WO2023092571A1 - 混合发光单元、显示面板及其制备方法 - Google Patents

混合发光单元、显示面板及其制备方法 Download PDF

Info

Publication number
WO2023092571A1
WO2023092571A1 PCT/CN2021/134065 CN2021134065W WO2023092571A1 WO 2023092571 A1 WO2023092571 A1 WO 2023092571A1 CN 2021134065 W CN2021134065 W CN 2021134065W WO 2023092571 A1 WO2023092571 A1 WO 2023092571A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting
transparent electrode
array substrate
Prior art date
Application number
PCT/CN2021/134065
Other languages
English (en)
French (fr)
Inventor
谢相伟
Original Assignee
厦门市芯颖显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市芯颖显示科技有限公司 filed Critical 厦门市芯颖显示科技有限公司
Priority to PCT/CN2021/134065 priority Critical patent/WO2023092571A1/zh
Publication of WO2023092571A1 publication Critical patent/WO2023092571A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present application relates to the field of display technology, in particular to a hybrid light-emitting unit, a display panel and a method for preparing a display panel.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • OLED display has the characteristics of self-illumination, high contrast, wide viewing angle, fast response speed, simple structure, etc., and is an important development direction of new displays.
  • White light OLED devices are usually stacked by RGB tricolor OLEDs, blue OLED+yellow OLED or blue OLED+yellow OLED+red OLED, and multiple colors emit simultaneously to form white light.
  • the luminous efficiency and lifespan of blue light-emitting OLED materials and devices have always been an unavoidable shortcoming of OLED display, which has become a bottleneck in OLED display technology.
  • embodiments of the present application provide a hybrid light-emitting unit, a display panel, and a method for manufacturing a display panel, which have the characteristics of improving luminous efficiency and service life.
  • an embodiment of the present application provides a hybrid light-emitting unit, including: an inorganic light-emitting chip, including a bottom electrode and an inorganic light-emitting functional layer located on one side of the bottom electrode; a first transparent electrode, connected to the inorganic light-emitting The light-emitting functional layer is away from the side of the bottom electrode; the organic light-emitting functional layer is connected to the side of the first transparent electrode away from the inorganic light-emitting chip and connected in series with the inorganic light-emitting chip; the second transparent electrode is connected to the inorganic light-emitting chip. The side of the organic light-emitting functional layer away from the inorganic light-emitting chip.
  • the inorganic light-emitting chip is a blue light-emitting chip
  • the organic light-emitting functional layer includes a first hole injection layer, a first hole transport layer, and a first red light-emitting layer stacked in sequence. , a yellow light emitting layer, a first electron transport layer and a first electron injection layer; the first hole injection layer is adjacent to the first transparent electrode, and the first electron injection layer is in phase with the second transparent electrode adjacent.
  • the inorganic light-emitting chip is a blue light-emitting chip
  • the organic light-emitting functional layer includes a second hole injection layer, a second hole transport layer, a green light-emitting layer, and a second layer stacked in sequence.
  • Two electron transport layers an n-type charge generation layer, a p-type charge generation layer, a third hole transport layer, a second red light-emitting layer, a third electron transport layer and a second electron injection layer; the second hole injection layer Adjacent to the first transparent electrode, the second electron injection layer is adjacent to the second transparent electrode.
  • the inorganic light-emitting functional layer includes a P-doped layer, a quantum well layer and an N-doped layer stacked in sequence, the P-doped layer is adjacent to the bottom electrode, and the The N-doped layer is adjacent to the first transparent electrode.
  • the bottom electrode is selected from at least one of Ni metal layer, Pt metal layer and Au metal layer.
  • the bottom electrode includes a highly reflective metal layer, and the highly reflective metal layer is selected from at least one of an Ag metal layer, an Al metal layer, a Ti metal layer, and a Mo metal layer.
  • a display panel including: an array substrate;
  • the multiple hybrid light-emitting units described in any of the foregoing embodiments are arranged on the array substrate, and the bottom electrodes of the multiple hybrid light-emitting units are respectively electrically connected to the array substrate;
  • the color filter substrate is arranged opposite to the array substrate and is located on a side of the second transparent electrode of the hybrid light-emitting unit away from the organic light-emitting functional layer.
  • the display panel further includes: a planar layer disposed on the array substrate, filled between the inorganic light-emitting chips and planarized the array substrate; the planar layer is provided with A plurality of light blocking structures, one light blocking structure is arranged between any two adjacent inorganic light-emitting chips;
  • a pixel definition layer arranged on the side of the flat layer away from the array substrate, the pixel definition layer includes a plurality of sub-pixel pits, and the plurality of sub-pixel pits are respectively aligned with a plurality of the inorganic light-emitting chips; each mixed The first transparent electrode, the organic light-emitting functional layer and the second transparent electrode of the light-emitting unit are disposed in the sub-pixel pit.
  • an embodiment of the present application provides a method for manufacturing a display panel, including: providing an array substrate; forming a plurality of mixed light-emitting units on the array substrate; the mixed light-emitting units include: an inorganic light-emitting chip, including a bottom electrode and the inorganic light-emitting functional layer on one side of the bottom electrode; the first transparent electrode is connected to the side of the inorganic light-emitting functional layer away from the bottom electrode; the organic light-emitting functional layer is connected to the first transparent electrode away from the bottom electrode One side of the inorganic light-emitting chip, and connected in series with the inorganic light-emitting chip; the second transparent electrode, connected to the side of the organic light-emitting functional layer away from the inorganic light-emitting chip.
  • the forming a plurality of hybrid light-emitting units on the array substrate includes: transferring the inorganic light-emitting chips of the hybrid light-emitting units to the array substrate, making the bottom electrode Electrically connecting the array substrate; forming a planar layer on the array substrate, filling between the inorganic light-emitting chips and planarizing the array substrate; respectively forming a first transparent electrode and a pixel definition layer on the planar layer
  • the pixel definition layer includes a plurality of sub-pixel pits, the plurality of sub-pixel pits are aligned with the inorganic light-emitting chips of the plurality of hybrid light-emitting units; the organic light-emitting functional layer is formed in each of the sub-pixel pits ; forming the second transparent electrode on the side of the organic light-emitting functional layer away from the array substrate.
  • the inorganic light-emitting chip is a blue light-emitting chip
  • forming the organic light-emitting functional layer in each of the sub-pixel pits includes: successively evaporating the first hole injection layer , a first hole transport layer, a first red light emitting layer, a yellow light emitting layer, a first electron transport layer and a first electron injection layer, so as to obtain the organic light emitting functional layer.
  • the inorganic light-emitting chip is a blue light-emitting chip
  • the organic light-emitting functional layer is formed in each of the sub-pixel pits, including: sequentially evaporating the second hole injection layer, the second hole transport layer, the green light emitting layer, the second electron transport layer, the n-type charge generation layer, the p-type charge generation layer, the third hole transport layer, the second red light emission layer, the third electron transport layer and the second electron injection layer to obtain the organic light-emitting functional layer.
  • the structure of connecting the inorganic light-emitting chip and the organic light-emitting functional layer to achieve mixed light emission can overcome the defects of a single light-emitting structure, and can achieve higher luminous efficiency and service life.
  • Fig. 1 is a schematic structural diagram of a hybrid lighting unit provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of another hybrid lighting unit provided by another embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of another hybrid lighting unit provided by another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • 100 hybrid light-emitting unit; 110: inorganic light-emitting chip; 111: bottom electrode; 112: inorganic light-emitting functional layer; 1121: P-doped layer; 1122: quantum well layer; 1123: N-doped layer; 120: first transparent electrode ; 130: organic light-emitting functional layer; 1311: first hole injection layer; 1312: second hole injection layer; 1321: first hole transport layer; 1322: second hole transport layer; 1323: third hole Transport layer; 1331: first red light emitting layer; 1332: second red light emitting layer; 1341: yellow light emitting layer; 1351: first electron transport layer; 1352: second electron transport layer; 1353: third electron transport layer; 1361 : first electron injection layer; 1362: second electron injection layer; 1371: green light-emitting layer; 1381: n-type charge generation layer; 1391: p-type charge generation layer; 140: second transparent electrode; 200: array substrate; 300 : color filter substrate; 400: flat layer; 401
  • the hybrid light-emitting unit 100 includes: an inorganic light-emitting chip 110, a first transparent electrode 120, an organic light-emitting functional layer 130 and a second transparent electrode 140 .
  • the inorganic light-emitting chip 110 includes a bottom electrode 111 and an inorganic light-emitting functional layer 112 located on one side of the bottom electrode 111 , and the first transparent electrode 120 is connected to a side of the inorganic light-emitting functional layer 112 away from the bottom electrode 111 .
  • the organic light-emitting functional layer 130 is connected to a side of the first transparent electrode 120 away from the inorganic light-emitting chip 110 and connected in series with the inorganic light-emitting chip 110 .
  • the second transparent electrode 140 is connected to a side of the organic light-emitting functional layer 130 away from the inorganic light-emitting chip 110 .
  • the inorganic light emitting chip 110 is, for example, a Micro-LED (Micro Light Emitting Diode), a micro light emitting diode) chip, an LED (Light Emitting Diode) is an inorganic light emitting diode, and a Micro-LED is a micron-sized LED.
  • the organic light-emitting functional layer 130 is, for example, an OLED-type light-emitting structure, and its light-emitting principle is that electrons are injected into the light-emitting layer (EML, Emission Layer) through the cathode, holes are injected into the light-emitting layer through the anode, and electrons and holes recombine in the light-emitting layer. And emit light.
  • EML light-emitting layer
  • the advantages of OLED and Micro-LED can be combined and the defects of each other can be compensated to achieve a better light-emitting effect.
  • the specific structure of the hybrid lighting unit 100 provided by the embodiment of the present application will be further described below.
  • the inorganic light-emitting functional layer 112 includes, for example, a P-doped layer 1121, a quantum well layer 1122 and an N-doped layer 1123 stacked in sequence, and the P-doped layer 1121 and the bottom electrode 111 Adjacent, the N-doped layer 1123 is adjacent to the first transparent electrode 120 .
  • P-doped layer 1121 and N-doped layer 1123 are semiconductor materials of different doping types, such as blue Micro-LEDs, usually gallium nitride (GaN) material is used, then P-doped layer 1121 is, for example, p-type GaN, N The doped layer 1123 is, for example, n-type GaN.
  • the quantum well layer 1122 adopts, for example, an InGaN/GaN multilayer quantum well (MQW) structure.
  • MQW multilayer quantum well
  • the bottom electrode 111 can be selected as a transparent electrode material, or a metal electrode material that forms a good ohmic contact with the P-doped layer 1121, and can be a single-layer metal. Specifically, Ni (nickel), Pt (platinum) or Au ( Gold), or two or more composite metal layers, such as Ag (silver), Al (aluminum), Ti (titanium) or Mo (molybdenum) and other highly reflective metal layers and Ni, Pt, Au, etc.
  • the formed double-layer or multi-layer structure, the specific double-layer structure is Ni/Ag or Ni/Al etc. for example, and the triple-layer structure is Ni/Ag/Au or Ni/Pt/Au etc. for example.
  • the first transparent electrode 120 and the second transparent electrode 140 are, for example, made of ITO (indium tin oxide) material or IZO (indium zinc oxide) material.
  • the inorganic light-emitting chip 110 is a blue light-emitting chip.
  • the organic light-emitting functional layer 130 specifically includes a first hole injection layer 1311, a first hole Transport layer 1321, first red light emitting layer 1331, yellow light emitting layer 1341, first electron transport layer 1351 and first electron injection layer 1361; first hole injection layer 1311 is adjacent to first transparent electrode 120, and the first electron injection layer Layer 1361 is adjacent to second transparent electrode 140 .
  • the material of the first hole injection layer 1311 is, for example, CuPc (polyester carbonic acid), etc.
  • the material of the first hole transport layer 1321 is, for example, PVK (polyvinyl carbazole), etc.
  • the material of the first electron transport layer 1351 is, for example, Alq3 (8-hydroxyquinoline aluminum), etc.
  • the material of the first electron injection layer 1361 includes LiF (lithium fluoride), MgF 2 (magnesium fluoride), Liq (8-hydroxyquinoline lithium), etc.
  • the second A red light emitting layer 1331 can be made of commonly used red EML material
  • the yellow light emitting layer 1341 can be made of commonly used yellow EML material.
  • the blue light emitted by the blue light-emitting chip is mixed with the red light emitted by the first red light-emitting layer 1331 of the organic light-emitting functional layer 130 and the yellow light emitted by the yellow light-emitting layer 1341 to form white light, which is equivalent to Based on the mixed light-emitting structure of blue-light Micro-LED + red-yellow OLED, it can make up for the defects in the luminous efficiency and lifespan of blue-light OLED.
  • the inorganic light-emitting chip 110 is a blue light-emitting chip.
  • the second hole injection layer 1312 is adjacent to the first transparent electrode 120
  • the second electron injection layer 1362 is adjacent to the second transparent electrode 140 .
  • the material of the second hole injection layer 1312 can refer to the first hole injection layer 1311 and can be the same as or different from the material of the first hole injection layer 1311, the second hole transport layer 1322, the third hole transport layer 1323
  • the material of the first hole transport layer 1322 can be referred to, and the material of the first hole transport layer 1322 can be the same or different, and the material of the second electron transport layer 1352 and the third electron transport layer 1353 can be referred to that of the first electron transport layer 1351.
  • the material of the second electron injection layer 1362 can refer to the material of the first electron injection layer 1361 and can be the same or different from the material of the first electron injection layer 1361.
  • the n-type charge generation layer 1381 and the p-type charge generation layer are CGL (Charge Generation Layer) layer materials of different doping types.
  • the CGL material has an n-type doped organic layer/inorganic metal oxide, such as Alq 3 :Mg/ WO 3 , Bphen:Li/MoO 3 , BCP:Li/V 2 O 5 and BCP:Cs/V 2 O 5 ; n-type doped organic layer/organic layer, such as Alq 3 :Li/HAT-CN; n Type-doped organic layer/p-type doped organic layer, such as BPhen:Cs/NPB:F 4 -TCNQ, Alq 3 :Li/NPB:FeCl 3 , TPBi:Li/NPB:FeCl 3 and Alq 3 : Mg/m-MTDATA:F 4 -TCNQ, etc.
  • the material of the second red light-emitting layer 1332 may be the same as or
  • the blue light emitted by the blue light-emitting chip is mixed with the red light emitted by the second red light-emitting layer 1332 of the organic light-emitting functional layer 130 and the green light emitted by the green light-emitting layer 1371 to form white light.
  • the mixed light-emitting structure of blue-light Micro-LED + red-green OLED it can make up for the defects in the luminous efficiency and lifespan of blue-light OLED.
  • the second embodiment of the present application provides a display panel.
  • the display panel provided in this embodiment includes an array substrate 200 , a plurality of mixed light-emitting units 100 and a color filter substrate 300 .
  • the hybrid light-emitting unit 100 includes: an inorganic light-emitting chip 110 , a first transparent electrode 120 , an organic light-emitting functional layer 130 and a second transparent electrode 140 .
  • the inorganic light-emitting chip 110 includes a bottom electrode 111 and an inorganic light-emitting functional layer 112 located on one side of the bottom electrode 111 , and the first transparent electrode 120 is connected to a side of the inorganic light-emitting functional layer 112 away from the bottom electrode 111 .
  • the organic light-emitting functional layer 130 is connected to a side of the first transparent electrode 120 away from the inorganic light-emitting chip 110 and connected in series with the inorganic light-emitting chip 110 .
  • the second transparent electrode 140 is connected to a side of the organic light-emitting functional layer 130 away from the inorganic light-emitting chip 110 .
  • the hybrid light emitting unit 100 is disposed on the array substrate 200 and electrically connected to the array substrate 200 through the bottom electrode 111 of the inorganic light emitting chip 110 .
  • the color filter substrate 300 is disposed opposite to the array substrate 200 and is located on a side of the second transparent electrode 140 away from the organic light-emitting functional layer 130 .
  • the array substrate 200 includes a plurality of sub-pixels, wherein the plurality of sub-pixels refer to positions corresponding to a plurality of light emitting points on the display panel, for example, in an RGB display panel, the plurality of light emitting light points include red light points, green light points and Blue light point, each light point position is a sub-pixel, for example, the pixel of an RGB display panel is 1080*960, then there are 1080*960 pixel units on the panel, and each pixel unit is set with a red light point , one green light point and one blue light point, that is, each pixel unit includes 3 sub-pixels, and the array substrate 200 of the display panel includes 1080*960*3 sub-pixels.
  • the number of sub-pixels on the array substrate 200 may be equal to or greater than the number of hybrid light-emitting units 100.
  • the light points at each light point position are hybrid light-emitting units 100
  • the number of sub-pixels is equal to the number of hybrid light-emitting units 100.
  • only The hybrid light-emitting unit 100 is installed at some light spots, and other light-emitting devices, such as common Micro-LED chips, are set at the rest of the light spots.
  • the number of sub-pixels is greater than that of the hybrid light-emitting unit 100 .
  • the structure of the hybrid light-emitting unit 100 with different sub-pixel settings may be the same or different.
  • the organic light-emitting functional layer 130 in the hybrid light-emitting structure 100 in the first embodiment may include a first red light-emitting layer 1331 and a yellow light-emitting layer 1331.
  • the red-yellow light-emitting structure of the layer 1351 can also be a red-green light-emitting structure including the second red light-emitting layer 1332 and the green light-emitting layer 1371.
  • Different sub-pixels can be respectively provided with the above-mentioned mixed light-emitting unit 100 with the red-yellow light-emitting structure and the red light-emitting unit with red
  • the examples are not limiting.
  • a circuit layer structure is provided on the array substrate 200, and the circuit layer structure may include wiring (such as data lines, scan lines), TFT (Thin Film Transistor) thin film transistors, capacitors and other suitable components.
  • the bottom electrode 111 is connected to the TFT film for example.
  • the transistor is used to realize the electrical connection with the array substrate 200 .
  • a color filter Color Filter
  • a black matrix is also provided between color filters of different colors, for example.
  • the blue light emitted by the blue light-emitting chip and the red-yellow light or red-green light emitted by the organic light-emitting functional layer 130 are mixed to form white light, which is filtered by the color filter substrate 300 into light of the corresponding color.
  • RGB three-color display Since the mixed light-emitting unit 100 emits white light, it can be converted into light of different colors by matching color filters of different colors. Therefore, other colors can also be realized according to different settings of the color filter substrate 300. For example, a Y (yellow) color filter can also be provided, and RGBY four-color display can be realized in combination with a specific arrangement of the color filter.
  • the display panel further includes, for example, a flat layer 400 disposed on the array substrate 200 and filled between the inorganic light-emitting chips 110 to planarize the surface of the array substrate 200.
  • the flat layer 400 can Opaque materials can also be used when transparent materials are used.
  • the flat layer 400 is provided with multiple light blocking structures 401, and one light blocking structure 401 is provided between any two adjacent inorganic light-emitting chips 110 to prevent adjacent The light leakage of the inorganic light emitting chip 110 of the sub-pixel interferes.
  • the light blocking structure 401 may not be provided when the flat layer 400 is made of an opaque material.
  • the display panel also includes a pixel definition layer 500 to define a plurality of sub-pixels.
  • the pixel definition layer 500 includes a plurality of sub-pixel pits 501, each sub-pixel pit 501 corresponds to a sub-pixel, that is, each sub-pixel pit 501 corresponds to a light point position, and the pixel
  • the definition layer 500 includes, for example, a pixel definition structure protruding from the flat layer 400 away from the array substrate 200, and the pixel definition structure is provided between every two adjacent light point positions to form the sub-pixel pit 501 corresponding to each light point position .
  • the display panel provided in this embodiment may be an active drive (AM, Active Matrix) or a passive drive (PM, Passive Matrix), which is not limited in this embodiment.
  • AM Active Matrix
  • PM Passive Matrix
  • the display panel provided in this embodiment adopts a light-emitting structure in which the organic light-emitting functional layer 130 and the inorganic light-emitting chip 110 are connected in series to realize mixed light-emitting, and can combine the advantages of OLED light-emitting and Micro-LED light-emitting, and make up for each other's defects to achieve better light-emitting effects. .
  • the inorganic light-emitting chip 110 adopts a blue light-emitting chip, the problems of low light-emitting efficiency and poor lifespan of blue OLEDs in traditional OLED displays can be improved.
  • the display panel provided in the second embodiment can adopt the hybrid light-emitting unit 100 provided in the first embodiment of the present application, which has the same beneficial effects as the first embodiment, and is conducive to improving the luminous efficiency of the light-emitting unit in the display panel and improving the use life, to achieve a better display effect.
  • This embodiment provides a method for manufacturing a display panel, including the following steps:
  • the hybrid light-emitting unit can be, for example, the hybrid light-emitting unit 100 provided in the first embodiment of the application, including: an inorganic light-emitting chip 110, a first transparent electrode 120, an organic light-emitting The functional layer 130 and the second transparent electrode 140 .
  • the inorganic light-emitting chip 110 includes a bottom electrode 111 and an inorganic light-emitting functional layer 112 located on one side of the bottom electrode 111 , and the first transparent electrode 120 is connected to a side of the inorganic light-emitting functional layer 112 away from the bottom electrode 111 .
  • the organic light-emitting functional layer 130 is connected to a side of the first transparent electrode 120 away from the inorganic light-emitting chip 110 and connected in series with the inorganic light-emitting chip 110 .
  • the second transparent electrode 140 is connected to a side of the organic light-emitting functional layer 130 away from the inorganic light-emitting chip 110 .
  • the array substrate provided in step S1 is provided with, for example, a circuit layer structure, which may include traces (such as data lines, scan lines), TFT (Thin Film Transistor) thin film transistors, capacitors and other suitable components, and the bottom electrode 111
  • a TFT thin film transistor is connected to realize electrical connection with the array substrate.
  • other types of light-emitting structures may be formed on the array substrate 200 while forming the hybrid light-emitting unit 100 , such as Micro-LED light-emitting structures that emit light independently, which is not limited in this embodiment.
  • the display panel manufacturing method further includes step S3 : after coating the frame glue on the edge of the array substrate, assembling and curing the color filter substrate and the array substrate, so as to assemble and form the display panel.
  • step S2 further includes, for example:
  • S21 Transfer the inorganic light-emitting chip of the hybrid light-emitting unit to the array substrate, and electrically connect the bottom electrode to the array substrate;
  • S23 Form the first transparent electrode and a pixel definition layer on the planar layer, the pixel definition layer includes a plurality of sub-pixel pits, and the plurality of sub-pixel pits are respectively connected to the plurality of hybrid light-emitting units. Alignment of inorganic light-emitting chips;
  • step S21 transfers the inorganic light-emitting chips 110 of a plurality of light-emitting units to the array substrate 200, and the inorganic light-emitting chips 110 are used to form the hybrid light-emitting unit 100.
  • the mixed light-emitting unit can also be transferred while performing step S21.
  • step S22 on the array substrate 200 to form a flat layer 400 the flat layer 400 is filled between the inorganic light-emitting chips 110, and through chemical
  • the flat layer 400 is further processed by means of mechanical polishing or plasma etching, so that the upper surface of the inorganic light-emitting chip 110 is exposed and flush with the flat layer 400 .
  • step S22 may also include: in the flat layer, setting a light blocking structure between every two adjacent inorganic light-emitting chips; step S23 forming a first transparent material on the flat layer 400
  • the pixel definition layer 500 is formed after the electrode 120, or the pixel definition layer 500 can also be formed first, and then the first transparent electrode 120 is formed in each sub-pixel pit 501, wherein the first transparent electrode 120 is formed by, for example, a sputtering process or an evaporation process ITO film layer, and the transparent pixel electrode is etched out by photolithography process.
  • the pixel definition layer 500 includes a plurality of sub-pixel pits 501, and the sub-pixel pits 501 are aligned with the inorganic light-emitting chip 110 to define the positions of the sub-pixels.
  • the sub-pixel pits 501 and the sub-pixels please refer to the second embodiment , which will not be repeated here.
  • step S25 as shown in FIG.
  • the organic light-emitting functional layer 130 is formed in the corresponding sub-pixel pits 501 , where the corresponding sub-pixel pits may be all the sub-pixel pits 501 or some of the sub-pixel pits 501 .
  • Step S26 forms the second transparent electrode 140 on the side of the organic light-emitting functional layer 130 away from the array substrate 200 , wherein the material and formation process of the second transparent electrode 140 may be the same as that of the first transparent electrode 120 .
  • the inorganic light-emitting chip needs to be transferred once in step S21, and the organic light-emitting functional layer is evaporated, which can simplify the manufacturing process of the display panel and reduce the difficulty of preparation.
  • the array substrate 200 includes, for example, a plurality of sub-pixels
  • step S25 includes, for example, sequentially evaporating the first hole injection layer 1311 and the first hole transport layer in the sub-pixel pits. 1321 , a first red light emitting layer 1331 , a yellow light emitting layer 1341 , a first electron transport layer 1351 and a first electron injection layer 1361 to obtain an organic light emitting functional layer 130 .
  • the specific description of the first hole injection layer 1311, the first hole transport layer 1321, the first red light emitting layer 1331, the yellow light emitting layer 1341, the first electron transport layer 1351 and the first electron injection layer 1361 can refer to the first The embodiment is not repeated here.
  • the display panel manufacturing method provided in this embodiment can realize the blue light emitted by the blue light-emitting chip, the red light emitted by the first red light-emitting layer 1331 of the organic light-emitting functional layer 130 and the red light emitted by the yellow light-emitting layer 1341 as described in the first embodiment. Yellow light mixes to create the effect of white light.
  • the array substrate 200 includes, for example, a plurality of sub-pixels
  • step S25 includes, for example, sequentially evaporating the second hole injection layer 1312, the second hole transport layer 1322, Green light-emitting layer 1371, second electron transport layer 1352, n-type charge generation layer 1381, p-type charge generation layer 1391, third hole transport layer 1323, second red light-emitting layer 1332, third electron transport layer 1353 and second The electron injection layer 1362, wherein the second hole injection layer 1312, the second hole transport layer 1322, the green light emitting layer 1371, the second electron transport layer 1352, the n-type charge generation layer 1381, the p-type charge generation layer 1391, the third
  • the specific description of the hole transport layer 1323 , the second red light emitting layer 1332 , the third electron transport layer 1353 and the second electron injection layer 1362 can refer to the first embodiment and will not be repeated here.
  • the display panel manufacturing method provided in this embodiment can realize the blue light emitted by the blue light-emitting chip, the red light emitted by the second red light-emitting layer 1332 of the organic light-emitting functional layer 130 and the emission of green light-emitting layer 1371 as described in the first embodiment.
  • the green light mixed to form the effect of white light.
  • the display panel preparation method provided in this embodiment can be used to prepare the display panel provided in the second embodiment, which has the same beneficial effects as the second embodiment, and is conducive to improving the luminous efficiency of the light-emitting units in the display panel and increasing the service life , to achieve a better display effect. And it has the characteristics of reducing the difficulty of preparing the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例公开了一种混合发光单元、一种显示面板及显示面板制备方法,本申请公开的混合发光单元包括:无机发光芯片,包括底电极和位于所述底电极一侧的无机发光功能层;第一透明电极,连接所述无机发光功能层远离所述底电极的一侧;有机发光功能层,连接所述第一透明电极远离所述无机发光芯片的一侧且与所述无机发光芯片串联;第二透明电极,连接所述有机发光功能层远离所述无机发光芯片的一侧。本申请公开的混合发光单元、显示面板和显示面板制备方法具有改善发光效率、提高使用寿命的特点。

Description

混合发光单元、显示面板及其制备方法 技术领域
本申请涉及显示技术领域,尤其涉及一种混合发光单元、一种显示面板和一种显示面板制备方法。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)显示具有自发光、对比度高、视角广、反应速度快、构造简单等特点,是新型显示的重要发展方向。实现彩色OLED显示主要有两个技术方向:红绿蓝三基色OLED发光和白光OLED+彩色滤色器(Color Filter)实现彩色化。而白光OLED器件通常由RGB三基色OLED、蓝色OLED+黄色OLED或蓝色OLED+黄色OLED+红色OLED等堆叠,多种颜色同时发光形成白光。相比与红色和绿色发光OLED材料和器件,蓝色发光OLED材料和器件的发光效率、寿命等问题一直是OLED显示无法回避的一个短板,成为OLED显示技术中的瓶颈。
因此,亟需提供一种新的显示面板,以改善现有OLED显示中蓝光器材发光效率低和使用寿命差的缺陷。
发明内容
因此,为克服现有技术中的至少部分缺陷,本申请实施例提供了一种混合发光单元、一种显示面板和一种显示面板制备方法,具有改善发光效率、提高使用寿命的特点。
具体地,一方面,本申请一个实施例提供一种混合发光单元,包括:无机发光芯片,包括底电极和位于所述底电极一侧的无机发光功能层;第一透明电极,连接所述无机发光功能层远离所述底电极的一侧;有机发光功能层,连接所述第一透明电极远离所述无机发光芯片的一侧且与所述无机发光芯片串联;第二透明电极,连接所述有机发光功能层远离所述无机发光芯片的一侧。
在本申请的一个实施例中,所述无机发光芯片为蓝色发光芯片,所述有机发光功能层包括依次叠层的第一空穴注入层、第一空穴传输层、第一红色发光层、黄色发光层、第一电子传输层和第一电子注入层;所述第一空穴注入层与所述第一透明电极相邻,所述第一电子注入层与所述第二透明电极相邻。
在本申请的一个实施例中,所述无机发光芯片为蓝色发光芯片,所述有机发光功能层包括依次叠层的第二空穴注入层、第二空穴传输层、绿色发光层、第二电子传输层、n型电荷生成层、p型电荷生成层、第三空穴传输层、第二红色发光层、第三电子传输层和第二电子注入层;所述第二空穴注入层与所述第一透明电极相邻,所述第二电子注入层与所述第二透明电极相邻。
在本申请的一个实施例中,所述无机发光功能层包括依次叠层的P掺杂层、量子阱层和N掺杂层,所述P掺杂层与所述底电极相邻,所述N掺杂层与所述第一透明电极相邻。
在本申请的一个实施例中,所述底电极选自Ni金属层、Pt金属层和Au金属层中的至少一者。
在本申请的一个实施例中,所述底电极包括高反射金属层,所述高反射金属层选自Ag金属层、Al金属层、Ti金属层和Mo金属层中的至少一者。
另一方面,本申请另一个实施例提供一种显示面板,包括:阵列基板;
前述任一实施例所述的多个混合发光单元,设置在所述阵列基板上,所述多个混合发光单元的所述底电极分别电连接所述阵列基板;
滤色基板,与所述阵列基板相对设置,位于所述混合发光单元的第二透明电极远离所述有机发光功能层的一侧。
在本申请的一个实施例中,所述显示面板还包括:平坦层,设置在所述阵列基板上,填充于所述无机发光芯片之间且平坦化所述阵列基板;所述平坦层设置有多个光阻挡结构,任意相邻两个所述无机发光芯片之间设置一个所述光阻挡结构;
像素定义层,设置在所述平坦层远离所述阵列基板的一侧,所述像素定义层包括多个子像素坑,所述多个子像素坑分别与多个所述无机发光芯片对齐;每个混合发光单元的所述第一透明电极、所述有机发光功能层和所述第二透明电极设置在所述子像素坑中。
另一方面,本申请的一个实施例提供一种显示面板制备方法,包括:提供阵列基板;在所述阵列基板上形成多个混合发光单元;所述混合发光单元包括:无机发光芯片,包括底电极和位于所述底电极一侧的无机发光功能层;第一透明电极,连接所述无机发光功能层远离所述底电极的一侧;有机发光功能层,连接所述第一透明电极远离所述无机发光芯片的一侧,且与所述无机发光芯片串联;第二透明电极,连接所述有机发光功能层远离所述无机发光芯片的一侧。
在本申请的一个实施例中,所述在所述阵列基板上形成多个混合发光单元包括:将所述混合发光单元的所述无机发光芯片转移至所述阵列基板上,使所述底电极电连接所述阵列基板;在所述阵列基板上形成平坦层,填充于所述无机发光芯片之间且平坦化所述阵列基板;在所述平坦层上分别形成第一透明电极和像素定义层;所述像素定义层包括多个子像素坑,所述多个子像素坑与所述多个混合发光单元的所述无机发光芯片对齐;在每个所述子像素坑中形成所述有机发光功能层;在所述有机发光功能层远离所述阵列基板的一侧形成所述第二透明电极。
在本申请的一个实施例中,所述无机发光芯片为蓝色发光芯片,所述在每个所述子像素坑中形成所述有机发光功能层,包括:依次蒸镀第一空穴注入层、第一空穴传输层、第一红色发光层、黄色发光层、第一电子传输层和第一电子注入层,以得到所述有机发光功能层。
在本申请的一个实施例中,所述无机发光芯片为蓝色发光芯片,所述在每个所述子像素坑 中形成有所述机发光功能层,包括:依次蒸镀第二空穴注入层、第二空穴传输层、绿色发光层、第二电子传输层、n型电荷生成层、p型电荷生成层、第三空穴传输层、第二红色发光层、第三电子传输层和第二电子注入层,以得到所述有机发光功能层。
由上可知,本申请上述实施例可以达成以下一个或多个有益效果:采用无机发光芯片和有机发光功能层串联的结构实现混合发光,可单一发光结构的缺陷,可实现更高的发光效率和使用寿命。
通过以下参考附图的详细说明,本申请的其它方面和特征变得明显。但是应当知道,该附图仅仅为解释的目的设计,而不是作为本申请的范围的限定。还应当知道,除非另外指出,不必要依比例绘制附图,它们仅仅力图概念地说明此处描述的结构和流程。
附图说明
下面将结合附图,对本申请的具体实施方式进行详细的说明。
图1为本申请一个实施例提供的一种混合发光单元的结构示意图。
图2为本申请另一个实施例提供的另一种混合发光单元的结构示意图。
图3为本申请另一个实施例提供的另一种混合发光单元的结构示意图。
图4本申请一个实施例提供的显示面板的结构示意图。
图5为本申请一个实施例提供的一种显示面板的制备方法流程图。
【附图标记说明】
100:混合发光单元;110:无机发光芯片;111:底电极;112:无机发光功能层;1121:P掺杂层;1122:量子阱层;1123:N掺杂层;120:第一透明电极;130:有机发光功能层;1311:第一空穴注入层;1312:第二空穴注入层;1321:第一空穴传输层;1322:第二空穴传输层;1323:第三空穴传输层;1331:第一红色发光层;1332:第二红色发光层;1341:黄色发光层;1351:第一电子传输层;1352:第二电子传输层;1353:第三电子传输层;1361:第一电子注入层;1362:第二电子注入层;1371:绿色发光层;1381:n型电荷生成层;1391:p型电荷生成层;140:第二透明电极;200:阵列基板;300:滤色基板;400:平坦层;401:光阻挡结构;500:像素定义层;501:子像素坑。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。
为了使本领域普通技术人员更好地理解本申请的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。
还需要说明的是,本申请中多个实施例的划分仅是为了描述的方便,不应构成特别的限定,各种实施例中的特征在不矛盾的情况下可以相结合,相互引用。
【第一实施例】
如图1所示,其为本申请一个实施例提供的一种混合发光单元100的结构示意图,混合发光单元100包括:无机发光芯片110、第一透明电极120、有机发光功能层130以及第二透明电极140。其中,无机发光芯片110包括底电极111和位于底电极111一侧的无机发光功能层112,第一透明电极120连接无机发光功能层112远离底电极111的一侧。有机发光功能层130连接第一透明电极120远离无机发光芯片110的一侧且与无机发光芯片110串联。第二透明电极140连接有机发光功能层130远离无机发光芯片110的一侧。
其中,无机发光芯片110例如为Micro-LED(Micro Light Emitting Diode),微型发光二极管)芯片,LED(Light Emitting Diode)即无机发光二极管,Micro-LED则是微米级的LED。有机发光功能层130例如为OLED型发光结构,其发光原理为电子通过阴极注入到发光层(EML,Emission Layer)中,空穴通过阳极注入到发光层中,电子和空穴在发光层中复合而发射出光。本申请实施例通过将有机发光功能层130与无机发光芯片110串联起来,实现混合发光,可以将OLED和Micro-LED的优点结合、互相弥补缺陷,实现更好的发光效果。以下对本申请实施例提供的混合发光单元100的具体结构作进一步的描述。
在本申请的一个实施例中,参照图1,无机发光功能层112例如包括依次叠层的P掺杂层1121,量子阱层1122和N掺杂层1123,P掺杂层1121与底电极111相邻,N掺杂层1123与第一透明电极120相邻。P掺杂层1121和N掺杂层1123为不同掺杂类型的半导体材料,例如蓝色Micro-LED,通常采用氮化镓(GaN)材料,则P掺杂层1121例如为p型GaN,N掺杂层1123为例如为n型GaN。量子阱层1122例如采用InGaN/GaN多层量子阱(MQW)结构。当然以上材料仅为举例说明,并不能作为限制理解本实施例的条件,本案的无机发光功能层112也可以采用其它半导体材料。底电极111可以选择透明电极材料,也可以选择与P掺杂层1121形成良好欧姆接触的金属电极材料,可以是单层金属,具体的例如可选择Ni(镍)、Pt(铂)或者Au(金),也可以是两层或者两层以上的复合金属层,例如采用Ag(银)、Al (铝)、Ti(钛)或者Mo(钼)等高反射金属层与Ni、Pt、Au等形成的双层或多层结构,具体的双层结构例如为Ni/Ag或者Ni/Al等,三层结构例如为Ni/Ag/Au或者Ni/Pt/Au等。第一透明电极120和第二透明电极140例如采用ITO(氧化铟锡)材料或者IZO(铟锌氧化物)材料。
在本申请的一个实施例中,无机发光芯片110为蓝色发光芯片,如图2所示,有机发光功能层130具体地例如包括依次叠层的第一空穴注入层1311、第一空穴传输层1321、第一红色发光层1331、黄色发光层1341、第一电子传输层1351和第一电子注入层1361;第一空穴注入层1311与第一透明电极120相邻,第一电子注入层1361与第二透明电极140相邻。第一空穴注入层1311的材料例如有CuPc(聚酯碳酸)等,第一空穴传输层1321的材料例如有PVK(聚乙烯基咔唑)等,第一电子传输层1351的材料例如有Alq3(8-羟基喹啉铝)等,第一电子注入层1361的材料例如有LiF(氟化锂)、MgF 2(氟化镁)、Liq(8-羟基喹啉锂)等,当然,第一红色发光层1331可采用常用的红色EML材料,黄色发光层1341可采用常用的黄色EML材料。
本实施例中,混合发光单元100工作时由蓝色发光芯片发出的蓝光与有机发光功能层130的第一红色发光层1331发出的红光以及黄色发光层1341发出的黄光混合形成白光,相当于蓝光Micro-LED+红黄光OLED的混合发光结构,可弥补蓝光OLED发光效率和寿命上的缺陷。当然,此处仅是为了便于描述本申请混合发光单元100的混合发光效果,并不能限制理解为混合发光单元100的结构是Micro-LED和OLED的简单叠加。
在本申请的另一个实施例中,无机发光芯片110为蓝色发光芯片,如图3所示,有机发光功能层130具体地例如包括依次叠层的第二空穴注入层1312、第二空穴传输层1322、绿色发光层1371、第二电子传输层1352、n型电荷生成层1381、p型电荷生成层1391、第三空穴传输层1323、第二红色发光层1332、第三电子传输层1353和第二电子注入层1362;第二空穴注入层1312与第一透明电极120相邻,第二电子注入层1362与第二透明电极140相邻。其中,第二空穴注入层1312的材料可参考第一空穴注入层1311且可与第一空穴注入层1311材料相同或不同,第二空穴传输层1322、第三空穴传输层1323的材料可参考第一空穴传输层1322,且可以第一空穴传输层1322材料相同或不同,第二电子传输层1352和第三电子传输层1353的材料可参考第一电子传输层1351的材料,且可与第一电子传输层1351材料相同或者不同,第二电子注入层1362的材料可参考第一电子注入层1361的材料,且可与第一电子注入层1361的材料相同或不同。n型电荷生成层1381和p型电荷生成层为不同掺杂类型的CGL(Charge Generation Layer)层材料,CGL材料例如有n型掺杂的有机层/无机金属氧化物,如Alq 3:Mg/WO 3,Bphen:Li/MoO 3,BCP:Li/V 2O 5和BCP:Cs/V 2O 5;n型掺杂的有机层/有机层,如Alq 3:Li/HAT-CN;n型掺杂的有机层/p型掺杂的有机层,如BPhen:Cs/NPB:F 4-TCNQ,Alq 3:Li/NPB:FeCl 3,TPBi:L i/NPB:FeCl 3和Alq 3:Mg/m-MTDATA:F 4-TCNQ等。第二红色发光层1332的材料可与第一红色发光层的材料相同或者不同,绿色发光层1371可采用常用的绿色EML材料。
在本实施例中,混合发光单元100工作时由蓝色发光芯片发出的蓝光与有机发光功能层130的第二红色发光层1332发出的红光以及绿色发光层1371发出的绿光混合形成白光,相当于蓝光Micro-LED+红绿光OLED的混合发光结构,可弥补蓝光OLED发光效率和寿命上的缺陷。当然,此处仅是为了便于描述本申请混合发光单元100的混合发光效果,并不能限制理解为混合发光单元100的结构是Micro-LED和OLED的简单叠加。
【第二实施例】
本申请的第二实施例提供一种显示面板,参照图4,本实施例提供的显示面板包括阵列基板200、多个混合发光单元100和滤色基板300。其中,混合发光单元100包括:无机发光芯片110、第一透明电极120、有机发光功能层130以及第二透明电极140。其中,无机发光芯片110包括底电极111和位于底电极111一侧的无机发光功能层112,第一透明电极120连接无机发光功能层112远离底电极111的一侧。有机发光功能层130连接第一透明电极120远离无机发光芯片110的一侧且与无机发光芯片110串联。第二透明电极140连接有机发光功能层130远离无机发光芯片110的一侧。混合发光单元100设置在阵列基板200上,通过无机发光芯片110的底电极111电连接阵列基板200。滤色基板300与阵列基板200相对设置,位于第二透明电极140远离有机发光功能层130的一侧。其中,混合发光单元100的具体结构可参照前述第一实施例的描述,此处不再赘述。
其中,阵列基板200包括多个子像素,其中多个子像素例如指的是显示面板上对应多个发光灯点的位置,例如在RGB显示面板中多个发光灯点包括红色灯点、绿色灯点和蓝色灯点,每个灯点位置为一个子像素,例如一个RGB显示面板的像素为1080*960,则该面板上设置有1080*960个像素单元,每个像素单元设置有一个红色灯点、一个绿色灯点和一个蓝色灯点,即每个像素单元包括3个子像素,该显示面板的阵列基板200上则包括1080*960*3个子像素。阵列基板200上子像素的数量可以等于也可以大于混合发光单元100的数量,例如每个灯点位置的灯点都是混合发光单元100,则子像素数量等于混合发光单元100的数量,例如只有部分灯点位置设置混合发光单元100,剩余的其他灯点位置设置其他发光器件,例如普通的Micro-LED芯片,则子像素数量大于混合发光单元100的数量。其不同子像素设置的混合发光单元100的结构可以相同也可以不相同,具体的例如第一实施例中混合发光结构100中的有机发光功能层130可以是包括第一红色发光层1331和黄色发光层1351的红黄发光结构,也可以是包括第二红色发光层1332和绿色发光层1371的红绿发光结构,不同子像素可分别设置上述的具有红黄发光结构的混合发光单元100和具有红绿发光结构的混合发光单元100,或者,所有子像素设置的均为具有红黄发光结构的混合发光单元100,再或者所有子像素设置的均为具 有红绿发光结构的混合发光单元100,本实施例并不限制。阵列基板200上例如设置有电路层结构,电路层结构可包括走线(例如数据线、扫描线)、TFT(Thin Film Transistor)薄膜晶体管以及电容等其它合适的元件,底电极111例如连接TFT薄膜晶体管以实现与阵列基板200的电连接。滤色基板300上例如设置有彩色滤色器(Color Filter)以选择对应区域发出光的颜色,不同颜色的滤色器之间例如还设置有黑色矩阵。混合发光单元100工作时蓝色发光芯片发出的蓝光和有机发光功能层130发出的红黄光或者红绿光混合形成白光,通过滤色基板300过滤成对应颜色的光,例如滤色基板上设置有对应与R(红色)、G(绿色)、B(蓝色)三色的彩色滤色器,则混合发光单元100发出的白光对应过滤成R、G、B三色的光,当然,本实施例并不限制于RGB三色显示,由于混合发光单元100发出白光,通过搭配不同颜色的滤色器可转换为不同颜色的光,因此根据滤色基板300的不同设置还可以实现其它颜色,例如还可以设置Y(黄色)滤色器,结合滤色器特定的排列方式可以实现RGBY四色显示等。
在一个实施例中,如图4所示,显示面板中例如还包括平坦层400,设置在阵列基板200上,填充于无机发光芯片110之间以平坦化阵列基板200的表面,平坦层400可以采用透明材料也可以采用不透明材料,例如采用透明材料时平坦层400设置有多个光阻挡结构401,任意相邻的两个无机发光芯片110之间设置有一个光阻挡结构401,以防止相邻子像素的无机发光芯片110的漏光干扰,当然平坦层400为不透明材料时可不设置光阻挡结构401。显示面板还包括像素定义层500,以定义出多个子像素,像素定义层500包括多个子像素坑501,每个子像素坑501对应一个子像素,即每个子像素坑501对应一个灯点位置,像素定义层500例如包括从平坦层400朝远离阵列基板200突出的像素定义结构,每相邻的两个灯点位置之间设置该像素定义结构,以对应每个灯点位置形成该子像素坑501。当然本实施例并不限制于此。本实施例提供的显示面板可以是有源驱动(AM,Active Matrix),也可以是无源驱动(PM,Passive Matrix),本实施例并不限制。
本实施例提供的显示面板采用将有机发光功能层130与无机发光芯片110串联发光结构,实现混合发光,可以将OLED发光和Micro-LED发光的优点结合、互相弥补缺陷,实现更好的发光效果。尤其无机发光芯片110采用蓝色发光芯片时,可改善传统OLED显示中蓝色OLED发光效率低和寿命差的问题。
第二实施例提供的显示面板可以采用如本申请第一实施例提供的混合发光单元100,其具有与第一实施例相同的有益效果,有利于改善显示面板中发光单元的发光效率,提高使用寿命,实现更佳的显示效果。
【第三实施例】
本实施例提供一种显示面板制备方法,包括如下步骤:
S1:提供阵列基板;
S2:在所述阵列基板上形成多个混合发光单元;其中混合发光单元例如可以是本申请第一实施例提供的混合发光单元100,包括:无机发光芯片110、第一透明电极120、有机发光功能层130以及第二透明电极140。其中,无机发光芯片110包括底电极111和位于底电极111一侧的无机发光功能层112,第一透明电极120连接无机发光功能层112远离底电极111的一侧。有机发光功能层130连接第一透明电极120远离无机发光芯片110的一侧且与无机发光芯片110串联。第二透明电极140连接有机发光功能层130远离无机发光芯片110的一侧。
其中,步骤S1提供的阵列基板例如设置有电路层结构,电路层结构可包括走线(例如数据线、扫描线)、TFT(Thin Film Transistor)薄膜晶体管以及电容等其它合适的元件,底电极111例如连接TFT薄膜晶体管以实现与阵列基板的电连接。步骤S2形成该混合发光单元100的同时还可以在阵列基板200上形成其它类型的发光结构,例如还包括独立发光的Micro-LED发光结构,本实施例并不限制。当然,该显示面板制备方法例如还包括步骤S3:在阵列基板边缘涂布框胶后将滤色基板与阵列基板对组并固化,以组装形成显示面板。
具体的,参照图5,在本申请的一个实施例中,步骤S2例如还包括:
S21:将所述混合发光单元的所述无机发光芯片转移至所述阵列基板上,使所述底电极电连接所述阵列基板;
S22:在所述阵列基板上形成平坦层,填充于所述无机发光芯片之间以平坦化所述阵列基板;
S23:在所述平坦层上分别形成所述第一透明电极和像素定义层,所述像素定义层包括多个子像素坑,所述多个子像素坑分别与所述多个混合发光单元的所述无机发光芯片对齐;
S25:在每个所述子像素坑中形成所述有机发光功能层;
S26:在所述有机发光功能层远离所述阵列基板的一侧形成所述第二透明电极。
具体地,步骤S21将多个发光单元的无机发光芯片110转移至阵列基板200上,该无机发光芯片110用于形成混合发光单元100,当然,在执行步骤S21的同时还可以转移除混合发光单元100的无机发光芯片110以外的其他发光结构,其中阵列基板200上已经形成连接线路等,步骤S22在阵列基板200上形成平坦层400,平坦层400填充于无机发光芯片110之间,并且通过化学机械抛光或者等离子蚀刻等方法对平坦层400进一步加工,以使无机发光芯片110的上表面露出并与平坦层400平齐。当平坦层400采用透明材料时,步骤S22还可以包括:在所述平坦层中,每相邻两个所述无机发光芯片之间设置光阻挡结构;步骤S23在平坦层400上形成第一透明电极120后形成像素定义层500,或者也可以先形成像素定义层500,再在每个子像素坑501中形成第一透明电极120,其中第一透明电极120例如采用溅射工艺或者蒸镀工艺形成ITO膜层,并采用光刻工艺蚀刻出透明像素电极。当然本实施例并不限制第一透明电极120的材料和形成方式,条件允许的形况下例如也可以采用IZO材料等,蚀刻工艺也可以采用 化学溶液蚀刻。像素定义层500包括多个子像素坑501,子像素坑501与无机发光芯片110对齐设置,以定义出子像素位置,关于像素定义层500、子像素坑501和子像素的描述可参照第二实施例,在此不再赘述。步骤S25如图8所示,在对应的子像素坑501中形成有机发光功能层130,其中对应的子像素坑可以是全部子像素坑501或者其中部分子像素坑501。步骤S26在有机发光功能层130远离阵列基板200的一侧形成第二透明电极140,其中第二透明电极140的材料和形成工艺可以与第一透明电极120相同。
本实施例的显示面板制备方法,只有步骤S21中需要转移一次无机发光芯片,有机发光功能层采用蒸镀的方式,可以简化显示面板的制备过程,降低制备难度。
进一步的,在本申请的一个实施例中,阵列基板200例如包括多个子像素,步骤S25例如包括:在所述子像素坑中依次蒸镀第一空穴注入层1311、第一空穴传输层1321、第一红色发光层1331、黄色发光层1341、第一电子传输层1351和第一电子注入层1361,以得到有机发光功能层130。其中,第一空穴注入层1311、第一空穴传输层1321、第一红色发光层1331、黄色发光层1341、第一电子传输层1351和第一电子注入层1361的具体描述可参照第一实施例,再此不在赘述。本实施例提供的显示面板制备方法可实现如第一实施例所述的蓝色发光芯片发出的蓝光与有机发光功能层130的第一红色发光层1331发出的红光以及黄色发光层1341发出的黄光混合形成白光的效果。
在本申请的另一个实施例中,阵列基板200例如包括多个子像素,步骤S25例如包括:在所述子像素坑中依次蒸镀第二空穴注入层1312、第二空穴传输层1322、绿色发光层1371、第二电子传输层1352、n型电荷生成层1381、p型电荷生成层1391、第三空穴传输层1323、第二红色发光层1332、第三电子传输层1353和第二电子注入层1362,其中第二空穴注入层1312、第二空穴传输层1322、绿色发光层1371、第二电子传输层1352、n型电荷生成层1381、p型电荷生成层1391、第三空穴传输层1323、第二红色发光层1332、第三电子传输层1353和第二电子注入层1362的具体描述可参照第一实施例在此不赘述。本实施例提供的显示面板制备方法可实现如第一实施例所述的由蓝色发光芯片发出的蓝光与有机发光功能层130的第二红色发光层1332发出的红光以及绿色发光层1371发出的绿光混合形成白光的效果。
本实施例提供的显示面板制备作方法可以用于制备第二实施例提供的显示面板,其具有与第二实施例相同的有益效果,有利于改善显示面板中发光单元的发光效率,提高使用寿命,实现更佳的显示效果。且具有降低显示面板制备难度的特点。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任 何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (12)

  1. 一种混合发光单元,其包括:
    无机发光芯片,包括底电极和位于所述底电极一侧的无机发光功能层;
    第一透明电极,连接所述无机发光功能层远离所述底电极的一侧;
    有机发光功能层,连接所述第一透明电极远离所述无机发光芯片的一侧且与所述无机发光芯片串联;
    第二透明电极,连接所述有机发光功能层远离所述无机发光芯片的一侧。
  2. 如权利要求1所示的混合发光单元,其中,所述无机发光芯片为蓝色发光芯片,所述有机发光功能层包括依次叠层的第一空穴注入层、第一空穴传输层、第一红色发光层、黄色发光层、第一电子传输层和第一电子注入层;所述第一空穴注入层与所述第一透明电极相邻,所述第一电子注入层与所述第二透明电极相邻。
  3. 如权利要求1所示的混合发光单元,其中,所述无机发光芯片为蓝色发光芯片,所述有机发光功能层包括依次叠层的第二空穴注入层、第二空穴传输层、绿色发光层、第二电子传输层、n型电荷生成层、p型电荷生成层、第三空穴传输层、第二红色发光层、第三电子传输层和第二电子注入层;所述第二空穴注入层与所述第一透明电极相邻,所述第二电子注入层与所述第二透明电极相邻。
  4. 如权利要求1所述的混合发光单元,其中,所述无机发光功能层包括依次叠层的P掺杂层、量子阱层和N掺杂层,所述P掺杂层与所述底电极相邻,所述N掺杂层与所述第一透明电极相邻。
  5. 如权利要求1所述的混合发光单元,其中,所述底电极选自Ni金属层、Pt金属层和Au金属层中的至少一者。
  6. 如权利要求5所述的混合发光单元,其中,所述底电极包括高反射金属层,所述高反射金属层选自Ag金属层、Al金属层、Ti金属层和Mo金属层中的至少一者。
  7. 一种显示面板,其包括:
    阵列基板;
    如权利要求1-6中任意一项所述的多个混合发光单元,设置在所述阵列基板上,所述多个混合发光单元的所述底电极分别电连接所述阵列基板;
    滤色基板,与所述阵列基板相对设置,位于所述混合发光单元的第二透明电极远离所述有机发光功能层的一侧。
  8. 如权利要求7所述的显示面板,其中,还包括:平坦层,设置在所述阵列基板上,填充于所述无机发光芯片之间且平坦化所述阵列基板;所述平坦层设置有多 个光阻挡结构,任意相邻两个所述无机发光芯片之间设置一个所述光阻挡结构;
    像素定义层,设置在所述平坦层远离所述阵列基板的一侧,所述像素定义层包括多个子像素坑,所述多个子像素坑分别与多个所述无机发光芯片对齐;每个混合发光单元的所述第一透明电极、所述有机发光功能层和所述第二透明电极设置在所述子像素坑中。
  9. 一种显示面板制备方法,其包括:
    提供阵列基板;
    在所述阵列基板上形成多个混合发光单元;
    所述混合发光单元包括:
    无机发光芯片,包括底电极和位于所述底电极一侧的无机发光功能层;
    第一透明电极,连接所述无机发光功能层远离所述底电极的一侧;
    有机发光功能层,连接所述第一透明电极远离所述无机发光芯片的一侧,且与所述无机发光芯片串联;
    第二透明电极,连接所述有机发光功能层远离所述无机发光芯片的一侧。
  10. 如权利要求9所述的显示面板制备方法,其中,所述在所述阵列基板上形成多个混合发光单元包括:
    将所述混合发光单元的所述无机发光芯片转移至所述阵列基板上,使所述底电极电连接所述阵列基板;
    在所述阵列基板上形成平坦层,填充于所述无机发光芯片之间且平坦化所述阵列基板;
    在所述平坦层上分别形成第一透明电极和像素定义层,所述像素定义层包括多个子像素坑,所述多个子像素坑与所述多个混合发光单元的所述无机发光芯片对齐;
    在每个所述子像素坑中形成所述有机发光功能层;
    在所述有机发光功能层远离所述阵列基板的一侧形成所述第二透明电极。
  11. 如权利要求10所述的显示面板制备方法,其中,所述无机发光芯片为蓝色发光芯片,所述在每个所述子像素坑中形成所述有机发光功能层,包括:
    依次蒸镀第一空穴注入层、第一空穴传输层、第一红色发光层、黄色发光层、第一电子传输层和第一电子注入层,以得到所述有机发光功能层。
  12. 如权利要求10所述的显示面板制备方法,其中,所述无机发光芯片为蓝色发光芯片,所述在每个所述子像素坑中形成所述有机发光功能层,包括:
    依次蒸镀第二空穴注入层、第二空穴传输层、绿色发光层、第二电子传输层、n型电荷生成层、p型电荷生成层、第三空穴传输层、第二红色发光层、第三电子传 输层和第二电子注入层,以得到所述有机发光功能层。
PCT/CN2021/134065 2021-11-29 2021-11-29 混合发光单元、显示面板及其制备方法 WO2023092571A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134065 WO2023092571A1 (zh) 2021-11-29 2021-11-29 混合发光单元、显示面板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134065 WO2023092571A1 (zh) 2021-11-29 2021-11-29 混合发光单元、显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2023092571A1 true WO2023092571A1 (zh) 2023-06-01

Family

ID=86538764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134065 WO2023092571A1 (zh) 2021-11-29 2021-11-29 混合发光单元、显示面板及其制备方法

Country Status (1)

Country Link
WO (1) WO2023092571A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060186793A1 (en) * 2005-02-18 2006-08-24 Au Optronics Corp. Organic electro-luminescence diode
CN103094269A (zh) * 2013-02-07 2013-05-08 厦门市三安光电科技有限公司 白光发光器件及其制作方法
KR20140043218A (ko) * 2012-09-26 2014-04-08 한국기계연구원 수명이 향상된 유·무기 복합 탠덤 태양전지 및 이의 제조방법
US20180166512A1 (en) * 2015-09-18 2018-06-14 Universal Display Corporation Hybrid display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060186793A1 (en) * 2005-02-18 2006-08-24 Au Optronics Corp. Organic electro-luminescence diode
KR20140043218A (ko) * 2012-09-26 2014-04-08 한국기계연구원 수명이 향상된 유·무기 복합 탠덤 태양전지 및 이의 제조방법
CN103094269A (zh) * 2013-02-07 2013-05-08 厦门市三安光电科技有限公司 白光发光器件及其制作方法
US20180166512A1 (en) * 2015-09-18 2018-06-14 Universal Display Corporation Hybrid display

Similar Documents

Publication Publication Date Title
US10461131B2 (en) Quantum dot LED and OLED integration for high efficiency displays
JP2021120953A (ja) 発光パネル及び表示装置
US9640591B2 (en) Method of manufacturing organic light emitting display device
US9655199B2 (en) Four component phosphorescent OLED for cool white lighting application
Chang et al. Enhancing color gamut of white OLED displays by using microcavity green pixels
JP4408382B2 (ja) 有機発光表示装置
TWI682538B (zh) 有機電致發光器件和有機電致發光裝置
TWI653772B (zh) 有機發光二極體裝置
JPWO2018021170A1 (ja) 表示装置の製造方法および表示装置
JP2003017264A (ja) 電界発光素子及び画像表示装置
CN113097399B (zh) 有机电致发光器件、显示基板和显示装置
CN114628451A (zh) 显示基板和显示装置
CN114628448A (zh) 显示基板及其制作方法和显示装置
JP2003187977A (ja) 有機el素子
WO2024046290A1 (zh) 发光器件、显示面板及其制备方法
CN114038886A (zh) 电致发光器件、其制备方法和显示器件
CN111668380A (zh) 显示基板及其制备方法、显示装置
WO2023092571A1 (zh) 混合发光单元、显示面板及其制备方法
TW200407049A (en) Organic light-emitting device and fabrication method thereof
CN111490070B (zh) 显示面板
WO2023092572A1 (zh) 混合发光单元、显示面板及其制备方法
WO2023102839A1 (zh) 叠层发光单元及其制备方法和显示面板
CN116209329A (zh) 混合发光单元、显示面板及其制备方法
WO2023273519A1 (zh) 显示面板、其制备方法和终端
WO2022113179A1 (ja) 表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965301

Country of ref document: EP

Kind code of ref document: A1