WO2023100443A1 - 温超純水製造装置 - Google Patents

温超純水製造装置 Download PDF

Info

Publication number
WO2023100443A1
WO2023100443A1 PCT/JP2022/034394 JP2022034394W WO2023100443A1 WO 2023100443 A1 WO2023100443 A1 WO 2023100443A1 JP 2022034394 W JP2022034394 W JP 2022034394W WO 2023100443 A1 WO2023100443 A1 WO 2023100443A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ultrapure water
warm
heat exchanger
ultrapure
Prior art date
Application number
PCT/JP2022/034394
Other languages
English (en)
French (fr)
Inventor
順也 平山
正博 大河原
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2023100443A1 publication Critical patent/WO2023100443A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to an ultrapure water production system, and more particularly to a warm ultrapure water production system that heats ultrapure water from a subsystem (secondary pure water production system) with a heat exchanger and supplies it as warm ultrapure water to a point of use.
  • a subsystem secondary pure water production system
  • the ultrapure water used for cleaning semiconductors is produced by an ultrapure water production system that has a pretreatment system, a primary pure water production system, and a subsystem (secondary pure water production system). water, etc.).
  • the pretreatment system which consists of flocculation, pressure flotation (sedimentation), filtration (membrane filtration) equipment, etc., removes suspended solids and colloidal substances from raw water. In this process, it is also possible to remove polymeric organic substances, hydrophobic organic substances, and the like.
  • the primary pure water equipment includes a heat exchanger, a reverse osmosis membrane treatment device (RO device), an ion exchange device (mixed bed type or 4 bed 5 tower type, etc.), an ion exchange device, and a degassing device.
  • the primary pure water production system removes ions and organic components from the raw water. It should be noted that the higher the temperature of water, the lower the viscosity and the higher the permeability of the RO membrane. For this reason, a heat exchanger is installed upstream of the reverse osmosis membrane treatment apparatus, and heats water so that the temperature of the water supplied to the reverse osmosis membrane treatment apparatus reaches a predetermined temperature or higher.
  • the reverse osmosis membrane treatment device removes salts, ionicity, and TOC.
  • the ion exchange device removes salts, inorganic carbon (IC), and TOC components adsorbed or ion-exchanged by the ion exchange resin.
  • the deaerator removes inorganic carbon (IC) and dissolved oxygen.
  • the primary pure water produced by the primary pure water producing device is sent to the subsystem.
  • This subsystem includes a sub-tank (pure water tank), a low-pressure ultraviolet oxidation device (UV device), an ion exchange device, and the like.
  • UV device low-pressure ultraviolet oxidation device
  • ion exchange device ion exchange device
  • TOC is decomposed into organic acids and further CO 2 by ultraviolet rays of 185 nm emitted from a low-pressure ultraviolet lamp.
  • Organic matter and CO 2 produced by the decomposition are removed in the subsequent ion exchange unit.
  • the ultrapure water from the subsystem is heated to about 70-80°C in a heat exchanger and supplied to the point of use.
  • FIG. 2 is a system diagram showing the ultrapure water production apparatus described in Patent Document 1.
  • the water temperature is exemplified in the following description, each water temperature is an example and does not limit the present invention in any way.
  • the primary pure water of about 25°C from the primary pure water device is introduced into the subsystem 4 via the pipe 1, the sub-tank 2, and the pipe 3, and ultrapure water of about 20-30°C is produced.
  • the produced ultrapure water flows through the pipe 5, the first heat exchanger 6, the pipe 9 and the second heat exchanger 10 in this order, and is heated by the first heat exchanger 6 to 30 to 50°C, for example about 42°C. , and heated to 65° C. to 85° C., for example, about 75° C. by the second heat exchanger 10 , and sent to the point of use 14 via the piping 11 , the UF membrane separator 12 and the piping 13 as warm ultrapure water.
  • the UF membrane separator 12 is installed just before the point of use.
  • Return warm ultrapure water (return water) of about 75°C from the point of use is introduced into the heat source fluid flow path of the first heat exchanger 6 via the pipe 7 .
  • This return-warm ultrapure water is heat-exchanged with the ultrapure water from the subsystem 4 in the first heat exchanger 6 to lower the temperature to about 40° C., and then sent to the subtank 2 through the pipe 8 .
  • Condensed water from the UF membrane separation device 12 is introduced into the pipe 7 via the pipe 15 .
  • the temperature of the ultrapure water from the subsystem 4 is almost constant, but the temperature of the ultrapure water sent from the first heat exchanger 6 to the second heat exchanger 10 As a result, the temperature of the warm ultrapure water sent to the point of use 14 through the pipes 11 and 13 fluctuates significantly, sometimes deviating from the guaranteed temperature value.
  • the main reason for this is that the amount of ultrapure water returned from the use point 14 fluctuates greatly, causing a large fluctuation in the temperature of the ultrapure water flowing out of the first heat exchanger 6 to the pipe 9, and as a result, the second This is because the temperature of the ultrapure water flowing out from the heat exchanger 10 to the pipe 11 fluctuates.
