CN107171041A - 一种动力电池交流电变电流梯次加热方法 - Google Patents

一种动力电池交流电变电流梯次加热方法 Download PDF

Info

Publication number
CN107171041A
CN107171041A CN201710439480.5A CN201710439480A CN107171041A CN 107171041 A CN107171041 A CN 107171041A CN 201710439480 A CN201710439480 A CN 201710439480A CN 107171041 A CN107171041 A CN 107171041A
Authority
CN
China
Prior art keywords
electrokinetic cell
battery
current
temperature
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710439480.5A
Other languages
English (en)
Other versions
CN107171041B (zh
Inventor
熊瑞
郭姗姗
何洪文
孙逢春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201710439480.5A priority Critical patent/CN107171041B/zh
Publication of CN107171041A publication Critical patent/CN107171041A/zh
Application granted granted Critical
Publication of CN107171041B publication Critical patent/CN107171041B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种动力电池交流电变电流梯次加热方法,该方法能根据当前动力电池组的温度、外部环境温度、动力电池的端电压等检测信号,及时计算和更新交流电激励电流幅值并施加在电池两端,保证电池的端电压不超限,电流处于电池允许的承载电流范围内,以期提高动力电池低温工作性能。解决了低温环境下,现有电池加热方法存在加热速度慢、效果差、加热过程中电压超限,对电池寿命有影响等问题,且该加热方法效果好、鲁棒性高、安全性好。为动力电池的可靠运行提供保障。

Description

一种动力电池交流电变电流梯次加热方法
技术领域
本发明涉及动力电池热管理领域,具体涉及一种动力电池低温加热方法。
背景技术
在低温环境下,有必要对电池进行提前预热处理,提高动力电池冷启动温度,提高电池工作性能。
当前解决电池低温问题较为常见的是低温加热,主要有空气加热方式、液冷式、电加热等外部加热形式,但这些车用电池低温外部加热系统,能量利用率较低、加热效果较差,一定时间内将电池加热到指定温度后,又由于电池与外部环境热交换热辐射等原因造成较大的热损失,对于电池包周围的工作环境温度的控制不到位,无法有效持续保证动力电池的最佳工作温度。因此,为保证理想的加热效果,有必要采取内部加热方法。目前常见的内部加热方法主要有交流电加热方法,但是现有技术中,在交流电加热过程中,采用单一幅值和频率的交流电,未考虑电池的安全性能,无法有效限制电池在加热过程中的电压,在加热过程中,容易造成电池端电压超限现象,进而导致电池寿命缩短。
因此,本发明为克服上述技术缺陷,提出了一种变电流梯次加热系统及加热方法,这种加热策略可以在低温环境下,保证电池电压在正常的工作范围内和电池电流在最大可承载范围内,进而实现电池内部快速升温、高效加热,保障了电池在低温环境下的使用性能,且在加热过程中,已经过实验验证,施加的电流为标准的正弦波交流电,不会对电池寿命造成影响,有利于提高电池的一致性和使用寿命。
发明内容
本发明的一种动力电池交流电变电流梯次加热方法,该方法包括:
(a)更新当前温度下动力电池的开路电压值和电池阻抗值;
(b)根据所述开路电压值和电池阻抗值更新交流电激励电流幅值,所述交流电激励电流幅值为当前温度下动力电池最大的允许电流限值;以该交流电激励电流值施加在动力电池,进行动力电池内部加热;
(c)电池温度每升高目标温度幅值,重复进行步骤(a)和(b),直到动力电池温度达到目标温度。
本发明的另一种动力电池交流电变电流梯次加热方法,该方法包括:
S1:获取当前温度下动力电池的开路电压值和电池阻抗值;
S2:根据所述开路电压值和电池阻抗值计算交流电激励电流幅值,所述交流电激励电流幅值为当前温度下动力电池最大的允许电流限值;
S3:以步骤S2中得到的所述交流电激励电流幅值,进行动力电池内部加热。
S4:判断动力电池温度是否升高目标温度幅值,若是,执行S5;若否,执行S3,继续以S2步骤计算得到的交流电激励电流幅值进行动力电池内部加热;
S5:判断动力电池是否达到目标温度,若是停止加热;若否,跳转执行步骤S1,更新动力电池的开路电压值和电池阻抗值。
优选地,根据动力电池的SOC值,结合当前动力电池温度,根据控制器内预存的开路电压值和温度关系获取所述开路电压值。
优选地,根据控制器内预存的电池阻抗值与电池温度的关系获取当前温度下的电池阻抗值。
优选地,将测量的动力电池加热前的端电压作为开路电压值初始值,
优选地,目标温度幅值是1度、0.5度、0.25度或2度。
本发明的加热方法还可用于电池管理系统。
附图说明
图1为本发明所述的变电流梯次加热流程图
图2为本发明所述的R-T等效电路模型图
具体实施方式:
本发明所涉及的动力电池包括动力电池单体、动力电池包、或者成组后的动力电池组。
本发明使用OCV代表开路电压,I代表动力电池的输入的交流激励电流,T为所述动力电池温度。
本发明所述的动力电池交流电变电流梯次加热方法如附图1所示。
本发明所述的动力电池交流电变电流梯次加热方法,该方法包括:OCV-T曲线的建立、R-T模型的建立、交流电激励电流幅值的计算。下面分别对上述各个部分进行详细叙述:
首先,OCV-T曲线的建立方法如下,动力电池的OCV与T,在荷电状态SOC和老化程度相对稳定的状态下,具有一一对应的映射关系。该映射关系是电池本身所固有的物化特性,与电池本身的材料有关,同类电池在相同SOC、相同老化寿命下的该映射关系无明显变化。根据该映射关系,可建立在一定SOC、一定老化寿命下相对稳定的OCV-T曲线,即开路电压随温度变化曲线。依据该曲线,即可在确定SOC情况下,由某时刻温度值估计该时刻的OCV值。该曲线的具体建立过程如下:
步骤①:在指定的温度下,用电池的额定电流,将电池充满电后进行电池的满充满放实验,取三次以上实验结果的充电量均值作为充电容量,取三次以上实验结果的放电量均值作为放电容量。
步骤②:在该温度下将电池充满电,静置两小时后测量电池的端电压,该测量值即可被认为是100%SOC状态下的OCV;逐次用额定电流放步骤①所测放电容量的指定百分比(如50%),每次放电指定百分比(如50%)后均静置两小时后再测量端电压,该测量值即可被认为是该荷电状态下的OCV(车载动力电池管理系统BMS可以直接估算当前电池的SOC值)。
步骤③:在指定的电池荷电状态下,逐次调整电池环境温度(如20℃,18℃,16℃,14℃,12℃,…..-20℃),并静置4小时以上,以便电池温度分布的一致性,再测量端电压,该测量值即可被认为是该温度下的OCV。
步骤④:将步骤③所测得的三次数据取均值,即可认为是指定荷电状态下的OCV-T的准确值;
步骤⑤:采用组合模型式(1)对OCV与T关系进行拟合,进而得到α01,…,α6的值,完成OCV-T曲线的建立。
UOCV(T)=α01T+α2T23T34/T+α5ln(T)+α6ln(1-T) 式(1)
α01,…,α6为组合模型的系数;
下面阐述本发明所述的R-T模型的建立方法,本发明以Thevenin动力电池等效电路模型为例,模型参见如图2,来阐述该动力电池阻抗随温度变化的关系和阻抗计算方法。本领域技术人员也可以使用领域熟知的其他模型来替换上述Thevenin动力电池等效电路模型。
其中,R0(T)为欧姆阻抗随温度变化拟合曲线,RSEI(T)为SEI膜随温度变化的拟合曲线,RCT(T)为电化学阻抗随温度变化拟合曲线,CSEI为SEI的电容,Cdl为电化学反应的电容。
所述的OCV-T曲线和R-T模型在交流加热前已经预先存入BMS系统中,并可以由BMS系统调用和控制。
动力电池系统中的电池管理系统(BMS)能够通过数据采集器或传感器实时采集动力电池单体和/或动力电池组的端电压的测量值Ut(k)和温度,以及环境温度等信息,并储存在相应的存储器,为交流电激励电流幅值计算提供可靠地实时信息输入。
本发明所述的交流电激励电流幅值的计算如下,
根据欧姆定律,k时刻T温度下电池能够承受的最大电流限值可由下式(3)、(4)得出:
Iupper_limit(k,T)=(Umax-Uocv(k,T))/R(k,T) 式(3)
Ilower_limit(k,T)=(Umin-Uocv(k,T))/R(k,T) 式(4)
其中k时刻T温度下的OCV可由式(1),Iupper_limit(k,T)和Ilower_limit(k,T)为k时刻T温度下最大的允许电流限值,Umin为电池最低允许电压限值,Umax为电池允许的最高电压限值。
因此输入的交流电激励电流幅值i:
i≤Iupper_limit且i≤Ilower_limit
当Iupper_limit≥Ilower_limit,则i=Ilower_limit; 式(5)
当Iupper_limit≤Ilower_limit,则i=Iupper_limit; 式(6)
本发明所述的一种用于动力电池交流电变电流梯次加热方法,该方法具体步骤为:
S1:开展交流电加热前,BMS测量当前电池温度和环境温度;
S2:判断是否需要进行交流电加热,当电池温度高于设定阀值时,此时不需要进行低温预热,电动汽车正常启动或工作;当电池温度低于设定阀值时,使用交流电对动力电池加热。
S3:根据BMS系统给出的当前动力电池的SOC值,结合当前动力电池温度,根据BMS系统内已经预存的前述OCV-T曲线获取OCV值:
对于车辆启动预热,由于在开展交流电加热前,车辆一般经过至少6小时以上的泊车时间,此时动力电池的OCV值趋近于动力电池端电压值,因此优选地,将BMS测量的加热前的动力电池端电压作为OCV初始值,这会大大缩短获取OCV初始值所需的递推过程收敛时间。
根据BMS系统内已经预存的前述R-T模型获取当前温度下的电池阻抗值。
S4:根据式(5)、(6),计算交流电激励电流幅值,以交流电激励电流值施加在动力电池,执行交流电加热。
S5:以步骤S4中得到的所述交流电激励电流幅值,进行动力电池内部加热。
S6:判断动力电池温度是否升高目标温度幅值,优选地目标幅值是1度或0.5度,若是,执行S7;若否,执行S5,继续以S4步骤计算得到的交流电激励电流幅值执行交流电加热。
S7:判断动力电池是否达到目标温度,若是停止加热,完成动力电池内部加热;若未达到目标温度,跳转执行步骤S3,更新OCV、R值,进而更新交流电激励电流幅值,以更新后的交流电激励电流幅值进行动力电池内部加热。
以此循环,动力电池温度每升高一次目标温度幅值,更新一次交流电激励电流幅值,完成变电流梯次加热。该加热方法保证动力电池在不同的温度区间内,都能够以最大交流电激励电流加热,且保证了电池安全和寿命,进而实现电池内部快速升温和高效加热。
下面通过实验数据进一步阐明本发明的实施方式。
选用18650型镍钴锰三元电池NMC为研究对象,其额定容量为3Ah,充放电截止电压分别为4.2V和3V。加热的初始温度为恒定-20℃,用电池的温升曲线和循环加热实验每10次加热循环后测试电池的容量,来验证该方法的可靠性与实用性。
根据实验结果,本发明所提出的梯次交流电加热方法与传统方法相比具有以下优势:
(1)比较快的温度升高,采用该方法能够将电池从-20℃升高到10℃,仅需要630秒;
(2)对电池寿命无损伤;经过40次循环加热实验对电池的容量无明显损伤。
(3)通过对电流幅值的限制,保证了电流未出现过充,过放等现象。
表1梯次加热每10次循环后的容量实验
循环数 充电容量(Ah) 放电容量(Ah)
0 3.068 3.061
10 3.066 3.056
20 2.972 2.974
30 3.052 3.051
40 3.041 3.045

Claims (7)

1.一种动力电池交流电变电流梯次加热方法,该方法包括:
(a)更新当前温度下动力电池的开路电压值和电池阻抗值;
(b)根据所述开路电压值和电池阻抗值更新交流电激励电流幅值,所述交流电激励电流幅值为当前温度下动力电池最大的允许电流限值;以该交流电激励电流值施加在动力电池,进行动力电池内部加热;
(c)电池温度每升高目标温度幅值,重复进行步骤(a)和(b),直到动力电池温度达到目标温度。
2.一种动力电池交流电变电流梯次加热方法,该方法包括:
S1:获取当前温度下动力电池的开路电压值和电池阻抗值;
S2:根据所述开路电压值和电池阻抗值计算交流电激励电流幅值,所述交流电激励电流幅值为当前温度下动力电池最大的允许电流限值;
S3:以步骤S2中得到的所述交流电激励电流幅值,进行动力电池内部加热。
S4:判断动力电池温度是否升高目标温度幅值,若是,执行S5;若否,执行S3,继续以S2步骤计算得到的交流电激励电流幅值进行动力电池内部加热;
S5:判断动力电池是否达到目标温度,若是停止加热;若否,跳转执行步骤S1,更新动力电池的开路电压值和电池阻抗值。
3.如权利要求1或2的所述方法,其特征在于:根据动力电池的SOC值,结合当前动力电池温度,根据控制器内预存的开路电压值和温度关系获取所述开路电压值。
4.如权利要求1或2的所述方法,其特征在于:根据控制器内预存的电池阻抗值与电池温度的关系获取当前温度下的电池阻抗值。
5.如权利要求1或2的所述方法,其特征在于:将测量的动力电池加热前的端电压作为开路电压值初始值。
6.如权利要求1或2的所述方法,其特征在于:目标温度幅值是1度、0.5度、0.25度或2度。
7.一种电池管理系统,其特征在于,使用如权利要求1-6任意一项所述的加热方法。
CN201710439480.5A 2017-06-12 2017-06-12 一种动力电池交流电变电流梯次加热方法 Active CN107171041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710439480.5A CN107171041B (zh) 2017-06-12 2017-06-12 一种动力电池交流电变电流梯次加热方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710439480.5A CN107171041B (zh) 2017-06-12 2017-06-12 一种动力电池交流电变电流梯次加热方法

Publications (2)

Publication Number Publication Date
CN107171041A true CN107171041A (zh) 2017-09-15
CN107171041B CN107171041B (zh) 2019-02-12

Family

ID=59825382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710439480.5A Active CN107171041B (zh) 2017-06-12 2017-06-12 一种动力电池交流电变电流梯次加热方法

Country Status (1)

Country Link
CN (1) CN107171041B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595729A (zh) * 2018-01-08 2018-09-28 北京理工大学 一种基于bv方程的动力电池智能自调节加热电流计算方法、电池加热方法和电池管理系统
CN108736108A (zh) * 2018-05-22 2018-11-02 宁德时代新能源科技股份有限公司 加热控制方法和加热控制装置
CN110690533A (zh) * 2019-09-18 2020-01-14 北京理工大学 一种锂离子电池正弦交流电低温加热策略
GB2577088A (en) * 2018-09-13 2020-03-18 Oxis Energy Ltd Battery management
CN111048856A (zh) * 2019-12-17 2020-04-21 北京理工大学 一种动力电池极速自加热方法和装置
CN111048860A (zh) * 2019-12-25 2020-04-21 北京理工大学 一种动力电池直流和交流叠加激励加热方法
CN111123133A (zh) * 2020-01-02 2020-05-08 北京理工大学 一种非接触式动力电池阻抗测量和充电的装置
CN111137149A (zh) * 2020-01-02 2020-05-12 北京理工大学 一种非接触式动力电池低温加热、阻抗测量和充电的方法
CN112002839A (zh) * 2019-05-27 2020-11-27 广州雷利诺车业有限公司 电动摩托车及其控制方法
CN112151915A (zh) * 2020-09-18 2020-12-29 欣旺达电动汽车电池有限公司 动力电池变频加热方法、装置和电动交通工具
CN112601297A (zh) * 2020-12-15 2021-04-02 北京理工大学 一种用于动力电池的复合交流加热装置
CN113054290A (zh) * 2021-03-19 2021-06-29 傲普(上海)新能源有限公司 一种电池加热方法
CN113644342A (zh) * 2021-08-13 2021-11-12 岚图汽车科技有限公司 电池系统、电池系统的控制方法、控制装置和车辆
CN114094232A (zh) * 2021-09-28 2022-02-25 北京特种机械研究所 一种发射车用锂离子电池低温交流加热方法及装置
CN114834320A (zh) * 2022-03-29 2022-08-02 潍柴动力股份有限公司 基于直流及交流方式的动力电池低温充电方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103538487A (zh) * 2012-07-11 2014-01-29 福特全球技术公司 用于加热电动车辆的牵引电池的方法和系统
CN104064836A (zh) * 2014-06-17 2014-09-24 北京交通大学 一种锂离子电池的低温自加热方法
CN104300186A (zh) * 2013-07-16 2015-01-21 现代摩比斯株式会社 电池组的温度管理系统及方法
CN105680114A (zh) * 2016-01-07 2016-06-15 北京北交新能科技有限公司 一种锂离子电池的低温快速自加热方法
CN105932363A (zh) * 2016-05-16 2016-09-07 北京理工大学 一种电源系统的自加热方法
CN106463801A (zh) * 2014-04-01 2017-02-22 密执安州立大学董事会 用于电动车辆的实时电池热管理
US20170085107A1 (en) * 2015-02-20 2017-03-23 Omnitek Partners Llc Energy Storage Devices and Methods for Fast Charging of Energy Storage Devices at Very Low Temperatures
US20170104248A1 (en) * 2015-10-12 2017-04-13 Samsung Electronics Co., Ltd. Apparatus and method for estimating temperature of battery, and apparatus and method for managing battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103538487A (zh) * 2012-07-11 2014-01-29 福特全球技术公司 用于加热电动车辆的牵引电池的方法和系统
CN104300186A (zh) * 2013-07-16 2015-01-21 现代摩比斯株式会社 电池组的温度管理系统及方法
CN106463801A (zh) * 2014-04-01 2017-02-22 密执安州立大学董事会 用于电动车辆的实时电池热管理
CN104064836A (zh) * 2014-06-17 2014-09-24 北京交通大学 一种锂离子电池的低温自加热方法
US20170085107A1 (en) * 2015-02-20 2017-03-23 Omnitek Partners Llc Energy Storage Devices and Methods for Fast Charging of Energy Storage Devices at Very Low Temperatures
US20170104248A1 (en) * 2015-10-12 2017-04-13 Samsung Electronics Co., Ltd. Apparatus and method for estimating temperature of battery, and apparatus and method for managing battery
CN105680114A (zh) * 2016-01-07 2016-06-15 北京北交新能科技有限公司 一种锂离子电池的低温快速自加热方法
CN105932363A (zh) * 2016-05-16 2016-09-07 北京理工大学 一种电源系统的自加热方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595729A (zh) * 2018-01-08 2018-09-28 北京理工大学 一种基于bv方程的动力电池智能自调节加热电流计算方法、电池加热方法和电池管理系统
CN108736108A (zh) * 2018-05-22 2018-11-02 宁德时代新能源科技股份有限公司 加热控制方法和加热控制装置
US11309598B2 (en) 2018-05-22 2022-04-19 Contemporary Amperex Technology Co., Limited Heating control method and heating control device
GB2577088A (en) * 2018-09-13 2020-03-18 Oxis Energy Ltd Battery management
CN112002839A (zh) * 2019-05-27 2020-11-27 广州雷利诺车业有限公司 电动摩托车及其控制方法
CN110690533A (zh) * 2019-09-18 2020-01-14 北京理工大学 一种锂离子电池正弦交流电低温加热策略
CN110690533B (zh) * 2019-09-18 2021-05-18 北京理工大学 一种锂离子电池正弦交流电低温加热策略
CN111048856A (zh) * 2019-12-17 2020-04-21 北京理工大学 一种动力电池极速自加热方法和装置
CN111048856B (zh) * 2019-12-17 2021-06-01 北京理工大学 一种动力电池极速自加热方法和装置
CN111048860A (zh) * 2019-12-25 2020-04-21 北京理工大学 一种动力电池直流和交流叠加激励加热方法
CN111137149A (zh) * 2020-01-02 2020-05-12 北京理工大学 一种非接触式动力电池低温加热、阻抗测量和充电的方法
CN111123133A (zh) * 2020-01-02 2020-05-08 北京理工大学 一种非接触式动力电池阻抗测量和充电的装置
CN112151915A (zh) * 2020-09-18 2020-12-29 欣旺达电动汽车电池有限公司 动力电池变频加热方法、装置和电动交通工具
CN112151915B (zh) * 2020-09-18 2022-02-01 欣旺达电动汽车电池有限公司 动力电池变频加热方法、装置和电动交通工具
CN112601297A (zh) * 2020-12-15 2021-04-02 北京理工大学 一种用于动力电池的复合交流加热装置
CN113054290A (zh) * 2021-03-19 2021-06-29 傲普(上海)新能源有限公司 一种电池加热方法
CN113644342A (zh) * 2021-08-13 2021-11-12 岚图汽车科技有限公司 电池系统、电池系统的控制方法、控制装置和车辆
CN114094232A (zh) * 2021-09-28 2022-02-25 北京特种机械研究所 一种发射车用锂离子电池低温交流加热方法及装置
CN114834320A (zh) * 2022-03-29 2022-08-02 潍柴动力股份有限公司 基于直流及交流方式的动力电池低温充电方法及系统

Also Published As

Publication number Publication date
CN107171041B (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
CN107171041B (zh) 一种动力电池交流电变电流梯次加热方法
Guo et al. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application
CN108199122B (zh) 基于电化学-热耦合模型的锂离子电池无析锂低温加热方法
US10647211B2 (en) Power consumption control device
EP3664247B1 (en) Charging time computation method and charge control device
US11173775B2 (en) Closed loop feedback control to mitigate lithium plating in electrified vehicle battery
KR101245788B1 (ko) 배터리의 작동점 제어 방법 및 장치
JP6488398B2 (ja) 加温制御装置
JP6084225B2 (ja) 電池制御装置、二次電池システム
CN108682909A (zh) 电池组系统及其控制方法、管理设备
CN105190987A (zh) 电池预热系统和使用其的电池预热方法
CN103299474B (zh) 用于对向机动车辆的驱动电机供电的电池进行充电的方法
JP2003303627A (ja) 状態検知装置及びこれを用いた各種装置
CN112151914B (zh) 动力电池交流加热方法、装置和电动交通工具
KR20130016361A (ko) 충전 제어 시스템
CN107452998B (zh) 基于电池荷电状态的车载动力电池均衡方法
CN111434518B (zh) 一种燃料电池车辆及其启动方法和装置
CN104600383B (zh) 电池组的电量均衡方法和装置
CN105762869A (zh) 一种电池组均衡控制方法及系统
CN108595729A (zh) 一种基于bv方程的动力电池智能自调节加热电流计算方法、电池加热方法和电池管理系统
CN112151915B (zh) 动力电池变频加热方法、装置和电动交通工具
KR20160110409A (ko) 배터리의 충전 상태를 관리하는 방법
JP2002204538A (ja) ハイブリッド車の電池制御装置
CN116315294A (zh) 一种动力电池自加热方法和电池管理系统
CN108583326A (zh) 一种电动汽车电池组均衡控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant