相センサが取り付けてあり、ロータ軸113の回転の位相を検出するようになっている。制御装置200では、この位相センサと回転速度センサの検出信号を共に用いて磁極の位置を検出するようになっている。
 回転翼102(102a、102b、102c・・・)とわずかの空隙を隔てて複数枚の固定翼123(123a、123b、123c・・・)が配設されている。回転翼102(102a、102b、102c・・・)は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。固定翼123(123a、123b、123c・・・)は、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。そして、固定翼123の外周端は、複数の段積みされた固定翼スペーサ125(125a、125b、125c・・・)の間に嵌挿された状態で支持されている。
 固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設されている。ベース部129には排気口133が形成され、外部に連通されている。チャンバ(真空チャンバ)側から吸気口101に入ってベース部129に移送されてきた排気ガスは、排気口133へと送られる。
 さらに、真空ポンプ100の用途によって、固定翼スペーサ125の下部とベース部129の間には、ネジ付スペーサ131が配設される。ネジ付スペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。回転体103の回転翼102(102a、102b、102c・・・)に続く最下部には第2の円筒部102dが第1の円筒部102eに繋がって垂下されている。第2の円筒部102dの外周面は、円筒状で、かつネジ付スペーサ131の内周面に向かって張り出されており、このネジ付スペーサ131の内周面と所定の隙間を隔てて近接されている。回転翼102および固定翼123によってネジ溝131aに移送されてきた排気ガスは、ネジ溝131aに案内されつつベース部129へと送られる。
 ベース部129は、真空ポンプ100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129は真空ポンプ100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
 かかる構成において、回転翼102がロータ軸113と共にモータ121により回転駆動されると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバから排気ガスが吸気される。回転翼102の回転速度は通常20000rpm~90000rpmであり、回転翼102の先端での周速度は200m/s~400m/sに達する。吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触する際に生ずる摩擦熱や、モータ121で発生した熱の伝導などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子などによる伝導により固定翼123側に伝達される。
 固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触する際に生ずる摩擦熱などを外部へと伝達する。
 なお、上記では、ネジ付スペーサ131は回転体103の円筒部102dの外周に配設し、ネジ付スペーサ131の内周面にネジ溝131aが刻設されているとして説明した。しかしながら、これとは逆に円筒部102dの外周面にネジ溝が刻設され、その周囲に円筒状の内周面を有するスペーサが配置される場合もある。
 また、真空ポンプ100の用途によっては、吸気口101から吸引されたガスが上側径方向電磁石104、上側径方向センサ107、モータ121、下側径方向電磁石105、下側径方向センサ108、軸方向電磁石106A、106B、軸方向センサ109などで構成される電装部に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、このステータコラム122内はパージガスにて所定圧に保たれる場合もある。
 この場合には、ベース部129には図示しない配管が配設され、この配管を通じてパージガスが導入される。導入されたパージガスは、保護ベアリング120とロータ軸113間、モータ121のロータとステータ間、ステータコラム122と回転翼102の内周側円筒部の間の隙間を通じて排気口133へ送出される。
 ここに、真空ポンプ100は、機種の特定と、個々に調整された固有のパラメータ(例えば、機種に対応する諸特性)に基づいた制御を要する。この制御パラメータを格納するために、上記真空ポンプ100は、その本体内に電子回路部141を備えている。電子回路部141は、EEP-ROM等の半導体メモリ及びそのアクセスのための半導体素子等の電子部品、それらの実装用の基板143等から構成される。この電子回路部141は、真空ポンプ100の下部を構成するベース部129の例えば中央付近の図示しない回転速度センサの下部に収容され、気密性の底蓋145によって閉じられている。
 ところで、半導体の製造工程では、チャンバに導入されるプロセスガスの中には、その圧力が所定値よりも高くなり、或いは、その温度が所定値よりも低くなると、固体となる性質を有するものがある。真空ポンプ100内部では、排気ガスの圧力は、吸気口101で最も低く排気口133で最も高い。プロセスガスが吸気口101から排気口133へ移送される途中で、その圧力が所定値よりも高くなったり、その温度が所定値よりも低くなったりすると、プロセスガスは、固体状となり、真空ポンプ100内部に付着して堆積する。
 例えば、Alエッチング装置にプロセスガスとしてSiClが使用された場合、低真空(760[torr]~10-2[torr])かつ、低温(約20[℃])のとき、固体生成物(例えばAlCl)が析出し、真空ポンプ100内部に付着堆積することが蒸気圧曲線からわかる。これにより、真空ポンプ100内部にプロセスガスの析出物が堆積すると、この堆積物が真空ポンプのガス流路を狭め、真空ポンプ100の性能を低下させる原因となる。そして、前述した生成物は、排気口133付近やネジ付スペーサ131付近の圧力が高い部分で凝固、付着し易い状況にあった。
 そのため、この問題を解決するために、従来はベース部129等の外周に図示しないヒータや環状の水冷管149を巻着させ、かつ例えばベース部129に図示しない温度センサ(例えばサーミスタ)を埋め込み、この温度センサの信号に基づいてベース部129の温度を一定の高い温度(設定温度)に保つようにヒータの加熱や水冷管149による冷却の制御(以下TMSという。TMS;Temperature Management System)が行われている。
 次に、このように構成される真空ポンプ100に関して、その上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150について説明する。このアンプ回路150の回路図を図2に示す。
 図2において、上側径方向電磁石104等を構成する電磁石巻線151は、その一端がトランジスタ161を介して電源171の正極171aに接続されており、また、その他端が電流検出回路181及びトランジスタ162を介して電源171の負極171bに接続されている。そして、トランジスタ161、162は、いわゆるパワーMOSFETとなっており、そのソース-ドレイン間にダイオードが接続された構造を有している。
 このとき、トランジスタ161は、そのダイオードのカソード端子161aが正極171aに接続されるとともに、アノード端子161bが電磁石巻線151の一端と接続されるようになっている。また、トランジスタ162は、そのダイオードのカソード端子162aが電流検出回路181に接続されるとともに、アノード端子162bが負極171bと接続されるようになっている。
 一方、電流回生用のダイオード165は、そのカソード端子165aが電磁石巻線151の一端に接続されるとともに、そのアノード端子165bが負極171bに接続されるようになっている。また、これと同様に、電流回生用のダイオード166は、そのカソード端子166aが正極171aに接続されるとともに、そのアノード端子166bが電流検出回路181を介して電磁石巻線151の他端に接続されるようになっている。そして、電流検出回路181は、例えばホールセンサ式電流センサや電気抵抗素子で構成されている。
 以上のように構成されるアンプ回路150は、一つの電磁石に対応されるものである。そのため、磁気軸受が5軸制御で、電磁石104、105、106A、106Bが合計10個ある場合には、電磁石のそれぞれについて同様のアンプ回路150が構成され、電源171に対して10個のアンプ回路150が並列に接続されるようになっている。
 さらに、アンプ制御回路191は、例えば、制御装置200の図示しないディジタル・シグナル・プロセッサ部(以下、DSP部という)によって構成され、このアンプ制御回路191は、トランジスタ161、162のon/offを切り替えるようになっている。
 アンプ制御回路191は、電流検出回路181が検出した電流値(この電流値を反映した信号を電流検出信号191cという)と所定の電流指令値とを比較するようになっている。そして、この比較結果に基づき、PWM制御による1周期である制御サイクルTs内に発生させるパルス幅の大きさ(パルス幅時間Tp1、Tp2)を決めるようになっている。その結果、このパルス幅を有するゲート駆動信号191a、191bを、アンプ制御回路191からトランジスタ161、162のゲート端子に出力するようになっている。
 なお、回転体103の回転速度の加速運転中に共振点を通過する際や定速運転中に外乱が発生した際等に、高速かつ強い力での回転体103の位置制御をする必要がある。そのため、電磁石巻線151に流れる電流の急激な増加(あるいは減少)ができるように、電源171としては、例えば50V程度の高電圧が使用されるようになっている。また、電源171の正極171aと負極171bとの間には、電源171の安定化のために、通常コンデンサが接続されている(図示省略)。
 かかる構成において、トランジスタ161、162の両方をonにすると、電磁石巻線151に流れる電流(以下、電磁石電流iLという)が増加し、両方をoffにすると、電磁石電流iLが減少する。
 また、トランジスタ161、162の一方をonにし他方をoffにすると、いわゆるフライホイール電流が保持される。そして、このようにアンプ回路150にフライホイール電流を流すことで、アンプ回路150におけるヒステリシス損を減少させ、回路全体としての消費電力を低く抑えることができる。また、このようにトランジスタ161、162を制御することにより、真空ポンプ100に生じる高調波等の高周波ノイズを低減することができる。さらに、このフライホイール電流を電流検出回路181で測定することで電磁石巻線151を流れる電磁石電流iLが検出可能となる。
 すなわち、検出した電流値が電流指令値より小さい場合には、図3に示すように制御サイクルTs(例えば100μs)中で1回だけ、パルス幅時間Tp1に相当する時間分だけトランジスタ161、162の両方をonにする。そのため、この期間中の電磁石電流iLは、正極171aから負極171bへ、トランジスタ161、162を介して流し得る電流値iLmax(図示せず)に向かって増加する。
 一方、検出した電流値が電流指令値より大きい場合には、図4に示すように制御サイクルTs中で1回だけパルス幅時間Tp2に相当する時間分だけトランジスタ161、162の両方をoffにする。そのため、この期間中の電磁石電流iLは、負極171bから正極171aへ、ダイオード165、166を介して回生し得る電流値iLmin(図示せず)に向かって減少する。