  • An object of the present invention is to provide a warm ultrapure water production apparatus that can reduce the temperature fluctuation range of the warm ultrapure water that is sent to the point of use.
  • a warm ultrapure water production apparatus includes an ultrapure water production section including a primary pure water production apparatus and a secondary pure water production apparatus, and supplies ultrapure water from the ultrapure water production section to a point of use.
  • An ultrapure water supply pipeline, and a first return water provided in this ultrapure water supply pipeline that has not been used at the point of use is supplied to the heat source fluid flow path as heat source water via the return water line.
  • a heat exchanger for returning the return water that has passed through the heat source fluid flow path of the first heat exchanger to the ultrapure water production unit, and an ultrapure water heated by the first heat exchanger and a heating means for further heating water, and the ultrapure water heated by the heating means is supplied to a point of use, wherein a warm pure water replenishing mechanism for replenishing warm pure water in the middle of the return water line. It is characterized by having
  • the return water line is provided with a storage tank, and the storage tank is equipped with the warm pure water supply mechanism.
  • the heating means is a second heat exchanger using steam or hot water as a heat source.
  • the warm pure water supply mechanism includes a pure water supply pipeline communicating with a pure water supply source, and a third heat exchanger provided in the pure water supply pipeline.
  • the present invention has a temperature sensor that measures the temperature of the water stored in the storage tank, and control means that controls the hot pure water replenishment mechanism so that the temperature detected by the temperature sensor reaches a predetermined temperature.
  • control means controls the amount of warm pure water supplied from the warm pure water supply mechanism so that the level of the water stored in the storage tank falls within a predetermined range.
  • water supply means for supplying the water stored in the storage tank to the heat source fluid flow path of the first heat exchanger at a constant flow rate.
  • a return water return pipe from the heat source fluid channel of the first heat exchanger is provided with cooling means for cooling the return water.
  • a storage tank is provided in the return water line, and warm pure water is supplied to the storage tank.
  • Water having a substantially constant temperature is passed through the heat source fluid flow path of the heat exchanger at a substantially constant flow rate.
  • the temperature of the ultrapure water produced by the secondary pure water production system is substantially constant, and the production volume is also substantially constant.
  • FIG. 1 is a system diagram of an ultrapure water production apparatus according to an embodiment
  • FIG. It is a system diagram of an ultrapure water production apparatus according to a conventional example.
  • the ultrapure water production apparatus of the present invention comprises an ultrapure water production unit having a primary pure water production apparatus and a subsystem (secondary pure water production apparatus), and heating means for heating the produced ultrapure water.
  • a pretreatment device is usually provided in the preceding stage of the primary pure water production device.
  • raw water is subjected to pretreatment such as filtration, coagulation sedimentation, and microfiltration membranes, and mainly suspended solids are removed.
  • This pretreatment usually reduces the number of fine particles in water to 10 3 /mL or less.
  • Primary pure water production equipment includes reverse osmosis (RO) membrane separation equipment, degassing equipment, regenerative ion exchange equipment (mixed bed type or 4 bed 5 tower type, etc.), electrodeionization equipment, ultraviolet (UV) irradiation oxidation equipment Equipped with an oxidizing device such as the one to remove most of the electrolytes, fine particles, viable bacteria, etc. in the pretreated water.
  • the primary pure water production device is composed of, for example, a heat exchanger, an RO membrane separation device, a mixed bed ion exchange device, and a deaeration device.
  • Subsystems include sub-tanks, feedwater pumps, heat exchangers for cooling, low-pressure ultraviolet oxidizers, non-regenerative mixed-bed ion exchangers, ultrafiltration (UF) membrane separators, microfiltration (MF) membrane separators, etc. Although it is composed of a membrane filtration device, a desalination device such as a membrane degassing device, an RO membrane separation device, an electrodeionization device, or the like may be further provided.
  • TOC in water is oxidatively decomposed by UV light with a low pressure UV oxidizer, and oxidative decomposition products are removed by ion exchange.
  • FIG. 1 is a system diagram showing a warm ultrapure water production apparatus according to an embodiment, and the same parts as in FIG. 2 are denoted by the same reference numerals.
  • the water temperature is exemplified in the following description, each water temperature is an example and does not limit the present invention in any way.
  • primary pure water of about 25°C is introduced into the subsystem 4 via pipe 1, subtank 2, and pipe 3, and ultrapure water of about 30°C is produced.
  • the produced ultrapure water flows through pipe 5, first heat exchanger 6, pipe 9 and second heat exchanger 10 in this order, is heated to about 42° C. by first heat exchanger 6, and is heated to about 42° C. by second heat exchanger. 10 to about 75° C., and sent as warm ultrapure water to a point of use 14 via a pipe 11 , a UF membrane separator 12 and a pipe 13 .
  • the UF membrane separator 12 is installed just before the point of use 14 .
  • Hot water of 65 to 85°C, for example about 75°C is introduced from the storage tank 16 into the heat source fluid channel of the first heat exchanger 6 via the pump 17 and the pipe 18 .
  • This hot water is heat-exchanged with the ultrapure water from the subsystem 4 in the first heat exchanger 6, and after the temperature is lowered to about 40° C., it is sent to the sub-tank 2 through the pipes 8a and 8b.
  • the valve 10a is controlled so that the ultrapure water temperature detected by the temperature sensor 11a provided in the pipe 11 becomes a predetermined temperature (75 ⁇ 1° C. in this embodiment).
  • the return ultrapure water from the point of use 14 is introduced into the storage tank 16 via the pipe 7 forming the return water line.
  • the end of the pipe 15 is connected to the pipe 7, and the concentrated water from the UF membrane separation device 12 joins.
  • Warm pure water is supplied to the storage tank 16 by the warm pure water supply mechanism. That is, the primary pure water from the primary pure water source flows from the pipe 20 to the third heat exchanger 21 and is heated, and then flows through the pipe 22 provided with the valve 23 . Steam or warm water from a boiler or the like is supplied to the heat source fluid flow path of the third heat exchanger 21 through a valve 21a.
  • the primary pure water source may be used in common with the primary pure water device constituting the ultrapure water production unit, or may be separate.
  • a temperature sensor 24 and a water level sensor 25 are provided in the storage tank 16 , and detection signals from the temperature sensor 24 and the water level sensor 25 are sent to the controller 26 .
  • the controller 26 sets the water temperature detected by the temperature sensor 24 to a predetermined temperature (set temperature in the range of 65 to 85° C., about 75° C. in this embodiment), and the water level detected by the water level sensor 25 to the predetermined water level.
  • the opening degrees of the valves 21a and 23 are controlled so that
  • the outflow water from the heat source fluid channel of the first heat exchanger 6 is passed through the pipe 8a constituting the return water return pipe to the fourth heat exchanger 30 and cooled, and then flows through the pipe 8b into the sub-tank 2.
  • introduced into Cold water from a cooling tower or the like flows through the heat source fluid flow path of the fourth heat exchanger 30 through a valve 30a.
  • a temperature sensor 31 is provided in the pipe 8b, and the amount of cold water supplied to the fourth heat exchanger 30 is controlled so that the water temperature detected by the temperature sensor 31 becomes a predetermined temperature.
  • the actual amount of ultrapure water used at the point of use 14 is W of 0 to Varies in the range of 100%.
  • ultrapure water is supplied to the point of use 14 in an amount larger than W, for example, 120 to 200% of W, in this embodiment, 180%, and unused ultrapure water is discharged to pipe 7 .
  • ultrapure water is supplied to the point of use 14 at a flow rate of 180% of W, and the actual amount of ultrapure water used at the point of use 14 fluctuates between 0 and 100% of W,
  • the flow rate of return ultrapure water flowing from the point of use 14 to the pipe 7 fluctuates in the range of 80 to 180% of W. Since 10% ⁇ W membrane non-permeated water from the UF membrane separation device 13 joins the pipe 7 through the pipe 15, the flow rate of ultrapure water flowing into the storage tank 16 from the pipe 7 is 90 to 190% of W. Varies in range.
  • the feed water flow rate from the storage tank 16 to the heat source fluid flow path of the first heat exchanger 6 is 190% of W. Since the inflow flow rate from the pipe 7 to the storage tank 16 fluctuates between 90% and 190% of W, when the inflow flow rate becomes a% below 190%, the flow rate is (190-a)% x W.
  • the heated primary pure water is replenished to the storage tank 16 through the pipe 22 .
  • the opening degrees of the valves 21a and 23 are controlled so that the water level in the storage tank 16 is within a predetermined range and the water temperature in the storage tank 16 is within a predetermined range.
  • the temperature and flow rate of the ultrapure water produced in the subsystem 4 are assumed to be substantially constant.
  • a sensor may be used to detect and control the temperature or flow rate of the hot water supplied to the heat source fluid flow path of the first heat exchanger 6 accordingly.
  • part of the return ultrapure water that is about to flow into the storage tank 16 from the pipe 7 or part of the water stored in the storage tank 16 bypasses the first heat exchanger 6 and flows into the sub-tank 2.
  • a return bypass line may be provided.
  • a discharge line is provided for discharging part of the return ultrapure water about to flow into the storage tank 16 from the pipe 7 or part of the water stored in the storage tank 16 to the outside of the warm ultrapure water production apparatus. may be provided.
  • the above-described embodiment is an example of the present invention, and the present invention may be in forms other than those shown in the drawings.
  • equipment other than the UF membrane separation device 12 may be provided in the pipe 11 .
  • the valve 23 may be a control valve whose degree of opening can be controlled, or may be an automatic open/close valve for adjusting the flow rate by its opening/closing control.

Abstract

サブシステム4からの超純水は、第1熱交換器6、第2熱交換器10、UF膜分離装置12を経てユースポイント14に送水される。ユースポイント14からの戻り超純水は、配管7から貯留タンク16に導入される。戻り超純水の流量変動に対応して、加熱一次純水が配管22から貯留タンク16に導入され、貯留タンク16内には所定温度の温水が所定水位となるように貯留される。貯留タンク16内の温水が第1熱交換器6の熱源流体流路に定流量にて供給される。

Description

温超純水製造装置
 本発明は超純水製造装置に係り、特にサブシステム(二次純水製造装置)からの超純水を熱交換器で加熱して温超純水としてユースポイントへ供給する温超純水製造装置に関する。
 半導体洗浄用水として用いられている超純水は、前処理システム、一次純水製造装置、サブシステム(二次純水製造装置)を有する超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造される。
 凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理システムでは、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。
 一次純水装置は、熱交換器、逆浸透膜処理装置(RO装置)、イオン交換装置(混床式又は4床5塔式など)、イオン交換装置、及び脱気装置等を備える。一次純水製造装置では、原水中のイオンや有機成分の除去を行う。なお、水は温度が高い程、粘性が低下し、RO膜の透過性が向上する。このため、逆浸透膜処理装置の前段に熱交換器が設置され、逆浸透膜処理装置への供給水の温度が所定温度以上となるように水を加熱する。逆浸透膜処理装置では、塩類を除去すると共に、イオン性、TOCを除去する。イオン交換装置では、塩類、無機系炭素(IC)を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置では無機系炭素(IC)、溶存酸素の除去を行う。
 一次純水製造装置で製造された一次純水は、サブシステムへ送水される。このサブシステムは、サブタンク(純水タンク)、低圧紫外線酸化装置(UV装置)、イオン交換装置等を備えている。低圧紫外線酸化装置では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置で除去される。
 サブシステムからの超純水は、熱交換器で70~80℃程度に加熱され、ユースポイントに供給される。
 図2は、特許文献1に記載の超純水製造装置を示す系統図である。なお、以下の説明では水温を例示しているが、各水温は一例であり、本発明を何ら限定するものではない。
 一次純水装置からの約25℃の一次純水は、配管1、サブタンク2、配管3を介してサブシステム4に導入され、約20~30℃の超純水が製造される。製造された超純水は、配管5、第1熱交換器6、配管9及び第2熱交換器10の順に流れ、第1熱交換器6によって30~50℃、例えば約42℃に加熱され、第2熱交換器10によって65℃~85℃、例えば約75℃に加熱され、温超純水として配管11、UF膜分離装置12及び配管13によりユースポイント14へ送水される。UF膜分離装置12はユースポイントの直前に設置されている。
 第1熱交換器6の熱源流体流路へは、配管7を介してユースポイントからの約75℃の戻り温超純水(戻り水)が導入される。この戻り温超純水は、第1熱交換器6でサブシステム4からの超純水と熱交換して約40℃に降温した後、配管8によって、サブタンク2に送られる。なお、UF膜分離装置12の濃縮水は、配管15を介して配管7に導入される。
 第2熱交換器10の熱源流体流路には、蒸気又は温水が供給される。
特開2018-43229号公報
 上記従来の温超純水製造装置にあっては、サブシステム4からの超純水の温度はほぼ一定であるが、第1熱交換器6から第2熱交換器10に送られる超純水の温度が変動し、この結果、配管11,13によってユースポイント14に送水される温超純水の温度が大幅に変動し、温度保証値を逸脱することがある。この主な原因は、ユースポイント14からの戻り超純水量が大きく変動することにより、第1熱交換器6から配管9に流出する超純水の温度に大きな変動が生じ、この結果、第2熱交換器10から配管11に流出する超純水の温度が変動するためである。なお、第2熱交換器10の熱源流体として蒸気を用いる場合は、熱伝達率が高いことにより温度応答性が良すぎて超純水の温度がハンチングを起こすことがある。また、第2熱交換器10の熱源流体として温水を用いる場合は、熱伝達率が低いことにより温度応答遅延が発生し、超純水の温度が温度保証値を逸脱することがある。
 本発明は、ユースポイントに送水される温超純水の温度変動幅を小さくすることができる温超純水製造装置を提供することを目的とする。
 本発明の一態様の温超純水製造装置は、一次純水製造装置及び二次純水製造装置を備えた超純水製造部と、該超純水製造部からユースポイントに超純水を供給する超純水供給管路と、この超純水供給管路に設けられた、ユースポイントでの使用されなかった戻り水が戻り水ラインを介して熱源水として熱源流体流路に供給される第1熱交換器と、該第1熱交換器の熱源流体流路を通過した該戻り水を該超純水製造部に返送する戻り水返送配管と、該第1熱交換器で加熱された超純水をさらに加熱する加熱手段とを有し、該加熱手段で加熱された超純水がユースポイントに供給される温超純水製造装置において、前記戻り水ラインの途中に温純水を補給する温純水補給機構を備えたことを特徴とする。
 本発明の一態様では、前記戻り水ラインに貯留タンクが設けられており、この貯留タンクに前記温純水補給機構を備える。
 本発明の一態様では、前記加熱手段は、蒸気又は温水を熱源とする第2熱交換器である。
 本発明の一態様では、前記温純水補給機構が、純水供給源に連通した純水供給管路と、前記純水供給管路に設けられた第3熱交換器とを備える。
 本発明の一態様では、前記貯留タンク内の貯留水の温度を測定する温度センサと、該温度センサの検出温度が所定温度となるように該温純水補給機構を制御する制御手段を有する。
 本発明の一態様では、前記制御手段は、前記貯留タンク内の貯留水の水位が所定範囲となるように前記温純水補給機構からの温純水の補給量を制御する。
 本発明の一態様では、前記貯留タンク内の貯留水を定流量にて前記第1熱交換器の熱源流体流路に送水する送水手段を有する。
 本発明の一態様では、前記第1熱交換器の熱源流体流路からの戻り水返送配管に、戻り水を冷却するための冷却手段を備える。
 本発明の超純水製造装置では、戻り水ラインに貯留タンクを設け、この貯留タンクに温純水を補給するように構成したので、ユースポイントからの戻り超純水流量が変動しても、第1熱交換器の熱源流体流路へはほぼ一定温度の水がほぼ一定流量にて通水される。二次純水製造装置で製造される超純水の温度はほぼ一定であり、またその製造量もほぼ一定である。この結果、第1熱交換器から第2熱交換器等の加熱手段へ送水される超純水の温度はほぼ一定となるので、該加熱手段からユースポイントに送水される超純水温度も、ほぼ一定となり、目標温度からの乖離は極めて小さいものとなる。
実施の形態に係る超純水製造装置の系統図である。 従来例に係る超純水製造装置の系統図である。
 本発明の超純水製造装置は、一次純水製造装置及びサブシステム(二次純水製造装置)を有する超純水製造部と、製造された超純水を加熱する加熱手段を備える。
 この一次純水製造装置の前段には、通常の場合、前処理装置が設けられる。前処理装置では、原水の濾過、凝集沈殿、精密濾過膜などによる前処理が施され、主に懸濁物質が除去される。この前処理によって通常、水中の微粒子数は10個/mL以下となる。
 一次純水製造装置は、逆浸透(RO)膜分離装置、脱気装置、再生型イオン交換装置(混床式又は4床5塔式など)、電気脱イオン装置、紫外線(UV)照射酸化装置等の酸化装置などを備え、前処理水中の大半の電解質、微粒子、生菌等の除去を行うものである。一次純水製造装置は、例えば、熱交換器、RO膜分離装置、混床式イオン交換装置、及び脱気装置で構成される。
 サブシステムは、サブタンク、給水ポンプ、冷却用熱交換器、低圧紫外線酸化装置、非再生型混床式イオン交換装置、限外濾過(UF)膜分離装置又は精密濾過(MF)膜分離装置等の膜濾過装置で構成されるが、更に膜脱気装置、RO膜分離装置、電気脱イオン装置等の脱塩装置が設けられている場合もある。サブシステムでは、低圧紫外線酸化装置によって水中のTOCを紫外線により酸化分解し、酸化分解生成物をイオン交換によって除去する。
 以下、図面を参照して本発明の実施の形態について説明する。図1は実施の形態に係る温超純水製造装置を示す系統図であり、図2と同一部分に同一符号が付されている。なお、以下の説明では水温を例示しているが、各水温は一例であり、本発明を何ら限定するものではない。
 この実施の形態においても約25℃の一次純水は、配管1、サブタンク2、配管3を介してサブシステム4に導入され、約30℃の超純水が製造される。製造された超純水は、配管5、第1熱交換器6、配管9及び第2熱交換器10の順に流れ、第1熱交換器6によって約42℃に加熱され、第2熱交換器10によって約75℃に加熱され、温超純水として配管11、UF膜分離装置12及び配管13を介してユースポイント14へ送水される。UF膜分離装置12はユースポイント14の直前に設置されている。
 第1熱交換器6の熱源流体流路へは、貯留タンク16からポンプ17及び配管18を介して65~85℃、例えば約75℃の温水が導入される。この温水は、第1熱交換器6でサブシステム4からの超純水と熱交換して約40℃に降温した後、配管8a,8bによって、サブタンク2に送られる。
 第2熱交換器10の熱源流体流路には、蒸気又は温水がバルブ10aを介して流通される。バルブ10aは、配管11に設けられた温度センサ11aで検出される超純水温度が所定温度(この実施の形態では75±1℃)となるように制御される。
 この実施の形態では、ユースポイント14からの戻り超純水は、戻り水ラインを構成する配管7を介して貯留タンク16に導入される。なお、配管7に配管15の末端が接続されており、UF膜分離装置12からの濃縮水が合流する。
 貯留タンク16へは、温純水補給機構によって温純水が補給される。すなわち、一次純水源からの一次純水が配管20から第3熱交換器21に通水されて加熱された後、バルブ23を備えた配管22を介して流入する。第3熱交換器21の熱源流体流路にはボイラ等からの蒸気又は温水がバルブ21aを介して供給される。なお、該一次純水源は、超純水製造部を構成する一次純水装置と兼用されてもよく、別々とされてもよい。
 貯留タンク16には温度センサ24及び水位センサ25が設けられており、温度センサ24及び水位センサ25の検出信号が制御器26に送信される。制御器26は、温度センサ24で検出される水温が所定温度(65~85℃の範囲における設定温度、この実施の形態では約75℃)となり、水位センサ25で検出される水位が所定水位となるように、バルブ21a,23の開度を制御する。
 貯留タンク16内で配管7からの戻り超純水と配管22からの温一次純水とが混合されて、所定温度となった水(温水)がポンプ17及び配管18を介して第1熱交換器6の熱源流体流路に定量的に供給される。
 第1熱交換器6の熱源流体流路からの流出水は、戻り水返送配管を構成する配管8aから第4熱交換器30に通水されて冷却された後、配管8bを介してサブタンク2に導入される。第4熱交換器30の熱源流体流路には、冷却塔等からの冷水がバルブ30aを介して流通される。配管8bに温度センサ31が設けられており、温度センサ31で検出される水温が所定温度となるように第4熱交換器30への冷水供給量が制御される。
 図1の温超純水製造装置において、ユースポイント14での最大の超純水使用量をW(ton/Hr)とした場合、ユースポイント14での実際の超純水使用量は、Wの0~100%の範囲で変動する。通常はユースポイント14へWよりも多い量、例えばWの120~200%、本実施形態では180%の水量にて超純水を供給し、未使用超純水を配管7へ流出させる。
 また、UF膜分離装置12では、Wの10%程度を濃縮水(膜非透過水)として配管15へ流出させ、残部をユースポイント14へ送水する。
 そのため、サブシステム4では、Wの約190%(180+10=190%)の水量にて超純水を製造し、配管5へ送り出す。
 前述の通り、ユースポイント14へはWの180%の流量にて超純水が供給され、ユースポイント14での実際の超純水使用量はWの0~100%の間で変動するので、ユースポイント14から配管7へ流れる戻り超純水流量はWの80~180%の範囲で変動する。配管7には配管15を介してUF膜分離装置13から10%×Wの膜非透過水が合流するので、配管7から貯留タンク16に流入する超純水流量はWの90~190%の範囲で変動する。
 この実施の形態では、貯留タンク16から第1熱交換器6の熱源流体流路への給水流量をWの190%とする。配管7から貯留タンク16への流入流量はWの90~190%の間で変動するので、該流入流量が190%を下回るa%となったときには、(190-a)%×Wの流量にて配管22から加熱一次純水を貯留タンク16へ補給する。この際、貯留タンク16内の水位が所定範囲となるように、かつ、貯留タンク16内の水温が所定範囲となるようにバルブ21a,23の開度が制御される。
 このようにして、ユースポイント14からの戻り超純水流量が変動しても、第1熱交換器6の熱源流体流路へはほぼ一定温度の水がほぼ一定流量にて通水される。サブシステム4で製造される超純水の温度はほぼ一定であり、またその製造量もほぼ一定である。この結果、第1熱交換器6から第2熱交換器10へ送水される超純水の温度はほぼ一定となるので、第2熱交換器10からユースポイント14に送水される超純水温度も、ほぼ一定となり、目標温度(この場合75℃)からの乖離は極めて小さいものとなる。
 上記説明では、サブシステム4で製造される超純水の温度及び流量はほぼ一定であるとしたが、この温度又は流量の変動幅が大きいときには、配管5を流れる超純水の温度及び流量をセンサで検知し、それに応じて第1熱交換器6の熱源流体流路への供給温水の温度又は流量を制御してもよい。
 本発明では、配管7から貯留タンク16に流入しようとする戻り超純水の一部、又は、貯留タンク16内の貯留水の一部を、第1熱交換器6を迂回してサブタンク2に戻すバイパスラインを設けてもよい。また、本発明では、配管7から貯留タンク16に流入しようとする戻り超純水の一部、又は、貯留タンク16内の貯留水の一部を、温超純水製造装置外に排出する排出ラインを設けてもよい。
 上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい
。例えば、配管11にUF膜分離装置12以外の機器が設けられてもよい。また、バルブ23は、開度制御可能なコントロール弁であってもよいが、Open/Closeの自動弁としてその開閉制御で流量を調整するようにしてもよい。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年12月3日付で出願された日本特許出願2021-197028に基づいており、その全体が引用により援用される。
 2 サブタンク
 4 サブシステム
 6,10,21,30 熱交換器
 14 ユースポイント
 16 貯留タンク

Claims (8)

  1.  一次純水製造装置及び二次純水製造装置を備えた超純水製造部と、
     該超純水製造部からユースポイントに超純水を供給する超純水供給管路と、
     この超純水供給管路に設けられた、ユースポイントでの使用されなかった戻り水が戻り水ラインを介して熱源水として熱源流体流路に供給される第1熱交換器と、
     該第1熱交換器の熱源流体流路を通過した該戻り水を該超純水製造部に返送する戻り水返送配管と、
     該第1熱交換器で加熱された超純水をさらに加熱する加熱手段と
    を有し、該加熱手段で加熱された超純水がユースポイントに供給される温超純水製造装置において、
     前記戻り水ラインの途中に温純水を補給する温純水補給機構を備えたことを特徴とする温超純水製造装置。
  2.  前記戻り水ラインに貯留タンクが設けられており、この貯留タンクに前記温純水補給機構を備えることを特徴とする請求項1に記載の温超純水製造装置。
  3.  前記加熱手段は、蒸気又は温水を熱源とする第2熱交換器である、請求項1又は2に記載の温超純水製造装置。
  4.  前記温純水補給機構が、純水供給源に連通した純水供給管路と、前記純水供給管路に設けられた第3熱交換器とを備える、請求項1~3のいずれかに記載の温超純水製造装置。
  5.  前記貯留タンク内の貯留水の温度を測定する温度センサと、該温度センサの検出温度が所定温度となるように該温純水補給機構を制御する制御手段を有する、請求項2~4のいずれかに記載の温超純水製造装置。
  6.  前記制御手段は、前記貯留タンク内の貯留水の水位が所定範囲となるように前記温純水補給機構からの温純水の補給量を制御する、請求項5に記載の温超純水製造装置。
  7.  前記貯留タンク内の貯留水を定流量にて前記第1熱交換器の熱源流体流路に送水する送水手段を有する、請求項5又は6に記載の温超純水製造装置。
  8.  前記第1熱交換器の熱源流体流路からの戻り水返送配管に、戻り水を冷却するための冷却手段を備えた、請求項1~7のいずれかの温超純水製造装置。

     
PCT/JP2022/034394 2021-12-03 2022-09-14 温超純水製造装置 WO2023100443A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-197028 2021-12-03
JP2021197028A JP7359198B2 (ja) 2021-12-03 2021-12-03 温超純水製造装置

Publications (1)

Publication Number Publication Date
WO2023100443A1 true WO2023100443A1 (ja) 2023-06-08

Family

ID=86611933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034394 WO2023100443A1 (ja) 2021-12-03 2022-09-14 温超純水製造装置

Country Status (3)

Country Link
JP (1) JP7359198B2 (ja)
TW (1) TW202323199A (ja)
WO (1) WO2023100443A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (ja) * 1986-06-24 1988-01-09 Takuma Co Ltd 逆浸透膜装置システム
JPH01245817A (ja) * 1988-03-29 1989-10-02 Toray Ind Inc 熱超純水製造装置
JP2008212834A (ja) * 2007-03-05 2008-09-18 Matsushita Electric Ind Co Ltd 純水製造方法及び装置
US20090134080A1 (en) * 2005-10-20 2009-05-28 Marcus John Fabig Purified Water Production and Distribution System
JP2018043191A (ja) * 2016-09-14 2018-03-22 栗田工業株式会社 超純水製造装置
JP2018043190A (ja) * 2016-09-14 2018-03-22 栗田工業株式会社 超純水製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (ja) * 1986-06-24 1988-01-09 Takuma Co Ltd 逆浸透膜装置システム
JPH01245817A (ja) * 1988-03-29 1989-10-02 Toray Ind Inc 熱超純水製造装置
US20090134080A1 (en) * 2005-10-20 2009-05-28 Marcus John Fabig Purified Water Production and Distribution System
JP2008212834A (ja) * 2007-03-05 2008-09-18 Matsushita Electric Ind Co Ltd 純水製造方法及び装置
JP2018043191A (ja) * 2016-09-14 2018-03-22 栗田工業株式会社 超純水製造装置
JP2018043190A (ja) * 2016-09-14 2018-03-22 栗田工業株式会社 超純水製造装置

Also Published As

Publication number Publication date
JP7359198B2 (ja) 2023-10-11
JP2023082971A (ja) 2023-06-15
TW202323199A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2018051552A1 (ja) 超純水製造装置
JP2008000658A (ja) 膜濾過システム
JP6350719B2 (ja) 超純水製造装置
JP2006305499A (ja) 膜濾過システムの運転方法
JP2006255650A (ja) 純水製造装置
JP5953726B2 (ja) 超純水製造方法及び装置
JP2012206073A (ja) 脱イオン水製造システム
JP6149992B1 (ja) 超純水製造装置
JP2013202581A (ja) 超純水製造装置
WO2019171632A1 (ja) 超純水の加熱方法
WO2023100443A1 (ja) 温超純水製造装置
WO2019004281A1 (ja) 水処理装置および水処理方法
JP2006305498A (ja) 膜濾過システムの運転方法
JP7306074B2 (ja) 超純水製造装置及び超純水製造方法
JP2013202610A (ja) 超純水製造装置
JP6350718B2 (ja) 超純水製造装置
JP2021126644A (ja) 超純水製造装置及び超純水製造方法
WO2022215475A1 (ja) 電気脱イオンシステム及び電気脱イオンシステムの制御方法
JP2009221733A (ja) 水処理供給システム
WO2022239483A1 (ja) 超純水製造方法及び装置
US20230398499A1 (en) Method of cleaning ultrafiltration membrane module and management method of ultrapure water manufacturing system using same
JP6981331B2 (ja) 超純水供給装置
JP6447663B2 (ja) ボイラ水処理装置および処理方法
TW202330086A (zh) 水處理系統及水處理方法
JP2023041226A (ja) 水処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900878

Country of ref document: EP

Kind code of ref document: A1