WO2023090911A1 - 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법 - Google Patents

음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법 Download PDF

Info

Publication number
WO2023090911A1
WO2023090911A1 PCT/KR2022/018234 KR2022018234W WO2023090911A1 WO 2023090911 A1 WO2023090911 A1 WO 2023090911A1 KR 2022018234 W KR2022018234 W KR 2022018234W WO 2023090911 A1 WO2023090911 A1 WO 2023090911A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
active material
weight
negative electrode
parts
Prior art date
Application number
PCT/KR2022/018234
Other languages
English (en)
French (fr)
Inventor
전현민
김동혁
이용주
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280034049.1A priority Critical patent/CN117280495A/zh
Priority to US18/288,784 priority patent/US20240250240A1/en
Priority to EP22896108.2A priority patent/EP4322255A1/en
Priority to JP2023565285A priority patent/JP2024515127A/ja
Publication of WO2023090911A1 publication Critical patent/WO2023090911A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a negative electrode including the negative electrode active material, a secondary battery including the negative electrode, and a method for manufacturing the negative electrode active material.
  • lithium secondary batteries are in the limelight as a driving power source for portable devices because they are lightweight and have high energy density. Accordingly, research and development efforts to improve the performance of lithium secondary batteries are being actively conducted.
  • a lithium secondary battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an electrolyte solution, an organic solvent, and the like.
  • active material layers each including a positive electrode active material and a negative electrode active material may be formed on the current collector on the positive electrode and the negative electrode.
  • a lithium-containing metal oxide such as LiCoO 2 or LiMn 2 O 4 is used as a cathode active material for the cathode, and a carbon-based active material or a silicon-based active material that does not contain lithium is used as an anode active material for the anode.
  • silicon-based active materials have attracted attention in that they have higher capacity than carbon-based active materials and excellent high-speed charging characteristics.
  • the silicon-based active material has a high degree of volume expansion/contraction due to charging and discharging, and has a high irreversible capacity, so the initial efficiency is low.
  • Patent Document 1 Korea Patent Registration No. 10-1308948
  • the present invention relates to a negative electrode active material, a negative electrode including the negative electrode active material, a secondary battery including the negative electrode, and a method for manufacturing the negative electrode active material.
  • An exemplary embodiment of the present invention is a silicon-based particle; And at least one element selected from the group consisting of B and P distributed in the silicon-based particles; wherein the silicon-based particles include 95 parts by weight or more of Si based on 100 parts by weight of the total silicon-based particles. And, the element provides an anode active material having a concentration gradient increasing from the center to the surface of the silicon-based composite.
  • One embodiment of the present invention is preparing a metal silicon; Preparing a doping source containing at least one compound selected from the group consisting of a compound containing B and a compound containing P; and mixing the metal silicon and the doping source and then heat-treating at a temperature equal to or higher than the boiling point of the doping source.
  • One embodiment of the present invention provides an anode including the anode active material.
  • One embodiment of the present invention provides a secondary battery including the negative electrode.
  • the negative electrode active material according to the present invention includes a silicon-based composite in which silicon particles are doped with B or P, and the doping element has a concentration gradient that increases from the center to the surface of the silicon-based composite, and Li ion diffusion on the surface of the composite It is possible to minimize the decrease in capacity while maximizing the initial discharge capacity, which is superior to the case of using a uniformly doped active material.
  • the method for manufacturing an anode active material according to the present invention is to diffuse atoms from a doping source into silicon particles having an adjacent micron unit, and as described above, the doping element can have a high concentration to a low concentration gradient from the surface to the inside. And, since it is not a chemical synthesis method, there is an effect that mass production is easy.
  • the crystallinity of the structure included in the negative electrode active material can be confirmed through X-ray diffraction analysis, and the X-ray diffraction analysis is performed using an X-ray diffraction (XRD) analyzer (product name: D4-endavor, manufacturer: bruker).
  • XRD X-ray diffraction
  • the presence or absence of elements and the content of elements in the negative electrode active material can be confirmed through ICP analysis, and the ICP analysis can be performed using an inductively coupled plasma emission spectrometer (ICPAES, Perkin-Elmer 7300).
  • ICPAES inductively coupled plasma emission spectrometer
  • the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the cumulative volume in the particle size distribution curve (graph curve of the particle size distribution).
  • the average particle diameter (D 50 ) may be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle diameters of several millimeters in the submicron region, and can obtain results with high reproducibility and high resolution.
  • An exemplary embodiment of the present invention is a silicon-based particle; And at least one element selected from the group consisting of B and P distributed in the silicon-based particles; wherein the silicon-based particles include 95 parts by weight or more of Si based on 100 parts by weight of the total silicon-based particles. And, the element provides an anode active material having a concentration gradient increasing from the center to the surface of the silicon-based composite.
  • a method of maximizing the performance of a secondary battery including a silicon-based negative electrode active material by doping B or P on silicon particles is known.
  • the B or P since a doping source is directly added to the raw material or a method of chemical synthesis is used, the total content of the doping element included in the silicon particle can be freely adjusted, but the doping element is added to the silicon particle. will be evenly distributed.
  • the total content of the doping element is increased, the cycle of the battery is improved, but there is a problem in that the discharge capacity is reduced by that much.
  • the present invention provides an anode active material in which doping elements are concentrated on the surface of the silicon particle, thereby maximizing the diffusion of lithium ions on the surface of the silicon particle and minimizing the decrease in capacity. Accordingly, the secondary battery including the anode active material has an effect of improving initial efficiency, resistance performance, and/or lifespan characteristics while minimizing a decrease in discharge capacity of the battery.
  • the silicon-based composite is a silicon-based particle; and at least one element selected from the group consisting of B and P distributed in the silicon-based particles.
  • the element has a concentration gradient increasing from the center to the surface of the silicon-based composite.
  • the silicon-based particle may include at least one selected from the group consisting of Si and SiO x (0 ⁇ x ⁇ 2).
  • the SiO x (0 ⁇ x ⁇ 2) may be a composite containing amorphous SiO 2 and crystalline Si as silicon oxide particles.
  • the silicon-based particles may include 95 parts by weight or more of Si based on 100 parts by weight of the total silicon-based particles. Specifically, it may include 96 parts by weight or more, 96.5 parts by weight or more, 97 parts by weight or more, or 97.5 parts by weight or more.
  • the higher the upper limit of the Si content, the better, and the upper limit may be 100 parts by weight or less, 99.9 parts by weight or less, 99.5 parts by weight or less, 99 parts by weight or less, or 98.5 parts by weight or less.
  • pure silicon (Si) may be used as the silicon-based particle.
  • O may be included in less than 5 parts by weight based on the total of 100 parts by weight of the silicon-based particles. Specifically, it may be included in less than 4 parts by weight or less than 3.5 parts by weight.
  • the lower limit of the oxygen atom may be 0 parts by weight or more, 0.5 parts by weight or more, 1 part by weight or more, 1.5 parts by weight or more, or 2 parts by weight or more.
  • the content of O may be 3 parts by weight or less based on the total of 100 parts by weight of the silicon-based composite. Specifically, 0 parts by weight or more and 3 parts by weight or less, 0.1 parts by weight or more and 3 parts by weight or less, 0.5 parts by weight or more and 3 parts by weight or less, 1 part by weight or more and 3 parts by weight or less, 1.5 parts by weight or more and 3 parts by weight or less, 2 parts by weight It may be 3 parts by weight or less, 2.1 parts by weight or more and 2.9 parts by weight or less.
  • the upper limit of the amount of O may be 3 parts by weight, 2.9 parts by weight, 2.8 parts by weight, 2.6 parts by weight or 2.5 parts by weight.
  • the lower limit of the amount of O may be 0 parts by weight, 0.1 parts by weight, 0.5 parts by weight, 1 part by weight, 1.5 parts by weight, 2 parts by weight or 2.3 parts by weight.
  • the content of the aforementioned oxygen can be measured through XRF analysis. Specifically, a powder-type sample is placed in a sample cup using a Shimadzu multi-channel X-ray fluorescence analyzer, X-rays are injected, and characteristic fluorescence X-rays are analyzed according to elements generated in the sample. By analyzing the spectrum of the sample on the software, the content of each element can be known, and the proportion of oxygen in the total weight of the sample can also be confirmed.
  • the "silicon-based” particles may be primary “particles made of one mass, or may be secondary” particles formed by assembling the primary “particles”.
  • the Si corresponds to a matrix in the silicon-based particle.
  • the framework of the Si matrix is expanded to allow Li ions to move more easily, so that the ions can easily move into the particle.
  • electrical conductivity of Si particles having low conductivity is increased to increase charge and discharge performance.
  • the element to be doped may exist in a form of substituting a Si atom in the existing silicon-based particle before doping. Therefore, the lattice structure of the existing Si matrix can be expanded due to the substituted doping element.
  • the element may exist with a concentration gradient increasing from the center to the surface of the silicon-based composite.
  • the fact that the element has an increasing concentration gradient is meant to include a continuous increase and a discontinuous increase in the concentration of the element.
  • a region from the center to 0.25Ra first region
  • a region from 0.25Ra to 0.5Ra second region
  • a range from 0.5Ra to 0.75Ra It may be determined whether a concentration gradient is present by measuring the concentration of the doping element based on the region (third region) and the region from 0.75Ra to the surface (fourth region).
  • the concentration of the element in the entire third and fourth regions when the concentration of the element in the entire third and fourth regions has a higher value than the concentration of the element in the entirety of the first and second regions, it is considered to have a concentration gradient that increases from the center to the surface. can see.
  • the concentration of the element in the second region has a higher value than the concentration of the element in the first region
  • the concentration of the element in the third region has a higher value than the concentration of the element in the second region
  • the concentration of the element in the fourth region when the concentration of the element in the fourth region has a higher value than the concentration of the element in the third region, it can be regarded as having an increasing concentration gradient from the center to the surface.
  • the concentration of the doping element has a concentration gradient in which the concentration of the silicon-based composite increases from the center to the surface of the silicon-based composite, since the doping element is intensively distributed on the surface of the silicon-based composite, lithium ion diffusion on the surface of the silicon-based composite is maximized without increasing the doping amount. Therefore, the cycle performance can be improved and the decrease in capacity of the battery can be minimized.
  • one or more elements selected from the group consisting of B and P may be included in an amount of 0.1 part by weight to 50 parts by weight based on 100 parts by weight of the total silicon-based composite. Specifically, 0.5 parts by weight to 25 parts by weight, 0.5 parts by weight to 22 parts by weight, or 1 part by weight to 21 parts by weight may be included, and more specifically, 1 part by weight to 10 parts by weight, 2 parts by weight to 6 parts by weight, or 3 parts by weight Part to 5 parts by weight may be included.
  • the anode active material contains the element in the range of parts by weight, it is possible to minimize a decrease in capacity of the anode active material while forming sufficient lithium ion diffusion passages on the surface of the silicon-based particles, thereby maximizing battery capacity and improving lifespan performance. has an increasing effect.
  • the content of the element can be confirmed through ICP analysis. Specifically, after fractionating a certain amount (about 0.01 g) of the negative electrode active material, it is transferred to a platinum crucible and completely decomposed on a hot plate by adding nitric acid, hydrofluoric acid, and sulfuric acid. Then, using an induced plasma emission spectrometer (ICPAES, Perkin-Elmer 7300), a standard calibration curve is prepared by measuring the intensity of the standard solution prepared using the standard solution (5 mg/kg) at the intrinsic wavelength of the element to be analyzed. .
  • ICPAES induced plasma emission spectrometer
  • the pretreated sample solution and the blank sample are introduced into the instrument, each intensity is measured to calculate the actual intensity, and after calculating the concentration of each component against the calibration curve prepared above, the total sum is converted to the theoretical value. It is possible to analyze the element content included in the negative electrode active material prepared by the method.
  • Ra when Ra is the distance from the center of the silicon-based composite to the surface, in the region (fourth region) from the point where 0.75Ra is obtained in the direction from the center to the surface of the silicon-based composite to the surface.
  • a concentration of the element B or P included may have a higher value than a concentration of the element B or P included in the remaining region. Specifically, it may have a high value of 10% to 10,000%, and more specifically, it may have a high value of 50% to 5,000%. In another embodiment, it may have a high value of 100% to 1,000%, 100% to 800%, 100% to 700%, 100% to 600%, or 100% to 500%.
  • the concentration of the element in the specific region may mean the weight% of the element based on the total weight of the specific region.
  • the element has the above concentration gradient, lithium ion diffusion on the surface of the silicon-based composite can be maximized without increasing the doping amount of the element, thereby improving cycle performance and minimizing a decrease in battery capacity.
  • Ra when Ra is the distance from the center of the silicon-based composite to the surface, in the region (fourth region) from the point where 0.75Ra is obtained in the direction from the center to the surface of the silicon-based composite to the surface.
  • it may have a value 20% to 1,000% higher than the concentration of element P.
  • the element may have a high value of 50% to 800%, more specifically may have a high value of 70% to 600%, more specifically may have a high value of 100% to 600%, and more specifically 100% to 500% higher.
  • the element has the above concentration gradient, lithium ion diffusion on the surface of the silicon-based composite can be maximized without increasing the doping amount of the element, thereby improving cycle performance and minimizing a decrease in battery capacity.
  • Ra when Ra is the distance from the center of the silicon-based composite to the surface, in the region (fourth region) from the point where 0.75Ra is obtained in the direction from the center to the surface of the silicon-based composite to the surface.
  • it may have a value 2 to 6 times higher than the concentration of element P.
  • the element may have a value 2.3 times to 5 times higher, and more specifically, it may have a value 2.5 times to 4 times or 2.5 times to 3.5 times higher.
  • the element has the concentration gradient as described above, it is possible to maximize lithium ion diffusion on the surface of the silicon-based composite without increasing the doping amount of the element due to the optimal concentration gradient, thereby improving cycle performance and reducing battery capacity. can be minimized.
  • Ra when Ra is the distance from the center of the silicon-based composite to the surface, 0.75Ra in the direction from the center to the surface of the silicon-based composite from the point where 0.5Ra is 0.5Ra from the center of the silicon-based composite to the surface.
  • the element may have a value 3 times to 5 times higher, and more specifically, it may have a value 3.5 times to 4.5 times higher.
  • the element has the concentration gradient as described above, it is possible to maximize lithium ion diffusion on the surface of the silicon-based composite without increasing the doping amount of the element due to the optimal concentration gradient, thereby improving cycle performance and reducing battery capacity. can be minimized.
  • the distance Ra from the center to the surface of the silicon-based composite can be calculated as the radius when the silicon-based composite is converted into a sphere having the same cross-sectional area.
  • the center of the silicon-based composite may mean the center of gravity of the silicon-based composite.
  • the concentration of the B or P element in the area corresponding to 40% by volume based on the total volume of the silicon-based composite in the surface direction from the center of the silicon-based composite corresponds to the remaining 60% by volume
  • the concentration of element B or P in the region may be high.
  • the concentration of the element B or P contained in the area corresponding to 40% by volume based on the total volume of the silicon-based composite in the direction from the center to the surface of the silicon-based composite corresponds to the remaining 60% by volume
  • the concentration in the area to be may have a high value of 10% to 10,000%. Specifically, it may have a high value of 50% to 5,000%, and more specifically, it may have a high value of 100% to 1,000%. In another embodiment, it may have a high value of 100% to 800%, more specifically, it may have a high value of 100% to 600%, and more specifically, it may have a high value of 100% to 500%.
  • the element has the above concentration gradient, lithium ion diffusion on the surface of the silicon-based composite can be maximized without increasing the doping amount of the element, thereby improving cycle performance and minimizing a decrease in battery capacity.
  • the weight of the B or P element included in the area (fourth area) from the point where 0.75Ra becomes 0.75Ra in the surface direction from the center of the silicon-based composite to the surface is the weight of the element B or P included in the remaining area. It can have a value higher than the weight of the B or P element. Specifically, it may have a high value of 50% to 2,000%, more specifically, it may have a high value of 70% to 1,500%, more specifically, it may have a high value of 100% to 1,300%, and more specifically, it may have a value of 200% It can have values from 1,000% to as high as 1,000%.
  • the remaining area may mean an area from the center of the silicon-based composite to a point where 0.75Ra becomes 0.75Ra in the surface direction.
  • the lower limit of the content of the doping element (B or P element) in the second region may be 0.05% by weight.
  • the content of the doping element in the second region may be 0.05 wt% to 5 wt%, 0.05 wt% to 3.5 wt%, or 0.1 wt% to 3 wt%.
  • the lower limit of the content of the doping element in the third region may be 0.05% by weight or 0.1% by weight.
  • the content of the doping element in the third region may be 0.1 wt% to 15 wt% or less or 0.5 wt% to 12 wt%.
  • the lower limit of the content of the doping element in the fourth region may be 1% by weight.
  • the content of the doping element in the third region may be 1 wt% to 40 wt% or less, 2 wt% to 35 wt%, or 3 wt% to 30 wt%.
  • the doping does not smoothly reach the inside of the silicon-based particle and the doping element is located only on the surface of the particle, so the doping amount itself is small and the doped materials in the cleaning process of the active material There is a problem of being easily removed, or a problem of reducing the discharge capacity due to excessive doping.
  • the concentration of the O element contained in the O element included in the region (third region) from the point at which 0.5Ra is 0.5Ra in the direction from the center to the surface of the silicon-based composite to the point at which 0.75Ra is reached in the direction from the center to the surface of the silicon-based composite It can have a value 1.1 to 10 times higher than the concentration. Specifically, it may have a value that is 1.2 to 8 times, 1.2 to 5 times, or 1.3 to 3 times higher.
  • the crystal grains of the Si may be 5 nm to 1,000 nm. Specifically, it may be 10 nm to 500 nm, or 50 nm to 300 nm, 100 nm to 300 nm, 150 nm to 300 nm, or 180 nm to 300 nm. More specifically, it may be 180 nm to 260 nm.
  • the Si crystal grains satisfy the above range, Li ions are more uniformly diffused into the Si crystal grains to prevent accelerated deterioration of the material, and the structure of the Si particles is stably maintained during charging and discharging to improve cell lifespan. has the effect of
  • a carbon layer may be provided on at least a part of the surface of the silicon-based composite.
  • the carbon layer may be partially coated on at least a part of the surface, that is, the surface of the composite, or may be coated on the entire surface of the composite. Conductivity is imparted to the anode active material by the carbon layer, and initial efficiency, lifespan characteristics, and battery capacity characteristics of a secondary battery may be improved.
  • the carbon layer may include crystalline carbon or amorphous carbon, and preferably may include amorphous carbon.
  • the crystalline carbon may further improve conductivity of the anode active material.
  • the crystalline carbon may include at least one selected from the group consisting of florene, carbon nanotubes, and graphene.
  • the amorphous carbon can properly maintain the strength of the carbon layer and suppress the expansion of the silicon-based particles.
  • the amorphous carbon may be a carbon-based material formed by using at least one carbide selected from the group consisting of tar, pitch, and other organic materials, or a hydrocarbon as a source of chemical vapor deposition.
  • the other organic carbide may be an organic carbide selected from carbides of sucrose, glucose, galactose, fructose, lactose, mannose, ribose, aldohexose or ketohexose, and combinations thereof.
  • the hydrocarbon may be a substituted or unsubstituted aliphatic or alicyclic hydrocarbon or a substituted or unsubstituted aromatic hydrocarbon.
  • the aliphatic or alicyclic hydrocarbon of the substituted or unsubstituted aliphatic or alicyclic hydrocarbon may be metherine, etherin, ethylene, acetylene, propane, butane, butene, pentane, isobutane or hexane.
  • Aromatic hydrocarbons of the substituted or unsubstituted aromatic hydrocarbons include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumaron, pyridine, Anthracene, phenanthrene, etc. are mentioned.
  • the carbon layer may be formed by heat treatment after disposing a carbonaceous precursor on a silicon-based composite.
  • the carbonaceous precursor may be graphene and graphite for producing crystalline carbon, and at least one carbide selected from the group consisting of tar, pitch, and other organic materials for producing amorphous carbon, or hydrocarbons such as methane, ethane, and acetylene. It may be a carbon-based material formed by using as a source of chemical vapor deposition.
  • the carbon layer is 0.1 parts by weight to 50 parts by weight, specifically 0.5 parts by weight to 10 parts by weight or 20 parts by weight, more specifically 2 parts by weight based on 100 parts by weight of the negative electrode active material. part to 4 parts by weight.
  • reduction in capacity and efficiency may be prevented by reducing side reactions and increasing electrical conductivity through surface coating of the negative electrode active material.
  • the average particle diameter (D 50 ) of the negative active material may be 0.5 ⁇ m to 50 ⁇ m, specifically 2 ⁇ m to 20 ⁇ m, more specifically 2 ⁇ m to 10 ⁇ m, and more specifically 2 ⁇ m to 7 ⁇ m.
  • the particle size of the negative electrode active material may be adjusted through a method such as a ball mill, a jet mill, or air flow classification, but is not limited thereto.
  • One embodiment of the present invention is preparing a metal silicon; Preparing a doping source containing at least one compound selected from the group consisting of a compound containing B and a compound containing P; and mixing the metal silicon and the doping source and then heat-treating at a temperature equal to or higher than the boiling point of the doping source.
  • a method of maximizing the performance of a secondary battery including a silicon-based negative electrode active material by doping silicon-based particles with a B or P element is known.
  • a method of directly introducing a doping source into a silicon raw material in a liquid state or chemically synthesizing the material was used.
  • the negative electrode active material is prepared in the above manner, the doping element is uniformly distributed in the silicon particles.
  • the total content of the doping element is increased, the cycle of the battery is improved, but the discharge capacity is reduced by the same amount.
  • the present invention provides a method for manufacturing an anode active material in which metal silicon whose particle size is adjusted to micron size is mixed with a doping source and heat treated to intensively distribute doping elements on the surface of silicon particles.
  • the anode active material prepared as described above has an effect of improving initial efficiency, resistance performance, and/or lifespan characteristics while minimizing a decrease in discharge capacity of a battery by minimizing a decrease in capacity while maximizing diffusion of lithium ions on the surface of a silicon-based composite. there is.
  • reaction conditions are milder than conventional methods, and it is not a chemical synthesis method, there is an advantage in that mass production is easy.
  • the metallic silicon means a silicon raw material having a purity of 99% or more of Si.
  • metal silicon used in the field may be appropriately employed and used.
  • the metal silicon may be obtained by inducing a reduction reaction of silica sand (SiO 2 ) using a thermal reduction reaction using carbon in an electric furnace, and then cooling after preparing Si in a liquid state.
  • grinding and classifying the metal silicon may be further included.
  • Metal silicon may be performed prior to heat treatment by mixing metal silicon with a doping source to be described later. If pulverization and classification are not performed before the heat treatment step, there is a problem in that the doping itself does not proceed properly because there is a limit in diffusion of the heterogeneous element into the silicon during doping of the heterogeneous element. Therefore, by pulverizing and classifying silicon at the level of microns, the heterogeneous elements can be diffused into the silicon to distribute the heterogeneous elements at an appropriate level. In addition, since the doping source and silicon can be uniformly mixed by first crushing and classifying metallic silicon, the different elements can be uniformly doped into each silicon.
  • Grinding of the metallic silicon may be performed using a jet mill device or a ball mill device using a physical impact method.
  • Classification of the metallic silicon may be performed using a dry classification method (wind classifier) or a wet classification method (hydrocyclone). For example, it may be performed using an airflow classification method.
  • D 50 of the pulverized and classified metal silicon may be 1 ⁇ m to 20 ⁇ m, specifically 2 ⁇ m to 10 ⁇ m, and more specifically 2 ⁇ m to 7 ⁇ m.
  • the compound containing B may be at least one selected from the group consisting of H 3 BO 3 (boric acid) and BN (boron nitride).
  • the compound containing P may be at least one selected from the group consisting of H 3 PO 4 (phosphoric acid) and P 2 O 5 (phosphorus pentoxide).
  • the heat treatment may be performed at a temperature below the melting point of metal silicon. Specifically, it may be performed at a temperature of less than 1414 °C.
  • the heat treatment may be performed at a temperature equal to or higher than the boiling point of the doping source.
  • the heat treatment may be performed at 300 °C to 1,400 °C. Specifically, it may be performed at 400 °C to 1,000 °C, 500 °C to 1,000 °C, or 600 °C to 1,000 °C, more specifically, 700 °C to 900 °C for 2 to 5 hours. For example, the heat treatment may be performed for 3 hours at a temperature of 700 °C to 900 °C under Ar gas purging conditions.
  • the heat treatment temperature is higher than the above range, since the silicon particles are melted to dope the liquid silicon, the doping element is uniformly distributed throughout the silicon. Therefore, when the doping amount is increased to obtain desired cycle characteristics, the discharge capacity may rather decrease. In addition, since crystal grains of Si increase as the heat treatment temperature increases, electrochemical performance of the silicon-based composite doped with the element may decrease.
  • the doping source evaporates but the silicon does not melt. Therefore, atoms from the doping source can be diffused into adjacent silicon particles to dope the element, and since the doping element is mainly distributed on the surface of the silicon-based particle with a concentration gradient, cycle characteristics can be easily improved even with a small amount of doping. , and dose reduction can be minimized.
  • the heat treatment temperature is too low, it is possible to easily prevent the fact that doping itself is not performed well.
  • heat treatment is performed at a temperature below the melting point of metal silicon (about 1400 ° C)
  • B 2 O 3 becomes a liquid. Since it exists in a state, there is a problem in that the amount of doping is very small or the surface is oxidized because B 2 O 3 diffuses only near the surface of the metal silicon particle.
  • heat treatment is performed at a temperature equal to or higher than the boiling point of B 2 O 3 (1860° C.)
  • silicon particles melt and react in a liquid state, making it difficult to obtain an anode active material satisfying a desired doping concentration gradient.
  • the heating condition may be 1 °C/min to 10 °C/min, and specifically, 3 °C/min to 7 °C/min or 4 °C/min to 6 °C/min.
  • the step of forming a carbon layer on at least a portion of the silicon-based composite formed after mixing the metal silicon and the doping source and heat-treating the step may further include.
  • the carbon layer may be formed by using chemical vapor deposition (CVD) using hydrocarbon gas or by carbonizing a material serving as a carbon source.
  • CVD chemical vapor deposition
  • hydrocarbon gas may be formed by chemical vapor deposition (CVD) at 900 ° C to 1,100 ° C.
  • the hydrocarbon gas may be at least one type of hydrocarbon gas selected from the group consisting of methane, ethane, propane and acetylene, and heat treatment may be performed at 900 °C to 1,100 °C.
  • An anode according to an exemplary embodiment of the present invention may include the anode active material described above.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative active material layer may include the negative active material.
  • the negative electrode active material layer may further include a binder and/or a conductive material.
  • the anode current collector may be any material having conductivity without causing chemical change in the battery, and is not particularly limited.
  • the current collector copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver may be used.
  • a transition metal that adsorbs carbon well, such as copper and nickel can be used as the current collector.
  • the current collector may have a thickness of 6 ⁇ m to 20 ⁇ m, but the thickness of the current collector is not limited thereto.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacrylate, poly Vinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), It may include at least one selected from the group consisting of sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, polyacrylic acid, and materials in which hydrogen is substituted with Li, Na, or Ca, In addition, various copolymers thereof may be included.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • SBR styrene
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, ketjen black, channel black, farnes black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; conductive tubes such as carbon nanotubes; metal powders such as fluorocarbon, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, ketjen black, channel black, farnes black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • conductive tubes such as carbon nanotubes
  • metal powders such as fluorocarbon, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium
  • a secondary battery according to an exemplary embodiment of the present invention may include the negative electrode according to the aforementioned exemplary embodiment.
  • the secondary battery may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, a detailed description thereof will be omitted.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, fired carbon, or carbon on the surface of aluminum or stainless steel. , those surface-treated with nickel, titanium, silver, etc. may be used.
  • the cathode current collector may have a thickness of typically 3 to 500 ⁇ m, and adhesion of the cathode active material may be increased by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the cathode active material may be a commonly used cathode active material.
  • the cathode active material may include layered compounds such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ), or compounds substituted with one or more transition metals; lithium iron oxides such as LiFe 3 O 4 ; lithium manganese oxides such as Li 1+c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Formula LiNi 1-c2 M c2 O 2 (where M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, and satisfies 0.01 ⁇ c2 ⁇ 0.5) Ni site-type lithium nickel oxide; Formula LiMn 2-c3 M
  • the positive electrode active material layer may include a positive electrode conductive material and a positive electrode binder together with the positive electrode active material described above.
  • the positive electrode conductive material is used to impart conductivity to the electrode, and in the configured battery, any material that does not cause chemical change and has electronic conductivity can be used without particular limitation.
  • any material that does not cause chemical change and has electronic conductivity can be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the positive electrode binder serves to improve adhesion between particles of the positive electrode active material and adhesion between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one type alone or a mixture of two or more types thereof may be used.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene flu
  • a separator As a separator, it separates the negative electrode and the positive electrode and provides a passage for lithium ion movement. As long as it is normally used as a separator in a secondary battery, it can be used without particular limitation. It is desirable Specifically, a porous polymer film, for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • electrolyte examples include, but are not limited to, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in manufacturing a lithium secondary battery.
  • the electrolyte solution may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyllolactone, 1,2-dimethine Toxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxorane, formamide, dimethylformamide, dioxorane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Triester, trimethoxy methane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, propionic acid
  • An aprotic organic solvent such as ethyl may be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • an electrolyte solution having high electrical conductivity can be prepared and can be used more preferably.
  • the metal salt may be a lithium salt, and the lithium salt is a material that is easily soluble in the non-aqueous electrolyte.
  • the anion of the lithium salt is F - , Cl - , I - , NO 3 - , N (CN ) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3
  • the electrolyte solution includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides for the purpose of improving battery life characteristics, suppressing battery capacity decrease, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate and cycle characteristics, a medium or large-sized device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system can be used as a power source for
  • An anode active material was prepared in the same manner as in Example 1-1, except that the reaction temperature was 700 °C.
  • An anode active material was prepared in the same manner as in Example 1-1, except that the reaction temperature was 900 °C.
  • An anode active material was prepared in the same manner as in Example 1-1, except that H 3 PO 4 was used instead of H 3 BO 3 .
  • An anode active material doped with P was prepared in the same manner as in Comparative Example 1-1 , except that H 3 PO 4 was used instead of H 3 BO 3 so that the P content was 5 wt% of the total.
  • An anode active material was prepared in the same manner as in Example 1-1, except that B 2 O 3 was used instead of H 3 BO 3 .
  • composition of the negative electrode active material prepared in the above Examples and Comparative Examples is shown in Table 1 below.
  • ICP-OES inductively coupled plasma emission spectrometer
  • the concentration gradient of the element was measured through SEM EDS analysis after cutting a cross section of the negative electrode active material. Specifically, the cross section of the active material was cut by ion milling, the content of the element was confirmed through SEM EDS (Energy-dispersive X-ray spectroscopy), and the element concentration in each section was measured by analyzing the SEM measurement image.
  • the distance Ra from the center to the surface of the anode active material was calculated as a radius when the anode active material was converted into a sphere having the same cross-sectional area.
  • the center of the negative electrode active material was measured based on the center of gravity of the negative electrode active material.
  • An anode and a secondary battery were manufactured using the anode active materials of Examples and Comparative Examples, respectively.
  • the negative electrode active material prepared in Example 1-1 having an average particle diameter (D 50 ) of 5 ⁇ m, single-walled carbon nanotubes, plate-shaped artificial graphite, carbon black as a conductive material, polyacrylamide-based polymer as a binder, and water as a solvent A cathode slurry was prepared.
  • the anode slurry was applied to a copper (Cu) metal thin film as an anode current collector having a thickness of 20 ⁇ m and dried. At this time, the temperature of the circulated air was 60°C. Subsequently, a negative electrode was prepared by rolling (roll press) and drying in a vacuum oven at 130° C. for 12 hours (loading amount: 8.55 mAh/cm 2 ).
  • the weight ratio of the negative electrode active material, the single-walled carbon nanotubes, the planar artificial graphite, the conductive material, and the binder was 70:0.21:10:10:9.79.
  • negative electrode active materials of Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-3 were used instead of the negative active material of Example 1-1, respectively, in the same manner as in Examples 1-2 to 1-3.
  • Negative electrodes of 1-4 and Comparative Examples 1-1 to 1-3 were prepared.
  • a lithium metal foil was prepared as an anode.
  • a porous polyethylene separator was interposed between the cathode and anode of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-3 prepared above, and an electrolyte solution was injected to prepare Examples 1-1 to 1-4 and Coin-shaped half cells of Comparative Examples 1-1 to 1-3 were manufactured.
  • the electrolyte solution is a solution in which ethyl methyl carbonate (EMC) and ethylene carbonate (EC) are mixed at a volume ratio of 7:3, vinylene carbonate (VC) is dissolved at 0.5% by weight, and LiPF 6 is dissolved at a concentration of 1M. used
  • the prepared battery was charged and discharged to evaluate discharge capacity, initial efficiency and capacity retention rate, which are shown in Table 3 below.
  • the first and second cycles were charged and discharged at 0.1 C, and the third to 49th cycles were charged and discharged at 0.5 C.
  • An anode active material according to an exemplary embodiment of the present invention is characterized in that B or P has a concentration gradient in which B or P increases from the center to the surface of the anode active material.
  • Examples 1-1 to 1-4 are excellent in discharge capacity, initial efficiency, and capacity retention rate.
  • Example 1-1 Although the total content of doping elements was higher than that of Example 1-1, since the doping elements were uniformly present in the active material, it was confirmed that the initial efficiency and capacity retention rate were lowered.
  • Comparative Example 1-2 although the total content of doping elements was higher than in Examples 1-4, since the doping elements were uniformly present in the active material, it was confirmed that the initial efficiency and capacity retention rate were lowered.
  • B 2 O 3 was used as a doping source. Since B 2 O 3 has a boiling point of 1860 ° C, when reacted at 500 ° C, B 2 O 3 reacts in a liquid state, so that the doping element is doped. It does not smoothly reach the inside of the silicon-based particle, and is located only on the particle surface. Therefore, in the active material of Comparative Example 3, since B 2 O 3 is concentrated only on the surface of the particle rather than having a concentration gradient that increases from the center to the surface of the particle, the doped materials are easily removed in the cleaning process of the negative electrode active material. there is In addition, it was confirmed that the initial efficiency and capacity retention rate were lowered due to the excessive distribution of O.
  • the doping source reacts in a gaseous state and is doped with an appropriate concentration gradient inside the solid-state silicon-based particles, and at the same time, oxygen is removed and doped, so that almost no oxygen exists in the negative electrode active material. It was confirmed that the initial efficiency and capacity retention rate were improved.
  • the total doping weight of the doping elements of Examples 2-1 to 2-3 and Comparative Example 2-1 was equal to 4.12 parts by weight based on 100 parts by weight of the negative electrode active material.
  • Concentration of doping element (B) (wt% of doping element based on the area) Area from 0.75Ra to surface Range from 0.5Ra or more to less than 0.75Ra Area from 0.25Ra or more to less than 0.5Ra Range up to less than ⁇ 0.25Ra
  • Example 2-1 6 2 0.5 0
  • Example 2-2 6.5
  • One 0.5 0
  • Example 2-3 5.3 2.7 2.3 0
  • An anode and a secondary battery were manufactured using the anode active materials of Examples and Comparative Examples, respectively.
  • the negative electrode active material prepared in Example 2-1 having an average particle diameter (D 50 ) of 5 ⁇ m, single-walled carbon nanotubes, plate-shaped artificial graphite, carbon black as a conductive material, polyacrylamide-based polymer as a binder, and water as a solvent A cathode slurry was prepared.
  • the anode slurry was applied to a copper (Cu) metal thin film as an anode current collector having a thickness of 15 ⁇ m and dried. At this time, the temperature of the circulated air was 60°C. Subsequently, a negative electrode was prepared by rolling (roll press) and drying in a vacuum oven at 130° C. for 12 hours (loading amount: 9.5 mAh/cm 2 ).
  • the weight ratio of the anode active material, the single-walled carbon nanotubes, the planar artificial graphite, the conductive material, and the binder was 70:0.21:10:10:9.79.
  • Examples 2-2 to 2-3 and Examples 2-2 to 2-3 and 2-3 were prepared in the same manner except that the negative active materials of Examples 2-2 to 2-3 and Comparative Example 2-1 were respectively used instead of the negative active material of Example 2-1.
  • a negative electrode of Comparative Example 2-1 was prepared.
  • a lithium metal foil was prepared as an anode.
  • a porous polyethylene separator was interposed between the cathode and anode of Examples 2-1 to 2-3 and Comparative Example 2-1 prepared above, and an electrolyte solution was injected to prepare Examples 2-1 to 2-3 and Comparative Example 2- A coin-shaped half cell of 1 was manufactured.
  • electrolyte solution a solution obtained by dissolving LiPF 6 at a concentration of 1 M in a solution obtained by mixing fluoroethylene carbonate (FEC) and ethyl methyl carbonate (EMC) at a volume ratio of 3:7 was used.
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • the prepared battery was charged and discharged to evaluate the discharge capacity, initial efficiency and capacity retention rate, which are shown in Table 5 below.
  • the first and second cycles were charged and discharged at 0.1 C, and the third to 49th cycles were charged and discharged at 0.5 C.
  • Example 2-1 Discharge capacity (mAh/g) Initial Efficiency (%) Capacity retention rate (%)
  • Example 2-1 3250 91.8 94.6
  • Example 2-2 3170 90.8 89.3
  • Example 2-3 3230 91.2 91.2 Comparative Example 2-1 2850 86 80
  • the negative active material according to one embodiment of the present invention is characterized in that it has a concentration gradient in which B or P increases from the center to the surface of the negative active material.
  • a concentration gradient in which B or P increases from the center to the surface of the negative active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법에 관한 것이다.

Description

음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
본 출원은 2021년 11월 19일에 한국특허청에 제출된 한국 특허 출원 제10-2021-0159927호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
일반적으로 리튬 이차전지는 양극, 음극, 상기 양극 및 음극 사이에 개재되는 분리막, 전해액, 유기 용매 등을 포함한다. 또한, 양극 및 음극에는 집전체 상에 양극 활물질 및 음극 활물질을 각각 포함하는 활물질층이 형성될 수 있다. 일반적으로 상기 양극에는 LiCoO2, LiMn2O4 등의 리튬 함유 금속 산화물이 양극 활물질로 사용되며, 음극에는 리튬을 함유하지 않는 탄소계 활물질, 실리콘계 활물질이 음극 활물질로 사용되고 있다.
음극 활물질 중, 실리콘계 활물질의 경우 탄소계 활물질에 비해 높은 용량을 가지며, 우수한 고속 충전 특성을 갖는 점에서 주목되고 있다. 그러나, 실리콘계 활물질은 충방전에 따른 부피 팽창/수축의 정도가 크며, 비가역 용량이 크므로 초기 효율이 낮다는 단점이 있다.
이를 극복하기 위하여, 일반적으로 실리콘 입자에 13족 또는 15족 원소의 도핑을 하여 실리콘계 활물질을 포함하는 이차전지의 성능을 극대화하는 방안이 알려져 있다. 그러나, 상기 원소의 도핑 시, 원료에 직접 도핑 소스를 투입하거나, 화학적으로 합성하는 방법을 사용하기 때문에, 실리콘 입자에 포함된 도핑 원소의 총 함량을 자유롭게 조절할 수 있으나, 도핑 원소가 실리콘 입자에 균일하게 분포하게 된다. 상기 도핑 원소의 총 함량이 증가하면 전지의 사이클이 개선되는 효과가 있으나, 방전용량이 그만큼 감소하게 되는 문제점이 있다.
따라서, 상기 실리콘계 활물질의 방전용량, 효율 및 수명 등을 향상시킬 수 있는 방법의 개발이 필요한 실정이다.
[선행기술문헌]
(특허문헌 1) 한국등록특허 제10-1308948호
본 발명은 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법에 관한 것이다.
본 발명의 일 실시상태는 실리콘계 입자; 및 상기 실리콘계 입자 내에 분포된 B 및 P로 이루어진 군에서 선택된 1 이상의 원소;를 포함하는 실리콘계 복합체를 갖는 음극 활물질로서, 상기 실리콘계 입자는 상기 실리콘계 입자 총 100 중량부를 기준으로 Si를 95 중량부 이상 포함하고, 상기 원소는 상기 실리콘계 복합체의 중심에서부터 표면까지 증가하는 농도 구배를 갖는 것인 음극 활물질을 제공한다.
본 발명의 일 실시상태는 금속 실리콘을 준비하는 단계; B를 포함하는 화합물 및 P를 포함하는 화합물로 이루어진 군에서 선택된 1 이상의 화합물을 포함하는 도핑 소스(source)를 준비하는 단계; 및 상기 금속 실리콘과 상기 도핑 소스를 혼합한 뒤 상기 도핑 소스의 끓는점 이상의 온도에서 열처리하는 단계를 포함하는 음극 활물질의 제조방법을 제공한다.
본 발명의 일 실시상태는 상기 음극 활물질을 포함하는 음극을 제공한다.
본 발명의 일 실시상태는 상기 음극을 포함하는 이차전지를 제공한다.
본 발명에 따른 음극 활물질은 실리콘 입자가 B 또는 P로 도핑된 실리콘계 복합체를 포함하고, 상기 도핑 원소는 상기 실리콘계 복합체의 중심에서부터 표면까지 증가하는 농도 구배를 갖는 것이 특징으로, 복합체 표면의 Li 이온 확산을 극대화하면서 용량 감소를 최소화할 수 있어, 초기 방전 용량이 균일 도핑된 활물질을 사용하는 경우보다 우수하다.
또한, 본 발명에 따른 음극 활물질 제조 방법은 도핑 소스에서 나오는 원자를 인접한 마이크론 단위를 갖는 실리콘 입자에 확산시키는 것으로, 전술한 바와 같이 도핑 원소가 표면부터 내부까지 높은 농도에서 낮은 농도 구배를 갖게 할 수 있고, 화학적인 합성 방법이 아니므로 대량 생산이 용이한 효과가 있다.
이하, 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어의 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에 있어서, 음극 활물질 내 포함된 구조의 결정성은 X선 회절 분석을 통해 확인할 수 있으며, X선 회절 분석은 X-ray diffraction(XRD) 분석 기기(제품명: D4-endavor, 제조사: bruker)를 이용하여 수행할 수 있고, 상기 기기 외에도 당업계에서 사용되는 기기를 적절히 채용할 수 있다.
본 명세서에 있어서, 음극 활물질 내의 원소의 유무 및 원소의 함량은 ICP 분석을 통해 확인할 수 있으며, ICP 분석은 유도결합 플라즈마 발광 분석 분광기(ICPAES, Perkin-Elmer 7300)를 이용하여 수행할 수 있다.
본 명세서에 있어서, 평균 입경(D50)은 입자의 입도 분포 곡선(입도 분포도의 그래프 곡선)에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
이하 본 발명의 바람직한 실시상태를 상세히 설명한다. 그러나 본 발명의 실시상태는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시상태들에 한정되지는 않는다.
음극 활물질
본 발명의 일 실시상태는 실리콘계 입자; 및 상기 실리콘계 입자 내에 분포된 B 및 P로 이루어진 군에서 선택된 1 이상의 원소;를 포함하는 실리콘계 복합체를 갖는 음극 활물질로서, 상기 실리콘계 입자는 상기 실리콘계 입자 총 100 중량부를 기준으로 Si를 95 중량부 이상 포함하고, 상기 원소는 상기 실리콘계 복합체의 중심에서부터 표면까지 증가하는 농도 구배를 갖는 것인 음극 활물질을 제공한다.
일반적으로 실리콘 입자에 B 또는 P 도핑을 하여 실리콘계 음극 활물질을 포함하는 이차전지의 성능을 극대화하는 방안이 알려져 있다. 그러나, 상기 B 또는 P 도핑 시, 원료에 직접 도핑 소스를 투입하거나, 화학적으로 합성하는 방법을 사용하기 때문에, 실리콘 입자에 포함된 도핑 원소의 총 함량을 자유롭게 조절할 수 있으나, 도핑 원소가 실리콘 입자에 균일하게 분포하게 된다. 상기 도핑 원소의 총 함량이 증가하면 전지의 사이클이 개선되는 효과가 있으나, 방전용량이 그만큼 감소하게 되는 문제점이 있다.
이를 해결하기 위하여, 본 발명에서는 도핑 원소를 실리콘 입자의 표면에 집중적으로 위치시킨 음극 활물질을 제공하여, 실리콘 입자 표면의 리튬 이온의 확산을 극대화하면서 용량 감소를 최소화할 수 있는 효과를 제공한다. 따라서, 상기 음극 활물질을 포함하는 이차전지는 전지의 방전 용량 감소를 최소화하면서, 초기 효율, 저항 성능 및/또는 수명 특성이 개선되는 효과가 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체는 실리콘계 입자; 및 상기 실리콘계 입자 내에 분포된 B 및 P로 이루어진 군에서 선택된 1 이상의 원소를 포함한다. 또한, 상기 원소는 상기 실리콘계 복합체의 중심에서부터 표면까지 증가하는 농도 구배를 갖는다.
상기 실리콘계 입자는 Si 및 SiOx(0<x≤2)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 상기 SiOx(0<x≤2)는 실리콘 산화물 입자로 비정형 SiO2 및 결정형 Si를 포함하는 복합물일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 입자는 상기 실리콘계 입자 총 100 중량부를 기준으로 Si를 95 중량부 이상 포함할 수 있다. 구체적으로 96 중량부 이상, 96.5 중량부 이상, 97 중량부 이상 또는 97.5 중량부 이상 포함할 수 있다. 또한, Si 함량의 상한은 높을수록 좋고, 그 상한은 100 중량부 이하, 99.9 중량부 이하, 99.5 중량부 이하, 99 중량부 이하 또는 98.5 중량부 이하일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 입자로는 특히 순수 실리콘(Si)을 사용할 수 있다. 순수 실리콘(Si)을 실리콘계 입자로 사용한다는 것은 상기와 같이 실리콘계 입자를 전체 100 중량부를 기준으로 하였을 때, 다른 입자 또는 원소와 결합되지 않은 순수의 Si 입자(SiOx (x=0))를 상기 범위로 포함하는 것을 의미할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 입자 총 100 중량부를 기준으로 O는 5 중량부 미만으로 포함될 수 있다. 구체적으로, 4 중량부 미만 또는 3.5 중량부 미만으로 포함될 수 있다. 상기 산소 원자의 하한은 0 중량부 이상, 0.5 중량부 이상, 1 중량부 이상, 1.5 중량부 이상 또는 2 중량부 이상일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체 총 100 중량부를 기준으로 O의 함량은 3 중량부 이하일 수 있다. 구체적으로, 0 중량부 이상 3 중량부 이하, 0.1 중량부 이상 3 중량부 이하, 0.5 중량부 이상 3 중량부 이하, 1 중량부 이상 3 중량부 이하, 1.5 중량부 이상 3 중량부 이하, 2 중량부 이상 3 중량부 이하, 2.1 중량부 이상 2.9 중량부 이하일 수 있다. 상기 O의 함량의 상한은 3 중량부, 2.9 중량부, 2.8 중량부, 2.6 중량부 또는 2.5 중량부일 수 있다. 상기 O의 함량의 하한은 0 중량부, 0.1 중량부, 0.5 중량부, 1 중량부, 1.5 중량부, 2 중량부 또는 2.3 중량부일 수 있다.
전술한 산소의 함량은 XRF 분석을 통하여 측정할 수 있다. 구체적으로 Shimadzu 사의 다중채널 X-선 형광 분석기를 이용하여 파우더 형태 시료를 샘플 컵에 담아 X-선을 주사한 후, 시료에서 발생하는 원소에 따른 특성 형광 X-ray을 분석한다. 샘플의 스펙트럼을 소프트웨어상에서 분석하여 각 원소의 함량을 알 수 있고, 전체 시료 무게 중에 산소가 차지하는 비중도 마찬가지로 확인할 수 있다.
상기 실리콘계 입자는 하나의 덩어리로 이루어져 있는 1차 입자일 수 있거나, 상기 1차 입자가 조립되어 형성된 2차 입자일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 Si는 상기 실리콘계 입자 내에서 매트릭스(matrix)에 해당한다. 상기 Si는 SiOx(x=0)의 형태로 존재할 수 있다. 즉, 상기 실리콘계 입자는 Si로만 이루어진 입자 또는 Si 및 미량의 SiOx(0<x≤2)을 더 포함하는 입자를 의미할 수 있다.
상기 실리콘 입자에 B 또는 P를 도핑시키는 경우 Si 매트릭스의 프레임워크(framework)를 확장시켜 Li 이온의 이동을 더 쉽게 할 수 있으므로, 입자 내까지 이온이 용이하게 이동할 수 있게 하는 효과가 있다. 또한, 도핑을 함으로써 낮은 전도도를 가지는 Si 입자의 전기전도도를 증가시켜서 충방전 성능을 증가하게 한다.
상기 도핑되는 원소는 기존의 도핑 전 실리콘계 입자에 있는 Si 원자를 치환하는 형태로 존재할 수 있다. 따라서, 상기 치환된 도핑 원소로 인하여 기존 Si 매트릭스의 격자 구조를 확장시킬 수 있다.
상기 원소는 상기 실리콘계 복합체의 중심에서부터 표면까지 증가하는 농도 구배를 가지면서 존재할 수 있다. 상기 원소가 증가하는 농도 구배를 갖는다는 것은 상기 원소 농도의 연속적인 증가 및 불연속적인 증가를 포함하는 의미이다. 이때, 상기 실리콘계 복합체의 중심에서 표면까지의 거리 Ra를 기준으로, 중심에서 0.25Ra까지의 영역(제1 영역), 0.25Ra 내지 0.5Ra까지의 영역(제2 영역), 0.5Ra 내지 0.75Ra까지의 영역(제3 영역) 및 0.75Ra 내지 표면까지의 영역(제4 영역)을 기준으로 도핑 원소의 농도를 측정하여 농도 구배를 갖는지 판단할 수 있다. 일 예에 있어서, 제1 영역과 제2 영역 전체에서의 원소의 농도보다 제3 영역 및 제4 영역 전체에서의 원소의 농도가 높은 값을 갖는 경우, 중심에서 표면까지 증가하는 농도 구배를 갖는 것으로 볼 수 있다. 또 다른 일 예에 있어서, 제1 영역의 원소의 농도보다 제2 영역의 원소의 농도가 높은 값을 갖고, 제2 영역의 원소의 농도보다 제3 영역의 원소의 농도가 높은 값을 갖고, 제3 영역의 원소의 농도보다 제4 영역의 원소의 농도가 높은 값을 갖는 경우, 중심에서 표면까지 증가하는 농도 구배를 갖는 것으로 볼 수 있다.
상기 도핑 원소의 농도가 실리콘계 복합체의 중심에서부터 표면까지 증가하는 농도 구배를 갖는 경우, 실리콘계 복합체의 표면에 도핑 원소가 집중적으로 분포하게 되므로, 도핑량을 증가시키지 않고도 실리콘계 복합체 표면의 리튬 이온 확산을 극대화할 수 있어 사이클 성능을 개선시킬 수 있고, 전지의 용량 감소를 최소화할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 B 및 P로 이루어진 군에서 선택된 1 이상의 원소는 실리콘계 복합체 총 100 중량부를 기준으로 0.1 중량부 내지 50 중량부로 포함될 수 있다. 구체적으로 0.5 중량부 내지 25 중량부, 0.5 중량부 내지 22 중량부 또는 1 중량부 내지 21 중량부 포함될 수 있고, 더욱 구체적으로 1 중량부 내지 10 중량부, 2 중량부 내지 6 중량부 또는 3 중량부 내지 5 중량부 포함될 수 있다. 상기 음극 활물질이 상기 원소를 상기 중량부 범위로 포함하는 경우, 실리콘계 입자의 표면에 충분한 리튬 이온 확산 통로를 형성하면서 음극 활물질의 용량 감소를 최소화할 수 있으므로, 전지의 용량을 최대한 유지하면서 수명 성능을 증가시키는 효과가 있다.
상기 원소의 함량은 ICP 분석을 통해 확인할 수 있다. 구체적으로, 음극 활물질 일정량(약 0.01 g)을 분취한 후, 백금 도가니에 옮겨 질산, 불산, 황산을 첨가하여 핫 플레이트에서 완전 분해한다. 이후, 유도플라즈마 발광 분석 분광기(ICPAES, Perkin-Elmer 7300)를 사용하여 분석하고자 하는 원소의 고유 파장에서 표준 용액(5 mg/kg)을 이용하여 조제된 표준액의 강도를 측정하여 기준 검량선을 작성한다. 이 후, 전처리된 시료용액 및 바탕 시료를 기기에 도입하고, 각각의 강도를 측정하여 실제 강도를 산출하고, 상기 작성된 검량선 대비 각 성분의 농도를 계산한 후, 전체의 합이 이론 값이 되도록 환산하여 제조된 음극 활물질에 포함된 원소 함량을 분석할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심에서 표면까지의 거리를 Ra라 할 때, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점으로부터 표면까지의 영역(제4 영역)에 포함된 상기 B 또는 P 원소의 농도는 나머지 영역에 포함된 상기 B 또는 P 원소의 농도보다 높은 값을 가질 수 있다. 구체적으로, 10% 내지 10,000% 높은 값을 가질 수 있고, 더욱 구체적으로, 50% 내지 5,000% 높은 값을 가질 수 있다. 또 다른 일 실시상태에 있어서, 100% 내지 1,000%, 100% 내지 800%, 100% 내지 700%, 100% 내지 600% 또는 100% 내지 500% 높은 값을 가질 수 있다. 이때, 특정 영역에서의 원소의 농도는 특정 영역의 전체 중량을 기준으로 한 원소의 중량%를 의미할 수 있다. 상기 원소가 상기와 같은 농도 구배를 갖는 경우, 원소의 도핑량을 증가시키지 않고도 실리콘계 복합체 표면의 리튬 이온 확산을 극대화할 수 있어 사이클 성능을 개선시킬 수 있고, 전지의 용량 감소를 최소화할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심에서 표면까지의 거리를 Ra라 할 때, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점으로부터 표면까지의 영역(제4 영역)에 포함된 상기 B 또는 P 원소의 농도는 실리콘계 복합체의 중심에서 표면 방향으로 0.5Ra가 되는 지점으로부터 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점까지의 영역(제3 영역)에 포함된 상기 B 또는 P 원소의 농도보다 20% 내지 1,000% 높은 값을 가질 수 있다. 구체적으로, 50% 내지 800% 높은 값을 가질 수 있고, 더욱 구체적으로 70% 내지 600% 높은 값을 가질 수 있고, 더욱 구체적으로 100% 내지 600% 높은 값을 가질 수 있고, 더욱 구체적으로 100% 내지 500% 높은 값을 가질 수 있다. 상기 원소가 상기와 같은 농도 구배를 갖는 경우, 원소의 도핑량을 증가시키지 않고도 실리콘계 복합체 표면의 리튬 이온 확산을 극대화할 수 있어 사이클 성능을 개선시킬 수 있고, 전지의 용량 감소를 최소화할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심에서 표면까지의 거리를 Ra라 할 때, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점으로부터 표면까지의 영역(제4 영역)에 포함된 상기 B 또는 P 원소의 농도는 실리콘계 복합체의 중심에서 표면 방향으로 0.5Ra가 되는 지점으로부터 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점까지의 영역(제3 영역)에 포함된 상기 B 또는 P 원소의 농도보다 2배 내지 6배 높은 값을 가질 수 있다. 구체적으로, 2.3배 내지 5배 높은 값을 가질 수 있고, 더욱 구체적으로 2.5배 내지 4배 또는 2.5배 내지 3.5배 높은 값을 가질 수 있다. 상기 원소가 상기와 같은 농도 구배를 갖는 경우, 최적의 농도 구배를 가져 원소의 도핑량을 증가시키지 않고도 실리콘계 복합체 표면의 리튬 이온 확산을 극대화할 수 있어 사이클 성능을 개선시킬 수 있고, 전지의 용량 감소를 최소화할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심에서 표면까지의 거리를 Ra라 할 때, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.5Ra가 되는 지점으로부터 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점까지의 영역(제3 영역)에 포함된 상기 B 또는 P 원소의 농도는 실리콘계 복합체의 중심에서 표면 방향으로 0.25Ra가 되는 지점으로부터 실리콘계 복합체의 중심에서 표면 방향으로 0.5Ra가 되는 지점까지의 영역(제2 영역)에 포함된 상기 B 또는 P 원소의 농도보다 2.5배 내지 5배 높은 값을 가질 수 있다. 구체적으로, 3배 내지 5배 높은 값을 가질 수 있고, 더욱 구체적으로 3.5배 내지 4.5배 높은 값을 가질 수 있다. 상기 원소가 상기와 같은 농도 구배를 갖는 경우, 최적의 농도 구배를 가져 원소의 도핑량을 증가시키지 않고도 실리콘계 복합체 표면의 리튬 이온 확산을 극대화할 수 있어 사이클 성능을 개선시킬 수 있고, 전지의 용량 감소를 최소화할 수 있다.
본 명세서에서, 상기 실리콘계 복합체의 중심에서 표면까지의 거리 Ra는 실리콘계 복합체를 동일 단면적을 갖는 구형으로 환산했을 때의 반경과 같이 계산할 수 있다. 또한, 실리콘계 복합체의 중심은 실리콘계 복합체의 무게 중심을 의미할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심으로부터 표면 방향으로 실리콘계 복합체의 총 부피를 기준으로 40 부피%에 해당하는 영역에서의 상기 B 또는 P 원소의 농도보다 나머지 60 부피%에 해당하는 영역에서의 B 또는 P 원소의 농도가 높을 수 있다. 상기와 같은 범위로 실리콘계 복합체의 표면에 도핑 원소가 분포하는 경우, 원소의 도핑량을 증가시키지 않고도 실리콘계 입자 표면의 리튬 이온 확산을 극대화할 수 있어 사이클 성능을 개선시킬 수 있고, 전지의 용량 감소를 최소화할 수 있다
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심으로부터 표면 방향으로 실리콘계 복합체의 총 부피를 기준으로 40 부피%에 해당하는 영역에 포함된 상기 B 또는 P 원소의 농도보다 나머지 60 부피%에 해당하는 영역에서의 농도가 10% 내지 10,000% 높은 값을 가질 수 있다. 구체적으로, 50% 내지 5,000% 높은 값을 가질 수 있고, 더욱 구체적으로 100% 내지 1,000% 높은 값을 가질 수 있다. 또 다른 일 실시상태에 있어서, 100% 내지 800% 높은 값을 가질 수 있고, 더욱 구체적으로 100% 내지 600% 높은 값을 가질 수 있고, 더욱 구체적으로 100% 내지 500% 높은 값을 가질 수 있다. 상기 원소가 상기와 같은 농도 구배를 갖는 경우, 원소의 도핑량을 증가시키지 않고도 실리콘계 복합체 표면의 리튬 이온 확산을 극대화할 수 있어 사이클 성능을 개선시킬 수 있고, 전지의 용량 감소를 최소화할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점으로부터 표면까지의 영역(제4 영역)에 포함된 상기 B 또는 P 원소의 중량은 나머지 영역에 포함된 상기 B 또는 P 원소의 중량보다 높은 값을 가질 수 있다. 구체적으로, 50% 내지 2,000% 높은 값을 가질 수 있고, 더욱 구체적으로 70% 내지 1,500% 높은 값을 가질 수 있고, 더욱 구체적으로 100% 내지 1,300% 높은 값을 가질 수 있고, 더욱 구체적으로 200% 내지 1,000% 높은 값을 가질 수 있다. 이때, 나머지 영역은 실리콘계 복합체의 중심으로부터 표면 방향으로 0.75Ra가 되는 지점까지의 영역을 의미할 수 있다. 상기 원소가 실리콘계 복합체의 영역에 따라 상기와 같은 중량 차이를 갖는 경우, 원소의 도핑량을 증가시키지 않고도 실리콘계 복합체 표면의 리튬 이온 확산을 극대화할 수 있어 사이클 성능을 개선시킬 수 있고, 전지의 용량 감소를 최소화할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제2 영역에서의 도핑 원소(B 또는 P 원소)의 함량의 하한값은 0.05 중량%일 수 있다. 구체적으로, 상기 제2 영역에서의 도핑 원소의 함량은 0.05 중량% 내지 5 중량%, 0.05 중량% 내지 3.5 중량% 또는 0.1 중량% 내지 3 중량%일 수 있다
본 발명의 일 실시상태에 있어서, 상기 제3 영역에서의 도핑 원소의 함량의 하한값은 0.05 중량% 또는 0.1 중량%일 수 있다. 구체적으로, 상기 제3 영역에서의 도핑 원소의 함량은 0.1 중량% 내지 15 중량% 이하 또는 0.5 중량% 내지 12 중량%일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제4 영역에서의 도핑 원소의 함량의 하한값은 1 중량%일 수 있다. 구체적으로, 상기 제3 영역에서의 도핑 원소의 함량은 1 중량% 내지 40 중량% 이하, 2 중량% 내지 35 중량% 또는 3 중량% 내지 30 중량%일 수 있다.
각 영역에서의 도핑 원소의 함량이 상기 범위를 만족하지 않는 경우, 도핑이 실리콘계 입자의 내부까지 원활하게 되지 못하여 도핑 원소가 입자 표면에만 위치하므로 도핑량 자체가 적고 활물질의 세척 공정에서 도핑된 물질들이 쉽게 제거되는 문제점이 있거나, 도핑이 과하게 진행되어 방전용량이 감소하게 되는 문제점이 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심에서 표면까지의 거리를 Ra라 할 때, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점으로부터 표면까지의 영역(제4 영역)에 포함된 상기 O 원소의 농도는 실리콘계 복합체의 중심에서 표면 방향으로 0.5Ra가 되는 지점으로부터 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점까지의 영역(제3 영역)에 포함된 상기 O 원소의 농도보다 1.1배 내지 10배 높은 값을 가질 수 있다. 구체적으로, 1.2배 내지 8배, 1.2배 내지 5배 또는 1.3배 내지 3배 높은 값을 가질 수 있다. 제4 영역의 O 원소의 농도가 상기 범위를 초과하여 분포하는 경우, O가 실리콘계 복합체 표면에 과량 분포하는 것으로 초기 효율 및 용량 유지율이 저하되는 문제점이 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 중심에서 표면까지의 거리를 Ra라 할 때, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.5Ra가 되는 지점으로부터 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점까지의 영역(제3 영역)에 포함된 상기 O 원소의 농도는 실리콘계 복합체의 중심에서 표면 방향으로 0.25Ra가 되는 지점으로부터 실리콘계 복합체의 중심에서 표면 방향으로 0.5Ra가 되는 지점까지의 영역(제2 영역)에 포함된 상기 O 원소의 농도보다 1.2배 내지 10배 높은 값을 가질 수 있다. 구체적으로, 1.2배 내지 8배, 1.5배 내지 5배 또는 1.7배 내지 3배 높은 값을 가질 수 있다.
본 발명의 일 실시상태에 있어서, 상기 Si의 결정립은 5 nm 내지 1,000 nm일 수 있다. 구체적으로 10 nm 내지 500 nm 또는 50 nm 내지 300 nm, 100 nm 내지 300 nm, 150 nm 내지 300 nm 또는 180 nm 내지 300 nm일 수 있다. 더욱 구체적으로 180 nm 내지 260 nm일 수 있다. 상기 Si의 결정립이 상기 범위를 만족하는 경우, Si 결정립 내부까지 Li 이온이 더욱 균일하게 확산되어 소재의 퇴화 가속을 방지할 수 있고, 충방전시 Si 입자의 구조를 안정적으로 유지하여 셀 수명을 개선시키는 효과가 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 복합체의 표면의 적어도 일부에는 탄소층이 구비될 수 있다. 이때 상기 탄소층은 표면의 적어도 일부, 즉 복합체 표면에 부분적으로 피복되어 있거나, 복합체 표면의 전부에 피복된 형태일 수 있다. 상기 탄소층에 의해 상기 음극 활물질에 도전성이 부여되고, 이차 전지의 초기 효율, 수명 특성 및 전지 용량 특성이 향상될 수 있다.
구체적으로, 상기 탄소층은 결정질 탄소 또는 비정질 탄소를 포함할 수 있고, 바람직하게는 비정질 탄소를 포함할 수 있다.
상기 결정질 탄소는 상기 음극 활물질의 도전성을 보다 향상시킬 수 있다. 상기 결정질 탄소는 플로렌, 탄소나노튜브 및 그래핀으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다.
상기 비정질 탄소는 상기 탄소층의 강도를 적절하게 유지시켜, 상기 실리콘계 입자의 팽창을 억제시킬 수 있다. 상기 비정질 탄소는 타르, 피치 및 기타 유기물로 이루어진 군에서 선택되는 적어도 하나의 탄화물, 또는 탄화수소를 화학기상증착법의 소스로 이용하여 형성된 탄소계 물질일 수 있다.
상기 기타 유기물의 탄화물은 수크로오스, 글루코오스, 갈락토오스, 프록토오스, 락토오스, 마노스, 리보스, 알도헥소스 또는 케도헥소스의 탄화물 및 이들의 조합에서 선택되는 유기물의 탄화물일 수 있다.
상기 탄화수소는 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소일 수 있다. 상기 치환 또는 비치환된 지방족 또는 지환식 탄화수소의 지방족 또는 지환식 탄화수소는 메테린, 에테린, 에틸렌, 아세틸렌, 프로페인, 뷰태인, 뷰텐, 펜테인, 아이소뷰테인 또는 헥세인 등일 수 있다. 상기 치환 또는 비치환된 방향족 탄화수소의 방향족 탄화수소는 벤젠, 톨루엔, 자일렌, 스티렌, 에틸벤젠, 다이페닐메테인, 나프탈렌, 페놀, 크레졸, 나이트로벤젠, 클로로벤젠, 인덴, 쿠마론, 파이리딘, 안트라센 또는 페난트렌 등을 들 수 있다.
구체적으로, 상기 탄소층은 실리콘계 복합체 상에 탄소질 전구체를 배치한 뒤 열처리하여 형성될 수 있다. 상기 탄소질 전구체는 결정질 탄소 제조를 위한 그래핀 및 흑연 등일 수 있으며, 비정질 탄소 제조를 위한 타르, 피치 및 기타 유기물로 이루어진 군에서 선택되는 적어도 어느 하나의 탄화물, 또는 메탄, 에탄, 아세틸렌 등의 탄화수소를 화학기상증착법의 소스로 이용하여 형성된 탄소계 물질일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 탄소층은 상기 음극 활물질 총 100 중량부를 기준으로 0.1 중량부 내지 50 중량부, 구체적으로 0.5 중량부 내지 10 중량부 또는 20 중량부, 더욱 구체적으로는 2 중량부 내지 4 중량부로 포함될 수 있다. 상기 범위를 만족하는 경우 음극 활물질의 표면 피복을 통한 부반응 감소와 전기전도도 증가를 통해 용량과 효율 감소를 방지할 수 있다.
상기 음극 활물질의 평균 입경(D50)은 0.5 ㎛ 내지 50 ㎛일 수 있으며, 구체적으로 2 ㎛ 내지 20 ㎛일 수 있고, 보다 구체적으로 2 ㎛ 내지 10 ㎛일 수 있고, 보다 구체적으로 2 ㎛ 내지 7 ㎛일 수 있다. 상기 범위를 만족하는 경우, 충방전 시의 활물질의 구조적 안정을 기할 수 있다. 또한, 입경이 과도하게 큰 경우에 따라 부피 팽창/수축 수준이 커지는 점을 방지하고, 입경이 과도하게 낮은 경우, 높은 부피 대비 표면적으로 인한 부반응 발생으로부터 기인할 수 있는 초기 효율의 감소를 방지할 수 있다.
상기 음극 활물질의 입도는 볼밀(ball mill), 제트 밀(jet mill) 또는 기류 분급과 같은 방법을 통하여 조절할 수 있으며, 이에 한정되는 것은 아니다.
음극 활물질의 제조방법
본 발명의 일 실시상태는 금속 실리콘을 준비하는 단계; B를 포함하는 화합물 및 P를 포함하는 화합물로 이루어진 군에서 선택된 1 이상의 화합물을 포함하는 도핑 소스(source)를 준비하는 단계; 및 상기 금속 실리콘과 상기 도핑 소스를 혼합한 뒤 상기 도핑 소스의 끓는점 이상의 온도에서 열처리하는 단계를 포함하는 음극 활물질의 제조방법을 제공한다.
일반적으로 실리콘계 입자에 B 또는 P 원소의 도핑을 하여 실리콘계 음극 활물질을 포함하는 이차전지의 성능을 극대화하는 방안이 알려져 있다. 기존에는 상기 B 또는 P 원소의 도핑 시, 액체 상태의 실리콘 원료에 직접 도핑 소스를 투입하거나, 화학적으로 합성하는 방법을 사용하였다. 상기와 같은 방법으로 음극 활물질을 제조하는 경우, 도핑 원소가 실리콘 입자에 균일하게 분포하게 된다. 그러나, 상기 도핑 원소의 총 함량이 증가하면 전지의 사이클이 개선되는 효과가 있으나, 방전용량이 그만큼 감소하게 되는 문제점이 있다.
이를 해결하기 위하여, 본 발명에서는 마이크론 크기로 입도를 조절한 금속 실리콘을 도핑 소스와 혼합 후 열처리하여 도핑 원소를 실리콘 입자의 표면에 집중적으로 분포시키는 음극 활물질의 제조방법을 제공한다. 상기와 같은 방법으로 제조된 음극 활물질은 실리콘계 복합체 표면의 리튬 이온의 확산을 극대화하면서 용량 감소를 최소화하여 전지의 방전 용량 감소를 최소화하면서, 초기 효율, 저항 성능 및/또는 수명 특성이 개선시키는 효과가 있다. 또한, 상기 제조방법의 경우, 실리콘을 녹일 정도의 온도가 불필요하여 기존 방법보다 반응 조건이 온화(mild)하고, 화학적인 합성 방법이 아니므로 대량 생산이 용이한 장점이 있다.
상기 금속 실리콘은 Si의 순도가 99% 이상인 실리콘 원료를 의미한다. 일반적으로 해당 분야에서 사용하는 금속 실리콘을 적절히 채용하여 사용할 수 있다.
일 예에 있어서, 상기 금속 실리콘은 규사(SiO2)를 전기로에서 탄소를 이용한 열환원 반응을 이용하여, 환원 반응을 유도한 뒤, 액체 상태의 Si를 제조한 뒤 냉각시켜 얻을 수 있다.
본 발명의 일 실시상태에 있어서, 상기 금속 실리콘을 준비하는 단계 이후에 상기 금속 실리콘을 분쇄 및 분급하는 단계를 더 포함할 수 있다.
금속 실리콘의 분쇄 및 분급은 금속 실리콘과 후술하는 도핑 소스를 혼합하여 열처리 하는 단계 이전에 진행할 수 있다. 열처리 단계 이전에 분쇄 및 분급을 먼저 진행하지 않으면 이종 원소의 도핑 시에 실리콘 내부로 이종 원소가 확산하는데 한계가 있어 도핑 자체가 적절하게 진행되지 않는 문제점이 있다. 따라서, 마이크로 사이즈 수준으로 실리콘을 분쇄 및 분급하여 실리콘 내부로 이종 원소를 확산시켜 이종 원소를 적절한 수준으로 분포시킬 수 있다. 또한, 금속 실리콘을 먼저 분쇄 및 분급함으로써 도핑 소스와 실리콘이 균일하게 혼합될 수 있으므로, 상기 이종 원소가 실리콘 각각에 균일하게 도핑될 수 있다.
상기 금속 실리콘의 분쇄는 물리적 충돌 방법을 이용한 제트 밀(Jet mill) 기기 또는 볼밀(Ball mill) 기기를 이용하여 수행될 수 있다.
상기 금속 실리콘의 분급은 건식 분급 방법(풍력 분급 기기) 혹은 습식 분급 방법(하이드로사이클론)을 이용하여 수행될 수 있다. 예컨대, 기류 분급 방법을 이용하여 수행될 수 있다.
상기 분쇄 및 분급된 금속 실리콘의 D50은 1 ㎛ 내지 20 ㎛일 수 있고, 구체적으로는 2 ㎛ 내지 10 ㎛일 수 있고, 더욱 구체적으로는 2 ㎛ 내지 7 ㎛일 수 있다. 상기 범위를 만족함으로써, 충방전으로 인한 입자 깨짐을 최소화 하고, 이로부터 생성되는 부반응을 최대한 억제시켜 셀 수명 성능을 증가하는 효과가 있다.
상기 B를 포함하는 화합물은 H3BO3(boric acid) 및 BN(boron nitride)을 포함하는 군에서 선택된 1 이상일 수 있다.
상기 P를 포함하는 화합물은 H3PO4(phosphoric acid) 및 P2O5(phosphorus pentoxide)를 포함하는 군에서 선택된 1 이상일 수 있다.
상기 열처리는 금속 실리콘의 녹는점 미만의 온도에서 진행될 수 있다. 구체적으로, 1414 ℃ 미만의 온도에서 수행될 수 있다.
또한, 상기 열처리는 도핑 소스의 끓는점 이상의 온도에서 진행될 수 있다.
상기 열처리는 300 ℃ 내지 1,400 ℃에서 수행될 수 있다. 구체적으로 400 ℃ 내지 1,000 ℃, 500 ℃ 내지 1,000 ℃ 또는 600 ℃ 내지 1,000 ℃, 더욱 구체적으로 700 ℃ 내지 900 ℃에서 2시간 내지 5시간 수행될 수 있다. 예컨대, 상기 열처리는 Ar 기체 Purging 조건 하에서 700 ℃ 내지 900 ℃의 온도에서 3시간 동안 진행될 수 있다.
열처리 온도가 상기 범위보다 높은 경우, 실리콘 입자가 용융되어 액체 상태의 실리콘에 도핑이 이루어지므로, 실리콘 전체에 도핑 원소가 균일하게 분포하게 된다. 따라서, 목적한 사이클 특성을 얻기 위하여 도핑량을 증가시키는 경우, 오히려 방전 용량이 감소할 수 있다. 또한, 열처리 온도가 높아질수록 Si의 결정립이 커지기 때문에 상기 원소가 도핑된 실리콘계 복합체의 전기화학적 성능이 감소될 수 있다.
반면, 열처리 온도가 상기 범위를 만족하는 경우, 도핑 소스는 증발하나, 실리콘은 용융되지 않는다. 따라서, 도핑 소스에서 나오는 원자를 인접한 실리콘 입자에 확산시켜 원소를 도핑시킬 수 있고, 주로 실리콘계 입자의 표면에 도핑 원소가 농도 구배를 가지며 분포하기 때문에 적은 양을 도핑하더라도 사이클 특성을 용이하게 개선시킬 수 있고, 용량 감소를 최소화할 수 있다. 또한, 열처리 온도가 지나치게 낮을 때 도핑 자체가 잘 이루어지지 않는 점을 용이하게 방지할 수 있다.
예컨대, 도핑 소스로서 B2O3(녹는점=450℃, 끓는점=1860℃)를 사용하는 경우, 금속 실리콘의 녹는점(약 1400 ℃) 미만의 온도에서 열처리할 시, B2O3가 액체 상태로 존재하기 때문에 B2O3가 금속 실리콘 입자의 표면 근처로만 확산하여 도핑 양이 매우 적거나, 표면이 산화되는 문제점이 있다. 반면, B2O3의 끓는점(1860 ℃) 이상의 온도에서 열처리하는 경우, 실리콘 입자가 용융되어 액체 상태로 반응하므로 목적한 도핑 농도 구배를 만족하는 음극 활물질을 얻기 어려운 문제점이 있다.
상기 열처리 시 승온 조건은 1 ℃/min 내지 10 ℃/min일 수 있고, 구체적으로 3 ℃/min 내지 7 ℃/min 또는 4 ℃/min 내지 6 ℃/min일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 금속 실리콘과 상기 도핑 소스를 혼합한 뒤 열처리하는 단계 이후에 형성된 실리콘계 복합체의 적어도 일부에 탄소층을 형성하는 단계를 더 포함할 수 있다.
상기 탄소층은 탄화수소 가스를 사용하는 화학기상증착법(CVD)을 이용하거나, 탄소 소스(carbon source)가 되는 물질을 탄화시키는 방법으로 형성할 수 있다.
구체적으로, 상기 실리콘계 입자를 반응로에 투입 후 탄화수소 가스를 900 ℃ 내지 1,100 ℃에서 화학기상증착(CVD)하여 형성할 수 있다. 상기 탄화수소 가스는 메탄, 에탄, 프로판 및 아세틸렌을 포함하는 군에서 선택된 적어도 1종의 탄화수소 가스일 수 있고, 900 ℃ 내지 1,100 ℃에서 열처리할 수 있다.
음극
본 발명의 일 실시 상태에 따른 음극은 전술한 음극 활물질을 포함할 수 있다.
구체적으로, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 배치된 음극 활물질층을 포함할 수 있다. 상기 음극 활물질층은 상기 음극 활물질을 포함할 수 있다. 나아가, 상기 음극 활물질층은 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다. 상기 집전체의 두께는 6㎛ 내지 20㎛일 수 있으나, 상기 집전체의 두께가 이에 제한되는 것은 아니다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
이차전지
본 발명의 일 실시상태에 따른 이차 전지는 전술한 일 실시상태에 따른 음극을 포함할 수 있다. 구체적으로, 상기 이차 전지는 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막 및 전해액을 포함할 수 있으며, 상기 음극은 전술한 음극과 동일하다. 상기 음극에 대해서는 전술하였으므로, 구체적인 설명은 생략한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극활물질을 포함하는 양극 활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 하나이고, 0.01≤c2≤0.5를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 또는 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해액으로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해액은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해액에는 상기 전해액 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 또 다른 실시상태에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
<실시예 1>
실시예 1-1
규사(SiO2)를 전기로에서 탄소를 이용한 열환원 반응을 이용하여, 환원 반응을 유도한 뒤, 액체 상태의 Si를 제조하였다. 구체적으로, 흑연 전극에 10,000 A 이상의 고전류를 흘려 2,000 ℃의 액체 상태의 Si를 제조하였다. 그 다음, 상온에서 서서히 냉각시키고, 이후에 냉각된 실리콘 덩어리를 원료로 하여 조분쇄 및 기류 분급을 통하여 D50=5 ㎛의 크기를 가지는 금속 실리콘 분말을 얻었다. 금속 실리콘 분말(Si 분말)과 도핑 소스로서 H3BO3 분말을 각각 60g(1:1 중량비)로 혼합한 분말 120g을 반응로에서 500 ℃의 반응 온도로 Ar 기체 환경 하에서 가열하였다. 이 때의 승온 조건은 5 ℃/min이었다. 그 다음 5 ℃/min로 상온까지 냉각 이후에 반응 완료된 분말을 포집한 뒤, 미반응한 도핑 소스를 제거하기 위해 분말과 물을 혼합한 이후에 원심분리기를 이용하여 6,000 rpm에서 5분 동안 세척하는 과정을 3회 진행하였다. 상등액은 버리고 밑에 모인 혼합물을 포집하여 60 ℃ 오븐에서 건조를 진행하였다. 이후에 열처리 중에 발생한 입자 뭉침을 제거하기 위하여, 325 mesh 사이즈를 가지는 필터를 이용해 Sieving 과정을 최종적으로 진행하여 음극 활물질을 제조하였다.
실시예 1-2
700 ℃의 반응 온도로 가열한 것을 제외하고는 실시예 1-1과 동일한 방법으로 음극 활물질을 제조하였다.
실시예 1-3
900 ℃의 반응 온도로 가열한 것을 제외하고는 실시예 1-1과 동일한 방법으로 음극 활물질을 제조하였다.
실시예 1-4
H3BO3 대신 H3PO4를 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 음극 활물질을 제조하였다.
비교예 1-1
규사(SiO2)를 전기로에서 탄소를 이용한 열환원 반응을 이용하여, 환원 반응을 유도한 뒤, 액체 상태의 Si를 제조하였다. 구체적으로, 흑연 전극에 10,000 A 이상의 고전류를 흘려 2,000 ℃의 액체 상태의 Si를 제조하였다. 2,000 ℃의 액체 상태의 Si에 있어서, B의 함량이 전체의 5wt%가 되도록 H3BO3(boric acid)를 투입한 뒤, 상온에서 서서히 냉각시켰다. 이후에 냉각된 B가 도핑된 실리콘 덩어리를 원료로 하여 조분쇄 및 기류 분급을 통하여 D50=5 ㎛의 크기를 가지는 음극 활물질 분말을 얻었다. 이후에 325 mesh 사이즈를 가지는 필터를 이용해 Sieving 과정을 최종적으로 진행하여 B가 도핑되어 있는 음극 활물질을 제조하였다.
비교예 1-2
H3BO3 대신 P의 함량이 전체의 5wt%가 되도록 H3PO4를 사용한 것을 제외하고는 비교예 1-1과 동일한 방법으로 진행하여 P가 도핑되어 있는 음극 활물질을 제조하였다.
비교예 1-3
H3BO3 대신 B2O3를 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 음극 활물질을 제조하였다.
상기 실시예 및 비교예에서 제조한 음극 활물질의 구성은 하기 표 1과 같다.
  Si 함량
(음극 활물질 총 100 중량부 기준)
O 함량
(음극 활물질 총 100 중량부 기준)
도핑 원소 반응 온도 (℃) 총 도핑 원소(B, P) 함량(음극 활물질 총 100 중량부 기준) 농도 구배 유무 Si 결정립 크기 (nm)
실시예 1-1 94.4 2.1 B 500 3.2 O 190
실시예 1-2 87.1 2.4 B 700 10.3 O 220
실시예 1-3 76.6 2.5 B 900 20.9 O 250
실시예 1-4 95.1 2.9 P 500 2 O 185
비교예 1-1 90.9 4.1 B 2,000 5 X 170
비교예 1-2 91.1 3.9 P 2,000 5 X 160
비교예 1-3 96.4 3.4 B
500 0.2 190
상기 실시예 및 비교예에서 제조한 음극 활물질의 각 영역에 따른 원소 농도는 하기 표 2과 같다.
원소의 농도 (해당 영역 기준으로 원소의 중량%)
0.75Ra로부터 표면까지의 영역 0.5Ra 이상 0.75Ra 미만까지의 영역 0.25Ra 이상 0.5Ra 미만까지의 영역 ~0.25Ra 미만까지의 영역
실시예 1-1 B 5 1 0.3 0
O 2.4 1.3 0.5 0.2
실시예 1-2 B 14 6 1.5 0.5
O 2.8 1.4 0.7 0.3
실시예 1-3 B 30 12 3 1
O 3.1 2.3 1.3 0.3
실시예 1-4 P 3 0.5 0.1 0
O 3.5 2.4 1.3 0.6
비교예 1-1 B 5 5 5 5
O 4.1 4.1 4.1 4.1
비교예 1-2 B 5 5 5 5
O 3.9 3.9 3.9 3.9
비교예 1-3 B 0.2 0 0 0
O 3.1 0.1 0.1 0.1
상기 원소의 종류 및 총 함량은 유도결합 플라즈마 발광 분석 분광기(Perkin-Elmer 7300사의 ICP-OES, AVIO 500)를 이용한 ICP 분석을 통하여 확인하였다.
상기 원소의 농도 구배는 음극 활물질 단면을 커팅한 후 SEM EDS 분석을 통하여 측정하였다. 구체적으로 Ion Milling으로 활물질 단면을 자르고, 단면은 SEM EDS(Energy-dispersive X-ray spectroscopy)를 통하여 원소의 함량을 확인하였고, SEM 측정 이미지를 분석하여 각 구간의 원소 농도를 측정하였다.
상기 음극 활물질의 중심에서 표면까지의 거리 Ra는 음극 활물질을 동일 단면적을 갖는 구형으로 환산했을 때의 반경으로 계산하였다. 또한, 음극 활물질의 중심은 음극 활물질의 무게 중심을 기준으로 측정하였다.
상기 음극 활물질 입자에 포함된 Si 결정립의 크기는 X선 회절 분석을 통해 확인할 수 있으며, X선 회절 분석은 X-ray diffraction(XRD) 분석 기기(제품명: D4-endavor, 제조사: bruker)를 이용하여 수행하였다. 구체적으로, XRD 측정은 Powder 형태의 샘플을 홀더에 샘플링 하고 Cu K alpha X-ray를 통해 측정하였다. 결정립의 크기는 Scherrer equation을 사용하여 XRD 결과에 Fitting하고 이를 통해 계산하였으며, 이때의 결정립의 기준은 Si(111)을 기준으로 측정하였다. (2θ=28.4°내지 28.5°)
<실험예 1: 방전 용량, 초기 효율, 수명(용량 유지율) 특성 평가>
실시예들 및 비교예들의 음극 활물질을 각각 이용하여 음극 및 이차전지를 제조하였다.
음극의 제조
평균 입경(D50)이 5㎛인 실시예 1-1에서 제조한 음극 활물질, 단일벽 탄소나노튜브, 판상형 인조흑연, 도전재인 카본블랙, 바인더인 폴리아크릴아미드계 중합체, 용매인 물을 포함하는 음극 슬러리를 준비하였다.
상기 음극 슬러리를 두께가 20㎛인 음극 집전체인 구리(Cu) 금속 박막에 도포, 건조하였다. 이때 순환되는 공기의 온도는 60℃였다. 이어서, 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조하여 음극을 제조하였다(로딩양: 8.55mAh/cm2).
제조된 음극 내에서, 상기 음극 활물질, 상기 단일벽 탄소나노튜브, 상기 판상형 인조흑연, 상기 도전재, 상기 바인더의 중량비는 70:0.21:10:10:9.79이었다.
또한, 실시예 1-1의 음극 활물질 대신에 실시예 1-2 내지 1-4 및 비교예 1-1 내지 1-3의 음극 활물질을 각각 사용한 것을 제외하고는 동일한 방법으로 실시예 1-2 내지 1-4 및 비교예 1-1 내지 1-3의 음극을 제조하였다.
이차전지의 제조
양극으로서 리튬 금속박을 준비하였다.
상기에서 제조된 실시예 1-1 내지 1-4 및 비교예 1-1 내지 1-3의 음극과 양극 사이에 다공성 폴리에틸렌 분리막을 개재하고, 전해액을 주입하여 실시예 1-1 내지 1-4 및 비교예 1-1 내지 1-3의 코인형의 하프 셀을 제조하였다.
상기 전해액으로는 에틸메틸카보네이트(EMC)와 에틸렌카보네이트(EC)를 부피비 7:3으로 혼합한 용액에, 0.5 중량%로 비닐렌 카보네이트(VC)를 용해시키고, LiPF6을 1M 농도로 용해시킨 것을 사용하였다.
방전 용량, 초기 효율 및 용량 유지율 평가
제조된 전지에 대해 충·방전을 수행하여, 방전 용량, 초기 효율 및 용량 유지율을 평가하였고, 이를 하기 표 3에 기재하였다.
1회 사이클과 2회 사이클은 0.1 C로 충·방전하였고, 3회 사이클부터 49회 사이클까지는 0.5 C로 충·방전을 수행하였다.
충전 조건: CC(정전류)/CV(정전압)(5 mV/0.005 C current cut-off)
방전 조건: CC(정전류) 조건 1.0 V voltage cut-off
1회 충방전 시의 결과를 통해, 방전 용량(mAh/g) 및 초기 효율(%)을 도출하였다.
- 음극 활물질의 방전 용량(mAh/g) = 측정된 방전 용량 / 음극 활물질의 Loading 양
- 음극 활물질의 충전 용량(mAh/g) = 측정된 충전 용량 / 음극 활물질의 Loading 양
- 초기 효율(%) = (음극 활물질의 방전 용량(mAh/g) / 음극 활물질의 충전 용량(mAh/g))×100
용량 유지율은 각각 다음과 같은 계산에 의해 도출되었다.
- 용량 유지율(%) = (49회 방전 용량 / 1회 방전 용량)×100
방전 용량(mAh/g) 초기 효율(%) 용량 유지율(%)
실시예 1-1 3300 92.3 95
실시예 1-2 2900 86.7 96.2
실시예 1-3 2100 83.2 96.7
실시예 1-4 3150 91.5 93
비교예 1-1 2650 84.2 78
비교예 1-2 2400 82.3 76
비교예 1-3 2730 85 87
본 발명의 일 실시상태에 따른 음극 활물질은 B 또는 P가 상기 음극 활물질의 중심에서부터 표면까지 증가하는 농도 구배를 갖는 것이 특징이다.
상기 표 3에 있어서, 실시예 1-1 내지 1-4는 방전 용량, 초기 효율 및 용량 유지율이 모두 우수한 것을 확인할 수 있다.
반면, 비교예 1-1 및 1-2는 음극 활물질에 B 및 P가 균일하게 도핑되어 음극 활물질 내에서 농도 구배를 갖지 않는다.
비교예 1-1은 실시예 1-1보다 도핑 원소의 총 함량이 높음에도 불구하고 도핑 원소가 활물질 내에 균일하게 존재하므로 초기 효율 및 용량 유지율이 저하되는 것을 확인할 수 있었다.
비교예 1-2는 실시예 1-4보다 도핑 원소의 총 함량이 높음에도 불구하고 도핑 원소가 활물질 내에 균일하게 존재하므로 초기 효율 및 용량 유지율이 저하되는 것을 확인할 수 있었다.
비교예 1-3은 도핑 소스로 B2O3를 사용한 것으로, B2O3의 끓는점은 1860℃이므로, 500 ℃에서 반응 시 B2O3가 액체 상태에서 반응하게 되어, 도핑 원소가 도핑이 실리콘계 입자의 내부까지 원활하게 되지 못하고, 입자 표면에만 위치하게 된다. 따라서, 상기 비교예 3의 활물질은 입자의 중심에서부터 표면까지 증가하는 농도 구배를 갖는다기보다는 입자의 표면에만 B2O3가 집중되어 있기 때문에 음극 활물질의 세척 공정에서 도핑된 물질들이 쉽게 제거되는 문제점이 있다. 또한, O가 과량 분포하여 초기 효율 및 용량 유지율이 저하되는 것을 확인할 수 있었다.
반면, 실시예 1-1 내지 1-4는 도핑 소스가 기체 상태에서 반응하여 고체 상태의 실리콘계 입자 내부에 적절한 농도 구배를 가지며 도핑됨과 동시에, 산소가 제거되며 도핑되므로 음극 활물질 내에 산소가 거의 존재하지 않아 초기 효율 및 용량 유지율이 개선되는 것을 확인할 수 있었다.
<실시예 2>
실시예 2-1
규사(SiO2)를 전기로에서 탄소를 이용한 열환원 반응을 이용하여, 환원 반응을 유도한 뒤, 액체 상태의 Si를 제조하였다. 구체적으로, 흑연 전극에 10,000 A 이상의 고전류를 흘려 2,000 ℃의 액체 상태의 Si를 제조하였다. 그 다음, 상온에서 서서히 냉각시키고, 이후에 냉각된 실리콘 덩어리를 원료로 하여 조분쇄 및 기류 분급을 통하여 D50=5 ㎛의 크기를 가지는 금속 실리콘 분말을 얻었다. 금속 실리콘 분말(Si 분말)과 도핑 소스로서 H3BO3 분말을 각각 60g(1:1 중량비)로 혼합한 분말 150g을 반응로에서 500 ℃의 반응 온도로 Ar 기체 환경 하에서 가열하였다. 이 때의 승온 조건은 5 ℃/min이었다. 그 다음 5 ℃/min로 상온까지 냉각 이후에 반응 완료된 분말을 포집한 뒤, 미반응한 도핑 소스를 제거하기 위해 분말과 물을 혼합한 이후에 원심분리기를 이용하여 6,000 rpm에서 5분 동안 세척하는 과정을 3회 진행하였다. 상등액은 버리고 밑에 모인 혼합물을 포집하여 60 ℃ 오븐에서 건조를 진행하였다. 이후에 열처리 중에 발생한 입자 뭉침을 제거하기 위하여, 325 mesh 사이즈를 가지는 필터를 이용해 Sieving 과정을 최종적으로 진행하여 음극 활물질을 제조하였다.
실시예 2-2
금속 실리콘 분말(Si 분말)과 도핑 소스로서 H3BO3 분말을 각각 60g(1:1 중량비)로 혼합한 분말 150g을 반응로에서 500 ℃의 반응 온도로 Ar 기체 환경 하에서 가열하였다. 이 때의 승온 조건은 7 ℃/min이었다.
실시예 2-3
금속 실리콘 분말(Si 분말)과 도핑 소스로서 H3BO3 분말을 각각 60g(1:1 중량비)로 혼합한 분말 150g을 반응로에서 500 ℃의 반응 온도로 Ar 기체 환경 하에서 가열하였다. 이 때의 승온 조건은 3 ℃/min이었다.
비교예 2-1
규사(SiO2)를 전기로에서 탄소를 이용한 열환원 반응을 이용하여, 환원 반응을 유도한 뒤, 액체 상태의 Si를 제조하였다. 구체적으로, 흑연 전극에 10,000 A 이상의 고전류를 흘려 2,000 ℃의 액체 상태의 Si를 제조하였다. 2,000 ℃의 액체 상태의 Si에 있어서, B의 함량이 전체의 4.12wt%가 되도록 H3BO3(boric acid)를 투입한 뒤, 상온에서 서서히 냉각시켰다. 이후에 냉각된 B가 도핑된 실리콘 덩어리를 원료로 하여 조분쇄 및 기류 분급을 통하여 D50=5 ㎛의 크기를 가지는 음극 활물질 분말을 얻었다. 이후에 325 mesh 사이즈를 가지는 필터를 이용해 Sieving 과정을 최종적으로 진행하여 B가 도핑되어 있는 음극 활물질을 제조하였다.
상기 실시예 2-1 내지 2-3 및 비교예 2-1의 도핑 원소의 총 도핑 중량은 음극 활물질 총 100 중량부를 기준으로 4.12 중량부로 동일하다.
도핑 원소(B)의 농도 (해당 영역 기준으로 도핑 원소의 중량%)
0.75Ra로부터 표면까지의 영역 0.5Ra 이상 0.75Ra 미만까지의 영역 0.25Ra 이상 0.5Ra 미만까지의 영역 ~0.25Ra 미만까지의 영역
실시예 2-1 6 2 0.5 0
실시예 2-2 6.5 1 0.5 0
실시예 2-3 5.3 2.7 2.3 0
비교예 2-1 4.12 4.12 4.12 4.12
<실험예 2: 방전 용량, 초기 효율, 수명(용량 유지율) 특성 평가>
실시예들 및 비교예들의 음극 활물질을 각각 이용하여 음극 및 이차전지를 제조하였다.
음극의 제조
평균 입경(D50)이 5㎛인 실시예 2-1에서 제조한 음극 활물질, 단일벽 탄소나노튜브, 판상형 인조흑연, 도전재인 카본블랙, 바인더인 폴리아크릴아미드계 중합체, 용매인 물을 포함하는 음극 슬러리를 준비하였다.
상기 음극 슬러리를 두께가 15㎛인 음극 집전체인 구리(Cu) 금속 박막에 도포, 건조하였다. 이때 순환되는 공기의 온도는 60℃였다. 이어서, 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조하여 음극을 제조하였다(로딩양: 9.5mAh/cm2).
제조된 음극 내에서, 상기 음극 활물질, 상기 단일벽 탄소나노튜브, 상기 판상형 인조흑연, 상기 도전재, 상기 바인더의 중량비는 70:0.21:10:10:9.79이었다.
또한, 실시예 2-1의 음극 활물질 대신에 실시예 2-2 내지 2-3 및 비교예 2-1의 음극 활물질을 각각 사용한 것을 제외하고는 동일한 방법으로 실시예 2-2 내지 2-3 및 비교예 2-1의 음극을 제조하였다.
이차전지의 제조
양극으로서 리튬 금속박을 준비하였다.
상기에서 제조된 실시예 2-1 내지 2-3 및 비교예 2-1의 음극과 양극 사이에 다공성 폴리에틸렌 분리막을 개재하고, 전해액을 주입하여 실시예 2-1 내지 2-3 및 비교예 2-1의 코인형의 하프 셀을 제조하였다.
상기 전해액으로는 플로오로에틸렌 카보네이트(FEC)와 에틸메틸카보네이트(EMC)를 부피비 3:7으로 혼합한 용액에, LiPF6을 1M 농도로 용해시킨 것을 사용하였다.
방전 용량, 초기 효율 및 용량 유지율 평가
제조된 전지에 대해 충·방전을 수행하여, 방전 용량, 초기 효율 및 용량 유지율을 평가하였고, 이를 하기 표 5에 기재하였다.
1회 사이클과 2회 사이클은 0.1 C로 충·방전하였고, 3회 사이클부터 49회 사이클까지는 0.5 C로 충·방전을 수행하였다.
충전 조건: CC(정전류)/CV(정전압)(5 mV/0.005 C current cut-off)
방전 조건: CC(정전류) 조건 1.0 V voltage cut-off
1회 충방전 시의 결과를 통해, 방전 용량(mAh/g) 및 초기 효율(%)을 도출하였다.
- 음극 활물질의 방전 용량(mAh/g) = 측정된 방전 용량 / 음극 활물질의 Loading 양
- 음극 활물질의 충전 용량(mAh/g) = 측정된 충전 용량 / 음극 활물질의 Loading 양
- 초기 효율(%) = (음극 활물질의 방전 용량(mAh/g) / 음극 활물질의 충전 용량(mAh/g))×100
용량 유지율은 각각 다음과 같은 계산에 의해 도출되었다.
- 용량 유지율(%) = (49회 방전 용량 / 1회 방전 용량)×100
방전 용량(mAh/g) 초기 효율(%) 용량 유지율(%)
실시예 2-1 3250 91.8 94.6
실시예 2-2 3170 90.8 89.3
실시예 2-3 3230 91.2 91.2
비교예 2-1 2850 86 80
본 발명의 일 실시상태에 따른 음극 활물질은 B 또는 P가 상기 음극 활물질의 중심에서부터 표면까지 증가하는 농도 구배를 갖는 것이 특징으로, 상기와 같이 실시예 2-1 내지 2-3과 같이 농도 구배를 갖는 경우, 농도 구배를 갖지 않는 비교예 2-1보다 방전 용량, 초기 효율 및 용량 유지율이 크게 향상되는 것을 알 수 있었다. 그 중에서도 실시예 2-1과 같은 농도 구배를 만족하는 경우, 특히 초기 효율 및 용량 유지율이 동시에 크게 향상되는 것을 확인할 수 있었다.

Claims (14)

  1. 실리콘계 입자; 및
    상기 실리콘계 입자 내에 분포된 B 및 P로 이루어진 군에서 선택된 1 이상의 원소;를 포함하는 실리콘계 복합체를 갖는 음극 활물질로서,
    상기 실리콘계 입자는 상기 실리콘계 입자 총 100 중량부를 기준으로 Si를 95 중량부 이상 포함하고,
    상기 원소는 상기 실리콘계 복합체의 중심에서부터 표면까지 증가하는 농도 구배를 갖는 것인 음극 활물질.
  2. 청구항 1에 있어서,
    상기 실리콘계 복합체 총 100 중량부를 기준으로 O의 함량이 3 중량부 이하인 것인 음극 활물질.
  3. 청구항 1에 있어서,
    상기 B 및 P로 이루어진 군에서 선택된 1 이상의 원소는 실리콘계 복합체 총 100 중량부를 기준으로 0.1 중량부 내지 50 중량부로 포함되는 것인 음극 활물질.
  4. 청구항 1에 있어서,
    상기 실리콘계 복합체의 중심에서 표면까지의 거리를 Ra라 할 때, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점으로부터 표면까지의 영역에 포함된 상기 원소의 농도는 나머지 영역에 포함된 상기 원소의 농도보다 높은 값을 갖는 것인 음극 활물질.
  5. 청구항 1에 있어서,
    상기 실리콘계 복합체의 중심에서 표면까지의 거리를 Ra라 할 때, 상기 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점으로부터 표면까지의 영역에 포함된 상기 원소의 농도는 실리콘계 복합체의 중심에서 표면 방향으로 0.5Ra가 되는 지점으로부터 실리콘계 복합체의 중심에서 표면 방향으로 0.75Ra가 되는 지점까지의 영역에 포함된 상기 원소의 농도보다 20% 내지 1,000% 높은 값을 갖는 것인 음극 활물질.
  6. 청구항 1에 있어서,
    상기 Si의 결정립은 5 nm 내지 1,000 nm인 것인 음극 활물질.
  7. 청구항 1에 있어서,
    상기 음극 활물질의 D50은 0.5 ㎛ 내지 50 ㎛인 것인 음극 활물질.
  8. 금속 실리콘을 준비하는 단계;
    B를 포함하는 화합물 및 P를 포함하는 화합물로 이루어진 군에서 선택된 1 이상의 화합물을 포함하는 도핑 소스(source)를 준비하는 단계; 및
    상기 금속 실리콘과 상기 도핑 소스를 혼합한 뒤 상기 도핑 소스의 끓는점 이상의 온도에서 열처리하는 단계를 포함하는 음극 활물질의 제조방법.
  9. 청구항 8에 있어서,
    상기 열처리는 상기 금속 실리콘의 녹는점 미만의 온도에서 수행되는 것인 음극 활물질의 제조방법.
  10. 청구항 8에 있어서,
    상기 금속 실리콘을 준비하는 단계 이후에 상기 금속 실리콘을 분쇄 및 분급하는 단계를 더 포함하는 것인 음극 활물질의 제조방법.
  11. 청구항 10에 있어서,
    상기 분쇄 및 분급된 금속 실리콘의 D50은 0.5 ㎛ 내지 50 ㎛인 것인 음극 활물질의 제조방법.
  12. 청구항 8에 있어서,
    상기 열처리는 300 ℃ 내지 1,400 ℃에서 수행되는 것인 음극 활물질의 제조방법.
  13. 청구항 1 내지 7 중 어느 한 항에 따른 음극 활물질을 포함하는 음극.
  14. 청구항 13에 따른 음극을 포함하는 이차전지.
PCT/KR2022/018234 2021-11-19 2022-11-17 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법 WO2023090911A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280034049.1A CN117280495A (zh) 2021-11-19 2022-11-17 负极活性材料、包含所述负极活性材料的负极、包含所述负极的二次电池以及制备所述负极活性材料的方法
US18/288,784 US20240250240A1 (en) 2021-11-19 2022-11-17 Anode active material, anode comprising the same, secondary battery comprising the anode, and method for preparing the same
EP22896108.2A EP4322255A1 (en) 2021-11-19 2022-11-17 Anode active material, anode comprising same anode active material, secondary battery comprising same anode, and method for preparing same anode active material
JP2023565285A JP2024515127A (ja) 2021-11-19 2022-11-17 負極活物質、前記負極活物質を含む負極、前記負極を含む二次電池、および前記負極活物質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0159927 2021-11-19
KR20210159927 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090911A1 true WO2023090911A1 (ko) 2023-05-25

Family

ID=86397469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018234 WO2023090911A1 (ko) 2021-11-19 2022-11-17 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법

Country Status (6)

Country Link
US (1) US20240250240A1 (ko)
EP (1) EP4322255A1 (ko)
JP (1) JP2024515127A (ko)
KR (1) KR20230074000A (ko)
CN (1) CN117280495A (ko)
WO (1) WO2023090911A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020146623A1 (en) * 1998-09-11 2002-10-10 Kimihito Suzuki Lithium secondary battery and active material for negative electrode in lithium secondary battery
JP2004311429A (ja) * 2003-03-26 2004-11-04 Canon Inc リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
KR101308948B1 (ko) 2012-05-31 2013-09-24 한국메탈실리콘 주식회사 금속 실리콘 파우더 제조방법 및 그 제조장치
KR20140116198A (ko) * 2012-04-05 2014-10-01 미쓰이금속광업주식회사 비수전해액 이차전지용 음극 활물질
JP2016152213A (ja) * 2015-02-19 2016-08-22 ソニー株式会社 負極活物質粒子およびその製造方法、負極、電池、ならびに導電性粒子
KR20200023240A (ko) * 2018-08-23 2020-03-04 주식회사 엘지화학 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020146623A1 (en) * 1998-09-11 2002-10-10 Kimihito Suzuki Lithium secondary battery and active material for negative electrode in lithium secondary battery
JP2004311429A (ja) * 2003-03-26 2004-11-04 Canon Inc リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
KR20140116198A (ko) * 2012-04-05 2014-10-01 미쓰이금속광업주식회사 비수전해액 이차전지용 음극 활물질
KR101308948B1 (ko) 2012-05-31 2013-09-24 한국메탈실리콘 주식회사 금속 실리콘 파우더 제조방법 및 그 제조장치
JP2016152213A (ja) * 2015-02-19 2016-08-22 ソニー株式会社 負極活物質粒子およびその製造方法、負極、電池、ならびに導電性粒子
KR20200023240A (ko) * 2018-08-23 2020-03-04 주식회사 엘지화학 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지

Also Published As

Publication number Publication date
KR20230074000A (ko) 2023-05-26
EP4322255A1 (en) 2024-02-14
CN117280495A (zh) 2023-12-22
US20240250240A1 (en) 2024-07-25
JP2024515127A (ja) 2024-04-04

Similar Documents

Publication Publication Date Title
WO2020040586A1 (ko) 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2022131695A1 (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2024054035A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2020180125A1 (ko) 리튬 이차전지
WO2023106882A1 (ko) 음극 활물질, 이를 포함하는 음극 슬러리, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2022060104A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지
WO2023090911A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
WO2024101947A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2023090948A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지
WO2023018190A1 (en) Negative electrode active material, and negative electrode and secondary battery including same
WO2023033370A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
WO2023090950A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지
WO2023018108A1 (ko) 음극 활물질, 음극 활물질의 제조방법, 음극 활물질을 포함하는 음극 및 이를 포함하는 이차전지
WO2023096404A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 상기 음극 활물질의 제조방법
WO2023018218A1 (ko) 음극 활물질, 음극 슬러리, 음극 및 이차 전지
WO2024035201A1 (ko) 양극, 양극의 제조 방법 및 상기 양극을 포함하는 리튬 이차전지
WO2023018258A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2024053995A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬이차전지
WO2023096406A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 상기 음극 활물질의 제조방법
WO2024080573A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2024019429A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2024128541A1 (ko) 음극 활물질의 제조방법, 음극 활물질, 음극 및 이차전지
WO2024053939A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565285

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18288784

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280034049.1

Country of ref document: CN

Ref document number: 2022896108

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022896108

Country of ref document: EP

Effective date: 20231109

NENP Non-entry into the national phase

Ref country code: DE