 そして、いずれの場合にも、パルス幅時間Tp1、Tp2の経過後は、トランジスタ161、162のどちらか1個をonにする。そのため、この期間中は、アンプ回路150にフライホイール電流が保持される。
 図1を参照すると、同図の真空ポンプ100は、ロータ103の回転により吸気口101から吸気したガスを排出口133に導くガス流路を有し、そのガス流路全体のうち、排気側ガス流路は、ロータ103の外周面(具体的には、第2の円筒部102dの外周面)とこれに対向するネジ付ステータ131とにより形成されるネジ溝状の流路である。要するに、ネジ付スペーサ131は排気側ガス流路を構成する機能を有している。
 また、図1の真空ポンプ100では、ネジ付スペーサ131の外周部に環形状の支持部品300を図示しないボルトで締結し、かかる支持部品300でネジ付スペーサ131を支持する構造、および、支持部品300が温度センサS、加熱手段H、第1の冷却手段C1を備える構造、このような支持部品300とネジ付スペーサ131を一つの多機能固定部品301として備える構造を採用している。
《多機能固定部品301の説明》
 前述の説明から分かるように、図1の真空ポンプ100における多機能固定部品301は、その機能として、ネジ付スペーサ131本来の機能、すなわち排気側ガス流路を構成する機能、ネジ付スペーサ131を支持し、温度センサSや加熱手段H、および第1の冷却手段C1を備えることで温度調整をする機能を備える。多機能固定部品301の別の機能については後述する。
 支持部品300はアルミニウム合金で形成したが、これに限定されることはない。ステンレスで支持部品300を形成することにより、アルミニウム合金製の支持部品300よりも多機能固定部品301全体の温度の高温化を図ってもよい。
 多機能固定部品301を径方向に位置決めするための具体的な構造例として、図1の真空ポンプ100では、多機能固定部品301の一部(具体的には、支持部品300の内周部)に段部302を形成する一方、その段部302に対応する突起303をベース部129に形成し、段部302の当接面が突起303の位置決め基準面に当接することで、多機能固定部品301全体が径方向に位置決めされる構成を採用している。
 多機能固定部品301を軸方向に位置決めするための具体的な構造例として、図1の真空ポンプ100では、後述の断熱隙間G1を介して多機能固定部品301をベース部129にボルトBTで締結固定する方式を採用している。
 多機能固定部品301の外周部(具体的には、支持部品301の外面付近)は、先に説明した外筒127と同様に機能する、すなわち真空ポンプ100の外装の一部として機能している。
 多機能固定部品301は、前述の通り、温度センサS、加熱手段H、および、第1の冷却手段C1を備え、かかる構成の下で作動可能な温度調整機能を有している。この温度調整機能によって多機能固定部品301の温度調節が行なわれる。
 多機能固定部品301の温度調節は、例えば、温度センサSの信号に基づいて、多機能固定部品301の温度を一定の温度(設定温度)に保つように、加熱手段Hによる加熱や第1の冷却手段C1による冷却の制御が行われるように構成してもよい。
《加熱手段Hの詳細》
 加熱手段Hの具体的な実施形態として、図1の真空ポンプ100では、カートリッジ式のヒータを採用するとともに、多機能固定部品301全体を均一な温度となるように調整するために、多機能固定部品301の中心から見て放射状に一定間隔(例えば、90度間隔)で当該ヒータが支持部品300に配置される構成を採用したが、これに限定されることはない。ヒータの配置場所や配置間隔、個数等は必要に応じて適宜変更することができる。
 また、加熱手段Hの他の実施形態として、図示は省略するが、多機能固定部品301の外周部(具体的には、支持部品300の外周面)にバンド式のヒータ(バンドヒータ)を巻着する構成を採用してもよい。
 温度センサSの具体的な実施形態として、図1の真空ポンプ100では、多機能固定部品301の一部(具体的には、支持部品300)に温度センサSを1つ設置したが、これに限定されることはない。温度センサSの個数や設置場所は必要に応じて適宜変更することができる。
 多機能固定部品301に対する温度センサSの設置方式としては、図1のように支持部品300に設けたセンサ装着孔に嵌込み装着する方式のほか、図示は省略するが、支持部品を鋳物で成形する場合は鋳込み時に支持部品300の内部に温度センサSを埋設する方式、あるいは、支持部品300の外周部に温度センサSを取付ける方式等を採用してもよい。
 温度センサSはヒータHの近くに配置する構成も考えられるが、その構成では、温度センサSがヒータHそのものの温度を検出してしまい、正確に多機能固定部品301の温度を検出することができない。このため、図1の真空ポンプ100では、ヒータHの影響が極力小さい位置、具体的には、前述の通り放射状に複数配置されているヒータHとヒータHの中間位置に温度センサSを設置した。
《第1の冷却手段C1などの詳細》
 第1の冷却手段C1の具体的な実施形態として、図1の真空ポンプ100では、先に説明したベース部129用の水冷管149とは別の水冷管304(以下「第1の冷却管304」という)を採用するとともに、その第1の水冷管304が支持部品300の環形状に沿って該支持部品300の内部に設けられる構成を採用した。
 第1の冷却手段C1の他の実施形態として、例えば、図示は省略するが、支持部品300の外周部に溝を形成し、その溝に第1の水冷管304を設置することも可能である。
 以上の説明から分かるように、多機能固定部品301は、第1の冷却手段C1で冷却され、ベース部129は、水冷管149(以下「第2の水冷管149」という)を備えた第2の冷却手段C2で冷却される。
 図5(a)を参照すると、第1の冷却手段C1や第2の冷却手段C2での冷却は、それぞれの水冷管304、149内への冷却液の流通によって行われる。また、図1の真空ポンプ100においては、図5(a)のように第1の冷却手段C1の流路(以下「第1の冷却流路CR1」という)と第2の冷却手段C1の流路(以下「第2の冷却流路CR2」という)は、各々独立している。
