WO2023098632A1 - 羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法 - Google Patents

羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法 Download PDF

Info

Publication number
WO2023098632A1
WO2023098632A1 PCT/CN2022/134764 CN2022134764W WO2023098632A1 WO 2023098632 A1 WO2023098632 A1 WO 2023098632A1 CN 2022134764 W CN2022134764 W CN 2022134764W WO 2023098632 A1 WO2023098632 A1 WO 2023098632A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
solution
trapping
carbonyl compound
carbonyl
Prior art date
Application number
PCT/CN2022/134764
Other languages
English (en)
French (fr)
Inventor
黄龙
操吉学
罗诚浩
庞登红
张璟
祝浩
Original Assignee
湖北中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中烟工业有限责任公司 filed Critical 湖北中烟工业有限责任公司
Publication of WO2023098632A1 publication Critical patent/WO2023098632A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present invention relates to the technical field of flue gas component analysis, in particular to a carbonyl compound trapping agent, and also to a trapping device for trapping carbonyl compounds in exhaled smoke by using the trapping agent, and a trap using the trapping agent Method for the detection of carbonyl compounds in exhaled smoke.
  • Cigarette smoke has been confirmed to contain more than 4,850 chemical components, of which 0.6% are harmful components, and of the 0.6% harmful components, 0.2% are carcinogenic or possibly carcinogenic components.
  • Smoking not only harms the health of smokers, but also pollutes the ambient air.
  • Exhaled smoke is an important part of the environmental smoke of traditional cigarettes.
  • new tobacco products such as electronic cigarettes and heated cigarettes do not produce sidestream smoke, and may significantly reduce pollution to the surrounding environment compared with traditional cigarettes.
  • smoke aerosols exhaled by consumers will still have a certain impact on ambient air quality.
  • Carbonyl compounds are one of the main harmful components in cigarette smoke, which have a strong stimulating effect on the mucous membrane of the human respiratory system, and long-term inhalation will cause great harm to the human body.
  • Formaldehyde, acetaldehyde, acrolein, and crotonaldehyde are listed as Class 1, Class 2B, and Class 3 carcinogens by the International Agency for Research on Cancer (IARC), respectively. Therefore, the study of carbonyl compounds in exhaled smoke is of great significance to the study of the impact of smoking on ambient air.
  • the patent document whose publication number is CN104267118A discloses a method for measuring carbonyl compounds in cigarette mainstream smoke.
  • the method comprises the following steps: (1) packing the adsorbent material for trapping carbonyl compounds in a smoking machine with adsorption tube In the adsorption tube of the trapping device, trap the carbonyl compound in the mainstream smoke of the cigarette; (2) transfer the adsorbent material trapping the carbonyl compound in step (1) to the analysis container, and then add the desorption solution for desorption , adding 2,4-dinitrophenylhydrazine (DNPH) solution for derivatization treatment to obtain a desorption solution containing carbonyl compounds; (3) using liquid chromatography to obtain the desorption solution containing carbonyl compounds obtained in step (2) solution to be tested.
  • DNPH 2,4-dinitrophenylhydrazine
  • the DNPH solution reacts with the carbonyl compound in the flue gas to generate hydrazone compounds to capture the carbonyl compound.
  • the defect is that it uses 2,4-dinitro
  • the phenylhydrazine (DNPH) solution is used for trapping, and the 2,4-dinitrophenylhydrazine (DNPH) solution uses acid as a solvent.
  • DNPH 2,4-dinitro
  • DNPH 2,4-dinitro The phenylhydrazine
  • DNPH 2,4-dinitrophenylhydrazine
  • hydrazone derivatives of aldehydes are unstable under acidic conditions, and are very prone to polymerization to form dimers, which will affect subsequent detection results.
  • there are nicotine, alcohols, ammonia, phenols and other substances in the smoke may dissolve in the acid solution or react with the acid solution, making the test solution impure and affecting the subsequent test results.
  • the technical problem to be solved by the present invention is to provide a carbonyl compound trapping agent, a trapping device and a detection method for carbonyl compounds in exhaled smoke. .
  • the technical scheme for solving the problem of the present invention is, at first, a kind of carbonyl compound trap is provided, and it is prepared through the following steps:
  • the first metal/ SiO2 composite hollow spheres were prepared by layer-by-layer self-assembly method
  • a carbonyl compound trapping agent and its preparation method are first disclosed.
  • the core of this carbonyl compound trapping agent is also 2,4-dinitrophenylhydrazine (DNPH), it is different from the prior art Yes, instead of using DNPH solution, the DBPH powder is loaded on a solid carrier, which avoids the influence of the solvent on the capture.
  • DNPH 2,4-dinitrophenylhydrazine
  • this solid support is not a conventional metal-organic framework material or metal hollow sphere: in ordinary metal-organic framework materials, when DNPH is loaded on it, it is loaded on its surface, but DNPH powder is easy to oxidize and easily Therefore, it is necessary to reduce the contact between DNPH and air.
  • Metal-organic framework materials have a large surface area. Although they can increase the load rate, the contact area between DNPH and air is also large, and there is a problem that DNPH is easily oxidized and flammable. .
  • DNPH In ordinary metal hollow spheres, although DNPH can be filled inside the hollow spheres to reduce its contact with the outside air, DNPH is in a state of aggregation inside the metal hollow spheres, and it is difficult to disperse, that is, the surface area of DNPH is small, which will cause trapping. The problem of low collection efficiency.
  • this application innovatively combines the two, and fixes the metal-organic framework material inside the metal hollow sphere, thereby obtaining a new type of solid support. When loading DNPH, DNPH enters the interior of the metal hollow sphere and is loaded on the metal organic framework in the metal hollow sphere.
  • the combination of the two should not be understood as a method that can be easily thought of by those skilled in the art.
  • the metal organic framework material it needs to be coated, which is based on its load
  • the characteristics of the DNPH material in the general field, the material to be loaded does not need to reduce the contact with the outside air, so the idea of coating the metal organic framework material does not arise.
  • the usual method is to prepare it directly into a porous structure, but in this application, since DNPH is to be loaded, the compatibility between metal and DNPH is not good, Only using porous metal hollow spheres to load DNPH has the problem of low loading rate.
  • the first metal/SiO 2 composite hollow sphere is first prepared, and the spherical shell of the hollow sphere is composed of the first metal and silicon dioxide, which is the inner shell, and is impregnated with the SiO 2 suspension After that, the middle shell is formed, and the outer shell is formed after the second metal is plated.
  • the silicon dioxide in the inner shell and the middle shell is removed by chemical action, the inner shell presents a porous structure, and at the same time, the outer shell needs to help the entry of HF and the removal of the reaction product of HF and silicon dioxide.
  • the silica between the inner and outer shells is removed to form voids.
  • this hollow sphere is immersed in the mixed solution of the first metal ion solution, the second metal ion solution and the organic ligand, the first metal ion and the second metal ion lead the organic ligand that is coordinated with it (in order to facilitate Description, denoted as material X) enters the inner shell of the hollow sphere and the gap between the inner and outer shells at the same time, the block material X in the inner shell and the block material X in the gap pass through several The combination of the linear material X in the opening of the inner shell makes the overall material X wrap the inner shell, thereby realizing the fixation of the material X on the metal hollow sphere.
  • the preparation of hollow spheres by layer-by-layer self-assembly method in step S1 is an existing technology, which uses negatively charged colloidal particles as a template, deposits a layer of positively charged polyelectrolyte on the template, and then the negatively charged material After being adsorbed on the surface of the colloid, the colloid can be calcined to remove it.
  • step S1 includes the following steps:
  • the dried microspheres obtained in S1c may be subjected to steps S1b and S1c several times, and then S1d is performed.
  • step S2 the first metal/SiO 2 composite hollow sphere is immersed in the SiO 2 suspension and then taken out and dried.
  • the purpose of drying is to remove the dispersant in the SiO 2 suspension.
  • the SiO 2 suspension Use water as dispersant.
  • step S2 before the second metal is plated sensitization needs to be performed first.
  • the sensitization solution is selected from SnCl 2 hydrochloric acid solution, and the sensitization treatment is performed for 10-12 hours.
  • electroless plating is preferably used in the present invention.
  • the above-mentioned first metal and second metal can be any metal, but considering that the DNPH powder has the danger of being heated and flammable, when it is loaded, the solid carrier should have good heat dissipation, the first metal and the second metal adopt Metals with high thermal conductivity.
  • the first metal is one or more of Au and Ag.
  • the second metal is one or more of Cu and Al.
  • step S3 the method of making metal-organic framework materials together with ions of the first metal, ions of the second metal, hollow spheres and organic ligands is basically the same as the method for preparing metal-organic framework materials in the prior art, as the method of the present invention
  • the optimization includes the following steps:
  • step S4 when loading DNPH, the DNPH powder can be directly mixed with the metal-organic framework material obtained above at a low temperature of 0-10°C. In order to improve the loading uniformity, it is preferable to make DNPH into a solution and load it, and then remove solution.
  • step S4 includes the following steps: dissolving 2,4-dinitrophenylhydrazine in a solvent to obtain a 2,4-dinitrophenylhydrazine solution, adding the metal organic framework material to 2,4 - in the dinitrophenylhydrazine solution, stirring at 100-200 r/min for 3-5 hours, taking out the solid matter, and removing the solvent by heating under an inert atmosphere.
  • described solvent adopts ethanol.
  • Another object of the present invention is to provide a method for detecting carbonyl compounds in exhaled smoke, which uses the carbonyl compound trapping agent prepared above to trap carbonyl compounds in exhaled smoke.
  • this detection method includes the following steps: after the exhaled smoke passes through the carbonyl compound trapping agent, the carbonyl compound trapping agent is rinsed with acetonitrile, and the eluate is collected; Phase chromatography-ultraviolet detector analysis method, the eluent is analyzed and determined.
  • the carbonyl compounds in the exhaled smoke include formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, butanone and butyraldehyde.
  • instrumental analysis condition is as follows: liquid chromatography column is Dionex Explosive E2 (250mm ⁇ 4.6mm, 5 ⁇ m). Flow rate: 1mL/min; injection volume: 10 ⁇ L; detector: DAD, detection wavelength: 365nm. The analysis time is 45min.
  • the gradient elution conditions are shown in Table 1 below.
  • Still another object of the present invention is to provide a trapping device for carbonyl compounds in exhaled smoke, which includes a trapping tube, and the two ends of the trapping tube are respectively connected to a mouthpiece and a gas sampling pump; The collecting packing made of the carbonyl compound collecting agent prepared above.
  • a three-way valve is provided between the trapping pipe and the gas sampling pump.
  • the three ports of the three-way valve communicate with the trapping pipe, the gas sampling pump and the outside air respectively.
  • At least two collection fillers are arranged in the collection pipe, and the interval between two adjacent collection fillers is at least 10 cm.
  • the trapping filler close to the gas sampling pump is used to absorb carbonyl compounds in the external air, so as to prevent the carbonyl compounds in the external air from affecting the detection results of the carbonyl compounds in the exhaled smoke.
  • a smoking behavior recorder is also provided between the mouthpiece and the collecting pipe.
  • the smoking behavior recorder is an existing technology available on the market.
  • the nozzle end is connected to the mouthpiece, and the plug port is connected to the capture tube. It can record the parameters of the smoke exhaled by volunteers and calculate the volume of the exhaled smoke.
  • the outer diameter of the rubber hose connected to the socket must be about 5-8cm.
  • This application uses a solid carrier to load 2,4-dinitrophenylhydrazine to obtain a carbonyl compound trapping agent, which will not trap other carbonyl compounds in the exhaled smoke when it is used to trap carbonyl compounds
  • a solid carrier to load 2,4-dinitrophenylhydrazine to obtain a carbonyl compound trapping agent, which will not trap other carbonyl compounds in the exhaled smoke when it is used to trap carbonyl compounds
  • Fig. 1 is a structural schematic diagram of a trapping device for carbonyl compounds in exhaled smoke
  • mouthpiece 1 smoking behavior recorder 2, trapping tube 3, three-way valve 4, gas sampling pump 5.
  • the dried microspheres were calcined at 450°C for 1.5h to obtain Ag/SiO 2 composite hollow spheres.
  • the composite hollow spheres after electroless copper plating are added into 30% HF solution and soaked for 24 hours, and then the solid matter is taken out, washed and dried to obtain hollow spheres with openings.
  • this trapping device sequentially includes a mouthpiece 1, a smoking behavior recorder 2, a trapping pipe 3, a three-way valve 4, and a gas sampling pump 5.
  • a rubber hose with a diameter of 7.5cm is connected.
  • a trapping packing is installed in the trapping pipe 3, and the trapping packing includes two sieve plates and a carbonyl compound trapping agent filled between the two sieve plates, and the filling amount of the carbonyl compound trapping agent is 1000 mg.
  • the knob of the three-way valve 4 When in use, turn the knob of the three-way valve 4 to connect the c-way and b-way, and turn on the gas sampling pump 5 (the flow rate is set to 5000mL/min).
  • the traditional cigarette is used for smoking.
  • the volunteer starts to smoke after each puff, the smoke stays in the mouth for 20 seconds, and then the mouth is aimed at the mouthpiece 1 (requires the face to fit the mouthpiece), and at the same time, the three-way
  • the knob of valve 4 When the knob of valve 4 is turned to connect road a and road b, volunteers exhale smoke slowly, and the carbonyl compounds in the exhaled smoke are captured by the trapping filler in trap tube 3 .
  • the volunteers stop blowing, and at the same time, the three-way valve 4 is turned to connect the c-way and b-way, and then vent. Volunteers continued to smoke, and took a second puff of exhaled smoke to collect a total of 9 puffs of exhaled smoke, and the sampling ended.
  • the instrument analysis conditions are as follows: the liquid chromatographic column is Dionex Explosive E2 (250mm ⁇ 4.6mm, 5 ⁇ m). Flow rate: 1mL/min; injection volume: 10 ⁇ L; detector: DAD, detection wavelength: 365nm. The analysis time was 45 minutes, and the gradient elution conditions were as in Table 1 above.
  • Two sets of trapping fillers are installed in the trapping tube 3, and the interval between the two trapping packings is 10 cm.
  • the trapping packing far away from the gas sampling pump 5 is used for acetonitrile rinsing and collection and analysis of the eluent.
  • This embodiment is basically the same as Embodiment 1, the only difference is that Au is selected as the first metal.
  • step S1 1 g of chloroauric acid was added to 100 mL of distilled water, and then 0.1 g of hydroxylamine hydrochloride was added, and stirred evenly to obtain a chloroauric acid solution.
  • the dried microspheres were calcined at 450°C for 1.5h to obtain Au/SiO 2 composite hollow spheres.
  • step S3 10 mL of 0.05 g/mL chloroauric acid solution and 10 mL of 0.05 g/mL copper nitrate solution were mixed evenly.
  • This embodiment is basically the same as Embodiment 1, the only difference is that Al is selected as the second metal.
  • step S2 take 50mL of aluminum chloride of 12g/L, 80mL of potassium sodium tartrate of 13g/L, and 20mL of formaldehyde solution with a concentration of 30% and mix them, and add the composite hollow spheres after washing into the mixed solution. React for 2h under magnetic stirring to complete electroless aluminum plating.
  • step S3 10 mL of 0.05 g/mL silver nitrate solution and 10 mL of 0.05 g/mL aluminum nitrate solution were mixed evenly.
  • Example 2 This example is basically the same as Example 1, and the only difference is that the parameter conditions for preparing the carbonyl compound collector are different.
  • Example 2 This example is basically the same as Example 1, and the only difference is that the parameter conditions for preparing the carbonyl compound collector are different.
  • This comparative example is basically the same as that of Example 1, except that the carbonyl compound trapping agent is different.
  • This comparative example is basically the same as that of Example 1, except that the carbonyl compound trapping agent is different.
  • the hollow spheres with open pores obtained in S2 were used as carbonyl trapping agents.
  • the carbonyl compounds in the exhaled flue gas were captured by the trapping device and trapping method disclosed in the patent document with publication number CN104267118A, and analyzed using the instrumental analysis conditions of Example 1 of the present application.
  • Example 1 The carbonyl compound trapping agents in Examples 1, 5-8 and Comparative Examples 1-3 were respectively placed in the sample liquid and left to stand for 10 minutes, then taken out, then rinsed with acetonitrile, collected the eluate, took the eluate and placed In a 2mL chromatographic bottle, the instrument analysis conditions in Example 1 were used for HPLC-DAD analysis, and the detection results are shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及烟气成分分析技术领域,尤其涉及羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法。这种羰基化合物捕集剂,通过以下步骤制备:以PS微球为核,采用逐层自组装法制备第一金属/SiO2复合空心球;将所述第一金属/SiO2复合空心球浸渍于SiO2悬浮液中后取出干燥;然后于其上镀第二金属,再置于HF溶液中浸泡除去SiO2,得到具有开孔的空心球;将所述第一金属的离子、所述第二金属的离子、所述空心球与有机配体一起制成金属有机框架材料;将2,4-二硝基苯肼负载于所述金属有机框架材料上。本申请采用固体载体对2,4-二硝基苯肼进行负载,其用于捕集呼出烟气中羰基化合物时,不会捕集烟气中的其他化学物质,提高了分析的准确性。

Description

羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法
本申请要求于2021年12月02日提交中国专利局、申请号为202111459658.5、发明名称为“羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及烟气成分分析技术领域,尤其涉及一种羰基化合物捕集剂,还涉及一种利用该捕集剂捕集呼出烟气中羰基化合物的捕集装置、以及一种利用该捕集剂进行的呼出烟气中羰基化合物的检测方法。
背景技术
卷烟烟气中已确认含有4850多种化学成分,其中0.6%的成分为有害成分,而这0.6%的有害成分中,有0.2%是致癌或可能致癌的成分。吸烟不仅对吸烟者健康产生危害,对环境空气也带来污染。呼出烟气是传统卷烟环境烟气的重要部分。然而,新型烟草制品如电子烟和加热卷烟等均不会产生侧流烟气,与传统卷烟相比,对周围环境的污染可能会显著降低。但在电子烟和加热不燃烧卷烟的使用过程中,消费者呼出的烟气气溶胶依然会对环境空气质量产生一定的影响。
羰基化合物是卷烟烟气中一类主要有害成分,对人体的呼吸系统粘膜有较强的刺激作用,长期吸入会对人体产生较大危害。甲醛、乙醛、丙烯醛和巴豆醛分别被国际癌症研究机构(IARC)列为1类、2B类、3类致癌物。因此,研究呼出烟气中羰基化合物对于研究吸烟对环境空气的影响具有十分重要的意义。
公开号为CN104267118A的专利文件公开了这样一种卷烟主流烟气中羰基化合物的测定方法,该方法包括以下步骤:(1)将用于捕集羰基化合物的吸附材料装填在带吸附管的吸烟机捕集装置的吸附管中,捕集所述卷烟主流烟气中的羰基化合物;(2)将步骤(1)中捕集有羰基化合物的吸附材料转移至解析容器中,然后加入解吸溶液进行解吸,加入2,4-二硝基苯肼(DNPH)溶液进行衍生化处理,得到包含有羰基化合物的解吸溶液;(3)使用液相色谱法对步骤(2)得到的包含有羰基化合物的解吸溶液进行检测。
该申请中,利用吸附材料捕集烟气后,以DNPH溶液与烟气中的羰基化 合物反应生成腙类化合物的特性捕集羰基化合物,其存在的缺陷在于:其采用2,4-二硝基苯肼(DNPH)溶液进行捕集,2,4-二硝基苯肼(DNPH)溶液以酸液为溶剂。然而,醛的腙类衍生物(特别是丙烯醛)在酸性条件下不稳定,非常容易发生聚合反应形成二聚体,从而会对后续检测结果造成影响。同时,烟气中还存在烟碱、醇类、氨、酚类等物质,这些物质可能溶于酸液中或者与酸液发生反应,使得检测液不纯,也会对后续检测结果造成影响。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法。。
本发明解决问题的技术方案是,首先,提供一种羰基化合物捕集剂,其通过以下步骤制备:
S1.以PS微球为核,采用逐层自组装法制备第一金属/SiO 2复合空心球;
S2.将所述第一金属/SiO 2复合空心球浸渍于SiO 2悬浮液中后取出干燥;然后于其上镀第二金属,再置于HF溶液中浸泡除去SiO 2,得到具有开孔的空心球;
S3.将所述第一金属的离子、所述第二金属的离子、所述空心球与有机配体一起制成金属有机框架材料;
S4.将2,4-二硝基苯肼负载于所述金属有机框架材料上。
本申请中,首先公开了一种羰基化合物捕集剂及其制备方法,这种羰基化合物捕集剂的核心虽然也是2,4-二硝基苯肼(DNPH),但是与现有技术不同的是,不采用DNPH的溶液,而是将DBPH粉末负载在一固体载体上,避免了溶剂对捕集的影响。
同时,这种固体载体也并非常规的金属有机框架材料或金属空心球:普通的金属有机框架材料中,DNPH负载于其上时,是负载在其表面的,但是DNPH粉末又存在易氧化、易燃的问题,因此需要减少DNPH与空气的接触,金属有机框架材料具有较大的表面积,虽然可以提高负载率,但是导致了DNPH与空气的接触面积也较大,存在DNPH易氧化易燃的问题。普通金属空心球中,虽然可以将DNPH填充在空心球内部,减少其与外界空气的接触,但是DNPH在金属空心球内部呈聚集状态,难以分散开来,也就是DNPH的表面积小,会造成捕集效率低的问题。针对这些问题,本申请创新性地将两者结合 起来,将金属有机框架材料固定在金属空心球内部,从而得到了一种新型的固体载体。负载DNPH时,DNPH进入金属空心球内部、负载在金属空心球内的金属有机框架上。
值得注意的是,将这两者结合不应被理解为本领域技术人员能够简单想到的方法,基于构思上,对于金属有机框架材料而言,需要将其进行包覆,是基于其所要负载的DNPH材料的特性,在一般领域中,所要负载的材料不需要减少与外界空气的接触,因此不会产生对金属有机框架材料进行包覆的构思。对于金属空心球而言,如果需要增大其负载面积,通常的方法是直接将其制备为多孔结构,但是在本申请中,由于要负载的是DNPH,金属与DNPH的相合性并不好,仅以多孔金属空心球负载DNPH,存在负载率低的问题。
同时,基于技术方案上,如何将金属有机框架材料固定在金属空心球内部也是一个技术问题。为了实现这一固定效果,本申请中,首先制备第一金属/SiO 2复合空心球,此时空心球的球壳由第一金属和二氧化硅构成、为内层壳,浸渍SiO 2悬浮液后形成中间层壳,镀上第二金属后形成外层壳。此时通过化学作用除去内层壳和中间层壳中的二氧化硅时,内层壳呈现多孔结构,同时外层壳由于需要帮助HF的进入、以及HF与二氧化硅的反应产物脱出,也具有开孔,同时内层壳和外层壳之间的二氧化硅被除去而形成空隙。将这种空心球浸渍在第一金属离子溶液、第二金属离子溶液与有机配体的混合液中时,第一金属离子和第二金属离子带领与之配位连接的有机配体(为了便于说明,记为材料X)同时进入空心球内层壳内、以及内外层壳之间的空隙中,位于内壳层内的块状材料X、与位于空隙中的块状材料X、通过位于若干内层壳开孔中的线状材料X结合,使得整体材料X包覆着内层壳,实现了材料X在金属空心球上的固定。
其中,步骤S1中通过逐层自组装法制备空心球为现有技术,其是以带负电荷的胶体微粒为模板,在模板上沉积一层带正电的聚电解质,然将带负电的材料吸附在胶体表面后,将胶体煅烧除去即可。
作为本发明的优选,步骤S1包括以下步骤:
S1a.将二氧化硅溶胶和第一金属的离子溶液混合,得到溶液C;
S1b.将PS微球加入十二烷基磺酸钠水溶液中,超声后洗涤干燥,得到微球A;
S1c.将微球A加入到溶液C中,升温至30-50℃反应2-3h;然后加入聚乙烯吡咯烷酮溶液,升温至40-85℃反应25-60min,洗涤干燥;
S1d.将干燥后的微球置于400-500℃下煅烧1-2h。
作为本发明的优选,可将S1c得到的干燥后的微球重复进行步骤S1b和S1c若干次后,再进行S1d。
步骤S2中,将所述第一金属/SiO 2复合空心球浸渍于SiO 2悬浮液中后取出干燥,干燥是为了除去SiO 2悬浮液中的分散剂,作为本发明的优选,SiO 2悬浮液以水为分散剂。步骤S2中,镀第二金属之前,需要先进行敏化,作为本发明的优选,敏化液选用SnCl 2的盐酸溶液,敏化处理10-12h。镀第二金属时,作为本发明的优选,采用化学镀。
上述第一金属和第二金属可以是任意金属,但是考虑到由于DNPH粉末存在受热易燃的危险,因此在对其负载时,固体载体应该具有良好的散热性,第一金属和第二金属采用导热系数高的金属。作为本发明的优选,所述第一金属为Au、Ag中的一种或几种。作为本发明的优选,所述第二金属为Cu、Al中的一种或几种。
步骤S3中,将第一金属的离子、第二金属的离子、空心球与有机配体一起制成金属有机框架材料的方法与现有技术中制备金属有机框架材料的方法基本一致,作为本发明的优选,包括以下步骤:
S3a.将第一金属的离子溶液、第二金属的离子溶液混合均匀得到溶液A;
S3b.将1,3,5-苯三甲酸溶解于乙醇和N,N-二甲基甲酰胺的混合溶液中,得到溶液B;
S3c.将所述空心球加入溶液A与溶液B的混合溶液中,在100-200r/min转速、85-100℃下恒温12-24h,得到的反应产物经乙醇纯化后,抽滤洗涤干燥,得到所述金属有机框架材料。
步骤S4中,负载DNPH时,可以直接将DNPH粉末与上述得到的金属有机框架材料在0-10℃的低温下混合,为了提高负载均匀度,优选将DNPH制成溶液后进行负载,然后再除去溶液。作为本发明的优选,步骤S4中包括以下步骤:将2,4-二硝基苯肼溶解在溶剂中得到2,4-二硝基苯肼溶液,将所述金属有机框架材料加入2,4-二硝基苯肼溶液中,在100-200r/min下搅拌3-5h后取出固体物,在惰性氛围下加热除去所述溶剂。作为本发明的优选,所述溶剂 采用乙醇。
本发明还有一个目的是提供一种呼出烟气中羰基化合物的检测方法,这种检测方法采用上述制得的羰基化合物捕集剂捕集呼出烟气中的羰基化合物。
作为本发明的优选,这种检测方法包括以下步骤:使得呼出烟气通过所述羰基化合物捕集剂后,采用乙腈对所述羰基化合物捕集剂进行淋洗,收集洗脱液;然后采用液相色谱-紫外检测器分析法,对所述洗脱液进行分析测定。
作为本发明的优选,呼出烟气中羰基化合物包括甲醛、乙醛、丙酮、丙烯醛、丙醛、巴豆醛、丁酮、丁醛。
作为本发明的优选,仪器分析条件如下:液相色谱柱为Dionex
Figure PCTCN2022134764-appb-000001
Explosive E2(250mm×4.6mm,
Figure PCTCN2022134764-appb-000002
5μm)。流速:1mL/min;进样体积:10μL;检测器:DAD,检测波长:365nm。分析时间45min。梯度洗脱条件如下表1所示。
表1.
时间,min 流动相A,% 流动相B,%
0 50 50
20 50 50
25 40 60
30 40 60
35 20 80
40 10 90
41 50 50
45 50 50
本发明还有一个目的是提供一种呼出烟气中羰基化合物的捕集装置,包括捕集管,所述捕集管的两端分别连通吹嘴和气体采样泵;所述捕集管中设有上述制得的羰基化合物捕集剂制成的捕集填料。
作为本发明的优选,所述捕集管与所述气体采样泵之间设有三通阀。三通阀的三个通口分别与捕集管、气体采样泵和外界空气连通。
作为本发明的优选,所述捕集管中至少设有两份所述捕集填料,相邻两份捕集填料之间的至少间隔10cm。靠近所述气体采样泵的捕集填料用于吸收外部空气中的羰基化合物,避免外部空气中的羰基化合物对呼出烟气中羰基化合 物中的检测结果造成影响。
作为本发明的优选,所述吹嘴和捕集管之间还设有吸烟行为记录仪。吸烟行为记录仪为市面上可购的现有技术,其吸嘴端与吹嘴相连,插接口与捕集管相连,可以记录志愿者呼出烟气的参数,计算呼出烟气的体积。为了使吸烟行为记录仪能实现感应并记录数据,与插接口相连的橡胶软管外径需为5~8cm左右。
本发明的有益效果:
本申请采用固体载体对2,4-二硝基苯肼进行负载,得到了一种羰基化合物捕集剂,其用于捕集呼出烟气中羰基化合物时,不会捕集烟气中的其他化学物质,在后续对捕集到的物质进行分析时,不会有其他化学物质对分析结果造成影响,提高了分析的准确性。
附图说明
图1是一种呼出烟气中羰基化合物的捕集装置的结构示意图;
图中:吹嘴1,吸烟行为记录仪2,捕集管3,三通阀4,气体采样泵5。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
羰基化合物捕集剂的制备:
S1.将0.48g的PVP溶解于100mL乙醇溶液中,然后将溶液倒入到装有温度计、搅拌器和冷凝装置的250mL四口瓶中,70℃下搅拌30min,加入16g单体苯乙烯(St)和0.16g引发剂AIBN,70℃下反应8h,洗涤、干燥后得PS微球。将PS微球加入浓度为6mmol/L的十二烷基磺酸钠水溶液中,超声15min后洗涤干燥,备用。
将1g TEOS与3.8gEtOH混合后在磁力搅拌下逐滴加入6.4g去离子水和0.1g硝酸,滴加完毕后在50℃下搅拌回流3h,冷却后得到二氧化硅溶胶。将1gAgNO 3加入到100mL蒸馏水中,然后加入25%的氨水5mL,搅拌均匀,得到AgNO 3溶液。
将上述二氧化硅溶胶与AgNO 3溶液混合均匀后,向其内加入上述经十二烷基磺酸钠处理后的PS微球,将该体系置于40℃水浴中反应2.5h,然后逐滴加入4mL聚乙烯吡咯烷酮溶液,升温至65℃反应40min后洗涤干燥。
将干燥后的微球置于450℃下煅烧1.5h,得到Ag/SiO 2复合空心球。
S2.将1g二氧化硅加入到50mL去离子水中,超声分散10min,得到SiO 2悬浮液。然后将上述Ag/SiO 2复合空心球加入SiO 2悬浮液中,超声分散5min后,静置2h,然后取出固体物干燥。
将5gSnCl 2·2H 2O、80mL去离子水、50mL浓度为30%的盐酸混合,得到敏化液。将干燥后的复合空心球加入敏化液中,在500r/min下敏化11h后取出洗涤。取12g/L的硫酸铜50mL、13g/L的酒石酸钾钠80mL、浓度为30%的甲醛溶液20mL混合,将洗涤后的复合空心球加入该混合液中,在500r/min的磁力搅拌下反应2h,完成化学镀铜。
将化学镀铜后的复合空心球加入浓度为30%的HF溶液中浸泡24h后,取出固体物洗涤干燥,得到具有开孔的空心球。
S3.取0.05g/mL的硝酸银溶液10mL和0.05g/mL的硝酸铜溶液10mL混合均匀,将1g1,3,5-苯三甲酸溶解于30mL乙醇和N,N-二甲基甲酰胺的等体积比混合溶液中,将上述两混合液混合均匀。然后将空心球加入该混合液中,并150r/min转速、90℃下恒温18h,得到的反应产物经乙醇纯化后,抽滤洗涤干燥,得到金属有机框架材料。
S4.将0.05g 2,4-二硝基苯肼溶于5mL乙醇中,待DNPH完全溶解后,加入5g上述得到的金属有机框架材料,在150r/min下搅拌4h后取出固体物,将固体物在50℃氮气保护下密闭搅拌0.5h,然后氮吹至干,得到羰基化合物捕集剂。
呼出烟气中羰基化合物的捕集:
准备一捕集装置,如图1所示,这种捕集装置依次包括吹嘴1、吸烟行为记录仪2、捕集管3、三通阀4以及气体采样泵5,五者之间通过外径为7.5cm的橡胶软管连通。捕集管3中安装有一捕集填料,捕集填料包括两筛板以及填充在两筛板之间的羰基化合物捕集剂,羰基化合物捕集剂的填充量为1000mg。
使用时,将三通阀4旋钮旋到c路和b路相通,打开气体采样泵5(流速设定为5000mL/min)。采用传统卷烟进行抽吸,当志愿者开始抽吸时,每抽完一口,烟气在口腔中停留20s,之后将嘴巴对准吹嘴1(要求脸部贴合吹嘴),同时将 三通阀4旋钮旋到a路和b路相通,志愿者缓慢吐出烟气,呼出烟气中羰基化合物被捕集管3中的捕集填料捕集。待管路中无明显烟气时,志愿者停止吹气,同时三通阀4钮旋到c路和b路相通,放空。志愿者继续抽吸,并进行呼出烟气的第二口捕集,共收集9口呼出烟气,采样结束。
呼出烟气中羰基化合物的检测:
取下捕集管3中的捕集填料,以乙腈对捕集填料进行淋洗,收集洗脱液,取少量洗脱液置于2mL色谱瓶中,进行HPLC-DAD分析。
仪器分析条件如下:液相色谱柱为Dionex
Figure PCTCN2022134764-appb-000003
Explosive E2(250mm×4.6mm,
Figure PCTCN2022134764-appb-000004
5μm)。流速:1mL/min;进样体积:10μL;检测器:DAD,检测波长:365nm。分析时间45min,梯度洗脱条件如上表1。
采用甲醛、乙醛、丙酮、丙烯醛、丙醛、巴豆醛、2-丁酮、丁醛2,4-二硝基苯腙衍生化合物配制系列标准工作溶液,同样进行上述条件的HPLC-DAD分析并制作标准曲线,通过外标法对洗脱液中各羰基化合物进行定量。
实施例2
本实施例与实施例1基本一致,其不同之处仅在于:
呼出烟气中羰基化合物的捕集中,采用加热不燃烧卷烟进行抽吸。
实施例3
本实施例与实施例1基本一致,其不同之处仅在于:
呼出烟气中羰基化合物的捕集中,采用电子烟进行抽吸。
实施例4
本实施例与实施例1基本一致,其不同之处仅在于:
捕集管3中安装有两份捕集填料,两份捕集填料之间间隔10cm,取用远离气体采样泵5的捕集填料进行乙腈淋洗和洗脱液的收集分析。
实施例5
本实施例与实施例1基本一致,其不同之处仅在于:选用Au作为第一金属。
步骤S1中,将1g氯金酸加入到100mL蒸馏水中,然后加入0.1g盐酸羟胺,搅拌均匀,得到氯金酸溶液。
将上述二氧化硅溶胶与氯金酸溶液混合均匀后,向其内加入上述经十二烷基磺酸钠处理后的PS微球,将该体系置于40℃水浴中反应2.5h,然后逐滴加入4mL聚乙烯吡咯烷酮溶液,升温至65℃反应40min后洗涤干燥。
将干燥后的微球置于450℃下煅烧1.5h,得到Au/SiO 2复合空心球。
步骤S3中,取0.05g/mL的氯金酸溶液10mL和0.05g/mL的硝酸铜溶液10mL混合均匀。
实施例6
本实施例与实施例1基本一致,其不同之处仅在于:选用Al作为第二金属。
步骤S2中,取12g/L的氯化铝50mL、13g/L的酒石酸钾钠80mL、浓度为30%的甲醛溶液20mL混合,将洗涤后的复合空心球加入该混合液中,在500r/min的磁力搅拌下反应2h,完成化学镀铝。
步骤S3中,取0.05g/mL的硝酸银溶液10mL和0.05g/mL的硝酸铝溶液10mL混合均匀。
实施例7
本实施例与实施例1基本一致,其不同之处仅在于:制备羰基化合物捕集剂的参数条件不同。
S1.将上述二氧化硅溶胶与AgNO 3溶液混合均匀后,向其内加入上述经十二烷基磺酸钠处理后的PS微球,将该体系置于30℃水浴中反应4h,然后逐滴加入4mL聚乙烯吡咯烷酮溶液,升温至40℃反应60min后洗涤干燥。将干燥后的微球置于400℃下煅烧2h,得到Ag/SiO 2复合空心球。
S3.取0.05g/mL的硝酸银溶液10mL和0.05g/mL的硝酸铜溶液10mL混合均匀,将1g1,3,5-苯三甲酸溶解于30mL乙醇和N,N-二甲基甲酰胺的等体积比混合溶液中,将上述两混合液混合均匀。然后将空心球加入该混合液中,并100r/min转速、100℃下恒温24h,得到的反应产物经乙醇纯化后,抽滤洗涤干燥,得到金属有机框架材料。
S4.将0.05g 2,4-二硝基苯肼溶于5mL乙醇中,待DNPH完全溶解后,加入5g上述得到的金属有机框架材料,在100r/min下搅拌5h后取出固体物,将固体物在50℃氮气保护下密闭搅拌1h,然后氮吹至干,得到羰基化合物捕集剂。
实施例8
本实施例与实施例1基本一致,其不同之处仅在于:制备羰基化合物捕集剂的参数条件不同。
S1.将上述二氧化硅溶胶与AgNO 3溶液混合均匀后,向其内加入上述经十二烷基磺酸钠处理后的PS微球,将该体系置于50℃水浴中反应2h,然后逐滴 加入4mL聚乙烯吡咯烷酮溶液,升温至65℃反应25min后洗涤干燥。将干燥后的微球置于500℃下煅烧2h,得到Ag/SiO 2复合空心球。
S3.取0.05g/mL的硝酸银溶液10mL和0.05g/mL的硝酸铜溶液10mL混合均匀,将1g1,3,5-苯三甲酸溶解于30mL乙醇和N,N-二甲基甲酰胺的等体积比混合溶液中,将上述两混合液混合均匀。然后将空心球加入该混合液中,并200r/min转速、85℃下恒温12h,得到的反应产物经乙醇纯化后,抽滤洗涤干燥,得到金属有机框架材料。
S4.将0.05g 2,4-二硝基苯肼溶于5mL乙醇中,待DNPH完全溶解后,加入5g上述得到的金属有机框架材料,在200r/min下搅拌3h后取出固体物,将固体物在50℃氮气保护下密闭搅拌1.5h,然后氮吹至干,得到羰基化合物捕集剂。
对比例1
本对比例与实施例1基本一致,其不同之处仅在于:羰基化合物捕集剂不同。
取0.05g/mL的硝酸银溶液10mL和0.05g/mL的硝酸铜溶液10mL混合均匀,将1g 1,3,5-苯三甲酸溶解于30mL乙醇和N,N-二甲基甲酰胺的等体积比混合溶液中,将上述两混合液混合均匀,得到的反应产物经乙醇纯化后,抽滤洗涤干燥,得到金属有机框架材料。
将0.05g 2,4-二硝基苯肼溶于5mL乙醇中,待DNPH完全溶解后,加入5g上述得到的金属有机框架材料,在150r/min下搅拌4h后取出固体物,将固体物在50℃氮气保护下密闭搅拌0.5h,然后氮吹至干,得到羰基化合物捕集剂。
对比例2
本对比例与实施例1基本一致,其不同之处仅在于:羰基化合物捕集剂不同。
以S2中得到的具有开孔的空心球作为羰基捕集剂。
对比例3
采用公开号为CN104267118A的专利文件里公开的捕集装置和捕集方法捕集呼出烟气中的羰基化合物,采用本申请实施例1的仪器分析条件进行分析。
实施例和对比例中的检测分析结果如下表2所示。
表2.
Figure PCTCN2022134764-appb-000005
由表2可以看出,本申请中的捕集剂能够有效捕集呼出烟气中的各种羰基化合物。
检测准确度检测
准备1mg/mL甲醛的2,4-二硝基苯腙衍溶液生化合物溶液、1mg/mL乙醛的2,4-二硝基苯腙衍溶液生化合物溶液、1mg/mL丙酮的2,4-二硝基苯腙衍溶液生 化合物溶液、1mg/mL丙烯醛的2,4-二硝基苯腙衍溶液生化合物溶液、1mg/mL丙醛的2,4-二硝基苯腙衍溶液生化合物溶液、1mg/mL巴豆醛的2,4-二硝基苯腙衍溶液生化合物溶液、1mg/mL 2-丁酮的2,4-二硝基苯腙衍溶液生化合物溶液、1mg/mL丁醛2,4-二硝基苯腙衍生化合物溶液。每种溶液分别取1mL,混合均匀后,得到样液。分别准备8份样液。
将实施例1、5-8和对比例1-3中的羰基化合物捕集剂分别置于样液中静置10min后取出,然后以乙腈进行淋洗,收集洗脱液,取洗脱液置于2mL色谱瓶中,采用实施例1中的仪器分析条件进行HPLC-DAD分析,检测结果如下表3所示。
表3.(表3中的单位均为mg)
Figure PCTCN2022134764-appb-000006
通过表3可知,采用本申请的羰基化合物捕集剂,捕集量更接近实际值,可使得检测结果更加准确。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种羰基化合物捕集剂,其特征在于:通过以下步骤制备:
    S1.以PS微球为核,采用逐层自组装法制备第一金属/SiO 2复合空心球;
    S2.将所述第一金属/SiO 2复合空心球浸渍于SiO 2悬浮液中后取出干燥;然后于其上镀第二金属,再置于HF溶液中浸泡除去SiO 2,得到具有开孔的空心球;
    S3.将所述第一金属的离子、所述第二金属的离子、所述空心球与有机配体一起制成金属有机框架材料;
    S4.将2,4-二硝基苯肼负载于所述金属有机框架材料上。
  2. 根据权利要求1所述的一种羰基化合物捕集剂,其特征在于:所述第一金属为Au、Ag中的一种或几种。
  3. 根据权利要求1所述的一种羰基化合物捕集剂,其特征在于:所述第二金属为Cu、Al中的一种或几种。
  4. 根据权利要求1所述的一种羰基化合物捕集剂,其特征在于:步骤S3包括以下步骤:
    S3a.将第一金属的离子溶液、第二金属的离子溶液混合均匀得到溶液A;
    S3b.将1,3,5-苯三甲酸溶解于乙醇和N,N-二甲基甲酰胺的混合溶液中,得到溶液B;
    S3c.将所述空心球加入溶液A与溶液B的混合溶液中,在100-200r/min转速、85-100℃下恒温12-24h,得到的反应产物经乙醇纯化后,抽滤洗涤干燥,得到所述金属有机框架材料;
    所述步骤S3a与S3b并无先后顺序之分。
  5. 根据权利要求1所述的一种羰基化合物捕集剂,其特征在于:步骤S4中包括以下步骤:将2,4-二硝基苯肼溶解在溶剂中得到2,4-二硝基苯肼溶液,将所述金属有机框架材料加入2,4-二硝基苯肼溶液中,在100-200r/min下搅拌3-5h后取出固体物,在惰性氛围下加热除去所述溶剂。
  6. 一种呼出烟气中羰基化合物的检测方法,其特征在于:采用权利要求1-5任意一项所述的羰基化合物捕集剂捕集呼出烟气中的羰基化合物。
  7. 根据权利要求6所述的一种呼出烟气中羰基化合物的检测方法,其特征 在于:包括以下步骤:使得呼出烟气通过所述羰基化合物捕集剂后,采用乙腈对所述羰基化合物捕集剂进行淋洗,收集洗脱液;然后采用液相色谱-紫外检测器分析法,对所述洗脱液进行分析测定。
  8. 一种呼出烟气中羰基化合物的捕集装置,包括捕集管(3),所述捕集管(3)的两端分别连通吹嘴(1)和气体采样泵(5);其特征在于:所述捕集管(3)中设有根据权利要求1-5任意一项所述的羰基化合物捕集剂制成的捕集填料。
  9. 根据权利要求8所述的一种呼出烟气中羰基化合物的捕集装置,其特征在于:所述捕集管(3)中至少设有两份所述捕集填料,相邻两份捕集填料之间至少间隔10cm。
  10. 根据权利要求8所述的一种呼出烟气中羰基化合物的捕集装置,其特征在于:所述捕集管(3)与所述气体采样泵(5)之间设有三通阀(4)。
PCT/CN2022/134764 2021-12-02 2022-11-28 羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法 WO2023098632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111459658.5A CN114146690B (zh) 2021-12-02 2021-12-02 羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法
CN202111459658.5 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023098632A1 true WO2023098632A1 (zh) 2023-06-08

Family

ID=80455701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134764 WO2023098632A1 (zh) 2021-12-02 2022-11-28 羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法

Country Status (2)

Country Link
CN (1) CN114146690B (zh)
WO (1) WO2023098632A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146690B (zh) * 2021-12-02 2023-10-10 湖北中烟工业有限责任公司 羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010390A (ja) * 2004-06-23 2006-01-12 Hitachi Chem Co Ltd カルボニル化合物用捕集材
JP2006231252A (ja) * 2005-02-25 2006-09-07 Chiba Univ カルボン酸及びカルボニル化合物の同時定量方法及びそれに用いられる吸着剤、更には捕集管
JP2006314955A (ja) * 2005-05-13 2006-11-24 Showa Denko Kk カルボニル化合物捕集用カラム
US20060275913A1 (en) * 2005-06-02 2006-12-07 Sumika Chemical Analysis Service, Limited Carbonyl compound scavenger and method of quantifying carbonyl compound using the same
CN101113973A (zh) * 2007-08-24 2008-01-30 湖南中烟工业公司 一种用固相萃取毛细管气相色谱检测卷烟滤嘴中挥发性羰基化合物的方法
WO2011065381A1 (ja) * 2009-11-27 2011-06-03 財団法人ヒューマンサイエンス振興財団 気体分析用カルボニル化合物捕集管、気体試料の分析方法、及びオゾンスクラバー
CN104497055A (zh) * 2014-12-11 2015-04-08 上海烟草集团有限责任公司 一种金属有机骨架材料的制备及应用
CN105019298A (zh) * 2015-08-12 2015-11-04 湖南中烟工业有限责任公司 一种实时致孔卷烟纸及其在降低主流烟气co与焦油释放量中的应用
CN106041124A (zh) * 2016-07-18 2016-10-26 中北大学 粒径可调的金属及其氧化物空心微球的制备方法
US20170036993A1 (en) * 2015-08-07 2017-02-09 Eastman Chemical Company Metal-organic framework for fluid stream filtration applications
CN107617437A (zh) * 2017-08-25 2018-01-23 浙江工业大学 一种钌负载二氧化钛空心球内嵌二氧化硅纳米粒子催化剂及其制备方法和应用
CN107688064A (zh) * 2017-08-30 2018-02-13 国家烟草质量监督检验中心 一种同时检测卷烟主流烟气中羰基化合物和酚类化合物的方法
JP2019052965A (ja) * 2017-09-15 2019-04-04 柴田科学株式会社 カルボニル化合物捕集剤、それを含むサンプラー及びカルボニル化合物の測定方法
CN110405200A (zh) * 2019-06-18 2019-11-05 华南农业大学 一种蛋黄-蛋壳结构贵金属@空心碳纳米球复合材料及其制备方法和应用
US20200230542A1 (en) * 2017-07-28 2020-07-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation of new aldehyde and/or ketone traps and filters
AU2020101523A4 (en) * 2020-07-28 2020-09-03 Ningbo Center For Disease Control And Prevention The Preparation Method of an Ionic Liquid-MOFs-based Aldehyde and Ketone Adsorption Tube and its Application
CN112107027A (zh) * 2020-10-19 2020-12-22 江苏中烟工业有限责任公司 一种降低卷烟烟气中氢氰酸的功能化地聚合物材料及其应用
CN112316912A (zh) * 2020-11-06 2021-02-05 广州太玮生物科技有限公司 一种吸附二氧化碳、VOCs气体的材料
CN112979977A (zh) * 2021-02-04 2021-06-18 中国科学院山西煤炭化学研究所 用于CO2捕集的双金属MOFs材料及制备方法和应用
CN113156006A (zh) * 2021-04-13 2021-07-23 中国烟草总公司郑州烟草研究院 一种加热不燃烧卷烟呼出烟气主要化学成分捕集分析测定方法
CN113173605A (zh) * 2021-04-27 2021-07-27 西北工业大学 一种核壳型金属硫化物复合材料及其制备方法和应用
CN113576027A (zh) * 2021-08-25 2021-11-02 上海烟草集团有限责任公司 一种用于降低卷烟烟气中丙醛的复合滤棒及卷烟
CN114146690A (zh) * 2021-12-02 2022-03-08 湖北中烟工业有限责任公司 羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010390A (ja) * 2004-06-23 2006-01-12 Hitachi Chem Co Ltd カルボニル化合物用捕集材
JP2006231252A (ja) * 2005-02-25 2006-09-07 Chiba Univ カルボン酸及びカルボニル化合物の同時定量方法及びそれに用いられる吸着剤、更には捕集管
JP2006314955A (ja) * 2005-05-13 2006-11-24 Showa Denko Kk カルボニル化合物捕集用カラム
US20060275913A1 (en) * 2005-06-02 2006-12-07 Sumika Chemical Analysis Service, Limited Carbonyl compound scavenger and method of quantifying carbonyl compound using the same
CN101113973A (zh) * 2007-08-24 2008-01-30 湖南中烟工业公司 一种用固相萃取毛细管气相色谱检测卷烟滤嘴中挥发性羰基化合物的方法
WO2011065381A1 (ja) * 2009-11-27 2011-06-03 財団法人ヒューマンサイエンス振興財団 気体分析用カルボニル化合物捕集管、気体試料の分析方法、及びオゾンスクラバー
CN104497055A (zh) * 2014-12-11 2015-04-08 上海烟草集团有限责任公司 一种金属有机骨架材料的制备及应用
US20170036993A1 (en) * 2015-08-07 2017-02-09 Eastman Chemical Company Metal-organic framework for fluid stream filtration applications
CN105019298A (zh) * 2015-08-12 2015-11-04 湖南中烟工业有限责任公司 一种实时致孔卷烟纸及其在降低主流烟气co与焦油释放量中的应用
CN106041124A (zh) * 2016-07-18 2016-10-26 中北大学 粒径可调的金属及其氧化物空心微球的制备方法
US20200230542A1 (en) * 2017-07-28 2020-07-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation of new aldehyde and/or ketone traps and filters
CN107617437A (zh) * 2017-08-25 2018-01-23 浙江工业大学 一种钌负载二氧化钛空心球内嵌二氧化硅纳米粒子催化剂及其制备方法和应用
CN107688064A (zh) * 2017-08-30 2018-02-13 国家烟草质量监督检验中心 一种同时检测卷烟主流烟气中羰基化合物和酚类化合物的方法
JP2019052965A (ja) * 2017-09-15 2019-04-04 柴田科学株式会社 カルボニル化合物捕集剤、それを含むサンプラー及びカルボニル化合物の測定方法
CN110405200A (zh) * 2019-06-18 2019-11-05 华南农业大学 一种蛋黄-蛋壳结构贵金属@空心碳纳米球复合材料及其制备方法和应用
AU2020101523A4 (en) * 2020-07-28 2020-09-03 Ningbo Center For Disease Control And Prevention The Preparation Method of an Ionic Liquid-MOFs-based Aldehyde and Ketone Adsorption Tube and its Application
CN112107027A (zh) * 2020-10-19 2020-12-22 江苏中烟工业有限责任公司 一种降低卷烟烟气中氢氰酸的功能化地聚合物材料及其应用
CN112316912A (zh) * 2020-11-06 2021-02-05 广州太玮生物科技有限公司 一种吸附二氧化碳、VOCs气体的材料
CN112979977A (zh) * 2021-02-04 2021-06-18 中国科学院山西煤炭化学研究所 用于CO2捕集的双金属MOFs材料及制备方法和应用
CN113156006A (zh) * 2021-04-13 2021-07-23 中国烟草总公司郑州烟草研究院 一种加热不燃烧卷烟呼出烟气主要化学成分捕集分析测定方法
CN113173605A (zh) * 2021-04-27 2021-07-27 西北工业大学 一种核壳型金属硫化物复合材料及其制备方法和应用
CN113576027A (zh) * 2021-08-25 2021-11-02 上海烟草集团有限责任公司 一种用于降低卷烟烟气中丙醛的复合滤棒及卷烟
CN114146690A (zh) * 2021-12-02 2022-03-08 湖北中烟工业有限责任公司 羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法

Also Published As

Publication number Publication date
CN114146690A (zh) 2022-03-08
CN114146690B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2023098632A1 (zh) 羰基化合物捕集剂、呼出烟气中羰基化合物的捕集装置和检测方法
AU2020101523A4 (en) The Preparation Method of an Ionic Liquid-MOFs-based Aldehyde and Ketone Adsorption Tube and its Application
Zhou et al. A multi-platform sensor for selective and sensitive H2S monitoring: three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanoparticles
JP2018502982A (ja) 制御されたサイズおよび形態を有するコロイド状貴金属ナノ粒子の合成
CN111499880B (zh) 一种用于二噁英富集和检测的复合纳米材料及其制备方法
CN101669678B (zh) 一种选择性降低卷烟主流烟气中氢氰酸释放量的滤嘴添加材料及其制备方法
CN104720104B (zh) 一种选择性降低卷烟烟气中巴豆醛的滤嘴添加剂及其制备方法和应用
JP7254073B2 (ja) エアロゾル送達装置のための比色によるエアロゾルおよびガスの検出
CN109939712A (zh) 一种单原子贵金属催化剂及其制备和在室温催化氧化甲醛中的应用
JP2007535929A (ja) キトサン誘導体を用いたタバコ煙の選択的ろ過
CN113156006B (zh) 一种加热不燃烧卷烟呼出烟气主要化学成分捕集分析测定方法
CN107991366B (zh) 抗干扰快响应的呼气氢传感器
CN110252255A (zh) 一种气态汞吸附剂的制备方法和应用
CN102794154B (zh) 一种降低卷烟烟气中氢化氰含量的氨基功能化材料的应用
US3888124A (en) Atmospheric mercury sampling material and method
CN102500204B (zh) 一种泡沫捕汞材料及其应用
CN109701498A (zh) 一种MOF-Cu@多孔淀粉复合材料及其制备方法和在卷烟中的应用
CN115155532B (zh) 多氟代卟啉共价有机骨架磁纳米球及其制备方法和应用
CN103894154B (zh) 一种选择性降低卷烟主流烟气中气相氨的吸附剂
CN103539743B (zh) 一种离子液体功能化氧化石墨表面接枝Schiff碱化合物及其制备方法和应用
WO1998055211A1 (fr) Compose de filtration de composants nocifs de la fumee de cigarette et procede de preparation de ce compose
CN104473329A (zh) 一种降低卷烟烟气中苯酚和巴豆醛的硅胶材料的应用
CN102349703A (zh) 卷烟过滤嘴及卷烟
CN107080287A (zh) 一种活性炭浸渍改性方法及应用
CN112683894B (zh) 卷烟主流烟气中六价铬的测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900436

Country of ref document: EP

Kind code of ref document: A1