WO2023092884A1 - 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用 - Google Patents

一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用 Download PDF

Info

Publication number
WO2023092884A1
WO2023092884A1 PCT/CN2022/078800 CN2022078800W WO2023092884A1 WO 2023092884 A1 WO2023092884 A1 WO 2023092884A1 CN 2022078800 W CN2022078800 W CN 2022078800W WO 2023092884 A1 WO2023092884 A1 WO 2023092884A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
isocyanate
additive
carbonate
electrolyte additive
Prior art date
Application number
PCT/CN2022/078800
Other languages
English (en)
French (fr)
Inventor
王焕杰
石宇
林存生
张善国
宣力琪
姜恒
Original Assignee
中节能万润股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中节能万润股份有限公司 filed Critical 中节能万润股份有限公司
Priority to KR1020237029556A priority Critical patent/KR20230137435A/ko
Priority to JP2023546182A priority patent/JP2024514997A/ja
Publication of WO2023092884A1 publication Critical patent/WO2023092884A1/zh
Priority to US18/487,142 priority patent/US20240097191A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C307/00Amides of sulfuric acids, i.e. compounds having singly-bound oxygen atoms of sulfate groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C307/04Diamides of sulfuric acids
    • C07C307/06Diamides of sulfuric acids having nitrogen atoms of the sulfamide groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/06Compounds containing sulfur atoms only bound to two nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D339/00Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
    • C07D339/02Five-membered rings
    • C07D339/06Five-membered rings having the hetero atoms in positions 1 and 3, e.g. cyclic dithiocarbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D339/00Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
    • C07D339/08Six-membered rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an isocyanate electrolyte additive containing a sulfonamide structural group and an application thereof, belonging to the technical field of lithium battery nonaqueous electrolyte additives.
  • lithium secondary batteries Since the commercialization of lithium secondary batteries, due to its high specific energy and good cycle performance, it has been widely used in digital, energy storage, power, military aerospace and communication equipment and other fields. Compared with other secondary batteries, lithium secondary batteries have the advantages of high working voltage, long cycle life, low self-discharge rate, environmental friendliness, and no memory effect.
  • additives In lithium-ion batteries, the oxidative decomposition of the electrolyte deteriorates battery performance, and is often accompanied by the dissolution of metal ions during cycling and high-temperature storage, resulting in a serious decline in battery performance. As the market demand for lithium-ion batteries continues to grow, higher requirements are put forward for the comprehensive performance of batteries.
  • the use of additives is one of the effective ways to improve the comprehensive performance of lithium-ion batteries.
  • additives There are many kinds of additives, which can be divided into film-forming additives, overcharge protection additives, conductive additives, flame retardant additives, electrolyte stabilizers, etc. according to their different roles in the electrolyte. No matter what kind of additive, it accounts for a small proportion in the electrolyte, but it has been extensively researched and developed due to its obvious functions.
  • the interfacial film formed on the surface of the positive and negative electrodes is not conducive to the transmission of lithium ions, resulting in the high impedance of the interfacial film and the attenuation of the electrochemical performance of the battery.
  • Film-forming additives can be used as an effective means to improve the performance of the positive and negative interfacial films. Impedance properties are regarded as an important characteristic of the interfacial film, and it is hoped that the development of film-forming additives that can reduce the resistance of the positive and negative interfacial films of lithium secondary batteries .
  • sulfur-containing additives have a certain effect on reducing the battery impedance, thereby improving the high-temperature performance and low-temperature performance of the battery.
  • 1,3-Propane sultone (PS) and ethylene sulfate (DTD) are representative additives containing sulfur elements respectively, which have the effect of reducing battery impedance and film-forming additives, but 1,3-Propane sultone (PS ) is controlled by EU regulations, and its use is limited.
  • Vinyl sulfate (DTD) has poor thermal stability. If there is no stabilizer, it will lead to deterioration of the acid value and chromaticity of the electrolyte, thereby affecting the high-temperature performance of the battery.
  • the present invention provides an isocyanate electrolyte additive with good thermal stability, which has a good impedance-reducing effect, and can form a stable interface film on the electrode surface, thereby achieving the purpose of improving interface properties. Purpose.
  • R 1 and R 2 are the same or different, R 1 and R 2 are independently selected from methyl, ethyl, butyl, methoxy, methylsulfonyl, ethylsulfonyl, fluorosulfonyl, trifluoromethanesulfonyl, Perfluoroethylsulfonyl, benzenesulfonyl, alkylbenzenesulfonyl, cyanide/fluorine-containing benzenesulfonyl, alkoxy-containing benzenesulfonyl, R1 and R2 can be linked to form a five-membered or six-membered ring One of a kind.
  • electrolyte additive is selected from any one or a mixture of two or more of the following structural formulas:
  • the isocyanate additive containing a sulfonamide structural group provided by the invention has good thermal stability, and the non-aqueous electrolyte of a lithium-ion battery is prepared from the isocyanate additive, stored at a high temperature of 45°C for 30 days, and the acid value and chromaticity of the electrolyte are stable.
  • the novel additive provided by the patent of the present invention is mixed with vinyl sulfate (DTD) or methylene disulfonate (MMDS) to prepare electrolyte, it can act as a stabilizer for DTD or MMDS, effectively Inhibit the increase of acidity and chromaticity of the electrolyte, thereby improving the related performance of the battery.
  • the invention also discloses the application of an isocyanate electrolyte additive containing a sulfonamide structural group.
  • the electrolyte additive is applied to a lithium-ion battery, and the lithium-ion battery includes a negative pole, a positive pole, a between the diaphragm and the electrolyte.
  • the negative electrode is a single material selected from the group consisting of carbon-based active materials, silicon-based active materials, metal-based active materials or lithium-containing nitrides, or a mixture of two or more of them.
  • the electrolyte includes a solvent, an electrolyte lithium salt and additives, and the additives at least include the isocyanate electrolyte additive containing a sulfonamide structural group.
  • the added mass content of the isocyanate electrolyte additive containing sulfonamide structural groups is 0.01-5%, preferably 0.05-1%.
  • the electrolyte lithium salt is selected from one or more of LiPF 6 , LiClO 4 , LiBF 4 , LiBOB, LiODFB, LiTDI, LiTFSI and LiFSI, based on the total mass of the electrolyte, the electrolyte lithium
  • the salt content is 10-20 wt%.
  • the solvent is selected from ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, carbonic acid Dipropyl Methyl Carbonate, Ethyl Propyl Carbonate, Mepropynyl Carbonate, 1,4-Butyrolactone, Methyl Propionate, Methyl Butyrate, Ethyl Acetate, Ethyl Propionate, Propyl Propionate A combination of one or more of esters or ethyl butyrate.
  • the isocyanate additives containing sulfonamide structural groups provided by the present invention can be mixed with the moisture in the electrolyte system, and the active hydrogen contained in the positive and negative electrodes function, reducing the decomposition of LiPF 6 caused by active hydrogen;
  • the sulfonyl group has good film-forming properties, and it is added in the electrolyte to form a stable interfacial film on the electrode surface, and the sulfonyl structural group introduces the S element to the SEI film, increasing Ion conductivity, so it can effectively improve the cycle performance of lithium-ion batteries, which is specifically reflected in the low internal resistance of the battery while having good cycle performance.
  • the novel additive provided by the present invention organically combines sulfonyl and isocyanate structural groups, has good thermal stability, can play the role of electrolyte stabilizer, and avoids high-temperature discoloration and acid value increase of the electrolyte. Even if the novel additive provided by the patent of the present invention is applied to the electrolyte system containing vinyl sulfate (DTD) or methylene disulfonate (MMDS) that easily causes the acid value and chroma of the electrolyte to increase, the Exhibits a good electrolyte stabilizer effect, effectively inhibits the discoloration of the electrolyte and the increase of the acid value. Applying the electrolyte solution containing the novel additive provided by the patent of the present invention to the battery improves high-temperature cycle and high-temperature storage performance, and exhibits lower impedance.
  • DTD vinyl sulfate
  • MMDS methylene disulfonate
  • Table 1 shows the formulations of the lithium-ion battery non-aqueous electrolytes listed in battery examples 1-8 and comparative examples 1-5.
  • artificial graphite anode material Take artificial graphite anode material as an example: artificial graphite, polyvinylidene fluoride (PVDF) and N-methylpyrrolidone (NMP) are mixed to make a uniform slurry, and the slurry is evenly coated on a copper foil (15 ⁇ m) set fluid, then dried and rolled to obtain a carbon negative electrode material. Bake at 120°C for 12 hours. In the dried pole piece, graphite accounts for 96.4% of the total coating, and the binder accounts for 3.6%. Then the obtained pole piece is cut into a disc with a diameter of 8mm as the negative electrode.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Celgard 2400 film (Tianjin) as the diaphragm, assemble the CR2430 button cell.
  • the assembly sequence from the negative electrode to the positive electrode is as follows: negative electrode casing, shrapnel, gasket, negative electrode sheet, electrolyte, separator, positive electrode sheet, positive electrode casing, and then sealed by a sealing machine. All these operations were completed in a pure argon glove box, and after standing for 6 hours, they were taken out for electrochemical performance testing.
  • Electrolyte stability test The lithium-ion battery electrolytes prepared in the above-mentioned Examples 1-8 and Comparative Examples 1-5 were respectively packed into sealed aluminum bottles, and the aluminum bottles were vacuum-packed with aluminum-plastic film, and the electrolyte samples were At the same time, it is stored in a constant temperature box with a set temperature of 45°C, and the acidity and color value of the electrolyte are sampled in the glove box before and after 30 days of storage. The acidity is tested by a potentiometric titrator, and the acidity value is converted into HF. The unit is ppm, the chromaticity adopts platinum-cobalt colorimetry, and the chromaticity unit is Hazen. The test results are shown in Table 2:
  • the prepared batteries were subjected to the following tests respectively:
  • Capacity retention rate after cycle (discharge capacity after corresponding number of cycles/discharge capacity at first cycle) ⁇ 100%.
  • High-temperature storage internal resistance change rate test The batteries obtained in Examples 1-8 and Comparative Examples 1-5 were subjected to 5 charge-discharge cycle tests at a charge-discharge rate of 1C at room temperature, and finally charged to a fully charged state at a rate of 1C. Record the internal resistance T of the battery. Store the fully charged battery at 60°C for 15 days, record the internal resistance T0 of the battery, and calculate the experimental data such as the rate of change of the internal resistance of the battery. The recorded results are shown in Table 3 (the battery numbers of Examples 1-8 are respectively batteries 1- Battery 8, the battery numbers of Comparative Examples 1-5 are respectively battery 1#-battery 5#).
  • the use of the novel additive of the present invention can significantly improve the high-temperature cycle performance and high-temperature resistance performance of the lithium secondary battery. It shows that the new additive of the present invention can reduce the irreversible capacity of the lithium secondary battery in the first charge and discharge by improving the properties of the negative electrode/electrolyte interface, and can maintain the stability of the interface while reducing the interface impedance, which helps to improve the lithium secondary battery. Secondary battery cycle stability at high temperature.
  • the novel additive of the present invention has good thermal stability, can act as an electrolyte stabilizer, and avoids high-temperature discoloration and acid value increase of the electrolyte. Even if the novel additive provided by the patent of the present invention is applied to the electrolyte system containing vinyl sulfate (DTD) or methylene disulfonate (MMDS) that easily causes the acid value and chroma of the electrolyte to increase, the Exhibits a good electrolyte stabilizer effect, effectively inhibits the discoloration of the electrolyte and the increase of the acid value. Applying the electrolyte solution containing the novel additive provided by the patent of the present invention to the battery improves the high-temperature cycle performance and exhibits lower impedance, which has a good application prospect.
  • DTD vinyl sulfate
  • MMDS methylene disulfonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂,电解液添加剂结构式入式(I)所示: R 1和R 2相同或者不同,R 1和R 2分别独立的选自甲基、乙基、丁基、甲氧基、甲磺酰基、乙磺酰基、氟磺酰基、三氟甲磺酰基、全氟乙基磺酰基、苯磺酰基、含烷基苯磺酰基、含氰/含氟苯磺酰基、含烷氧基苯磺酰基、R 1和R 2可链接形成五元环或六元环中一种。电解液添加剂中磺酰基和异氰酸酯结构基团有机结合到一起,具有良好的热稳定性,可起到电解液稳定剂作用,避免电解液高温变色和酸值升高。将含有电解液添加剂的电解液应用到电池中,可以提高高温循环和高温存储性能,且体现出较低的阻抗。

Description

一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用 技术领域
本发明涉及一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用,属于锂电池非水电解液添加剂技术领域。
背景技术
锂二次电池自从商业化以来,由于它的比能量高、循环性能好,被广泛用于数码、储能、动力、军用航天和通讯设备等领域。与其他二次电池相比,锂二次电池具有工作电压高、循环寿命长、自放电率低、环境友好、无记忆效应等优点。
在锂离子电池中,电解液的氧化分解劣化电池性能,而且在循环和高温存储过程中常常伴随着金属离子的溶出,导致电池性能严重下降。而随着市场对锂离子电池需求的不断增长,对电池的综合性能需求提出了更高的要求,添加剂的使用是提高锂离子电池综合性能有效途径之一。而添加剂的种类繁多,根据添加剂在电解液中起的作用不同可分为:成膜添加剂、过充保护添加剂、导电添加剂、阻燃添加剂、电解液稳定剂等。无论哪种添加剂,它在电解液中所占的比例很小,但是由于功能明显而被广泛地研究开发。
传统锂二次电池采用碳酸酯类电解液,其在正极和负极表面形成的界面膜并不利于锂离子的传输,导致界面膜的阻抗过高引起电池电化学性能的衰减。成膜添加剂可作为改善正负极界面膜性能的有效手段,其中阻抗性质被看作一个界面膜的重要特性,被寄希望于开发可以降低锂二次电池正极和负极界面膜阻抗的成膜添加剂。
一般来说,含硫类的添加剂对降低电池阻抗有一定作用,进而改善电池的高温性能和低温性能。1,3-丙烷磺酸内酯(PS)、硫酸乙烯酯(DTD)分别作为含硫元素的代表性添加剂,有降低电池阻抗作用成膜添加剂,但1,3-丙烷磺酸内酯(PS)受到欧盟法规管控,使用受限,硫酸乙烯酯(DTD)热稳定性差,若无稳定剂存在,会导致电解液酸值和色度劣化,从而影响电池高温性能。
因此开发新型的成膜添加剂以及电解液稳定剂具有重要意义。。
发明内容
本发明针对现有技术存在的不足,提供一种热稳定性良好的异氰酸酯类电解液添加剂,该添加剂具有良好的降阻抗作用,且能够在电极表面形成稳定的界面膜,进而达到改善界面性质的目的。
本发明解决上述技术问题的技术方案如下:一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂,所述的电解液添加剂结构式入式I所示:
Figure PCTCN2022078800-appb-000001
R 1和R 2相同或者不同,R 1和R 2分别独立的选自甲基、乙基、丁基、甲氧基、甲磺酰基、乙磺酰基、氟磺酰基、三氟甲磺酰基、全氟乙基磺酰基、苯磺酰基、含烷基苯磺酰基、含氰/含氟苯磺酰基、含烷氧基苯磺酰基、R 1和R 2可链接形成五元环或六元环中一种。
所述含有磺酰胺结构基团的异氰酸酯类电解液添加剂的化合物机构,已有文献报道制备方法,参考文献:J.Org.Chem.1994,59,3540-3542.;CN1039417;CN1033807;Phosphorus,Sulfur,and Silicon,1992,70,91-97等均已介绍该类材料。
进一步的,所述的电解液添加剂选自如下结构式中的任意一种或两种以上混合:
Figure PCTCN2022078800-appb-000002
Figure PCTCN2022078800-appb-000003
Figure PCTCN2022078800-appb-000004
本发明提供的含有磺酰胺结构基团的异氰酸酯类添加剂热稳定良好,将其配制锂离子电池非水电解液,45℃高温存储30天,电解液酸值和色度稳定。当本发明专利提供的新型添加剂与含硫酸乙烯酯(DTD)或亚甲基二磺酸亚甲基酯(MMDS)混合使用,配制电解液时,能起到DTD或MMDS稳定剂的作用,有效抑制电解液的酸度和色度的升 高,从而提升电池的相关性能。
本发明还公开了一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂的应用,所述的电解液添加剂应用于锂离子电池,所述的锂离子电池包括负极、正极、设置在负极和正极之间的隔膜以及电解液。
所述的负极选自由碳基活性材料、硅基活性材料、金属基活性材料或含锂氮化物组成的群组中的单一材料,或者他们中的两种或更多中的混合物。
进一步的,所述的电解液包括溶剂、电解质锂盐和添加剂,所述的添加剂中至少包含所述的含有磺酰胺结构基团的异氰酸酯类电解液添加剂。
进一步的,以电解液总质量为基准,所述的含有磺酰胺结构基团的异氰酸酯类电解液添加剂添加质量含量为0.01~5%,优选0.05~1%。
进一步的,所述的电解质锂盐选自LiPF 6、LiClO 4、LiBF 4、LiBOB、LiODFB、LiTDI、LiTFSI以及LiFSI中的一种或多种,以电解液总质量为基准,所述的电解质锂盐含量为10-20wt%。
进一步的,所述溶剂选自碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸甲丙炔酯、1,4-丁内酯、丙酸甲酯、丁酸甲酯、乙酸乙酯、丙酸乙酯、丙酸丙酯或丁酸乙酯中的一种或多种的组合。
本发明的有益效果是:
(1)本发明提供的含有磺酰胺结构基团的异氰酸酯类添加剂,其中异氰酸酯基团具有较强的亲电活性,可以与电解液体系中的水分,以及正负极中所包含的的活泼氢作用,减少由活泼氢导致的LiPF 6分解;
(2)本发明提供的新型添加剂,磺酰基良好成膜性能,将其添加到电解液中,能够在电极表面形成稳定的界面膜,且磺酰基结构基团给SEI膜引入了S元素,增加离子电导率,故而可以有效地提高锂离子电池循环性能,具体体现于电池在具有良好循环性能的同时,体现出较低的内阻。
(3)本发明提供的新型添加剂,将磺酰基和异氰酸酯结构基团有机结合到一起,具有良好的热稳定性,可起到电解液稳定剂作用,避免电解液高温变色和酸值升高。即使将本发明专利提供的新型添加剂应用到含有易导致电解液酸值和色度升高的硫酸乙烯酯(DTD)或亚甲基二磺酸亚甲基酯(MMDS)电解液体系中,也表现出良好的电解液稳定剂作用,有效抑制电解液变色和酸值升高。将含有本发明专利提供的新型添加剂的电 解液应用到电池中,提高高温循环和高温存储性能,且体现出较低的阻抗。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
电池实施例
电池实施例1-8和对比例1-5所列锂离子电池非水电解液的配方如表1所示。
表1.电池实施例1-8和对比例1-5锂离子电池非水电解液的配方
Figure PCTCN2022078800-appb-000005
Figure PCTCN2022078800-appb-000006
电池实施例1-8和对比例1~5锂离子电池非水电解液用来制备锂离子型扣式电池的方法为:
(1)正极片制备
将正极LiNi 0.8Co 0.1Mn 0.1O 2粉末、炭黑(粒度为1000nm)、聚偏二氟乙烯(PVDF)和N,N-二甲基吡咯烷酮(NMP)混合制成均一的浆料,将浆料均匀涂敷在铝箔(15μm)集流体上,然后进行干燥,轧制,得到LiNi 0.8Co 0.1Mn 0.1O 2正极材料。于120℃下烘12小时,干燥后的极片中,LiNi 0.8Co 0.1Mn 0.1O 2占总涂敷物的94%,粘结剂占4%,炭黑占2%。然后将所得极片裁剪成直径为8mm圆片作为正极。
(2)负极片制备
以人造石墨负极材料为例:将人造石墨,聚偏二氟乙烯(PVDF)和N-甲基吡咯烷酮(NMP)混合制成均一的浆料,将浆料均匀涂敷在铜箔(15μm)集流体上,然后进行干燥,轧制,得到碳负极材料。于120℃下烘12小时,干燥后的极片中,石墨占总涂敷物的96.4%,粘结剂占3.6%,然后将所得极片裁剪成直径为8mm圆片作为负极。
(3)电解液制备
在含水量<1ppm的氩气气氛手套箱中,将锂盐溶解于溶剂中,再加入新型含膦异氰酸酯类,混合均匀后获得电解液;
(4)锂离子电池的制备
以上述步骤(1)和(2)所述的材料作为工作电极,Celgard 2400膜(天津)为隔膜, 组装CR2430型扣式电池。组装顺序按负极到正极依次为:负极壳,弹片,垫片,负极片,电解液,隔膜,正极片,正极壳,然后由封口机密封。此操作均在纯氩气手套箱完成,静置6h后取出进行电化学性能测试。
锂离子电池性能测试
测试一、电解液稳定性测试:将上述实施例1~8和对比例1~5制备的锂离子电池电解液分别装到密封铝瓶中,铝瓶用铝塑膜抽真空封装,电解液样品同时置于设定温度为45℃的恒温箱中储存,分别在储存前和30天后在手套箱中取样检测电解液酸度和色度值,酸度采用电位滴定仪测试,酸度值为折算成HF,单位为ppm,色度采用铂-钴比色,色度单位为Hazen。测试结果如表2所示:
表2添加剂对电解液酸值和色度的影响
Figure PCTCN2022078800-appb-000007
由表2可知,实施例1~8的电解液在45℃高温下存储30天,电解液的酸度和色度均低于对比例,即使硫酸乙烯酯(DTD)或亚甲基二磺酸亚甲酯(MMDS)的电解液体系,加入本发明提供的新型添加剂,电解液酸值和色度也得到有效抑制,由此本发明提供的新型添加剂能够有效抑制电解液酸度和色度的上升,提高电解液在高温条件下稳定性。
测试二、高温循环性能测试和高温存储性能测试
将制备得到的电池均分别进行下述测试:
①在45℃下,将电池在0.1C倍率下恒流充电至4.3V,再用相应倍率恒流放电至2.7V,此时为首次循环;
②首次循环完成后,以1.0C倍率下恒流充电至4.3V,再用相应倍率恒流放电至2.7V,按照此循环条件分别进行100周、500周循环测试,分别计算得出电池循环100次、500次循环后的容量保持率,其中,循环后的容量保持率按照下式进行计算。各个电池中所得到的相关测试数据参见表2;
循环后的容量保持率=(对应循环次数后的放电容量/首次循环的放电容量)×100%。
高温存储内阻变化率测试:将实施例1-8和对比例1~5所得电池在室温下以1C的充放电倍率进行5次充放电循环测试,最后以1C倍率充到满电状态。记录电池内阻T。将满电状态的电池在60℃下存储15天,记录电池内阻T0,计算得到电池内阻变化率等实验数据,记录结果如表3(实施例1-8的电池编号分别为电池1-电池8,对比例1-5的电池编号分别为电池1#-电池5#)。
内阻变化率=(T-T0)/T×100%。
表3实施例与对比例测试结果
Figure PCTCN2022078800-appb-000008
Figure PCTCN2022078800-appb-000009
从表3可以明显看出,本发明的新型添加剂的使用能明显改善锂二次电池的高温循环性能以及高温阻抗性能。说明本发明的新型添加剂能够通过对负极电极/电解液界面性质的改善,减少锂二次电池在首次充放电的不可逆容量,降低界面阻抗的同时能够保持界面的稳定性,有助于提升锂二次电池在高温循环稳定性。
由此可以得知,本发明的新型添加剂具有良好的热稳定性,可起到电解液稳定剂作用,避免电解液高温变色和酸值升高。即使将本发明专利提供的新型添加剂应用到含有易导致电解液酸值和色度升高的硫酸乙烯酯(DTD)或亚甲基二磺酸亚甲基酯(MMDS)电解液体系中,也表现出良好的电解液稳定剂作用,有效抑制电解液变色和酸值升高。将含有本发明专利提供的新型添加剂的电解液应用到电池中,提高高温循环性能,且体现出较低的阻抗,具有良好的应用前景。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

  1. 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂,其特征在于,所述的电解液添加剂结构式入式I所示:
    Figure PCTCN2022078800-appb-100001
    R 1和R 2相同或者不同,R 1和R 2分别独立的选自甲基、乙基、丁基、甲氧基、甲磺酰基、乙磺酰基、氟磺酰基、三氟甲磺酰基、全氟乙基磺酰基、苯磺酰基、含烷基苯磺酰基、含氰/含氟苯磺酰基、含烷氧基苯磺酰基、R 1和R 2可链接形成五元环或六元环中一种。
  2. 根据权利要求1所述的一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂,其特征在于,所述的电解液添加剂选自如下结构式中的任意一种或两种以上混合:
    Figure PCTCN2022078800-appb-100002
    Figure PCTCN2022078800-appb-100003
    Figure PCTCN2022078800-appb-100004
  3. 一种根据权利要求1或2任意一项所述的一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂应用的锂离子电池,其特征在于,所述的电解液添加剂应用于锂离子电池,所述的锂离子电池包括负极、正极、设置在负极和正极之间的隔膜以及电解液。
  4. 根据权利要求3所述的一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂应用 的锂离子电池,其特征在于,所述的电解液包括溶剂、电解质锂盐和添加剂,所述的添加剂中至少包含所述的含有磺酰胺结构基团的异氰酸酯类电解液添加剂。
  5. 根据权利要求4所述的一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂应用的锂离子电池,其特征在于,以电解液总质量为基准,所述的含有磺酰胺结构基团的异氰酸酯类电解液添加剂添加质量含量为0.01~5%。
  6. 根据权利要求4所述的一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂应用的锂离子电池,其特征在于,所述的电解质锂盐选自LiPF 6、LiClO 4、LiBF 4、LiBOB、LiODFB、LiTDI、LiTFSI以及LiFSI中的一种或多种,以电解液总质量为基准,所述的电解质锂盐含量为10-20wt%。
  7. 根据权利要求4所述的一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂应用的锂离子电池,其特征在于,所述溶剂选自碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸甲丙炔酯、1,4-丁内酯、丙酸甲酯、丁酸甲酯、乙酸乙酯、丙酸乙酯、丙酸丙酯或丁酸乙酯中的一种或多种的组合。
PCT/CN2022/078800 2021-11-24 2022-03-02 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用 WO2023092884A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237029556A KR20230137435A (ko) 2021-11-24 2022-03-02 설폰아마이드 구조 그룹를 함유하는 이소시아네이트계 전해액 첨가제 및 이의 응용
JP2023546182A JP2024514997A (ja) 2021-11-24 2022-03-02 スルホンアミド構造基を含有するイソシアネート系電解液添加剤及びその使用
US18/487,142 US20240097191A1 (en) 2021-11-24 2023-10-16 Isocyanate electrolyte solution additive containing sulfamide structural group and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111400107.1 2021-11-24
CN202111400107.1A CN114069049B (zh) 2021-11-24 2021-11-24 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/487,142 Continuation US20240097191A1 (en) 2021-11-24 2023-10-16 Isocyanate electrolyte solution additive containing sulfamide structural group and application thereof

Publications (1)

Publication Number Publication Date
WO2023092884A1 true WO2023092884A1 (zh) 2023-06-01

Family

ID=80276760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078800 WO2023092884A1 (zh) 2021-11-24 2022-03-02 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用

Country Status (5)

Country Link
US (1) US20240097191A1 (zh)
JP (1) JP2024514997A (zh)
KR (1) KR20230137435A (zh)
CN (1) CN114069049B (zh)
WO (1) WO2023092884A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069049B (zh) * 2021-11-24 2022-10-25 中节能万润股份有限公司 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用
CN114106047B (zh) * 2021-11-24 2024-01-26 中节能万润股份有限公司 一种含膦异氰酸酯类电解液添加剂及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917635A (en) * 1972-11-22 1975-11-04 Hoechst Ag 2-Carbomethoxy-aminobenzimidazoles
US3931277A (en) * 1972-11-22 1976-01-06 Hoechst Aktiengesellschaft Novel isocyanates and processes for their preparation
US5022916A (en) * 1988-06-18 1991-06-11 Hoechst Aktiengesellschaft Substituted sulfonyldiamides, processes for their preparation, and their use as herbicides and plant growth regulators
US5129941A (en) * 1989-07-19 1992-07-14 Hoechst Aktiengesellschaft Heterocyclically substituted sulfonylureas, and their use as herbicides or plant growth regulators
JP2006164759A (ja) * 2004-12-07 2006-06-22 Tomiyama Pure Chemical Industries Ltd 電気化学デバイス用非水電解液
CN109860708A (zh) * 2019-01-04 2019-06-07 上海德朗能动力电池有限公司 一种钛酸锂电池用电解液
CN111430796A (zh) * 2020-04-02 2020-07-17 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
CN114069049A (zh) * 2021-11-24 2022-02-18 中节能万润股份有限公司 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208682B (zh) * 2011-05-06 2013-05-01 北京理工大学 一种锂二次电池电解液添加剂及溶剂
JP6031861B2 (ja) * 2012-07-18 2016-11-24 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
WO2014157591A1 (ja) * 2013-03-27 2014-10-02 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
HUE041673T2 (hu) * 2014-03-27 2019-05-28 Daikin Ind Ltd Elektrolit és elektrokémiai eszköz
JP2016001567A (ja) * 2014-06-12 2016-01-07 日本電気株式会社 電解液およびそれを用いた二次電池
CN109119685A (zh) * 2017-06-23 2019-01-01 宁德时代新能源科技股份有限公司 电解液及锂离子电池
CN112510256B (zh) * 2019-09-16 2023-08-29 浙江省化工研究院有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
CN111129595A (zh) * 2019-12-26 2020-05-08 杉杉新材料(衢州)有限公司 一种高电压锂离子电池非水电解液及含有该电解液的锂离子电池
CN112599856A (zh) * 2021-03-01 2021-04-02 新乡华锐锂电新能源有限公司 一种适配高镍三元正极材料的电解液
CN113363583B (zh) * 2021-06-25 2022-05-10 珠海市赛纬电子材料股份有限公司 电解液添加剂、非水电解液及其锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917635A (en) * 1972-11-22 1975-11-04 Hoechst Ag 2-Carbomethoxy-aminobenzimidazoles
US3931277A (en) * 1972-11-22 1976-01-06 Hoechst Aktiengesellschaft Novel isocyanates and processes for their preparation
US5022916A (en) * 1988-06-18 1991-06-11 Hoechst Aktiengesellschaft Substituted sulfonyldiamides, processes for their preparation, and their use as herbicides and plant growth regulators
US5129941A (en) * 1989-07-19 1992-07-14 Hoechst Aktiengesellschaft Heterocyclically substituted sulfonylureas, and their use as herbicides or plant growth regulators
JP2006164759A (ja) * 2004-12-07 2006-06-22 Tomiyama Pure Chemical Industries Ltd 電気化学デバイス用非水電解液
CN109860708A (zh) * 2019-01-04 2019-06-07 上海德朗能动力电池有限公司 一种钛酸锂电池用电解液
CN111430796A (zh) * 2020-04-02 2020-07-17 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
CN114069049A (zh) * 2021-11-24 2022-02-18 中节能万润股份有限公司 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BLASCHETTE A., DALLUHN J., PRÖHL H. H., JONES P. G., BUBENITSCHEK P.: "POLYSULFONYLAMINE: TEIL XXXIV.1 DIMESYLAMINOSULFONYLISOCYANAT: DARSTELLUNG, FESTKÖRPERSTRUKTUR UND ADDITIONSREAKTIONEN MIT ALKOHOLEN", PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS, vol. 70, no. 1, 31 August 1992 (1992-08-31), pages 91 - 97, XP009545651, ISSN: 1042-6507, DOI: 10.1080/10426509208049155 *
DALLUHN J., BLASCHETTE A., JONES P. G.: "POLYSULFONYLAMINE: TEIL LVI.1 DIMESYLAMINOSULFONYLISOCYANAT: ADDITIONSREAKTIONEN MIT OH-, SH- UND NH-FUNKTIONELLEN MOLEKÜLEN; FESTKÖRPERSTRUKTUR VON N-(DIMESYLAMINOSULFONYL)-METHYLURETHAN", PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS, vol. 86, no. 1-4, 23 September 2006 (2006-09-23), pages 85 - 92, XP009545650, ISSN: 1042-6507, DOI: 10.1080/10426509408018392 *

Also Published As

Publication number Publication date
US20240097191A1 (en) 2024-03-21
JP2024514997A (ja) 2024-04-04
CN114069049A (zh) 2022-02-18
CN114069049B (zh) 2022-10-25
KR20230137435A (ko) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2023040082A1 (zh) 一种锂离子电池非水电解液及其应用
CN111430796B (zh) 一种锂离子电池电解液及含有该电解液的锂离子电池
US20160233545A1 (en) Electrolyte additive and use thereof
WO2018099097A1 (zh) 电解液及二次锂电池
WO2012037805A1 (zh) 一种改善锂离子电池高温电化学性能的非水电解液及其应用
WO2022134254A1 (zh) 一种电解液及其制备方法和锂离子电池
CN111525190B (zh) 电解液及锂离子电池
CN109687026B (zh) 一种高压三元锂离子电池电解液及含该电解液的锂离子电池
CN111883839A (zh) 高压电解液及基于其的锂离子电池
WO2023092884A1 (zh) 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用
CN111834665B (zh) 一种高镍三元锂离子电池电解液及锂离子电池
US20200136183A1 (en) Electrolyte and lithium ion battery
CN110911748B (zh) 一种锂二次电池电解液和锂二次电池
WO2023092885A1 (zh) 一种基于咪唑结构基团的异氰酸酯类的电解液添加剂及其应用
CN113130990A (zh) 一种电解液及使用该电解液的二次电池
CN107785610B (zh) 锂二次电池电解液及其锂二次电池
CN111883834B (zh) 一种非水锂离子电池电解液添加剂、包含其的电解液以及锂离子电池
WO2024093659A1 (zh) 高电压非水电解液及锂离子二次电池
CN114520371B (zh) 一种非水电解液及包含其的锂离子电池
CN115010730A (zh) 草酸硼酸盐衍生物及其制备方法、电解液、二次电池
CN111883833A (zh) 一种锂离子电池非水电解液、以及包含其的锂离子电池
CN113851720B (zh) 一种锂离子电池非水电解液及其应用
CN113690490B (zh) 一种亚磷酸酯类锂离子电池电解液添加剂及其应用
CN114497733B (zh) 一种电解液及其电池
CN111883836A (zh) 一种锂离子电池非水电解液和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546182

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237029556

Country of ref document: KR

Kind code of ref document: A