CN104064836A - 一种锂离子电池的低温自加热方法 - Google Patents

一种锂离子电池的低温自加热方法 Download PDF

Info

Publication number
CN104064836A
CN104064836A CN201410270086.XA CN201410270086A CN104064836A CN 104064836 A CN104064836 A CN 104064836A CN 201410270086 A CN201410270086 A CN 201410270086A CN 104064836 A CN104064836 A CN 104064836A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
battery
current amplitude
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410270086.XA
Other languages
English (en)
Other versions
CN104064836B (zh
Inventor
阮海军
姜久春
孙丙香
王占国
陈大分
韩智强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING BEIJIAO NEW ENERGY TECHNOLOGY CO., LTD.
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201410270086.XA priority Critical patent/CN104064836B/zh
Publication of CN104064836A publication Critical patent/CN104064836A/zh
Application granted granted Critical
Publication of CN104064836B publication Critical patent/CN104064836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种锂离子电池的低温自加热方法,该方法包括确定对锂离子电池寿命无影响的频率范围,并根据此范围选取充放电脉冲的频率;在已选定的充放电方式下,设定脉冲电流幅值选取依据,计算充电电流幅值Ic和放电电流幅值Id;利用确定频率和幅值的充放电脉冲信号对待加热电池进行无寿命损耗加热;自加热后电池的内阻大幅减小,充电性能大幅提升。本发明所述技术方案具有自加热快、低温性能改善明显和对电池使用寿命无影响的效果。

Description

一种锂离子电池的低温自加热方法
技术领域
本发明涉及一种电池自加热方法,特别是涉及一种对锂离子电池寿命无影响的低温自加热方法。
背景技术
在能源危机和环境保护的双重压力下,电动汽车的快速发展势在必行。锂离子电池具有绿色环保、无记忆效应、充放电倍率高、寿命长、能量密度/功率密度高等优点,相比铅酸电池、镍镉电池和镍氢电池等,更适合动力驱动。但是锂离子电池低温的性能极其恶化,阻抗成倍增加,充放电容量、能量大幅下降,大倍率充放电电流接受能力也急剧下降。这些严重损害了电动汽车的动力性能、续驶里程和使用寿命,影响了用户使用电动汽车时的便利性、经济性和安全性,限制了电动汽车在北方大部分地区的推广普及。我国电动汽车示范运行中发现,锂离子电池在低温下的性能衰减,已经成为阻碍电动汽车规模化应用的瓶颈问题之一。
改进正极材料、电解液虽然对电池的低温性能有所改善,但却难以改善低温充电慢、易析锂的问题,而通过先进的材料制作方法改进负极材料,成本较高,难于在短时间内应用。宽线金属膜加热、电热丝加热等从外部加热的方法都是通过控制加热器升高温度,然后经过接触传导、空气对流、液体传热的方式加热电池,需要较大的空间和较高的成本。另外,外部加热在电池包中易形成温度梯度,而且大多数能量是被耗散了,能量利用效率极低。
发明内容
本发明要解决的技术问题是提供一种对锂离子电池寿命无影响的低温自加热方法,能够改善单从材料上改善锂电池低温性能成本高,外加热方法效率低、对电池使用寿命影响大的问题。
为解决上述技术问题,本发明采用下述技术方案。
一种锂离子电池的低温自加热方法,该方法包括:
S1、确定锂离子电池寿命无影响的频率范围,并根据此范围选取充放电脉冲的频率;
S2、在已选定的充放电方式下,计算待自加热的充电电流幅值Ic和放电电流幅值Id
S3、根据步骤S1确定的频率和步骤S2确定的幅值,利用充放电脉冲对电池进行无寿命损耗加热。
优选的,所述步骤S1中确定锂离子电池寿命无影响的频率范围的步骤包括:
S11、利用电化学工作站测试锂离子电池不同温度下的电化学阻抗谱,并获得内阻随频率的变化趋势,从而确定锂离子电池阻抗较小的频率范围;
S12、依据锂离子电池的电化学阻抗谱,进行电化学性能分析,获得锂离子电池寿命无影响的频率范围;
S13、充放电脉冲的频率要尽可能避免表现电荷转移阻抗的频率范围。
优选的,采用恒流式脉冲方法对电池进行自加热。
优选的,所述步骤S2中所述选取充电电流幅值Ic和放电电流幅值Id的步骤包括:
S21、利用公式选取充电电流幅值Ic,其中,Vmax是指对电池进行充电出现析锂的临界电位,Uocv为电池在某一SOC点的开路电压,Rcn是指相应温度下电池充电方向某一SOC点的内阻,λc为可接受的最大电压校正系数;
S22、利用公式选取放电电流幅值Id,Vmin是指对电池进行放电不出现过放的临界电位,Uocv为电池在某一SOC点的开路电压,Rdn是指相应温度下电池放电方向某一SOC点的内阻,λd为可接受的最小电压校正系数。
优选的,根据待加热锂离子电池析锂的负极边界电位,确定全电池充电不析锂的最大截止电位Vmax和锂离子电池不发生副反应的最小截止电位Vmin
优选的,根据确定的截止电位,并考虑实际运行中的误差,其中实际运行中可能造成的误差包括充电机输出电流的误差、外界干扰等,选取对锂离子电池使用寿命影响较小的,并且满足实施条件的最大电压校正系数λc和最小电压校正系数λd
优选的,所述最大电压校正系数λc的取值范围为0.9524~1.0238;
所述最小电压校正系数λd的取值范围为0.9667~1.1333。
优选的,待加热电池静置在各目标温度下五小时以上;
利用脉冲法分别对各个目标温度下的内阻进行测试,得到充电方向内阻Rc1,Rc2,……Rck……,Rcn和放电方向内阻Rd1,Rd2,……Rdk……,Rdn
优选的,根据充电电流幅值Ic和放电电流幅值Id的计算公式,每隔n℃重新计算一次充电电流幅值Ic和放电电流幅值Id
优选的,每隔2℃重新计算一次充电电流幅值Ic和放电电流幅值Id
本发明的有益效果如下:
本发明所述技术方案具有自加热快、低温性能改善明显和对电池使用寿命无影响的效果;自加热时间较短,可以在4~15分钟内较快的自加热电池到合适的温度;自加热后电池的内阻大幅减小,充电性能大幅提升;该方法以影响电池使用寿命的截止电压作为边界条件,并加上电压校正系数,从而在较快地加热电池的基础上实现最大限度地减少对电池使用寿命影响的目标。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明;
图1示出本发明所述一种锂离子电池低温自加热方法的示意图;
图2示出本发明实施例中锂电池在不同温度下阻抗随频率变化的曲线图;
图3示出本发明实施例中锂电池在0℃时不同频率区域的阻抗变化曲线图;
图4示出本发明实施例中自加热过程中施加给锂电池的阶梯式增长的电流变化图;
图5示出本发明实施例中自加热过程中锂电池的端电压变化曲线图;
图6示出本发明实施例中自加热过程中施加电流信号的部分频谱图;
图7示出本发明实施例中自加热过程中锂电池的温度不断升高的曲线图;
图8示出本发明实施例中自加热后锂电池的充电性能改善情况的示意图。
具体实施方式
下面结合一组实施例及附图对本发明做进一步描述。
本实施例中电池可以是电动车辆中使用的锰酸锂动力电池、磷酸铁锂动力电池和三元材料动力电池等。以锰酸锂-三元混合材料动力电池为例进行说明。
在锂离子电池SOC为50%时,选取具有代表性的几个温度点进行阻抗谱试验,本实施例中分别在-10℃、0℃、25℃环境下利用电化学工作站测试锂离子电池的电化学阻抗谱,得到阻抗随频率的变化曲线如图2所示,结果表明:在各温度下,随着频率的增加锂离子电池的阻抗先减少后增加,因此可基本确定加热较快的充放电脉冲频率为0.1Hz~10k Hz,阻抗最小时的频率在350Hz附近。
如图3所示,随着频率的增大,阻抗先逐渐减小后逐渐增大,图中在高频处较大意味着电池内部和接线处的电感增大;在中频处内阻最小,表明大部分电流都通过了双电层电容,而把电荷转移电阻短路了,即法拉第电流很小;在低频与中频的交界处阻抗逐渐减小,表明双电层电容在逐渐把电荷转移电阻短路,即法拉第电流逐渐减小;在低频处阻抗较大,表明电流基本上不通过双电层电容,而只经过电荷转移电阻,即法拉第电流较大。在频率范围为0.1Hz~8kHz时,阻抗较小,通过双电层的电流较大,法拉第电流较小,因此,选择自加热频率为0.1Hz~8kHz,就可避免自加热充放电脉冲对电池使用寿命的影响,在此自加热方法中考虑实际设备的能力,选取自加热充放电脉冲频率为0.125Hz。
采用恒流式充放电脉冲方法进行电池自加热,在选取脉冲充放电电流上必须考虑边界电压,所选定的充电电流为
I cn = V max × λ c - U ocv R cn - - - ( 1 )
对应于放电电流幅值选取应为:
I dn = U ocv × Vλ min - λ d R dn - - - ( 2 )
通过对低温下锂离子电池的循环特性测试实验分析可知,低温下锂离子电池的截止电压分别为4.2V和3.0V,即Vmax为4.2V、Vmin为3.0V;根据综合考虑待加热电池的SOC高端析锂、SOC低端副反应的边界情况和实际计算误差,选取最大电压校正系数λc为0.995、最小电压校正系数λd为1.05,即最大边界电压选取为4.18V、最小边界电压选取为3.15V。
本实施例中选取在-10℃时,测试锂电池的充放电内阻Rc1和Rd1,已知Uocv为3.893V,根据式(1)和式(2)分别计算初始可施加的最大充放电电流Ic1和Id1;其次当电池表面温度升高到-8℃,根据自加热的充放电脉冲分别计算充放电方向的内阻Rc2和Rd2,根据式(1)和式(2)分别计算该温度下可施加的最大充放电电流Ic2和Id2;然后每当电池表面温度升高到2℃,根据自加热的充放电脉冲分别计算充放电方向的内阻Rck和Rdk,根据式(1)和式(2)分别计算该温度下可施加的最大充放电电流Ick和Idk,直到电池表面的温度到达1℃,停止对电池进行自加热。这样由于随着自加热过程的进行,电池温度逐渐升高,内阻逐渐减小,即Rc1>Rc2>…Rck…>Rcn和Rd1>Rd2>…Rdk…>Rdn,那么可施加的最大放电电流幅值和最大充电电流幅值将按不同趋势阶梯式地逐渐增大,如图4所示,即Ic1<Ic2<…Ick…<Icn和Id1<Id2<…Idk…<Idn,相应地在每个恒流脉冲阶段的电压将慢慢的减小,如图5所示,锂电池两端电压不可能越过截止电压,也就是说这种充放电脉冲自加热方法不会对电池的使用寿命产生影响。
本实施例中所得频率范围是正弦交流信号,因此,对本实施例中初始幅值为28A和-80A的充放电电流脉冲进行傅里叶分解,得到其在0Hz~50Hz的频谱图,如图6所示,为0Hz~10Hz的频谱图,在基频频率为0.125Hz处的幅值最大,在允许的频率范围0.1Hz~10kHz内;在基频之后都是基频的奇数倍的频率,其幅值逐渐减小,但都在允许的频率范围内,表明该频率下的充放电脉冲频率满足对电池使用寿命影响最小的要求。
如图7所示,使用充放电恒流脉冲自加热锂离子电池后,开始时由于电池表面温度变化滞后于电池内部的温度变化,因而开始施加充放电脉冲时检测到电池表面的温度基本不变。然后,电池表面的温度迅速上升,变化曲线近似为一条直线,其斜率约为2.18℃/min,表明该方法可比较均匀地升高电池的运行温度,不仅限于本实施例中的-10℃。
对自加热后的电池立即进行充电,自加热后的电池使用1/2C倍率的电流对其进行恒流充电;未进行自加热的电池使用1/3C倍率的电流对其进行恒流充电;自加热后电池的可接受电流能力增强,可充电容量大大增强。未自加热的电池充入容量为0.79Ah;自加热后的电池充入容量为6.875Ah,减去自加热过程中放出的2.51Ah,相对充入容量为4.365Ah,为未自加热电池充入容量的5.5倍。锂离子电池的充电容量大幅增加,充电起始时的1s内阻相比与-10℃大幅减小,如图8所示,表明自加热后的电池的可接受充电电流大幅增加,为低温下快速充电提供了可能。
把自加热后的电池放在常温(25℃)下进行12次充放循环试验(1/3C放电,1/3C充电以1/20C为截止电流),得到充电起始和放电起始的1s内阻以及充放电容量和能量,如表1所示,充放电容量和能量与加热前都有小幅增加,1s的内阻都有微量减少,符合电池使用寿命的衰退规律;而且自加热前后电池充放电能量转换效率也基本不变,电池所有性能都符合锂电池使用寿命衰退规律,表明该快速自加热方法对电池的使用寿命没有影响。
表1自加热前后对电池寿命影响对比
综上所述,该方法可实现在6min内把电池从-10℃加热到1.4℃,自加热后电池的充电试验结果为解决低温充电难问题提供了工程实现的可能,电池循环测试实验证明了该自加热方法对电池的使用寿命没有影响,表明该自加热方法不仅可以快速地自加热电池到适宜工作的温度,而且为实现低温下无寿命影响的快速充电提供了可能。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

1.一种锂离子电池的低温加热方法,其特征在于,该方法包括如下步骤:
S1、确定锂离子电池寿命无影响的频率范围,并根据此范围选取充放电脉冲的频率;
S2、在已选定的充放电方式下,计算待自加热的充电电流幅值Ic和放电电流幅值Id
S3、根据步骤S1确定的频率和步骤S2确定的幅值,利用充放电脉冲信号对电池进行无寿命损耗地自加热。
2.根据权利要求1所述的一种锂离子电池的低温加热方法,其特征在于,所述步骤S1中确定对锂离子电池寿命无影响的频率范围的步骤包括:
S11、利用电化学工作站测试锂离子电池不同温度下的电化学阻抗谱,并获得内阻随频率的变化趋势,从而确定锂离子电池阻抗较小的频率范围;
S12、依据锂离子电池的电化学阻抗谱,进行电化学反应性能分析,获得对锂离子电池寿命无影响的频率范围;
S13、充放电脉冲的频率要尽可能避免表现电荷转移电阻的频率范围。
3.根据权利要求1所述的一种锂离子电池的低温自加热方法,其特征在于,采用恒流式脉冲方法对电池进行自加热。
4.根据权利要求1所述的一种锂离子电池的低温加热方法,其特征在于,所述步骤S2中所述选取充电电流幅值Ic和放电电流幅值Id的步骤包括
S21、利用公式选取充电电流幅值Ic,其中,Vmax是指对电池进行充电出现析锂的临界电位,Uocv为电池在某一SOC点的开路电压,Rcn是指相应温度下电池在某一SOC点充电方向的内阻,λc为可接受的最大电压校正系数;
S22、利用公式选取放电电流幅值Id,Vmin是指对电池进行放电不出现过放的临界电位,,Rdn是指相应温度下电池在某一SOC点放电方向的内阻,λd为可接受的最小电压校正系数。
5.根据权利要求3所述的一种锂离子电池的低温加热方法,其特征在于,根据待加热锂离子电池析锂的负极边界电位,确定全电池充电不析锂的最大截止电位Vmax和锂离子电池不发生副反应的最小截止电位Vmin
6.根据权利要求4所述的一种锂离子电池的低温自加热方法,其特征在于:根据确定的截止电位和实际运行中的误差,选取对锂离子电池使用寿命影响较小的,并且满足实施条件的最大电压校正系数λc和最小电压校正系数λd
7.根据权利要求6所述的一种锂离子电池的低温自加热方法,其特征在于,
所述最大电压校正系数λc的取值范围为0.9524~1.0238;
所述最小电压校正系数λd的取值范围为0.9667~1.1333。
8.根据权利要求4所述的一种锂离子电池的低温加热方法,其特征在于,
待加热电池静置在各目标温度下五小时以上;
利用脉冲法分别对各个目标温度下的内阻进行测试,得到充电方向内阻Rc1,Rc2,……Rck……,Rcn和放电方向内阻Rd1,Rd2,……Rdk……,Rdn
9.根据权利要求4所述的一种锂离子电池的低温自加热方法,其特征在于,根据充电电流幅值Ic和放电电流幅值Id的计算公式,每隔n℃重新计算一次充电电流幅值Ic和放电电流幅值Id
10.根据权利要求9所述的一种锂离子电池的低温加热方法,其特征在于,每隔2℃重新计算一次充电电流幅值Ic和放电电流幅值Id
CN201410270086.XA 2014-06-17 2014-06-17 一种锂离子电池的低温自加热方法 Active CN104064836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410270086.XA CN104064836B (zh) 2014-06-17 2014-06-17 一种锂离子电池的低温自加热方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410270086.XA CN104064836B (zh) 2014-06-17 2014-06-17 一种锂离子电池的低温自加热方法

Publications (2)

Publication Number Publication Date
CN104064836A true CN104064836A (zh) 2014-09-24
CN104064836B CN104064836B (zh) 2016-07-06

Family

ID=51552435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410270086.XA Active CN104064836B (zh) 2014-06-17 2014-06-17 一种锂离子电池的低温自加热方法

Country Status (1)

Country Link
CN (1) CN104064836B (zh)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835994A (zh) * 2014-10-10 2015-08-12 北汽福田汽车股份有限公司 电动汽车及其动力电池的加热控制方法、装置
CN105489836A (zh) * 2016-01-21 2016-04-13 湖南立方新能源科技有限责任公司 一种电池极片结构及含有该极片的锂离子电池
CN105589040A (zh) * 2014-11-07 2016-05-18 财团法人工业技术研究院 基于老化调适电池运作区间的电池调控方法
CN105680114A (zh) * 2016-01-07 2016-06-15 北京北交新能科技有限公司 一种锂离子电池的低温快速自加热方法
CN105762434A (zh) * 2016-05-16 2016-07-13 北京理工大学 一种具有自加热功能的电源系统和车辆
CN106532187A (zh) * 2016-11-08 2017-03-22 哈尔滨理工大学 一种基于电池健康状态的电池加热方法
CN107171041A (zh) * 2017-06-12 2017-09-15 北京理工大学 一种动力电池交流电变电流梯次加热方法
CN107910617A (zh) * 2017-11-15 2018-04-13 西安蜂语信息科技有限公司 电池加热方法、装置及电池加热模组
CN108493521A (zh) * 2018-05-31 2018-09-04 哈尔滨工业大学 一种锂离子电池低温加热装置及其加热方法
CN108777339A (zh) * 2018-04-10 2018-11-09 北京理工大学 一种锂离子电池脉冲放电自加热方法及装置
CN109301397A (zh) * 2018-09-11 2019-02-01 科力远混合动力技术有限公司 车用动力电池快速升温控制方法
CN109786878A (zh) * 2019-03-25 2019-05-21 哈尔滨理工大学 一种电动汽车动力电池充电/加热控制方法
CN109786898A (zh) * 2019-03-25 2019-05-21 哈尔滨理工大学 一种锂离子动力电池交变激励低温加热方法
CN109950660A (zh) * 2019-03-25 2019-06-28 清华大学 三元锂离子动力电池利用自身储能激励预热的方法
CN110556608A (zh) * 2019-08-29 2019-12-10 清华大学 电池脉冲加热参数确定方法及参数确定系统
CN110970691A (zh) * 2019-05-28 2020-04-07 宁德时代新能源科技股份有限公司 可充电电池的加热方法、控制单元及加热电路
CN111029667A (zh) * 2019-11-08 2020-04-17 华为技术有限公司 电池加热系统、电动汽车和车载系统
CN111048856A (zh) * 2019-12-17 2020-04-21 北京理工大学 一种动力电池极速自加热方法和装置
CN111162332A (zh) * 2019-12-20 2020-05-15 浙江大学 一种基于动力锂离子电池特征频率的脉冲充电方法
CN111864313A (zh) * 2020-07-22 2020-10-30 欣旺达电动汽车电池有限公司 动力电池自加热方法、装置及可读存储介质
CN112510272A (zh) * 2020-12-03 2021-03-16 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 一种基于超级电容的储能式动力电池加热设备
CN112706656A (zh) * 2020-06-30 2021-04-27 比亚迪股份有限公司 电动汽车动力电池低温加热方法、系统、汽车及存储介质
CN113054290A (zh) * 2021-03-19 2021-06-29 傲普(上海)新能源有限公司 一种电池加热方法
CN113193268A (zh) * 2021-04-30 2021-07-30 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热方法、装置及汽车
CN113206325A (zh) * 2021-04-30 2021-08-03 重庆长安新能源汽车科技有限公司 一种动力电池内外部联合加热方法
CN113659245A (zh) * 2021-08-11 2021-11-16 东莞新能安科技有限公司 一种电化学装置加热方法、电化学装置及用电设备
CN114069102A (zh) * 2020-07-31 2022-02-18 比亚迪股份有限公司 一种动力电池的自加热方法、装置、系统及电动车辆
CN114194073A (zh) * 2021-12-17 2022-03-18 重庆长安新能源汽车科技有限公司 一种电机脉冲电流控制方法、装置及电动汽车
CN114883693A (zh) * 2022-04-22 2022-08-09 华为数字能源技术有限公司 一种电池加热方法、电池系统及储能系统
CN115241576A (zh) * 2022-09-21 2022-10-25 中创新航科技股份有限公司 电池加热控制方法及电池加热控制系统、电池包
CN115366743A (zh) * 2022-04-24 2022-11-22 宁德时代新能源科技股份有限公司 动力电池的加热方法、装置、电子设备、系统及存储介质
WO2023097547A1 (zh) * 2021-12-01 2023-06-08 宁德时代新能源科技股份有限公司 电池加热方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116349055A (zh) * 2021-06-17 2023-06-27 宁德时代新能源科技股份有限公司 充电控制方法及装置、电池管理系统、可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241251A (zh) * 2010-05-15 2011-11-16 F.波尔希名誉工学博士公司 用于控制混合动力车辆牵引电池的电池脉冲加热模式的方法和装置
CN102742068A (zh) * 2010-01-28 2012-10-17 株式会社Lg化学 使用电池胞的内阻来改进操作性能的电池组系统
CN103117421A (zh) * 2013-03-07 2013-05-22 清华大学 一种电池低温充电方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102742068A (zh) * 2010-01-28 2012-10-17 株式会社Lg化学 使用电池胞的内阻来改进操作性能的电池组系统
CN102241251A (zh) * 2010-05-15 2011-11-16 F.波尔希名誉工学博士公司 用于控制混合动力车辆牵引电池的电池脉冲加热模式的方法和装置
CN103117421A (zh) * 2013-03-07 2013-05-22 清华大学 一种电池低温充电方法

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835994A (zh) * 2014-10-10 2015-08-12 北汽福田汽车股份有限公司 电动汽车及其动力电池的加热控制方法、装置
CN105589040A (zh) * 2014-11-07 2016-05-18 财团法人工业技术研究院 基于老化调适电池运作区间的电池调控方法
CN105680114A (zh) * 2016-01-07 2016-06-15 北京北交新能科技有限公司 一种锂离子电池的低温快速自加热方法
CN105680114B (zh) * 2016-01-07 2017-11-03 北京北交新能科技有限公司 一种锂离子电池的低温快速自加热方法
CN105489836A (zh) * 2016-01-21 2016-04-13 湖南立方新能源科技有限责任公司 一种电池极片结构及含有该极片的锂离子电池
CN105762434B (zh) * 2016-05-16 2018-12-07 北京理工大学 一种具有自加热功能的电源系统和车辆
CN105762434A (zh) * 2016-05-16 2016-07-13 北京理工大学 一种具有自加热功能的电源系统和车辆
CN106532187A (zh) * 2016-11-08 2017-03-22 哈尔滨理工大学 一种基于电池健康状态的电池加热方法
CN107171041A (zh) * 2017-06-12 2017-09-15 北京理工大学 一种动力电池交流电变电流梯次加热方法
CN107910617A (zh) * 2017-11-15 2018-04-13 西安蜂语信息科技有限公司 电池加热方法、装置及电池加热模组
CN108777339A (zh) * 2018-04-10 2018-11-09 北京理工大学 一种锂离子电池脉冲放电自加热方法及装置
CN108777339B (zh) * 2018-04-10 2020-12-04 北京理工大学 一种锂离子电池脉冲放电自加热方法及装置
CN108493521A (zh) * 2018-05-31 2018-09-04 哈尔滨工业大学 一种锂离子电池低温加热装置及其加热方法
CN109301397A (zh) * 2018-09-11 2019-02-01 科力远混合动力技术有限公司 车用动力电池快速升温控制方法
CN109786898A (zh) * 2019-03-25 2019-05-21 哈尔滨理工大学 一种锂离子动力电池交变激励低温加热方法
CN109950660A (zh) * 2019-03-25 2019-06-28 清华大学 三元锂离子动力电池利用自身储能激励预热的方法
CN109786898B (zh) * 2019-03-25 2021-11-19 哈尔滨理工大学 一种锂离子动力电池交变激励低温加热方法
CN109950660B (zh) * 2019-03-25 2022-01-18 清华大学 三元锂离子动力电池利用自身储能激励预热的方法
CN109786878A (zh) * 2019-03-25 2019-05-21 哈尔滨理工大学 一种电动汽车动力电池充电/加热控制方法
CN109786878B (zh) * 2019-03-25 2022-01-21 哈尔滨理工大学 一种电动汽车动力电池充电/加热控制方法
US11515588B2 (en) 2019-05-28 2022-11-29 Contemporary Amperex Technology Co., Limited Heating method for rechargeable battery, control unit and heating circuit
CN110970691B (zh) * 2019-05-28 2021-10-22 宁德时代新能源科技股份有限公司 可充电电池的加热方法、控制单元及加热电路
CN110970691A (zh) * 2019-05-28 2020-04-07 宁德时代新能源科技股份有限公司 可充电电池的加热方法、控制单元及加热电路
CN110556608A (zh) * 2019-08-29 2019-12-10 清华大学 电池脉冲加热参数确定方法及参数确定系统
CN111029667A (zh) * 2019-11-08 2020-04-17 华为技术有限公司 电池加热系统、电动汽车和车载系统
WO2021089007A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 电池加热系统、电动汽车和车载系统
CN111029667B (zh) * 2019-11-08 2021-05-18 华为技术有限公司 电池加热系统、电动汽车和车载系统
CN111048856A (zh) * 2019-12-17 2020-04-21 北京理工大学 一种动力电池极速自加热方法和装置
CN111162332A (zh) * 2019-12-20 2020-05-15 浙江大学 一种基于动力锂离子电池特征频率的脉冲充电方法
CN112706656A (zh) * 2020-06-30 2021-04-27 比亚迪股份有限公司 电动汽车动力电池低温加热方法、系统、汽车及存储介质
CN112706656B (zh) * 2020-06-30 2021-12-07 比亚迪股份有限公司 电动汽车动力电池低温加热方法、系统、汽车及存储介质
CN111864313A (zh) * 2020-07-22 2020-10-30 欣旺达电动汽车电池有限公司 动力电池自加热方法、装置及可读存储介质
CN111864313B (zh) * 2020-07-22 2022-07-12 欣旺达电动汽车电池有限公司 动力电池自加热方法、装置及可读存储介质
CN114069102A (zh) * 2020-07-31 2022-02-18 比亚迪股份有限公司 一种动力电池的自加热方法、装置、系统及电动车辆
CN112510272A (zh) * 2020-12-03 2021-03-16 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 一种基于超级电容的储能式动力电池加热设备
CN113054290A (zh) * 2021-03-19 2021-06-29 傲普(上海)新能源有限公司 一种电池加热方法
CN113206325B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种动力电池内外部联合加热方法
CN113206325A (zh) * 2021-04-30 2021-08-03 重庆长安新能源汽车科技有限公司 一种动力电池内外部联合加热方法
CN113193268A (zh) * 2021-04-30 2021-07-30 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热方法、装置及汽车
CN113659245B (zh) * 2021-08-11 2022-11-22 东莞新能安科技有限公司 一种电化学装置加热方法、电化学装置及用电设备
CN113659245A (zh) * 2021-08-11 2021-11-16 东莞新能安科技有限公司 一种电化学装置加热方法、电化学装置及用电设备
WO2023097547A1 (zh) * 2021-12-01 2023-06-08 宁德时代新能源科技股份有限公司 电池加热方法、装置、设备及存储介质
CN114194073A (zh) * 2021-12-17 2022-03-18 重庆长安新能源汽车科技有限公司 一种电机脉冲电流控制方法、装置及电动汽车
CN114194073B (zh) * 2021-12-17 2023-05-23 重庆长安新能源汽车科技有限公司 一种电机脉冲电流控制方法、装置及电动汽车
CN114883693A (zh) * 2022-04-22 2022-08-09 华为数字能源技术有限公司 一种电池加热方法、电池系统及储能系统
CN115366743A (zh) * 2022-04-24 2022-11-22 宁德时代新能源科技股份有限公司 动力电池的加热方法、装置、电子设备、系统及存储介质
CN115366743B (zh) * 2022-04-24 2024-02-02 宁德时代新能源科技股份有限公司 动力电池的加热方法、装置、电子设备、系统及存储介质
CN115241576A (zh) * 2022-09-21 2022-10-25 中创新航科技股份有限公司 电池加热控制方法及电池加热控制系统、电池包
CN115241576B (zh) * 2022-09-21 2023-03-28 中创新航科技股份有限公司 电池加热控制方法及电池加热控制系统、电池包

Also Published As

Publication number Publication date
CN104064836B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN104064836B (zh) 一种锂离子电池的低温自加热方法
Monem et al. Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process
CN106532187B (zh) 一种基于电池健康状态的电池加热方法
Ruan et al. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries
Zhang et al. A novel model of the initial state of charge estimation for LiFePO4 batteries
CN105680114B (zh) 一种锂离子电池的低温快速自加热方法
CN103825060B (zh) 电池的低温预热与充电方法
CN109786878B (zh) 一种电动汽车动力电池充电/加热控制方法
TWI633694B (zh) 鋰鍍覆的偵測方法,用於充電二次電池組的方法與設備,以及利用彼等的二次電池組系統
Savoye et al. Impact of periodic current pulses on Li-ion battery performance
Castano et al. Dynamical modeling procedure of a Li-ion battery pack suitable for real-time applications
CN107861075B (zh) 一种确定动力电池sop的方法
Xiong et al. Modeling for lithium-ion battery used in electric vehicles
Lee et al. Electrochemical state-based sinusoidal ripple current charging control
CN104051810B (zh) 一种锂离子储能电池系统soc估算快速修正方法
Huang et al. Effect of pulsed current on charging performance of lithium-ion batteries
CN109950660B (zh) 三元锂离子动力电池利用自身储能激励预热的方法
CN104795857A (zh) 锂离子电池能量均衡系统及其实现方法
CN103267952B (zh) 一种测量动力电池充电效率的方法
CN113193253B (zh) 一种动力电池脉冲加热方法、装置及汽车
Wang et al. Model-based state-of-energy estimation of lithium-ion batteries in electric vehicles
CN102520367A (zh) 一种空间用氢镍蓄电池寿命评估方法
CN109904540B (zh) 一种用于磷酸铁锂动力电池的低温交变激励预热方法
CN109633465A (zh) 一种锂离子电池的峰值功率快速测试方法
Zhifu et al. The optimal charging method research for lithium-ion batteries used in electric vehicles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180626

Address after: 100044 2-305-1, 3 floor, 2 building, 59 courtyard street, Haidian District, Beijing.

Patentee after: BEIJING BEIJIAO NEW ENERGY TECHNOLOGY CO., LTD.

Address before: 100044 Beijing city Haidian District Shangyuan Village No. 3

Patentee before: Beijing Jiaotong University