WO2023095237A1 - 電界効果トランジスタおよびその作製方法 - Google Patents

電界効果トランジスタおよびその作製方法 Download PDF

Info

Publication number
WO2023095237A1
WO2023095237A1 PCT/JP2021/043160 JP2021043160W WO2023095237A1 WO 2023095237 A1 WO2023095237 A1 WO 2023095237A1 JP 2021043160 W JP2021043160 W JP 2021043160W WO 2023095237 A1 WO2023095237 A1 WO 2023095237A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
field effect
effect transistor
channel layer
channel
Prior art date
Application number
PCT/JP2021/043160
Other languages
English (en)
French (fr)
Inventor
佑樹 吉屋
拓也 星
弘樹 杉山
秀昭 松崎
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/043160 priority Critical patent/WO2023095237A1/ja
Publication of WO2023095237A1 publication Critical patent/WO2023095237A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a field effect transistor and its manufacturing method.
  • Heterojunction field effect transistor HFET or high electron mobility transistor (HEMT, hereinafter referred to as HEMT) changes the carrier density of the channel layer by the electric field generated by the gate voltage, It is a transistor that turns ON/OFF.
  • the above-described transistor is composed of a nitride semiconductor such as GaN, for example, in an AlGaN/GaN heterojunction, electrons are generated at the interface so as to compensate for the difference in polarization between the AlGaN layer and the GaN layer.
  • a two-dimensional electron gas (2DEG) formed together is often used.
  • a gate electrode is formed on an AlGaN layer having a thickness of several nanometers to several tens of nanometers to control the 2DEG concentration at the AlGaN/GaN interface.
  • HEMTs using GaN are being applied to high-frequency devices that take advantage of the high mobility of 2DEG.
  • AlGaN with a large bandgap is arranged on the device surface.
  • the AlGaN layer cannot be made thin to maintain the carrier density, leading to short channel effects.
  • N-polar GaN is a crystal in which Ga-polar GaN is inverted, and has the following three advantages when making HEMTs.
  • the AlGaN layer which requires a high Al composition and a thickness of about 20 nm to supply carriers and has a high resistance, is located below the GaN channel layer and is not placed between the ohmic electrode and the channel. resistance can be lowered.
  • the thickness of the surface GaN layer does not significantly affect the carrier density, so it can be made thinner to suppress the short channel effect.
  • the AlGaN layer immediately below the channel acts as a back barrier to suppress the short channel effect. From these advantages, it is expected that the high-frequency characteristics of GaN HEMTs will be further improved by fabricating HEMTs using N-polar GaN (Non-Patent Document 3).
  • N-polar GaN-HEMTs are advantageous in reducing contact resistance due to their epitaxial structure, but research is being conducted to further reduce contact resistance through processes.
  • One of these is the technique of regrowing n-type doped GaN in the region under the ohmic electrode.
  • the GaN channel layer is not doped because impurities reduce the 2DEG mobility and degrade the properties of the electronic device.
  • the bandgap of GaN is smaller than that of AlGaN, it is large among semiconductor materials, so the resistance of undoped GaN is larger than that of other semiconductor materials. Therefore, in order to reduce the contact resistance without degrading the characteristics of the electronic device due to impurities, in the GaN channel layer grown without doping, only the region under the ohmic electrode was etched, and this portion was doped n-type. There are techniques for regrowing GaN to form a regrown layer. This technique can realize a device structure in which contact resistance is lowered by a doped regrown layer and high mobility can be maintained in the channel portion under the gate electrode without being affected by doping.
  • Non-Patent Document 1 the contact resistance of n-type GaN doped with 1.5 ⁇ 10 18 cm ⁇ 3 of Si is about 1 ⁇ 10 ⁇ 5 ⁇ cm 2
  • Non-Patent Document 2 the contact resistance of n-type GaAs doped with 1 ⁇ 10 18 cm ⁇ 3 of Si is 5 ⁇ 10 ⁇ 7 ⁇ cm 2
  • Non-Patent Document 4 There is a limit to the Si doping concentration, and the Si doping concentration of the regrown GaN layer is often on the order of 10 18 cm ⁇ 3 (Non-Patent Document 4). It can be said that the increase in contact resistance in such cases is a problem when using GaN as a material for the regrown layer.
  • the process In order to re-grow, it is necessary to etch the once-grown GaN channel layer. In this step, it is desirable to leave the 2DEG without completely etching the GaN in order to make good contact between the 2DEG in the channel region and the regrown layer.
  • the 2DEG is positioned about 1 to 2 nm from the GaN/AlGaN interface under the channel layer. Therefore, in order to leave the 2DEG, etching is required to leave the channel layer with a thickness of about 5 nm.
  • the channel layer is a thin layer with a thickness of about 20 nm or less, and the required etching depth (thickness) is about several nm to ten and several nm.
  • etching depth is large, the carrier density of the 2DEG will be greatly reduced, and if the etching depth is small, the distance between the 2DEG and the regrown layer will be too large. In both cases, contact resistance increases, so control of etching depth becomes important.
  • Methods for controlling the etching depth include a method using selective etching and a method using etching time.
  • the channel layer it is not preferable for the channel layer to include a layer other than GaN in the region under the gate electrode that is not etched. can't Therefore, the etching depth is controlled mainly by controlling the etching time.
  • the etching rate is generally as high as about ten to several tens of nm/min. For this reason, in this etching process, a deviation of the processing time of several seconds leads to an etching depth error of 1 nm or more. not enough.
  • the etched thin film must be exposed to the atmosphere once in order to introduce it into the crystal growth furnace for regrowth.
  • the surface before regrowth adsorbs a large number of impurities from the atmosphere. have unintended effects on device characteristics.
  • K. Hotta et al. "Annealing temperature dependence of alloy contact for N-polar GaN HEMT structure", Japanese Journal of Applied Physics, vol. 58, SCCD14, 2019.
  • K. S. Chen et al. "A Cu-based alloyed Ohmic contact system on n-type GaAs", Applied Physics Letters, vol. 91, no. 23, 233511, 2007.
  • M. H. Wong et al. "INVITED REVIEW N-polar GaN epitaxy and high electron mobility transistors", Semiconductor Science and Technology, vol. 28, 074009, 2013. S.
  • reducing the contact resistance of the ohmic electrode in the N-polar GaN-HEMT has the following problems.
  • re-growth of n-type GaN alone has limitations due to the physical properties of GaN, limiting the improvement of device characteristics.
  • exposure of the regrowth interface to the atmosphere is unavoidable, and the incorporation of impurities into the regrowth interface and the regrowth layer affects device characteristics.
  • conventionally there has been a problem that it is not easy to reduce the contact resistance of the ohmic electrode in the N-polar GaN-based HEMT.
  • the present invention has been made to solve the above problems, and aims to easily reduce the contact resistance of the ohmic electrode in an N-polar GaN-based HEMT.
  • a method for manufacturing a field effect transistor includes a first step of forming a barrier layer made of a nitride semiconductor on a substrate so that the main surface of the barrier layer is N-polar; a second step of forming a channel layer with a N-polarity on the main surface, and a two-dimensional electron gas formed in the channel layer in the vicinity of the interface between the barrier layer and the channel layer that are heterojunction to each other; a third step of forming a concave portion in the channel layer by converting the channel layer at the location where the ohmic electrode connected to the channel layer to As to form an As layer, and heating and removing the formed As layer; a fourth step of forming a contact layer by growing an n-type III-V group compound semiconductor containing at least one of P, As, and Sb as a group V element so as to fill the recess, and forming an ohmic electrode on the contact layer; and a fifth step of forming
  • a field effect transistor includes a barrier layer formed on a substrate with a main surface of N-polarity and made of a nitride semiconductor, and a barrier layer made of a nitride semiconductor with a main surface of N-polarity.
  • a channel layer heterojunction with the barrier layer and an ohmic electrode electrically connected to the channel by the two-dimensional electron gas formed in the channel layer in the vicinity of the interface between the barrier layer and the channel layer are arranged.
  • a contact layer made of an n-type group III-V compound semiconductor containing at least one of P, As, and Sb as a group V element and formed so as to fill the recess formed in the channel layer at the location. and an ohmic electrode formed on and in contact with the contact layer.
  • the present invention it is possible to easily reduce the contact resistance of the ohmic electrode in the N-polar GaN-based HEMT.
  • FIG. 1A is a cross-sectional view showing a state of a field effect transistor in an intermediate step for explaining a method of manufacturing a field effect transistor according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing the state of a field effect transistor in an intermediate step for explaining the method of manufacturing a field effect transistor according to the embodiment of the present invention.
  • FIG. 1C is a cross-sectional view showing a state of a field effect transistor in an intermediate step for explaining the method of manufacturing a field effect transistor according to an embodiment of the present invention.
  • FIG. 1D is a cross-sectional view showing a state of the field effect transistor in an intermediate step for explaining the method of manufacturing the field effect transistor according to the embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing a state of a field effect transistor in an intermediate step for explaining a method of manufacturing a field effect transistor according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing the state
  • FIG. 1E is a cross-sectional view showing the state of a field effect transistor in an intermediate step for explaining the method of manufacturing a field effect transistor according to an embodiment of the present invention.
  • FIG. 1F is a flow chart for explaining a method of manufacturing a portion of a field effect transistor according to an embodiment of the invention.
  • FIG. 1G is a timing chart for explaining a method of manufacturing a portion of the field effect transistor according to the embodiment of the invention.
  • FIG. 1H is a cross-sectional view showing a state of a field effect transistor in an intermediate step for explaining the method of manufacturing a field effect transistor according to an embodiment of the present invention.
  • FIG. 1I is a cross-sectional view showing the state of a field effect transistor in an intermediate step for explaining the method of manufacturing a field effect transistor according to an embodiment of the present invention.
  • FIG. 1J is a cross-sectional view showing the state of the field effect transistor in an intermediate step for explaining the method of manufacturing the field effect transistor according to the embodiment of the present invention.
  • FIG. 1K is a cross-sectional view showing the configuration of the field effect transistor according to the embodiment of the invention.
  • FIGS. 1A to 1J A method for manufacturing a field effect transistor according to an embodiment of the present invention will be described below with reference to FIGS. 1A to 1J.
  • a buffer layer 102 is formed on a substrate 101, and a barrier layer 103 made of a nitride semiconductor is formed thereon so that the main surface thereof has N polarity (V group polarity).
  • a channel layer 104 made of a nitride semiconductor is formed on the barrier layer 103 so that its main surface is N-polar (second step).
  • a gate insulating layer 105 is formed on the channel layer 104 .
  • the substrate 101 can be, for example, sapphire, silicon carbide, silicon, GaN, or the like.
  • the buffer layer 102 can be made of GaN, for example.
  • the barrier layer 103 can be made of AlGaN, for example.
  • the channel layer 104 can be composed of GaN, for example.
  • the gate insulating layer 105 can be made of an insulating material such as SiN, for example.
  • the substrate 101 is a sapphire substrate
  • the surface of the substrate 101 is subjected to high-temperature heat treatment in an atmosphere of a source gas such as ammonia to nitride the substrate surface, and then a nucleation layer is grown to a thickness of about 20 nm.
  • a buffer layer 102 is grown to a thickness of several hundred nm to sufficiently reduce defects.
  • Buffer layer 102 is formed with a main surface having N polarity.
  • a crystal of a nitride semiconductor (GaN, AlGaN, etc.) having an N-polar plane as a main surface orientation can be grown.
  • the substrate 101 is a GaN single crystal substrate or an AlN single crystal substrate having the N-polar plane as the main surface orientation
  • the N-polar plane is the main surface orientation without the above-described nitridation or the growth of the nucleation layer. crystalline growth of nitride semiconductors.
  • a layered structure of a channel layer and a barrier layer crystal-grown on a growth substrate with the group III plane as the main plane orientation is bonded to the substrate 101, and the growth substrate is removed to form an N plane on the substrate 101.
  • the barrier layer 103 and the channel layer 104 having the principal surface orientation of .theta.
  • the gate insulating layer 105 is made of, for example, SiN, it can be formed by deposition using, for example, a sputtering method.
  • a mask pattern 121 having an opening region in the electrode formation region 151 is formed.
  • the electrode formation region 151 is a place where an ohmic electrode electrically connected to a channel by a two-dimensional electron gas formed in the channel layer 104 near the interface between the barrier layer 103 and the channel layer 104 heterojunction to each other is arranged.
  • the mask pattern 121 is exposed to high temperatures in the post-process, so it can be made of a heat-resistant material such as silicon oxide.
  • the gate insulating layer 105 is patterned by selective etching using the mask pattern 121 to expose the upper surface of the channel layer 104 in the electrode forming region 151 as shown in FIG. 1C.
  • the gate insulating layer 105 made of SiN can be etched by RIE using F-based gas.
  • part of the channel layer 104 in the electrode forming region 151 in the thickness direction is converted to As to form an As layer 122, and then the formed As layer 122 is removed by heating.
  • a recess 123 is formed in the channel layer 104a (third step).
  • the recesses 123 are formed by repeating the formation of the As layer 122 and the removal of the formed As layer 122 .
  • step S101 the substrate 101 is loaded into the growth chamber of the processing apparatus with the channel layer 104 exposed.
  • Any processing apparatus may be used as long as it is capable of introducing AsH 3 and H 2 into the growth chamber and heating the sample carried into the processing chamber to 700° C. or higher.
  • an MOCVD furnace capable of growing GaAs crystals can be used, but the present invention is not limited to this, and a dedicated processing apparatus can be used.
  • step S102 the inside of the growth chamber is heated to a predetermined processing temperature, for example, 700.degree. It is desirable to raise the temperature in the growth chamber with, for example, a N 2 atmosphere capable of suppressing a thermal decomposition reaction using hydrogen.
  • a predetermined processing temperature for example, 700.degree.
  • a N 2 atmosphere capable of suppressing a thermal decomposition reaction using hydrogen.
  • GaN is hardly thermally decomposed at about 700° C. even in an H 2 atmosphere, an H 2 atmosphere or an N 2 /H 2 atmosphere can be used.
  • the atmosphere in the growth chamber is changed to H 2 atmosphere. 2 Hold as atmosphere.
  • the channel layer 104 heated to about 700° C. is replaced with N, which is a group V element forming the channel layer 104, with As in the atmosphere.
  • an As layer 122 is formed (FIG. 1D).
  • the thickness of the formed As layer 122 varies depending on the temperature inside the growth chamber and the time of flowing (supplying) AsH 3 , but this thickness is about 1 to 2 nm.
  • the As layer 122 formed on the surface of the channel layer 104 made of GaN is made of GaAs.
  • step S106 After the above-described As conversion process has been performed for a set time (Yes in step S105), in step S106, the supply of AsH3 into the growth chamber is stopped, the atmosphere in the growth chamber is maintained as H2 atmosphere, and this state is maintained. continue for the set time.
  • the As layer 122 heated in this state undergoes a thermal decomposition reaction with H 2 and is removed (FIG. 1E).
  • step S107 When the time for holding the H 2 atmosphere in the growth chamber reaches the set time (step S107), the As conversion and the removal of the As conversion layer are repeated a set number of times (Yes in step S108). ), steps S104 to S107 are repeated.
  • step S109 When the processing has been performed the set number of times (yes in step S108), in step S109, the temperature inside the processing chamber is lowered and the gas in the processing chamber is exhausted. .
  • etching proceeds by the thickness of the As layer 122 on the surface, and the As layer 122 is removed. The etching stops when the channel layer 104a is completely removed and the surface of the channel layer 104a is exposed.
  • step S104 the surface is converted to As in an AsH 3 /H 2 atmosphere to form the As layer 122, the supply of AsH 3 is stopped, and the As layer 122 is thermally decomposed in the H 2 atmosphere (step S104).
  • steps S106 it is possible to etch the electrode formation region 151 of the channel layer 104 by 1 to 2 nm.
  • the etching amount in one cycle is determined by the thickness of the formed As layer.
  • the thickness of the arsenic layer can be controlled by the temperature in the processing chamber and the flow time of AsH 3 .
  • the thermal decomposition reaction of the As layer is a self-stopping reaction due to the difference in thermal decomposition temperature from nitride semiconductors such as GaN, it is possible to perform highly reproducible etching by finely controlling the etching amount in each cycle. be.
  • Another advantage of this etching method is that it hardly forms a damaged layer on the surface of the thin film during etching.
  • an etching method such as RIE, which is generally used for etching GaN
  • the etching surface is irradiated with particles such as ions, so that a damaged layer containing many defects is formed on the surface after etching.
  • the thickness of the channel layer 104a in which the recess 123 is formed in the electrode formation region 151 can be set to, for example, about 5 nm. Leaving the thin channel layer 104a in the electrode forming region 151 in this manner is intended to leave the 2DEG formed near the interface between the channel layer 104a and the barrier layer 103 in the electrode forming region 151. .
  • the etching of the concave portion 123 needs to be a process with high reproducibility.
  • the above-described etching by As conversion and thermal decomposition of the As conversion layer is a process with extremely high reproducibility, and is suitable for forming the recesses 123 .
  • the electrode A contact layer 106 and a contact layer 107 are formed in the formation region 151 (fourth step).
  • the contact layer 106 and the contact layer 107 can be made of, for example, GaAs, InAs, InGaAs, or a multilayer structure in which these are laminated.
  • a source electrode 108 and a drain electrode 109 are formed on the contact layers 106 and 107 (fifth step).
  • a gate electrode 110 is formed on the channel layer 104 (sixth step). In this example, the source electrode 108 and the drain electrode 109 arranged with the gate electrode 110 therebetween are ohmic electrodes.
  • the field effect transistor obtained by the above-described manufacturing method is composed of a barrier layer 103 made of a nitride semiconductor and formed on a substrate 101 with the main surface having N polarity, and a nitride semiconductor.
  • contact layer 106 and contact layer 107 made of an n-type III-V compound semiconductor including one, and an ohmic electrode formed on and in contact with contact layer 106 and contact layer 107.
  • a gate electrode 110 is formed on the channel layer 104, and the ohmic electrodes are the source electrode 108 and the drain electrode 109 arranged with the gate electrode 110 interposed therebetween.
  • FIG. 1K recesses can be formed through the channel layer 104b so that the channel layer 104b is completely removed below the source electrode 108 and the drain electrode 109.
  • FIG. In this configuration there is no channel layer below the contact layers 106 and 107, and no 2DEG is formed.
  • the contact layer 106 and the contact layer 107 are formed on the channel layer 104b near the interface between the barrier layer 103 and the channel layer 104b in the direction in which they are arranged (the direction parallel to the plane of the substrate 101).
  • Contact (connect) with 2DEG In other words, the contact layer 106 and the contact layer 107 contact (connect) to the 2DEG on the side surface of the channel layer 104b.
  • the channel layer heterojunction on the barrier layer formed on the substrate with the N-polarity of the main surface is subjected to, for example, As conversion and thermal decomposition of the As conversion layer. Since the contact layer is formed by forming a recessed portion by etching with , etc., and filling it with an n-type III-V group compound semiconductor, the contact resistance of the ohmic electrode in the N-polar GaN-based HEMT can be easily reduced. Become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

基板(101)の上に、バッファ層(102)を形成し、この上に、窒化物半導体から構成されたバリア層(103)を、主表面をN極性(V族極性)として形成し、引き続き、バリア層(103)の上に、窒化物半導体から構成されたチャネル層(104)を、主表面をN極性として形成し、電極形成領域(151)のチャネル層(104)の厚さ方向の一部をAs化してAs化層(122)を形成し、次いで、形成したAs化層(122)を加熱して除去する。

Description

電界効果トランジスタおよびその作製方法
 本発明は、電界効果トランジスタおよびその作製方法に関する。
 ヘテロ接合電界効果トランジスタ(heterojunction field effect transistor:HFET)、または高電子移動度トランジスタ(high electron mobility transistor:HEMT,以下HEMT)は、ゲート電圧により生じる電界によってチャネル層のキャリア密度を変化させることで、ON/OFFを行うトランジスタである。
 上述したトランジスタをGaNなどの窒化物半導体から構成する場合、例えば、AlGaN/GaNによるヘテロ接合において、AlGaNの層とGaNの層との分極の大きさの差を補償するようにして界面に電子が集まって形成される2次元電子ガス(2 dimensional electron gas:2DEG)を用いることが多い。一般的なGa極性GaNからなるHEMT(GaN系-HEMT)では、数nm~数10nm程度の厚さのAlGaN層の上にゲート電極を形成し、AlGaN/GaN界面の2DEG濃度を制御する。
 GaN系-HEMTの高周波応用を考える際には、キャリアをAlGaN/GaN界面の薄い領域に閉じ込め、かつその他のリークパスを除くことが重要になる。これによってゲート電極にかけた電圧に対する応答動作を高速化し、安定した動作を実現できる。
 GaNを用いたHEMTでは、2DEGの高移動度を活かした高周波デバイス応用が進められているが、Ga極性のHEMTでは、デバイス表面にバンドギャップの大きいAlGaNが配置されることから、(1)コンタクト抵抗が高い、(2)キャリア密度維持のためにAlGaN層を薄くできず、短チャネル効果につながるといった課題を抱える。
 これらの課題がGaN HEMTの高周波特性向上の妨げとなっている。課題の解決手法として、(1)コンタクト抵抗低減のために、ソース電極・ドレイン電極などのオーミック電極直下の領域の再成長を行ったり、(2)短チャネル効果の抑制のために、Al組成を高めてAlGaN層を薄くしたりといった技術が検討されているが、オーミックコンタクト抵抗を低減するには制限がある。
 N極性GaNはGa極性GaNを反転させた結晶であり、HEMTを作る際には以下の3つの利点を有する。第1に、キャリアを供給するために高いAl組成と20nm程度の厚さを必要とし、高抵抗であるAlGaN層がGaNチャネル層の下にあり、オーミック電極とチャネルの間に配置されないため、コンタクト抵抗を低くできる。第2に、表面GaN層の厚さは、キャリア密度に大きく影響しないため、薄くして短チャネル効果を抑制できる。第3に、チャネル直下のAlGaN層がバックバリアとなり、短チャネル効果を抑制できる。これらの利点から、N極性GaNを用いてHEMTを作製することでGaN HEMTのさらなる高周波特性の向上が期待できる(非特許文献3)。
 Ga極性のGaN系-HEMTに比べて、エピ構造のためにコンタクト抵抗低減に有利であるN極性GaN系-HEMTであるが、プロセスによるさらなるコンタクト抵抗の低減が研究されている。この1つが、オーミック電極下の領域にn型にドーピングされたGaNを再成長する技術である。GaNチャネル層は、不純物が2DEGの移動度を下げて電子デバイスの特性を劣化させてしまうため、ドーピングされていない。
 GaNのバンドギャップは、AlGaNに比べると小さいが、半導体材料の中では大きいため、ドーピングされていないGaNの抵抗は他の半導体材料に比べて大きい。そこで、不純物による電子デバイスの特性劣化を起こさずにコンタクト抵抗を低減するために、ドーピング無しに成長したGaNチャネル層において、オーミック電極下の領域のみをエッチングして、この箇所にn型にドーピングしたGaNを再成長して再成長層を形成する技術がある。この技術では、ドーピングされている再成長層によってコンタクト抵抗を下げ、かつゲート電極下のチャネル部分はドーピングの影響なく高移動度を維持できるデバイス構造が実現できる。
 上述した技術によってオーミック抵抗を下げることが可能だが、デバイス特性のさらなる向上のために、以下2つの点で課題がある。
 第1に、GaNを利用することによる課題である。再成長したGaNはn型にドーピングされているが、バンドギャップの大きいGaNを利用している点は変わらないため、同程度のドーピング濃度の他のn型半導体で比較した場合、他の半導体材料に比べてコンタクト抵抗は高くなる。例えば、Siを1.5×1018cm-3ドープしたn型GaNのコンタクト抵抗は、1×10-5Ωcm2程度を示す報告がある(非特許文献1)。また、Siを1×1018cm-3ドープしたn型GaAsのコンタクト抵抗は、5×10-7Ωcm2との報告(非特許文献2)もある。
 Siドーピング濃度には限界があり、再成長GaN層のSiドーピング濃度も1018cm-3台(非特許文献4)であることが多いことから、バンドギャップが大きいために同程度のドーピング濃度の場合にコンタクト抵抗が高くなってしまうことは、GaNを再成長層の材料として使用する際の課題点であると言える。
 第2に、工程上の課題である。再成長を行うためには、一度成長したGaNチャネル層をエッチングする必要がある。この工程において、チャネル領域の2DEGと再成長層とのコンタクトを良好にするために、GaNを完全にエッチングせず2DEGを残すことが望ましい。2DEGは、チャネル層下部のGaN/AlGaN界面から1~2nm程度の位置にある。このため、2DEGを残すためには、チャネル層を厚さ5nm前後残すエッチングが求められる。チャネル層は、厚さが20nm程度かそれ以下の薄い層であり、必要なエッチング深さ(厚さ)は数nmから十数nm程度となる。
 エッチング深さが大きいと2DEGのキャリア密度を大きく減少させることになり、エッチング深さが小さいと2DEGと再成長層との距離を取りすぎることになる。どちらの場合にもコンタクト抵抗は増大する結果になるため、エッチング深さの制御が重要になる。エッチング深さを制御する方法としては、選択性エッチングを用いるものとエッチング時間によるものがある。しかし、N極性GaN系-HEMTにおいては、エッチングしないゲート電極下の領域でチャネル層中にGaN以外から構成された層が含まれることは好ましくないため、エッチング停止層を要する選択性エッチングを用いることができない。このため、エッチングの深さ制御は、主にエッチング時間の制御によるものとなる。
 しかし、GaNのエッチングで用いられる、誘導性結合により生成した塩素系ガスのプラズマによる反応性イオンエッチング(ICP-RIE)では、エッチングレートが一般的に十数から数十nm/min程度と大きい。このため、このエッチング処理では、数秒の処理時間のずれが、1nmかそれ以上のエッチング深さ誤差に繋がるため、上記のような再成長層のエッチングに求められる精度を再現性良く得る技術としては十分でない。
 また、エッチングされた薄膜は再成長を行う結晶成長炉に導入するために、一度大気に暴露する必要がある。大気暴露することで、再成長前の表面には大気中の不純物が多数吸着する状態となり、これが界面および再成長層中に取り込まれることで、ドーピング濃度のバラつきとそれに伴うコンタクト抵抗の変動のようにデバイス特性に意図しない影響を与えてしまう。
 近年、GaNのエッチングに塩素ガスを用いた原子層エッチング(Atomic Layer Etching:ALE)技術が研究されており、エッチング深さの制御性向上が進められている。しかしながらこの場合においても、エッチング後の大気暴露は避けられず、ウェハ洗浄方法などの検討が盛んになされているが、大気からの不純物取り込みを完全に除去できるわけではなく、大気中不純物によるデバイス特性への意図しない影響を避けることができない。
K. Hotta et al., "Annealing temperature dependence of alloy contact for N-polar GaN HEMT structure", Japanese Journal of Applied Physics, vol. 58, SCCD14, 2019. K. S. Chen et al., "A Cu-based alloyed Ohmic contact system on n-type GaAs", Applied Physics Letters, vol. 91, no. 23, 233511, 2007. M. H. Wong et al., "INVITED REVIEW N-polar GaN epitaxy and high electron mobility transistors", Semiconductor Science and Technology, vol. 28, 074009, 2013. S. Kolluri et al., "N-Polar GaN MIS-HEMTs With a 12.1-W/mm Continuous-Wave Output Power Density at 4 GHz on Sapphire Substrate", IEEE Electron Device Letters, vol. 32, no. 5, pp. 635-637, 2111.
 上述したように、N極性GaN系-HEMTにおけるオーミック電極のコンタクト抵抗低減には、次に示す問題があった。まず、n型GaNの再成長だけではGaNの物性上の限界があり、デバイス特性の向上を制限している。また、再成長において、再成長界面を大気に晒すことが避けられず、再成長界面や再成長層への不純物取り込みなどにより、デバイス特性への影響が生じる。このように、従来、N極性GaN系-HEMTにおけるオーミック電極のコンタクト抵抗低減が、容易に実現できないという問題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、N極性GaN系-HEMTにおけるオーミック電極のコンタクト抵抗低減が、容易に実現できるようにすることを目的とする。
 本発明に係る電界効果トランジスタの作製方法は、基板の上に、窒化物半導体から構成されたバリア層を、主表面をN極性として形成する第1工程と、バリア層の上に、窒化物半導体から構成されたチャネル層を、主表面をN極性として形成する第2工程と、互いにヘテロ接合するバリア層とチャネル層との界面近傍のチャネル層に形成される2次元電子ガスによるチャネルに電気的に接続するオーミック電極が配置される箇所のチャネル層をAs化してAs化層を形成し、形成したAs化層を加熱して除去することで、チャネル層に凹部を形成する第3工程と、V族元素としてP、As、Sbの少なくとも1つを含むn型のIII-V族化合物半導体を凹部を埋めるように成長してコンタクト層を形成する第4工程と、コンタクト層の上にオーミック電極を形成する第5工程とを備える。
 また、本発明に係る電界効果トランジスタは、窒化物半導体から構成されて主表面をN極性として基板の上に形成されたバリア層と、窒化物半導体から構成されて主表面をN極性としてバリア層の上に形成され、バリア層とヘテロ接合するチャネル層と、バリア層とチャネル層との界面近傍のチャネル層に形成される2次元電子ガスによるチャネルに電気的に接続するオーミック電極が配置される箇所のチャネル層に形成された凹部と、凹部を埋めるように形成された、V族元素としてP、As、Sbの少なくとも1つを含むn型のIII-V族化合物半導体から構成されたコンタクト層と、コンタクト層の上に接して形成されたオーミック電極とを備える。
 以上説明したことにより、本発明によれば、N極性GaN系-HEMTにおけるオーミック電極のコンタクト抵抗低減が、容易に実現できる。
図1Aは、本発明の実施の形態に係る電界効果トランジスタの作製方法を説明するための途中工程の電界効果トランジスタの状態を示す断面図である。 図1Bは、本発明の実施の形態に係る電界効果トランジスタの作製方法を説明するための途中工程の電界効果トランジスタの状態を示す断面図である。 図1Cは、本発明の実施の形態に係る電界効果トランジスタの作製方法を説明するための途中工程の電界効果トランジスタの状態を示す断面図である。 図1Dは、本発明の実施の形態に係る電界効果トランジスタの作製方法を説明するための途中工程の電界効果トランジスタの状態を示す断面図である。 図1Eは、本発明の実施の形態に係る電界効果トランジスタの作製方法を説明するための途中工程の電界効果トランジスタの状態を示す断面図である。 図1Fは、本発明の実施の形態に係る電界効果トランジスタの一部の作製方法を説明するためのフローチャートである。 図1Gは、本発明の実施の形態に係る電界効果トランジスタの一部の作製方法を説明するためのタイミングチャートである。 図1Hは、本発明の実施の形態に係る電界効果トランジスタの作製方法を説明するための途中工程の電界効果トランジスタの状態を示す断面図である。 図1Iは、本発明の実施の形態に係る電界効果トランジスタの作製方法を説明するための途中工程の電界効果トランジスタの状態を示す断面図である。 図1Jは、本発明の実施の形態に係る電界効果トランジスタの作製方法を説明するための途中工程の電界効果トランジスタの状態を示す断面図である。 図1Kは、本発明の実施の形態に係る電界効果トランジスタの構成を示す断面図である。
 以下、本発明の実施の形態に係る電界効果トランジスタの作製方法について図1A~図1Jを参照して説明する。
 まず、図1Aに示すように、基板101の上に、バッファ層102を形成し、この上に、窒化物半導体から構成されたバリア層103を、主表面をN極性(V族極性)として形成する(第1工程)。引き続き、バリア層103の上に、窒化物半導体から構成されたチャネル層104を、主表面をN極性として形成する(第2工程)。引き続き、チャネル層104の上に、ゲート絶縁層105を形成する。
 基板101は、例えば、サファイア、炭化ケイ素、シリコン、GaNなどとすることができる。バッファ層102は、例えば、GaNから構成することができる。バリア層103は、例えば、AlGaNから構成することができる。チャネル層104は、例えば、GaNから構成することができる。ゲート絶縁層105は、例えば、SiNなどの絶縁材料から構成することができる。
 例えば、基板101をサファイア基板とした場合は、基板101の表面をアンモニアなどの原料ガス雰囲気下で高温熱処理することで基板表面を窒化し、次いで、厚さ20nm程度に核形成層を成長する。この後、欠陥を十分に減少させるために厚さ数百nm程度にバッファ層102を成長する。バッファ層102は、主表面をN極性として形成される。このように形成されたバッファ層102の上には、N極性面を主面方位とする窒化物半導体(GaNやAlGaNなど)を結晶成長することができる。一方、N極性面を主面方位とするGaN単結晶基板またはAlN単結晶基板を基板101とする場合、上述した窒化や核形成層の成長などをせずに、N極性面を主面方位とする窒化物半導体が結晶成長できる。
 また、III族面を主面方位として成長基板の上に結晶成長したチャネル層、バリア層の積層構造を、基板101に接合し、成長基板を除去することで、基板101の上に、N面を主面方位とするバリア層103、チャネル層104がこの順に積層した状態とすることができる。
 なお、ゲート絶縁層105は、例えば、SiNから構成する場合、例えば、スパッタ法などにより堆積することで形成できる。
 次に、図1Bに示すように、電極形成領域151に開口領域を備えるマスクパターン121を形成する。電極形成領域151は、互いにヘテロ接合するバリア層103とチャネル層104との界面近傍のチャネル層104に形成される2次元電子ガスによるチャネルに電気的に接続するオーミック電極が配置される箇所である。マスクパターン121は、後述するように、後工程において高温に晒されるため、例えば、酸化シリコンなどの耐熱性を有する材料から構成することができる。
 次いで、マスクパターン121を用いた選択エッチングによりゲート絶縁層105をパターニングし、図1Cに、電極形成領域151におけるチャネル層104の上面を露出させる。例えば、F系のガスを用いたRIEによって、SiNから構成されたゲート絶縁層105のエッチングが可能である。
 次に、図1Dに示すように、電極形成領域151のチャネル層104の厚さ方向の一部をAs化してAs化層122を形成し、次いで、形成したAs化層122を加熱して除去することで、図1Eに示すように、チャネル層104aに凹部123を形成する(第3工程)。凹部123の形成は、As化層122の形成と、形成したAs化層122の除去とを繰り返すことで実施する。
 ここで、凹部123の形成について、図1F,図1Gを参照してより詳細に説明する。まず、ステップS101で、チャネル層104が露出した状態で、基板101を、処理装置の成長室の中に搬入する。処理装置は、成長室内にAsH3およびH2を導入することが可能であり、かつ、処理室内に搬入した処理対象を700℃以上に試料を加熱できるものであれば良い。例えば、GaAsの結晶成長が実施できるMOCVD炉を用いることができるが、これに限るものではなく、専用の処理装置を用いることができる。
 次に、ステップS102で、成長室内を所定の処理温度、例えば700℃に昇温する。成長室内を、例えば、水素を利用する熱分解反応を抑えることができるN2雰囲気として、昇温を実施することが望ましい。ただし、H2雰囲気下でも700℃程度ではGaNは、ほとんど熱分解しないため、H2雰囲気、N2/H2雰囲気とすることができる。
 成長室内が設定した温度に到達したら(ステップS103のyes)、成長室内を、H2雰囲気とし、ステップS104で、成長室内にH2とともにAsH3を供給し、成長室内を、AsH3を含むH2雰囲気として保持する。このように、AsH3が供給されてAsが存在している雰囲気において、700℃程度に加熱されているチャネル層104は、構成しているV族元素であるNが、雰囲気中のAsと置き換わり、As化層122が形成される(図1D)。成長室の内温度やAsH3を流す(供給する)時間によって、形成されるAs化層122の厚さは変わるが、この厚さは1~2nm程度である。GaNから構成されているチャネル層104の表面に形成されるAs化層122は、GaAsから構成されたものとなる。
 上述したAs化の工程を設定されている時間実施したら(ステップS105のyes)、ステップS106で、成長室内へのAsH3の供給を停止して、成長室内をH2雰囲気として保持し、この状態を設定されている時間継続する。この状態で加熱されるAs化層122は、H2による熱分解反応が起こり除去される(図1E)。
 成長室内をH2雰囲気として保持する時間が設定されている時間となったら(ステップS107)、As化とAs化層の除去とを繰り返しが、設定されている回数実施するまで(ステップS108のyesとなるまで)、ステップS104~ステップS107を繰り返す。設定されている回数が実施されたら(ステップS108のyes)、ステップS109で、処理室内を降温し、処理室内のガスを排気した後、ステップS110で、処理室内より処理対象の基板101を搬出する。
 As化層122の下のチャネル層104を構成するGaNは、700℃程度の温度ではほとんど熱分解が起こらないため、表面のAs化層122の厚さ分だけエッチングが進み、As化層122が完全に除去されてチャネル層104aの表面が露出するとエッチングは停止する。
 このようにして、AsH3/H2雰囲気下で表面をAs化してAs化層122を形成し、AsH3の供給を止めてH2雰囲気下でAs化層122を熱分解させる工程(ステップS104~ステップS106)を、繰り返すことによって、1~2nmずつチャネル層104の電極形成領域151をエッチングしていくことが可能である。
 このエッチング技術では、1サイクルのエッチング量が、形成されるAs化層の厚さで決定される。As化層の厚さは処理室内の温度やAsH3を流す時間によって制御することが可能である。さらにAs化層の熱分解反応は、GaNなどの窒化物半導体との熱分解温度の違いから自己停止する反応であるため、1サイクルごとにエッチング量を細かく制御した再現性の高いエッチングが可能である。
 また、このエッチング方法では、エッチング中に薄膜表面にほとんどダメージ層を形成しない点にもメリットがある。GaNのエッチングで一般的なRIEなどのエッチング方法では、イオンなどの粒子がエッチング表面に照射されるため、これによってエッチング後の表面に欠陥の多く含まれるダメージ層が形成される。
 上述したAs化とAs化層の熱分解とによるエッチング方法では、物理的な粒子照射がなされないため、エッチング後のチャネル層104aの表面に欠陥を生成する要因が少なく、ダメージの抑制につながっている。
 以上のように、As化とAs化層の熱分解を設定されている回数実施することで、図1Hに示すように、電極形成領域151に、所定の深さの凹部123が形成されたチャネル層104aとする。凹部123が形成されたチャネル層104aの、電極形成領域151における厚さは、例えば、5nm程度とすることができる。このように、電極形成領域151に、薄いチャネル層104aを残すことは、電極形成領域151に、チャネル層104aとバリア層103との界面近傍に形成される2DEGを残すことを意図したものである。
 上述した電極形成領域151のチャネル層104aの薄い部分は、薄くなると2DEGのキャリア密度が減少し、厚くなると2DEGと後述するコンタクト層との距離が増大するので、上述した薄い部分の厚さの変動がコンタクト抵抗に影響を与える。このため、凹部123のエッチングは、再現性が高い処理であることが必要である。前述したAs化とAs化層の熱分解とによるエッチングは、極めて再現性が高い処理であり、凹部123の形成に好適である。
 次いで、V族元素としてP、As、Sbの少なくとも1つを含むn型のIII-V族化合物半導体を凹部123を埋めるように成長(再成長)することで、図1Iに示すように、電極形成領域151に、コンタクト層106、コンタクト層107を形成する(第4工程)。コンタクト層106、コンタクト層107は、例えば、GaAsやInAs、InGaAs、およびそれらを積層した多層構造とすることができる。この後、コンタクト層106、107の上にソース電極108、ドレイン電極109を形成する(第5工程)。また、チャネル層104の上にゲート電極110を形成する(第6工程)。この例では、ゲート電極110を挟んで配置されるソース電極108およびドレイン電極109が、オーミック電極となる。
 上述した作製方法により得られる電界効果トランジスタは、図1Jに示すように、窒化物半導体から構成されて主表面をN極性として基板101の上に形成されたバリア層103と、窒化物半導体から構成されて主表面をN極性としてバリア層103の上に形成され、バリア層103とヘテロ接合するチャネル層104と、バリア層103とチャネル層104との界面近傍のチャネル層104に形成される2次元電子ガスによるチャネルに電気的に接続するオーミック電極が配置される箇所のチャネル層104に形成された凹部123と、凹部123を埋めるように形成された、V族元素としてP、As、Sbの少なくとも1つを含むn型のIII-V族化合物半導体から構成されたコンタクト層106、コンタクト層107と、コンタクト層106、コンタクト層107の上に接して形成されたオーミック電極とを備えるものとなる。なお、この例では、チャネル層104の上に形成されたゲート電極110を備え、オーミック電極は、ゲート電極110を挟んで配置されるソース電極108およびドレイン電極109である。
 ところで、図1Kに示すように、ソース電極108およびドレイン電極109の下側が完全に除去されたチャネル層104bとなるように、凹部をチャネル層104bを貫通して形成することができる。この構成では、コンタクト層106、コンタクト層107の下側に、チャネル層が無く、2DEGが形成されない。この構成では、コンタクト層106およびコンタクト層107は、これらが配置される方向(基板101の平面に平行な方向)において、バリア層103とチャネル層104bとの界面近傍のチャネル層104bに形成される2DEGと接触(接続)する。言い換えると、チャネル層104bの側面において、コンタクト層106およびコンタクト層107が、2DEGに接触(接続)する。
 この構成では、作成の過程で、2DEGが形成されるチャネル層104bの側面が露出することになるため、この側面におけるダメージを小さく抑えることが大切になる。2DEGが形成されるチャネル層104bの側面に、例えば、エッチング処理によりダメージが導入されると、ダメージにより形成される欠陥によるキャリアトラップなどの形でデバイスの電気特性に大きく影響する。しかしながら、前述したAs化とAs化層の熱分解とによるエッチングは、反応性イオンなどの粒子照射によるダメージ導入が原理的に起きないため、低ダメージでのエッチングが可能である。
 以上に説明したように、本発明によれば、主表面をN極性として基板の上に形成されたバリア層の上にヘテロ接合するチャネル層に、例えば、As化とAs化層の熱分解とによるエッチングなどにより凹部を形成してn型のIII-V族化合物半導体を充填してコンタクト層を形成したので、N極性GaN系-HEMTにおけるオーミック電極のコンタクト抵抗低減が、容易に実現できるようになる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…基板、102…バッファ層、103…バリア層、104,104a…チャネル層、105…ゲート絶縁層、106…コンタクト層、107…コンタクト層、108…ソース電極、109…ドレイン電極、110…ゲート電極、121…マスクパターン、122…As化層、123…凹部、151…電極形成領域。

Claims (7)

  1.  基板の上に、窒化物半導体から構成されたバリア層を、主表面をN極性として形成する第1工程と、
     前記バリア層の上に、窒化物半導体から構成されたチャネル層を、主表面をN極性として形成する第2工程と、
     互いにヘテロ接合する前記バリア層と前記チャネル層との界面近傍の前記チャネル層に形成される2次元電子ガスによるチャネルに電気的に接続するオーミック電極が配置される箇所の前記チャネル層をAs化してAs化層を形成し、形成した前記As化層を加熱して除去することで、前記チャネル層に凹部を形成する第3工程と、
     V族元素としてP、As、Sbの少なくとも1つを含むn型のIII-V族化合物半導体を前記凹部を埋めるように成長してコンタクト層を形成する第4工程と、
     前記コンタクト層の上に前記オーミック電極を形成する第5工程と
     を備える電界効果トランジスタの作製方法。
  2.  請求項1記載の電界効果トランジスタの作製方法において、
     前記凹部の形成は、前記As化層の形成と、形成した前記As化層の除去とを繰り返すことで実施することを特徴とする電界効果トランジスタの作製方法。
  3.  請求項1または2記載の電界効果トランジスタの作製方法において、
     前記凹部は、前記チャネル層を貫通して形成することを特徴とする電界効果トランジスタの作製方法。
  4.  請求項1~3のいずれか1項に記載の電界効果トランジスタの作製方法において、
     前記チャネル層の上にゲート電極を形成する第6工程を備え、
     前記オーミック電極は、前記ゲート電極を挟んで配置されるソース電極およびドレイン電極であることを特徴とする電界効果トランジスタの作製方法。
  5.  窒化物半導体から構成されて主表面をN極性として基板の上に形成されたバリア層と、
     窒化物半導体から構成されて主表面をN極性として前記バリア層の上に形成され、前記バリア層とヘテロ接合するチャネル層と、
     前記バリア層と前記チャネル層との界面近傍の前記チャネル層に形成される2次元電子ガスによるチャネルに電気的に接続するオーミック電極が配置される箇所の前記チャネル層に形成された凹部と、
     前記凹部を埋めるように形成された、V族元素としてP、As、Sbの少なくとも1つを含むn型のIII-V族化合物半導体から構成されたコンタクト層と、
     前記コンタクト層の上に接して形成された前記オーミック電極と
     を備える電界効果トランジスタ。
  6.  請求項5記載の電界効果トランジスタにおいて、
     前記凹部は、前記チャネル層を貫通していることを特徴とする電界効果トランジスタ。
  7.  請求項5または6記載の電界効果トランジスタにおいて、
     前記チャネル層の上に形成されたゲート電極を備え、
     前記オーミック電極は、前記ゲート電極を挟んで配置されるソース電極およびドレイン電極であることを特徴とする電界効果トランジスタ。
PCT/JP2021/043160 2021-11-25 2021-11-25 電界効果トランジスタおよびその作製方法 WO2023095237A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043160 WO2023095237A1 (ja) 2021-11-25 2021-11-25 電界効果トランジスタおよびその作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043160 WO2023095237A1 (ja) 2021-11-25 2021-11-25 電界効果トランジスタおよびその作製方法

Publications (1)

Publication Number Publication Date
WO2023095237A1 true WO2023095237A1 (ja) 2023-06-01

Family

ID=86539114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043160 WO2023095237A1 (ja) 2021-11-25 2021-11-25 電界効果トランジスタおよびその作製方法

Country Status (1)

Country Link
WO (1) WO2023095237A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248563A (ja) * 2011-05-25 2012-12-13 Nippon Telegr & Teleph Corp <Ntt> 電界効果型トランジスタ
JP2019021873A (ja) * 2017-07-21 2019-02-07 住友電気工業株式会社 基板生産物の製造方法
JP2020088258A (ja) * 2018-11-29 2020-06-04 日本電信電話株式会社 トランジスタの作製方法
JP2020115525A (ja) * 2019-01-18 2020-07-30 日本電信電話株式会社 電界効果トランジスタの作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248563A (ja) * 2011-05-25 2012-12-13 Nippon Telegr & Teleph Corp <Ntt> 電界効果型トランジスタ
JP2019021873A (ja) * 2017-07-21 2019-02-07 住友電気工業株式会社 基板生産物の製造方法
JP2020088258A (ja) * 2018-11-29 2020-06-04 日本電信電話株式会社 トランジスタの作製方法
JP2020115525A (ja) * 2019-01-18 2020-07-30 日本電信電話株式会社 電界効果トランジスタの作製方法

Similar Documents

Publication Publication Date Title
JP4530171B2 (ja) 半導体装置
US6982204B2 (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
JP3733420B2 (ja) 窒化物半導体材料を用いたヘテロ接合電界効果型トランジスタ
TWI476914B (zh) 半導體裝置及半導體裝置之製造方法
CN108780811B (zh) 层结构竖直场效应晶体管及其制造方法
JP2003059948A (ja) 半導体装置及びその製造方法
WO2015029578A1 (ja) 半導体装置の製造方法および半導体装置
TW201513342A (zh) 半導體裝置及其製造方法
JP6279296B2 (ja) エンハンスメントモードヘテロ接合トランジスタの製造方法
CN108417627B (zh) 一种用于制备GaN基高频微波器件的方法
TWI663635B (zh) 使用離子植入之使高電阻率氮化物緩衝層的半導體材料生長
JP2007150106A (ja) Iii族窒化物半導体基板
JP5546104B2 (ja) GaN系電界効果トランジスタ
JP4517077B2 (ja) 窒化物半導体材料を用いたヘテロ接合電界効果型トランジスタ
JPH09307097A (ja) 半導体装置
US11430875B2 (en) Method for manufacturing transistor
JP2006024927A (ja) 半導体装置および半導体装置の製造方法
US10847642B2 (en) Compound semiconductor device and fabrication method
JP4748501B2 (ja) 高電子移動度トランジスタ
WO2023095237A1 (ja) 電界効果トランジスタおよびその作製方法
WO2022097193A1 (ja) 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法
JP2010165783A (ja) 電界効果型トランジスタおよびその製造方法
CN112420827A (zh) N面GaN HEMT器件及其制作方法
JP2005116858A (ja) 半導体電子デバイス及び半導体電子デバイスの製造方法
WO2023223375A1 (ja) 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563404

Country of ref document: JP

Kind code of ref document: A