 すなわち、第1の冷却流路CR1は、多機能固定部品301より上流に位置する部分(以下「第1の供給系」という)と、その下流に位置する部分(以下「第1の戻り系」という)とで構成される。また、第2の冷却流路CR2は、ベース部129より上流に位置する部分(以下「第2の供給系」という)と、その下流に位置する部分(以下「第2の戻り系」という)とで構成される。そして、このような構成において、前述の『各々独立』とは、図5(a)のように第1の供給系と第2の供給系が独立し、かつ、第1の戻り系と第2の戻り系も独立であることを意味している。
 前記のような独立系の採用により、第1の冷却手段C1に対する第2の冷却手段C2の影響、あるいは第2の冷却手段C2に対する第1の冷却手段C1の影響はなくなり、多機能固定部品301やベース部129の温度調節を精度よくかつきめ細かく行うことが可能になる。なお、他の実施形態として、図5(b)に示したように、第1の供給系と第2の供給系を共通化した方式も採用し得る。
《断熱手段の説明》
 図1を参照すると、同図の真空ポンプ100は、多機能固定部品301をそれ以外の部品から断熱する断熱手段305を有し、この断熱手段305によって、多機能固定部品301はベース部129と断熱されている。
 断熱手段305の具体的な実施形態として、図1の真空ポンプ100では、ステンレス製の断熱リング部品を採用し、かかる断熱リング部品をベース部129と多機能固定部品301との間に介在させる構成、および、その断熱リング部品の介在によって多機能固定部品301とベース部129との間に所定の軸方向隙間G1(以下「断熱隙間G1」という)が形成される構成を採用している。
《本発明の他の実施形態の説明》
 図6は、本発明を適用した真空ポンプ(第2の実施形態)の縦断面図である。図1の真空ポンプ100では、支持部品300とネジ付スペーサ131の連結によって多機能固定部品301を構成したが、この図6の真空ポンプ100では、多機能固定部品301の他の実施形態として、そのような支持部品300とネジ付スペーサ131を一体形成することで、前記のような連結のない多機能固定部品301を採用したものであり、この点以外は図1の真空ポンプ100と同様であるため、その詳細説明は相違する。
 図7は、本発明を適用した真空ポンプ(第3の実施形態)の縦断面図である。図1の真空ポンプ100では、第1の水冷管304を温度センサSや加熱手段Hと同じ部品、すなわち支持部品300に設けたが、この図6の真空ポンプ100では、その第1の水冷管304を支持部品300とは別部品(具体的には、固定翼123に隣接する部品306)に設けることで、固定翼123等の冷却強化を図っている。この点以外は図1の真空ポンプ100と同様であるため、その詳細説明は相違する。
 図8は、本発明を適用した真空ポンプ(第4の実施形態)の縦断面図である。図1、図6の真空ポンプ100では、ベース部129に排気口133を設けたが、この図8の真空ポンプ100では、多機能固定部品301の一部(具体的には、支持部品300)に排気口133を設けることで、排気口133付近の温度を多機能固定部品301で調節できるように構成している。この点以外は図1、図6の真空ポンプ100と同様であるため、その詳細説明は相違する。
 以上説明した実施形態の真空ポンプ100では、その具体的な構成として、ポンプ内部の温度の調節に必要な部品(具体的には、温度センサS、加熱手段H、第1の冷却手段C1)をまとめて一箇所、すなわち多機能固定部品301が備える構成、および、かかる構成の下で作動する温度調整機能よって多機能固定部品301の温度を調節することで、排気側ガス流路の温度等を制御する構成を採用した。このため、例えば、従来のように、2種類のセンサ(具体的には、前述した冷却部の温度を検出するセンサと、加熱部の温度を検出するセンサ)を個別に設ける必要がなく、1種類の前記温度センサSで多機能固定部品301の温度を検出するだけで足り、真空ポンプ構成部品としての温度センサの個数を減らすことができ、真空ポンプ全体のコスト低減を図れる。これに加えて更に、従来のように、冷却部の温度を調節したり加熱部の温度を調節したりする等、煩雑な温度の調節処理は不要となり、多機能固定部品301の温度を調節するだけで済み、真空ポンプ100の温度制御の簡素化も図れる。
 本発明は上述の実施形態に限定されるものではなく、本発明の技術的思想の範囲内であれば、当業者の通常の創作能力によって多くの変形が可能である。
1 第1の領域
1A 第1の表面処理層
2 第2の領域
2A 第2の表面処理層
3 境界部
3A 第1の境界部
3B 第2の境界部
3C 第3の境界部
4 凹部
5 嵌合穴(回転体側の第1の穴)
6 通し穴
7 フランジ
8 ボルト
9 座金部材
100 真空ポンプ
101 吸気口
102 回転翼
102d 第2の円筒部
102e 第1の円筒部
103 回転体(ロータ)
104 上側径方向電磁石
105 下側径方向電磁石
106A、106B 軸方向電磁石
107 上側径方向センサ
108 下側径方向センサ
109 軸方向センサ
111 金属ディスク
113 ロータ軸
120 保護ベアリング
121 モータ
122 ステータコラム
123 固定翼
125 固定翼スペーサ
127 外筒
129 ベース部
131 ネジ付スペーサ
131a ネジ溝
133 排気口
141 電子回路部
149 水冷管(第2の水冷管)
143 基板
145 底蓋
150 アンプ回路
171 電源
181 電流検出回路
191 アンプ制御回路
200 制御装置
300 支持部品
301 多機能固定部品
302 段部
303 突起
304 第1の水冷管
305 断熱手段
306 固定翼に隣接する部品
BT ボルト
CR1 第1の冷却流路
CR2 第2の冷却流路
G1 断熱隙間
CN 締結部
S 温度センサ
H 加熱手段
C1 第1の冷却手段
C2 第2の冷却手段

Claims (7)

  1.  ベース部と、
     前記ベース部上に配置されたロータと、
     前記ロータをその軸心周りに回転可能に支持する支持手段と、
     前記ロータをその軸心周りに回転駆動する駆動手段と、
     前記ロータの回転により吸気したガスを排出口に導くガス流路と、
    を具備した真空ポンプにおいて、
     前記ガス流路全体のうち排気側ガス流路を構成する機能、および、温度センサ、加熱手段、第1の冷却手段を備える構成の下で作動可能な温度調整機能を有し、その温度調整機能によって温度が調節される多機能固定部品と、
     前記多機能固定部品をそれ以外の部品から断熱する断熱手段と、
     を備えたことを特徴とする真空ポンプ。
  2.  前記多機能固定部品は、前記断熱手段によって、前記ベース部と断熱されていること
     を特徴とする請求項1に記載の真空ポンプ。
  3.  前記多機能固定部品は、更に、真空ポンプの外装の一部として機能していること
     を特徴とする請求項1又は2に記載の真空ポンプ。
  4.  前記排気側ガス流路は、前記ロータの外周面とこれに対向するネジ付ステータとにより形成されるネジ溝状の流路であり、
     前記多機能固定部品は、前記ネジ付ステータと該ネジ付ステータを支持する支持部品と、を含むこと
     を特徴とする請求項1から3のいずれか1項に記載の真空ポンプ。
  5.  前記ネジ付ステータまたは前記支持部品に、前記温度センサ、前記加熱手段、前記第1の冷却手段が設けられていること
     を特徴とする請求項4に記載の真空ポンプ。
  6.  前記ベース部は、第2の冷却手段で冷却されていること
     を特徴とする請求項1から5のいずれか1項に記載の真空ポンプ。
  7.  前記第1の冷却手段と前記第2の冷却手段は、冷却液の流通によって行われ、前記第1の冷却手段の第1の流路と前記第2の冷却手段の第2の流路は、各々独立していることを特徴とする請求項6に記載の真空ポンプ。
PCT/JP2022/013249 2021-03-31 2022-03-22 真空ポンプ WO2022210118A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059809 2021-03-31
JP2021059809A JP2022156223A (ja) 2021-03-31 2021-03-31 真空ポンプ

Publications (1)

Publication Number Publication Date
WO2022210118A1 true WO2022210118A1 (ja) 2022-10-06

Family

ID=83455258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013249 WO2022210118A1 (ja) 2021-03-31 2022-03-22 真空ポンプ

Country Status (2)

Country Link
JP (1) JP2022156223A (ja)
WO (1) WO2022210118A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12033318B2 (en) * 2018-09-10 2024-07-09 Kyocera Corporation Estimation apparatus, estimation system, and computer-readable non-transitory medium storing estimation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174099A (ja) * 1992-08-14 1995-07-11 Hitachi Ltd 真空ポンプの冷却装置
JP2019178655A (ja) * 2018-03-30 2019-10-17 エドワーズ株式会社 真空ポンプ
JP2020012423A (ja) * 2018-07-19 2020-01-23 エドワーズ株式会社 真空ポンプ
JP2021042722A (ja) * 2019-09-12 2021-03-18 エドワーズ株式会社 真空ポンプ、及び、真空ポンプシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174099A (ja) * 1992-08-14 1995-07-11 Hitachi Ltd 真空ポンプの冷却装置
JP2019178655A (ja) * 2018-03-30 2019-10-17 エドワーズ株式会社 真空ポンプ
JP2020012423A (ja) * 2018-07-19 2020-01-23 エドワーズ株式会社 真空ポンプ
JP2021042722A (ja) * 2019-09-12 2021-03-18 エドワーズ株式会社 真空ポンプ、及び、真空ポンプシステム

Also Published As

Publication number Publication date
JP2022156223A (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2022210118A1 (ja) 真空ポンプ
WO2022131035A1 (ja) 真空ポンプ
WO2023106154A1 (ja) 真空ポンプおよび良熱伝導性部品
WO2023027084A1 (ja) 真空ポンプおよび固定部品
WO2022255202A1 (ja) 真空ポンプ、スペーサ及びケーシング
WO2023037985A1 (ja) 真空ポンプ及び真空ポンプの熱移動抑制部材
WO2022163341A1 (ja) 真空ポンプ及びスペーサ
US20240026888A1 (en) Vacuum pump and rotating cylinder provided in vacuum pump
WO2022124240A1 (ja) 真空ポンプ
US20230383757A1 (en) Vacuum pump and vacuum exhaust system using the vacuum pump
US20240117816A1 (en) Vacuum pump
US20230250826A1 (en) Vacuum pump and vacuum pump rotor blade
JP2022110190A (ja) 真空ポンプとその回転体
WO2022124239A1 (ja) 真空ポンプ、真空ポンプの固定部品、及び真空ポンプの支持部品
WO2024135679A1 (ja) 真空ポンプ
WO2023171566A1 (ja) 真空ポンプ
WO2022264925A1 (ja) 真空ポンプ
WO2023008302A1 (ja) 真空ポンプ
JP2022094272A (ja) 真空ポンプ
JP2023160495A (ja) 真空ポンプ、制御装置および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780333

Country of ref document: EP

Kind code of ref document: A1