WO2023100402A1 - 塗料組成物 - Google Patents

塗料組成物 Download PDF

Info

Publication number
WO2023100402A1
WO2023100402A1 PCT/JP2022/025281 JP2022025281W WO2023100402A1 WO 2023100402 A1 WO2023100402 A1 WO 2023100402A1 JP 2022025281 W JP2022025281 W JP 2022025281W WO 2023100402 A1 WO2023100402 A1 WO 2023100402A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiling point
mass
coating composition
acid
polyester resin
Prior art date
Application number
PCT/JP2022/025281
Other languages
English (en)
French (fr)
Inventor
真典 下山
慎悟 天木
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Publication of WO2023100402A1 publication Critical patent/WO2023100402A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Definitions

  • the present invention relates to coating compositions.
  • compositions such as epoxy, polyvinyl chloride, and polyester have been used as coatings for the inner surface of cans from the viewpoint of coating film performance such as corrosion resistance and coating workability.
  • coating compositions containing epoxy resins produced using raw materials containing bisphenol A and the like as base resins have been widely and commonly used.
  • a coating composition for the inner surface of a can that does not use raw materials containing bisphenol A (BPA) (including raw materials that may contain residual levels of BPA) is desired.
  • BPA bisphenol A
  • Patent Document 2 discloses a paint containing a polyester resin and a phenolic resin
  • Patent Document 3 discloses two types having specific glass transition temperatures.
  • a coating is disclosed containing a mixture of polyester resins of No. 1, pp.
  • the coating films obtained from these paints are excellent in the coating film performance required for the inner surface of cans, such as workability, but when applied to the inner surface of can lids, the appearance of the coating film is not sufficient depending on the coating curing conditions. In addition, there is also a problem that workability may deteriorate due to deterioration over time.
  • the problem to be solved by the present invention is to provide a paint that is excellent in scratch resistance, workability, and coating film appearance without using raw materials containing legally controlled substances such as bisphenol A, and is particularly suitable for the inner surface of can lids. It is to provide a composition.
  • the present inventors have made intensive studies to solve the above problems, and as a result, a coating composition containing a polyester resin having a glass transition temperature within a specific range, a resol-type phenol resin, a curing catalyst, and an organic solvent component that satisfies specific requirements. According to the inventors, the inventors have found that the above problems can be solved, and have completed the present invention.
  • the present invention provides a polyester resin (A) having a glass transition temperature of 30° C. to 80° C., a resol-type phenolic resin (B), an acid catalyst (C), and a hydrocarbon solvent (D1) having a boiling point of 130° C. or higher. , a ketone solvent (D2) with a boiling point of 110 ° C. or higher, and an organic solvent component (D) containing an alcohol solvent (D3) with a boiling point of 75 ° C.
  • polyester resin (A) 1 to 30% by mass of the resole phenolic resin (B), an acid catalyst (C ) in an amount of 0.1 to 5.0% by mass and an organic solvent component (D) in an amount of 100 to 600% by mass.
  • the present invention also provides a coated metal sheet having a cured coating film of the above coating composition.
  • the present invention provides a coated metal can having a cured coating film of the above coating composition on at least a part of the can surface.
  • the coating composition of the present invention without using raw materials containing legally controlled substances such as bisphenol A, it is excellent in scratch resistance, workability, and coating film appearance, and is particularly suitable for the inner surface of can lids.
  • a composition can be provided.
  • the present invention includes a polyester resin (A) having a glass transition temperature of 30 ° C. to 80 ° C., a resol type phenol resin (B), an acid catalyst (C), and a hydrocarbon solvent (D1) having a boiling point of 130 ° C. or higher, a boiling point Characterized by containing an organic solvent (D) containing, as essential components, a ketone solvent (D2) with a boiling point of 110°C or higher and an alcohol solvent (D3) with a boiling point of 75°C or higher, satisfying predetermined quantitative requirements. It relates to a paint composition (hereinafter sometimes referred to as the present paint for short).
  • polyester resin (A) is a polyester resin containing hydroxyl groups, and includes oil-free polyester resins, alkyd resins, and modified products of these resins, such as urethane-modified polyester resins and urethane-modified alkyd resins. and so on.
  • an oil-free polyester resin can be preferably used.
  • An oil-free polyester resin refers to a polyester resin that does not contain fatty acids.
  • the above oil-free polyester resin is mainly an esterified product of polybasic acid and polyhydric alcohol.
  • the polybasic acid is selected from, for example, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, hexahydroterephthalic acid, succinic acid, fumaric acid, adipic acid, sebacic acid, maleic anhydride, and the like.
  • phthalic anhydride isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, hexahydroterephthalic acid, succinic acid, fumaric acid, adipic acid, sebacic acid, maleic anhydride, and the like.
  • dibasic acid or in addition to dibasic acid trivalent or higher polybasic acid such as trimellitic anhydride, methylcyclohexene tricarboxylic acid, pyromellitic anhydride can be used.
  • monobasic acids such as benzoic acid, crotonic acid, and pt-butylbenzoic acid can be used together with polybasic acids.
  • polyhydric alcohols examples include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methylpentanediol, 1,4-hexanediol, Dihydric alcohols such as 1,6-hexanediol, 2-methyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, 1,4-dimethylol-cyclohexane are mainly used, Instead of dihydric alcohol or in addition to dihydric alcohol, trihydric or higher polyhydric alcohols such as glycerin, trimethylolethane, trimethylolpropane and pentaerythritol can also be used. These polyhydric alcohols can be used alone or in combination of two or more. The esterification reaction of both the polybasic acid and polyhydric alcohol components can
  • the oil-free polyester resin can also be obtained by transesterification using a lower alkyl ester (e.g., methyl ester, ethyl ester, etc.) of a polybasic acid instead of the polybasic acid in the esterification reaction.
  • a lower alkyl ester e.g., methyl ester, ethyl ester, etc.
  • the transesterification reaction of both the lower alkyl ester of polybasic acid and the polyhydric alcohol can be carried out by a known method.
  • the aromatic dicarboxylic acid accounts for 80 to 100 mol% of the dibasic acid, and that the terephthalic acid accounts for 40 to 100 mol%.
  • the alkyd resin is a resin obtained by reacting an oil fatty acid by a known method in addition to the acid component and the alcohol component of the oil-free polyester resin. Flaxseed oil fatty acid, safflower oil fatty acid, tall oil fatty acid, dehydrated castor oil fatty acid, tung oil fatty acid and the like can be mentioned.
  • the urethane-modified polyester resin is the oil-free polyester resin or a low-molecular-weight oil-free polyester resin obtained by reacting an acid component and an alcohol component in the production of the oil-free polyester resin, and is known as a polyisocyanate compound. It is a resin obtained by reacting with a method.
  • the urethane-modified alkyd resin is a resin obtained by reacting the above-mentioned alkyd resin or a low-molecular-weight alkyd resin obtained by reacting each component in the production of the above-mentioned alkyd resin with a polyisocyanate compound by a known method.
  • Polyisocyanate compounds used for producing urethane-modified polyester resins and urethane-modified alkyd resins include hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′- methylenebis(cyclohexylisocyanate), 2,4,6-triisocyanatotoluene, and the like.
  • the polyester resin (A) preferably has a glass transition temperature (hereinafter sometimes abbreviated as "Tg point") of 30 to 80°C, particularly preferably in the range of 40 to 65°C. If the Tg point is less than 30°C, it is not preferable in terms of scratch resistance. If the Tg point exceeds 80°C, it is not preferable in terms of workability.
  • Tg point glass transition temperature
  • the number average molecule of the polyester resin (A) is preferably within the range of 3,000 to 100,000, more preferably within the range of 8,000 to 50,000, and more preferably within the range of 10,000 to 30 ,000 is more preferred.
  • the hydroxyl value of the polyester resin (A) is preferably 0.5-40 mgKOH/g, more preferably 3-20 mgKOH/g.
  • the acid value of the polyester resin (A) is preferably 20 mgKOH/g or less, more preferably 10 mgKOH/g or less, even more preferably 2 mgKOH/g or less. These ranges are suitable from the viewpoints of ease of handling of the polyester resin, workability of the resulting coating film, hardness, and the like.
  • the polyester resin (A) can be used alone or in combination of two or more.
  • the Tg point is measured by differential thermal analysis (DSC) using a differential scanning calorimeter, and the number average molecular weight is measured by gel permeation chromatography (GPC) according to the following molecular weight measurement method. It is measured using a polystyrene calibration curve.
  • DSC differential thermal analysis
  • GPC gel permeation chromatography
  • Resol type phenolic resin (B) The resol-type phenolic resin, which is the component (B) in this paint, is added as a cross-linking agent for curing by cross-linking reaction with the polyester resin (A).
  • a resol-type phenol resin is a resin obtained by condensation reaction of a phenol component and a formaldehyde component in the presence of an alkali catalyst.
  • phenol components include bifunctional phenols such as o-cresol, p-cresol, p-tert-butylphenol, p-ethylphenol, 2,3-xylenol and 2,5-xylenol; trifunctional phenols such as m-cresol, phenol, m-ethylphenol, 3,5-xylenol, m-methoxyphenol; Examples include tetrafunctional phenols such as bisphenol A and bisphenol F, and these can be used singly or in combination of two or more.
  • bisphenol A is not preferable to use in this paint from the viewpoint of environmental regulations.
  • Formaldehyde components include formaldehyde, paraformaldehyde, trioxane, and the like, and these can be used alone or in combination of two or more.
  • the resol-type phenol resin (B) in the present invention contains 50 to 100% by mass of m-cresol and 0 to 50% by mass of p-cresol (more particularly, 50 to 90% by mass of m-cresol and 10 to 10% by mass of p-cresol). 50% by mass)) are heated in the presence of a reaction catalyst to cause a condensation reaction to introduce a methylol group to obtain a methylolated phenol resin, and the methylol group of the resulting methylolated phenol resin is obtained.
  • a resol-type phenolic resin (B1) obtained by alkyl-etherifying a part of it with an alcohol can be preferably used.
  • the resol-type phenolic resin (B1) has excellent reactivity, and the crosslinked coating film has excellent workability.
  • the resol-type phenolic resin (B1) and the polyester resin (A) in predetermined amounts to form a coating composition, it is possible to obtain a coating film excellent in corrosion resistance, especially in highly processed areas.
  • the phenolic component described above can be used in combination with m-cresol and p-cresol as the starting phenolic component.
  • a phenol containing 70 to 90% by mass of a trifunctional or higher phenol containing m-cresol and 10 to 30% by mass of a bifunctional phenol containing p-cresol Particular preference is given to using ingredients.
  • a monohydric alcohol having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms can be suitably used as the alcohol used to alkyl-etherify a portion of the methylol groups of the methylolated phenolic resin.
  • Suitable monohydric alcohols include methanol, ethanol, n-propanol, n-butanol, isobutanol and the like.
  • the average number of alkoxymethyl groups per benzene nucleus is based on the total number of alkoxymethyl groups and methylol groups in terms of reactivity with the polyester resin (A). Furthermore, it is preferable that each benzene nucleus has an average of 0.5 or more, more preferably 0.6 to 3.0, alkoxymethyl groups per nucleus.
  • Acid catalyst (C) accelerates the curing reaction of the present paint, and specifically includes sulfonic acid compounds such as p-toluenesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenesulfonic acid, and dinonylnaphthalenedisulfonic acid.
  • acid catalysts such as phosphoric acid, amine neutralized products of these acids, and the like.
  • the above sulfonic acid compounds or amine-neutralized sulfonic acid compounds can be preferably used.
  • the organic solvent component (D) includes, as essential components, a hydrocarbon solvent (D1) with a boiling point of 130°C or higher, a ketone solvent (D2) with a boiling point of 110°C or higher, and an alcoholic solvent (D3) with a boiling point of 75°C or higher. ).
  • hydrocarbon solvent (D1) examples include xylene (boiling point 139° C.), Solvesso 100 (boiling point 150-185° C.), Solvesso 150 (boiling point 178-209° C.), ethylcyclohexane (boiling point 133° C.), and the like. can.
  • Examples of the ketone solvent (D2) include methyl isobutyl ketone (boiling point 116°C), cyclohexanone (boiling point 156°C), and isophorone (boiling point 215°C).
  • Examples of the alcohol solvent (D3) include ethanol (boiling point 78°C), n-propanol (boiling point 97°C), isopropanol (boiling point 82°C), n-butanol (boiling point 118°C), and sec-butanol (boiling point 100°C).
  • tert-butanol (boiling point 83° C.), isobutanol (boiling point 108° C.), n-hexanol (boiling point 157° C.), octanol (boiling point 197° C.), 2-ethylhexanol (boiling point 185° C.), and the like.
  • an organic solvent (D4) other than the components (D1), (D2), and (D3) can also be used.
  • Ether-based solvents such as tetrahydrofuran, dioxane, dimethoxyethane
  • Ether alcohol solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monopropyl ether;
  • Oxohexyl acetate (commonly known as "OHA”, boiling point 170°C), 3-methoxybutyl acetate (commonly known as "MBA”, “methoace”, boiling point 172°C), methylmethoxybutyl acetate (commonly known as "Solfit acetate", boiling point 188°C)
  • ethylene glycol monobutyl ether acetate commonly known as "butyl acetate", boiling point 19
  • the organic solvent component (D4) can be used alone or in combination with (D1), (D2), and (D3).
  • the coating composition contains the polyester resin (A), the resol-type phenolic resin (B), the acid catalyst (C) and the organic solvent component (D) in the following proportions.
  • the blending ratio of the polyester resin (A) is 70 to 99% by mass, preferably 75 to 95% by mass, in particular, based on the total solid content of the polyester resin (A) and the resol-type phenolic resin (B). It is preferably 80 to 95% by mass.
  • the blending ratio of the polyester resin (A) is less than 70% by mass, processability may deteriorate, and if it exceeds 99% by mass, water resistance may deteriorate.
  • the blending ratio of the resol-type phenolic resin (B) is 1 to 30% by mass, preferably 2 to 25% by mass, as a solid content with respect to the total solid content of the polyester resin (A) and the resol-type phenolic resin (B). , particularly preferably in the range of 2 to 20% by weight.
  • the mixing ratio of the acid catalyst (C) is 0.1 to 5.0% by mass, preferably 0.2, as a solid content with respect to the total solid content of the polyester resin (A) and the resol-type phenolic resin (B). It is within the range of to 3.0% by mass. Being within the above range is preferable from the viewpoint of the curability and physical properties of the coating film to be obtained.
  • the acid catalyst (C) when the acid catalyst (C) also contains a compound other than the acid (for example, an amine in the case of an amine neutralized product of a sulfonic acid compound), the portion of the compound other than the acid is excluded.
  • a compound other than the acid for example, an amine in the case of an amine neutralized product of a sulfonic acid compound
  • the blending ratio of the organic solvent component (D) is 100 to 600% by mass, preferably 100 to 400% by mass, particularly preferably 150%, based on the total solid content of the polyester resin (A) and the resol-type phenolic resin (B). It is within the range of ⁇ 300% by mass. Being within the above range is preferable from the viewpoint of coating film appearance, coating workability, and the like.
  • the organic solvent component (D) Of the total amount of the organic solvent component (D), the sum of the hydrocarbon solvent (D1) having a boiling point of 130°C or higher, the ketone solvent (D2) having a boiling point of 110°C or higher, and the alcoholic solvent (D3) having a boiling point of 75°C or higher.
  • the amount is preferably 50 mass % or more, more preferably 60 to 95 mass %, still more preferably 65 to 90 mass %.
  • the above ratio is 50% by mass or more, it is preferable in terms of coating film appearance, coating workability, and coating storage stability.
  • the amount of the hydrocarbon solvent (D1) having a boiling point of 130°C or higher is preferably 5-80% by mass, more preferably 15-50% by mass.
  • the blending ratio of the hydrocarbon solvent (D1) is 5% or more, the coating workability is good, and when it is 80 mass or less, it is preferable in terms of the solubility of the polyester resin (A) and the storage stability of the paint. be.
  • the amount of the ketone solvent (D2) having a boiling point of 110°C or higher is preferably 15-60% by mass, more preferably 25-55% by mass.
  • the blending ratio of the ketone-based solvent (D2) is 15% or more, it is preferable in terms of the solubility of the polyester resin (A) and paint storability, and when it is 60% by mass or less, the coating workability is good.
  • the amount of the alcohol solvent (D3) having a boiling point of 75°C or higher is preferably 1 to 20% by mass, more preferably 3 to 12% by mass. If the blending ratio of the alcoholic solvent (D3) is less than 1%, the solubility of the resol-type phenolic resin (B) may decrease, and if it exceeds 20% by mass, the solubility of the polyester resin (A) decreases. sometimes.
  • the coating composition of the present invention further contains a lubricity imparting agent and a coating film modifier.
  • Coating additives such as resins (amino resins, etc.), pigments, aggregation inhibitors, antifoaming agents, leveling agents, etc., can be appropriately blended.
  • the lubricity-imparting agent is used for the purpose of improving the lubricity of the coating film to be obtained.
  • Polyolefin wax such as polyethylene, lanolin wax, montan wax, microcrystalline wax, carnauba wax and the like can be mentioned. Lubricity imparting agents can be used alone or in combination of two or more.
  • a lubricity-imparting agent By adding a lubricity-imparting agent to the coating composition of the present invention, it is possible to impart lubricity to the surface of the coating film obtained from the composition, reduce the frictional resistance of the coating surface, and improve moldability. Corrosion resistance after working is also improved.
  • the amount of the lubricity imparting agent is based on the total solid content of the polyester resin (A) and the resol-type phenolic resin (B) from the viewpoint of moldability, corrosion resistance, etc. based on the flexibility and lubricity of the coating film. , preferably 0.1 to 20 mass %, more preferably 0.2 to 10 mass %, still more preferably 0.5 to 5 mass %.
  • coating film-modifying resin examples include amino resins, ethylene-polymerizable unsaturated carboxylic acid copolymers, and ethylene-polymerizable carboxylic unsaturated acid copolymer ionomers.
  • the above amino resin is blended for the purpose of improving the curability of the coating composition, improving the hardness of the resulting coating film, improving adhesion, and the like.
  • Amino resins are condensation products of aldehydes such as formaldehyde, acetaldehyde, crotonaldehyde and benzaldehyde and substances containing amino or amide groups such as urea, melamine and benzoguanamine, and may be alkyl-etherified with alcohols.
  • Alcohols can include monohydric alcohols such as methanol, ethanol, propanol, butanol, hexanol, benzyl alcohol, cyclohexanol and ethoxyethanol.
  • amino resins include benzoguanamine-formaldehyde resin, melamine-formaldehyde resin, and urea-formaldehyde resin.
  • the blending amount is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, based on the total solid content of the polyester resin (A). Within range.
  • the ethylene-polymerizable unsaturated carboxylic acid copolymer and the ethylene-polymerizable carboxylic unsaturated acid copolymer ionomer can be blended for the purpose of improving the flexibility of the coating film.
  • a coloring pigment eg, titanium oxide
  • an extender pigment e.g., an extender pigment, or the like known in the paint field
  • the coating composition of the present invention can be applied to various substrates such as metal plates, metal cans, plastics, and glass plates.
  • the painted metal sheet of the present invention can be obtained by applying the coating composition of the present invention to a metal sheet.
  • the metal plate examples include hot-rolled steel plate, cold-rolled steel plate, hot-dip galvanized steel plate, electro-galvanized steel plate, alloy-plated steel plate, aluminum-zinc alloy-plated steel plate, aluminum plate, tin plate, tin-plated steel plate, stainless steel plate, copper plate, Examples include copper-plated steel sheets, tin-free steels, nickel-plated steel sheets, ultra-thin tin-plated steel sheets, chromium-treated steel sheets, etc., and if necessary, those subjected to various surface treatments and primer coating can also be used.
  • any metal sheet that can be used for beverage cans, cans for canning, lids, caps, etc. can be used, for example, aluminum. Plates, tin-free steel plates, tinplates and the like can be mentioned.
  • the coated metal sheet of the present invention is obtained by coating the coating composition of the present invention on a metal sheet by various known methods such as roll coater coating, spray coating, immersion coating, electrodeposition coating, etc., followed by heating means such as a continuous baking furnace. It can be obtained by baking by Among the above coating methods, roll coater coating or spray coating is preferred, and roll coater coating is particularly preferred.
  • the baking conditions are not particularly limited, but for example, the maximum temperature reached by the material is 120° C. to 300° C., preferably 180° C. to 260° C., for 5 seconds to 30 minutes, preferably 10 seconds to 10 minutes. , more preferably 10 to 60 seconds.
  • the coating amount of the coated metal sheet can be appropriately determined according to the use of the coated metal sheet, and the weight of the cured coating film is usually about 10 to 200 mg/100 cm 2 , preferably about 20 to 150 mg/100 cm 2 .
  • the painted metal can of the present invention is formed by forming a coating film of the coating composition of the present invention on at least the inner surface and/or the outer surface of the can body or can lid of the metal can, and at least the inner surface of the metal can. It is preferable that a cured coating film is formed from the coating composition of the present invention.
  • the coated metal can of the present invention can be formed by forming a metal can from the above-described coated metal sheet, but the coating composition of the present invention is applied to a preformed metal container and cured to form a cured coating film. can also be obtained by
  • metal container for forming the cured coating film all conventionally known metal cans can be used, and although not particularly limited, three-piece cans and two-piece cans having side seams, such as can bodies, can be mentioned.
  • the above can lid can be formed from the above-described coated metal sheet of the present invention by any conventionally known lid manufacturing method. Generally, it is molded as a stay-on-tab type easy-open can lid or a full-open type easy-open can lid.
  • the form of the can to be coated with the coating composition of the present invention includes a two-piece can composed of two parts, a lid and a body integrated with the bottom, and a three-piece can composed of a lid, a bottom, and a body.
  • Three-piece cans, bottle cans, etc. consisting of two portions can be mentioned, and the coating composition of the present invention can be applied to each of the above portions.
  • the coating film obtained from the coating composition of the present invention does not contain legally regulated substances such as bisphenol A and is excellent in scratch resistance, workability, and coating film appearance. can be suitably used for Moreover, the coating film obtained from the coating composition of the present invention can be suitably used particularly for the inner surface of can lids.
  • the present invention also includes the following configurations.
  • Section 1 A polyester resin (A) having a glass transition temperature of 30° C. to 80° C., a resol type phenolic resin (B), an acid catalyst (C), a hydrocarbon solvent (D1) having a boiling point of 130° C. or higher, and a boiling point of 110° C. or higher
  • Item 1 The coating composition according to Item 1, wherein the amount is 50% by mass or more.
  • Item 3. The coating composition according to item 1 or 2, wherein the amount of the hydrocarbon solvent (D1) having a boiling point of 130° C. or higher is 5 to 80% by mass in the total amount of the organic solvent component (D). Section 4. Item 3.
  • a coated metal plate having a cured coating film of the coating composition according to any one of Items 1 to 6.
  • a coated metal can having a cured coating film of the coating composition according to any one of Items 1 to 6 on at least a part of the can surface.
  • Item 9. A coated metal can having a cured coating film of the coating composition according to any one of Items 1 to 6 on the inner surface of the can lid.
  • Parts by mass of raw materials in the following production examples, examples, and comparative examples represent parts by mass of the solid content (or active ingredient) of the raw materials (excluding the organic solvent component (D)).
  • polyester resin (A) Production Example 1 Polyester resin "Vylon 103" manufactured by Toyobo Co., Ltd. (number average molecular weight: 22,000, hydroxyl value: 5 mgKOH/g, acid value: 2 mgKOH/g or less, Tg point: 45°C) was used as polyester resin (A-1).
  • Production example 2 49.8 parts of terephthalic acid, 49.8 parts of isophthalic acid, 34.4 parts of hexahydroterephthalic acid, 28.3 parts of adipic acid, 99.8 parts of neopentyl glycol, 6.8 parts of trimethylolpropane and a polycondensation catalyst An esterification reaction is carried out while removing water generated by charging, heating and stirring, and a polyester resin (A -2) was obtained.
  • Polyester resin "Unitika Eliether UE-9100" manufactured by Unitika Ltd. (number average molecular weight 30,000, hydroxyl value 2 mgKOH / g, acid value 2 mgKOH / g or less, Tg point 18 ° C.) as polyester resin (A-3) bottom.
  • Polyester resin "Unitika Elitel UE-9900" manufactured by Unitika Ltd. (number average molecular weight 15,000, hydroxyl value 8 mgKOH/g, acid value 2 mgKOH/g, Tg point 101°C) was used as the polyester resin (A-4). .
  • the polyester resin (A-3) of Production Example 3 and the polyester resin (A-4) of Production Example 4 are for comparative examples.
  • Production Examples 6-7 In Production Example 5, the procedure was carried out in the same manner as in Production Example 5, except that 100 parts of the phenol component shown in Table 1 below was used instead of using 70 parts of m-cresol and 30 parts of p-cresol, and the solid content was about 50%. Each resol type phenolic resin solution (B-2) to (B-3) was obtained.
  • each resol-type phenolic resin solution (B-1) to (B-3) is n-butanol.
  • Example 1 To 80 parts of the polyester resin (A-1) obtained in Production Example 1, 40 parts of the resol-type phenolic resin (B-1) solution obtained in Production Example 5 (20 parts in terms of solid content) and "NAICURE 5225" (*1 ) 1.2 parts (0.3 parts as the amount of dodecylbenzenesulfonic acid) are mixed and dissolved, and then the total solid content (100 parts) of the polyester resin (A-1) and the resol-type phenolic resin (B-1) ), 10 parts of ethyl cyclohexane, 120 parts of methyl isobutyl ketone, 6 parts of ethanol, 6 parts of isopropyl alcohol, 20 parts of butanol and 38 parts of ethylene glycol monobutyl ether, solid content 31.2% paint composition No. got 1. (*1) Naicure 5225: USA, King Industries, trade name, amine-neutralized solution of dodecylbenzenesulfonic acid, content of dodecylbenzen
  • Examples 2-40 and Comparative Examples 1-16 The same procedure as in Example 1 was repeated except that the compositions shown in Table 2 below were used. 2-56 were obtained. In addition, the compounding quantity of A component, B component, and C component in Table 2 is solid content amount. The amount of Naicure 5225 is the solid content of dodecylbenzenesulfonic acid.
  • the total solvent amount in Table 2 is the amount relative to the total solid content of 100 parts of the A component and the B component.
  • coating composition No. 41 to 56 are for comparative examples.
  • (*2) in Table 2 are as follows.
  • the amount of Naicure 2500 in Table 2 is the solid content of p-toluenesulfonic acid.
  • test coated plate Each coating composition obtained in the above examples and comparative examples was roll-coated on a #5182 aluminum plate with a thickness of 0.27 mm so that the dry coating weight was 80 to 90 mg/100 cm 2 , Each test coated plate was obtained by passing through a conveyer-type hot-air drying oven and baking. The baking conditions were such that the maximum temperature reached by the material (PMT) was 255° C. and the passage time in the drying furnace was 20 seconds. Various tests were performed on the obtained test coated plate according to the following test methods. The test results are also shown in Table 2 below.
  • Test method Coating film appearance The appearance of the test coated plate was observed with the naked eye. The case where no coating surface abnormality such as repelling, denting, cloudiness or turbidity was observed was rated as (S), and the case where the above-mentioned abnormality was slightly observed but could be judged to be of a practically acceptable level was rated as (A). When coating surface abnormalities such as cissing, dents, cloudiness, and turbidity occurred on the coating surface, it was rated as (B), and when significant coating surface abnormalities occurred, it was rated as (C).
  • test coated plate After cutting the test coated plate 5 cm in the rolling direction and 4 cm in the direction perpendicular to the rolling direction, it was cut into 5 cm ⁇ 4 cm at a point closer to one of the short sides than the midline of the two short sides.
  • the test coated plate was folded in two parallel to the short side.
  • the test coated plate was arranged so that the side with the larger area when folded in two was on the top and the side with the smaller area was on the bottom.
  • two aluminum plates with a thickness of 0.26 mm were sandwiched between the bent portions of the test piece of the painted plate for testing, and set in a special seam-fold type DuPont impact tester.
  • An iron weight with a flat contact surface weighing 1 kg was dropped from a height of 50 cm to give an impact to the bent portion, and then the bent tip portion was energized with an applied voltage of 6.5 V for 6 seconds.
  • a current value (mA) of a width of 20 mm at the tip of the bent portion was measured and evaluated according to the following criteria. If the workability of the coating film is poor, the coating film will crack at the bent portion, exposing the underlying metal plate and increasing the electrical conductivity, resulting in a higher current value.
  • S is less than 10 mA A is 10 mA or more and less than 20 mA B is 20 mA or more and less than 40 mA C is 40 mA or more
  • Scratch resistance Using a Bowden friction tester (manufactured by Shinko Engineering Co., Ltd., Soda type adhesion slip tester), a friction test was performed under the conditions of a 3/16 inch steel ball with a friction part diameter of 4 kg and a friction speed of 7 reciprocations/minute. , the number of times of rubbing until the coating film was scratched was measured. Evaluation was made according to the following criteria. S: no scratches even after 200 times of friction; A: Scratches occur after 150 to 200 friction cycles, B: Scratches occur when the number of frictions is less than 50 to 150 times, C: Scratches occur when the number of frictions is less than 10 to 50 times, D: Scratches occurred with less than 10 times of friction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Paints Or Removers (AREA)

Abstract

ガラス転移温度が30℃~80℃であるポリエステル樹脂(A)、レゾール型フェノール樹脂(B)、酸触媒(C)、及び沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、沸点75℃以上のアルコール系溶剤(D3)を必須成分として含有する有機溶剤成分(D)を、それぞれ所定の量で含有する塗料組成物。

Description

塗料組成物
 本発明は、塗料組成物に関する。
 缶内面用の塗料としては、耐食性等の塗膜性能及び塗装作業性等の観点から、エポキシ系、ポリ塩化ビニル系、及びポリエステル系等の様々な塗料組成物が使用されてきた。
 特に、ビスフェノールA等を含む原料を用いて製造されたエポキシ樹脂を基体樹脂として含有する塗料組成物が広く一般的に使用されてきた。
 しかしながら、環境への影響の観点からビスフェノールA(BPA)を含有する原料(残留レベルのBPAを含有し得る原材料も含む)を使用しない缶内面用の塗料組成物が望まれ、例えば、特許文献1には、ポリエステル-アクリル樹脂系の熱硬化性塗料、特許文献2には、ポリエステル樹脂とフェノール樹脂を含有する塗料が開示され、また、特許文献3には、特定のガラス転移温度を有する2種類のポリエステル樹脂の混合物、架橋剤、及び硬化触媒を含有する塗料が開示されている。
 これらの塗料から得られる塗膜は、加工性等の缶内面用途として求められる塗膜性能には優れているものの缶蓋内面用途に適用すると、塗装硬化条件によっては塗膜外観が充分ではなく、また、経時劣化により加工性が低下する場合があるという不具合もあった。
特開2000-290585号公報 特開2001-131470号公報 特開2013-249376号公報
 本発明が解決しようとする課題は、ビスフェノールA等の法規制物質を含有する原材料を使用することなく、耐傷付き性、加工性、及び塗膜外観に優れ、特に缶蓋内面用途に好適な塗料組成物を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定範囲のガラス転移温度を有するポリエステル樹脂、レゾール型フェノール樹脂、硬化触媒及び特定要件を満足する有機溶剤成分を含有する塗料組成物によれば、上記課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明は、ガラス転移温度が30℃~80℃であるポリエステル樹脂(A)、レゾール型フェノール樹脂(B)、酸触媒(C)、及び沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、沸点75℃以上のアルコール系溶剤(D3)を必須成分として含有する有機溶剤成分(D)を含有する塗料組成物であって、
 ポリエステル樹脂(A)及びレゾール型フェノール樹脂(B)の固形分総量に対してポリエステル樹脂(A)を70~99質量%、レゾール型フェノール樹脂(B)を1~30質量%、酸触媒(C)を0.1~5.0質量%、有機溶剤成分(D)を100~600質量%含有する塗料組成物を提供するものである。
 また、本発明は、上記塗料組成物の硬化塗膜を有する塗装金属板を提供するものである。
 さらに、本発明は、上記塗料組成物の硬化塗膜を缶表面の少なくとも一部に有する塗装金属缶を提供するものである。
 本発明の塗料組成物によれば、ビスフェノールA等の法規制物質を含有する原材料を使用することなく、耐傷付き性、加工性、及び塗膜外観に優れ、特に缶蓋内面用途に好適な塗料組成物を提供することができる。
 本発明は、ガラス転移温度が30℃~80℃であるポリエステル樹脂(A)、レゾール型フェノール樹脂(B)、酸触媒(C)、及び沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、沸点75℃以上のアルコール系溶剤(D3)を必須成分として含有する有機溶剤(D)を所定の量的要件を満足して含有することを特徴とする塗料組成物(以下、略して、本塗料、と称することもある。)に関する。
 以下、本発明の内容を詳細に説明する。
<塗料組成物>
 ポリエステル樹脂(A)
 本塗料において、(A)成分であるポリエステル樹脂は、水酸基を含有するポリエステル樹脂であり、オイルフリーポリエステル樹脂、アルキド樹脂、また、これらの樹脂の変性物、例えばウレタン変性ポリエステル樹脂、ウレタン変性アルキド樹脂等のいずれであってもよい。なかでもオイルフリーポリエステル樹脂を好適に使用することができる。オイルフリーポリエステル樹脂とは、脂肪酸を含まないポリエステル樹脂を指す。
 上記オイルフリーポリエステル樹脂は、主に多塩基酸と多価アルコールとのエステル化物である。
 多塩基酸としては、例えば無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、コハク酸、フマル酸、アジピン酸、セバシン酸、無水マレイン酸等から選ばれる1種以上の二塩基酸が主として使用され、二塩基酸の代わりに又は二塩基酸に加えて、無水トリメリット酸、メチルシクロヘキセントリカルボン酸、無水ピロメリット酸等の3価以上の多塩基酸が使用することができる。これらの多塩基酸は単独で、あるいは2種以上を使用することができる。
 必要に応じて安息香酸、クロトン酸、p-t-ブチル安息香酸等の一塩基酸を多塩基酸と併用することもできる。
 多価アルコールとしては、例えばエチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチルペンタンジオール、1,4-ヘキサンジオール、1,6-ヘキサンジオール、2-メチル-1,3-プロパンジオール、2-エチル2-ブチル-1,3-プロパンジオール、1,4-ジメチロ-ルシクロヘキサン等の二価アルコールが主として使用され、二価アルコールの代わりに又は二価アルコールに加えて、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の3価以上の多価アルコールを使用することもできる。これらの多価アルコールは単独で、あるいは2種以上を混合して使用することができる。多塩基酸と多価アルコールの両成分のエステル化反応は、公知の方法によって行うことができる。
 上記オイルフリーポリエステル樹脂は、上記エステル化反応において、多塩基酸のかわりに多塩基酸の低級アルキルエステル(例えばメチルエステル、エチルエステル等)を用い、エステル交換反応を行うことによっても得ることができる。多塩基酸の低級アルキルエステルと多価アルコールの両成分のエステル交換反応は、公知の方法によって行うことができる。     
 上記オイルフリーポリエステル樹脂において、二塩基酸のうち、芳香族ジカルボン酸の占める割合が80~100モル%、且つそのうち、テレフタル酸の占める割合が40~100モル%であることが好ましい。
 アルキド樹脂は、上記オイルフリーポリエステル樹脂の酸成分及びアルコール成分に加えて、油脂肪酸を公知の方法で反応させて得られる樹脂であって、油脂肪酸としては、例えばヤシ油脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、サフラワー油脂肪酸、トール油脂肪酸、脱水ヒマシ油脂肪酸、キリ油脂肪酸等を挙げることができる。
 ウレタン変性ポリエステル樹脂は、上記オイルフリーポリエステル樹脂、又は上記オイルフリーポリエステル樹脂の製造の際の、酸成分及びアルコール成分を反応させて得られる低分子量のオイルフリーポリエステル樹脂を、ポリイソシアネート化合物と公知の方法で反応させて得られる樹脂である。
 ウレタン変性アルキド樹脂は、上記アルキド樹脂、又は上記アルキド樹脂製造の際の各成分を反応させて得られる低分子量のアルキド樹脂を、ポリイソシアネート化合物と公知の方法で反応させて得られる樹脂である。ウレタン変性ポリエステル樹脂、ウレタン変性アルキド樹脂を製造する際に使用するポリイソシアネート化合物としては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート、4,4´-ジフェニルメタンジイソシアネート、4,4´-メチレンビス(シクロヘキシルイソシアネート)、2,4,6トリイソシアナトトルエン等を挙げることができる。
 本発明において、ポリエステル樹脂(A)は、ガラス転移温度(以下、「Tg点」と略称することがある)が30~80℃であり、特に40~65℃の範囲内であることが好ましい。Tg点が30℃未満であると、耐傷付き性の点で好ましくない。Tg点が80℃を超えると、加工性の点で好ましくない。
 また、ポリエステル樹脂(A)の数平均分子は3,000~100,000の範囲内であることが好ましく、8,000~50,000の範囲内であることがより好ましく、10,000~30,000の範囲内であることがさらに好ましい。ポリエステル樹脂(A)の水酸基価は0.5~40mgKOH/gであることが好ましく、3~20mgKOH/gであることがより好ましい。ポリエステル樹脂(A)の酸価は20mgKOH/g以下であることが好ましく、10mgKOH/g以下であることがより好ましく、2mgKOH/g以下であることがさらに好ましい。ポリエステル樹脂の取扱い易さ、得られる塗膜の加工性、硬度等の点から、これらの範囲が好適である。
 ポリエステル樹脂(A)は単独で、又は2種以上を併用して使用することもできる。
 本明細書において、Tg点は、示差走査熱量計を用いた示差熱分析(DSC)により測定されるものであり、また数平均分子量は、下記分子量測定方法によりゲル浸透クロマトグラフィ(GPC)により、標準ポリスチレンの検量線を用いて測定されるものである。
(分子量測定方法)
 数平均分子量は、溶媒としてテトラヒドロフランを使用し、ゲルパーミエーションクロマトグラフ(東ソー株式会社社製、「HLC8120GPC」)で測定した保持時間(保持容量)を、ポリスチレンの数平均分子量を基準にして換算した値である。カラムは、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」、「TSKgel G-2000XL」(いずれも東ソー株式会社社製、商品名)の4本を用い、移動相;テトラヒドロフラン、測定温度;40℃、流速;1ml/分、検出器;RIの条件で行ったものである。
 レゾール型フェノール樹脂(B)
 本塗料における(B)成分であるレゾール型フェノール樹脂は、上記ポリエステル樹脂(A)と架橋反応して硬化させるために架橋剤として配合されるものである。
 レゾール型フェノール樹脂はフェノール成分とホルムアルデヒド成分とをアルカリ触媒下で縮合反応させることにより得られる樹脂である。
 フェノール成分としては、o-クレゾール、p-クレゾール、p-tert-ブチルフェノール、p-エチルフェノール、2,3-キシレノール、2,5-キシレノール等の2官能性フェノール;
 m-クレゾール、フェノール、m-エチルフェノール、3,5-キシレノール、m-メトキシフェノール等の3官能性フェノール;
 ビスフェノールA、ビスフェノールF等の4官能性フェノール等を挙げることができ、これらは1種で、又は2種以上併用して使用することができる。
 上記のうちビスフェノールAは、環境等に対する法規制の観点から、本塗料においては使用するのは好ましくない。
 ホルムアルデヒド成分としては、ホルムアルデヒド、パラホルムアルデヒド又はトリオキサン等を挙げることができ、これらは1種で、又は2種以上を併用して使用することができる。
 本発明におけるレゾール型フェノール樹脂(B)としては、m-クレゾール50~100質量%及びp-クレゾールを0~50質量%(さらに特に、m-クレゾール50~90質量%及びp-クレゾールを10~50質量%)を含有するフェノール成分とホルムアルデヒド成分とを反応触媒の存在下で加熱して縮合反応させてメチロール基を導入してメチロール化フェノール樹脂を得、得られるメチロール化フェノール樹脂のメチロール基の一部をアルコールでアルキルエーテル化して得られるレゾール型フェノール樹脂(B1)を好適に使用することができる。
 レゾール型フェノール樹脂(B1)は反応性に優れ、かつ架橋した塗膜は加工性に優れる。このレゾール型フェノール樹脂(B1)と、上記ポリエステル樹脂(A)とを所定量組合せた塗料組成物とすることにより特に高加工部における耐食性にも優れた塗膜を得ることができる。
 レゾール型フェノール樹脂(B1)の製造においては、出発原料であるフェノール成分として、m-クレゾール及びp-クレゾールに加えて、前記したフェノール成分を併用することもできる。
 レゾール型フェノール樹脂(B1)の製造には、m-クレゾールを含む3官能以上のフェノールを70~90質量%含有し、かつp-クレゾールを含む2官能性フェノールを10~30質量%含有するフェノール成分を用いることが特に好ましい。
 メチロール化フェノール樹脂のメチロール基の一部をアルキルエーテル化するのに使用されるアルコールとしては、炭素原子数1~8個、好ましくは1~4個の1価アルコールを好適に使用することができる。好適な1価アルコールとしてはメタノール、エタノール、n-プロパノール、n-ブタノール、イソブタノール等を挙げることができる。
 レゾール型フェノール樹脂(B)は、ポリエステル樹脂(A)との反応性等の点から、ベンゼン核1核当り平均してアルコキシメチル基の個数が、アルコキシメチル基とメチロール基との合計個数に基づいて70%以上であることが好適であり、さらにベンゼン核1核当りアルコキシメチル基を平均して0.5個以上有することが好ましく、0.6~3.0個有することがより好ましい。
 酸触媒(C)
 酸触媒(C)は、本塗料の硬化反応を促進するものであり、具体的には、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸等のスルホン酸化合物;燐酸等の酸触媒又はこれらの酸のアミン中和物等を挙げることができる。なかでも上記スルホン酸化合物又はスルホン酸化合物のアミン中和物を好適に使用することができる。
 有機溶剤成分(D)
 本塗料において、有機溶剤成分(D)は、必須成分として沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、沸点75℃以上のアルコール系溶剤(D3)を含有する。
 該炭化水素系溶剤(D1)としては、キシレン(沸点139℃)、ソルベッソ100(沸点150~185℃)、ソルベッソ150(沸点178~209℃)、エチルシクロヘキサン(沸点133℃)等を挙げる事ができる。
 該ケトン系溶剤(D2)としては、メチルイソブチルケトン(沸点116℃)、シクロヘキサノン(沸点156℃)、イソホロン(沸点215℃)等を挙げる事ができる。
 該アルコール系溶剤(D3)としては、エタノール(沸点78℃)、n-プロパノール(沸点97℃)、イソプロパノール(沸点82℃)、n-ブタノール(沸点118℃)、sec-ブタノール(沸点100℃)、tert-ブタノール(沸点83℃)、イソブタノール(沸点108℃)、n-ヘキサノール(沸点157℃)、オクタノール(沸点197℃)、2-エチルヘキサノール(沸点185℃)等を挙げる事ができる。
 有機溶剤成分(D)としては、上記(D1)、(D2)、及び(D3)成分以外の有機溶剤(D4)も使用することができる。具体的には、例えば、プロピオン酸エチル、プロピオン酸メチル、酢酸エチル、酢酸ブチル、エチレングリコールモノメチルエーテルアセテート(沸点143℃)、エチレングリコールモノエチルエーテルアセテート(通称「セロアセ」、沸点156℃)、プロピレングリコールモノメチルエーテルアセテート(通称「PMAC」、沸点146℃)、酢酸イソアミル(沸点142℃)、安息香酸メチル(沸点198~200℃)、エチルエトキシプロピオネート(通称「EEP」、沸点169℃)等のエステル系溶剤;
 テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶剤;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル等のエーテルアルコール系溶剤;
 オキソヘキシルアセテート(通称「OHA」、沸点170℃)、3-メトキシブチルアセテート(通称「MBA」、「メトアセ」、沸点172℃)、メチルメトキシブチルアセテート(通称「ソルフィットアセテート」、沸点188℃)、エチレングリコールモノブチルエーテルアセテート(通称「ブチセルアセテート」、沸点191℃)、ジエチレングリコールモノエチルエーテルアセテート(通称「酢酸カルビトール」、沸点217℃)、ジエチレングリコールモノブチルエーテルアセテート(通称「酢酸ブチルカルビトール」、沸点246℃)等の酢酸エステル;
 コハク酸ジメチル(沸点196℃)、グルタル酸ジメチル(沸点214℃)、アジピン酸ジメチル(沸点239℃)、コハク酸ジエチル(沸点196℃)等のニ塩基酸ジエステル等を挙げる事ができる。
 有機溶剤成分(D4)は単独で、あるいは2種以上を併用して、(D1)、(D2)、及び(D3)と併用することができる。
 塗料組成物
 塗料組成物は、前述したポリエステル樹脂(A)、レゾール型フェノール樹脂(B)、酸触媒(C)及び有機溶剤成分(D)を下記配合割合にて含有するものである。
 ポリエステル樹脂(A)の配合割合は、ポリエステル樹脂(A)及びレゾール型フェノール樹脂(B)の固形分総量に対して、固形分量として、70~99質量%、好ましくは75~95質量%、特に好ましくは80~95質量%である。
 ポリエステル樹脂(A)の上記配合割合が70質量%未満となると加工性が低下する場合があり、また99質量%を超えると、耐水性が低下する場合がある。
 レゾール型フェノール樹脂(B)の配合割合は、ポリエステル樹脂(A)及びレゾール型フェノール樹脂(B)の固形分総量に対して、固形分量として、1~30質量%、好ましくは2~25質量%、特に好ましくは2~20質量%の範囲内である。
 上記範囲内にあることが、得られる塗膜の硬化性、加工性、耐水性等の観点から好適である。
 酸触媒(C)の配合割合は、ポリエステル樹脂(A)及びレゾール型フェノール樹脂(B)の固形分総量に対して、固形分量として、0.1~5.0質量%、好ましくは0.2~3.0質量%の範囲内である。上記範囲内にあることが、得られる塗膜の硬化性、物性等の観点から好適である。
 なお、酸触媒(C)量において、酸触媒(C)が酸以外の化合物(例えば、スルホン酸化合物のアミン中和物の場合等のアミン)も含有する場合は酸以外の化合物の部分は除くものとする。
 有機溶剤成分(D)の配合割合は、ポリエステル樹脂(A)及びレゾール型フェノール樹脂(B)の固形分総量に対して、100~600質量%、好ましくは100~400質量%、特に好ましくは150~300質量%の範囲内である。上記範囲内にあることが、塗膜外観及び塗装作業性等の観点から好適である。
 有機溶剤成分(D)の総量のうち、沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、及び沸点75℃以上のアルコール系溶剤(D3)の合計量は好ましくは50質量%以上、より好ましくは60~95質量%、さらに好ましくは65~90質量%である。上記の割合が50質量%以上となると、塗膜外観、塗装作業性及び塗料貯蔵性の点で好適である。
 有機溶剤成分(D)の総量のうち、沸点130℃以上の炭化水素系溶剤(D1)の量は好ましくは5~80質量%、さらに好ましくは15~50質量%である。炭化水素系溶剤(D1)の上記配合割合が5%以上であると塗装作業性が良好であり、また80質量以下であるとポリエステル樹脂(A)の溶解性及び塗料貯蔵性の点で好適である。
 有機溶剤成分(D)の総量のうち、沸点110℃以上のケトン系溶剤(D2)の量は好ましくは15~60質量%、さらに好ましくは25~55質量%である。ケトン系溶剤(D2)の配合割合が15%以上であるとポリエステル樹脂(A)の溶解性及び塗料貯蔵性の点で好適であり、60質量%以下であると塗装作業性が良好である。
 有機溶剤成分(D)の総量のうち、沸点75℃以上のアルコール系溶剤(D3)の量は好ましくは1~20質量%、さらに好ましくは3~12質量%である。アルコール系溶剤(D3)の配合割合が1%未満ではレゾール型フェノール樹脂(B)の溶解性が低下する場合があり、又、20質量%を超えると、ポリエステル樹脂(A)の溶解性が低下する場合がある。
 本発明塗料組成物には、上記ポリエステル樹脂(A)、レゾール型フェノール樹脂(B)、酸触媒(C)及び有機溶剤成分(D)に加えて、さらに、潤滑性付与剤、塗膜改質用樹脂(アミノ樹脂等)、顔料、凝集防止剤、消泡剤、レベリング剤等の塗料用添加剤を適宜配合することができる。
 上記潤滑性付与剤は、得られる塗膜の潤滑性を向上させる目的で使用されるものであり、例えば、ポリオール化合物と脂肪酸とのエステル化物である脂肪酸エステルワックス、シリコン系ワックス、フッ素系ワックス、ポリエチレン等のポリオレフィンワックス、ラノリン系ワックス、モンタンワックス、マイクロクリスタリンワックス及びカルナバワックス等を挙げることができる。潤滑性付与剤は、1種で又は2種以上を併用して使用することができる。
 本発明塗料組成物に潤滑性付与剤を配合することによって、該組成物から得られる塗膜表面に滑り性を付与することができ、塗面の摩擦抵抗が小さくなり、成型加工性が向上し加工後における耐食性も向上する。潤滑性付与剤の配合量は、塗膜の柔軟性、滑り性などに基づく成型加工性、耐食性等の点からポリエステル樹脂(A)とレゾール型フェノール樹脂(B)との固形分総量に対して、好ましくは0.1~20質量%、より好ましくは0.2~10質量%、さらに好ましくは0.5~5質量%の範囲内である。
 上記塗膜改質用樹脂としては、例えば、アミノ樹脂、エチレン-重合性不飽和カルボン酸共重合体及びエチレン-重合性カルボン不飽和酸共重合体アイオノマー等を挙げることができる。
 上記アミノ樹脂は、塗料組成物の硬化性向上、得られる塗膜の硬度向上、密着性の向上等を目的に配合されるものである。
 アミノ樹脂は、ホルムアルデヒド、アセトアルデヒド、クロトンアルデヒド及びベンズアルデヒド等のアルデヒドと、尿素、メラミン及びベンゾグアナミン等のアミノ又はアミド基含有物質との縮合生成物であり、アルコールによってアルキルエーテル化されていてもよい。アルコールとしては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、ベンジルアルコール、シクロヘキサノール及びエトキシエタノール等の一価アルコールを挙げることができる。
 アミノ樹脂の具体例としては、ベンゾグアナミン-ホルムアルデヒド樹脂、メラミン-ホルムアルデヒド樹脂、尿素-ホルムアルデヒド樹脂等を挙げることができる。
 アミノ樹脂を配合する場合、その配合量は、ポリエステル樹脂(A)の固形分総量に対して、固形分量として、好ましくは0.1~10質量%、より好ましくは0.2~5質量%の範囲内である。
 上記エチレン-重合性不飽和カルボン酸共重合体及びエチレン-重合性カルボン不飽和酸共重合体アイオノマーは、塗膜の可撓性を改良すること等を目的に配合することができる。
 上記顔料としては、塗料分野において公知の着色顔料(例えば、酸化チタン)、体質顔料等を使用することができる。
 本発明塗料組成物は、例えば、金属板、金属缶、プラスチックス、ガラス板等の種々の被塗物に塗装することができる。
 塗装金属板
 本発明の塗装金属板は、本発明の塗料組成物を金属板に塗装することにより得ることができる。
 上記金属板としては、例えば、熱延鋼板、冷延鋼板、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板、合金メッキ鋼板、アルミニウム亜鉛合金メッキ鋼板、アルミニウム板、ブリキ板、スズメッキ鋼板、ステンレス鋼板、銅板、銅メッキ鋼板、ティンフリースチール、ニッケルメッキ鋼板、極薄スズメッキ鋼板、クロム処理鋼板等を挙げることができ、必要に応じて各種表面処理、プライマー塗装が施されたものも使用することができる。
 塗装金属板を缶に加工して使用する場合、その金属板としては、飲料缶、缶詰用缶、蓋、キャップ等に用いることができる金属板であればいずれも使用することができ、例えばアルミニウム板、ティンフリースチール板、ブリキ板等を挙げることができる。
 本発明の塗装金属板は、本発明の塗料組成物を公知の各種の方法、例えばロールコーター塗装、スプレー塗装、浸漬塗装、電着塗装等によって金属板に塗装し、連続焼付炉等の加熱手段によって焼付けることにより得ることができる。
上記塗装方法のなかでもロールコーター塗装もしくはスプレー塗装が好ましく、特にロールコーター塗装が好ましい。
 焼付条件は特に制限されるものではないが、例えば、素材到達最高温度が、120℃~300℃、好ましくは180℃~260℃となる条件で5秒間~30分間、好ましくは10秒間~10分間、さらに好ましくは10~60秒間焼付けることが適している。
 塗装金属板の塗布量は、塗装金属板の用途により適宜決めることができ、硬化塗膜重量で通常10~200mg/100cm程度、特に20~150mg/100cm程度が好ましい。
 塗装金属缶
 本発明の塗装金属缶は、金属缶の少なくとも缶胴もしくは缶蓋の内面及び/又は外面に本発明の塗料組成物による塗膜が形成されてなるものであり、金属缶の少なくとも内面に本発明の塗料組成物による硬化塗膜が形成されていることが好ましい。
 本発明の塗装金属缶は、前述した塗装金属板から金属缶を成形することもできるが、予め成形された金属容器に本発明の塗料組成物を塗装、硬化して硬化塗膜を形成することによって得ることもできる。
 硬化塗膜を形成する金属容器としては、従来公知の金属缶を全て用いることができ、特に限定されないが、側面継ぎ目を有するスリーピース缶、ツーピース缶の例えば、缶胴等を挙げることができる。
 上記缶蓋は、前述した本発明の塗装金属板から、従来公知の任意の製蓋法によって成形することができる。一般的には、ステイ・オン・タブタイプのイージーオープン缶蓋やフルオープンタイプのイージーオープン缶蓋として成形される。
 本発明の塗料組成物が塗装される缶の形態としては、蓋部と、底部と一体化した胴体部との2つの部位で構成される2ピース缶や、蓋部と底部と胴体部の3つの部位からなる3ピース缶、ボトル缶等を挙げることができ、上記各部位に本発明の塗料組成物を塗装することができる。
 本発明の塗料組成物から得られる塗膜は、ビスフェノールA等の法規制物質を含有せず、耐傷付き性、加工性、及び塗膜外観に優れているため、飲料缶等の缶内面の塗装に好適に使用することができる。また、本発明の塗料組成物から得られる塗膜は、特に缶蓋内面用途に好適に使用することができる。
 本発明は、以下の構成も包含する。
項1.ガラス転移温度が30℃~80℃であるポリエステル樹脂(A)、レゾール型フェノール樹脂(B)、酸触媒(C)、及び沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、沸点75℃以上のアルコール系溶剤(D3)を必須成分として含有する有機溶剤成分(D)を含有する塗料組成物であって、
 ポリエステル樹脂(A)及びレゾール型フェノール樹脂(B)の固形分総量に対してポリエステル樹脂(A)を70~99質量%、レゾール型フェノール樹脂(B)を1~30質量%、酸触媒(C)を0.1~5.0質量%、有機溶剤成分(D)を100~600質量%含有することを特徴とする塗料組成物。
項2.有機溶剤成分(D)の総量のうち、沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、及び沸点75℃以上のアルコール系溶剤(D3)の合計量が50質量%以上であることを特徴とする項1に記載の塗料組成物。
項3.有機溶剤成分(D)の総量のうち、沸点130℃以上の炭化水素系溶剤(D1)の量が5~80質量%であることを特徴とする項1又は2に記載の塗料組成物。
項4.有機溶剤成分(D)の総量のうち、沸点110℃以上のケトン系溶剤(D2)の量が15~60質量%であることを特徴とする項1~3のいずれか一項に記載の塗料組成物。
項5.有機溶剤成分(D)の総量のうち、沸点75℃以上のアルコール系溶剤(D3)の量が1~20質量%であることを特徴とする項1~4のいずれか一項に記載の塗料組成物。
項6.レゾール型フェノール樹脂(B)として、m-クレゾール50~100質量%及びp-クレゾールを0~50質量%を含有するフェノール成分を出発原料とするレゾール型フェノール樹脂を含有する項1~5のいずれか一項に記載の塗料組成物。
項7.項1~6のいずれか一項に記載の塗料組成物の硬化塗膜を有する塗装金属板。
項8.項1~6のいずれか一項に記載の塗料組成物の硬化塗膜を缶表面の少なくとも一部に有する塗装金属缶。
項9.項1~6のいずれか一項に記載の塗料組成物の硬化塗膜を缶蓋内面部に有する塗装金属缶。
 なお、本明細書に記載される全ての文献の内容は参照により本明細書に組み込まれる。
 以下、実施例により、本発明をより具体的に説明する。ここで「部」及び「%」はそれぞれ「質量部」及び「質量%」を意味する。なお、以下の製造例、実施例及び比較例における原材料の質量部は、原材料の固形分(又は有効成分と記すことがある)の質量部を表す(有機溶剤成分(D)を除く)。
 ポリエステル樹脂(A)の製造
 製造例1
 東洋紡績株式会社製のポリエステル樹脂「バイロン103」(数平均分子量22,000、水酸基価5mgKOH/g、酸価2mgKOH/g以下、Tg点45℃)をポリエステル樹脂(A-1)とした。
 製造例2
 テレフタル酸49.8部、イソフタル酸49.8部、ヘキサヒドロテレフタル酸34.4部、アジピン酸28.3部、ネオペンチルグリコール99.8部、トリメチロールプロパン6.8部及び重縮合触媒を仕込み、加熱、撹拌して生成する水を除去しながらエステル化反応を行い、数平均分子量24,000、水酸基価10mgKOH/g、酸価0.5mgKOH/g、Tg点60℃のポリエステル樹脂(A-2)を得た。
 製造例3
 ユニチカ株式会社製のポリエステル樹脂「ユニチカエリエーテルUE-9100」(数平均分子量30,000、水酸基価2mgKOH/g、酸価2mgKOH/g以下、Tg点18℃)をポリエステル樹脂(A-3)とした。
 製造例4
 ユニチカ株式会社製のポリエステル樹脂「ユニチカエリーテルUE-9900」(数平均分子量15,000、水酸基価8mgKOH/g、酸価2mgKOH/g、Tg点101℃)をポリエステル樹脂(A-4)とした。
 なお、製造例3のポリエステル樹脂(A-3)及び製造例4のポリエステル樹脂(A-4)は比較例用である。
 レゾール型フェノール樹脂(B)の製造
 製造例5
 m-クレゾール70部、p-クレゾール30部、37%ホルムアルデヒド水溶液180部及び水酸化ナトリウム1部を加え、60℃で3時間反応させた後、減圧下、50℃で1時間脱水した。ついでn-ブタノール100部とリン酸3部を加え、110~120℃で2時間反応を行った。反応終了後、得られた溶液を濾過して生成したリン酸ナトリウムを濾別し、固形分約50%のレゾール型フェノール樹脂(B-1)溶液を得た。得られた樹脂は、数平均分子量800で、ベンゼン核1核当り、平均メチロール基数が0.5個、平均ブトキシメチル数が0.9個であった。
 製造例6~7
 製造例5において、m-クレゾール70部とp-クレゾール30部とを使用するかわりに、後記表1に示すフェノール成分を100部使用する以外は製造例5と同様に行い、固形分約50%の各レゾール型フェノール樹脂溶液(B-2)~(B-3)を得た。
 なお、各レゾール型フェノール樹脂溶液(B-1)~(B-3)の不揮発成分はn-ブタノールである。
Figure JPOXMLDOC01-appb-T000001
 実施例1
 製造例1で得たポリエステル樹脂(A-1)80部に、製造例5で得たレゾール型フェノール樹脂(B-1)溶液40部(固形分量で20部)及び「ネイキュア5225」(*1)1.2部(ドデシルベンゼンスルホン酸量として0.3部)を混合して溶解させ、ついで、ポリエステル樹脂(A-1)及びレゾール型フェノール樹脂(B-1)の固形分総量(100部)に対して、エチルシクロヘキサン10部、メチルイソブチルケトン120部、エタノール6部、イソプロピルアルコール6部、ブタノール20部及びエチレングリコールモノブチルエーテル38部となるように調整することにより、固形分31.2%の塗料組成物No.1を得た。
(*1)ネイキュア5225:米国、キング インダストリイズ社製、商品名、ドデシルベンゼンスルホン酸のアミン中和溶液、ドデシルベンゼンスルホン酸含有量は25%。
 実施例2~40及び比較例1~16
 後記表2に示す配合とする以外は実施例1と同様に行い、固形分31.2%の各塗料組成物No.2~56を得た。なお、表2におけるA成分、B成分及びC成分の配合量は、固形分量である。また、ネイキュア5225の配合量はドデシルベンゼンスルホン酸の固形分量である。
 また、表2中の溶剤量合計は、A成分及びB成分の固形分総量100部に対する量である。
 なお、塗料組成物No.41~56は比較例用である。
 表2における(*2)は、下記のとおりである。
(*2)ネイキュア2500:米国、キング インダストリイズ社製、商品名、p-トルエンスルホン酸のアミン中和溶液、p-トルエンスルホン酸含有量は25%。表2におけるネイキュア2500の配合量はp-トルエンスルホン酸の固形分量である。
 試験塗板の作成
 上記実施例及び比較例で得た各塗料組成物を、厚さ0.27mmの#5182アルミニウム板に乾燥塗膜重量が80~90mg/100cmとなるようにロールコート塗装し、コンベア搬送式の熱風乾燥炉内を通過させて焼付け、各試験塗板を得た。焼付け条件は、素材到達最高温度(PMT)が255℃、乾燥炉内通過時間が20秒間の条件とした。得られた試験塗板について下記の試験方法に従い各種試験を行った。試験結果を併せて後記表2に示す。
 試験方法
 塗膜外観:試験塗板の外観を肉眼で観察した。塗面にハジキ、へこみ、曇り、濁り等の塗面異常の認められないものを(S)、僅かに上記異常が認められるが実用上問題ないレベルと判断できるものを(A)とした。塗面にハジキ、へこみ、曇り、濁り等の塗面異常が発生した場合は(B)とし、著しい塗面異常が発生したものを(C)とした。
 加工性:試験用塗装板を圧延方向に5cm、圧延方向に対して垂直方向に4cm切断した後、2つの短辺の中線よりも一方の短辺に近い箇所で、5cm×4cmに切断した試験用塗装板を短辺と平行に2つ折りにした。試験用塗装板は、2つ折りしたうちの面積が大きい方が上に、面積が小さい方が下になるように配置した。20℃の室内にて、この試験用塗装板の試験片の折曲げ部の間に、厚さ0.26mmのアルミニウム板を2枚挟み、特殊ハゼ折り型デュポン衝撃試験器にセットした。50cmの高さから接触面が平らな重さ1kgの鉄のおもりを落下させて、前記折曲げ部に衝撃を与えた後、折曲げ先端部に印加電圧6.5Vで6秒間通電し、前記折曲げ先端部の20mm幅の電流値(mA)を測定し、下記の基準で評価した。 塗膜の加工性が乏しい場合、折り曲げ加工部の塗膜がひび割れて、下地の金属板が露出して導電性が高まるため、電流値が高くなる。
Sは、10mA未満である
Aは、10mA以上で、かつ20mA未満
Bは、20mA以上で、かつ40mA未満
Cは、40mA以上である
 耐傷付き性:バウデン摩擦試験機(神鋼造機社製、曽田式付着滑り試験機)を用い、摩擦部直径3/16インチ鋼球、荷重4kg、摩擦速度7往復/分の条件で摩擦試験を行い、塗膜にキズが発生するまでの摩擦回数を測定した。下記の基準によって評価した。
S:摩擦回数200回でもキズが発生しない、
A:摩擦回数150回~200回でキズが発生、
B:摩擦回数50回~150回未満でキズが発生、
C:摩擦回数10回~50回未満でキズが発生、
D:摩擦回数10回未満でキズが発生。
 塗料貯蔵性
 各塗料組成物を、室温で1週間静置し目視判定した。
S:沈殿が認められない  
A :ほとんど沈殿が認められない
B :わずかに沈殿が認められる
C :相当量の沈殿物が認められる
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 耐傷付き性、加工性、及び塗膜外観に優れる缶蓋内面塗装缶を提供することができ、ビスフェノールA等法規制対象物質を含有しない塗料組成物を提供することができる。

Claims (9)

  1.  ガラス転移温度が30℃~80℃であるポリエステル樹脂(A)、レゾール型フェノール樹脂(B)、酸触媒(C)、及び沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、沸点75℃以上のアルコール系溶剤(D3)を必須成分として含有する有機溶剤成分(D)を含有する塗料組成物であって、
     ポリエステル樹脂(A)及びレゾール型フェノール樹脂(B)の固形分総量に対してポリエステル樹脂(A)を70~99質量%、レゾール型フェノール樹脂(B)を1~30質量%、酸触媒(C)を0.1~5.0質量%、有機溶剤成分(D)を100~600質量%含有することを特徴とする塗料組成物。
  2.  有機溶剤成分(D)の総量のうち、沸点130℃以上の炭化水素系溶剤(D1)、沸点110℃以上のケトン系溶剤(D2)、及び沸点75℃以上のアルコール系溶剤(D3)の合計量が50質量%以上であることを特徴とする請求項1に記載の塗料組成物。
  3.  有機溶剤成分(D)の総量のうち、沸点130℃以上の炭化水素系溶剤(D1)の量が5~80質量%であることを特徴とする請求項1又は2に記載の塗料組成物。
  4.  有機溶剤成分(D)の総量のうち、沸点110℃以上のケトン系溶剤(D2)の量が15~60質量%であることを特徴とする請求項1~3のいずれか一項に記載の塗料組成物。
  5.  有機溶剤成分(D)の総量のうち、沸点75℃以上のアルコール系溶剤(D3)の量が1~20質量%であることを特徴とする請求項1~4のいずれか一項に記載の塗料組成物。
  6.  レゾール型フェノール樹脂(B)として、m-クレゾール50~100質量%及びp-クレゾールを0~50質量%を含有するフェノール成分を出発原料とするレゾール型フェノール樹脂を含有する請求項1~5のいずれか一項に記載の塗料組成物。
  7.  請求項1~6のいずれか一項に記載の塗料組成物の硬化塗膜を有する塗装金属板。
  8.  請求項1~6のいずれか一項に記載の塗料組成物の硬化塗膜を缶表面の少なくとも一部に有する塗装金属缶。
  9.  請求項1~6のいずれか一項に記載の塗料組成物の硬化塗膜を缶蓋内面部に有する塗装金属缶。
PCT/JP2022/025281 2021-11-30 2022-06-24 塗料組成物 WO2023100402A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021193711 2021-11-30
JP2021-193711 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100402A1 true WO2023100402A1 (ja) 2023-06-08

Family

ID=86611858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025281 WO2023100402A1 (ja) 2021-11-30 2022-06-24 塗料組成物

Country Status (1)

Country Link
WO (1) WO2023100402A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311042A (ja) * 2000-04-28 2001-11-09 Toyobo Co Ltd 缶用塗料樹脂組成物及びこれを塗布した缶用塗装金属板
JP2015034267A (ja) * 2013-08-09 2015-02-19 東洋インキScホールディングス株式会社 塗料組成物およびそれを用いてなる缶蓋
JP2015206056A (ja) * 2014-04-10 2015-11-19 Dic株式会社 アルコキシ化レゾール型フェノール樹脂の製造方法、アルコキシ化レゾール型フェノール樹脂、樹脂組成物及び塗料
JP2016145276A (ja) * 2015-02-06 2016-08-12 東洋インキScホールディングス株式会社 塗料組成物および缶蓋

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311042A (ja) * 2000-04-28 2001-11-09 Toyobo Co Ltd 缶用塗料樹脂組成物及びこれを塗布した缶用塗装金属板
JP2015034267A (ja) * 2013-08-09 2015-02-19 東洋インキScホールディングス株式会社 塗料組成物およびそれを用いてなる缶蓋
JP2015206056A (ja) * 2014-04-10 2015-11-19 Dic株式会社 アルコキシ化レゾール型フェノール樹脂の製造方法、アルコキシ化レゾール型フェノール樹脂、樹脂組成物及び塗料
JP2016145276A (ja) * 2015-02-06 2016-08-12 東洋インキScホールディングス株式会社 塗料組成物および缶蓋

Similar Documents

Publication Publication Date Title
US11667810B2 (en) Polyester polymer having phenolic functionality and coating compositions formed therefrom
JP5462318B2 (ja) 塗料組成物及びこの塗料組成物を塗布して成る塗装金属板、金属容器及び金属蓋
US9663613B2 (en) Polymer having unsaturated cycloaliphatic functionality and coating compositions therefrom
CA2474985C (en) Solvent-containing coating compositions
CN106164171B (zh) 包含源自环状碳酸酯的聚合物的聚酯涂料组合物
JP6257385B2 (ja) 塗料組成物
JP3872892B2 (ja) 塗料組成物
JP2004346131A (ja) ポリエステル樹脂および組成物
JP2002307604A (ja) 絞りしごき加工性にすぐれた潤滑鋼板
JP6242000B2 (ja) 塗料組成物及び金属缶
WO2015147145A1 (ja) ポリエステル樹脂および缶用塗料
JP2015209463A (ja) 塗料組成物及び塗装金属缶
JP6253553B2 (ja) 塗料組成物
WO2017047197A1 (ja) 共重合ポリエステルおよびこれを用いた金属プライマー塗料
WO2023100402A1 (ja) 塗料組成物
JP2003246006A (ja) 缶用塗装金属板
JP2002201411A (ja) 塗料組成物
CN105431468B (zh) 容器涂料组合物
JP2001311040A (ja) 缶用塗料樹脂組成物及びこれを塗布した缶用塗装金属板
JP2023066362A (ja) 塗料組成物
JP2003155444A (ja) 水系樹脂組成物、これを含む水系塗料、その塗料を用いた塗膜、その塗料を用いた塗装金属板
JP2001311039A (ja) 缶用塗料樹脂組成物及びこれを塗布した缶用塗装金属板
JP4147471B2 (ja) 缶塗料用樹脂組成物および缶内面塗料用樹脂組成物
JP5003930B2 (ja) オーバーコートクリア塗料用ポリエステル樹脂およびそれを用いたオーバーコートクリア塗料樹脂組成物
JP2004339494A (ja) 熱硬化型塗料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023564736

Country of ref document: JP