WO2023097547A1 - 电池加热方法、装置、设备及存储介质 - Google Patents

电池加热方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023097547A1
WO2023097547A1 PCT/CN2021/134746 CN2021134746W WO2023097547A1 WO 2023097547 A1 WO2023097547 A1 WO 2023097547A1 CN 2021134746 W CN2021134746 W CN 2021134746W WO 2023097547 A1 WO2023097547 A1 WO 2023097547A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
heating
temperature
current frequency
Prior art date
Application number
PCT/CN2021/134746
Other languages
English (en)
French (fr)
Inventor
陈新伟
但志敏
颜昱
赵元淼
李占良
侯贻真
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180097092.8A priority Critical patent/CN117157802A/zh
Priority to EP21965984.4A priority patent/EP4287350A1/en
Priority to KR1020237029313A priority patent/KR20230142540A/ko
Priority to PCT/CN2021/134746 priority patent/WO2023097547A1/zh
Priority to JP2023552321A priority patent/JP2024508855A/ja
Publication of WO2023097547A1 publication Critical patent/WO2023097547A1/zh
Priority to US18/456,302 priority patent/US20230402672A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery heating method, device, equipment and storage medium.
  • lithium batteries and other types of batteries are usually heated to a higher temperature when they are in a low-temperature working environment to improve their working performance.
  • the battery is usually heated according to fixed heating parameters, which has the problem of low heating rate.
  • the present application provides a battery heating method, device, equipment and storage medium to solve the problem of low battery heating rate in the related art.
  • the present application provides a battery heating method, including:
  • the first data table includes the first temperature, the first state of charge, and the first current amplitude under the condition of the first current amplitude Correspondence between current frequencies;
  • the battery is heated based on the first current magnitude and the first current frequency.
  • the battery heating method provided in the embodiment of the present application obtains the first temperature and the first state of charge of the battery, and determines the first current frequency according to the first temperature, the first state of charge, and the first preset data table, and based on the first A current amplitude and a first current frequency heat the battery, wherein the first data table includes a correspondence relationship between a first temperature, a first state of charge, and a first current frequency under the condition of the first current amplitude.
  • the embodiment of the present application can determine the current frequency and amplitude for internal heating according to the temperature of the battery, and increase the heating rate of the battery under various temperature environments.
  • the first current amplitude is predetermined, when determining the heating parameter of the battery, the consumption of computing resources caused by the determination of the first current amplitude can be saved, and the efficiency of determining the heating parameter of the battery can be improved. Moreover, there is no need to establish the above-mentioned first data tables for various current amplitudes, which helps to reduce the consumption of manpower and material resources caused by the establishment of the first data tables. By determining the first current amplitude, it is possible to avoid the situation that the current amplitude used for actually heating the battery is too high due to the lack of limitation on the current amplitude used to heat the battery, resulting in lithium deposition in the battery cell.
  • the number of the first data tables is N, and the N first data tables are associated with N battery health degrees, where N is an integer greater than 1;
  • the first current frequency is determined, including:
  • a first current frequency is determined according to the first temperature, the first state of charge and the second data table.
  • taking the SOH into consideration as a safety redundancy can further improve the reliability of the battery heating process.
  • heating the battery based on the first current magnitude and the first current frequency includes:
  • the method further includes:
  • the battery is heated in different heating cycles.
  • the current frequency for heating the battery is adjusted according to the first temperature of the battery, which helps to effectively improve the safety and efficiency of battery heating.
  • the method further includes:
  • the third current frequency is determined according to the second current amplitude, and the third current frequency is a safe current frequency for heating the battery under the second current amplitude condition;
  • the battery is heated according to the greater of the first current frequency and the third current frequency, and the second current magnitude.
  • This embodiment can effectively guarantee the safety of the battery heating process under various current amplitude conditions.
  • the present application provides a battery heating method, including:
  • the third data table includes the second temperature, the second state of charge, and the second current frequency under the condition of the fourth current frequency Correspondence between the three current amplitudes;
  • the battery is heated based on the fourth current frequency and the third current magnitude.
  • the battery heating method provided in the embodiment of the present application obtains the second temperature and the second state of charge of the battery, and determines the third current amplitude according to the second temperature, the second state of charge and the preset third data table, based on The battery is heated by the fourth current frequency and the third current amplitude, wherein the third data table includes the correspondence between the second temperature, the second state of charge and the third current amplitude under the condition of the fourth current frequency.
  • the embodiment of the present application can determine the current frequency and amplitude for internal heating according to the temperature of the battery, so as to increase the heating rate of the battery under various temperature environments.
  • the fourth current frequency is predetermined, when determining the heating parameter of the battery, the consumption of computing resources caused by the determination of the fourth current frequency can be saved, and the efficiency of determining the heating parameter of the battery can be improved. Moreover, there is no need to establish the above-mentioned third data tables for various current frequencies, which helps to reduce the consumption of manpower and material resources caused by the establishment of the third data tables. By determining the first current frequency, it is possible to avoid the situation that the frequency of the current actually used for heating the battery is too high due to the lack of frequency for the amplitude of the current used for heating the battery.
  • the method further includes:
  • heating the battery based on the fourth current frequency and the third current magnitude comprising:
  • the fifth current frequency is greater than the fourth current frequency.
  • This embodiment can balance the safety and heating efficiency of the battery heating process.
  • the third current magnitude is a forward current magnitude
  • heating the battery based on the fourth current frequency and the third current magnitude comprising:
  • the battery is heated based on the fourth current frequency, the third current magnitude and the preset first negative current magnitude.
  • This embodiment helps to reduce the calculation amount when determining the heating parameters, and at the same time helps to ensure the safety of the battery heating process.
  • the method further includes:
  • Heating the battery based on the fourth current frequency, the third current magnitude and the preset first negative current magnitude specifically includes:
  • the first negative current amplitude is greater than the second negative current amplitude.
  • This embodiment can avoid safety problems caused by over-discharge of the battery, thereby helping to improve the service life of the battery.
  • the number of the third data tables is M, and the M third data tables are associated with M battery health degrees, where M is an integer greater than 1;
  • the second state of charge and the preset third data table determine the third current amplitude, including:
  • a third current magnitude is determined according to the second temperature, the second state of charge, and the fourth data table.
  • taking the SOH into consideration as a safety redundancy can further improve the reliability of the battery heating process.
  • heating the battery based on the fourth current frequency and the third current magnitude includes:
  • the method further includes:
  • the battery is heated in different heating cycles.
  • the current amplitude for heating the battery is adjusted according to the second temperature of the battery, which helps to effectively improve the safety and efficiency of battery heating.
  • the present application provides a battery heating device, including:
  • a first acquiring module configured to acquire a first temperature and a first state of charge of the battery
  • the first determining module is configured to determine the first current frequency according to the first temperature, the first state of charge, and a preset first data table.
  • the first data table includes, under the first current amplitude condition, the first temperature, a corresponding relationship between the first state of charge and the first current frequency;
  • the first heating control module is used for heating the battery based on the first current amplitude and the first current frequency.
  • the present application provides a battery heating device, including:
  • a second acquisition module configured to acquire a second temperature and a second state of charge of the battery
  • the second determination module is configured to determine the third current amplitude according to the second temperature, the second state of charge, and a preset third data table, and the third data table includes the second temperature, a correspondence relationship between the second state of charge and the third current amplitude;
  • the second heating control module is used for heating the battery based on the fourth current frequency and the third current amplitude.
  • the present application provides an electronic device, including: a processor and a memory storing computer program instructions;
  • the battery heating method as shown in the first aspect is realized, or the battery heating method as shown in the second aspect is realized.
  • the present application provides a computer storage medium, on which computer program instructions are stored.
  • the battery heating method as shown in the first aspect is realized, or the battery heating method as described in the second aspect is realized.
  • Fig. 1 is the schematic diagram of lithium-ion battery equivalent circuit
  • Figure 2 is a schematic diagram of the maximum amplitude-frequency relationship of the lithium-ion battery AC current at different temperatures under the condition of inhibiting lithium analysis;
  • Fig. 3 is a schematic diagram of the maximum heat production power of alternating current preheating at different temperatures and frequencies under the condition of suppressing lithium analysis
  • Fig. 4 is a schematic diagram of the selection of the optimal frequency point when the amplitude of the alternating current is given;
  • Fig. 5 is a schematic flowchart of a battery heating method disclosed in an embodiment of the present application.
  • Figure 6 is an example diagram of the battery heating process
  • Fig. 7 is a schematic flowchart of a battery heating method disclosed in another embodiment of the present application.
  • Fig. 8 is another example diagram of the battery heating process
  • Fig. 9 is a structural schematic diagram of a heating system for heating the battery
  • Fig. 10 is another structural schematic diagram of the heating system for heating the battery
  • Fig. 11 is a schematic structural diagram of a battery heating device disclosed in an embodiment of the present application.
  • Fig. 12 is a schematic structural view of a battery heating device disclosed in another embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
  • the working environment has a greater impact on their working performance.
  • the lithium power battery of the lithium battery in the electric vehicle Take the lithium power battery of the lithium battery in the electric vehicle as an example.
  • the electric vehicle When the electric vehicle is started in a low temperature environment, the electric vehicle may not be able to start or run normally due to the decline in the performance of the lithium power battery at low temperature.
  • lithium batteries but also other types of batteries, such as sodium-ion batteries or magnesium-ion batteries, may also require heating.
  • external heating there are two main ways to heat the battery: external heating and internal heating.
  • the method of external heating is mainly realized by heat conduction or heat convection, and the battery is heated externally through PTC material or heating film.
  • this method is prone to uneven heating and has low heating efficiency.
  • Internal heating Since the heat is generated directly inside the battery, it is more energy efficient and more evenly heated.
  • the battery can be heated internally by direct current (hereinafter referred to as direct current internal heating), which can avoid the introduction of circuit components to realize functions such as inverter, which is relatively low in cost, but causes a large energy loss of the battery. And too much DC will have a certain impact on battery life.
  • direct current internal heating direct current internal heating
  • AC internal heating is easier to implement, and the battery heating speed is faster and the heating uniformity is better.
  • the following will mainly take the lithium battery as an example for illustration.
  • FIG. 1 is a schematic diagram of an equivalent circuit of a lithium-ion battery. Based on the equivalent circuit, it can be seen that the impedance of a lithium-ion battery is mainly composed of three parts Z1, Z2 and Z3.
  • Z1 is the ohmic impedance component R 0 of the internal current collector, active material, electrolyte, etc. of the lithium-ion battery.
  • Z2 is the impedance component corresponding to the solid electrolyte interphase (SEI) film on the particle surface, specifically including capacitive impedance Q SEI and ohmic impedance R SEI .
  • Z3 includes the electric double layer capacitance Q dl at the solid-liquid phase interface of the active material, the charge transfer impedance R ct and the impedance W corresponding to the diffusion process of lithium ions.
  • lithium battery When a lithium battery is polarized, it may cause lithium to be deposited on the negative electrode. Specifically, during the charging process of lithium-ion batteries, lithium ions will be intercalated from the positive electrode to the negative electrode. However, when some abnormal conditions occur and the lithium ions deintercalated from the positive electrode cannot be inserted into the negative electrode, then the lithium ions can only be precipitated on the surface of the negative electrode, thus forming a layer of gray matter.
  • Lithium analysis not only reduces the performance of the battery, greatly shortens the cycle life, but also limits the fast charging capacity of the battery, and may cause catastrophic consequences such as combustion and explosion.
  • ⁇ s is the solid phase potential of the surface of the negative electrode particles
  • ⁇ l is the liquid phase potential of the surface of the negative electrode particles
  • U e,2 is the equilibrium potential of the lithium analysis reaction, which is usually considered to be 0V.
  • lithium ions need to obtain electrons to be reduced to lithium metal. It is generally believed that the lithium analysis reaction initially occurs inside the SEI film on the surface of graphite particles, and the lithium intercalation reaction overpotential ⁇ at this place is:
  • U e,1 is the equilibrium potential of the graphite negative electrode at a specific state of charge (State of Charge, SOC).
  • the lithium intercalation reaction overpotential can be approximated as:
  • I ct is the Faraday current
  • R ct is the charge transfer impedance
  • the sign of I ct is negative when charging.
  • the equivalent circuit corresponding to the graphite negative electrode has the following relationship:
  • V 3 is the voltage at both ends of the charge transfer impedance R ct , that is, the voltage at both ends of the impedance Z3 part in the equivalent circuit shown in Fig. 1 .
  • the impedance of the impedance Z3 part in the equivalent circuit is related to the current frequency, and the expression is:
  • Z 3 is the impedance of the impedance Z3 part
  • j is the imaginary number unit
  • is the current frequency
  • n dl is the constant phase angle element (Constant Phase Angle Element, CPE) index of the impedance Z3 part
  • Q dl is the CPE of the impedance Z3 part coefficient.
  • the voltage amplitude at both ends of the impedance Z3 part (the voltage amplitude at both ends of the charge transfer impedance R ct ) in the equivalent circuit of the graphite negative electrode of the lithium-ion battery is always smaller than the equilibrium potential of the graphite negative electrode.
  • the real and imaginary parts of the positive and negative impedances increase significantly; the real parts of the positive and negative impedances decrease as the frequency increases.
  • the equivalent circuit parameters of the negative electrode obtained from the fitting can be calculated to obtain the maximum amplitude of the AC heating current with different frequencies at different temperatures under the condition of inhibiting lithium precipitation, that is, at different temperatures
  • the maximum amplitude-frequency relationship of the AC current of the lithium-ion battery, the amplitude-frequency relationship can be seen in Figure 2.
  • Figure 3 is a schematic diagram of the maximum heat generation power of AC current preheating at different temperatures and frequencies under the condition of suppressing lithium precipitation. Ideally, by increasing the frequency, the current through R ct decreases, the voltage becomes smaller to avoid lithium deposition, and at the same time, the total current is larger, and greater heat is generated through R 0 .
  • FIG. 4 is a schematic diagram of the selection of the optimal frequency point when the amplitude of the alternating current is given. Based on Figure 4, it can be seen that at the boundary of the shaded part, the maximum heat generation power under the condition that the battery does not decompose lithium can be obtained, which is the optimal frequency point. By selecting the appropriate current amplitude and frequency, the heating efficiency can be maximized.
  • the current amplitude and frequency for internal heating of the lithium battery are usually determined based on the lowest design temperature of the lithium battery, and in subsequent applications, the current amplitude and frequency are fixedly used to heat the lithium battery , In this way, it is difficult to realize efficient heating of lithium batteries in various environments.
  • a battery heating method is provided, as shown in FIG. 5 , the method includes:
  • Step 501 acquiring the first temperature and the first state of charge of the battery
  • Step 502 determine the first current frequency according to the first temperature, the first state of charge and the preset first data table, the first data table includes the first temperature, the first charge a corresponding relationship between the state and the first current frequency;
  • Step 503 heating the battery based on the first current amplitude and the first current frequency.
  • the battery may be a lithium-ion battery, a lithium-sulfur battery, a sodium-ion battery, or a magnesium-ion battery, etc., which are not specifically limited here. To simplify the description, the following description will mainly be made with the battery being a lithium-ion battery.
  • the first temperature of the battery may refer to a battery problem collected in real time, which may be collected through a related temperature sensing device.
  • the first temperature may be the temperature in the battery pack where the battery is located, or the temperature of the working environment where the battery is located.
  • the first state of charge may be the real-time SOC of the battery, which may be collected by a battery SOC signal collection device.
  • the first temperature and the first state of charge may be collected by a battery management system (Battery Management System, BMS) or the like.
  • BMS Battery Management System
  • the first data table can be pre-built.
  • the current amplitude can be controlled, the battery temperature and battery SOC can be changed, and the electrochemical impedance spectrum (Electrochemical Impedance Spectroscopy, EIS) of the battery can be obtained under the combined conditions of each battery temperature and battery SOC data.
  • EIS Electrochemical Impedance Spectroscopy
  • the current frequency at any combination of battery temperature and battery SOC can be determined.
  • the current frequency can make the battery not polarized under the combined conditions of the corresponding battery temperature and battery SOC, and at the same time, the internal heating of the battery can be performed with a relatively high heating power.
  • the current amplitude can be used as a fixed quantity
  • the battery temperature and battery SOC can be used as independent variables
  • the current frequency can be measured as a dependent variable.
  • the current amplitude in the first data table is specifically controlled at the first current amplitude.
  • the first current amplitude may be determined according to the rated current or the maximum allowable current of the discharge device.
  • the discharge device may be a motor controller, charging pile or other energy storage unit, and the first current amplitude may be equal to or slightly smaller than the maximum allowable current of the discharge device.
  • the first data table may include correspondences among the first temperature, the first state of charge, and the first current frequency under the first current amplitude condition. When the first temperature and the first state of charge are obtained, the first current frequency can be determined through the first data table.
  • the battery may be heated based on the first current magnitude and the first current frequency.
  • the first current amplitude and the first current frequency may be target heating parameters or reference heating parameters.
  • the battery may be heated with the first current amplitude and the first current frequency, or the battery may be heated with the first current frequency and a current amplitude lower than the first current amplitude.
  • the battery heating method provided in the embodiment of the present application obtains the first temperature and the first state of charge of the battery, and determines the first current frequency according to the first temperature, the first state of charge, and the first preset data table, and based on the first A current amplitude and a first current frequency heat the battery, wherein the first data table includes a correspondence relationship between a first temperature, a first state of charge, and a first current frequency under the condition of the first current amplitude.
  • the embodiment of the present application can determine the current frequency and amplitude for internal heating according to the temperature of the battery, so as to increase the heating rate of the battery under various temperature environments.
  • the first current amplitude is predetermined, when determining the heating parameters of the battery, the consumption of computing resources caused by the determination of the first current amplitude can be saved, and the battery can be improved. The efficiency of the determination of the heating parameters. Moreover, there is no need to establish the above-mentioned first data tables for various current amplitudes, which helps to reduce the consumption of manpower and material resources caused by the establishment of the first data tables.
  • the lack of limitation on the current amplitude used to heat the battery can avoid the situation that the current amplitude used for actually heating the battery is too high, resulting in lithium deposition in the battery cell.
  • the first data table is established under the condition of the first current amplitude, and there is no need to establish the correspondence between the battery temperature, battery SOC, and current frequency for multiple current amplitudes, and then It also helps to reduce the manpower and material resources required for the process of establishing these correspondences.
  • the first current amplitude may be determined first. Taking the application of batteries in electric vehicles as an example, the selection of the first current amplitude is related to the maximum overcurrent capacity of the heating system. If self-discharge is performed through the electric vehicle motor controller, the first current amplitude is generally the electric control of the motor. For the maximum overcurrent, if the charging pile is heated by a fast-heating charging pile, the first current amplitude is generally selected as the maximum overcurrent capability of the charging pile. Generally speaking, the first current amplitude is the maximum current amplitude that can be achieved under rapid heating conditions, and at the same time, it will not cause safety risks to the heating system. The first current amplitude is generally determined at the beginning of the system design up.
  • the first current amplitude may be 300A
  • the safe current frequency of the battery when the SOC is 0% to 100% and the temperature is -30° to 10° may be calibrated respectively, and the safe current frequency may be based on the formula ( 2) and (4) are determined.
  • the obtained optimal frequency point should not be lower than the corresponding safe current frequency.
  • the first data table can be obtained based on the calibration test, and the following is an example of the first data table.
  • each data in the above first data table is an exemplary description.
  • "XHz” represents a frequency value.
  • the specific value represented by “X” in each table can be obtained through calibration tests, rather than a specific value. That is to say, the value of "X” in different tables can be same or different.
  • the number of the first data tables is N, and the N first data tables are associated with N battery health degrees (State Of Health, SOH), and N is an integer greater than 1;
  • the first current frequency is determined, specifically including:
  • a first current frequency is determined according to the first temperature, the first state of charge and the second data table.
  • Battery SOH can be understood as the percentage of the battery's current capacity to the factory capacity.
  • the same battery may have different charge transfer resistance R ct in different SOH states.
  • corresponding first data tables can be respectively established for the N SOHs.
  • the method for establishing the first data table will not be described here.
  • the first health degree of the battery can be understood as the current SOH of the battery, and in some examples, the first health degree of the battery can be obtained through a BMS.
  • the second data table associated with the first health degree may be determined from the N first data tables.
  • the second data table is the first data table associated with the first health degree among the N first data tables. Therefore, the second data table may also include the corresponding relationship among the first temperature, the first state of charge and the first current frequency under the condition of the first current amplitude.
  • the first current frequency is determined according to the first temperature, the first state of charge, and the second data table.
  • the first current frequency may correspond to the heating parameter of the above-mentioned battery, and the specific application will not be repeated here.
  • the impedance of the battery will increase.
  • taking the SOH into consideration as a safety redundancy can further improve the reliability of the battery heating process.
  • heating the battery based on the first current amplitude and the first current frequency includes:
  • the method further includes:
  • the battery is heated in divided heating cycles.
  • the above steps 501 to 503 may be performed, and the battery is kept heated for a first preset time period.
  • the first preset duration may be preset, and the specific value may not be limited here.
  • step 501 to step 503 are repeatedly performed, and the battery is kept heating for the first preset time period again.
  • FIG. 6 is an example diagram of the battery heating process in this embodiment.
  • the abscissa is time
  • the ordinate is battery temperature.
  • Fig. 6 shows the time period of three heating cycles on the time axis, and these three heating cycles are recorded as heating cycle A, heating cycle B and heating cycle C respectively, and the first current frequency adopted in each heating cycle is respectively the first current frequency A frequency, a second frequency and a third frequency.
  • the first temperature of the battery will change, therefore, the first current frequency determined based on the first temperature and the first data table will usually also change accordingly, that is, the first frequency, the second frequency and The third frequency can generally be unequal.
  • the first data table is established based on the consideration of safe heating of the battery and maximization of heating efficiency.
  • the battery is heated in different heating cycles.
  • the current frequency used to heat the battery helps to effectively improve the safety and efficiency of battery heating.
  • the heating of the battery may be ended.
  • the waveform of the current for heating the battery may be one of pulse wave, square wave, triangular wave, single-frequency sine wave or superposition of multiple frequency sine waves. That is, in practical applications, there may be differences in the waveform type of the current heating the battery.
  • the first current frequency is obtained by querying the first data table, and the first data table is often established based on a current condition of a certain waveform type.
  • the waveform type of the current used may be a single-frequency sine wave.
  • the waveform type of the current used when creating the first data table can be used as the reference waveform.
  • the waveform type of the current used for heating the battery may be a pulse wave or a triangular wave.
  • the impact of these waveform types on the lithium analysis of the battery is often difficult to determine.
  • the first current frequency can be determined according to the waveform type of the current used to heat the battery. A current frequency is adjusted to obtain a second current frequency.
  • the adjustment rule of the first current frequency can be set as required. For example, if the waveform type of the current used for heating the battery is the above-mentioned reference waveform, the first current frequency can be directly used as the second current frequency; and if the waveform type of the current used for heating the battery is part of the reference waveform, then the The first current frequency is added to the preset frequency, or multiplied by a preset coefficient to obtain the second current frequency.
  • each waveform type may correspond to a preset frequency adjustment value or adjustment coefficient.
  • the frequency adjustment value corresponding to the waveform type can be added to the first current frequency, or multiplied by the adjustment coefficient corresponding to the waveform type to obtain the second Second current frequency.
  • the first current frequency determined according to the first data table can be adjusted according to the waveform type of the current for heating the battery to obtain the second current frequency, and the battery can be heated based on the first current amplitude and the second current frequency , which helps to improve the safety of the battery heating process.
  • the method further includes:
  • a third current frequency is determined according to the second current amplitude, and the third current frequency is a safe current frequency for heating the battery under the condition of the second current amplitude;
  • the battery is heated according to the greater of the first current frequency and the third current frequency, and the second current magnitude.
  • the first current amplitude may be determined according to the maximum allowable current of the discharge device, and the first current amplitude may be regarded as an empirical value to a certain extent. However, in practical applications, different discharge devices may have different maximum allowable currents.
  • the second current amplitude here may be the maximum allowable current of the discharge equipment used in practical applications, or a current amplitude determined according to the maximum allowable current of discharge equipment used in practical applications.
  • a safe current frequency that is, the above-mentioned third current frequency, can actually be determined according to formulas (2) and (4). If the frequency of the current used for heating the battery is lower than the third current frequency, it may cause safety problems to the heating process.
  • the battery can be heated according to the larger value between the first current frequency and the third current frequency and the second current amplitude. In this way, the safety of the battery heating process can be effectively guaranteed under various current amplitude conditions.
  • the embodiment of the present application also provides a battery heating method, including:
  • Step 701 acquiring a second temperature and a second state of charge of the battery
  • Step 702 according to the second temperature, the second state of charge and the preset third data table, determine the third current amplitude, the third data table includes the second temperature, the second charge state under the condition of the fourth current frequency, a corresponding relationship between the state and the third current amplitude;
  • Step 703 heating the battery based on the fourth current frequency and the third current amplitude.
  • the battery may be a lithium-ion battery, a lithium-sulfur battery, a sodium-ion battery, or a magnesium-ion battery, etc., which are not specifically limited here.
  • the following also mainly assumes that the battery is a lithium-ion battery for description.
  • the second temperature of the battery may refer to a battery problem collected in real time, which may be collected through a related temperature sensing device.
  • the second temperature may be the temperature in the battery pack where the battery is located, or the temperature of the working environment where the battery is located.
  • the second state of charge may be the real-time SOC of the battery, which may be collected by a battery SOC signal collection device.
  • the second temperature and the second state of charge may be collected by a BMS or the like.
  • the third data table can be pre-built.
  • the current frequency can be controlled, the battery temperature and battery SOC can be changed, and the EIS data of the battery under each combination of battery temperature and battery SOC can be obtained.
  • the current magnitude at any combination of battery temperature and battery SOC can be determined.
  • the current amplitude can make the battery not polarized under the combined conditions of the corresponding battery temperature and battery SOC, and at the same time, the internal heating of the battery can be performed with a relatively high heating power.
  • the current frequency can be used as a fixed quantity
  • the battery temperature and battery SOC can be used as independent variables
  • the current amplitude can be measured as a dependent variable.
  • the current frequency in the third data table is specifically controlled at the fourth current frequency.
  • the third data table may include a correspondence between the second temperature, the second state of charge, and the third current amplitude under the fourth current frequency condition.
  • the third current amplitude can be determined through the third data table.
  • the battery can be heated based on the fourth current frequency and the third current magnitude.
  • the fourth current frequency and the third current amplitude may be target heating parameters or reference heating parameters.
  • the battery may be heated with the fourth current frequency and the third current amplitude, or the battery may be heated with the third current amplitude and a current frequency higher than the fourth current frequency.
  • the battery heating method provided in the embodiment of the present application obtains the second temperature and the second state of charge of the battery, and determines the third current amplitude according to the second temperature, the second state of charge and the preset third data table, based on The battery is heated by the fourth current frequency and the third current amplitude, wherein the third data table includes the correspondence between the second temperature, the second state of charge and the third current amplitude under the condition of the fourth current frequency.
  • the embodiment of the present application can determine the current frequency and amplitude for internal heating according to the temperature of the battery, so as to increase the heating rate of the battery under various temperature environments.
  • the fourth current frequency is predetermined, when determining the heating parameters of the battery, the consumption of computing resources caused by the determination of the fourth current frequency can be saved, and the heating of the battery can be improved. Parameter determination efficiency. Moreover, there is no need to establish the above-mentioned third data tables for various current frequencies, which helps to reduce the consumption of manpower and material resources caused by the establishment of the third data tables.
  • the third data table is established under the condition of the fourth current frequency, and there is no need to establish the correspondence between the battery temperature, battery SOC, and current amplitude for multiple current frequencies, and there are also It helps to reduce the human and material resources required for the process of establishing these correspondences.
  • the method further includes:
  • heating the battery based on the fourth current frequency and the third current magnitude comprising:
  • the fifth current frequency is greater than the fourth current frequency.
  • the battery can supply power to the user equipment while being heated by the discharge device. Therefore, the battery has an output voltage, which can be obtained through a voltage sensing device or the like.
  • the above-mentioned fourth current frequency may be a predetermined smaller frequency value. In the process of internal heating of the battery, if the output voltage of the battery is low, if the battery continues to discharge, it may cause the battery to drop below the safe voltage.
  • the voltage threshold can be regarded as a threshold used to judge whether the battery is in a safe voltage range.
  • a relatively high fifth current frequency may be used to internally heat the battery.
  • the fifth current frequency can be set according to needs, specifically, it can be an empirical value, or it can be obtained through calibration of the charging and discharging process of the battery, which will not be described in detail here.
  • the output voltage of the battery When the output voltage of the battery is greater than or equal to the voltage threshold, it can be considered to a certain extent that the output voltage of the battery does not drop below the safe voltage range during the discharge process. At this time, it can be based on the relatively low fourth current frequency and The third current amplitude heats the battery to ensure the heating efficiency of the battery.
  • the battery when the output voltage is lower than the voltage threshold, after the battery is heated based on the preset fifth current frequency and the third current amplitude, when the second temperature of the battery rises to a preset temperature value, The battery may then be heated based on the fourth current frequency and the third current magnitude.
  • the third current amplitude is specifically a forward current amplitude
  • Heating the battery based on the fourth current frequency and the third current amplitude specifically includes:
  • the battery is heated based on the fourth current frequency, the third current magnitude and the preset first negative current magnitude.
  • the positive current may refer to the current when the battery is in a charging state
  • the negative current may refer to the current when the battery is in a discharging state
  • the third current amplitude that needs to be determined may be the forward current amplitude, and the battery is heated based on the third current amplitude and the fourth current frequency to avoid safety issues.
  • the impact on the safety of the battery such as lithium is less, therefore, its amplitude can be determined as a preset value, that is, the above-mentioned first negative current amplitude.
  • the first negative current amplitude may be the maximum allowable current amplitude of the electric device, and the maximum allowable current amplitude has been determined when the electric device is designed.
  • the first negative current amplitude may also be an empirical value.
  • the third current amplitude determined based on the third data table is specifically the forward current amplitude, and the battery is heated based on the fourth current frequency, the third current amplitude and the preset first negative current amplitude, It helps to improve the heating efficiency, and at the same time helps to ensure the safety of the battery heating process, and reduces the requirements on the frequency conversion range of the heating equipment. .
  • the method further includes:
  • Heating the battery based on the fourth current frequency, the third current magnitude and the preset first negative current magnitude specifically includes:
  • the first negative current amplitude is greater than the second negative current amplitude.
  • Whether the output voltage of the battery is low can be judged based on the comparison between the output voltage and the voltage threshold.
  • the output voltage of the battery When the output voltage of the battery is greater than or equal to the voltage threshold, it can be considered to a certain extent that the output voltage of the battery does not drop below the safe voltage range during the discharge process. At this time, it can be based on the fourth current frequency and the third current amplitude. value and the preset first negative current amplitude to heat the battery, to ensure the heating efficiency of the battery and to ensure the normal use of electrical equipment.
  • the battery when the output voltage is less than the voltage threshold, the battery is heated based on the fourth current frequency, the third current amplitude and the preset second negative current amplitude, the second negative current amplitude is smaller than the first A negative current amplitude to avoid safety issues caused by excessive battery discharge, which in turn helps to increase the service life of the battery.
  • the number of the third data tables is M, and the M third data tables are associated with M battery health degrees, and M is an integer greater than 1;
  • the second state of charge and the preset third data table determine the third current amplitude, including:
  • a third current magnitude is determined according to the second temperature, the second state of charge, and the fourth data table.
  • the same battery may have different charge transfer resistances R ct in different SOH states.
  • R ct charge transfer resistances
  • corresponding third data tables may be respectively established for the M SOHs.
  • the method of establishing the third data table will not be repeated here.
  • the second health level of the battery can be understood as the current SOH of the battery, and in some examples, the second health level of the battery can be acquired through a BMS.
  • the fourth data table associated with the second health degree may be determined from the M third data tables.
  • the fourth data table is the third data table associated with the second health degree among the N third data tables. Therefore, the fourth data table may also include the corresponding relationship among the second temperature, the second state of charge and the third current amplitude under the fourth current frequency condition.
  • the third current amplitude is determined according to the second temperature, the second state of charge and the fourth data table.
  • the third current amplitude may correspond to the above heating parameters of the battery, and the specific usage will not be repeated here.
  • the impedance of the battery will increase.
  • taking the SOH into consideration as a safety redundancy can further improve the reliability of the battery heating process.
  • heating the battery based on the fourth current frequency and the third current amplitude comprises:
  • the method further includes:
  • the battery is heated in divided heating cycles.
  • step 701 to step 703 may be performed, and the battery is kept heating for a second preset time period.
  • the second preset duration may be preset, and the specific value may not be limited here.
  • step 701 to step 703 are repeatedly performed, and the battery is kept heating for the second preset time period again.
  • FIG. 8 is another example diagram of the heating process of the battery in this embodiment.
  • the example diagram is located in the upper coordinate system, with time on the abscissa and battery temperature on the ordinate.
  • FIG. 8 shows the time periods of three heating cycles on the time axis, which are respectively denoted as heating cycle A', heating cycle B' and heating cycle C'.
  • the frequency of the current used in each heating cycle may be equal, but the amplitude of the current may be continuously varied.
  • the abscissa is time
  • the ordinate is current amplitude. It can be seen that the frequency of the current remains unchanged.
  • the amplitude of the positive current can be continuously increased, while the amplitude of the negative current can be kept unchanged.
  • the magnitude of the negative current can also be adjusted as the heating cycle progresses.
  • the third data table is established based on the consideration of safe heating of the battery and maximization of heating efficiency.
  • the battery is heated in different heating cycles.
  • the current amplitude used to heat the battery helps to effectively improve the safety and efficiency of battery heating.
  • the waveform of the current used for heating the battery is a square wave.
  • the waveform type of the current used for heating the battery can be a pulse wave, square wave, triangle wave, single-frequency sine wave or a variety of At least one of the superposition of frequency sine waves and the like.
  • the third current amplitude can also be adjusted according to the waveform type, and the battery can be heated based on the fourth current frequency and the adjusted third current amplitude.
  • the current waveform used when establishing the third data table is a single-frequency sine wave
  • the single-frequency sine wave may be called a reference waveform.
  • the adjustment rule may include: when the waveform used for heating the battery is not a bit reference waveform, subtracting the preset current amplitude from the determined third current amplitude, or multiplying by a positive coefficient less than 1, etc.
  • FIG. 9 is a schematic structural diagram of a heating system for heating a battery.
  • the heating system may include a battery pack and a power supply.
  • the battery pack can include a battery and a BMS, and the BMS includes various types of sensing units, such as current acquisition units, voltage acquisition units, and temperature acquisition units.
  • the BMS may also include SOC signal acquisition equipment, SOH signal acquisition equipment, and the like.
  • the power source can be a charging pile or a motor controller.
  • BMS can collect data such as battery temperature and SOC, and generate relevant heating parameters based on these collected data, such as the above-mentioned current frequency and current amplitude.
  • the heating parameters can be sent to the power supply through a communication module, such as a signal line, so as to control the power supply to heat the battery according to the heating parameters.
  • FIG. 10 is a schematic structural diagram of another heating system for heating a battery.
  • the heating system may include a battery pack, a voltage conversion module, and an energy storage unit.
  • the energy storage unit may be a wind power energy storage unit or a solar energy storage unit.
  • the energy storage unit may also be various electronic components used for energy storage in the electric vehicle.
  • the voltage conversion module can be used to convert the voltage output by the energy storage unit.
  • the BMS can communicate with the voltage variation module, and control the voltage variation module to work based on the determined heating parameters.
  • the embodiment of the present application also provides a battery heating device 1100, including:
  • the first determination module 1102 is configured to determine the first current frequency according to the first temperature, the first state of charge, and the preset first data table.
  • the first data table includes the first temperature under the first current amplitude condition. , the corresponding relationship between the first state of charge and the first current frequency;
  • the first heating control module 1103 is used for heating the battery based on the first current amplitude and the first current frequency.
  • the number of first data tables is N, and the N first data tables are associated with N battery health degrees, where N is an integer greater than 1;
  • the first determination module 1102 includes:
  • a first acquiring unit configured to acquire a first health degree of the battery
  • a first determining unit configured to determine a second data table associated with the first health degree from the N first data tables
  • the second determination unit is configured to determine the first current frequency according to the first temperature, the first state of charge and the second data table.
  • the first heating control module 1103 includes:
  • a first heating control unit configured to start heating the battery at a first moment based on a first current amplitude and a first current frequency
  • the battery heating device 1100 may further include:
  • the first execution module is configured to return to the step of obtaining the first temperature and the first state of charge of the battery when the second moment is reached, and the duration between the second moment and the first moment is equal to the first preset duration .
  • the battery heating device 1100 may further include:
  • the third acquisition module is configured to determine the third current frequency according to the second current amplitude when the second current amplitude is acquired, and the third current frequency is the safety of heating the battery under the condition of the second current amplitude current frequency;
  • the third heating control module is used for heating the battery according to the larger value between the first current frequency and the third current frequency and the second current amplitude.
  • the embodiment of the present application also provides a battery heating device 1200, including:
  • a second acquiring module 1201, configured to acquire a second temperature and a second state of charge of the battery
  • the second determining module 1202 is configured to determine the third current amplitude according to the second temperature, the second state of charge, and the preset third data table.
  • the third data table includes the condition of the fourth current frequency, the second temperature , the corresponding relationship between the second state of charge and the third current amplitude;
  • the second heating control module 1203 is configured to heat the battery based on the fourth current frequency and the third current amplitude.
  • the battery heating device 1200 may further include:
  • the fourth obtaining module is used to obtain the output voltage of the battery
  • the fourth heating control module is used to heat the battery based on the preset fifth current frequency and the third current amplitude when the output voltage is lower than the voltage threshold;
  • the second heating control module 1203 can be used to heat the battery based on the fourth current frequency and the third current amplitude when the output voltage is greater than or equal to the voltage threshold;
  • the fifth current frequency is greater than the fourth current frequency.
  • the third current amplitude is a forward current amplitude
  • the second heating control module 1203 includes:
  • the second heating control unit is used for heating the battery based on the fourth current frequency, the third current amplitude and the preset first negative current amplitude.
  • the battery heating device 1200 may further include:
  • the fifth obtaining module is used to obtain the output voltage of the battery
  • the fifth heating control module is used to heat the battery based on the fourth current frequency, the third current amplitude and the preset second negative current amplitude when the output voltage is less than the voltage threshold;
  • the second heating control module 1203 is configured to heat the battery based on the fourth current frequency, the third current amplitude and the preset first negative current amplitude when the output voltage is greater than or equal to the voltage threshold;
  • the first negative current amplitude is greater than the second negative current amplitude.
  • the number of the third data tables is M, and the M third data tables are associated with M battery health degrees, and M is an integer greater than 1;
  • the second determination module 1202 includes:
  • a second acquiring unit configured to acquire a second health degree of the battery
  • a third determining unit configured to determine a fourth data table associated with the second health degree from the M third data tables
  • the fourth determining unit is configured to determine the third current amplitude according to the second temperature, the second state of charge and the fourth data table.
  • the second heating control module 1203 includes:
  • a third heating control unit configured to start heating the battery at a third moment based on a fourth current frequency and a third current amplitude
  • the battery heating device 1200 may further include:
  • the second execution module is configured to return to the step of obtaining the second temperature and the second state of charge of the battery when the fourth moment is reached, and the duration between the fourth moment and the third moment is equal to the second preset duration .
  • the battery heating device is a device corresponding to the above-mentioned battery heating method, and all the implementation methods in the above-mentioned method embodiments are applicable to the embodiments of the device, and can also achieve the same technical effect.
  • FIG. 13 shows a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
  • the electronic device may include a processor 1301 and a memory 1302 storing computer program instructions.
  • the processor 1301 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits in the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 1302 may include mass storage for data or instructions.
  • memory 1302 may include a hard disk drive (Hard Disk Drive, HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (Universal Serial Bus, USB) drive or two or more Combinations of multiple of the above.
  • Storage 1302 may include removable or non-removable (or fixed) media, where appropriate. Under appropriate circumstances, the storage 1302 can be inside or outside the comprehensive gateway disaster recovery device.
  • memory 1302 is a non-volatile solid-state memory.
  • Memory may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices magnetic disk storage media devices
  • optical storage media devices flash memory devices
  • electrical, optical, or other physical/tangible memory storage devices include one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software comprising computer-executable instructions, and when the software is executed (e.g., by one or multiple processors) operable to perform the operations described with reference to the method according to the present disclosure.
  • the processor 1301 reads and executes the computer program instructions stored in the memory 1302 to implement any battery heating method in the foregoing embodiments.
  • the electronic device may also include a communication interface 1304 and a bus 1304 .
  • a communication interface 1304 and a bus 1304 .
  • a processor 1301 a memory 1302 , and a communication interface 1304 are connected through a bus 1304 to complete mutual communication.
  • the communication interface 1304 is mainly used to realize communication between various modules, devices, units and/or devices in the embodiments of the present application.
  • Bus 1304 includes hardware, software, or both.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infiniband Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • Bus 1304 may comprise one or more buses, where appropriate. Although the embodiments of this application describe and illustrate a particular bus, this application contemplates any suitable bus or interconnect.
  • the embodiments of the present application may provide a computer storage medium for implementation.
  • Computer program instructions are stored on the computer storage medium; when the computer program instructions are executed by a processor, any one of the battery heating methods in the foregoing embodiments is implemented.
  • the functional blocks shown in the above structural block diagrams may be implemented as hardware, software, firmware or a combination thereof.
  • it When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like.
  • ASIC application specific integrated circuit
  • the elements of the present application are the programs or code segments employed to perform the required tasks.
  • Programs or code segments can be stored in machine-readable media, or transmitted over transmission media or communication links by data signals carried in carrier waves.
  • "Machine-readable medium" may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • Code segments may be downloaded via a computer network such as the Internet, an Intranet, or the like.
  • processors may be, but are not limited to, general purpose processors, special purpose processors, application specific processors, or field programmable logic circuits. It can also be understood that each block in the block diagrams and/or flowcharts and combinations of blocks in the block diagrams and/or flowcharts can also be realized by dedicated hardware for performing specified functions or actions, or can be implemented by dedicated hardware and Combination of computer instructions to achieve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池加热方法、装置、设备及存储介质。其中,电池加热方法,包括:获取电池的第一温度和第一荷电状态;根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率,第一数据表包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系;基于第一电流幅值与第一电流频率加热电池。本申请实施例能够根据电池的温度来确定用于内部加热的电流频率与幅值,提高在各类温度环境下对电池的加热速率。

Description

电池加热方法、装置、设备及存储介质 技术领域
本申请涉及电池技术领域,特别是涉及一种电池加热方法、装置、设备及存储介质。
背景技术
众所周知,温度对电池的工作性能有着较大的影响。例如锂电池等类型的电池,当处于低温工作环境时,通常会将其加热至一较高的温度,以提高其工作性能。
相关技术中,通常按照固定的加热参数加热电池,存在加热速率较低的问题。
发明内容
本申请提供一种电池加热方法、装置、设备及存储介质,以解决相关技术中电池加热速率较低的问题。
第一方面,本申请提供了一种电池加热方法,包括:
获取电池的第一温度和第一荷电状态;
根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率,第一数据表包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系;
基于第一电流幅值与第一电流频率加热电池。
本申请实施例提供的电池加热方法,获取电池的第一温度和第一荷电状态,根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率,基于第一电流幅值与第一电流频率加热电池,其中,第一数据表包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系。本申请实施例能够根据电池的温度来确定用于内部 加热的电流频率与幅值,提高在各类温度环境下对电池的加热速率。由于第一电流幅值是预先确定的,因此,在确定电池的加热参数时,可以节省因第一电流幅值的确定所带来的计算资源的消耗,提高电池的加热参数的确定效率。而且无需针对各种电流幅值分别建立上述的第一数据表,有助于减少第一数据表的建立所带来的人力物力消耗。通过确定第一电流幅值,可以避免出现因缺少对用于加热电池的电流幅值的限定,导致实际加热电池所使用的电流幅值过高而造成电芯析锂的情况。
在一些实施例中,第一数据表的数量为N个,N个第一数据表关联N个电池健康度,N为大于1的整数;
根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率,包括:
获取电池的第一健康度;
从N个第一数据表中确定出与第一健康度关联的第二数据表;
根据第一温度、第一荷电状态以及第二数据表,确定第一电流频率。
本实施例中,将SOH作为安全冗余考虑进去,可以进一步提升电池加热过程的可靠性。
在一些实施例中,基于第一电流幅值与第一电流频率加热电池,包括:
在第一时刻开始,基于第一电流幅值与第一电流频率加热电池;
基于第一电流幅值与第一电流频率加热电池之后,方法还包括:
在到达第二时刻的情况下,返回执行获取电池的第一温度和第一荷电状态的步骤,第二时刻与第一时刻之间的时长等于第一预设时长。
本实施例中,分不同的加热周期加热电池,在每个加热周期中,根据电池的第一温度调整用于加热电池的电流频率,有助于有效提高电池加热安全性与加热效率。
在一些实施例中,根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率之后,方法还包括:
在获取到第二电流幅值的情况下,根据第二电流幅值确定第三电 流频率,第三电流频率为在第二电流幅值条件下,对电池加热的安全电流频率;
根据第一电流频率与第三电流频率之间的较大值,以及第二电流幅值,加热电池。
本实施例可以在各类电流幅值条件下,均能够有效保障电池加热过程的安全性。
第二方面,本申请提供了一种电池加热方法,包括:
获取电池的第二温度和第二荷电状态;
根据第二温度、第二荷电状态以及预设的第三数据表,确定第三电流幅值,第三数据表包括在第四电流频率条件下,第二温度、第二荷电状态以及第三电流幅值之间的对应关系;
基于第四电流频率和第三电流幅值加热电池。
本申请实施例提供的电池加热方法,获取电池的第二温度和第二荷电状态,根据第二温度、第二荷电状态以及预设的第三数据表,确定第三电流幅值,基于第四电流频率和第三电流幅值加热电池,其中,第三数据表包括在第四电流频率条件下,第二温度、第二荷电状态以及第三电流幅值之间的对应关系。本申请实施例能够根据电池的温度来确定用于内部加热的电流频率与幅值,提高在各类温度环境下对电池的加热速率。由于第四电流频率是预先确定的,因此,在确定电池的加热参数时,可以节省因第四电流频率的确定所带来的计算资源的消耗,提高电池的加热参数的确定效率。而且无需针对各种电流频率分别建立上述的第三数据表,有助于减少第三数据表的建立所带来的人力物力消耗。通过确定第一电流频率,可以避免出现因缺少对用于加热电池的电流幅值的频率,导致实际加热电池所使用的电流频率过高的情况。
在一些实施例中,确定第三电流幅值之后,方法还包括:
获取电池的输出电压;
在输出电压小于电压阈值的情况下,基于预设的第五电流频率与第三电流幅值加热电池;
基于第四电流频率和第三电流幅值加热电池,包括:
在输出电压大于或等于电压阈值的情况下,基于第四电流频率和第三电流幅值加热电池;
其中,第五电流频率大于第四电流频率。
本实施例可以兼顾电池加热过程的安全性与加热效率。
在一些实施例中,第三电流幅值为正向电流幅值;
基于第四电流频率和第三电流幅值加热电池,包括:
基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池。
本实施例有助于减少加热参数确定时的计算量,同时有助于保证电池加热过程的安全性。
在一些实施例中,确定第三电流幅值之后,方法还包括:
获取电池的输出电压;
在输出电压小于电压阈值的情况下,基于第四电流频率、第三电流幅值以及预设的第二负向电流幅值加热电池;
基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池,具体包括:
在输出电压大于或等于电压阈值的情况下,基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池;
其中,第一负向电流幅值大于第二负向电流幅值。
本实施例可以避免电池过度放电导致安全性问题,进而有助于提升电池的使用寿命。
在一些实施例中,第三数据表的数量为M个,M个第三数据表关联M个电池健康度,M为大于1的整数;
根据第二温度、第二荷电状态以及预设的第三数据表,确定第三电流幅值,包括:
获取电池的第二健康度;
从M个第三数据表中确定出与第二健康度关联的第四数据表;
根据第二温度、第二荷电状态以及第四数据表,确定第三电流幅值。
本实施例中,将SOH作为安全冗余考虑进去,可以进一步提升电池加热过程的可靠性。
在一些实施例中,基于第四电流频率和第三电流幅值加热电池,包括:
在第三时刻开始,基于第四电流频率和第三电流幅值加热电池;
基于第四电流频率和第三电流幅值加热电池之后,方法还包括:
在到达第四时刻的情况下,返回执行获取电池的第二温度和第二荷电状态的步骤,第四时刻与第三时刻之间的时长等于第二预设时长。
本实施例中,分不同的加热周期加热电池,在每个加热周期中,根据电池的第二温度调整用于加热电池的电流幅值,有助于有效提高电池加热安全性与加热效率。
第三方面,本申请提供了一种电池加热装置,包括:
第一获取模块,用于获取电池的第一温度和第一荷电状态;
第一确定模块,用于根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率,第一数据表包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系;
第一加热控制模块,用于基于第一电流幅值与第一电流频率加热电池。
第四方面,本申请提供了一种电池加热装置,包括:
第二获取模块,用于获取电池的第二温度和第二荷电状态;
第二确定模块,用于根据第二温度、第二荷电状态以及预设的第三数据表,确定第三电流幅值,第三数据表包括在第四电流频率条件下,第二温度、第二荷电状态以及第三电流幅值之间的对应关系;
第二加热控制模块,用于基于第四电流频率和第三电流幅值加热电池。
第五方面,本申请提供了一种电子设备,包括:处理器以及存储有计算机程序指令的存储器;
处理器执行计算机程序指令时实现如第一方面所示的电池加热方法,或者实现如第二方面所示的电池加热方法。
第六方面,本申请提供了一种计算机存储介质,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现如第一方面所示的电池加热方法,或者实现如第二方面所示的电池加热方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是锂离子电池等效电路的示意图;
图2是抑制析锂条件下,不同温度下锂离子电池交流电流最大幅值-频率关系示意图;
图3是抑制析锂条件下,不同温度、不同频率交流电流预热的最大产热功率的示意图;
图4是给定交流电流幅值时最优频率点的选择的示意图;
图5是本申请一实施例公开的电池加热方法的流程示意图;
图6是电池加热过程的一个示例图;
图7是本申请另一实施例公开的电池加热方法的流程示意图;
图8是电池加热过程的另一个示例图;
图9是用于对电池加热的加热系统的结构示意图;
图10是用于对电池加热的加热系统的另一结构示意图;
图11是本申请一实施例公开的电池加热装置的结构示意图;
图12是本申请另一实施例公开的电池加热装置的结构示意图;
图13是本申请一实施例公开的电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
通常来说,对于锂电池等类型的电池,工作环境对其工作性能有着较大的影响。以锂电池在电动汽车中的锂动力电池为例,当电动汽车在低温环境下启动时,由于低温下锂动力电池工作性能下降,可能导致电动汽车无法启动或正常行驶。
当然,在实际应用中,不仅仅是锂电池,对于其他类型的电池,比如钠离子电池或镁离子电池等,也可能存在加热的需求。
目前对电池进行加热的方式主要分为两种:外部加热和内部加热。外部加热的方法主要是通过热传导或者热对流的途径实现,通过PTC材料或者加热膜等在外部对电池进行加热。但该方式容易出现受热不均匀现象并且加热效率较低。内部加热由于热量是直接在电池内部产生,故其能量效率更高,受热更加均匀。
在研究过程中,发明人通过对各种加热方式进行比较发现:通过交流电内部加热(以下交流内部加热)时,电池温度均匀性好,而且电池能量损失较小。
而当加热的电源为电池自身时,通过直流电内部加热(以下直流内部加热)电池,可以避免引入实现例如逆变等功能的电路元件,成本较低,但造成电池较大的能量损失。并且过大的直流会对电池寿命造成一定的影响。
总的来说,交流内部加热相比于外部加热方式和直流内部加热方式,实现起来较为容易,并且电池加热速度较快,加热均匀性好。
为了简化描述,以下将主要以电池为锂电池为例进行说明。
如图1所示,图1为锂离子电池等效电路的示意图,基于该等效电路可见,锂离子电池的阻抗主要由Z1、Z2以及Z3三部分构成。
其中,Z1为锂离子电池内部集流体、活性物质以及电解液等的欧姆阻抗成分R 0。Z2为颗粒表面固体电解质界面(solid electrolyte interphase,SEI)膜对应的阻抗成分,具体包括电容阻抗Q SEI与欧姆阻抗R SEI。Z3包括活性物质固液相界面处的双电层电容Q dl、电荷转移阻抗R ct及锂离子的扩散过程对应的阻抗W。
一般来说,当电池有电流通过,可能导致电池电位偏离了平衡电位的现象,这种现象可以称为电池极化。
当锂电池发生极化时,可能造成负极发生析锂。具体来说,锂离子电池在充电过程中,锂离子会从正极脱嵌关嵌入负极。但是当一些异常状况发生、并造成从正极脱嵌的锂离子无法嵌入负极的话,那么锂离子就只能析出在负极表面,从而形成一层灰色的物质。
析锂不仅使电池性能下降,循环寿命大幅缩短,还限制了电池的快充容量,并有可能引起燃烧、爆炸等灾难性后果。
若要避免负极发生析锂,则需要满足负极颗粒表面固液相电势差大于析锂反应平衡电势,即:
Φ sl>U e,2
其中,Φ s为负极颗粒表面固相电势,Φ l为负极颗粒表面液相电势,U e,2为析锂反应的平衡电势,通常被认为是0V。
析锂反应发生时,锂离子需要得到电子还原为锂金属,通常认为析锂反应初始发生在石墨颗粒表面SEI膜内部,该处的嵌锂反应过电势η为:
η=Φ sl-U e,1
其中,U e,1为石墨负极在特定荷电状态(State of Charge,SOC)下的平衡电势。
根据锂离子电池阻抗谱的推导过程,通过巴特勒–褔尔默(Butler-Volmer)方程的线性化,嵌锂反应过电势可以近似为:
η≈I ctR ct
式中,I ct为法拉第电流,R ct为电荷转移阻抗,充电时,I ct的符号为负。
对应石墨负极的等效电路,存在如下关系:
I ctR ct=-V 3
其中V 3为电荷转移阻抗R ct两端的电压,即图1所示等效电路中的阻抗Z3部分两端的电压。
由上式得到为了避免负极表面发生析锂,需要满足:
V 3<U e,1      (1)
等效电路中阻抗Z3部分的阻抗与电流频率有关,表达式为:
Figure PCTCN2021134746-appb-000001
其中,Z 3为阻抗Z3部分的阻抗,j为虚数单位,ω为电流频率,n dl为阻抗Z3部分的常相位角元件(Constant Phase Angle Element,CPE)指数,Q dl为阻抗Z3部分的CPE系数。
当给锂离子电池施加交流电激励时,Z3两端的电压幅值为:
|V 3|=I ac|Z 3|       (3)
式中,|V 3|为阻抗Z3部分的阻抗幅值,与电流频率相关;I ac为施加的交流电流的幅值。
由公式(1)与(3)得到,锂离子电池在交流电激励下,不发生析锂的条件为:
I ac|Z 3|<U e,1        (4)
即锂离子电池石墨负极等效电路中阻抗Z3部分两端的电压幅值(电荷转移阻抗R ct两端的电压幅值)始终小于石墨负极的平衡电势。
通常来说,随着温度的降低,正极、负极阻抗的实部与虚部都显著增大;正极、负极阻抗的实部随频率升高而减小。
根据公式(2)和(4),由拟合得到的负极等效电路参数,可以计算得到抑制析锂的条件下,不同温度下不同频率的交流加热电流可施加的最大幅值,即不同温度下锂离子电池交流电流最大幅值-频率关系,该幅值-频率关系可以参见图2。
由于石墨负极等效电路Z3部分的阻抗幅值随温度、频率的增加而减小,因而最大容许的交流电流幅值随着频率或温度升高而增大。
综上所示的,最大许用电流随着频率的升高而增加,电池阻抗的实部随着频率的降低而增加,根据产热功率P=I 2R,需要在频率与电流中找到平衡点,使得加热功率最大。其中,P为产热功率、I为电流、R为电阻。
具体到图1所示的锂离子电池等效电路中,随着频率的升高,通过R ct与R SEI的电流成分减小,产热功率将会更多地来自于欧姆内阻R 0上的产热。
如图3所示,图3是抑制析锂条件下不同温度、不同频率交流电流预热的最大产热功率的示意图。在理想情况下,通过增加频率使得通过R ct的电流减小,电压变小以避免析锂,同时使得总电流更大,通过R 0产生更大的热量。
实际过程中,由于加热设备(整车内置速热设备或外置速热设备)也存在最大电流幅值的限制。若给定了最大电流幅值,电流频率过低时,会引发析锂;电流频率过高时,产热功率较小;因而,此种情况下,对频率的选择是有最优值的。
如图4所示,图4是给定交流电流幅值时最优频率点的选择的示意图。基于图4可见,在阴影部分的边界处,可以取到电池不析锂条件下的最大产热功率,此即为最优频率点。通过选择合适的电流幅值与频率,可以使得加热效率最高。
然而,相关技术中,通常是基于锂电池的设计最低温,来确定用于对锂电池进行内部加热的电流幅值与频率,并在后续应用中,固定使用该电流幅值与频率加热锂电池,如此,导致难以在各种环境下实现对锂电池的高效加热。
为解决相关技术中存在的问题,根据本申请的一些实施例,提供了一种电池加热方法,如图5所示,该方法包括:
步骤501,获取电池的第一温度和第一荷电状态;
步骤502,根据第一温度、第一荷电状态以及预设的第一数据表, 确定第一电流频率,第一数据表包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系;
步骤503,基于第一电流幅值与第一电流频率加热电池。
本实施例中,电池可以是锂离子电池、锂硫电池、钠离子电池或镁离子电池等等,此处不做具体限定。为简化说明,以下将主要以电池为锂离子电池为了进行说明。
电池的第一温度可以是指实时采集的电池问题,可通过相关的温度感知设备进行采集。该第一温度可以是电池所在电池包内的温度,也可以是电池所处工作环境的温度。
第一荷电状态可以是电池的实时SOC,可以通过电池SOC信号采集设备进行采集。
在一些应用场景中,第一温度与第一荷电状态可以通过电池管理系统(Battery Management System,BMS)等进行采集。
第一数据表可以预先建立的。在建立该第一数据表的过程中,可以控制电流幅值,改变电池温度和电池SOC,并获取每一电池温度与电池SOC的组合条件下电池的电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)数据。基于EIS数据,可以确定在任一电池温度与电池SOC的组合条件下的电流频率。一般来说,该电流频率可以使得在相应电池温度与电池SOC的组合条件下,电池不会出现极化现象,同时能够以较高的加热功率进行电池内部加热。
换而言之,建立第一数据表时,可以将电流幅值作为固定量,电池温度和电池SOC作为自变量,电流频率作为因变量进行测取。
其中,第一数据表中的电流幅值具体控制在第一电流幅值。
结合一些举例,第一电流幅值可以根据放电设备的额定电流或最大允许电流来确定。比如,当电池应用在电动汽车中的情况下,放电设备可以是电机控制器、充电桩或者其他的储能单元等,而第一电流幅值可以等于或者略小于放电设备的最大允许电流。
第一数据表可以包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系。在获取到第一温度与第一荷电 状态的情况下,可以通过第一数据表确定出第一电流频率。
在确定第一电流频率的情况下,可以基于第一电流幅值与第一电流频率加热电池。
第一电流幅值与第一电流频率可以是目标加热参数,也可以是参考加热参数。比如,在实际应用中,可以是以第一电流幅值与第一电流频率对电池加热的,也可以是以第一电流频率以及低于第一电流幅值的电流幅值对电池加热的。
本申请实施例提供的电池加热方法,获取电池的第一温度和第一荷电状态,根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率,基于第一电流幅值与第一电流频率加热电池,其中,第一数据表包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系。本申请实施例能够根据电池的温度来确定用于内部加热的电流频率与幅值,提高在各类温度环境下对电池的加热速率。
其次,本申请实施例中,由于第一电流幅值是预先确定的,因此,在确定电池的加热参数时,可以节省因第一电流幅值的确定所带来的计算资源的消耗,提高电池的加热参数的确定效率。而且无需针对各种电流幅值分别建立上述的第一数据表,有助于减少第一数据表的建立所带来的人力物力消耗。
此外,通过确定第一电流幅值,可以避免出现因缺少对用于加热电池的电流幅值的限定,导致实际加热电池所使用的电流幅值过高而造成电芯析锂的情况。
与此同时,本申请实施例中,第一数据表是在第一电流幅值条件下建立的,无需针对多个电流幅值分别建立电池温度、电池SOC以及电流频率之间的对应关系,进而也有助于减少这些对应关系建立过程所需的人力物力。
结合一些举例,在建立第一数据表时,可以先确定第一电流幅值。以电池应用在电动汽车中为例,第一电流幅值的选择与加热系统的最大过流能力有关,如果是通过电动汽车电机控制器进行自放电,第一电流幅值一般为电机电控的最大过流,如果是通过速热充电桩进行加热,第一电流 幅值一般选择为充电桩的最大过流能力。总的来说,第一电流幅值即速热工况下所能达到的最大电流幅值,同时又不会引起加热系统安全风险,该第一电流幅值一般在系统设计之初即定下来了。
在一个示例中,第一电流幅值可以是300A,并可以分别标定电池在SOC为0%~100%,温度为-30°~10°时的安全电流频率,该安全电流频率可以基于公式(2)和(4)进行确定。
在通过对电池的标定测试获得加热效率最高的电流频率时(即最优频率点),应该使得的得到的最优频率点不低于对应的安全电流频率。
基于标定测试可以得到第一数据表,以下为第一数据表的一个示例。
Figure PCTCN2021134746-appb-000002
值得说明的是,以上第一数据表中的各个数据是作为示例性的说明。例如,“XHz”代表是一频率值,各个表格中“X”所代表的具体数值可以通过标定测试得到,而并非特指某一个数值,也就是说,不同表格中“X”的数值可以是相同或不同的。此外,在实际应用中,无论是第一电流幅值,还是标定的SOC的范围或温度的范围,均可以根据需要进行调整。
根据本申请的一些实施例,第一数据表的数量为N个,N个第一数据表关联N个电池健康度(State Of Health,SOH),N为大于1的整数;
根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率,具体包括:
获取电池的第一健康度;
从N个第一数据表中确定出与第一健康度关联的第二数据表;
根据第一温度、第一荷电状态以及第二数据表,确定第一电流频率。
电池SOH可以理解为电池当前的容量与出厂容量的百分比。同一电池在不同的SOH状态下,可能具有不同的电荷转移阻抗R ct。结合上文对锂离子电池的析锂条件的分析可知,当R ct改变时,对锂离子安全加热所能够使用的电流幅值与频率也会相应改变。
因此,本实施例中,可以针对N个SOH分别建立相应的第一数据表。而第一数据表的建立方式,此处不做赘述。
电池的第一健康度可以理解为电池的当前SOH,在一些举例中,电池的第一健康度可以通过BMS进行获取。
由于SOH与第一数据表存在关联的关系,在获取到第一健康度的情况下,可以从N个第一数据表中,确定出与第一健康度关联的第二数据表。
从另一个角度来说,第二数据表即N个第一数据表中与第一健康度关联的第一数据表。因此,第二数据表同样可以包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系。
本实施例中,根据第一温度、第一荷电状态以及第二数据表,确定第一电流频率。该第一电流频率可以对应上述电池的加热参数,具体用途此处不再赘述。
电池SOH降低后,会提高电池的阻抗,本实施例中,将SOH作为安全冗余考虑进去,可以进一步提升电池加热过程的可靠性。
可选地,基于第一电流幅值与第一电流频率加热电池,包括:
在第一时刻开始,基于第一电流幅值与第一电流频率加热电池;
基于第一电流幅值与第一电流频率加热电池之后,方法还包括:
在到达第二时刻的情况下,返回执行获取电池的第一温度和第一 荷电状态的步骤,第二时刻与第一时刻之间的时长等于第一预设时长。
本实施例中,可以认为是分加热周期对电池进行加热的。
比如,在一个加热周期中,可以执行上述步骤501至步骤503,并保持对电池加热第一预设时长。该第一预设时长可以是预设的,具体的数值此处可以不做限定。
当对电池加热第一预设时长后,可以进入到下一个加热周期,重复执行步骤501至步骤503,并再次保持对电池加热第一预设时长。
如图6所示,图6为本实施例中对电池加热过程的一个示例图,该示例图中,横坐标为时间,纵坐标为电池温度。
图6在时间轴上示出了三个加热周期的时间段,这三个加热周期分别记为加热周期A、加热周期B以及加热周期C,各加热周期中采用的第一电流频率分别为第一频率、第二频率以及第三频率。
每一个加热周期结束后,电池的第一温度会发生变化,因此,基于第一温度与第一数据表确定的第一电流频率,通常也会相应发生变化,即第一频率、第二频率以及第三频率通常可以是不等的。
一般来说,第一数据表是基于电池安全加热与加热效率最大化考虑而建立的,本实施例中,分不同的加热周期加热电池,在每个加热周期中,根据电池的第一温度调整用于加热电池的电流频率,有助于有效提高电池加热安全性与加热效率。
在一些示例中,当电池的第一温度大于温度阈值,或者加热周期的数量到达预设数量时,可以结束对电池的加热。
在一些举例中,加热电池的电流的波形可以是脉冲波、方波、三角波、单频正弦波或者多种频率正弦波的叠加等形式的一种。也就是说,在实际应用中,加热电池的电流的波形类型可能存在差异。
一般来说,第一电流频率为通过查询第一数据表得到,而第一数据表往往是基于某一波形类型的电流条件下建立的。
举例来说,建立第一数据表时,所使用的电流的波形类型可以为单频正弦波。为简化说明,可以将建立第一数据表时,所使用的电流的波形类型成为基准波形。
然而,在实际应用中,加热电池所使用的电流的波形类型可能是脉冲波或者三角波等。这些波形类型给电池析锂带来的影响往往难以判定,为保证加热过程的安全,在基于第一数据表确定第一电流频率的情况下,可以根据加热电池所使用的电流的波形类型对第一电流频率进行调整,得到第二电流频率。
第一电流频率的调整规则可以根据需要进行设定。比如,如果加热电池所使用的电流的波形类型为上述的基准波形,则可以将第一电流频率直接作为第二电流频率;而如果加热电池所使用的电流的波形类型部位基准波形,则可以将第一电流频率加上预设频率,或者乘以预设系数,得到第二电流频率。
再比如,在调整规则中,每一种波形类型,可以对应有一预设的频率调整值或者调整系数。在获取到加热电池所使用的电流的波形类型的情况下,可以在第一电流频率的基础上加上该波形类型对应的频率调整值,或者乘以该波形类型对应的调整系数,来得到第二电流频率。
本实施例中,可以根据加热电池的电流的波形类型,对根据第一数据表确定的第一电流频率进行调整,得到第二电流频率,并基于第一电流幅值与第二电流频率加热电池,有助于提升电池加热过程的安全性。
根据本申请的一些实施例,根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率之后,方法还包括:
在获取到第二电流幅值的情况下,根据第二电流幅值确定第三电流频率,第三电流频率为在第二电流幅值条件下,对电池加热的安全电流频率;
根据第一电流频率与第三电流频率之间的较大值,以及第二电流幅值,加热电池。
结合上文实施例,第一电流幅值可以是根据放电设备的最大允许电流确定的,第一电流幅值在一定程度上可以认为是一经验值。而在实际应用中,不同的放电设备可能具有不同的最大允许电流。
此处的第二电流幅值,可以是在实际应用中所使用的放电设备的最大允许电流,或者是根据实际应用中所使用的放电设备的最大允许电流 所确定的一电流幅值。
根据公式(2)和(4)可知,在交流电流的幅值增大的情况下,为了避免析锂现象的发生,保证电池加热的安全性,电流频率需要相应增大。
在获取到第二电流幅值的情况下,实际上可以根据公式(2)和(4),来确定一安全电流频率,即上述的第三电流频率。如果加热电池所使用的电流的频率低于该第三电流频率,则可能对加热过程带来安全性问题。
因此,本实施例中,可以根据第一电流频率与第三电流频率之间的较大值,以及第二电流幅值,加热电池。如此,可以在各类电流幅值条件下,均能够有效保障电池加热过程的安全性。
如图7所示,本申请实施例还提供了一种电池加热方法,包括:
步骤701,获取电池的第二温度和第二荷电状态;
步骤702,根据第二温度、第二荷电状态以及预设的第三数据表,确定第三电流幅值,第三数据表包括在第四电流频率条件下,第二温度、第二荷电状态以及第三电流幅值之间的对应关系;
步骤703,基于第四电流频率和第三电流幅值加热电池。
本实施例中,电池可以是锂离子电池、锂硫电池、钠离子电池或镁离子电池等等,此处不做具体限定。为简化说明,以下同样主要以电池为锂离子电池为了进行说明。
电池的第二温度可以是指实时采集的电池问题,可通过相关的温度感知设备进行采集。该第二温度可以是电池所在电池包内的温度,也可以是电池所处工作环境的温度。
第二荷电状态可以是电池的实时SOC,可以通过电池SOC信号采集设备进行采集。
在一些应用场景中,第二温度与第二荷电状态可以通过BMS等进行采集。
第三数据表可以预先建立的。在建立该第三数据表的过程中,可以控制电流频率,改变电池温度和电池SOC,并获取每一电池温度与电池 SOC的组合条件下电池的EIS数据。基于EIS数据,可以确定在任一电池温度与电池SOC的组合条件下的电流幅值。一般来说,该电流幅值可以使得在相应电池温度与电池SOC的组合条件下,电池不会出现极化现象,同时能够以较高的加热功率进行电池内部加热。
换而言之,建立第三数据表时,可以将电流频率作为固定量,电池温度和电池SOC作为自变量,电流幅值作为因变量进行测取。
其中,第三数据表中的电流频率具体控制在第四电流频率。
第三数据表可以包括在第四电流频率条件下,第二温度、第二荷电状态以及第三电流幅值之间的对应关系。在获取到第二温度与第二荷电状态的情况下,可以通过第三数据表确定出第三电流幅值。
在确定第三电流幅值的情况下,可以基于第四电流频率和第三电流幅值加热电池。
第四电流频率和第三电流幅值可以是目标加热参数,也可以是参考加热参数。比如,在实际应用中,可以是以第四电流频率和第三电流幅值对电池加热的,也可以是以第三电流幅值以及高于第四电流频率的电流频率对电池加热的。
本申请实施例提供的电池加热方法,获取电池的第二温度和第二荷电状态,根据第二温度、第二荷电状态以及预设的第三数据表,确定第三电流幅值,基于第四电流频率和第三电流幅值加热电池,其中,第三数据表包括在第四电流频率条件下,第二温度、第二荷电状态以及第三电流幅值之间的对应关系。本申请实施例能够根据电池的温度来确定用于内部加热的电流频率与幅值,提高在各类温度环境下对电池的加热速率。
其次,本申请实施例中,由于第四电流频率是预先确定的,因此,在确定电池的加热参数时,可以节省因第四电流频率的确定所带来的计算资源的消耗,提高电池的加热参数的确定效率。而且无需针对各种电流频率分别建立上述的第三数据表,有助于减少第三数据表的建立所带来的人力物力消耗。
此外,通过确定第一电流频率,可以避免出现因缺少对用于加热电池的电流幅值的频率,导致实际加热电池所使用的电流频率过高的情况。
与此同时,本申请实施例中,第三数据表是在第四电流频率条件下建立的,无需针对多个电流频率分别建立电池温度、电池SOC以及电流幅值之间的对应关系,进而也有助于减少这些对应关系建立过程所需的人力物力。
根据本申请的一些实施例,确定第三电流幅值之后,方法还包括:
获取电池的输出电压;
在输出电压小于电压阈值的情况下,基于预设的第五电流频率与第三电流幅值加热电池;
基于第四电流频率和第三电流幅值加热电池,包括:
在输出电压大于或等于电压阈值的情况下,基于第四电流频率和第三电流幅值加热电池;
其中,第五电流频率大于第四电流频率。
实际应用中,电池可以在被放电设备加热的同时,向用户设备供电,因此,电池存在一输出电压,该输出电压可以通过电压传感设备等进行获取。
结合一个应用例,上述的第四电流频率可以是预先确定的一较小的频率值。在对电池进行内部加热的过程中,如果电池的输出电压较低时,如果继续放电,可能导致电池降低到安全电压以下。
电压阈值可以认为是用于判断电池是否处于安全电压范围的阈值。
当电池的输出电压小于该电压阈值时,可以认为电池未处于安全电压范围,继续放电有可能导致电池降到安全电压以下。
本实施例中,在电池的输出电压小于该电压阈值时,可以采用相对较大的第五电流频率对电池进行内部加热。
基于公式(2)可知,当电流频率提高时,电池的阻抗会降低,有助于使得电池在放电的同时能够可靠处于安全电压范围内,提高电池内部加热过程的安全性。
第五电流频率可以根据需要进行设置,具体可以是经验值,或者通过对电池的充放电过程的标定来获得,此处不作赘述。
当电池的输出电压大于或等于电压阈值时,在一定程度上可以认 为不存在电池在放电过程中输出电压降低到安全电压范围以下的情况,此时则可以基于相对较低的第四电流频率和第三电流幅值加热电池,保证对电池的加热效率。
在一个实施方式中,在输出电压小于电压阈值的情况下,基于预设的第五电流频率与第三电流幅值加热电池之后,当电池的第二温度升高到一预设温度值时,可以再基于第四电流频率和第三电流幅值加热电池。
根据本申请的一些实施例,第三电流幅值具体为正向电流幅值;
基于第四电流频率和第三电流幅值加热电池,具体包括:
基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池。
一般来说,正向电流可以是指电池处于充电状态时的电流,负向电流则可以是指电池处于放电状态时的电流。
在对电池进行内部加热时,带来析锂等安全性问题的往往是上述的正向电流。因此,本实施例中,需要确定的第三电流幅值,可以是正向电流幅值,基于第三电流幅值与第四电流频率对电池加热,应避免产生安全性问题。
相应地,对于负向电流,则对电池析锂等带来的安全性影响较小,因此,可以将其幅值确定为一预设值,即上述的第一负向电流幅值。
比如,在一个举例中,第一负向电流幅值,可以取用电设备的最大允许电流幅值,而该最大允许电流幅值在对用电设备进行设计时已经确定。当然,在另一些举例中,第一负向电流幅值也可以取经验值。
本实施例中,基于第三数据表确定的第三电流幅值具体为正向电流幅值,基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池,有助于提高加热效率,同时有助于保证电池加热过程的安全性、降低了对加热设备的变频幅度的要求。。
根据本申请的一些实施例,确定第三电流幅值之后,方法还包括:
获取电池的输出电压;
在输出电压小于电压阈值的情况下,基于第四电流频率、第三电流幅值以及预设的第二负向电流幅值加热电池;
基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池,具体包括:
在输出电压大于或等于电压阈值的情况下,基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池;
其中,第一负向电流幅值大于第二负向电流幅值。
结合上文实施例可知,在对电池进行内部加热的过程中,如果电池的输出电压较低时,如果继续放电,可能导致电池降低到安全电压以下。
电池的输出电压是否较低,可以基于对输出电压与电压阈值的比较进行判断。
当电池的输出电压大于或等于电压阈值时,在一定程度上可以认为不存在电池在放电过程中输出电压降低到安全电压范围以下的情况,此时则可以基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池,保证对电池的加热效率的同时,也能保证用电设备的正常使用。
而当电池的输出电压小于电压阈值时,则需要对输出的电流的幅值进行控制,即减小负向电流幅值。
具体来说,在输出电压小于电压阈值的情况下,基于第四电流频率、第三电流幅值以及预设的第二负向电流幅值加热电池,该第二负向电流幅值要小于第一负向电流幅值,避免电池过度放电导致安全性问题,进而有助于提升电池的使用寿命。
根据本申请的一些实施例,第三数据表的数量为M个,M个第三数据表关联M个电池健康度,M为大于1的整数;
根据第二温度、第二荷电状态以及预设的第三数据表,确定第三电流幅值,包括:
获取电池的第二健康度;
从M个第三数据表中确定出与第二健康度关联的第四数据表;
根据第二温度、第二荷电状态以及第四数据表,确定第三电流幅值。
结合上文实施例,同一电池在不同的SOH状态下,可能具有不同的电荷转移阻抗R ct。结合上文对锂离子电池的析锂条件的分析可知,当 R ct改变时,对锂离子安全加热所能够使用的电流幅值与频率也会相应改变。
本实施例中,可以针对M个SOH分别建立相应的第三数据表。而第三数据表的建立方式,此处不做赘述。
电池的第二健康度可以理解为电池的当前SOH,在一些举例中,电池的第二健康度可以通过BMS进行获取。
由于SOH与第三数据表存在关联的关系,在获取到第二健康度的情况下,可以从M个第三数据表中,确定出与第二健康度关联的第四数据表。
从另一个角度来说,第四数据表即N个第三数据表中与第二健康度关联的第三数据表。因此,第四数据表同样可以包括在第四电流频率条件下,第二温度、第二荷电状态以及第三电流幅值之间的对应关系。
本实施例中,根据第二温度、第二荷电状态以及第四数据表,确定第三电流幅值。该第三电流幅值可以对应上述电池的加热参数,具体用途此处不再赘述。
电池SOH降低后,会提高电池的阻抗,本实施例中,将SOH作为安全冗余考虑进去,可以进一步提升电池加热过程的可靠性。
根据本申请的一些实施例,基于第四电流频率和第三电流幅值加热电池,包括:
在第三时刻开始,基于第四电流频率和第三电流幅值加热电池;
基于第四电流频率和第三电流幅值加热电池之后,方法还包括:
在到达第四时刻的情况下,返回执行获取电池的第二温度和第二荷电状态的步骤,第四时刻与第三时刻之间的时长等于第二预设时长。
本实施例中,可以认为是分加热周期对电池进行加热的。
比如,在一个加热周期中,可以执行上述步骤701至步骤703,并保持对电池加热第二预设时长。该第二预设时长可以是预设的,具体的数值此处可以不做限定。
当对电池加热第二预设时长后,可以进入到下一个加热周期,重复执行步骤701至步骤703,并再次保持对电池加热第二预设时长。
如图8所示,图8为本实施例中对电池加热过程的又一个示例图, 该示例图中位于上方的坐标系中,横坐标为时间,纵坐标为电池温度。
图8在时间轴上示出了三个加热周期的时间段,这三个加热周期分别记为加热周期A′、加热周期B′以及加热周期C′。各加热周期中采用的电流频率可以是相等的,但电流幅值可以是不断发送变化的。
结合一个举例,参考图8中位于下方的坐标系,该坐标系中,横坐标为时间,纵坐标为电流幅值。可见,电流的频率保持不变,在加热周期A′、加热周期B′以及加热周期C′中,正向电流幅值可以不断增大,而负向电流幅值可以保存不变。
当然,在另一些举例中,随着加热周期的进行,也可以对负向电流幅值进行调整。
一般来说,第三数据表是基于电池安全加热与加热效率最大化考虑而建立的,本实施例中,分不同的加热周期加热电池,在每个加热周期中,根据电池的第二温度调整用于加热电池的电流幅值,有助于有效提高电池加热安全性与加热效率。
在图8所示的举例中,加热电池所采用电流的波形为方波,在实际应用中,加热电池所采用电流的波形类型可以是脉冲波、方波、三角波、单频正弦波或者多种频率正弦波的叠加等形式的至少一种。
当然,在一些实施方式中,为了进一步提升电池加热过程的安全性,也可以根据波形类型对第三电流幅值进行调整,并基于第四电流频率与调整后的第三电流幅值加热电池。
比如,在建立第三数据表时采用的电流波形为单频正弦波,该单频正弦波可以称为基准波形。调整规则可以包括:在加热电池所使用的波形类不为位基准波形时,在确定的第三电流幅值的基础上减去预设电流幅值,或者乘以小于1的正系数等。
根据本申请的一些实施例,如图9所示,图9是用于对电池加热的加热系统的结构示意图。该加热系统可以包括电池包与电源。
电池包可以包括电池与BMS,BMS包括多种类型的感知单元,例如电流采集单元、电压采集单元以及温度采集单元等。当然,BMS还可以包括SOC信号采集设备以及SOH信号采集设备等等。
以该电池包应用在电动汽车中为例,电源可以是充电桩或者电机控制器等。
实际应用中,BMS可以采集电池的温度、SOC等数据,并基于这些采集的数据生成相关加热参数,比如上述的电流频率与电流幅值等。加热参数可以通过通信模块,例如信号线发送至电源,以控制电源按加热参数对电池加热。
根据本申请的一些实施例,如图10所示,图10是用于对电池加热的另一加热系统的结构示意图。该加热系统可以包括电池包、电压变换模块以及储能单元。
电池包与BMS的功能在上一实施例中进行了说明,此处不做赘述。
储能单元可以是风电储能单元或者太阳能储能单元等。或者,在电池包应用在电动汽车中时,储能单元也可以是电动汽车中的各类用于储能的电子元件。
电压变换模块则可以用于对储能单元输出的电压进行转换。BMS可以与电压变化模块通信连接,基于确定的加热参数控制电压变化模块工作。
如图11所示,本申请实施例还提供了一种电池加热装置1100,包括:
第一获取模块1101,用于获取电池的第一温度和第一荷电状态;
第一确定模块1102,用于根据第一温度、第一荷电状态以及预设的第一数据表,确定第一电流频率,第一数据表包括在第一电流幅值条件下,第一温度、第一荷电状态以及第一电流频率之间的对应关系;
第一加热控制模块1103,用于基于第一电流幅值与第一电流频率加热电池。
根据本申请的一些实施例,第一数据表的数量为N个,N个第一数据表关联N个电池健康度,N为大于1的整数;
第一确定模块1102,包括:
第一获取单元,用于获取电池的第一健康度;
第一确定单元,用于从N个第一数据表中确定出与第一健康度关联的第二数据表;
第二确定单元,用于根据第一温度、第一荷电状态以及第二数据表,确定第一电流频率。
根据本申请的一些实施例,第一加热控制模块1103,包括:
第一加热控制单元,用于在第一时刻开始,基于第一电流幅值与第一电流频率加热电池;
相应地,电池加热装置1100还可以包括:
第一执行模块,用于在到达第二时刻的情况下,返回执行获取电池的第一温度和第一荷电状态的步骤,第二时刻与第一时刻之间的时长等于第一预设时长。
根据本申请的一些实施例,电池加热装置1100还可以包括::
第三获取模块,用于在获取到第二电流幅值的情况下,根据第二电流幅值确定第三电流频率,第三电流频率为在第二电流幅值条件下,对电池加热的安全电流频率;
第三加热控制模块,用于根据第一电流频率与第三电流频率之间的较大值,以及第二电流幅值,加热电池。
如图12所示,本申请实施例还提供了一种电池加热装置1200,包括:
第二获取模块1201,用于获取电池的第二温度和第二荷电状态;
第二确定模块1202,用于根据第二温度、第二荷电状态以及预设的第三数据表,确定第三电流幅值,第三数据表包括在第四电流频率条件下,第二温度、第二荷电状态以及第三电流幅值之间的对应关系;
第二加热控制模块1203,用于基于第四电流频率和第三电流幅值加热电池。
根据本申请的一些实施例,电池加热装置1200还可以包括:
第四获取模块,用于获取电池的输出电压;
第四加热控制模块,用于在输出电压小于电压阈值的情况下,基于预设的第五电流频率与第三电流幅值加热电池;
相应地,第二加热控制模块1203,可用于在输出电压大于或等于电压阈值的情况下,基于第四电流频率和第三电流幅值加热电池;
其中,第五电流频率大于第四电流频率。
根据本申请的一些实施例,第三电流幅值为正向电流幅值;
相应地,第二加热控制模块1203,包括:
第二加热控制单元,用于基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池。
根据本申请的一些实施例,电池加热装置1200还可以包括:
第五获取模块,用于获取电池的输出电压;
第五加热控制模块,用于在输出电压小于电压阈值的情况下,基于第四电流频率、第三电流幅值以及预设的第二负向电流幅值加热电池;
相应地,第二加热控制模块1203,用于在输出电压大于或等于电压阈值的情况下,基于第四电流频率、第三电流幅值以及预设的第一负向电流幅值加热电池;
其中,第一负向电流幅值大于第二负向电流幅值。
根据本申请的一些实施例,第三数据表的数量为M个,M个第三数据表关联M个电池健康度,M为大于1的整数;
根据本申请的一些实施例,第二确定模块1202,包括:
第二获取单元,用于获取电池的第二健康度;
第三确定单元,用于从M个第三数据表中确定出与第二健康度关联的第四数据表;
第四确定单元,用于根据第二温度、第二荷电状态以及第四数据表,确定第三电流幅值。
根据本申请的一些实施例,第二加热控制模块1203,包括:
第三加热控制单元,用于在第三时刻开始,基于第四电流频率和第三电流幅值加热电池;
相应地,电池加热装置1200还可以包括:
第二执行模块,用于在到达第四时刻的情况下,返回执行获取电池的第二温度和第二荷电状态的步骤,第四时刻与第三时刻之间的时长等 于第二预设时长。
需要说明的是,该电池加热装置是与上述电池加热方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
图13示出了本申请实施例提供的电子设备的硬件结构示意图。
在电子设备可以包括处理器1301以及存储有计算机程序指令的存储器1302。
具体地,上述处理器1301可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器1302可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器1302可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器1302可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器1302可在综合网关容灾设备的内部或外部。在特定实施例中,存储器1302是非易失性固态存储器。
存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的方法所描述的操作。
处理器1301通过读取并执行存储器1302中存储的计算机程序指令,以实现上述实施例中的任意一种电池加热方法。
在一个示例中,电子设备还可包括通信接口1304和总线1304。其中,如图13所示,处理器1301、存储器1302、通信接口1304通过总线1304连接并完成相互间的通信。
通信接口1304,主要用于实现本申请实施例中各模块、装置、单 元和/或设备之间的通信。
总线1304包括硬件、软件或两者。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线1304可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
另外,结合上述实施例中的电池加热方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种电池加热方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
以上,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (14)

  1. 一种电池加热方法,包括:
    获取电池的第一温度和第一荷电状态;
    根据所述第一温度、所述第一荷电状态以及预设的第一数据表,确定第一电流频率,所述第一数据表包括在第一电流幅值条件下,所述第一温度、所述第一荷电状态以及所述第一电流频率之间的对应关系;
    基于所述第一电流幅值与所述第一电流频率加热所述电池。
  2. 根据权利要求1所述的方法,其中,所述第一数据表的数量为N个,N个所述第一数据表关联N个电池健康度,N为大于1的整数;
    所述根据所述第一温度、所述第一荷电状态以及预设的第一数据表,确定第一电流频率,包括:
    获取所述电池的第一健康度;
    从N个所述第一数据表中确定出与所述第一健康度关联的第二数据表;
    根据所述第一温度、所述第一荷电状态以及所述第二数据表,确定第一电流频率。
  3. 根据权利要求1所述的方法,其中,所述基于所述第一电流幅值与所述第一电流频率加热所述电池,包括:
    在第一时刻开始,基于所述第一电流幅值与所述第一电流频率加热所述电池;
    所述基于所述第一电流幅值与所述第一电流频率加热所述电池之后,所述方法还包括:
    在到达第二时刻的情况下,返回执行所述获取电池的第一温度和第一荷电状态的步骤,所述第二时刻与所述第一时刻之间的时长等于第一预设时长。
  4. 根据权利要求1所述的方法,其中,所述根据所述第一温度、所述第一荷电状态以及预设的第一数据表,确定第一电流频率之后,所述方法还包括:
    在获取到第二电流幅值的情况下,根据所述第二电流幅值确定第三电流频率,所述第三电流频率为在所述第二电流幅值条件下,对所述电池加热的安全电流频率;
    根据所述第一电流频率与所述第三电流频率之间的较大值,以及所述第二电流幅值,加热所述电池。
  5. 一种电池加热方法,包括:
    获取电池的第二温度和第二荷电状态;
    根据所述第二温度、所述第二荷电状态以及预设的第三数据表,确定第三电流幅值,所述第三数据表包括在第四电流频率条件下,所述第二温度、所述第二荷电状态以及所述第三电流幅值之间的对应关系;
    基于所述第四电流频率和所述第三电流幅值加热所述电池。
  6. 根据权利要求5所述的方法,其中,所述确定第三电流幅值之后,所述方法还包括:
    获取所述电池的输出电压;
    在所述输出电压小于电压阈值的情况下,基于预设的第五电流频率与所述第三电流幅值加热所述电池;
    所述基于所述第四电流频率和所述第三电流幅值加热所述电池,包括:
    在所述输出电压大于或等于所述电压阈值的情况下,基于所述第四电流频率和所述第三电流幅值加热所述电池;
    其中,所述第五电流频率大于所述第四电流频率。
  7. 根据权利要求5所述的方法,其中,所述第三电流幅值为正向电流幅值;
    所述基于所述第四电流频率和所述第三电流幅值加热所述电池,包括:
    基于所述第四电流频率、所述第三电流幅值以及预设的第一负向电流幅值加热所述电池。
  8. 根据权利要求7所述的方法,其中,所述确定第三电流幅值之后,所述方法还包括:
    获取所述电池的输出电压;
    在所述输出电压小于电压阈值的情况下,基于所述第四电流频率、所述第三电流幅值以及预设的第二负向电流幅值加热所述电池;
    所述基于所述第四电流频率、所述第三电流幅值以及预设的第一负向电流幅值加热所述电池,具体包括:
    在所述输出电压大于或等于所述电压阈值的情况下,基于所述第四电流频率、所述第三电流幅值以及预设的第一负向电流幅值加热所述电池;
    其中,所述第一负向电流幅值大于所述第二负向电流幅值。
  9. 根据权利要求5所述的方法,其中,所述第三数据表的数量为M个,M个所述第三数据表关联M个电池健康度,M为大于1的整数;
    所述根据所述第二温度、所述第二荷电状态以及预设的第三数据表,确定第三电流幅值,包括:
    获取所述电池的第二健康度;
    从M个所述第三数据表中确定出与所述第二健康度关联的第四数据表;
    根据所述第二温度、所述第二荷电状态以及所述第四数据表,确定第三电流幅值。
  10. 根据权利要求5所述的方法,其中,所述基于所述第四电流频率和所述第三电流幅值加热所述电池,包括:
    在第三时刻开始,基于所述第四电流频率和所述第三电流幅值加热所述电池;
    所述基于所述第四电流频率和所述第三电流幅值加热所述电池之后,所述方法还包括:
    在到达第四时刻的情况下,返回执行所述获取电池的第二温度和第二荷电状态的步骤,所述第四时刻与所述第三时刻之间的时长等于第二预设时长。
  11. 一种电池加热装置,包括:
    第一获取模块,用于获取电池的第一温度和第一荷电状态;
    第一确定模块,用于根据所述第一温度、所述第一荷电状态以及预设的第一数据表,确定第一电流频率,所述第一数据表包括在第一电流幅值条件下,所述第一温度、所述第一荷电状态以及所述第一电流频率之间的对应关系;
    第一加热控制模块,用于基于所述第一电流幅值与所述第一电流频率加热所述电池。
  12. 一种电池加热装置,包括:
    第二获取模块,用于获取电池的第二温度和第二荷电状态;
    第二确定模块,用于根据所述第二温度、所述第二荷电状态以及预设的第三数据表,确定第三电流幅值,所述第三数据表包括在第四电流频率条件下,所述第二温度、所述第二荷电状态以及所述第三电流幅值之间的对应关系;
    第二加热控制模块,用于基于所述第四电流频率和所述第三电流幅值加热所述电池。
  13. 一种电子设备,包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令时实现如权利要求1-4任意一项所述的电池加热方法,或者实现如权利要求5-10任意一项所述的电池加热 方法。
  14. 一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-4任意一项所述的电池加热方法,或者实现如权利要求5-10任意一项所述的电池加热方法。
PCT/CN2021/134746 2021-12-01 2021-12-01 电池加热方法、装置、设备及存储介质 WO2023097547A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180097092.8A CN117157802A (zh) 2021-12-01 2021-12-01 电池加热方法、装置、设备及存储介质
EP21965984.4A EP4287350A1 (en) 2021-12-01 2021-12-01 Battery heating method and apparatus, and device and storage medium
KR1020237029313A KR20230142540A (ko) 2021-12-01 2021-12-01 전지 가열 방법, 장치, 기기 및 저장 매체
PCT/CN2021/134746 WO2023097547A1 (zh) 2021-12-01 2021-12-01 电池加热方法、装置、设备及存储介质
JP2023552321A JP2024508855A (ja) 2021-12-01 2021-12-01 電池加熱方法、装置、デバイス及び記憶媒体
US18/456,302 US20230402672A1 (en) 2021-12-01 2023-08-25 Battery heating method, apparatus, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134746 WO2023097547A1 (zh) 2021-12-01 2021-12-01 电池加热方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/456,302 Continuation US20230402672A1 (en) 2021-12-01 2023-08-25 Battery heating method, apparatus, device and storage medium

Publications (1)

Publication Number Publication Date
WO2023097547A1 true WO2023097547A1 (zh) 2023-06-08

Family

ID=86611156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134746 WO2023097547A1 (zh) 2021-12-01 2021-12-01 电池加热方法、装置、设备及存储介质

Country Status (6)

Country Link
US (1) US20230402672A1 (zh)
EP (1) EP4287350A1 (zh)
JP (1) JP2024508855A (zh)
KR (1) KR20230142540A (zh)
CN (1) CN117157802A (zh)
WO (1) WO2023097547A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577676A (zh) * 2023-07-14 2023-08-11 中国第一汽车股份有限公司 电池参数的确定方法、装置、处理器和车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090235095A1 (en) * 2008-03-17 2009-09-17 Fujitsu Limited Power supply voltage supply circuit and disk apparatus
CN103825060A (zh) * 2014-02-28 2014-05-28 清华大学 电池的低温预热与充电方法
CN104064836A (zh) * 2014-06-17 2014-09-24 北京交通大学 一种锂离子电池的低温自加热方法
CN108199122A (zh) * 2017-12-28 2018-06-22 哈尔滨工业大学 基于电化学-热耦合模型的锂离子电池无析锂低温加热方法
CN109659637A (zh) * 2018-11-08 2019-04-19 北京交通大学 交直流叠加的锂离子电池低温充电方法
CN112582710A (zh) * 2020-11-12 2021-03-30 欣旺达电动汽车电池有限公司 锂离子电池自加热方法、锂离子电池及电动车
CN113659245A (zh) * 2021-08-11 2021-11-16 东莞新能安科技有限公司 一种电化学装置加热方法、电化学装置及用电设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090235095A1 (en) * 2008-03-17 2009-09-17 Fujitsu Limited Power supply voltage supply circuit and disk apparatus
CN103825060A (zh) * 2014-02-28 2014-05-28 清华大学 电池的低温预热与充电方法
CN104064836A (zh) * 2014-06-17 2014-09-24 北京交通大学 一种锂离子电池的低温自加热方法
CN108199122A (zh) * 2017-12-28 2018-06-22 哈尔滨工业大学 基于电化学-热耦合模型的锂离子电池无析锂低温加热方法
CN109659637A (zh) * 2018-11-08 2019-04-19 北京交通大学 交直流叠加的锂离子电池低温充电方法
CN112582710A (zh) * 2020-11-12 2021-03-30 欣旺达电动汽车电池有限公司 锂离子电池自加热方法、锂离子电池及电动车
CN113659245A (zh) * 2021-08-11 2021-11-16 东莞新能安科技有限公司 一种电化学装置加热方法、电化学装置及用电设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577676A (zh) * 2023-07-14 2023-08-11 中国第一汽车股份有限公司 电池参数的确定方法、装置、处理器和车辆
CN116577676B (zh) * 2023-07-14 2023-09-22 中国第一汽车股份有限公司 电池参数的确定方法、装置、处理器和车辆

Also Published As

Publication number Publication date
KR20230142540A (ko) 2023-10-11
EP4287350A1 (en) 2023-12-06
JP2024508855A (ja) 2024-02-28
US20230402672A1 (en) 2023-12-14
CN117157802A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
CN109449541B (zh) 锂离子电池变频变幅交流低温自加热方法
WO2017147791A1 (zh) 充电方法、适配器、移动终端和充电系统
JP7122938B2 (ja) 微短絡検知方法、及び微短絡検知装置
TW201727990A (zh) 鋰鍍覆的偵測方法,用於充電二次電池組的方法與設備,以及利用彼等的二次電池組系統
JP5057156B2 (ja) リチウムイオン二次電池の充電方法及び充電システム
WO2010034179A1 (zh) 一种快速充电方法
CN109786897A (zh) 一种基于温度变化的锂离子电池交变激励低温加热方法
CN113782811B (zh) 用电设备及电化学装置的加热方法
US20190199106A1 (en) Cell balancing in batteries
CN103529394B (zh) 一种储能系统容量检测装置及方法
US20230402672A1 (en) Battery heating method, apparatus, device and storage medium
CN103675685A (zh) 锂离子电池的测试方法及安全性的判断方法
KR20190003688A (ko) 리튬 배터리를 열 처리하는 방법
CN108336435B (zh) 一种考虑充电能量效率的锂离子电池充电方法
CN105098272A (zh) 一种安全的锂二次电池充电方法及装置
WO2020135481A1 (zh) 一种电池充电方法和装置
CN104882631A (zh) 一种提高锂离子电池极片均匀散热性能的方法
CN105785270B (zh) 一种电池组串能量状态运行区间测量方法
WO2023185713A1 (zh) 二次电池内阻检测方法、装置及电子设备
CN108539301A (zh) 一种快速消除电池充放电极化的装置及方法
JP2016085816A (ja) リチウム電池システム及びリチウム電池システムの制御方法
CN206259456U (zh) 一种具有通讯功能的新型电池包
JP2015169483A (ja) 二次電池の異常判定装置
CN204046240U (zh) 一种带均衡充电电路的摩托车用锂电池
WO2023206386A1 (zh) 电池的加热方法、加热装置和加热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237029313

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023552321

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021965984

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021965984

Country of ref document: EP

Effective date: 20230901