WO2023089830A1 - 制御装置、制御方法、及びプログラム - Google Patents

制御装置、制御方法、及びプログラム Download PDF

Info

Publication number
WO2023089830A1
WO2023089830A1 PCT/JP2021/042803 JP2021042803W WO2023089830A1 WO 2023089830 A1 WO2023089830 A1 WO 2023089830A1 JP 2021042803 W JP2021042803 W JP 2021042803W WO 2023089830 A1 WO2023089830 A1 WO 2023089830A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
control
stop
base station
determination unit
Prior art date
Application number
PCT/JP2021/042803
Other languages
English (en)
French (fr)
Inventor
真尚 岩本
正裕 小林
薫明 原田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to EP21964843.3A priority Critical patent/EP4440171A1/en
Priority to PCT/JP2021/042803 priority patent/WO2023089830A1/ja
Priority to JP2023562097A priority patent/JPWO2023089830A1/ja
Publication of WO2023089830A1 publication Critical patent/WO2023089830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a technique for controlling a radio base station (hereinafter referred to as a base station) that provides radio communication services to terminals in a mobile communication system.
  • a radio base station hereinafter referred to as a base station
  • the traffic demand for base stations fluctuates greatly depending on the time of day/location, so it is common for base stations to secure capacity (computational resources, etc.) for traffic processing according to peak traffic demand.
  • Base stations generally cover areas with multiple frequency bands, and can be stopped for each frequency band. However, a communication terminal connected to the stopped base station needs to switch to another base station, which may degrade communication quality.
  • base station control such as stopping radio waves at base stations and changing parameters (tilt angle, transmission power, etc.) of surrounding base stations is required to be performed while suppressing deterioration of terminal communication quality.
  • Non-Patent Document 1 As another existing method, by changing parameters such as the elevation (tilt angle) and transmission power of the antenna of the base station, some base stations are stopped, and the communication quality of terminals near that base station is improved. There is a method for suppressing the deterioration of the ([2], Non-Patent Document 1).
  • parameters are calculated to reduce the communication quality of terminals after the base station to be terminated is decided by some method.
  • the communication quality of a terminal greatly depends on the base station to stop the wave, it may not be possible to ensure the communication quality depending on the method of selecting the base station to stop the wave.
  • the present invention has been made in view of the above points, and aims to provide a technology that enables both suppression of communication quality deterioration and reduction of power consumption of base stations.
  • a control device for controlling a base station in a mobile communication system including a plurality of base stations, Based on the traffic demand of each base station, determine the parameters of at least one stopping station that will stop the wave of at least one frequency band and at least one relief station that covers the coverage hole caused by the stopping of the wave of the stopping station.
  • a stop station determination unit configured as and a control transmission unit configured to transmit control information including the information of the stop station determined by the stop station determination unit and the parameter.
  • FIG. 1 is a configuration diagram of a control system according to an embodiment of the present invention
  • FIG. It is a flowchart for demonstrating operation
  • 4 is a flowchart for explaining the operation of a coverage area calculator; It is a flowchart for demonstrating operation
  • the control system that controls the base stations, according to the traffic demand of each base station, under the constraint of ensuring the communication quality of the terminal, so as to reduce the power consumption Obtain the parameters (tilt angle, transmission power, etc.) of the station and the operating base station, and implement control.
  • FIG. 1 shows a configuration example of a control system 100 according to this embodiment.
  • base station information location information (latitude/longitude), current parameters (tilt angle (°), transmission power (W), etc.), and traffic demand (for each area/time zone traffic volume (bps), number of active users (persons) in each area/time zone), base station stop/operation instruction information, and changed parameters of the base station (tilt angle, transmission power, etc.) ) and so on.
  • the control system 100 includes an input reception unit 10, a data processing unit 20, and a base station communication unit 30.
  • the data processing unit 20 includes a traffic demand calculation unit 21 , a stop station determination unit 22 , a coverage area calculation unit 23 , a stoppage end determination unit 24 , a control transmission unit 25 and a base station information DB 26 .
  • the base station communication unit 30 includes a transmission unit 31 and a reception unit 32 .
  • a plurality of base stations to be controlled and control equipment for controlling the base stations are connected to the base station communication unit 30 .
  • Each base station configures a communication area and performs wireless communication with terminals within the area.
  • the coverage area calculation unit 23 may be included in the stop station determination unit 22.
  • the "stopped station determination unit 22+cover area calculation unit 23" may be called “stopped station determination unit”.
  • the control transmission unit 25 may include the function of the communication unit 30 for the base station.
  • control system 100 may be configured with one device (computer, etc.), or may be configured with a plurality of devices.
  • the control system 100 configured with one device (computer or the like) may be called a control device.
  • the data processing unit 20 may be called a control device.
  • system of the mobile communication system in this embodiment is not limited to a specific system.
  • the system may be 3G, 4G, 5G, 6G, or wireless LAN, or may be other than these.
  • the input reception unit 10 periodically observes the traffic demand of each base station.
  • the observation period is, for example, several minutes to several hours depending on the estimation/prediction accuracy required by the traffic demand calculator 21 .
  • the input reception unit 10 notifies the traffic demand calculation unit 21 of the observation result.
  • the traffic demand calculation unit 21 calculates the current traffic demand and future traffic demand of each base station based on the information from the input reception unit 10 .
  • the stop station determination unit 22 Based on the observation/prediction result by the traffic demand calculation unit 21 and the calculation result by the coverage area calculation unit 23, the stop station determination unit 22 selects a base station to be stopped (called a stop station) and a base station whose parameters are to be changed. (referred to as the Remedy Bureau).
  • the coverage area calculation unit 23 calculates whether a coverage hole will occur due to the stoppage of the radio wave of the base station, and if it occurs, whether it can be covered by surrounding base stations.
  • the suspension end determination unit 24 determines whether or not to reactivate the suspension station based on the calculation result of the traffic demand calculation unit 21 .
  • Control transmitter 25 receives control details from the wave stopping station determination unit 22 or wave stopping end determination unit 24 and transmits the control details to the base station communication unit 30 . Based on the content of control, the target base station is controlled by the base station communication unit 30 .
  • the base station information DB 26 stores and manages location information of each base station, parameters of each base station, stop station information, and relief station information. These pieces of information are updated by receiving the control details determined by the stoppage station determination unit 22 or the stoppage end determination unit 24 . Past information is also held in the base station information DB 26 in accordance with the information used for calculation by the stoppage station determination unit 22 and the stoppage end determination unit 24 .
  • the traffic demand calculator 21 calculates the current estimated value of the traffic demand of each base station and the future predicted value of each base station based on the information about the traffic demand obtained periodically from the input receiver 10 .
  • the method of calculating the estimated value is not limited to a specific method, but for example, an exponential smoothing moving average, state space model, or the like can be used.
  • the calculation method for the future predicted value of traffic demand is not limited to a specific method, but for example, a prediction method using SARIMA [5] or a prediction method using LSTM [6] can be used.
  • the stop station determination unit 22 determines the base station to be stopped based on the calculation result by the traffic demand calculation unit 21 and the determination by the coverage area determination unit 23 .
  • the operation of the stop station determining unit 22 will be described in detail along the procedure of the flowchart of FIG.
  • the stop station determining unit 22 enumerates base stations whose demand is below the threshold based on the traffic demand of each base station calculated by the traffic demand calculating unit 21. If there is no low-demand base station, the information from the input reception unit 10 is waited for without performing subsequent calculations.
  • the suspension station determination unit 22 determines whether or not to decide whether or not to suspend transmission in order from the base stations with the lowest demand among the base stations listed in S1.
  • a base station to be determined whether to stop the wave is called a stop candidate station.
  • base stations that have already stopped service and base stations that cannot stop service are excluded from the targets for deciding whether to stop service. station.
  • Information on base stations that have already stopped broadcasting and base stations that cannot stop broadcasting can be obtained from the base station information DB 26 .
  • the base station information DB 26 is updated according to the control details determined by the stop station determination unit 22 .
  • the stop station determination unit 22 lists base stations (called peripheral stations) that exist around the stop candidate station and whose traffic demand is below the threshold.
  • the stop station determination unit 22 transmits the information on the stop candidate stations and the peripheral stations to the coverage area calculation unit 23, and receives the judgment result as to whether the stop is possible.
  • This determination result includes a parameter indicating the frequency band to be terminated by the candidate station for termination and a parameter for the relief station.
  • the suspension station determination unit 22 determines whether or not to suspend the suspension candidate station based on the determination result received in S4. The processing of S3 to S5 is performed for each suspension candidate station, and the base station that suspends one of the frequency bands is determined.
  • the stopping station determining unit 22 notifies the control transmitting unit 25 of the parameters of the base station to be stopped (frequency band to be stopped, etc.) and the parameters of the relief station at that time.
  • the coverage area calculator 23 calculates whether a coverage hole will occur due to the suspension of the suspension candidate station, or whether it can be covered by peripheral stations (if it occurs). The operation of the coverage area calculator 23 will be described in detail along the procedure of the flowchart of FIG. If there are a plurality of sets of "cancellation candidate station and one or more peripheral stations corresponding thereto", the following processing is performed for each set.
  • the coverage area calculation unit 23 estimates the current coverage range for the stoppage candidate stations and peripheral stations notified by the stoppage station determination unit 22 . There are a plurality of techniques for estimating the coverage range, and any technique may be used.
  • the method of geometrically estimating the coverage range of Document [3], or the high-precision estimation method of Document [4] that considers propagation loss and radio wave interference can be used. These can be changed according to the requirements of calculation time and estimation accuracy. Estimate coverage based on
  • the coverage range of a base station is, for example, the range in which the terminal exists such that the base station and the terminal can communicate with each other with a predetermined communication quality.
  • the coverage range may be defined not only from the viewpoint of communication quality, but also as "the range that can cover communication, including the viewpoint of traffic accommodation”.
  • the coverage area calculation unit 23 uses the coverage obtained in S11 to determine whether or not a coverage hole will occur when part or all of the frequency band of the suspension candidate station is suspended. do.
  • a coverage hole is a range that is not covered by either the coverage range of the suspension candidate station or the coverage range of the peripheral stations.
  • the coverage area calculation unit 23 suspends the frequency bands of the suspension candidate stations one by one, and determines whether a coverage hole will occur for each situation.
  • the order of stopping the frequency bands for example, there is a method of stopping the waves in order from the high frequency band.
  • the process proceeds to S13, in which it is determined that this termination candidate station can terminate all frequency bands, and this termination candidate station determines that it is possible to terminate all frequency bands.
  • the stop station determining unit 22 is notified of the frequency band to be stopped.
  • the determined stop station is a stop station that does not require parameter change of peripheral stations.
  • the coverage area calculation unit 23 calculates the coverage ratio for the coverage hole according to the coverage range of the peripheral stations, for example, using the technique of document [3]. Specifically, when the calculated coverage ratio for the coverage hole is equal to or greater than a threshold, it is determined that the coverage hole can be covered.
  • a peripheral station that changes parameters for cover is called a rescue station. Parameters to be changed include, but are not limited to, the tilt angle of the antenna, transmission power, and the like. Also, there may be one or more relief stations for a certain station.
  • the coverage area calculation unit 23 adopts the situation with the largest number of frequency bands that can be stopped among the situations determined to be covered by the relief station as the control content. If it is determined that coverage cannot be achieved in all situations, the wave will not be stopped.
  • the coverage area calculation unit 23 determines whether it is possible to stop the base station, the frequency band to stop the service of the candidate station for the service stop (if the service can be stopped), and the parameter of the relief station, and the parameters of the service station determination unit 22 to notify.
  • the suspension end determination unit 24 determines whether or not to reactivate the suspended station that has suspended the transmission of at least one frequency band. The operation of the stoppage end determination unit 24 will be described along the procedure of the flowchart in FIG.
  • the suspension end determination unit 24 determines whether the traffic demand of the suspension station or relief station exceeds the threshold. Information on the current traffic demands of the outage station and its rescue station can be obtained from the base station information DB 26 .
  • the process proceeds to S22, and the suspended station end determination unit 24 restarts the suspended station (restarts the suspended frequency band). It notifies the control transmission unit 25 of the change in the parameters of the relief station.
  • the wave stoppage end determination unit 24 updates the base station information DB 26 according to the control result determined as described above. As a result of this update, for example, a base station managed in the base station information DB 26 as a stopped station is managed as a normal base station that is not a stopped station.
  • the control transmission unit 25 receives the control details determined by the wave stoppage determination unit 22 and the wave stoppage end determination unit 24 , and transmits the control details to the base station communication unit 30 . More specifically, the control transmitter 25 starts transmission as soon as it receives a notification from the wave stoppage determination unit 22 or the wave stoppage end determination unit 24 . When notifications are received simultaneously from the stoppage station determination unit 22 and the stoppage end determination unit 24, the information is transmitted together.
  • control transmission unit 25 When the control transmission unit 25 receives the control contents for each time period as in the second embodiment described later, the control contents are received until the current time reaches that time period, and the current time reaches that time period. When it becomes , the corresponding control content is transmitted.
  • Example 1 Base station control based on current traffic demand
  • the content of the stoppage of the base station and the parameter change of the relief station are calculated, and the corresponding base station is controlled based on the calculation result.
  • the processing of the first embodiment will be described with reference to the flowchart of FIG.
  • the period of control is, for example, about several minutes to one hour, and online control is performed periodically. That is, the processing of the flowchart of FIG. 5 is periodically executed.
  • the input reception unit 10 periodically acquires information from the base station communication unit 30.
  • the traffic demand calculator 21 estimates the current traffic demand from the information acquired at S101.
  • the stop station determination unit 22 determines whether or not there is a base station whose traffic demand is equal to or less than the threshold based on the estimation result in S102, and if so, proceeds to S104. If there is no base station whose traffic demand is equal to or less than the threshold, the process returns to S101 and waits for information from the input reception unit 10 without performing the subsequent operations.
  • the stop station determination unit 22 calculates the parameters of the base station that can stop the wave and the relief station at that time, based on the estimation result of S102. In S105, the stop station determination unit 22 notifies the control transmission unit 25 of the calculation result.
  • the wave suspension end determination unit 24 determines whether there is a suspended station or relief station whose traffic demand is equal to or greater than the threshold. decide whether to do When restarting, the process proceeds to S107. If there is no suspended station or relief station with a traffic demand equal to or greater than the threshold, the process returns to the beginning without performing subsequent operations.
  • the suspension end determination unit 24 determines to restart the corresponding suspension station, calculates the changed parameters of the relief station, and in S108, transmits the control content (calculation result) to the control transmission unit 25. Notice.
  • control transmission unit 25 transmits control information indicating suspension/restart/change of parameters of the base station to the communication unit 30 for the base station.
  • the data processing unit 20 prepares in advance a control pattern for stopping waves and changing the tilt angle of the base station for each time period using a future predicted value of traffic demand. Then, it instructs the control to the base station communication unit 30 in each time slot.
  • the control cycle is, for example, several hours, and off-line control is performed every cycle.
  • Example 2 unlike Example 1, sufficient calculation time for the base station parameters in the coverage area calculator 23 can be ensured, and high-precision control in consideration of radio wave interference and the like is possible.
  • the flow of processing executed by the data processing unit 20 in the second embodiment is as follows.
  • the traffic demand calculation unit 21 calculates a predicted value of traffic demand for each time zone of each base station based on information on traffic demand that is periodically observed.
  • the predicted value is stored in the base station information DB26.
  • the suspension station determination unit 22 and the suspension end determination unit 24 determine the suspension/restart/parameter of the base station for each time slot. The change is calculated, and this control content is collectively notified to the control transmission unit 25 .
  • the control transmission unit 25 retains the notified control content.
  • the control transmission unit 25 transmits control details notified in advance to the base station communication unit 30 according to the time zone, and instructs control.
  • Embodiment 3 Base station control combining Embodiments 1 and 2
  • off-line control based on traffic demand prediction is performed, and when a sudden change in traffic demand or a base station failure occurs, the same online control as in the first embodiment is used.
  • the flow of processing executed by the data processing unit 20 in the third embodiment is as follows.
  • the input reception unit 10 acquires observation information in a cycle shorter than the control cycle of the second embodiment, which is several hours, for example, in a cycle of several minutes.
  • the traffic demand calculator 21 estimates the current traffic demand of each base station based on this observation information.
  • the same processing as in the second embodiment is used to determine the control details for each time period based on the future traffic demand, and to change the control details for each time period. It is transmitted to the communication unit for base station 30 to instruct control.
  • the control system 100 or the control device can be implemented, for example, by causing a computer to execute a program.
  • This computer may be a physical computer or a virtual machine on the cloud.
  • the control system 100 and the control device will be collectively referred to as "apparatus”.
  • the device can be realized by executing a program corresponding to the processing performed by the device using hardware resources such as a CPU and memory built into the computer.
  • the above program can be recorded in a computer-readable recording medium (portable memory, etc.), saved, or distributed. It is also possible to provide the above program through a network such as the Internet or e-mail.
  • FIG. 6 is a diagram showing a hardware configuration example of the computer.
  • the computer of FIG. 6 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, etc., which are interconnected by a bus BS.
  • a program that implements the processing in the computer is provided by a recording medium 1001 such as a CD-ROM or memory card, for example.
  • a recording medium 1001 such as a CD-ROM or memory card
  • the program is installed from the recording medium 1001 to the auxiliary storage device 1002 via the drive device 1000 .
  • the program does not necessarily need to be installed from the recording medium 1001, and may be downloaded from another computer via the network.
  • the auxiliary storage device 1002 stores installed programs, as well as necessary files and data.
  • the memory device 1003 reads and stores the program from the auxiliary storage device 1002 when a program activation instruction is received.
  • the CPU 1004 implements functions related to the device according to programs stored in the memory device 1003 .
  • the interface device 1005 is used as an interface for connecting to a network or the like.
  • a display device 1006 displays a GUI (Graphical User Interface) or the like by a program.
  • An input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, or the like, and is used to input various operational instructions.
  • the output device 1008 outputs the calculation result.
  • the technology according to the present embodiment makes it possible to achieve both suppression of communication quality deterioration and reduction of power consumption of base stations in a mobile communication system.
  • As a secondary effect there are the following effects 1 to 3.
  • Effect 1 By placing restrictions on ensuring the communication quality of terminals in control, it is possible to reduce the number of terminals whose communication quality deteriorates due to the stoppage of the base station's waves compared to the conventional technology.
  • Effect 2 Simultaneously optimizing the parameter settings of the base stations to be stopped and the base stations that are in operation enables more base stations to be stopped than with conventional technology, further reducing power consumption. can.
  • Effect 3 By optimizing the base station to be stopped at the same time as parameter settings for other base stations, areas where the cells of each base station do not overlap or where the density of base stations is low, where conventional technology could not be applied Even in this case, it is possible to stop some base stations and reduce power consumption.
  • a control device for controlling a base station in a mobile communication system including a plurality of base stations, Based on the traffic demand of each base station, determine the parameters of at least one stopping station that will stop the wave of at least one frequency band and at least one relief station that covers the coverage hole caused by the stopping of the wave of the stopping station.
  • a stop station determination unit configured as A control device comprising: a control transmission unit configured to transmit control information including the information on the stop station determined by the stop station determination unit and the parameter.
  • the stop station determining unit provides the at least one relief station that corresponds to a situation in which the number of frequency bands that can be stopped by the stop station is the largest among situations in which the coverage hole can be covered by the at least one relief station. 2. The controller of claim 1, wherein the controller determines station parameters. (Section 3) The stop station determination unit determines a base station that does not cause a coverage hole even if all frequency bands are stopped, as a stop station that does not require parameter changes of peripheral stations. Control device as described. (Section 4) Out of items 1 to 3, further comprising: a suspension end determination unit configured to determine whether or not to reactivate the suspended frequency band at the suspension station based on traffic demand. A control device according to any one of the preceding claims.
  • the stop station determination unit determines control information for each future time period based on a predicted value of future traffic demand, and the control transmission unit determines the control information when the time of the time period arrives. 5.
  • the control device according to any one of items 1 to 4, which transmits information.
  • (Section 6) A control method executed by a control device that controls a base station in a mobile communication system including a plurality of base stations, Based on the traffic demand of each base station, determine the parameters of at least one stopping station that will stop the wave of at least one frequency band and at least one relief station that covers the coverage hole caused by the stopping of the wave of the stopping station.
  • a control method comprising: a control transmission step of transmitting control information including the information of the stop station determined by the stop station determination step and the parameter.
  • (Section 7) A program for causing a computer to function as each unit in the control device according to any one of items 1 to 5.
  • Control system 10 Input reception unit 20
  • Data processing unit 21 Traffic demand calculation unit 22
  • Stopped station determination unit 23 Cover area calculation unit 24
  • Control transmission unit 26 Base station information DB 30 communication unit for base station 31 transmission unit 32
  • reception unit 1000 drive device 1001 recording medium 1002 auxiliary storage device 1003 memory device 1004
  • CPU 1005 interface device 1006 display device 1007 input device 1008 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

複数の基地局を含む移動通信システムにおける基地局に対する制御を実施する制御装置において、各基地局のトラヒック需要に基づいて、少なくとも1つの周波数帯の停波を行う停波局と、当該停波局の停波により生じるカバレッジホールをカバーする少なくとも1つの救済局のパラメータとを決定するように構成された停波局決定部と、前記停波局決定部により決定された前記停波局の情報、及び前記パラメータを含む制御情報を送信するように構成された制御送信部とを備える。

Description

制御装置、制御方法、及びプログラム
 本発明は、移動通信システムにおいて、端末に対して無線通信サービスを提供する無線基地局(以降、基地局と呼ぶ)に対する制御を行う技術に関連するものである。
 基地局へのトラヒック需要は時間帯/場所によって大きく変動するので、基地局はトラヒック需要のピークに合わせてトラヒック処理のためのキャパシティ(計算資源等)を確保するのが一般的である。
 そのためトラヒック需要の少ない時間帯/場所においてはトラヒック需要に対して過剰にキャパシティが確保されることになる。このキャパシティに応じて電力が消費されるため、トラヒック処理に対する電力利用効率は悪化してしまう。
 この電力利用効率を改善するため、トラヒック需要の少ない時間帯/場所において、一部の基地局を停波させ、周辺基地局により停波した基地局のエリアをカバーすることで、電力消費量を削減することが検討されている[1,2]。なお、本明細書において番号で示す参考文献の文献名を明細書の最後に記載した。
 基地局は一般に複数の周波数帯でエリアをカバーしており、周波数帯ごとに停波することができる。ただし、停波した基地局と接続していた通信端末は、他の基地局に接続先を切り替える必要があり、これによって通信品質が劣化してしまう可能性がある。
 そのため、基地局の停波や、周辺基地局のパラメータ(チルト角、送信電力等)の変更などの基地局制御については、端末の通信品質劣化を抑えつつ行うことが求められている。
Y. Gao, Y. Li, H. Yu, X. Wang and S. Gao, "Energy efficient joint optimization of electric antenna tilt and transmit power in 3GPP LTE-Advanced: A system level result," 2013 IEEE 9th International Colloquium on Signal Processing and its Applications, 2013, pp. 135-139, doi: 10.1109/CSPA.2013.6530029.
 電力利用効率を改善するため既存手法として、トラヒック需要の少ない基地局を停波させ、この基地局に接続していた端末を付近の基地局に切り替える(ハンドオーバ)手法がある[1]。この手法では端末に対してハンドオーバ可能な基地局が存在することを仮定している。
 しかし、各基地局のセルが重なり合わないエリアや基地局の密度が低いエリアでは、基地局の停波に伴い、電波が届かない箇所(カバレッジホール)が生じたり、基地局の帯域が不足したりするなどして、ハンドオーバができない可能性が高い。そのため、先述のようなエリアではこの手法を適用できない。
 また、別の既存手法として、基地局のアンテナの仰角(チルト角)と送信電力などのパラメータを変更することで、一部の基地局を停波させつつ、その基地局付近の端末の通信品質の劣化を抑える手法がある([2]、非特許文献1)。
 この手法では、停波させる基地局が何らかの方法で決められた後に、端末の通信品質を抑えるようなパラメータを計算する。しかし、端末の通信品質は、停波させる基地局に大きく依存するため、停波させる基地局の選択方法によっては、通信品質を確保することができない可能性がある。
 本発明は上記の点に鑑みてなされたものであり、通信品質劣化抑制と基地局の電力消費量削減の両立を可能とする技術を提供することを目的とする。
 開示の技術によれば、複数の基地局を含む移動通信システムにおける基地局に対する制御を実施する制御装置であって、
 各基地局のトラヒック需要に基づいて、少なくとも1つの周波数帯の停波を行う停波局と、当該停波局の停波により生じるカバレッジホールをカバーする少なくとも1つの救済局のパラメータとを決定するように構成された停波局決定部と、
 前記停波局決定部により決定された前記停波局の情報、及び前記パラメータを含む制御情報を送信するように構成された制御送信部と
 を備える制御装置が提供される。
 開示の技術によれば、通信品質劣化抑制と基地局の電力消費量削減の両立が可能となる。
本発明の実施の形態における制御システムの構成図である。 停波局決定部の動作を説明するためのフローチャートである。 カバーエリア計算部の動作を説明するためのフローチャートである。 停波終了判定部の動作を説明するためのフローチャートである。 実施例の動作を説明するためのフローチャートである。 装置のハードウェア構成例を示す図である
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
 (実施の形態の概要)
 本実施の形態では、基地局に対する制御を実施する制御システムが、各基地局のトラヒック需要に応じて、端末の通信品質を確保するという制約の下、電力消費削減できるように、停波させる基地局と稼働する基地局のパラメータ(チルト角、送信電力など)を求め、制御を実施する。
 後述する実施例で説明するように、現在のトラヒック需要を使用する制御を行うこともできるし、将来(例えば時間帯ごと)のトラヒック需要を使用する制御を行うこともできる。
 (システム構成例)
 図1に本実施の形態における制御システム100の構成例を示す。本実施の形態における制御システム100では、基地局情報(位置情報(緯度/経度)、現在のパラメータ(チルト角(°)、送信電力(W)など)、及びトラヒック需要(各エリア/時間帯ごとのトラヒック量(bps)、各エリア/時間帯ごとのアクティブユーザ数(人))を入力とし、基地局の停波/稼働の指示情報、基地局の変更後のパラメータ(チルト角、送信電力など)などを出力する。
 図1に示すとおり、制御システム100は、入力受付部10、データ処理部20、対基地局通信部30を備える。データ処理部20は、トラヒック需要計算部21、停波局決定部22、カバーエリア計算部23、停波終了判定部24、制御送信部25、基地局情報DB26を含む。対基地局通信部30は、送信部31と受信部32を含む。
 対基地局通信部30には、制御対象の複数の基地局や、基地局を制御するための制御機器が接続されている。各基地局は、通信エリアを構成し、エリア内の端末と無線通信を行う。
 なお、カバーエリア計算部23が停波局決定部22の中に含まれていてもよい。あるいは、「停波局決定部22+カバーエリア計算部23」を「停波局決定部」と呼んでもよい。また、制御送信部25の中に対基地局通信部30の機能が含まれていてもよい。
 また、制御システム100は、1つの装置(コンピュータ等)で構成されてもよいし、複数の装置で構成されてもよい。1つの装置(コンピュータ等)で構成される制御システム100を制御装置と呼んでもよい。また、データ処理部20を制御装置と呼んでもよい。
 また、本実施の形態における移動通信システムの方式は特定の方式に限定されない。例えば、当該方式は、3G、4G、5G、6G、無線LANのいずれであってもよく、これら以外であってもよい。
 各部の動作の概要は下記のとおりである。
 <入力受付部10>
 入力受付部10は、各基地局のトラヒック需要を定期的に観測する。観測周期はトラヒック需要計算部21に求められる推定/予測精度に応じて、例えば、数分から数時間程度とする。入力受付部10は、観測結果をトラヒック需要計算部21に通知する。
 <トラヒック需要計算部21>
 トラヒック需要計算部21は、入力受付部10からの情報に基づき、各基地局の現在のトラヒック需要と将来のトラヒック需要を計算する。
 <停波局決定部22>
 停波局決定部22は、トラヒック需要計算部21による観測/予測結果と、カバーエリア計算部23による計算結果に基づき、停波させる基地局(停波局と呼ぶ)ならびにパラメータを変更する基地局(救済局と呼ぶ)を決定する。
 <カバーエリア計算部23>
 カバーエリア計算部23は、基地局の停波によってカバレッジホールが発生するか、また発生する場合は周辺の基地局によってカバーできるかを計算する。
 <停波終了判定部24>
 停波終了判定部24は、トラヒック需要計算部21による計算結果に基づき、停波局の再稼働を行うかどうかを判定する。
 <制御送信部25>
 制御送信部25は、停波局決定部22もしくは停波終了判定部24から制御内容を受け取り、対基地局通信部30に制御内容を送信する。制御内容に基づき、対基地局通信部30により対象の基地局への制御が実施される。
 <基地局情報DB26>
 基地局情報DB26は、各基地局の位置情報、各基地局のパラメータ、停波局情報、救済局情報を格納し、管理する。これらの情報は停波局決定部22あるいは停波終了判定部24が決定した制御内容を受け取り更新される。また、停波局決定部22と停波終了判定部24が計算に用いる情報に応じて、過去の情報も基地局情報DB26内に保持する。
 (詳細動作例)
 次に、データ処理部20における各部の動作をより詳細に説明する。
 <トラヒック需要計算部21>
 トラヒック需要計算部21は、入力受付部10から定期的に得られるトラヒック需要に関する情報に基づき、各基地局のトラヒック需要の現在の推定値と、各基地局の将来の予測値を計算する。推定値の計算方法は特定の手法に限定されないが、例えば、指数平滑移動平均や状態空間モデルなどを利用できる。トラヒック需要の将来の予測値についても、計算方法は特定の手法に限定されないが、例えば、SARIMAを用いた予測手法[5]やLSTMを用いた予測手法[6]などを利用できる。
 <停波局決定部22>
 停波局決定部22は、トラヒック需要計算部21による計算結果と、カバーエリア判定部23による判定に基づき、停波させる基地局を決定する。図2のフローチャートの手順に沿って、停波局決定部22の動作を詳細に説明する。
 S1において、停波局決定部22は、トラヒック需要計算部21で計算された各基地局のトラヒック需要に基づき、需要が閾値を下回る基地局を列挙する。需要の低い基地局が存在しない場合、以降の計算は行わず、入力受付部10からの情報を待つ。
 S2において、停波局決定部22は、S1で列挙された基地局のうち、需要の低い基地局から1つずつ順に停波の可否を決定する対象となるかどうかを判断する。停波の可否を決定する対象となる基地局を停波候補局と呼ぶ。
 ここでは、需要の低い基地局のうち、既に停波している基地局や、停波できない基地局(救済局等)を、停波の可否を決定する対象から除き、これら以外を停波候補局とする。既に停波している基地局や、停波できない基地局(救済局等)の情報は基地局情報DB26から取得することができる。また、停波局決定部22で決定した制御内容に応じて、基地局情報DB26を更新する。
 S3において、停波局決定部22は、停波候補局に対して、その周囲に存在し、かつトラヒック需要が閾値を下回る基地局(周辺局と呼ぶ)を列挙する。
 S4において、停波局決定部22は、カバーエリア計算部23に停波候補局と周辺局の情報を送信し、停波できるかの判断結果を受け取る。この判断結果には、停波候補局の停波させる周波数帯を示すパラメータと、救済局のパラメータが含まれる。
 S5において、停波局決定部22は、S4で受信した判断結果に基づき、停波候補局の停波の可否を決定する。S3~S5の処理を各停波候補局に対して行い、いずれかの周波数帯を停波させる基地局を決定する。
 S6において、停波局決定部22は、停波させる基地局のパラメータ(停波する周波数帯等)とその時の救済局のパラメータを制御送信部25に通知する。
 <カバーエリア計算部23>
 カバーエリア計算部23は、停波候補局の停波によってカバレッジホールが発生するか、(発生する場合は)周辺局によってカバーできるかを計算する。図3のフローチャートの手順に沿って、カバーエリア計算部23の動作を詳細に説明する。以下の処理は、「停波候補局と、それに対応する1以上の周辺局」の組が複数ある場合には、それぞれの組に対して実行される。
 S11において、カバーエリア計算部23は、停波局決定部22から通知された停波候補局と周辺局に対して、現在のカバー範囲を推定する。カバー範囲の推定の手法として複数の手法が存在し、どの手法を用いてもよい。
 例えば、カバー範囲の推定の手法として、文献[3]の幾何的なカバー範囲の推定方法や、文献[4]の伝播損失や電波干渉を考慮した高精度な推定などを利用できる。これらは計算時間や推定精度の要件に応じて変更することができ、十分な計算時間が確保できる場合には文献[4]の技術に基づいて、そうでない場合には文献[3]の技術に基づいて、カバー範囲を推定する。
 基地局のカバー範囲とは、例えば、当該基地局と端末との間で、所定の通信品質で通信できるような当該端末が存在する範囲である。
 カバー範囲は通信品質の観点だけでなく、「トラヒック収容の観点も含めて通信をカバーできる範囲」として定義してもよい。
 S12において、カバーエリア計算部23は、S11で得られたカバー範囲を用いて、停波候補局の一部もしくは全部の周波数帯を停波させた場合にカバレッジホールが発生するか否かを判断する。カバレッジホールとは、停波候補局のカバー範囲と、周辺局のカバー範囲のいずれのカバー範囲にもカバーされない範囲である。
 具体的には、カバーエリア計算部23は、停波候補局の周波数帯を1つずつ停波させ、それぞれのシチュエーションごとにカバレッジホールが発生するかを判断する。周波数帯を停波させる順番として、例えば、高周波数帯から順に停波するという方法がある。
 S12において全ての周波数帯を停波させてもカバレッジホールが発生しないと判断された場合、S13に進み、この停波候補局は全周波数帯を停波可能であると判断し、この停波候補局の停波する周波数帯を停波局決定部22に通知する。ここで決定された停波局は、周辺局のパラメータ変更を要しない停波局である。
 S12において、いずれかの周波数帯の停波でカバレッジホールが発生すると判断された場合、S14に進み、周波数帯の停波のシチュエーションごとに、周辺局のパラメータ変更によって、カバレッジホールをカバーできないかを計算する。
 カバーエリア計算部23は、例えば文献[3]の技術を用いて、周辺局のカバー範囲による、カバレッジホールに対するカバー率を計算する。具体的には、計算結果のカバレッジホールに対するカバー率が閾値以上であるとき、カバレッジホールをカバーできると判定する。カバーのためにパラメータを変更する周辺局を救済局と呼ぶ。変更するパラメータは、アンテナのチルト角、送信電力等であるが、これらに限られない。また、ある停波局に対する救済局は1つの場合もあるし、複数の場合もある。
 S15において、カバーエリア計算部23は、救済局によりカバーできると判定されたシチュエーションの中で、最も停波できる周波数帯の多いものを制御内容として採用する。全てのシチュエーションでカバーができないと判定された場合は停波を行わない。
 S16において、カバーエリア計算部23は、基地局停波の可/不可、(停波できる場合は)停波候補局の停波する周波数帯、及び、救済局のパラメータを停波局決定部22に通知する。
 <停波終了判定部24>
 停波終了判定部24は、トラヒック需要計算部21による計算結果に基づき、少なくとも1つの周波数帯の停波をしている停波局の再稼働を行うかどうかを判定する。停波終了判定部24の動作を図4のフローチャートの手順に沿って説明する。
 S21において、停波終了判定部24は、停波局もしくは救済局のトラヒック需要が閾値を上回るかどうかを判断する。現在の停波局とその救済局のトラヒック需要の情報は基地局情報DB26から取得することができる。
 停波局もしくは救済局のトラヒック需要が閾値を上回ると判断された場合、S22に進み、停波終了判定部24は、停波局の再稼働(停波していた周波数帯の再稼働)と救済局のパラメータの変更を制御送信部25に通知する。
 パラメータの変更については、例えば、カバレッジホールのカバーを行う以前のパラメータに戻す等の処理を実施する。また、停波終了判定部24は、上記にようにして決定した制御結果に応じて、基地局情報DB26を更新する。この更新により、例えば、停波局として基地局情報DB26に管理されていた基地局が、停波局ではない通常の基地局としての管理になる。
 S21において停波局もしくは救済局のトラヒック需要が閾値を上回っていないと判断された場合、停波制御を実施したときの状況と同じであるので、何も行わず、停波を継続させる。
 <制御送信部25>
 制御送信部25は、停波局決定部22と停波終了判定部24が決定した制御内容を受け取り、対基地局通信部30に対して制御内容を送信する。より具体的には、制御送信部25は、停波局決定部22もしくは停波終了判定部24からの通知を受け取るとすぐに送信を開始する。なお、停波局決定部22と停波終了判定部24から同時に通知を受けた場合はそれらの情報を合わせて送信する。
 なお、後述する実施例2のように、制御送信部25が時間帯ごとの制御内容を受信した場合には、現在時刻がその時間帯になるまで制御内容を受信し、現在時刻がその時間帯になったら、該当の制御内容を送信する。
 以下、基地局制御の実施例として実施例1~3を説明する。
 (実施例1:現在のトラヒック需要に基づく基地局制御)
 実施例1では、定期的に観測するトラヒック需要に応じて、基地局の停波内容と救済局のパラメータ変更を計算し、計算結果に基づいて、該当する基地局を制御する。図5のフローチャートを参照して、実施例1の処理を説明する。本実施例では制御の周期を、例えば数分から1時間程度とし、周期的にオンラインの制御を行う。つまり、周期的に図5のフローチャートの処理が実行される。
 S101において、定期的に入力受付部10は対基地局通信部30から情報を取得する。S102において、トラヒック需要計算部21は、S101で取得した情報から現在のトラヒック需要を推定する。
 S103において、停波局決定部22は、S102での推定結果に基づき、トラヒック需要が閾値以下の基地局が存在するか否かを判断し、存在する場合はS104に進む。トラヒック需要が閾値以下の基地局が存在しない場合は以降の操作は行わず、S101に戻り、入力受付部10からの情報を待つ。
 S104において、停波局決定部22は、S102での推定結果に基づき、停波できる基地局と、その際の救済局のパラメータを計算する。S105において、停波局決定部22は、計算結果を制御送信部25に通知する。
 S106において、停波終了判定部24は、S102での推定結果に基づき、トラヒック需要が閾値以上の停波局あるいは救済局が存在するかどうか、つまり、既に停波している基地局の再稼働を行うかどうかを判断する。再稼働を行う場合、S107に進む。トラヒック需要が閾値以上の停波局あるいは救済局が存在しない場合は以降の操作は行わず、最初に戻る。
 停波終了判定部24は、S107において、該当の停波局の再稼働を決定するとともに、救済局の変更後のパラメータを計算し、S108において、制御内容(計算結果)を制御送信部25に通知する。
 S109において、制御送信部25は、基地局の停波/再稼働/パラメータ変更を示す制御情報を対基地局通信部30に送信する。
 S110において、基地局制御の運用を終了するかどうかが判断され、終了する場合は本システムの動作が終了し、終了でなければ、これまでに説明した処理を繰り返す。
 (実施例2:トラヒック需要予測に基づく基地局制御)
 実施例2では、データ処理部20において、トラヒック需要の将来の予測値を用いて、事前に基地局の停波とチルト角変更の制御パターンを時間帯ごとに用意する。そして各時間帯に対基地局通信部30への制御を指示する。実施例2では、制御の周期を例えば数時間程度とし、周期ごとに、オフラインな制御を行う。
 実施例2では、実施例1とは異なり、カバーエリア計算部23における基地局パラメータの計算時間を十分に確保でき、電波干渉等を考慮した高精度な制御が可能である。実施例2におけるデータ処理部20が実行する処理の流れは下記のとおりである。
 まず、トラヒック需要計算部21は、定期的に観測するトラヒック需要に関する情報に基づき、各基地局の時間帯ごとのトラヒック需要の予測値を計算する。予測値は基地局情報DB26に格納される。
 次に、基地局情報DB26に格納されている各時間帯の需要の予測値から、停波局決定部22と停波終了判定部24は時間帯ごとの基地局の停波/再稼働/パラメータ変更を計算し、この制御内容をまとめて制御送信部25に通知する。制御送信部25は通知された制御内容を保持しておく。
 制御送信部25は、予め通知されている制御内容を時間帯に応じて、対基地局通信部30に送信し、制御を指示する。
 (実施例3:実施例1、2を組み合わせた基地局制御)
 実施例3では、実施例2と同様にトラヒック需要予測に基づくオフライン制御を行いつつ、急なトラヒック需要変動や基地局故障が発生した場合には、実施例1と同様のオンライン制御で対処する。これによって、平常時における電波干渉等を考慮した高精度な制御と、急な需要変動への対処を両立できる。実施例3におけるデータ処理部20が実行する処理の流れは下記のとおりである。
 入力受付部10は実施例2の制御周期である数時間程度よりも短い、例えば数分周期で観測情報を取得する。トラヒック需要計算部21は、この観測情報に基づき、各基地局の現在のトラヒック需要を推定する。
 もしも、現在のトラヒック需要が閾値を上回っている基地局が存在する場合には、実施例1と同じ処理で新たな制御内容を計算し、制御送信部25に通知し、制御送信部25が対基地局通信部30に制御内容を送信する。
 現在のトラヒック需要が閾値を上回っている基地局が存在しない場合には、実施例2と同じ処理で、将来のトラヒック需要に基づき時間帯ごとの制御内容を決定し、時間帯ごとに制御内容を対基地局通信部30に送信し、制御を指示する。
 (ハードウェア構成例)
 制御システム100あるいは制御装置は、例えば、コンピュータにプログラムを実行させることにより実現できる。このコンピュータは、物理的なコンピュータであってもよいし、クラウド上の仮想マシンであってもよい。以下、制御システム100、制御装置を総称して「装置」と呼ぶことにする。
 すなわち、当該装置は、コンピュータに内蔵されるCPUやメモリ等のハードウェア資源を用いて、当該装置で実施される処理に対応するプログラムを実行することによって実現することが可能である。上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。
 図6は、上記コンピュータのハードウェア構成例を示す図である。図6のコンピュータは、それぞれバスBSで相互に接続されているドライブ装置1000、補助記憶装置1002、メモリ装置1003、CPU1004、インタフェース装置1005、表示装置1006、入力装置1007、出力装置1008等を有する。
 当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体1001によって提供される。プログラムを記憶した記録媒体1001がドライブ装置1000にセットされると、プログラムが記録媒体1001からドライブ装置1000を介して補助記憶装置1002にインストールされる。但し、プログラムのインストールは必ずしも記録媒体1001より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置1002は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。
 メモリ装置1003は、プログラムの起動指示があった場合に、補助記憶装置1002からプログラムを読み出して格納する。CPU1004は、メモリ装置1003に格納されたプログラムに従って、当該装置に係る機能を実現する。インタフェース装置1005は、ネットワーク等に接続するためのインタフェースとして用いられる。表示装置1006はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置1007はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。出力装置1008は演算結果を出力する。
 (実施の形態の効果)
 本実施の形態に係る技術により、移動通信システムにおいて、通信品質劣化抑制と基地局の電力消費量削減を両立させることができる。副次的な効果として下記の効果1~3がある。
 効果1:制御において、端末の通信品質の確保を制約に入れることで、基地局の停波に伴って通信品質が劣化する端末の数を、従来技術と比較し削減できる。
 効果2:停波する基地局と、稼働する基地局のパラメータ設定を同時に最適化することで、従来技術と比較し、より多くの基地局を停波させることができ、電力消費量をより削減できる。
 効果3:停波させる基地局を他の基地局のパラメータ設定と同時に最適化することで、従来技術が適用できなかった、各基地局のセルが重なり合わないエリアや基地局の密度が低いエリアにおいても、一部の基地局を停波させることが可能になり、電力消費量を削減できる。
 (付記)
 本明細書には、少なくとも下記各項の制御装置、制御方法、及びプログラムが開示されている。
(第1項)
 複数の基地局を含む移動通信システムにおける基地局に対する制御を実施する制御装置であって、
 各基地局のトラヒック需要に基づいて、少なくとも1つの周波数帯の停波を行う停波局と、当該停波局の停波により生じるカバレッジホールをカバーする少なくとも1つの救済局のパラメータとを決定するように構成された停波局決定部と、
 前記停波局決定部により決定された前記停波局の情報、及び前記パラメータを含む制御情報を送信するように構成された制御送信部と
 を備える制御装置。
(第2項)
 前記停波局決定部は、前記少なくとも1つの救済局によりカバレッジホールをカバーできる状況の中で、前記停波局により停波できる周波数帯の数が最も多い状況に対応する、前記少なくとも1つの救済局のパラメータを決定する
 第1項に記載の制御装置。
(第3項)
 前記停波局決定部は、全ての周波数帯の停波を行ってもカバレッジホールの発生しない基地局を、周辺局のパラメータ変更を要しない停波局として決定する
 第1項又は第2項に記載の制御装置。
(第4項)
 トラヒック需要に基づいて、停波局における停波している周波数帯の再稼働を行うか否かを判定するように構成された停波終了判定部
 を更に備える第1項ないし第3項のうちいずれか1項に記載の制御装置。
(第5項)
 前記停波局決定部は、将来のトラヒック需要の予測値に基づいて、将来の時間帯ごとの制御情報を決定し、前記制御送信部は、前記時間帯の時刻が到来した場合に、前記制御情報を送信する
 第1項ないし第4項のうちいずれか1項に記載の制御装置。
(第6項)
 複数の基地局を含む移動通信システムにおける基地局に対する制御を実施する制御装置が実行する制御方法であって、
 各基地局のトラヒック需要に基づいて、少なくとも1つの周波数帯の停波を行う停波局と、当該停波局の停波により生じるカバレッジホールをカバーする少なくとも1つの救済局のパラメータとを決定する停波局決定ステップと、
 前記停波局決定ステップにより決定された前記停波局の情報、及び前記パラメータを含む制御情報を送信する制御送信ステップと
 を備える制御方法。
(第7項)
 コンピュータを、第1項ないし第5項のうちいずれか1項に記載の制御装置における各部として機能させるためのプログラム。
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 (参考文献)
[1] E. Oh and B. Krishnamachari, "Energy Savings through Dynamic Base Station Switching in Cellular Wireless Access Networks," 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, 2010, pp. 1-5, doi: 10.1109/GLOCOM.2010.5683654.
[2] Y. Gao, Y. Li, H. Yu, X. Wang and S. Gao, "Energy efficient joint optimization of electric antenna tilt and transmit power in 3GPP LTE-Advanced: A system level result," 2013 IEEE 9th International Colloquium on Signal Processing and its Applications, 2013, pp. 135-139, doi: 10.1109/CSPA.2013.6530029.
[3] 岩本真尚, 鈴木晃人, 原田薫明, "通信断エリアの早期復旧のためのアンテナチルト角制御手法," 信学会ソサイエティ大会, B-7-6, 2020年9月.
[4] N. Dandanov, H. Al-Shatri, A. Klein, and V. Poulkov, "Dynamic Self-Optimization of the Antenna Tilt for Best Trade-off Between Coverage and Capacity in Mobile Networks," Wirel. Pers. Commun., vol. 92, no. 1, pp. 251-278, 2017.
[5] Luo, X., Niu, L. & Zhang, S. An Algorithm for Traffic Flow Prediction Based on Improved SARIMA and GA. KSCE J Civ Eng 22, 2018, pp. 4107-4115.
[6] H. D. Trinh, L. Giupponi and P. Dini, "Mobile Traffic Prediction from Raw Data Using LSTM Networks," 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2018, pp. 1827-1832, doi: 10.1109/PIMRC.2018.8581000.
100 制御システム
10 入力受付部
20 データ処理部
21 トラヒック需要計算部
22 停波局決定部
23 カバーエリア計算部
24 停波終了判定部
25 制御送信部
26 基地局情報DB
30 対基地局通信部
31 送信部
32 受信部
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置
1008 出力装置

Claims (7)

  1.  複数の基地局を含む移動通信システムにおける基地局に対する制御を実施する制御装置であって、
     各基地局のトラヒック需要に基づいて、少なくとも1つの周波数帯の停波を行う停波局と、当該停波局の停波により生じるカバレッジホールをカバーする少なくとも1つの救済局のパラメータとを決定するように構成された停波局決定部と、
     前記停波局決定部により決定された前記停波局の情報、及び前記パラメータを含む制御情報を送信するように構成された制御送信部と
     を備える制御装置。
  2.  前記停波局決定部は、前記少なくとも1つの救済局によりカバレッジホールをカバーできる状況の中で、前記停波局により停波できる周波数帯の数が最も多い状況に対応する、前記少なくとも1つの救済局のパラメータを決定する
     請求項1に記載の制御装置。
  3.  前記停波局決定部は、全ての周波数帯の停波を行ってもカバレッジホールの発生しない基地局を、周辺局のパラメータ変更を要しない停波局として決定する
     請求項1又は2に記載の制御装置。
  4.  トラヒック需要に基づいて、停波局における停波している周波数帯の再稼働を行うか否かを判定するように構成された停波終了判定部
     を更に備える請求項1ないし3のうちいずれか1項に記載の制御装置。
  5.  前記停波局決定部は、将来のトラヒック需要の予測値に基づいて、将来の時間帯ごとの制御情報を決定し、前記制御送信部は、前記時間帯の時刻が到来した場合に、前記制御情報を送信する
     請求項1ないし4のうちいずれか1項に記載の制御装置。
  6.  複数の基地局を含む移動通信システムにおける基地局に対する制御を実施する制御装置が実行する制御方法であって、
     各基地局のトラヒック需要に基づいて、少なくとも1つの周波数帯の停波を行う停波局と、当該停波局の停波により生じるカバレッジホールをカバーする少なくとも1つの救済局のパラメータとを決定する停波局決定ステップと、
     前記停波局決定ステップにより決定された前記停波局の情報、及び前記パラメータを含む制御情報を送信する制御送信ステップと
     を備える制御方法。
  7.  コンピュータを、請求項1ないし5のうちいずれか1項に記載の制御装置における各部として機能させるためのプログラム。
PCT/JP2021/042803 2021-11-22 2021-11-22 制御装置、制御方法、及びプログラム WO2023089830A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21964843.3A EP4440171A1 (en) 2021-11-22 2021-11-22 Control device, control method, and program
PCT/JP2021/042803 WO2023089830A1 (ja) 2021-11-22 2021-11-22 制御装置、制御方法、及びプログラム
JP2023562097A JPWO2023089830A1 (ja) 2021-11-22 2021-11-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042803 WO2023089830A1 (ja) 2021-11-22 2021-11-22 制御装置、制御方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2023089830A1 true WO2023089830A1 (ja) 2023-05-25

Family

ID=86396552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042803 WO2023089830A1 (ja) 2021-11-22 2021-11-22 制御装置、制御方法、及びプログラム

Country Status (3)

Country Link
EP (1) EP4440171A1 (ja)
JP (1) JPWO2023089830A1 (ja)
WO (1) WO2023089830A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081042A1 (ja) * 2010-01-04 2011-07-07 日本電気株式会社 省電力運用支援装置、省電力運用支援方法、記録媒体、および基地局
JP2012253621A (ja) * 2011-06-03 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> 基地局装置
JP2015130644A (ja) * 2013-12-04 2015-07-16 ソニー株式会社 通信制御装置及び通信制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081042A1 (ja) * 2010-01-04 2011-07-07 日本電気株式会社 省電力運用支援装置、省電力運用支援方法、記録媒体、および基地局
JP2012253621A (ja) * 2011-06-03 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> 基地局装置
JP2015130644A (ja) * 2013-12-04 2015-07-16 ソニー株式会社 通信制御装置及び通信制御方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
E. OHB. KRISHNAMACHARI: "Energy Savings through Dynamic Base Station Switching in Cellular Wireless Access Networks", IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE GLOBECOM, vol. 2010, 2010, pages 1 - 5, XP031846168
H. D. TRINHL. GIUPPONIP. DINI: "Mobile Traffic Prediction from Raw Data Using LSTM Networks", IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC, 2018, pages 1827 - 1832, XP033479643, DOI: 10.1109/PIMRC.2018.8581000
LUO, X.NIU, L.ZHANG, S.: "An Algorithm for Traffic Flow Prediction Based on Improved SARIMA and GA", KSCE J CIV ENG, vol. 22, 2018, pages 4107 - 4115, XP037199862, DOI: 10.1007/s12205-018-0429-4
MASAYOSHI IWAMOTOAKITO SUZUKISHIGEAKI HARADA: "Antenna tilting angle control method for early recovery of communication interruption area", THE IEICE SOCIETY CONFERENCE, B-7-6, September 2020 (2020-09-01)
N. DANDANOVH. AL-SHATRIA. KLEINV. POULKOV: "Dynamic Self-Optimization of the Antenna Tilt for Best Trade-off Between Coverage and Capacity in Mobile Networks", WIREL. PERS. COMMUN., vol. 92, no. 1, 2017, pages 251 - 278, XP036116343, DOI: 10.1007/s11277-016-3849-9
Y. GAOY. LIH. YUX. WANGS. GAO: "Energy efficient joint optimization of electric antenna tilt and transmit power in 3GPP LTE-Advanced: A system level result", IEEE 9TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, 2013, pages 135 - 139, XP032424414, DOI: 10.1109/CSPA.2013.6530029

Also Published As

Publication number Publication date
JPWO2023089830A1 (ja) 2023-05-25
EP4440171A1 (en) 2024-10-02

Similar Documents

Publication Publication Date Title
US10159111B2 (en) Radio resource management in a telecommunication system
US20190037490A1 (en) Base station, radio communications system, base station control method, radio communications method and base station control program
CN110831134A (zh) 一种基站的节能方法及基站
EP3595368B1 (en) Cellular telecommunications network
JP5391757B2 (ja) 無線パラメータ制御装置および制御方法ならびに制御システム
JP5465162B2 (ja) 移動通信網および無線基地局
CN110492954B (zh) 一种基站控制方法、第一基站和第二基站
JP2008042557A (ja) 無線通信制御装置、無線通信制御システムおよび無線通信制御方法
CN112911609A (zh) 一种有源室分系统的控制方法、电子设备及存储介质
EP2790449A1 (en) Wireless base station and method for controlling transition between wireless systems
WO2023170613A1 (en) Cho configuration for fast offloading during cell shutdown
JP2011019039A (ja) 基地局制御法、基地局、および基地局制御装置
CN104735730A (zh) 一种适用于异构网络中目标基站的切换优化方法
JPWO2009093314A1 (ja) 移動通信システム
EP2717492B1 (en) Antenna receiving mode configuration processing method, base station controller and base station
WO2023089830A1 (ja) 制御装置、制御方法、及びプログラム
JP6849062B2 (ja) 基地局装置、端末装置、無線通信システム及び通信方法
JP2012010260A (ja) 無線中継装置および無線中継方法
CN106358218A (zh) 用于业务传输的方法及传输设备
JP4907554B2 (ja) 基地局
WO2024052990A1 (ja) 制御装置、制御方法、及びプログラム
JP2011004127A (ja) 基地局装置、移動通信システム、およびハンドオーバ制御方法
US11611889B2 (en) Automatic transmission point handling in a wireless communication network
WO2016065543A1 (zh) 一种用户设备及小区切换方法
TR201906378A2 (tr) Mobil ağlarda enerji verimli hücreler arası geçiş yöntemi.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023562097

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18698546

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021964843

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021964843

Country of ref document: EP

Effective date: 20240624