WO2023087900A1 - 车辆及其线控转向系统前轮驱动控制方法、装置 - Google Patents

车辆及其线控转向系统前轮驱动控制方法、装置 Download PDF

Info

Publication number
WO2023087900A1
WO2023087900A1 PCT/CN2022/120268 CN2022120268W WO2023087900A1 WO 2023087900 A1 WO2023087900 A1 WO 2023087900A1 CN 2022120268 W CN2022120268 W CN 2022120268W WO 2023087900 A1 WO2023087900 A1 WO 2023087900A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
front wheel
angle
real
steering
Prior art date
Application number
PCT/CN2022/120268
Other languages
English (en)
French (fr)
Inventor
常秀岩
高尚
侯杰
王仕伟
陈志刚
费二威
姜廷龙
张吉
侯慧贤
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023087900A1 publication Critical patent/WO2023087900A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor

Definitions

  • the present application relates to the technical field of vehicle steering control, for example, to a vehicle and its steering-by-wire system front-wheel drive control method and device.
  • the steer-by-wire system cancels the mechanical connection between the steering wheel and the steering wheel, and the steering transmission ratio can be set according to the driver's driving habits.
  • the steer-by-wire system has the following problems.
  • the steer-by-wire system usually adopts a closed-loop control strategy to calculate the input parameters of the motor drive based on the steering angle of the vehicle's front wheels at the last sampling time, resulting in an increase in the response time of the steering control and the inability to timely respond to the driving situation. It responds to the driver's driving control commands, which affects the steering control accuracy and driving experience.
  • the present application provides a front-wheel drive control method and device for a vehicle and its steer-by-wire system, so as to realize compensation control of front-wheel steering according to the driver's steering angle request and vehicle data, and improve the steering stability of the vehicle.
  • the present application provides a front wheel drive control method of a steer-by-wire system, comprising the following steps:
  • the front wheel motors of the vehicle are driven to perform a target rotation angle according to the steering.
  • the present application also provides a front-wheel drive control device for a steer-by-wire system, including: a vehicle state observation module, a central controller, a front-wheel decision-making control module, and a front-wheel steering execution module;
  • the vehicle state observation module is configured to provide real-time vehicle state parameters to the front wheel decision control module;
  • the central controller is configured to output a real-time corner request to the front wheel decision control module
  • the front wheel decision control module is configured to determine the front wheel reference angle and the front wheel compensation angle according to the real-time vehicle state parameters and the real-time angle request, and determine the front wheel compensation angle according to the front wheel reference angle and the front wheel compensation angle Turn to execute the target corner;
  • the front wheel steering execution module is configured to drive the front wheel motors of the vehicle according to the steering execution target rotation angle.
  • the present application also provides a vehicle, including the above-mentioned front-wheel drive control device for a steer-by-wire system, and the control device is configured to execute the above-mentioned front-wheel drive control method for a steer-by-wire system.
  • the present application also provides a non-transitory storage medium, which stores computer instructions.
  • a non-transitory storage medium which stores computer instructions.
  • FIG. 1 is a flow chart of a front wheel drive control method for a steer-by-wire system provided in Embodiment 1 of the present application;
  • FIG. 2 is a flow chart of another front-wheel drive control method for a steer-by-wire system provided in Embodiment 1 of the present application;
  • FIG. 3 is a schematic structural diagram of a front wheel angle compensation algorithm provided in Embodiment 1 of the present application.
  • Fig. 4 is a flow chart of another front-wheel drive control method for a steer-by-wire system provided in Embodiment 1 of the present application;
  • Fig. 5 is a flow chart of yet another front-wheel drive control method for a steer-by-wire system provided in Embodiment 1 of the present application;
  • FIG. 6 is a schematic structural diagram of a front wheel drive control device for a steer-by-wire system provided in Embodiment 2 of the present application;
  • FIG. 7 is a schematic structural diagram of a vehicle provided in Embodiment 3 of the present application.
  • Fig. 1 is a flow chart of a front-wheel drive control method for a steer-by-wire system provided in Embodiment 1 of the present application. This embodiment is applicable to an application scenario where front-wheel active steering control is realized according to the driver's driving intention. The method can It is executed by the front wheel angle decision-making control device.
  • the front-wheel drive control method of the steer-by-wire system includes:
  • S1 Get the real-time vehicle status parameters and the driver's real-time corner request.
  • the real-time vehicle state parameters can be the parameters output by the vehicle state observation module to represent the steering state and driving state of the vehicle; the real-time corner request can be the steering control command output by the vehicle central controller.
  • the real-time vehicle state parameters may include at least one of the following: steering wheel angle, steering wheel torque, vehicle speed, wheel speed, yaw rate, vehicle stability factor or lateral acceleration.
  • the input of the vehicle state observation module includes: sampled value of steering wheel angle, sampled value of steering wheel torque, sampled value of vehicle speed, sampled value of wheel speed, sampled value of longitudinal acceleration, sampled value of lateral acceleration, sampled value of yaw rate and Sampling value of road surface state.
  • the vehicle state observation module estimates the corresponding real-time vehicle state parameters in real time according to the input. For example, the vehicle state observation module can estimate the steering wheel angle and steering wheel torque according to the steering wheel angle sampling value and the steering wheel torque sampling value obtained by the vehicle sensor sampling; The vehicle speed sampled value and wheel speed sampled value estimate the vehicle speed and wheel speed.
  • S2 Determine the front wheel reference rotation angle according to the real-time vehicle state parameters and the real-time rotation angle request.
  • the front wheel reference angle is the angle calculated based on the variable transmission control algorithm.
  • the real-time rotation angle request, steering wheel angle, steering wheel torque, vehicle speed, wheel speed and vehicle stability factor are used as input quantities to output the front wheel reference rotation angle, which is the front wheel reference rotation angle.
  • the input of this part of the control algorithm does not include the yaw rate output by the vehicle state observation module, which cannot compensate for the unstable state of the vehicle caused by the yaw rate.
  • S3 Determine the front wheel compensation rotation angle according to the real-time vehicle state parameters.
  • the front wheel compensation angle is based on the front wheel angle compensation algorithm and the angle obtained by performing front wheel steering compensation according to the yaw rate.
  • the steering wheel angle, vehicle speed, vehicle stability factor and yaw rate are used as input quantities to output the front wheel compensation angle.
  • S4 Determine the steering execution target rotation angle according to the front wheel reference rotation angle and the front wheel compensation rotation angle.
  • the steering execution target angle is the target angle of the steering actuator determined based on the current vehicle state.
  • S5 Execute the target steering angle to drive the front wheel motor action of the vehicle according to the steering.
  • the vehicle state observation module observes the vehicle steering and driving state, and outputs real-time vehicle state parameters.
  • Steering angle request according to the real-time vehicle state parameters and real-time corner request, the variable transmission control algorithm and front wheel angle compensation algorithm are synchronously executed.
  • the variable transmission control algorithm When the variable transmission control algorithm is executed, the real-time corner request, steering wheel angle, steering wheel torque, vehicle speed, wheel speed, vehicle The stability factor and lateral acceleration are used as input, and the front wheel reference angle is obtained by decision-making; when the front wheel angle compensation algorithm is executed, the steering wheel angle, vehicle speed, vehicle stability factor and yaw rate are used as input, and the front wheel compensation is obtained by decision-making.
  • Steering angle superimpose the front wheel reference angle and the front wheel compensation angle output by the two algorithms to obtain the steering execution target angle, generate motor drive control commands according to the steering execution target angle, and drive the front wheel motor of the vehicle to realize steering control. Solving the problem of low efficiency and slow response of the steering control system is conducive to optimizing the front wheel angle control strategy, giving full play to the performance advantages of the vehicle, improving the handling stability of the vehicle, and improving the driving experience.
  • FIG. 2 is a flow chart of another front-wheel drive control method for a steer-by-wire system provided in Embodiment 1 of the present application. On the basis of FIG. 1 , a specific implementation of a front wheel angle compensation algorithm is shown.
  • the front wheel drive control method of the steer-by-wire system includes:
  • S2 Determine the front wheel reference rotation angle according to the real-time vehicle state parameters and the real-time rotation angle request.
  • S301 Calculate the expected yaw rate according to the steering wheel angle, vehicle speed and vehicle stability factor.
  • the desired yaw rate is the ideal yaw rate value calculated by the steering system at the vehicle speed and steering wheel angle at the sampling moment.
  • S302 According to the expected yaw rate and the real-time yaw rate, based on a preset feedforward algorithm and a preset feedback algorithm, determine the front wheel compensation rotation angle.
  • the preset feed-forward algorithm is an algorithm that adjusts the expected yaw rate according to the disturbance of vehicle stability.
  • the disturbance of vehicle stability includes vehicle speed and rotation angle; the preset feedback algorithm is based on the difference between the expected yaw rate and the real-time yaw rate.
  • the algorithm that adjusts the expected yaw rate by the deviation between them can improve the timeliness of feedback through the fusion of feedforward algorithm and feedback algorithm.
  • S4 Determine the steering execution target rotation angle according to the front wheel reference rotation angle and the front wheel compensation rotation angle.
  • S5 Execute the target steering angle to drive the front wheel motor action of the vehicle according to the steering.
  • FIG. 3 is a schematic structural diagram of a front wheel angle compensation algorithm provided in Embodiment 1 of the present application.
  • the front wheel angle compensation algorithm includes: according to the steering wheel angle, expected yaw rate and vehicle speed, based on the preset feed-forward algorithm, calculate the feedforward compensation angle; The difference value is based on the preset feedback algorithm to calculate the feedback compensation rotation angle; determine the front wheel compensation rotation angle according to the feedforward compensation rotation angle and the feedback compensation rotation angle.
  • the front wheel angle compensation algorithm may include a desired yaw rate decision algorithm, a preset feedforward algorithm and a preset feedback algorithm.
  • the input of the desired yaw rate decision algorithm is the steering wheel angle, vehicle speed and vehicle stability factor, the algorithm is calculated based on the preset yaw angle threshold, and the desired yaw rate is output.
  • the feedforward yaw rate angle and the feedback yaw rate angle are obtained through the preset feedforward algorithm and the preset feedback algorithm.
  • the input of the preset feedforward algorithm is the steering wheel angle , expected yaw rate and vehicle speed, the output is the feed-forward yaw rate angle; the input of the preset feedback algorithm is the expected yaw rate and real-time yaw rate, and the output is the feedback yaw rate angle.
  • the desired yaw rate is adjusted for yaw, and the feedforward yaw rate angle and the feedback yaw rate angle are weighted to calculate the yaw rate compensation angle, that is, the front wheel compensation angle. Therefore, through the compensation of feedforward algorithm and feedback algorithm, the optimization of lateral acceleration and yaw rate control can be realized, and the performance advantages of the vehicle can be fully utilized, which is conducive to improving the handling stability of the vehicle and improving the driving experience.
  • FIG. 4 is a flow chart of another front-wheel drive control method for a steer-by-wire system provided in Embodiment 1 of the present application. On the basis of FIG. 1 , it shows a specific implementation of a variable transmission control algorithm.
  • the front-wheel drive control method of the steer-by-wire system includes:
  • S1 Get the real-time vehicle status parameters and the driver's real-time corner request.
  • S201 Calculate the initial front wheel rotation angle according to the real-time rotation angle request, the steering wheel rotation angle and the steering wheel torque.
  • S202 Determine the target variable transmission ratio according to the vehicle speed, wheel speed and vehicle stability factor.
  • the target variable transmission ratio is positively correlated with vehicle speed and wheel speed; the target variable transmission ratio is negatively correlated with the vehicle stability factor.
  • the greater the value of the variable transmission ratio the greater the sensitivity of the vehicle steering system. smaller.
  • S203 Calculate the reference rotation angle of the front wheel according to the target variable transmission ratio and the initial rotation angle of the front wheel.
  • S3 Determine the front wheel compensation rotation angle according to the real-time vehicle state parameters.
  • S4 Determine the steering execution target rotation angle according to the front wheel reference rotation angle and the front wheel compensation rotation angle.
  • S5 Execute the target steering angle to drive the front wheel motor action of the vehicle according to the steering.
  • variable transmission control algorithm can establish a functional model between vehicle speed, lateral acceleration and variable transmission ratio through calibration, and according to the real-time rotation angle request, steering wheel rotation angle and steering wheel Torque calculates the initial rotation angle of the front wheels, takes the vehicle speed, wheel speed and vehicle stability factor as input, and substitutes them into the calibrated function model to output the target variable transmission ratio.
  • the value of the target variable transmission ratio is small when the vehicle is running at low speed, making the vehicle The steering sensitivity of the steering system is relatively large.
  • determining the target variable transmission ratio according to the vehicle speed, wheel speed and vehicle stability factor includes: establishing a vehicle speed gain model and a lateral acceleration gain model according to the calibration data, wherein the vehicle speed gain model takes the vehicle speed or wheel speed as an input quantity , output the corresponding vehicle speed gain coefficient; the lateral acceleration gain model takes the lateral acceleration as input, and outputs the corresponding lateral acceleration gain coefficient, when the vehicle speed is greater than or equal to the preset vehicle speed threshold, and the lateral acceleration is less than or equal to the preset side
  • the target variable transmission ratio is calculated according to the vehicle speed gain coefficient and the lateral acceleration gain coefficient, which is conducive to improving the steering stability of the vehicle.
  • FIG. 5 is a flow chart of another method for controlling front-wheel drive of a steer-by-wire system provided in Embodiment 1 of the present application.
  • the front-wheel drive control method of the steer-by-wire system includes:
  • S1 Get the real-time vehicle status parameters and the driver's real-time corner request.
  • S2 Determine the front wheel reference rotation angle according to the real-time vehicle state parameters and the real-time rotation angle request.
  • S3 Determine the front wheel compensation rotation angle according to the real-time vehicle state parameters.
  • S4 Determine the steering execution target rotation angle according to the front wheel reference rotation angle and the front wheel compensation rotation angle.
  • S501 Determine at least one steering motor driving current according to a steering execution target rotation angle.
  • S502 Drive the front wheel motor to act according to the driving current of at least one steering motor.
  • At least one motor drive controller may be provided, the at least one motor drive controller corresponds to the drive current of at least one steering motor, and the motor drive controller is configured to drive the corresponding front wheel motor to perform steering action.
  • the above S501 to S502 show a specific implementation of the action of driving the front wheel motor of the vehicle according to the steering execution target angle.
  • the steering execution target angle is determined and output, based on the motor control theory, Calculate the target drive current.
  • at least one motor drive controller is set to drive the front wheel motor, and the target drive current is redistributed to obtain at least one steering motor drive current.
  • Each motor drive controller outputs the motor drive according to the corresponding steering motor drive current. Control command to drive the front wheel motor to run.
  • At least one steering motor driving current has the same current value and the same phase.
  • mutually redundant master-slave control units can be set, and the master-slave control units respectively calculate the target drive current according to the steering execution target angle, and control the front wheel motors according to the drive current output by the master control unit in the normal working mode Action, the slave control unit is set to monitor the master control unit; if the master control unit fails, the front wheel motor is controlled to act according to the drive current output from the slave control unit.
  • the front wheel motor can be a six-phase double-winding motor, which is beneficial to improving the dynamic characteristics of the motor and improving steering control accuracy.
  • the front wheel drive control method of the steer-by-wire system further includes: acquiring the detection parameters of the front wheel motors; and correcting the real-time vehicle state parameters according to the detection parameters of the front wheel motors.
  • the detection parameters of the front wheel motor include the output torque of the front wheel motor and the position of the motor rotor.
  • the front wheel angle decision-making control device receives the output torque of the front wheel motor and the position of the motor rotor fed back by the front wheel motor, calculates the actual steering execution angle and torque according to the output torque of the front wheel motor and the position of the motor rotor, and The actual steering angle and torque are sent to the vehicle state observation module.
  • the vehicle state observation module takes the actual steering angle and torque as input, and the steering wheel angle sampled value, steering wheel torque sampled value, vehicle speed sampled value, and wheel speed obtained by the on-board sensor sampling.
  • the sampling value, longitudinal acceleration sampling value, lateral acceleration sampling value, yaw angular velocity sampling value and road surface state sampling value cooperate to estimate the corresponding real-time vehicle state parameters and realize the closed-loop correction of vehicle state parameters, which is conducive to optimizing the front wheel angle control strategy , improve the handling stability of the vehicle, and enhance the driving experience.
  • Embodiment 2 of the present application provides a front-wheel drive control device for a steer-by-wire system, which can be configured to execute any of the above-mentioned front-wheel drive control methods for a steer-by-wire system, and has corresponding functional modules and effects for executing the above-mentioned control method.
  • FIG. 6 is a schematic structural diagram of a front-wheel drive control device for a steer-by-wire system provided in Embodiment 2 of the present application.
  • the front wheel drive control device 100 of the steer-by-wire system includes: a vehicle state observation module 101, a central controller 102, a front wheel decision control module 103 and a front wheel steering execution module 104; the vehicle state observation module 101, Set to provide real-time vehicle state parameters to the front wheel decision control module; central controller 102, set to output real-time corner request to the front wheel decision control module; front wheel decision control module 103, set to according to the real-time vehicle state parameters and real-time corner request Determine the front wheel reference angle and the front wheel compensation angle, and determine the steering execution target angle according to the front wheel reference angle and the front wheel compensation angle; the front wheel steering execution module 104 is configured to drive the front wheel motor action of the vehicle according to the steering execution target angle.
  • the real-time vehicle state parameters include at least one of the following: steering wheel angle, steering wheel torque, vehicle speed, wheel speed, yaw rate, vehicle stability factor or lateral acceleration.
  • the front wheel decision control module 103 is configured to calculate the expected yaw rate according to the steering wheel angle, vehicle speed and vehicle stability factor; Feedback algorithm to determine the front wheel compensation angle.
  • the front wheel decision control module 103 is configured to calculate the feedforward compensation angle based on the preset feedforward algorithm based on the steering wheel angle, expected yaw rate and vehicle speed; The difference value is based on the preset feedback algorithm to calculate the feedback compensation rotation angle; determine the front wheel compensation rotation angle according to the feedforward compensation rotation angle and the feedback compensation rotation angle.
  • the front wheel decision control module 103 is configured to calculate the initial front wheel angle according to the real-time angle request, the steering wheel angle and the steering wheel torque; determine the target transmission ratio according to the vehicle speed, wheel speed and lateral acceleration; determine the target transmission ratio according to the target transmission ratio and The initial front wheel angle is used to calculate the front wheel reference angle.
  • the target variable transmission ratio is positively correlated with vehicle speed and wheel speed; the target variable transmission ratio is negatively correlated with lateral acceleration.
  • the front wheel steering execution module 104 is configured to determine at least one steering motor drive current according to the steering execution target rotation angle, and drive the front wheel motor to act according to the at least one steering motor drive current; the front wheel motor is a six-phase double-winding motor.
  • Embodiment 3 of the present application provides a vehicle that can implement the front-wheel drive control method of the steer-by-wire system provided by any of the above-mentioned embodiments, and has functional modules and effects for executing the front-wheel drive control method.
  • FIG. 7 is a schematic structural diagram of a vehicle provided in Embodiment 3 of the present application.
  • the vehicle 100 includes the aforementioned steering-by-wire system front-wheel drive control device 00 , which is configured to implement the aforementioned ste-by-wire system front-wheel drive control method.
  • the vehicle and the front-wheel drive control device of the steer-by-wire system provided in the embodiment of the present application execute the front-wheel drive control method.
  • the control method obtains real-time vehicle state parameters through the vehicle state observation module, and according to the driver's corner request and real-time vehicle state parameters Calculate the front wheel reference angle, and calculate the front wheel compensation angle according to the real-time vehicle state parameters, determine the steering execution target angle according to the front wheel reference angle and the front wheel compensation angle, realize the front wheel angle compensation decision based on the vehicle state parameters, and solve the problem of the steering control system
  • the problems of low efficiency and slow response are conducive to optimizing the front wheel angle control strategy, giving full play to the performance advantages of the vehicle, improving the handling stability of the vehicle, and improving the driving experience.
  • Embodiment 4 of the present application provides a non-transitory storage medium, which stores computer instructions.
  • the computer instructions When the computer instructions are executed, the front wheel drive control method of the steer-by-wire system in the above method embodiment is implemented.
  • the non-transitory storage medium has the same functions and effects as those of the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆及其线控转向系统前轮驱动控制方法、装置。控制方法包括:获取实时车辆状态参数和驾驶员的实时转角请求;根据实时车辆状态参数和实时转角请求确定前轮基准转角;根据实时车辆状态参数确定前轮补偿转角;根据前轮基准转角和前轮补偿转角确定转向执行目标转角;根据转向执行目标转角驱动车辆的前轮电机动作,提升车辆的操纵稳定性。

Description

车辆及其线控转向系统前轮驱动控制方法、装置
本申请要求在2021年11月22日提交中国专利局、申请号为202111385508.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆转向控制技术领域,例如涉及一种车辆及其线控转向系统前轮驱动控制方法、装置。
背景技术
随着车辆电动化、智能化的快速发展,自动驾驶功能配置成为车辆的主流发展趋势,线控转向系统作为转向控制的下一代核心技术,能够实现自动驾驶领域的深度融合,实现人机共驾,给整车带来更好的操控体验。
在相关技术中,线控转向系统取消了方向盘与转向轮之间的机械连接,可以根据驾驶员的驾驶习惯设置转向传动比。但是,线控转向系统存在以下问题,线控转向系统通常采用闭环控制策略,基于上一采样时刻车辆的前轮转向角度计算电机驱动的输入参数,导致转向控制的反应时间增加,无法及时对驾驶员的驾驶控制指令做出响应,影响转向控制精度和驾驶操作体验。
发明内容
本申请提供一种车辆及其线控转向系统前轮驱动控制方法、装置,以实现根据驾驶员的转角请求和车辆数据对前轮转向进行补偿控制,提升车辆的操纵稳定性。
本申请提供了一种线控转向系统前轮驱动控制方法,包括以下步骤:
获取实时车辆状态参数和驾驶员的实时转角请求;
根据所述实时车辆状态参数和所述实时转角请求确定前轮基准转角;
根据所述实时车辆状态参数确定前轮补偿转角;
根据所述前轮基准转角和所述前轮补偿转角确定转向执行目标转角;
根据所述转向执行目标转角驱动车辆的前轮电机动作。
本申请还提供了一种线控转向系统前轮驱动控制装置,包括:车辆状态观测模块、中央控制器、前轮决策控制模块和前轮转向执行模块;
所述车辆状态观测模块,设置为对所述前轮决策控制模块提供实时车辆状 态参数;
所述中央控制器,设置为对所述前轮决策控制模块输出实时转角请求;
所述前轮决策控制模块,设置为根据所述实时车辆状态参数和所述实时转角请求确定前轮基准转角和前轮补偿转角,并根据所述前轮基准转角和所述前轮补偿转角确定转向执行目标转角;
所述前轮转向执行模块,设置为根据所述转向执行目标转角驱动车辆的前轮电机动作。
本申请还提供了一种车辆,包括上述线控转向系统前轮驱动控制装置,所述控制装置设置为执行上述线控转向系统前轮驱动控制方法。
本申请还提供了一种非暂态存储介质,存储有计算机指令,所述计算机指令被执行时实现上述的线控转向系统前轮驱动控制方法。
附图说明
图1是本申请实施例一提供的一种线控转向系统前轮驱动控制方法的流程图;
图2是本申请实施例一提供的另一种线控转向系统前轮驱动控制方法的流程图;
图3是本申请实施例一提供的一种前轮转角补偿算法的结构示意图;
图4是本申请实施例一提供的又一种线控转向系统前轮驱动控制方法的流程图;
图5是本申请实施例一提供的又一种线控转向系统前轮驱动控制方法的流程图;
图6是本申请实施例二提供的一种线控转向系统前轮驱动控制装置的结构示意图;
图7是本申请实施例三提供的一种车辆的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
实施例一
图1是本申请实施例一提供的一种线控转向系统前轮驱动控制方法的流程 图,本实施例可适用于根据驾驶员的驾驶意图实现前轮主动转向控制的应用场景,该方法可以由前轮转角决策控制装置来执行。
如图1所示,该线控转向系统前轮驱动控制方法,包括:
S1:获取实时车辆状态参数和驾驶员的实时转角请求。
实时车辆状态参数可为车辆状态观测模块输出的用于表征车辆转向状态及行驶状态的参数;实时转角请求可为车载中央控制器输出的转向控制指令。
一实施例中,实时车辆状态参数可包括下述至少一项:方向盘转角、方向盘扭矩、车速、轮速、横摆角速度、车辆稳定性因数或者侧向加速度。
车辆状态观测模块的输入量包括:车载传感器采样得到的方向盘转角采样值、方向盘扭矩采样值、车速采样值、轮速采样值、纵向加速度采样值、侧向加速度采样值、横摆角速度采样值和路面状态采样值。
车辆状态观测模块根据输入量实时估算对应的实时车辆状态参数,例如,车辆状态观测模块可根据车载传感器采样得到的方向盘转角采样值和方向盘扭矩采样值估算方向盘转角和方向盘扭矩;根据车载传感器采样得到的车速采样值和轮速采样值估算车速和轮速。
S2:根据实时车辆状态参数和实时转角请求确定前轮基准转角。
前轮基准转角为基于变传动控制算法计算得到的转角。
在本实施例中,通过执行变传动控制算法,将实时转角请求、方向盘转角、方向盘扭矩、车速、轮速及车辆稳定性因数作为输入量,输出前轮基准转角,该前轮基准转角为前轮主动转向控制的基础参量,此部分控制算法的输入量不包括车辆状态观测模块输出的横摆角速度,无法对横摆角速度引起的车辆不稳定状态进行补偿。
S3:根据实时车辆状态参数确定前轮补偿转角。
前轮补偿转角为基于前轮转角补偿算法,根据横摆角速度进行前轮转向补偿得到的转角。
在本实施例中,通过执行前轮转角补偿算法,将方向盘转角、车速、车辆稳定性因数及横摆角速度作为输入量,输出前轮补偿转角。
S4:根据前轮基准转角和前轮补偿转角确定转向执行目标转角。
转向执行目标转角即为基于当前的车辆状态决策出的转向执行器的目标转角。
S5:根据转向执行目标转角驱动车辆的前轮电机动作。
在执行车辆转向控制的过程中,车辆状态观测模块观测车辆转向及行驶状态,输出实时车辆状态参数,前轮转角决策控制装置接收车辆状态观测模块提供的实时车辆状态参数及中央控制器输出的实时转角请求,根据实时车辆状态参数及实时转角请求同步执行变传动控制算法和前轮转角补偿算法,在执行变传动控制算法时,将实时转角请求、方向盘转角、方向盘扭矩、车速、轮速、车辆稳定性因数及侧向加速度作为输入量,决策得到前轮基准转角;在执行前轮转角补偿算法时,将方向盘转角、车速、车辆稳定性因数及横摆角速度作为输入量,决策得到前轮补偿转角,对两个算法输出的前轮基准转角和前轮补偿转角进行叠加,得到转向执行目标转角,根据转向执行目标转角生成电机驱动控制指令,驱动车辆的前轮电机运行,实现转向控制,解决了转向控制系统效率低、响应慢的问题,有利于优化前轮转角控制策略,充分发挥车辆的性能优势,提升车辆的操纵稳定性,提升驾驶体验。
图2是本申请实施例一提供的另一种线控转向系统前轮驱动控制方法的流程图,在图1的基础上,示出了一种前轮转角补偿算法的具体实施方式。
如图2所示,该线控转向系统前轮驱动控制方法包括:
S1:获取车辆状态观测模块输出的实时车辆状态参数和驾驶员的实时转角请求。
S2:根据实时车辆状态参数和实时转角请求确定前轮基准转角。
S301:根据方向盘转角、车速及车辆稳定性因数,计算期望横摆角速度。
期望横摆角速度为转向系统在采样时刻的车速、方向盘转角下,计算得到的理想的横摆角速度值。
S302:根据期望横摆角速度和实时横摆角速度,基于预设前馈算法和预设反馈算法,确定前轮补偿转角。
预设前馈算法为根据车辆稳定性的干扰量对期望横摆角速度进行调节的算法,车辆稳定性的干扰量包括车速和转角;预设反馈算法为根据期望横摆角速度和实时横摆角速度之间的偏差对期望横摆角速度进行调节的算法,通过前馈算法和反馈算法的融合,有利于改善反馈的及时性。
S4:根据前轮基准转角和前轮补偿转角确定转向执行目标转角。
S5:根据转向执行目标转角驱动车辆的前轮电机动作。
图3是本申请实施例一提供的一种前轮转角补偿算法的结构示意图。
如图3所示,前轮转角补偿算法包括:根据方向盘转角、期望横摆角速度及车速,基于预设前馈算法,计算前馈补偿转角;根据期望横摆角速度及实时 横摆角速度之间的差值,基于预设反馈算法,计算反馈补偿转角;根据前馈补偿转角及反馈补偿转角确定前轮补偿转角。
上述S301至S302记载了一种前轮转角补偿算法的具体实施方式,其中,前轮转角补偿算法可包括期望横摆角速度决策算法、预设前馈算法和预设反馈算法。期望横摆角速度决策算法的输入量为方向盘转角、车速和车辆稳定性因数,基于预设横摆角阈值进行算法计算,输出期望横摆角速度。结合图3所示,在得到期望横摆角速度之后,通过预设前馈算法和预设反馈算法得到前馈横摆角速度转角和反馈横摆角速度转角,预设前馈算法的输入量为方向盘转角、期望横摆角速度及车速,输出量为前馈横摆角速度转角;预设反馈算法的输入量为期望横摆角速度和实时横摆角速度,输出量为反馈横摆角速度转角。根据前馈算法及反馈算法对期望横摆角速度进行偏航调节,对前馈横摆角速度转角及反馈横摆角速度转角进行加权运算,计算得到横摆角速度补偿转角,即前轮补偿转角。由此,通过前馈算法和反馈算法的补偿,实现侧向加速度和横摆角速度控制的最优化,充分发挥车辆的性能优势,有利于提升车辆的操纵稳定性,提升驾驶体验。
图4是本申请实施例一提供的又一种线控转向系统前轮驱动控制方法的流程图,在图1的基础上,示出了一种变传动控制算法的具体实施方式。
如图4所示,该线控转向系统前轮驱动控制方法包括:
S1:获取实时车辆状态参数和驾驶员的实时转角请求。
S201:根据实时转角请求、方向盘转角及方向盘扭矩计算前轮初始转角。
S202:根据车速、轮速及车辆稳定性因数确定目标变传动比。
一实施例中,目标变传动比与车速和轮速正相关;目标变传动比与车辆稳定性因数负相关,在变传动比控制算法中,变传动比的数值越大,车辆转向系统的灵敏度越小。
S203:根据目标变传动比及前轮初始转角计算前轮基准转角。
S3:根据实时车辆状态参数确定前轮补偿转角。
S4:根据前轮基准转角和前轮补偿转角确定转向执行目标转角。
S5:根据转向执行目标转角驱动车辆的前轮电机动作。
上述S201至S203记载了一种变传动控制算法的具体实施方式,该变传动控制算法可通过标定建立车速及侧向加速度与变传动比之间的函数模型,根据实时转角请求、方向盘转角及方向盘扭矩计算前轮初始转角,将车速、轮速及车辆稳定性因数作为输入量,代入标定的函数模型,输出目标变传动比,该目 标变传动比在车辆低速行驶时的数值较小,使得车辆转向系统的转向灵敏度较大,驾驶员在进行大转向操作时,只需要转动较小的转向盘转角即可以满足低速时转向灵活、操作轻便的要求;该目标变传动比在车辆高速行驶时的数值较大,使得车辆转向系统的转向灵敏度较小,驾驶员需较大幅度地转动转向盘才能完成期望的转向操作,为其预留一定的“缓冲”时间,避免驾驶员在高速行驶时精神压力过大,达到高速状态下转向沉稳、车辆易于控制的目的
一实施例中,根据车速、轮速及车辆稳定性因数确定目标变传动比,包括:根据标定数据建立车速增益模型和侧向加速度增益模型,其中,车速增益模型将车速或者轮速作为输入量,输出对应的车速增益系数;侧向加速度增益模型将侧向加速度作为输入量,输出对应的侧向加速度增益系数,当车速大于或者等于预设车速阈值,且侧向加速度小于或者等于预设侧向加速度阈值时,根据车速增益系数及侧向加速度增益系数计算目标变传动比,有利于提高车辆的转向稳定性。
图5是本申请实施例一提供的又一种线控转向系统前轮驱动控制方法的流程图。
如图5所示,该线控转向系统前轮驱动控制方法包括:
S1:获取实时车辆状态参数和驾驶员的实时转角请求。
S2:根据实时车辆状态参数和实时转角请求确定前轮基准转角。
S3:根据实时车辆状态参数确定前轮补偿转角。
S4:根据前轮基准转角和前轮补偿转角确定转向执行目标转角。
S501:根据转向执行目标转角确定至少一个转向电机驱动电流。
S502:根据至少一个转向电机驱动电流驱动前轮电机动作。
在本申请实施例中,可设置至少一个电机驱动控制器,至少一个电机驱动控制器与至少一个转向电机驱动电流一一对应,电机驱动控制器设置为驱动对应的前轮电机执行转向动作。
上述S501至S502示出了一种根据转向执行目标转角驱动车辆的前轮电机动作的具体实施方式,根据变传动控制算法和前轮转角补偿算法决策输出的转向执行目标转角,基于电机控制理论,计算目标驱动电流。为了提高系统可靠性,设置至少一个电机驱动控制器驱动前轮电机,对目标驱动电流进行再分配,得到至少一个转向电机驱动电流,每个电机驱动控制器根据对应的转向电机驱动电流输出电机驱动控制指令,驱动前轮电机运行。
一实施例中,至少一个转向电机驱动电流的电流值大小相等,相位相同。
一实施例中,可设置互为冗余的主从控制单元,主从控制单元分别根据转向执行目标转角计算目标驱动电流,在正常工作模式下,根据主控制单元输出的驱动电流控制前轮电机动作,从控制单元设置为对主控制单元进行监控;若主控制单元发生故障,则根据从控制单元输出的驱动电流控制前轮电机动作。
一实施例中,前轮电机可为六相双绕组电机,有利于改善电机的动态特性,提升转向控制精度。
一实施例中,线控转向系统前轮驱动控制方法还包括:获取前轮电机检测参数;根据前轮电机检测参数对实时车辆状态参数进行修正。
前轮电机检测参数包括前轮电机输出扭矩及电机转子位置。
在前轮转向控制过程中,前轮转角决策控制装置接收前轮电机反馈的前轮电机输出扭矩及电机转子位置,根据前轮电机输出扭矩及电机转子位置计算实际转向执行转角及扭矩,并将实际转向执行转角及扭矩发送至车辆状态观测模块,车辆状态观测模块将实际转向执行转角及扭矩作为输入量,与车载传感器采样得到的方向盘转角采样值、方向盘扭矩采样值、车速采样值、轮速采样值、纵向加速度采样值、侧向加速度采样值、横摆角速度采样值和路面状态采样值配合,估算对应的实时车辆状态参数,实现车辆状态参数的闭环修正,有利于优化前轮转角控制策略,提升车辆的操纵稳定性,提升驾驶体验。
实施例二
本申请实施例二提供了一种线控转向系统前轮驱动控制装置,该装置可设置为执行上述任一线控转向系统前轮驱动控制方法,具备执行上述控制方法相应的功能模块和效果。
图6是本申请实施例二提供的一种线控转向系统前轮驱动控制装置的结构示意图。
如图6所示,该线控转向系统前轮驱动控制装置100包括:车辆状态观测模块101、中央控制器102、前轮决策控制模块103和前轮转向执行模块104;车辆状态观测模块101,设置为对前轮决策控制模块提供实时车辆状态参数;中央控制器102,设置为对前轮决策控制模块输出实时转角请求;前轮决策控制模块103,设置为根据实时车辆状态参数和实时转角请求确定前轮基准转角和前轮补偿转角,并根据前轮基准转角和前轮补偿转角确定转向执行目标转角;前轮转向执行模块104,设置为根据转向执行目标转角驱动车辆的前轮电机动作。
一实施例中,实时车辆状态参数包括下述至少一项:方向盘转角、方向盘扭矩、车速、轮速、横摆角速度、车辆稳定性因数或者侧向加速度。
一实施例中,前轮决策控制模块103设置为根据方向盘转角、车速及车辆稳定性因数,计算期望横摆角速度;根据期望横摆角速度和实时横摆角速度,基于预设前馈算法和预设反馈算法,确定前轮补偿转角。
一实施例中,前轮决策控制模块103设置为根据方向盘转角、期望横摆角速度及车速,基于预设前馈算法,计算前馈补偿转角;根据期望横摆角速度及实时横摆角速度之间的差值,基于预设反馈算法,计算反馈补偿转角;根据前馈补偿转角及反馈补偿转角确定前轮补偿转角。
一实施例中,前轮决策控制模块103设置为根据实时转角请求、方向盘转角及方向盘扭矩计算前轮初始转角;根据车速、轮速及侧向加速度确定目标变传动比;根据目标变传动比及前轮初始转角计算前轮基准转角。
一实施例中,目标变传动比与车速和轮速正相关;目标变传动比与侧向加速度负相关。
一实施例中,前轮转向执行模块104设置为根据转向执行目标转角确定至少一个转向电机驱动电流,并根据至少一个转向电机驱动电流驱动前轮电机动作;前轮电机为六相双绕组电机。
实施例三
基于上述实施例,本申请实施例三提供了一种车辆,可执行上述任一实施例提供的线控转向系统前轮驱动控制方法,具备执行前轮驱动控制方法的功能模块和效果。
图7是本申请实施例三提供的一种车辆的结构示意图。
如图7所示,该车辆100包括上述线控转向系统前轮驱动控制装置00,该控制装置设置为执行上述线控转向系统前轮驱动控制方法。
本申请实施例提供的车辆和线控转向系统前轮驱动控制装置,执行前轮驱动控制方法,该控制方法通过车辆状态观测模块获取实时车辆状态参数,根据驾驶员的转角请求和实时车辆状态参数计算前轮基准转角,并根据实时车辆状态参数计算前轮补偿转角,根据前轮基准转角和前轮补偿转角确定转向执行目标转角,基于车辆状态参数实现前轮转角补偿决策,解决了转向控制系统效率低、响应慢的问题,有利于优化前轮转角控制策略,充分发挥车辆的性能优势,提升车辆的操纵稳定性,提升驾驶体验。
实施例四
本申请实施例四提供了一种非暂态存储介质,存储有计算机指令,所述计算机指令被执行时实现上述方法实施例中的线控转向系统前轮驱动控制方法。
该非暂态存储介质具备与前述方法实施例相同的功能以及效果。

Claims (11)

  1. 一种线控转向系统前轮驱动控制方法,包括:
    获取实时车辆状态参数和驾驶员的实时转角请求;
    根据所述实时车辆状态参数和所述实时转角请求确定前轮基准转角;
    根据所述实时车辆状态参数确定前轮补偿转角;
    根据所述前轮基准转角和所述前轮补偿转角确定转向执行目标转角;
    根据所述转向执行目标转角驱动车辆的前轮电机动作。
  2. 根据权利要求1所述的线控转向系统前轮驱动控制方法,其中,所述实时车辆状态参数包括下述至少一项:方向盘转角、方向盘扭矩、车速、轮速、横摆角速度、车辆稳定性因数、侧向加速度。
  3. 根据权利要求2所述的线控转向系统前轮驱动控制方法,其中,所述根据所述实时车辆状态参数确定前轮补偿转角,包括:
    根据所述方向盘转角、所述车速及所述车辆稳定性因数,计算期望横摆角速度;
    根据所述期望横摆角速度和实时横摆角速度,基于预设前馈算法和预设反馈算法,确定所述前轮补偿转角。
  4. 根据权利要求3所述的线控转向系统前轮驱动控制方法,其中,所述根据所述期望横摆角速度和实时横摆角速度,基于预设前馈算法和预设反馈算法,确定所述前轮补偿转角,包括:
    根据所述方向盘转角、所述期望横摆角速度及所述车速,基于所述预设前馈算法,计算前馈补偿转角;
    根据所述期望横摆角速度及所述实时横摆角速度之间的差值,基于所述预设反馈算法,计算反馈补偿转角;
    根据所述前馈补偿转角及所述反馈补偿转角确定所述前轮补偿转角。
  5. 根据权利要求2所述的线控转向系统前轮驱动控制方法,其中,所述根据所述实时车辆状态参数和所述实时转角请求确定前轮基准转角,包括:
    根据所述实时转角请求、所述方向盘转角及所述方向盘扭矩计算前轮初始转角;
    根据所述车速、所述轮速及所述车辆稳定性因数确定目标变传动比;
    根据所述目标变传动比及所述前轮初始转角计算所述前轮基准转角。
  6. 根据权利要求5所述的线控转向系统前轮驱动控制方法,其中,所述目 标变传动比与所述车速和所述轮速正相关;
    所述目标变传动比与所述车辆稳定性因数负相关。
  7. 根据权利要求1-6任一项所述的线控转向系统前轮驱动控制方法,其中,所述根据所述转向执行目标转角驱动车辆的前轮电机动作,包括:
    根据所述转向执行目标转角确定至少一个转向电机驱动电流,并根据所述至少一个转向电机驱动电流驱动所述前轮电机动作;
    其中,所述前轮电机为六相双绕组电机。
  8. 根据权利要求1-6任一项所述的线控转向系统前轮驱动控制方法,还包括:
    获取前轮电机检测参数;
    根据所述前轮电机检测参数对所述实时车辆状态参数进行修正。
  9. 一种线控转向系统前轮驱动控制装置,包括:车辆状态观测模块、中央控制器、前轮决策控制模块和前轮转向执行模块;
    所述车辆状态观测模块,设置为对所述前轮决策控制模块提供实时车辆状态参数;
    所述中央控制器,设置为对所述前轮决策控制模块输出实时转角请求;
    所述前轮决策控制模块,设置为根据所述实时车辆状态参数和所述实时转角请求确定前轮基准转角和前轮补偿转角,并根据所述前轮基准转角和所述前轮补偿转角确定转向执行目标转角;
    所述前轮转向执行模块,设置为根据所述转向执行目标转角驱动车辆的前轮电机动作。
  10. 一种车辆,包括权利要求9所述的线控转向系统前轮驱动控制装置,所述控制装置设置为执行权利要求1-8任一项所述的线控转向系统前轮驱动控制方法。
  11. 一种非暂态存储介质,存储有计算机指令,所述计算机指令被执行时实现如权利要求1-8任一项所述的线控转向系统前轮驱动控制方法。
PCT/CN2022/120268 2021-11-22 2022-09-21 车辆及其线控转向系统前轮驱动控制方法、装置 WO2023087900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111385508.4A CN113954958A (zh) 2021-11-22 2021-11-22 车辆及其线控转向系统前轮驱动控制方法、装置
CN202111385508.4 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023087900A1 true WO2023087900A1 (zh) 2023-05-25

Family

ID=79471351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120268 WO2023087900A1 (zh) 2021-11-22 2022-09-21 车辆及其线控转向系统前轮驱动控制方法、装置

Country Status (2)

Country Link
CN (1) CN113954958A (zh)
WO (1) WO2023087900A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954958A (zh) * 2021-11-22 2022-01-21 中国第一汽车股份有限公司 车辆及其线控转向系统前轮驱动控制方法、装置
CN115009354B (zh) * 2022-06-16 2024-05-10 上汽通用五菱汽车股份有限公司 车辆转向系统的故障诊断方法、装置、车辆及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180015945A1 (en) * 2016-07-12 2018-01-18 Hyundai Mobis Co., Ltd. Steering control apparatus and method of steer-by-wire system
CN109693663A (zh) * 2017-10-24 2019-04-30 上汽通用汽车有限公司 基于主动干预转向系统的车辆稳定性控制系统
CN110271608A (zh) * 2018-03-16 2019-09-24 华为技术有限公司 车辆转向控制方法、装置、系统以及车辆
JP2020185819A (ja) * 2019-05-10 2020-11-19 日本精工株式会社 車両用操向装置
CN112977602A (zh) * 2021-02-04 2021-06-18 南京航空航天大学 一种双电机线控转向系统及其混合鲁棒稳定性控制方法
CN113602350A (zh) * 2021-09-01 2021-11-05 国汽智控(北京)科技有限公司 车辆前轮偏差角动态标定方法、装置、设备及存储介质
CN113954958A (zh) * 2021-11-22 2022-01-21 中国第一汽车股份有限公司 车辆及其线控转向系统前轮驱动控制方法、装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11034382B2 (en) * 2017-10-24 2021-06-15 Nsk Ltd. Steering apparatus for vehicles
CN108973986B (zh) * 2018-06-06 2020-09-04 吉林大学 一种基于汽车驾驶稳定区域的车辆操纵稳定性联合控制方法
CN109664938B (zh) * 2018-12-29 2023-12-01 南京航空航天大学 基于驾驶员行为辨识的线控转向双电机系统及其横摆稳定性补偿策略
CN109726516B (zh) * 2019-01-30 2022-09-30 南京航空航天大学 一种多模式线控助力转向系统的变传动比优化设计方法及其专用系统
CN111086556B (zh) * 2020-01-03 2021-11-23 南京航空航天大学 一种智能线控转向系统的变传动比优化方法
JP7378703B2 (ja) * 2020-02-27 2023-11-14 日本精工株式会社 車両用操向装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180015945A1 (en) * 2016-07-12 2018-01-18 Hyundai Mobis Co., Ltd. Steering control apparatus and method of steer-by-wire system
CN109693663A (zh) * 2017-10-24 2019-04-30 上汽通用汽车有限公司 基于主动干预转向系统的车辆稳定性控制系统
CN110271608A (zh) * 2018-03-16 2019-09-24 华为技术有限公司 车辆转向控制方法、装置、系统以及车辆
JP2020185819A (ja) * 2019-05-10 2020-11-19 日本精工株式会社 車両用操向装置
CN112977602A (zh) * 2021-02-04 2021-06-18 南京航空航天大学 一种双电机线控转向系统及其混合鲁棒稳定性控制方法
CN113602350A (zh) * 2021-09-01 2021-11-05 国汽智控(北京)科技有限公司 车辆前轮偏差角动态标定方法、装置、设备及存储介质
CN113954958A (zh) * 2021-11-22 2022-01-21 中国第一汽车股份有限公司 车辆及其线控转向系统前轮驱动控制方法、装置

Also Published As

Publication number Publication date
CN113954958A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2023087900A1 (zh) 车辆及其线控转向系统前轮驱动控制方法、装置
CN110395120A (zh) 一种四轮分布式驱动客车的横摆运动控制方法
JP2762711B2 (ja) 車両の制動挙動補償装置
CN109747632B (zh) 一种双动力源驱动车辆扭矩分配方法
CN107992681B (zh) 一种电动汽车主动前轮转向系统的复合控制方法
CN110481343B (zh) 四轮轮毂电机驱动汽车力矩补偿的组合二阶滑模控制方法
CN112519882B (zh) 一种车辆参考轨迹跟踪方法及系统
CN107215329B (zh) 一种基于atsm的分布式驱动电动汽车横向稳定性控制方法
CN104554255A (zh) 四轮全驱电动汽车底盘主动安全集成控制系统动态解耦方法
JP4835189B2 (ja) 旋回挙動制御装置、自動車、及び旋回挙動制御方法
CN112829766B (zh) 一种基于分布式驱动电动车辆的自适应路径跟踪方法
WO2022266824A1 (zh) 一种转向控制方法及装置
JP5525357B2 (ja) サーボ制御装置
JP2015514037A (ja) 車両におけるアクティブ操舵システム用の非線形補償制御装置
JP2008074185A (ja) 車両運動制御方法および車両運動制御装置
US9126593B2 (en) Vibration damping control device
CN113997799A (zh) 轮毂电机车辆驱动方法、系统、装置及存储介质
CN117962866A (zh) 一种面向纵横垂协同控制的车辆运动控制方法
JP2016020168A (ja) 車両の制御装置及び車両の制御方法
CN106166960A (zh) 四轮独立驱动电动汽车的质心侧偏角控制方法
KR20210080659A (ko) 후륜 조향 제어 장치 및 후륜 조향 제어 방법
CN112706620B (zh) 一种新能源车辆的能量回收中电机制动扭矩控制方法
JP5299256B2 (ja) 車両用左右駆動力調整装置の制御装置
JP2007334843A (ja) システムの最適制御方法
JP5617499B2 (ja) 車両用舵角制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE