WO2023097787A1 - 一种多孔纳米铜膜在电子器件封装互连中的应用 - Google Patents
一种多孔纳米铜膜在电子器件封装互连中的应用 Download PDFInfo
- Publication number
- WO2023097787A1 WO2023097787A1 PCT/CN2021/138142 CN2021138142W WO2023097787A1 WO 2023097787 A1 WO2023097787 A1 WO 2023097787A1 CN 2021138142 W CN2021138142 W CN 2021138142W WO 2023097787 A1 WO2023097787 A1 WO 2023097787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- porous nano
- copper film
- application
- application according
- Prior art date
Links
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 48
- 239000010949 copper Substances 0.000 title claims abstract description 48
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 claims description 21
- 238000005245 sintering Methods 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- OWXLRKWPEIAGAT-UHFFFAOYSA-N [Mg].[Cu] Chemical compound [Mg].[Cu] OWXLRKWPEIAGAT-UHFFFAOYSA-N 0.000 claims description 6
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 claims description 6
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract description 9
- 238000007254 oxidation reaction Methods 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000003466 welding Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 239000008204 material by function Substances 0.000 abstract description 2
- 239000002120 nanofilm Substances 0.000 abstract 1
- 229910000679 solder Inorganic materials 0.000 description 9
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
Definitions
- the invention belongs to the technical field of manufacturing metal functional materials for electronic components, and in particular relates to the application of a porous nano-copper film in packaging and interconnection of electronic devices.
- Chips that use traditional solder as the interconnect layer will fail in this environment due to melting of the solder joints. So there is an urgent need for a chip bonding material to meet this high requirement and achieve stable service at high temperatures. Recently, a solder filled with nanomaterials has gradually attracted the attention of researchers. Nanomaterials have a very small size, which means that the specific surface area is larger and the surface energy is higher. It is not necessary to reach its melting point during the sintering process, and the driving force brought by the reduction of the surface area can be used to realize the diffusion between atoms, so as to realize Effect of sintered interconnects. Solder filled with nano-copper is becoming an ideal candidate for this purpose.
- Metal copper has a very high melting point of 1083.4°C. Once the nano-copper is sintered, the high melting point will give it very high stability. Due to the small size effect, it can achieve sintering and diffusion at a relatively low temperature to achieve high-stability interconnection between the chip and the substrate.
- problems to be solved in the process of applying nano-copper to sintered solder paste For example, when its size is less than a certain value, its surface energy becomes very high, and high surface energy will cause the copper atoms on its surface to be very active and oxidized during the sintering process. A dense oxide layer hinders the diffusion of atoms, which in turn hinders sintering.
- the object of the present invention is to design and provide the porous nano-copper film and its preparation method and application, so as to solve the existing problem of oxidation of nano-copper particles in the sintering process.
- porous nano copper film as an electronic device packaging interconnection structure.
- the application is characterized in that the porous nano-copper film is prepared by a dealloying method.
- the acid corrosion solution used in the dealloying method includes hydrochloric acid and sulfuric acid.
- the said application is characterized in that the raw material for preparing the porous nano-copper film by the dealloying method includes one of copper-iron alloy, copper-aluminum alloy or copper-magnesium alloy.
- the above-mentioned application is characterized in that the copper content in the copper-iron alloy, copper-aluminum alloy or copper-magnesium alloy is 20%-70%.
- porous nano-copper film has a thickness of 50-200 microns.
- Said application is characterized in that said porous nano-copper film is located between the first mother sheet and the second mother sheet.
- said first mother sheet and said second mother sheet include copper, gold, silver, nickel or aluminum products.
- the above application is characterized in that the porous nano-copper film is sintered and fixed between the first mother sheet and the second mother sheet through a sintering process of heating and applying pressure.
- condition parameters of the sintering process are: heating temperature 150°C-300°C, pressure 1MPa-20MPa.
- the present invention directly uses the porous nano-membrane as the welding material. Its advantage is that it can eliminate or reduce the influence of oxidation phenomenon, it is suitable for the welding of large-area chips, and its shape, thickness and size can be easily controlled.
- Fig. 1 is the preparation schematic diagram of porous nano-copper film
- Fig. 2 is a schematic diagram of a sandwich structure connector welded by nano-copper film.
- the preparation method of the porous nano-copper film through the dealloying method, a raw material of copper-iron alloy, copper-aluminum alloy or copper-magnesium alloy is placed in hydrochloric acid or sulfuric acid corrosion solution, and excess non-copper components are removed to obtain a thickness of 50 - 200 micron porous nano-copper film.
- the copper content in the copper-iron alloy, copper-aluminum alloy or copper-magnesium alloy is 20% to 70%.
- Figure 1 the schematic diagram of the preparation of the porous nano-copper film.
- the active components inside the copper alloy will react with the acid corrosion solution, and finally the active components will be removed to form a porous nano-copper film.
- Porous nano-copper films have a large number of nanostructures and are therefore suitable for sintering.
- the prepared porous nano-copper film is sintered and fixed between the first mother sheet and the second mother sheet through a sintering process of heating and applying pressure.
- the condition parameters of the sintering process are: heating temperature 150°C ⁇ 300°C, pressure 1MPa ⁇ 20MPa.
- the first mother sheet and the second mother sheet include copper, gold, silver, nickel or aluminum products.
- Figure 2 is a schematic diagram of the sandwich structure connector.
- the present invention has passed experiments, and the experimental results are feasible.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Powder Metallurgy (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
一种多孔纳米铜膜在电子器件封装互连中的应用,属于电子元器件用金属功能材料制造技术领域。本发明提供了多孔纳米铜膜在作为电子器件封装互连结构中的应用。本发明为了防止氧化现象的发生,直接把多孔纳米膜当作焊接材料。其优点是可以杜绝或者减少氧化现象的影响,适用于大面积芯片的焊接,形状,厚度和大小可轻易控制。
Description
本发明属于电子元器件用金属功能材料制造技术领域,具体涉及一种多孔纳米铜膜在电子器件封装互连中的应用。
自动驾驶,航空航天,高铁和油气勘探等等的发展对芯片的要求也越来越高。而传统的硅基芯片已经不能满足他们的需求。所以急需一种耐高温,击穿电压高,能适应高电流密度和高开关频率的新型芯片。目前研究人员把目光投向了宽禁隙半导体(例如SiC 和GaN),因为他们能很好的满足现阶段人们对高性能芯片的需求。然而上述所提到的高温度,高电流密度等等工作环境通常意味着工作温度会大于250℃。而传统的焊料如锡铅焊料熔点常常在250℃以下。那些以传统焊料为互连层的芯片在此环境下工作会因为焊点融化而失效。所以现在急需一种芯片焊接材料来满足这种高要求并实现高温下稳定的服役。最近一种以纳米材料为填充的焊料逐渐的引起科研人员的注意。纳米材料具有非常小的尺寸,尺寸意味着比表面积更大,表面能更高,在烧结过程中不必要达到其熔点也能够利用表面积缩小所带来的驱动力来实现原子间的扩散,从而实现烧结互连的效果。以纳米铜为填充材料的焊料逐渐成为实现这一目的的理想候选者。
金属铜具有很高的熔点1083.4℃,纳米铜一旦烧结完成高熔点会赋予其非常高的稳定性。而由于小尺寸效应,其在相当低的温度下就能实现烧结扩散,达到使得芯片与基底之间的高稳定性互连。但是在纳米铜应用到烧结焊膏的过程中仍会有大量有待解决的问题。比如在其尺寸少于一定的值的时候其表面能变的非常的高,高表面能会导致其表面的铜原子非常活泼进而在烧结过程中发生氧化的现象。致密的氧化层会阻碍原子的扩散,进而阻碍烧结的进行。为了得到性能优越的铜烧结互连结构,在铜焊膏烧结的过程中常常会利用高温和高压来辅助烧结,进而消除铜纳米颗粒氧化带来的负面影响。但是高温高压常常会带来非常严重的后果,比如损坏芯片,设备负荷大,生产工艺不兼容。为了防止氧化有时铜焊膏的烧结会在惰性气氛中,还原气氛中或者真空环境下进行。但是这些特殊的气氛和环境会增加大生产过程中的成本。降低纳米铜颗粒的尺寸是现在主流的增加其烧结性能的方法,但是在铜颗粒的尺寸降低到一定程度的时候,其高表面能会使得处于表面的铜原子被氧化。氧化生成的铜氧化物会阻碍烧结过程中原子之间的扩散。因此纳米铜在烧结过程中发生氧化是一个急需解决的问题。
发明内容
针对上述现有技术中存在的问题,本发明的目的在于设计提供本发明提供多孔纳米铜膜及其制备方法和应用,以解决现有的纳米铜颗粒在烧结过程中氧化的问题。为了解决上述的问题我们提出了利用多孔纳米铜膜代替铜焊膏的想法,
多孔纳米铜膜在作为电子器件封装互连结构中的应用。
所述的应用,其特征在于所述多孔纳米铜膜通过脱合金法制备得到。
所述的应用,其特征在于所述脱合金法采用的酸腐蚀液包括盐酸和硫酸。
所述的应用,其特征在于所述脱合金法制备多孔纳米铜膜的原料包括铜铁合金、铜铝合金或铜镁合金中的一种。
所述的应用,其特征在于所述铜铁合金、铜铝合金或铜镁合金中的铜含量在20%~70%。
所述的应用,其特征在于所述多孔纳米铜膜的厚度为50-200微米。
所述的应用,其特征在于所述多孔纳米铜膜位于第一母片和第二母片之间。
所述的应用,其特征在于所述第一母片和第二母片包括铜,金,银,镍或铝制品。
所述的应用,其特征在于所述多孔纳米铜膜通过加热并施压的烧结工艺烧结固定在第一母片和第二母片之间。
所述的应用,其特征在于所述烧结工艺的条件参数为:加热温度150℃~300℃,施压压力1MPa ~20MPa。
本发明为了防止氧化现象的发生,直接把多孔纳米膜当作焊接材料。其优点是可以杜绝或者减少氧化现象的影响,适用于大面积芯片的焊接,形状,厚度和大小可轻易控制。
图1为多孔纳米铜膜的制备示意图;
图2为利用纳米铜膜焊接的三明治结构连接件示意图。
具体实施方式
以下将通过附图和实施例对本发明作进一步说明。
实施例1:
多孔纳米铜膜的制备方法:通过脱合金法,将铜铁合金、铜铝合金或铜镁合金中的一种原料,放置盐酸或硫酸酸腐蚀液中,除去多余的非铜成分,得到厚度为50-200微米的多孔纳米铜膜。其中,铜铁合金、铜铝合金或铜镁合金中的铜含量在20%~70%。如图1所示,多孔纳米铜膜的制备示意图。铜合金内部的活泼成分会与酸腐蚀液发生反应,最后活泼成分被除去形成多孔纳米铜膜。多孔纳米铜膜有大量的纳米结构,因而适用于烧结。
将制备的多孔纳米铜膜通过加热并施压的烧结工艺烧结固定在第一母片和第二母片之间。烧结工艺的条件参数为:加热温度150℃~300℃,施压压力1MPa ~20MPa。其中,第一母片和第二母片包括铜,金,银,镍或铝制品。如图2所示为三明治结构连接件示意图。
本发明通过实验,实验结果可行。
Claims (10)
1. 多孔纳米铜膜在作为电子器件封装互连结构中的应用。
如权利要求1所述的应用,其特征在于所述多孔纳米铜膜通过脱合金法制备得到。
如权利要求2所述的应用,其特征在于所述脱合金法采用的酸腐蚀液包括盐酸和硫酸。
如权利要求2所述的应用,其特征在于所述脱合金法制备多孔纳米铜膜的原料包括铜铁合金、铜铝合金或铜镁合金中的一种。
如权利要求4所述的应用,其特征在于所述铜铁合金、铜铝合金或铜镁合金中的铜含量在20%~70%。
如权利要求1所述的应用,其特征在于所述多孔纳米铜膜的厚度为50-200微米。
如权利要求1所述的应用,其特征在于所述多孔纳米铜膜位于第一母片和第二母片之间。
如权利要求7所述的应用,其特征在于所述第一母片和第二母片包括铜,金,银,镍或铝制品。
如权利要求7所述的应用,其特征在于所述多孔纳米铜膜通过加热并施压的烧结工艺烧结固定在第一母片和第二母片之间。
如权利要求9所述的应用,其特征在于所述烧结工艺的条件参数为:加热温度150℃~300℃,施压压力1MPa
~20MPa。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111467010.2A CN114334882A (zh) | 2021-12-02 | 2021-12-02 | 一种多孔纳米铜膜在电子器件封装互连中的应用 |
CN202111467010.2 | 2021-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023097787A1 true WO2023097787A1 (zh) | 2023-06-08 |
Family
ID=81049318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/138142 WO2023097787A1 (zh) | 2021-12-02 | 2021-12-15 | 一种多孔纳米铜膜在电子器件封装互连中的应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114334882A (zh) |
WO (1) | WO2023097787A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117059503A (zh) * | 2023-08-11 | 2023-11-14 | 徐州得驰电子科技有限公司 | 一种基于金属有机源焊接的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107127468A (zh) * | 2017-05-05 | 2017-09-05 | 哈尔滨工业大学深圳研究生院 | 一种基于泡沫铜的高温互连焊点的制备方法 |
CN108091633A (zh) * | 2017-12-13 | 2018-05-29 | 广东工业大学 | 纳米多孔铜互连层结构及其制备方法 |
CN108385069A (zh) * | 2018-03-30 | 2018-08-10 | 西安理工大学 | 一种超精细纳米多孔铜膜的制备方法 |
CN109295327A (zh) * | 2018-11-12 | 2019-02-01 | 北京航空航天大学 | 一种微米多孔铜及其制备方法与应用 |
US20190067239A1 (en) * | 2017-08-25 | 2019-02-28 | International Business Machines Corporation | Non-porous copper to copper interconnect |
CN111607811A (zh) * | 2020-07-06 | 2020-09-01 | 苏州清飙科技有限公司 | 铜铜键合材料的制备方法及其应用 |
-
2021
- 2021-12-02 CN CN202111467010.2A patent/CN114334882A/zh active Pending
- 2021-12-15 WO PCT/CN2021/138142 patent/WO2023097787A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107127468A (zh) * | 2017-05-05 | 2017-09-05 | 哈尔滨工业大学深圳研究生院 | 一种基于泡沫铜的高温互连焊点的制备方法 |
US20190067239A1 (en) * | 2017-08-25 | 2019-02-28 | International Business Machines Corporation | Non-porous copper to copper interconnect |
CN108091633A (zh) * | 2017-12-13 | 2018-05-29 | 广东工业大学 | 纳米多孔铜互连层结构及其制备方法 |
CN108385069A (zh) * | 2018-03-30 | 2018-08-10 | 西安理工大学 | 一种超精细纳米多孔铜膜的制备方法 |
CN109295327A (zh) * | 2018-11-12 | 2019-02-01 | 北京航空航天大学 | 一种微米多孔铜及其制备方法与应用 |
CN111607811A (zh) * | 2020-07-06 | 2020-09-01 | 苏州清飙科技有限公司 | 铜铜键合材料的制备方法及其应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117059503A (zh) * | 2023-08-11 | 2023-11-14 | 徐州得驰电子科技有限公司 | 一种基于金属有机源焊接的方法 |
CN117059503B (zh) * | 2023-08-11 | 2024-04-02 | 徐州得驰电子科技有限公司 | 一种基于金属有机源焊接的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114334882A (zh) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI466253B (zh) | 雙相介金屬接點結構及其製作方法 | |
TWI624356B (zh) | Metal joint structure using metal nanoparticle, metal joint method, and metal joint material | |
TW201325330A (zh) | 配線基板及其製造方法以及半導體裝置 | |
WO2023109597A1 (zh) | 纳米铜焊膏及其在芯片封装互连结构中的应用 | |
WO2016031754A1 (ja) | 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法 | |
JP5423076B2 (ja) | パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法 | |
Wang et al. | Novel transient liquid phase bonding method using In-coated Cu sheet for high-temperature die attach | |
CN109590636B (zh) | 一种高存留率纳米复合钎料及其制备方法 | |
Zhang et al. | Effects of sintering pressure on the densification and mechanical properties of nanosilver double-side sintered power module | |
WO2023097787A1 (zh) | 一种多孔纳米铜膜在电子器件封装互连中的应用 | |
US10332853B2 (en) | Bonding structure and method for producing bonding structure | |
CN108305838B (zh) | 一种不含有机物的低温芯片贴装方法及芯片贴装结构 | |
KR101795812B1 (ko) | 파워 모듈용 기판, 히트 싱크 부착 파워 모듈용 기판, 파워 모듈 및 파워 모듈용 기판의 제조 방법 | |
CN116092952A (zh) | 一种基于PTFE涂料的倒装SiC半桥模块及制备工艺 | |
WO2016167217A1 (ja) | 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法 | |
WO2016167218A1 (ja) | 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法 | |
Jiang et al. | Cu-Cu bonding with cu nanowire arrays for electronics integration | |
CN114956850B (zh) | 一种利用金属线纳米薄膜制备覆铜氮化物陶瓷板的方法 | |
JP2016111259A (ja) | 接合構造体、及び、接合構造体の製造方法 | |
Daoud et al. | Preform-based diffusion soldering for use under conventional soldering process parameters | |
CN114473110B (zh) | 一种抗电迁移抗氧化的焊膏及其应用 | |
CN113385805B (zh) | 一种纯Al作为中间材料层的65%碳化硅颗粒增强铝基复合材料的焊接方法 | |
CN209496815U (zh) | 一种功率器件芯片封装结构 | |
CN219642826U (zh) | 一种高温厚膜hic电源用多层金属过渡片 | |
CN118098991A (zh) | 一种覆阵列式金属复合纳米线封装基板的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21966211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |