WO2023093133A1 - 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用 - Google Patents

一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用 Download PDF

Info

Publication number
WO2023093133A1
WO2023093133A1 PCT/CN2022/112044 CN2022112044W WO2023093133A1 WO 2023093133 A1 WO2023093133 A1 WO 2023093133A1 CN 2022112044 W CN2022112044 W CN 2022112044W WO 2023093133 A1 WO2023093133 A1 WO 2023093133A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycopeptide
add
sample
lectin
solid
Prior art date
Application number
PCT/CN2022/112044
Other languages
English (en)
French (fr)
Inventor
杨霜
岳爽
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023093133A1 publication Critical patent/WO2023093133A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Definitions

  • the invention belongs to the technical field of biomolecular analysis reagents, in particular to an analysis (SPGalE) method and application based on solid-phase glycoprotein enrichment and Tn glycopeptidase cleavage.
  • SPGalE analysis
  • Tn glycopeptide is a tumor-associated carbohydrate antigen not normally expressed in peripheral tissues or blood cells. This antigen is found in most human cancers, and its expression results from the blockage of the normal O-glycosylation synthetic pathway in which glycans are extended from the common precursor GalNAc-Ser/Thr (Tn glycopeptide). Tn glycopeptide is a truncated O-glycan with small size and simple structure. It has a non-physiological glycan structure in humans, so it can be recognized as foreign by the immune system. The Tn glycopeptide test can detect most cancers before any biopsy finds them.
  • Tn glycopeptides are proteins on the surface of blood and skin cells that can be recognized by immune system antibodies, they can serve as diagnostic or prognostic disease biomarkers.
  • concentrations of these antigens vary by cancer type and stage. However, few methods are available for the detailed identification of intact proteins modified by O-GalNAc in cancer, especially in its early stages.
  • the purpose of the present invention is to provide an analysis method and application based on solid-phase glycoprotein enrichment and Tn glycopeptide digestion.
  • a kind of technical scheme of the present invention is:
  • the solid-phase binding refers to the preparation of glycopeptides and covalent solid-phase binding with spherical resins, including steps:
  • the spherical resin is washed to obtain purified spherical resin bound with oxidized glycopeptide.
  • step 2) the determination of the Tn glycopeptide refers to the determination of the covalently bound Tn glycopeptide, including the steps of:
  • N-glycosidase to NH 4 HCO 3 buffer solution, and add it to the spherical resin bound with oxidized glycopeptide in SCSC to react after the preparation is completed;
  • step 1) the solid-phase binding refers to the enrichment of Tn of lectin solid-phase binding glycopeptides, including the steps of:
  • Glycopeptides with an O-GalNAc structure are bound to the VVL lectin resin, while non-glycopeptides remain in the supernatant;
  • step 2) the determination of the Tn glycopeptide refers to the determination of the lectin-binding Tn glycopeptide, including the steps of:
  • N-glycosidase to NH 4 HCO 3 buffer solution, and add it to SCSC to react with the glycopeptide with O-GalNAc structure bound to the solid phase of lectin after the preparation is completed;
  • the determination of the Tn glycopeptide site refers to cleavage of a lectin-binding glycopeptide to obtain a polypeptide with a Tn site, specifically including steps:
  • step 3 the determination of the Tn glycopeptide site refers to the elution of the lectin-binding glycopeptide to obtain the Tn glycopeptide, including steps:
  • step 3 the determination of the Tn glycopeptide site means that Tn glycosidase uses heavy water to determine the Tn glycopeptide site, including steps:
  • Tn glycosidase is added, and a Tris buffer solution in which the solvent is heavy water is added to react;
  • the obtained mass spectrum data was analyzed with bioinformatics software to obtain the Tn glycopeptide O-glycopeptide polypeptide sequence and glycosylation site.
  • the present invention provides an analysis method based on solid-phase glycoprotein enrichment and Tn glycopeptide enzymatic cleavage, which can specifically enrich and analyze Tn glycopeptide O-glycopeptide from complex protein polypeptides, which can be widely used in various In class analysis, such as:
  • the method can process and analyze samples with high throughput, improve sample processing efficiency and accuracy, and avoid manual operations.
  • Fig. 1 is the schematic diagram of solid-phase spherical resin-bound glycopeptide of the present invention
  • Figure 2 is a schematic diagram of the analysis of the covalently bound glycopeptide Tn glycopeptide O-glycopeptide site in the present invention
  • Fig. 3 is a schematic diagram of the determination of the O-glycopeptide site of covalent or affinity binding glycopeptide GalNAcEXO enzymatic cleavage of Tn glycopeptide of the present invention
  • Fig. 4 is a schematic diagram of the analysis of Tn glycopeptide O-glycopeptide in lung cancer tissue in the present invention.
  • one embodiment or “embodiment” referred to herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present invention. "In one embodiment” appearing in different places in this specification does not all refer to the same embodiment, nor is it a separate or selective embodiment that is mutually exclusive with other embodiments.
  • a method based on solid-phase glycoprotein enrichment and Tn glycopeptidase analysis comprising the steps of:
  • FIG. 1 is a schematic diagram of the solid-phase spherical resin-bound glycopeptide of the present invention.
  • this method (method 1) is to oxidize the glycopeptide with an oxidant, and the oxidized sugar is covalently bonded to a hydrazide or an amino resin, thereby separating the glycopeptide from the non-glycopeptide. Specifically include the following steps:
  • the measured concentration take 800-1000 micrograms of total protein and dissolve it in a volume of 400-600 microliters of urea deionized water solution.
  • the final concentration of urea is 8M. Slightly shake the sample to ensure that the protein is completely dissolved;
  • DTT dithiothreitol
  • TSA trifluoroacetic acid
  • the extraction column was washed 5-6 times (1.0-1.2 ml) with 0.1% TFA (volume ratio), and the filtrate was removed. 400-500 microliters of 50% (volume ratio) containing 0.1% TFA (volume ratio) acetonitrile (ACN) to elute the polypeptide, the last step was repeated twice;
  • the oxidized glycopeptide was freeze-dried in vacuum and redissolved in 1 ml of 0.1% TFA (volume ratio) (if the solubility is not good, 10-20 microliters of 50% ACN (volume ratio) can be added first). After purifying oxidized glycopeptides and other peptides using C18, dissolve them in 200-400 microliters of 0.1% TFA (volume ratio);
  • spherical resin (Thermo Fisher Scientific, Waltham, MA, USA) with hydrazide or amino groups on the surface, and add it to a 1.5-2.0 milliliter centrifuge tube.
  • Pretreatment of the spherical resin that is, washing twice with 400-500 microliters of deionized water, removing the filtrate, combining the oxidized glycopeptide with the spherical resin, and reacting the glycopeptide at room temperature for 2-4 hours;
  • the oxidized glycopeptides bound to the spherical resin were purified and enriched.
  • FIG. 2 is a schematic diagram of the analysis of the covalently bound Tn glycopeptide O-glycopeptide in the present invention.
  • the covalently bound glycopeptide, PNGaseF enzymatically removes the N sugar, and the resin is bound to O-glycopeptide.
  • the supernatant is Tn glycopeptide O-glycopeptide. details as follows:
  • the spherical resin covalently binds glycopeptides oxidized by sodium periodate, including N-glycopeptides, mucin-type O-glycopeptides, and O-GalNAc glycopeptides;
  • the method for determining the Tn glycopeptide site with heavy water after Tn glycosidic digestion includes the following steps. Please refer to FIG. 3 , which is a schematic diagram of determining the sites of covalently bound or lectin-bound Tn glycopeptides using heavy water. details as follows:
  • the obtained mass spectrum data was analyzed with bioinformatics software to obtain the Tn glycopeptide O-glycopeptide polypeptide sequence and glycosylation site.
  • a method based on solid-phase glycoprotein enrichment and Tn glycopeptidase cleavage assay comprises the steps of:
  • FIG. 1 is a schematic diagram of the solid-phase spherical resin-bound glycopeptide of the present invention.
  • This method (method 2) is to hydrolyze the glycopeptide with PNGaseF, remove the N-glycan, and then enrich the O-glycopeptide with lectin. Specifically include the following steps:
  • the determined concentration take 800-1000 micrograms of total protein (if the protein concentration is 1 microgram/microliter, then take 80-100 microliters from the extracted protein solution);
  • the measured concentration take 800-1000 micrograms of total protein and dissolve it in a volume of 400-600 microliters of urea deionized water solution, the final concentration of urea is 8M, shake the sample slightly to ensure that the protein is completely dissolved;
  • DTT dithiothreitol
  • VVL lectin resin Vector Labs, Burlingame, CA, USA
  • SCSC Snap-Cap Spin-Column
  • VVL lectin resin binding buffer which consists of 20mM Tris.HCl (pH 7.4), 150mM NaCl, 1M urea, 1mM CaCl 2 , 1mM MgCl 2 , 1mM ZnCl 2 , 1mM MnCl 2 ;
  • Glycopeptides with an O-GalNAc structure are bound to the resin, while non-glycopeptides remain in the supernatant;
  • Lectin can be VVL itself or VVL plus other lectin mixture
  • FIG. 2 is a schematic diagram of the analysis of the covalently bound glycopeptide Tn glycopeptide O-glycopeptide site in the present invention. details as follows:
  • a method based on solid-phase glycoprotein enrichment and Tn glycopeptidase cleavage assay comprises the steps of:
  • FIG. 1 is a schematic diagram of the solid-phase spherical resin-bound glycopeptide of the present invention.
  • This method (method 2) is to hydrolyze the glycopeptide with PNGaseF, remove the N-glycan, and then enrich the O-glycopeptide with lectin. Specifically include the following steps:
  • the determined concentration take 800-1000 micrograms of total protein (if the protein concentration is 1 microgram/microliter, then take 80-100 microliters from the extracted protein solution);
  • the measured concentration take 800-1000 micrograms of total protein and dissolve it in urea deionized water solution with a volume of 400-600 microliters.
  • the final concentration of urea is 8M. Slightly shake the sample to ensure that the protein is completely dissolved;
  • DTT dithiothreitol
  • VVL lectin resin Vector Labs, Burlingame, CA, USA
  • SCSC Snap-Cap Spin-Column
  • VVL lectin resin binding buffer which consists of 20mM Tris.HCl (pH 7.4), 150mM NaCl, 1M urea, 1mM CaCl 2 , 1mM MgCl 2 , 1mM ZnCl 2 , 1mM MnCl 2 ;
  • Glycopeptides with an O-GalNAc structure are bound to the resin, while non-glycopeptides remain in the supernatant;
  • Lectin can be VVL itself or VVL plus other lectin mixture
  • FIG. 2 is a schematic diagram of the analysis of the covalently bound glycopeptide Tn glycopeptide O-glycopeptide site in the present invention. details as follows:
  • a method based on solid-phase glycoprotein enrichment and Tn glycopeptidase cleavage assay comprises the steps of:
  • FIG. 1 is a schematic diagram of the solid-phase spherical resin-bound glycopeptide of the present invention.
  • This method (method 2) is to hydrolyze the glycopeptide with PNGaseF, remove the N-glycan, and then enrich the O-glycopeptide with lectin. Specifically include the following steps:
  • the determined concentration take 800-1000 micrograms of total protein (if the protein concentration is 1 microgram/microliter, then take 80-100 microliters from the extracted protein solution);
  • the measured concentration take 800-1000 micrograms of total protein and dissolve it in a volume of 400-600 microliters of urea deionized water solution, the final concentration of urea is 8M, shake the sample slightly to ensure that the protein is completely dissolved;
  • DTT dithiothreitol
  • VVL lectin resin Vector Labs, Burlingame, CA, USA
  • SCSC Snap-Cap Spin-Column
  • VVL lectin resin binding buffer which consists of 20mM Tris.HCl (pH 7.4), 150mM NaCl, 1M urea, 1mM CaCl 2 , 1mM MgCl 2 , 1mM ZnCl 2 , 1mM MnCl 2 ;
  • Glycopeptides with an O-GalNAc structure are bound to the resin, while non-glycopeptides remain in the supernatant;
  • Lectin can be VVL itself or VVL plus other lectin mixture
  • FIG. 2 is a schematic diagram of the analysis of the covalently bound glycopeptide Tn glycopeptide O-glycopeptide site in the present invention. details as follows:
  • the method for Tn glycosidase to determine the site of Tn glycopeptide with heavy water comprises the following steps. Please refer to FIG. 3 , which is a schematic diagram of determining the sites of covalently bound or lectin-bound Tn glycopeptides using heavy water. details as follows:
  • the obtained mass spectrum data was analyzed with bioinformatics software to obtain the Tn glycopeptide O-glycopeptide polypeptide sequence and glycosylation site.
  • FIG. 4 is a schematic diagram of the analysis of Tn glycopeptide O-glycopeptide in lung cancer tissue in the present invention.
  • the specific steps for using SPGalE to analyze Tn glycopeptide O-glycopeptide in cells and compare with normal or benign tissues are as follows:
  • BCA measures the protein concentration of the sample, takes 900-1000 micrograms of protein, and uses the method described above to enzymatically hydrolyze, purify, bind to solid-phase resin, and treat the protein;
  • Tn glycopeptide O-glycopeptide site was identified by heavy water, and mass spectrometry showed a 1 Da increase in the molecular weight of serine or threonine;
  • the lectin-affinity Tn glycopeptide O-glycopeptide site is identified by heavy water, and if elution is used, the mass spectrum shows that the molecular weight of serine or threonine increases by 203Da. If GalNAcEXO is used to digest, the molecular weight of serine or threonine will increase by 1Da.
  • the beneficial effects of the present invention are: the present invention provides an analysis method and application based on solid-phase glycoprotein enrichment and Tn glycopeptidase digestion, which can specifically enrich Set analysis of Tn glycopeptide O-glycopeptide, and can be widely used in various analysis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,包括步骤:固相结合;Tn糖肽确定;Tn糖肽位点确定。能从复杂的蛋白多肽中,特异性富集分析Tn糖肽O-糖肽,并能够广泛的应用于各类分析中,还能应用于制备癌细胞诊断检测试剂。

Description

一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用 技术领域
本发明属于生物分子分析试剂技术领域,具体涉及一种基于固相糖蛋白富集和Tn糖肽酶切的分析(SPGalE)方法和应用。
背景技术
Tn糖肽是一种肿瘤相关碳水化合物抗原,通常不在外周组织或血细胞中表达。在大多数人类癌症中均发现了该抗原,其表达源于正常O-糖基化合成途径的阻断,其中聚糖从常见的前体GalNAc-Ser/Thr(Tn糖肽)延伸。Tn糖肽是一种截短的O-聚糖,体积小结构简单。它在人体中具有非生理性聚糖结构,因此它可被免疫系统识别为外来物。Tn糖肽测试可以在任何活检发现癌症之前检测到大多数癌症。由于Tn糖肽是血液和皮肤细胞表面的蛋白质,可以被免疫系统抗体识别,因此可以作为诊断或预后的疾病生物标志物。这些抗原的浓度因癌症类型和阶段而异。然而很少有方法可用于详细鉴定癌症中完整蛋白质被O-GalNAc修饰,尤其是在其早期阶段。在本发明中,我们开发了一种化学酶促方法来鉴定O-GalNAc位点及其相关糖蛋白。这些糖蛋白是潜在的癌症生物标志物。
因此,有必要研发一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用来解决现有技术中鉴定Tn糖肽糖蛋白标志物的问题。
发明内容
本发明目的是提供一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用。
本发明的一种技术方案是:
一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,包括步骤:
1)固相结合;
2)Tn糖肽确定;
3)Tn糖肽位点确定。
进一步的,在步骤1)中,所述固相结合是指糖肽制备和与球状树脂共 价固相结合,包括步骤:
(1)蛋白质提取和浓度测量:
在细胞中加入RIPA裂解液、蛋白酶抑制剂,用超声破碎仪破碎后获得样本,将所述样本放入冰中冷却,反复这一步骤直至样本澄清为止;
取所述样本,用去离子水稀释,用Pierce BCA蛋白定量分析试剂盒测试所述样本中的蛋白浓度;
(2)蛋白酶解
根据所述样本测定的蛋白浓度,取所述样本溶于尿素去离子水溶液中,轻微振荡,确保所述样本中的蛋白完全溶解;
在所述样本中加入二硫苏糖醇溶液反应;
再加入碘乙酰胺溶液暗室反应;
用去离子水将所述样本稀释,加入碳酸氢铵溶液;
加入测序级胰蛋白酶,轻微振荡样本至水解,此时样本中包含多肽;
(3)多肽纯化
在样本中加入三氟乙酸(TFA),直至样本pH下调至2-3;
C18萃取柱预处理后,加入样本至C18萃取柱中,经过萃取柱的过滤液收集,再将此过滤液加入到同一个C18萃取柱,以增加样本中多肽的回收率;
用TFA清洗萃取柱至过滤液去除,用乙腈洗脱样本中的多肽;
将洗出的多肽合并,真空冷冻干燥得到纯化的多肽;
(4)糖肽氧化和固相结合
将多肽重新溶于TFA和ACN溶液,加入氧化剂高碘酸钠反应,使多肽中糖肽上的各种糖氧化,得到氧化的糖肽;
将所述氧化的糖肽真空冷冻干燥,重新溶于TFA,使用C18纯化氧化的糖肽和余下的多肽后,将氧化的糖肽和余下的多肽溶于TFA;
取表面具有酰肼或氨基的球状树脂,加入到离心管中,将球状树脂预处理,将氧化的糖肽与球状树脂结合,在室温下反应2-4小时;
对球状树脂清洗,得到纯化的结合有氧化糖肽的球状树脂。
进一步的,在步骤2)中,所述Tn糖肽确定是指共价结合Tn糖肽确定,包括步骤:
将N-糖苷酶加入NH 4HCO 3缓冲液,配制完成后加入到SCSC中结合有氧化糖肽的球状树脂中反应;
离心,去除过滤液,再加入HPLC水,清洗球状树脂并离心去除过滤液,去除糖肽上的N聚糖;
加入Tn糖苷酶,同时加入Tris缓冲液反应;
离心收集过滤液,再加入HPLC水,离心后收集过滤液,并重复此步骤,将所有过滤液合并;
加入TFA调节至酸性,用C18纯化多肽。
进一步的,在步骤1)中,所述固相结合是指凝集素固相结合糖肽的富集Tn,包括步骤:
(1)蛋白质提取和浓度测量:
在细胞中加入RIPA裂解液、蛋白酶抑制剂,用超声破碎仪破碎30秒后获得样本,将所述样本放入冰中冷却,反复这一步骤直至样本澄清为止;
取所述样本,用去离子水稀释,用Pierce BCA蛋白定量分析试剂盒测试蛋白的浓度;
(2)N-聚糖酶切去除
根据所述样本测定的蛋白浓度,取所述样本;
将PNGase F和NH 4HCO 3加入到样本中反应,使所述样本中的含糖蛋白的N-聚糖酶解去除;
(3)蛋白酶解
根据所述样本测定的蛋白浓度,取所述样本溶于尿素去离子水溶液中,轻微振荡,确保所述样本中的蛋白完全溶解;
在所述样本中加入二硫苏糖醇溶液反应;
再加入碘乙酰胺溶液暗室反应;
用去离子水将所述样本稀释,加入碳酸氢铵溶液;
加入测序级胰蛋白酶,轻微振荡样本至水解,此时样本中包含多肽;
(4)凝集素固相结合糖肽
取VVL凝集素树脂加入到SCSC中;
用去离子水清洗VVL凝集素树脂,在离心机上除去水,重复本步骤;
将所述多肽溶于VVL凝集素树脂结合缓冲液中;
将含有多肽的VVL凝集素树脂结合缓冲液加入到SCSC中反应;
使具有O-GalNAc结构的糖肽结合到VVL凝集素树脂上,而非糖肽则保留在上清液中;
用HPLC水清洗,离心去除上清液,重复此步骤,得到与VVL凝集素固相结合糖肽。
进一步的,在步骤2)中,所述Tn糖肽确定是指凝集素结合Tn糖肽确定,包括步骤:
将N-糖苷酶加入NH 4HCO 3缓冲液,配制完成后加入SCSC中与与凝集素固相结合的具有O-GalNAc结构的糖肽反应;
离心,去除过滤液,再加入HPLC水,清洗VVL凝集素树脂并离心去除过滤液,去除糖肽上的N糖,使洗脱后的VVL凝集素树脂上仅保留粘蛋白型O-糖肽和O-GalNAc糖肽。
进一步的,在步骤3)中,所述Tn糖肽位点确定是指凝集素结合糖肽酶切得到具有Tn位点的多肽,具体包括步骤:
在具有粘蛋白型O-糖肽和O-GalNAc糖肽的VVL凝集素树脂中加入Tn糖苷酶,同时加入Tris缓冲液反应;
离心收集过滤液,再加入HPLC水,离心后收集过滤液,重复此步骤,将所有过滤液合并;
加入TFA调节至酸性,用C18纯化多肽。
进一步的,在步骤3)中,所述Tn糖肽位点确定是指凝集素结合糖肽洗脱得到Tn糖肽,包括步骤:
在具有粘蛋白型O-糖肽和O-GalNAc糖肽的VVL凝集素树脂中加入洗脱缓冲液;
将VVL凝集素树脂在SCSC中离心,收集过滤液;
再加入HPLC水,混合后收集上清液,重复此步骤,合并所有上清液;
加入TFA调节至酸性,用C18纯化多肽。
进一步的,在步骤3)中,所述Tn糖肽位点确定是指Tn糖苷酶用重水确定Tn糖肽位点,包括步骤:
用氯化钠溶液、ACN溶液、HPLC水逐次清洗树脂,去除树脂表面杂质和其他非结合成分;
在固相结合的Tn糖肽中,加入Tn糖苷酶,同时加入溶剂为重水的Tris缓冲液反应;
离心收集过滤液,再加入HPLC水,离心后收集过滤液,重复此步骤,将所有过滤液合并;
加入TFA调节至酸性,用C18纯化多肽;
将多肽C18纯化多肽真空冷冻干燥得到Tn糖肽O-糖肽;
将样本重新溶于TFA,取1-2微升用于液相色谱-质谱分析;
得到的质谱数据用生物信息学软件分析,获得Tn糖肽O-糖肽多肽序列和糖基化位点。
上述方式所制备的一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法在制备癌细胞诊断检测试剂中的应用。
本发明提供了一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,能从复杂的蛋白多肽中,特异性富集分析Tn糖肽O-糖肽,其能够广泛的应用各类分析中,如:
1)正常细胞和癌细胞中Tn糖肽定性和定量分析;
2)临床体液和组织中Tn糖肽定性和定量分析;
3)完整O-GalNAc糖肽的定性定量分析,避免使用抗体或点击化学带来的非特异性O-GalNAc糖肽结合,减少测试中的假阳性。本方法可以使用高通量处理和分析样本,提高样本处理效率、准确性和避免人工手动操作。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中,
图1为本发明固相球形树脂结合糖肽的示意图;
图2为本发明中对共价结合的糖肽Tn糖肽O-糖肽位点分析示意图;
图3为本发明中共价或亲和结合糖肽GalNAcEXO酶切Tn糖肽O-糖肽位点确定示意图;
图4为本发明中肺癌组织Tn糖肽O-糖肽分析示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和实施例进一步说明本发明的技术方案。但是本发明不限于所列出的实施例,还应包括在本发明所要求的权利范围内其他任何公知的改变。
首先,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
其次,本发明利用结构示意图等进行详细描述,在详述本发明实施例时,为便于说明,示意图会不依一般比例作局部放大,而且所述示意图只是实例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间。
实施例1
一种基于固相糖蛋白富集和Tn糖肽酶切分析(SPGalE)的方法,所述方法包括如下步骤:
1、糖肽制备和与球状树脂共价固相结合。请参阅图1,图1为本发明固相球形树脂结合糖肽的示意图。如图1所示,本方法(方法一)是将糖肽用氧化剂氧化,氧化的糖与酰肼或氨基树脂共价结合,从而将糖肽与与非糖肽分开。具体包括如下步骤:
(1)蛋白质提取和浓度测量
在细胞中加入400-600微升1倍RIPA裂解液(Cell Signal,上海),8-12微升50倍蛋白酶抑制剂(Promega,Madison,WI,USA),用超声破碎仪30-40%能量(最大能量为刻度100%),破碎30秒后获得样本,将所述样本放入冰中冷却30秒,反复这一步骤4-6次,直至样本溶液澄清为止;
取2-4微升样本,用去离子水稀释5-10倍,用Pierce BCA蛋白定量分析试剂盒(Thermo Fisher Scientific,Waltham,MA,USA)测试蛋白的浓度;
(2)蛋白酶解
根据测定的浓度,取800-1000微克总蛋白溶于体积为400-600微升的尿素去离子水溶液,尿素最终浓度为8M,轻微振荡样本,确保蛋白完全溶 解;
加入80-100微升去离子水溶液配制的120mM二硫苏糖醇(DTT)(Sigma-Aldrich,St.Louis,MO,USA),样本在37℃反应1.0-1.5小时;
再加入80-100微升去离子水溶液配制的160mM碘乙酰胺(Sigma-Aldrich,St.Louis,MO,USA),样本室温暗室反应1.0-1.5小时;
用去离子水将样本稀释5-6倍,加入100-125微升HPLC水溶液新配制的1M碳酸氢铵,最终碳酸氢铵浓度为25mM,测试样本pH介于7-9之间;
加入40-50微升50%g/L的测序级胰蛋白酶(Promega,Madison,WI,USA),轻微振荡样本在37℃反应16-18小时水解,样本中包含多肽;
(3)多肽纯化
在样本溶液中加入三氟乙酸(TFA,>99%,w/v)(约10-20微升),直至样本pH下调至2-3;
C18萃取柱预处理后,加入样本至C18萃取柱中,经过萃取柱的过滤液收集,再将此过滤液加入到同一个C18萃取柱,增加样本中多肽的回收率;
用0.1%TFA(体积比)清洗萃取柱5-6次(1.0-1.2毫升),过滤液去除。400-500微升50%(体积比)含有0.1%TFA(体积比)的乙腈(ACN)洗脱多肽,最后一步重复2次;
将洗出的多肽合并,真空冷冻干燥得到纯化的多肽;
(4)糖肽氧化和固相结合
将多肽重新溶于0.1%TFA(体积比)和50%ACN(体积比)溶液,加入10-20mM氧化剂高碘酸钠(Sigma-Aldrich),多肽在37℃反应1-2小时,将多肽中糖肽上的各种糖(N-聚糖、粘蛋白型O-聚糖和O-GalNAc或Tn糖肽)氧化;
氧化的糖肽真空冷冻干燥,重新溶于1毫升0.1%TFA(体积比)(如溶解度不好,可先加入10-20微升50%ACN(体积比))。使用C18纯化氧化糖肽和其它多肽后,将其溶于200-400微升0.1%TFA(体积比);
取100-150微升表面具有酰肼或氨基的球状树脂(Thermo Fisher Scientific,Waltham,MA,USA),加入到1.5-2.0毫升离心管。将球状树脂预处理,即400-500微升去离子水清洗两次,去掉过滤液后,把氧化糖肽与球状树脂结合,糖肽在室温下反应2-4小时;
通过对球状树脂清洗后,400-500微升50%ACN(体积比)三次,400-500微升HPLC水,得到纯化富集在球状树脂上结合的氧化糖肽。
2、共价结合Tn糖肽确定,请参阅图2,图2为本发明中对共价结合的糖肽Tn糖肽O-糖肽分析示意图。如图2所示,共价结合的糖肽,PNGaseF酶解切除N糖,树脂上结合为O-糖肽,采用GalNAcEXO酶切后,上清液中即为Tn糖肽O-糖肽。具体如下:
球状树脂共价结合经高碘酸钠氧化的糖肽,包括N-糖肽、粘蛋白型O-糖肽和O-GalNAc糖肽;
配制0.2-0.4微升N-糖苷酶在300-400微升的25mM NH 4HCO 3缓冲液(pH 7.6-8.0),将配好的溶液加入SCSC结合有糖肽的球状树脂中,在37℃反应4-6小时;
将上述样本离心,2000RPM,90-120秒,去除过滤液。再加入400-600微升HPLC水,清洗球状树脂并离心去除过滤液,重复这一步2-3次,将N-糖肽上的多肽酶切;
在样本中加入20-30U Tn糖苷酶(GalNAcEXO,Genovis),同时加入300-400微升20mM Tris缓冲液(pH 6.8),在37℃反应4-6小时;
离心收集过滤液(2000RPM,90-120秒),再加入400-600微升HPLC水,离心后收集过滤液,重复此步骤2-3次,将所有过滤合并;
加入TFA调节至酸性,用C18纯化多肽(步骤与1(3)相同)。
3、Tn糖苷酶切后用重水确定Tn糖肽位点的方法包括如下步骤。请参阅图3,图3是共价结合或凝集素结合Tn糖肽用重水确定位点示意图。具体如下:
用400-600微升1.0-1.5M氯化钠溶液、400-600微升10%ACN(体积比)溶液、400-500微升HPLC水逐次清洗树脂,去除树脂表面杂质和其他非结合成分;
在固相结合的Tn糖肽中,加入20-30U Tn糖苷酶(GalNAcEXO,Genovis),同时加入300-400微升Tris(pH 6.8),所用溶剂为重水,在37℃反应4-6小时;
离心收集过滤液(2000RPM,90-120秒),再加入400-600微升HPLC水,离心后收集过滤液,重复此步骤2-3次,将所有过滤合并;
加入TFA调节至酸性,用C18纯化多肽(步骤与1(3)相同);
将C18纯化多肽真空冷冻干燥得到Tn糖肽O-糖肽;
将样本重新溶于20-40微升0.1%TFA,取1-2微升用于液相色谱-质谱(LC-MS/MS)分析;
得到的质谱数据用生物信息学软件分析,获得Tn糖肽O-糖肽多肽序列和糖基化位点。
实施例2
一种基于固相糖蛋白富集和Tn糖肽酶切分析(SPGalE)的方法。所述方法包括如下步骤:
1、凝集素固相结合糖肽的富集Tn。请参阅图1,图1为本发明固相球形树脂结合糖肽的示意图。本方法(方法二)是将糖肽用PNGaseF酶解,去掉N-聚糖,再用凝集素富集O-糖肽。具体包括如下步骤:
(1)蛋白提取和浓度测定
在细胞中加入400-600微升1倍RIPA裂解液(Cell Signal,上海),8-12微升50倍蛋白酶抑制剂(Promega,Madison,WI,USA),用超声破碎仪30-40%能量(最大能量为刻度100%),破碎30秒后获得样本,将所述样本放入冰中冷却30秒,反复这一步骤4-6次,直至样本溶液澄清为止;
取2-4微升样本,用去离子水稀释5-10倍,用Pierce BCA蛋白定量分析试剂盒(Thermo Fisher Scientific,Waltham,MA,USA)测试蛋白的浓度;
(2)N-聚糖酶切去除
根据测定的浓度,取800-1000微克总蛋白(如蛋白浓度为1微克/微升,则从提取的蛋白溶液中取80-100微升);
将0.2-0.4微升PNGase F(New England BioLabs,Ipswich,MA,USA)和2.0-2.5微升1M NH 4HCO 3加入到80-100微升的蛋白溶液,混合样本在37℃反应4-6小时,将样本中所含糖蛋白的N-聚糖酶解去除;
(3)蛋白酶解
根据测定的浓度,取800-1000微克总蛋白溶于体积为400-600微升的尿素去离子水溶液,尿素最终浓度为8M,轻微振荡样本,确保蛋白完全溶解;
加入80-100微升去离子水溶液配制的120mM二硫苏糖醇(DTT) (Sigma-Aldrich,St.Louis,MO,USA),样本在37℃反应1.0-1.5小时;
再加入80-100微升去离子水溶液配制的160mM碘乙酰胺(Sigma-Aldrich,St.Louis,MO,USA),样本室温暗室反应1.0-1.5小时;
用去离子水将样本稀释5-6倍,加入100-125微升HPLC水溶液新配制的1M碳酸氢铵,最终碳酸氢铵浓度为25mM,测试样本pH介于7-9之间;
加入40-50微升50%g/L的测序级胰蛋白酶(Promega,Madison,WI,USA),轻微振荡样本在37℃反应16-18小时水解,样本中包含多肽;
(4)凝集素固相结合糖肽
取140-160微升VVL凝集素树脂(Vector Labs,Burlingame,CA,USA),加入到500-600微升体积的Snap-Cap Spin-Column(SCSC)(Thermo Fisher Scientific);
用400-500微升去离子水清洗VVL凝集素树脂,在离心机上除去水(2000RPM,90-120秒),重复此步骤2-3遍;
将多肽溶于300-400微升VVL凝集素树脂结合缓冲液,其组成为20mM Tris.HCl(pH 7.4),150mM NaCl,1M urea,1mM CaCl 2,1mM MgCl 2,1mM ZnCl 2,1mM MnCl 2
将上述多肽与结合缓冲液加入SCSC中,与VVL凝集素树脂混合,在室温反应2-4小时;
将具有O-GalNAc结构的糖肽结合到树脂上,而非糖肽则保留在上清液中;
注:凝集素可为VVL本身或VVL加上其他凝集素混合物;
用400-600微升HPLC水清洗凝集素,离心去除上清液(2000RPM,90-120秒),重复此步骤4-6次,得到与凝集素固相结合糖肽。
2、凝集素结合Tn糖肽
请参阅图2,图2为本发明中对共价结合的糖肽Tn糖肽O-糖肽位点分析示意图。具体如下:
配制0.2-0.4微升N-糖苷酶在300-400微升的25mM NH 4HCO 3缓冲液(pH 7.6-8.0),将配好的溶液加入SCSC结合有糖肽的VVL凝集素树脂中,在37℃反应4-6小时;
将上述样本离心,2000RPM,90-120秒,去除过滤液。再加入400-600 微升HPLC水,清洗VVL凝集素树脂并离心去除过滤液,重复这一步2-3次,去除糖肽上的N糖;
3、凝集素结合糖肽酶切得到Tn糖肽
洗脱后树脂上仅保留粘蛋白型O-糖肽和O-GalNAc糖肽;
在样本中加入20-30U Tn糖苷酶(GalNAcEXO,Genovis),同时加入300-400微升20mM Tris缓冲液(pH 6.8),在37℃反应4-6小时;
离心收集过滤液(2000RPM,90-120秒),再加入400-600微升HPLC水,离心后收集过滤液,重复此步骤2-3次,将所有过滤合并;
加入TFA调节至酸性,用C18纯化多肽(步骤与1(3)相同)。
实施例3
一种基于固相糖蛋白富集和Tn糖肽酶切分析(SPGalE)的方法。所述方法包括如下步骤:
1、凝集素固相结合糖肽的富集Tn。请参阅图1,图1为本发明固相球形树脂结合糖肽的示意图。本方法(方法二)是将糖肽用PNGaseF酶解,去掉N-聚糖,再用凝集素富集O-糖肽。具体包括如下步骤:
(1)蛋白提取和浓度测定
在细胞中加入400-600微升1倍RIPA裂解液(Cell Signal,上海),8-12微升50倍蛋白酶抑制剂(Promega,Madison,WI,USA),用超声破碎仪30-40%能量(最大能量为刻度100%),破碎30秒后获得样本,将所述样本放入冰中冷却30秒,反复这一步骤4-6次,直至样本溶液澄清为止;
取2-4微升样本,用去离子水稀释5-10倍,用Pierce BCA蛋白定量分析试剂盒(Thermo Fisher Scientific,Waltham,MA,USA)测试蛋白的浓度;
(2)N-聚糖酶切去除
根据测定的浓度,取800-1000微克总蛋白(如蛋白浓度为1微克/微升,则从提取的蛋白溶液中取80-100微升);
将0.2-0.4微升PNGase F(New England BioLabs,Ipswich,MA,USA)和2.0-2.5微升1M NH 4HCO 3加入到80-100微升的蛋白溶液,混合样本在37℃反应4-6小时,将样本中所含糖蛋白的N-聚糖酶解去除;
(3)蛋白酶解
根据测定的浓度,取800-1000微克总蛋白溶于体积为400-600微升的 尿素去离子水溶液,尿素最终浓度为8M,轻微振荡样本,确保蛋白完全溶解;
加入80-100微升去离子水溶液配制的120mM二硫苏糖醇(DTT)(Sigma-Aldrich,St.Louis,MO,USA),样本在37℃反应1.0-1.5小时;
再加入80-100微升去离子水溶液配制的160mM碘乙酰胺(Sigma-Aldrich,St.Louis,MO,USA),样本室温暗室反应1.0-1.5小时;
用去离子水将样本稀释5-6倍,加入100-125微升HPLC水溶液新配制的1M碳酸氢铵,最终碳酸氢铵浓度为25mM,测试样本pH介于7-9之间;
加入40-50微升50%g/L的测序级胰蛋白酶(Promega,Madison,WI,USA),轻微振荡样本在37℃反应16-18小时水解,样本中包含多肽;
(4)凝集素固相结合糖肽
取140-160微升VVL凝集素树脂(Vector Labs,Burlingame,CA,USA),加入到500-600微升体积的Snap-Cap Spin-Column(SCSC)(Thermo Fisher Scientific);
用400-500微升去离子水清洗VVL凝集素树脂,在离心机上除去水(2000RPM,90-120秒),重复此步骤2-3遍;
将多肽溶于300-400微升VVL凝集素树脂结合缓冲液,其组成为20mM Tris.HCl(pH 7.4),150mM NaCl,1M urea,1mM CaCl 2,1mM MgCl 2,1mM ZnCl 2,1mM MnCl 2
将上述多肽与结合缓冲液加入SCSC中,与VVL凝集素树脂混合,在室温反应2-4小时;
将具有O-GalNAc结构的糖肽结合到树脂上,而非糖肽则保留在上清液中;
注:凝集素可为VVL本身或VVL加上其他凝集素混合物;
用400-600微升HPLC水清洗凝集素,离心去除上清液(2000RPM,90-120秒),重复此步骤4-6次,得到与凝集素固相结合糖肽。
2、凝集素结合Tn糖肽
请参阅图2,图2为本发明中对共价结合的糖肽Tn糖肽O-糖肽位点分析示意图。具体如下:
配制0.2-0.4微升N-糖苷酶在300-400微升的25mM NH 4HCO 3缓冲液 (pH 7.6-8.0),将配好的溶液加入SCSC结合有糖肽的VVL凝集素树脂中,在37℃反应4-6小时;
将上述样本离心,2000RPM,90-120秒,去除过滤液。再加入400-600微升HPLC水,清洗VVL凝集素树脂并离心去除过滤液,重复这一步2-3次,将N-糖肽上的多肽酶切;
3、凝集素结合糖肽洗脱得到Tn糖肽
在VVL凝集素树脂中加入300-400微升洗脱缓冲液,其成分为200mM GalNAc in 1x PBS(pH 7.4);
将VVL凝集素树脂(在SCSC中)离心2000RPM,90-120秒,收集过滤液;
再加入400-600微升HPLC水,混合后理性收集上清液(2000RPM,90-120秒),重复此步骤2-3次,合并所有上清液;
加入TFA调节至酸性,用C18纯化多肽(步骤与1(3)相同)。
实施例4
一种基于固相糖蛋白富集和Tn糖肽酶切分析(SPGalE)的方法。所述方法包括如下步骤:
1、凝集素固相结合糖肽的富集Tn。请参阅图1,图1为本发明固相球形树脂结合糖肽的示意图。本方法(方法二)是将糖肽用PNGaseF酶解,去掉N-聚糖,再用凝集素富集O-糖肽。具体包括如下步骤:
(1)蛋白提取和浓度测定
在细胞中加入400-600微升1倍RIPA裂解液(Cell Signal,上海),8-12微升50倍蛋白酶抑制剂(Promega,Madison,WI,USA),用超声破碎仪30-40%能量(最大能量为刻度100%),破碎30秒后获得样本,将所述样本放入冰中冷却30秒,反复这一步骤4-6次,直至样本溶液澄清为止;
取2-4微升样本,用去离子水稀释5-10倍,用Pierce BCA蛋白定量分析试剂盒(Thermo Fisher Scientific,Waltham,MA,USA)测试蛋白的浓度;
(2)N-聚糖酶切去除
根据测定的浓度,取800-1000微克总蛋白(如蛋白浓度为1微克/微升,则从提取的蛋白溶液中取80-100微升);
将0.2-0.4微升PNGase F(New England BioLabs,Ipswich,MA,USA)和 2.0-2.5微升1M NH 4HCO 3加入到80-100微升的蛋白溶液,混合样本在37℃反应4-6小时,将样本中所含糖蛋白的N-聚糖酶解去除;
(3)蛋白酶解
根据测定的浓度,取800-1000微克总蛋白溶于体积为400-600微升的尿素去离子水溶液,尿素最终浓度为8M,轻微振荡样本,确保蛋白完全溶解;
加入80-100微升去离子水溶液配制的120mM二硫苏糖醇(DTT)(Sigma-Aldrich,St.Louis,MO,USA),样本在37℃反应1.0-1.5小时;
再加入80-100微升去离子水溶液配制的160mM碘乙酰胺(Sigma-Aldrich,St.Louis,MO,USA),样本室温暗室反应1.0-1.5小时;
用去离子水将样本稀释5-6倍,加入100-125微升HPLC水溶液新配制的1M碳酸氢铵,最终碳酸氢铵浓度为25mM,测试样本pH介于7-9之间;
加入40-50微升50%g/L的测序级胰蛋白酶(Promega,Madison,WI,USA),轻微振荡样本在37℃反应16-18小时水解,样本中包含多肽;
(4)凝集素固相结合糖肽
取140-160微升VVL凝集素树脂(Vector Labs,Burlingame,CA,USA),加入到500-600微升体积的Snap-Cap Spin-Column(SCSC)(Thermo Fisher Scientific);
用400-500微升去离子水清洗VVL凝集素树脂,在离心机上除去水(2000RPM,90-120秒),重复此步骤2-3遍;
将多肽溶于300-400微升VVL凝集素树脂结合缓冲液,其组成为20mM Tris.HCl(pH 7.4),150mM NaCl,1M urea,1mM CaCl 2,1mM MgCl 2,1mM ZnCl 2,1mM MnCl 2
将上述多肽与结合缓冲液加入SCSC中,与VVL凝集素树脂混合,在室温反应2-4小时;
将具有O-GalNAc结构的糖肽结合到树脂上,而非糖肽则保留在上清液中;
注:凝集素可为VVL本身或VVL加上其他凝集素混合物;
用400-600微升HPLC水清洗凝集素,离心去除上清液(2000RPM,90-120秒),重复此步骤4-6次,得到与凝集素固相结合糖肽。
2、凝集素结合Tn糖肽
请参阅图2,图2为本发明中对共价结合的糖肽Tn糖肽O-糖肽位点分析示意图。具体如下:
配制0.2-0.4微升N-糖苷酶在300-400微升的25mM NH 4HCO 3缓冲液(pH 7.6-8.0),将配好的溶液加入SCSC结合有糖肽的VVL凝集素树脂中,在37℃反应4-6小时;
将上述样本离心,2000RPM,90-120秒,去除过滤液。再加入400-600微升HPLC水,清洗VVL凝集素树脂并离心去除过滤液,重复这一步2-3次,去除糖肽上的N糖;
3、Tn糖苷酶用重水确定Tn糖肽位点的方法包括如下步骤。请参阅图3,图3是共价结合或凝集素结合Tn糖肽用重水确定位点示意图。具体如下:
用400-600微升1.0-1.5M氯化钠溶液、400-600微升10%ACN(体积比)溶液、400-500微升HPLC水逐次清洗树脂,去除树脂表面杂质和其他非结合成分;
在固相结合的Tn糖肽中,加入20-30U Tn糖苷酶(GalNAcEXO,Genovis),同时加入300-400微升20mM Tris缓冲液(pH 6.8),所用溶剂为重水,在37℃反应4-6小时;
离心收集过滤液(2000RPM,90-120秒),再加入400-600微升HPLC水,离心后收集过滤液,重复此步骤2-3次,将所有过滤合并;
加入TFA调节至酸性,用C18纯化多肽(步骤与1(3)相同);
将C18纯化多肽真空冷冻干燥得到Tn糖肽O-糖肽;
将样本重新溶于20-40微升0.1%TFA,取1-2微升用于液相色谱-质谱(LC-MS/MS)分析;
得到的质谱数据用生物信息学软件分析,获得Tn糖肽O-糖肽多肽序列和糖基化位点。
实施例5
请参阅图4,图4为本发明中肺癌组织Tn糖肽O-糖肽分析示意图。如图4所示,运用SPGalE分析细胞中Tn糖肽O-糖肽,并比较与正常或良性组织的具体步骤为:
将细胞均质化,首先把组织置于2毫升样本管,在细胞中加入400-600 微升1倍RIPA裂解液,用超声破碎仪30-40%能量,破碎30秒后将样本放入冰中冷却,反复这一步骤4-6次,直至样本溶液澄清为止;
BCA测出样本蛋白质浓度,取900-1000微克蛋白质,用前面所述方法酶解、纯化、结合到固相树脂、对蛋白处理;
正常组织和癌症组织含有Tn糖肽O-糖基化位点不同的糖蛋白;
用实施例1-4中所述方法,即SPGalE提取富集Tn糖肽;
将Tn糖肽O-糖肽用液相色谱-质谱分析,获得一级和二级质谱,色谱方法10-50%ACN,质谱能量CE30,用生物信息学解析质谱数据,测序多肽序列和Tn糖肽O-糖肽位点;
共价结合的Tn糖肽O-糖肽位点通过重水鉴定,质谱显示丝氨酸或苏氨酸分子量增加1Da;
凝集素亲和的Tn糖肽O-糖肽位点通过重水鉴定,如使用洗脱,则质谱显示丝氨酸或苏氨酸分子量增加203Da。如使用GalNAcEXO酶切,则丝氨酸或苏氨酸分子量增加1Da。
与现有技术相比,本发明的有益效果是:本发明提供了一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用,能从复杂的蛋白多肽中,特异性富集分析Tn糖肽O-糖肽,并能够广泛的应用于各类分析中。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

  1. 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,其特征在于,包括步骤:
    1)固相结合;
    2)Tn糖肽确定;
    3)Tn糖肽位点确定。
  2. 根据权利要求1所述的一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,其特征在于,在步骤1)中,所述固相结合是指糖肽制备和糖肽与球状树脂共价固相结合,包括步骤:
    (1)蛋白质提取和浓度测量:
    在细胞中加入RIPA裂解液、蛋白酶抑制剂,用超声破碎仪裂解后获得样本,将所述样本放入冰中冷却,反复这一步骤直至样本澄清为止;
    取所述样本,用去离子水稀释,用Pierce BCA蛋白定量分析试剂盒测试所述样本中的蛋白浓度;
    (2)蛋白酶解
    根据所述样本测定的蛋白浓度,取所述样本溶于尿素去离子水溶液中,轻微振荡,确保所述样本中的蛋白完全溶解;
    在所述样本中加入二硫苏糖醇溶液反应;
    再加入碘乙酰胺溶液暗室反应;
    用去离子水将所述样本稀释,加入碳酸氢铵溶液;
    加入测序级胰蛋白酶,轻微振荡样本至水解,此时样本中包含多肽;
    (3)多肽纯化
    在样本中加入三氟乙酸,直至样本pH下调至2-3;
    C18萃取柱预处理后,加入样本至C18萃取柱中,经过萃取柱的过滤液收集,再将此过滤液加入到同一个C18萃取柱,以增加样本中多肽的回收率;
    用TFA清洗萃取柱至过滤液去除,用乙腈洗脱样本中的多肽;
    将洗出的多肽合并,真空冷冻干燥得到纯化的多肽;
    (4)糖肽氧化和固相结合
    将多肽重新溶于TFA和ACN溶液,加入氧化剂高碘酸钠反应,使多肽中糖肽上的各种糖氧化,得到氧化的糖肽;
    将所述氧化的糖肽真空冷冻干燥,重新溶于TFA,使用C18纯化氧化的糖肽和余下的多肽后,将氧化的糖肽和余下的多肽溶于TFA;
    取表面具有酰肼或氨基的球状树脂,加入到离心管中,将球状树脂预处理,将氧化的糖肽与球状树脂结合,在室温下反应2-4小时;
    对球状树脂清洗,得到纯化的结合有氧化糖肽的球状树脂。
  3. 根据权利要求2所述的一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,其特征在于,在步骤2)中,所述Tn糖肽确定是指共价结合Tn糖肽确定,包括步骤:
    将N-糖苷酶加入NH 4HCO 3缓冲液,配制完成后加入到SCSC中结合有氧化糖肽的球状树脂中反应;
    离心,去除过滤液,再加入HPLC水,清洗球状树脂并离心去除过滤液,去除糖肽上的N聚糖;
    加入Tn糖苷酶,同时加入Tris缓冲液反应;
    离心收集过滤液,再加入HPLC水,离心后收集过滤液,并重复此步骤,将所有过滤液合并;
    加入TFA调节至酸性,用C18纯化多肽。
  4. 根据权利要求1所述的一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,其特征在于,在步骤1)中,所述固相结合是指凝集素固相结合糖肽的富集Tn,包括步骤:
    (1)蛋白质提取和浓度测量:
    在细胞中加入RIPA裂解液、蛋白酶抑制剂,用超声破碎仪破碎30秒后获得样本,将所述样本放入冰中冷却,反复这一步骤直至样本澄清为止;
    取所述样本,用去离子水稀释,用Pierce BCA蛋白定量分析试剂盒测试蛋白的浓度;
    (2)N-聚糖酶切去除
    根据所述样本测定的蛋白浓度,取所述样本;
    将PNGase F和NH 4HCO 3加入到样本中反应,使所述样本中的含糖蛋白的N-聚糖酶解去除;
    (3)蛋白酶解
    根据所述样本测定的蛋白浓度,取所述样本溶于尿素去离子水溶液中, 轻微振荡,确保所述样本中的蛋白完全溶解;
    在所述样本中加入二硫苏糖醇溶液反应;
    再加入碘乙酰胺溶液暗室反应;
    用去离子水将所述样本稀释,加入碳酸氢铵溶液;
    加入测序级胰蛋白酶,轻微振荡样本至水解,此时样本中包含多肽;
    (4)凝集素固相结合糖肽
    取VVL凝集素树脂加入到SCSC中;
    用去离子水清洗VVL凝集素树脂,在离心机上除去水,重复本步骤;
    将所述多肽溶于VVL凝集素树脂结合缓冲液中;
    将含有多肽的VVL凝集素树脂结合缓冲液加入到SCSC中反应;
    使具有O-GalNAc结构的糖肽结合到VVL凝集素树脂上,而非糖肽则保留在上清液中;
    用HPLC水清洗,离心去除上清液,重复此步骤,得到与VVL凝集素固相结合的具有O-GalNAc结构的糖肽。
  5. 根据权利要求4所述的一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,其特征在于,在步骤2)中,所述Tn糖肽确定是指凝集素结合Tn糖肽位点确定,包括步骤:
    将N-糖苷酶加入NH 4HCO 3缓冲液,配制完成后加入SCSC中与凝集素固相结合的具有O-GalNAc结构的糖肽反应;
    离心,去除过滤液,再加入HPLC水,清洗VVL凝集素树脂并离心去除过滤液,去除糖肽上的N糖,使洗脱后的VVL凝集素树脂上仅保留粘蛋白型O-糖肽和O-GalNAc糖肽。
  6. 根据权利要求5所述的一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,其特征在于,在步骤3)中,所述Tn糖肽位点确定是指凝集素结合糖肽酶切得到具有Tn位点的多肽,具体包括步骤:
    在具有粘蛋白型O-糖肽和O-GalNAc糖肽的VVL凝集素树脂中加入Tn糖苷酶,同时加入Tris缓冲液反应;
    离心收集过滤液,再加入HPLC水,离心后收集过滤液,重复此步骤,将所有过滤液合并;
    加入TFA调节至酸性,用C18纯化多肽。
  7. 根据权利要求5所述的一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,其特征在于,在步骤3)中,所述Tn糖肽位点确定是指凝集素结合糖肽洗脱得到Tn糖肽,包括步骤:
    在具有粘蛋白型O-糖肽和O-GalNAc糖肽的VVL凝集素树脂中加入洗脱缓冲液;
    将VVL凝集素树脂在SCSC中离心,收集过滤液;
    再加入HPLC水,混合后收集上清液,重复此步骤,合并所有上清液;
    加入TFA调节至酸性,用C18纯化多肽。
  8. 根据权利要求1或5所述的一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法,其特征在于,在步骤3)中,所述Tn糖肽位点确定是指Tn糖苷酶用重水确定Tn糖肽位点,包括步骤:
    用氯化钠溶液、ACN溶液、HPLC水逐次清洗树脂,去除树脂表面杂质和其他非结合成分;
    在固相结合的Tn糖肽中,加入Tn糖苷酶,同时加入溶剂为重水的Tris缓冲液反应;
    离心收集过滤液,再加入HPLC水,离心后收集过滤液,重复此步骤,将所有过滤液合并;
    加入TFA调节至酸性,用C18纯化多肽;
    将多肽C18纯化真空冷冻干燥得到Tn糖肽O-糖肽;
    将样本重新溶于TFA,取1-2微升用于液相色谱-质谱分析;
    得到的质谱数据用生物信息学软件分析,获得Tn糖肽O-糖肽多肽序列和糖基化位点。
  9. 一种根据权利要求1-8任意一项所述的基于固相糖蛋白富集和Tn糖肽酶切的分析方法在制备癌细胞诊断检测试剂中的应用。
PCT/CN2022/112044 2021-11-25 2022-08-12 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用 WO2023093133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111411385.7A CN114252629B (zh) 2021-11-25 2021-11-25 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法
CN202111411385.7 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023093133A1 true WO2023093133A1 (zh) 2023-06-01

Family

ID=80793237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112044 WO2023093133A1 (zh) 2021-11-25 2022-08-12 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用

Country Status (2)

Country Link
CN (1) CN114252629B (zh)
WO (1) WO2023093133A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252629B (zh) * 2021-11-25 2023-08-11 苏州大学 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法
CN114717224B (zh) * 2022-04-08 2024-01-30 苏州大学 一种基于固相富集并识别糖基化核糖核酸glycoRNA的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198613A (zh) * 2014-09-17 2014-12-10 山东大学 一种分析蛋白o-糖基化位点的方法
CN105467050A (zh) * 2014-09-11 2016-04-06 中国科学院大连化学物理研究所 一种用于o糖基化肽段及其完整糖链的鉴定方法
CN109682911A (zh) * 2019-01-10 2019-04-26 四川大学华西医院 一种新的糖蛋白完整o-糖肽定量分析方法
CN109738533A (zh) * 2018-12-31 2019-05-10 复旦大学 一种高通量简易细胞o-糖基化位点的富集、鉴定方法
CN109828037A (zh) * 2017-11-23 2019-05-31 中国科学院大连化学物理研究所 一种高通量富集和鉴定内源性n/o-连接糖肽的方法
CN110749736A (zh) * 2018-07-24 2020-02-04 中国科学院大连化学物理研究所 一种基于化学反应简化的O-GalNAc糖基化肽段鉴定方法
CN111157736A (zh) * 2018-11-08 2020-05-15 中国科学院大连化学物理研究所 一种基于化学酶促的人血清o糖基化鉴定方法
WO2021041507A1 (en) * 2019-08-26 2021-03-04 The Johns Hopkins University Methods for identifying o-linked glycosylation sites in proteins
CN112578061A (zh) * 2020-12-15 2021-03-30 南京谱利健生物技术有限公司 一种基于固相法分离n-糖肽和o-糖肽的方法
CN114252629A (zh) * 2021-11-25 2022-03-29 苏州大学 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467050A (zh) * 2014-09-11 2016-04-06 中国科学院大连化学物理研究所 一种用于o糖基化肽段及其完整糖链的鉴定方法
CN104198613A (zh) * 2014-09-17 2014-12-10 山东大学 一种分析蛋白o-糖基化位点的方法
CN109828037A (zh) * 2017-11-23 2019-05-31 中国科学院大连化学物理研究所 一种高通量富集和鉴定内源性n/o-连接糖肽的方法
CN110749736A (zh) * 2018-07-24 2020-02-04 中国科学院大连化学物理研究所 一种基于化学反应简化的O-GalNAc糖基化肽段鉴定方法
CN111157736A (zh) * 2018-11-08 2020-05-15 中国科学院大连化学物理研究所 一种基于化学酶促的人血清o糖基化鉴定方法
CN109738533A (zh) * 2018-12-31 2019-05-10 复旦大学 一种高通量简易细胞o-糖基化位点的富集、鉴定方法
CN109682911A (zh) * 2019-01-10 2019-04-26 四川大学华西医院 一种新的糖蛋白完整o-糖肽定量分析方法
WO2021041507A1 (en) * 2019-08-26 2021-03-04 The Johns Hopkins University Methods for identifying o-linked glycosylation sites in proteins
CN112578061A (zh) * 2020-12-15 2021-03-30 南京谱利健生物技术有限公司 一种基于固相法分离n-糖肽和o-糖肽的方法
CN114252629A (zh) * 2021-11-25 2022-03-29 苏州大学 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOU XIN, YAO YATING, MAO JIAWEI, QIN HONGQIANG, LIANG XINMIAO, WANG LIMING, YE MINGLIANG: "Chemoenzymatic Approach for the Proteomics Analysis of Mucin-Type Core-1 O-Glycosylation in Human Serum", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 90, no. 21, 6 November 2018 (2018-11-06), US , pages 12714 - 12722, XP093068437, ISSN: 0003-2700, DOI: 10.1021/acs.analchem.8b02993 *

Also Published As

Publication number Publication date
CN114252629A (zh) 2022-03-29
CN114252629B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2023093133A1 (zh) 一种基于固相糖蛋白富集和Tn糖肽酶切的分析方法和应用
Zhu et al. Glycoprotein enrichment analytical techniques: advantages and disadvantages
Bai et al. Development a hydrazide-functionalized thermosensitive polymer based homogeneous system for highly efficient N-glycoprotein/glycopeptide enrichment from human plasma exosome
EP1514107B1 (en) Methods for quantitative proteome analysis of glycoproteins
CN111004329B (zh) 一种基于光亲和共价连接的蛋白质分子弱相互作用捕获磁珠及其制备方法和应用
Chen et al. Development of a combined chemical and enzymatic approach for the mass spectrometric identification and quantification of aberrant N-glycosylation
CN111381043B (zh) 一种适合质谱检测的样本前处理组合物、样本前处理方法及应用
CN111777696B (zh) 一种特异性可逆富集新生蛋白质的方法
JP5443156B2 (ja) 前立腺癌を判定する方法
WO2023193382A1 (zh) 一种基于固相糖蛋白t抗原糖肽富集和酶切分析的方法
Bellei et al. Proteomic analysis of early urinary biomarkers of renal changes in type 2 diabetic patients
CN114149479A (zh) 固相富集O-GlcNAc糖肽的制备方法
CN111239396A (zh) 基于唾液特异糖蛋白糖链结构的超早期肝癌筛查、评估的产品及应用
CN109342743B (zh) 一种能够与类风湿因子高效结合的变性IgG的制备方法
KR101207797B1 (ko) 다중렉틴을 이용한 체액 유래 단백질 동정 방법 및 이 방법에 의하여 탐지된 간암 바이오마커
CN111157736A (zh) 一种基于化学酶促的人血清o糖基化鉴定方法
WO2023103437A1 (zh) 一种基于固相富集结合O-糖肽酶切分析Tn抗原的方法
WO2018045145A1 (en) Serologic assay of liver fibrosis
WO2023178911A1 (zh) 一种基于固相岩藻糖糖蛋白富集及岩藻糖糖基化酶切分析的方法
JP5239319B2 (ja) タンパク質のc末端ペプチドを選択的に回収する方法及びそれを用いたタンパク質のc末端ペプチドのアミノ酸配列決定法
KR101530210B1 (ko) N-당쇄화된 당펩타이드를 이용한 위암 진단용 마커 조성물
CN111366632A (zh) 基于唾液特异糖蛋白糖链结构的肺小细胞癌筛查、评估的产品及应用
JP2010148442A (ja) 硫酸化糖鎖を有する糖ペプチドを濃縮する方法及びそのためのキット
JP7128827B2 (ja) 固定分析物
Xian et al. A Species-Specific Strategy for the Identification of Hemocoagulase Agkistrodon halys pallas Based on LC-MS/MS-MRM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE