WO2023087686A1 - 一种二氧化碳加氢制甲醇的方法及其应用 - Google Patents

一种二氧化碳加氢制甲醇的方法及其应用 Download PDF

Info

Publication number
WO2023087686A1
WO2023087686A1 PCT/CN2022/098666 CN2022098666W WO2023087686A1 WO 2023087686 A1 WO2023087686 A1 WO 2023087686A1 CN 2022098666 W CN2022098666 W CN 2022098666W WO 2023087686 A1 WO2023087686 A1 WO 2023087686A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
carbon dioxide
hydrogenation
grinding
methanol
Prior art date
Application number
PCT/CN2022/098666
Other languages
English (en)
French (fr)
Inventor
李旭
王琪
吴桐
何忠
程阿超
刘练波
郜时旺
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能国际电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能国际电力股份有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023087686A1 publication Critical patent/WO2023087686A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1512Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by reaction conditions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the technical field of catalytic synthesis, in particular to a method for hydrogenation of carbon dioxide to produce methanol and its application.
  • the most important means is the capture, utilization and storage (CCUS) of CO 2 to achieve carbon neutrality, and the utilization of CO 2 is the most critical link in the entire carbon neutral industrial chain.
  • a variety of fuels and chemicals can be produced through the chemical conversion of CO 2 to realize the utilization of CO 2 .
  • the hydrogenation of CO 2 to methanol is one of the most concerned utilization directions, because methanol is a bulk chemical, and its output And consumption is huge, if CO 2 hydrogenation is used to produce methanol, tens of millions of tons of CO 2 can be absorbed, and hundreds of millions of tons of CO 2 can be replaced to reduce emissions.
  • the conventional CO2 hydrogenation to methanol reaction is carried out under the conditions of thermal catalysis, photocatalysis, electrocatalysis, etc., which requires strong energy input and is carried out under relatively harsh conditions.
  • thermal catalysis, photocatalysis, electrocatalysis, etc. which requires strong energy input and is carried out under relatively harsh conditions.
  • a reaction temperature of >200 °C is usually required, but under this condition, commonly used Cu-based catalysts are prone to sintering deactivation, resulting in shortened catalyst life, limited feedstock conversion and methanol selectivity. Therefore, how to achieve high conversion, high selectivity and long catalyst life at lower temperature is of great significance.
  • the technical problem to be solved in the present application is to overcome the defects of high reaction temperature, limited raw material conversion rate, methanol selectivity and catalyst life in the process of CO hydrogenation to methanol in the prior art, thereby providing a carbon dioxide A method for hydrogenation of methanol and its application.
  • the application provides a kind of method for hydrogenation of carbon dioxide to methanol, comprising the following steps:
  • the reaction raw material gas is contacted with the catalyst, and ground so that the reaction raw material gas reacts under the action of the catalyst to obtain the methanol.
  • the grinding speed is 100-1000rpm
  • the reaction temperature is 60-120°C
  • the reaction pressure is 0.1-2Mpa
  • the reaction time is 0.5-24h.
  • reaction raw material gas Using the reaction raw material gas to replace the air in the reaction container, and then continue to feed the reaction raw material gas into the reaction container until the preset reaction pressure is reached in the reaction container, and then close the reaction container;
  • step 3) also includes the step of heating the reaction vessel to a preset reaction temperature during the grinding reaction.
  • the preset reaction pressure in step 2) is 0.1-2Mpa
  • the preset reaction temperature in step 3) is 60-120°C
  • the grinding speed is 100-1000rpm
  • the reaction time is 0.5-24h.
  • the preset reaction pressure in step 2) is 1-2Mpa
  • the preset reaction temperature in step 3) is 70-90°C
  • the grinding speed is 400-800rpm
  • the reaction time is 1-2h.
  • reaction raw material gases are hydrogen and carbon dioxide.
  • the molar ratio of hydrogen to carbon dioxide is (1-3):1.
  • the gas flow rate for replacing the air in the reaction vessel in step 2) is 100-1000 ml/min, and the replacement time is 10-30 minutes.
  • the catalyst is added in an amount of 10-20% of the total volume of the reaction vessel.
  • the catalyst is a catalyst for hydrogenation of carbon dioxide to produce methanol.
  • This application does not specifically limit the type of catalyst.
  • Conventional catalysts for hydrogenation of carbon dioxide to produce methanol can all achieve the purpose of this application.
  • at least one of a Cu-based hydrogenation catalyst, an In 2 O 3 -based hydrogenation catalyst, and a Zn/Zr hydrogenation catalyst is included.
  • Cu/ZnO/Al 2 O 3 catalyst, In 2 O 3 catalyst, ZnO/ZrO 2 catalyst is included.
  • the mass ratio of copper, zinc oxide and aluminum oxide in the Cu/ZnO/Al 2 O 3 catalyst is 5:(2-5):(1-3).
  • the reaction vessel is a grinding tank
  • the grinding device is a ball mill
  • the ball mill is selected from one of a roller mill, a planetary ball mill, and a swing ball mill;
  • the grinding media are grinding balls.
  • the material of the grinding ball is an inert material or the same substance as the catalyst element, and this application does not specifically limit the specific type of the grinding ball.
  • the grinding balls include at least one of Al 2 O 3 , ZrO 2 , and SiO 2 .
  • the grinding balls include one or more grinding balls of different diameters.
  • the diameter of the grinding ball is selected from one or more of 0.1-40 mm.
  • the diameter of the grinding ball is selected from one or more of 1-10 mm.
  • the added amount of the grinding balls is 20-35% of the total volume of the reaction vessel.
  • the reaction vessel has a cover, and the cover is provided with an air inlet and an exhaust port.
  • the cover is provided with an air inlet and an exhaust port.
  • the gas in the reaction vessel is passed into a gas chromatograph to analyze the reaction results.
  • the analysis method of this application is a conventional method in this field.
  • the temperature of the chromatographic inlet is 200° C.
  • the pressure is 13.5 psi
  • the split ratio is 15:1
  • the raw material flow rate is 20 ml/min.
  • the initial temperature of the column oven was maintained at 90°C for 4 minutes, then the temperature was raised to 190°C at 20°C/min and maintained for 10 minutes, and then the analysis was terminated.
  • the chromatographic column is a combination of HayeSep Q, INNOWax and Plot-Q. First, the product is separated by HayeSep Q to separate permanent gases such as hydrogen, then water is separated by INNOWax, and finally hydrocarbons, methanol and dimethyl ether are separated by Plot-Q.
  • step 3 repeat steps 2) to 3) to continue the reaction to verify the life of the catalyst.
  • the present application also provides an application of the above-mentioned method in carbon dioxide hydrogenation to methanol.
  • the CO2 hydrogenation methanol reaction method provided by the application contacts the reaction raw material gas with the catalyst, grinds the reaction raw material gas to react under the action of the catalyst, and carries out auxiliary catalysis by mechanical grinding, which is different from the traditional direct method.
  • the method of the present application can effectively reduce the reaction temperature, and at the same time improve the CO2 conversion rate and the selectivity of the product methanol to a certain extent, and improve the life of the catalyst.
  • This embodiment provides a method for hydrogenation of carbon dioxide to produce methanol, comprising the following steps:
  • the grinding jar was taken out and placed in a constant temperature oven at 140°C, the exhaust port of the cover was connected to the Agilent-7890B gas chromatograph, and the exhaust valve was opened to pass the gas into the gas chromatograph for analysis of the reaction results.
  • This example provides a method for producing methanol by hydrogenation of carbon dioxide, which differs from Example 1 in that in step 3), a heat gun is used to keep the reaction temperature constant to 70°C.
  • This example provides a method for producing methanol by hydrogenation of carbon dioxide, which differs from Example 1 in that in step 3), a heat gun is used to keep the reaction temperature constant to 90°C.
  • This embodiment provides a method for hydrogenation of carbon dioxide to produce methanol. Compared with Embodiment 1, the difference is that step 3) close the exhaust valve after the air replacement is completed, and continue to feed the reaction raw material gas into the grinding tank until the pressure in the grinding tank Reach 0.2Mpa.
  • This embodiment provides a method for hydrogenation of carbon dioxide to produce methanol. Compared with Embodiment 1, the difference is that step 3) close the exhaust valve after the air replacement is completed, and continue to feed the reaction raw material gas into the grinding tank until the pressure in the grinding tank Reach 0.5Mpa.
  • This example provides a method for producing methanol by hydrogenation of carbon dioxide, which differs from Example 1 in that the reaction time in step 3) is 0.5 h.
  • This example provides a method for producing methanol by hydrogenation of carbon dioxide, which differs from Example 1 in that the reaction time in step 3) is 2 hours.
  • This embodiment provides a method for hydrogenation of carbon dioxide to produce methanol. Compared with Example 1, the difference is that the grinding tank after the test of Example 1 is continued to be used, steps 2)-3) of Example 1 are repeated, and 4 times, a total of 5 reactions to test the repeated use of the catalyst.
  • This embodiment provides a method for hydrogenation of carbon dioxide to produce methanol, comprising the following steps:
  • This embodiment provides a method for hydrogenation of carbon dioxide to produce methanol. Compared with Example 9, the difference is that the grinding tank after the test of Example 9 is continued to be used, steps 2)-3) of Example 9 are repeated, and 4 is repeated. times, a total of 5 reactions to test the repeated use of the catalyst.
  • This embodiment provides a method for hydrogenation of carbon dioxide to produce methanol, comprising the following steps:
  • the grinding jar was taken out, placed in a constant temperature oven at 140°C, the exhaust port of the cover was connected to the Agilent-7890B gas chromatograph, the exhaust valve was opened, and the gas was passed into the gas chromatograph for analysis of the reaction results.
  • This embodiment provides a method for hydrogenation of carbon dioxide to produce methanol. Compared with Example 11, the difference is that the grinding tank after the test of Example 11 is continued to be used, and steps 2)-3) of Example 11 are repeated, and 4 is repeated. times, a total of 5 reactions to test the repeated use of the catalyst.
  • This comparative example provides a kind of method for hydrogenation of carbon dioxide to produce methanol, comprising the following steps:
  • the reaction tank was taken out and placed in a constant temperature oven at 140°C, the exhaust port of the cover was connected to the Agilent-7890B gas chromatograph, and the exhaust valve was opened to pass the gas into the gas chromatograph for analysis of the reaction results.
  • This comparative example provides a method for hydrogenation of carbon dioxide to produce methanol, and its difference from comparative example 1 is that the reaction tank after the test of comparative example 1 is continued to be used, and steps 2)-3) of comparative example 1 are repeated for 4 times , a total of 5 reactions to determine the repeated use of the catalyst.
  • This comparative example provides a method for producing methanol by hydrogenation of carbon dioxide, which is different from comparative example 1 in that a heat gun is used to keep the reaction temperature constant to 80° C. during the reaction in step 3).
  • Embodiment 9 uses the catalyst 5 times repeatedly by the method of the present application, and still has the same catalytic effect as that of Example 1; but Comparative Example 2 adopts a traditional high-temperature reaction method, and after repeated use, the catalyst activity is significantly reduced, and the conversion rate of carbon dioxide is higher than that of Comparative Example 1 was reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请提供了一种二氧化碳加氢制甲醇的方法及其应用,该方法包括以下步骤:将反应原料气体和催化剂进行接触,研磨以使反应原料气体在催化剂的作用下进行反应,得到所述甲醇。本申请提供的二氧化碳加氢制甲醇的方法,采用机械研磨配合常用的催化剂进行催化反应,显著降低反应温度,提高二氧化碳的转化率和甲醇的选择性,并延长了催化剂的使用寿命。

Description

一种二氧化碳加氢制甲醇的方法及其应用
相关申请的交叉引用
本申请要求在2021年11月22日提交中国专利局、申请号为202111385958.3、发明名称为“一种二氧化碳加氢制甲醇的方法及其应用”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及催化合成技术领域,具体涉及一种二氧化碳加氢制甲醇的方法及其应用。
背景技术
随着全球经济的不断发展,源于人类活动的CO 2排放量逐年上升,截至2020年,全球大气CO 2平均浓度已达412ppm,由CO 2等温室气体引起的全球气候变化给人类的持续发展带来了重大挑战。为应对全球气候变化带来的影响,各国签署了《京都议定书》和《巴黎协定》等多个应对全球气候变化的协议,旨在逐步减少温室气体排放,将本世纪全球平均气温升高控制在2℃以内。
实现上述目标,最主要的手段是对CO 2的捕集、利用与封存(CCUS),实现碳中和,其中CO 2的利用又是整条碳中和产业链中最关键的一环。通过CO 2化学转化可制备多种燃料与化学品,从而实现CO 2的利用,其中将CO 2加氢制甲醇是最受关注的利用方向之一,因为甲醇是一种大宗化学品,其产量与消费量巨大,若使用CO 2加氢制甲醇则可以实现数千万吨CO 2的 消纳,并可以实现上亿吨CO 2的替代减排。
常规的CO 2加氢制甲醇反应是在热催化、光催化、电催化等条件下进行的,需要较强的能量输入且在相对苛刻的条件下进行的,例如采用金属氧化物作为催化剂时,通常需要>200℃的反应温度,但在此条件下,常用的Cu基催化剂容易烧结失活,导致催化剂寿命缩短,原料转化率与甲醇选择性有限。因此,如何在较低温度下实现高转化率、高选择性以及长催化剂寿命具有重要意义。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中CO 2加氢制甲醇的过程中需要较高反应温度,原料转化率、甲醇选择性以及催化剂寿命均有限的缺陷,从而提供一种二氧化碳加氢制甲醇的方法及其应用。
为此,本申请提供了一种二氧化碳加氢制甲醇的方法,包括以下步骤:
将反应原料气体和催化剂进行接触,研磨以使反应原料气体在催化剂的作用下进行反应,得到所述甲醇。
可选地,所述研磨转速为100~1000rpm,反应温度60~120℃,反应压力0.1~2Mpa,反应时间为0.5~24h。
可选地,包括如下步骤:
1)向反应容器中加入研磨介质和催化剂;
2)利用反应原料气体置换反应容器中的空气,然后继续向反应容器中通入反应原料气体直至反应容器内达到预设的反应压力,封闭反应容器;
3)将封闭后的反应容器置于研磨装置上进行研磨反应,得到所述甲醇。
可选地,步骤3)中在研磨反应过程中还包括对反应容器加热至预设的 反应温度的步骤。
可选地,步骤2)中预设的反应压力为0.1~2Mpa,步骤3)中预设的反应温度为60~120℃,研磨转速为100~1000rpm,反应时间为0.5~24h。
可选地,步骤2)中预设的反应压力为1~2Mpa,步骤3)中预设的反应温度为70~90℃,研磨转速为400~800rpm,反应时间为1~2h。
可选地,所述反应原料气体为氢气和二氧化碳气体。
可选地,氢气和二氧化碳气体的摩尔比为(1~3):1。
可选地,步骤2)中置换反应容器中空气的气体流量为100~1000ml/min,置换时间为10~30min。
可选地,所述催化剂的加入量为反应容器总容积的10~20%。
可选地,所述催化剂为二氧化碳加氢制甲醇催化剂,本申请不对催化剂的种类做具体限定,常规的二氧化碳加氢制甲醇催化剂均可实现本申请之目的。可选的,包括Cu基加氢催化剂、In 2O 3基加氢催化剂、Zn/Zr加氢催化剂中的至少一种。例如,Cu/ZnO/Al 2O 3催化剂,In 2O 3催化剂,ZnO/ZrO 2催化剂。所述Cu/ZnO/Al 2O 3催化剂中铜、氧化锌和氧化铝的质量比为5:(2-5):(1-3)。
可选地,所述反应容器为研磨罐,所述研磨装置为球磨机,所述球磨机选自滚筒球磨机、行星球磨机、摆动式球磨机中的一种;
所述研磨介质为研磨球。
可选地,所述研磨球的材质为惰性材料或与催化剂元素相同的物质,本申请不对研磨球具体种类做具体限定。可选地,所述研磨球包括Al 2O 3,ZrO 2,SiO 2中的至少一种。
可选地,所述研磨球包括一种或多种不同直径的研磨球。
可选地,所述研磨球直径选自0.1~40mm中的一种或多种。
可选地,所述研磨球直径选自1~10mm中的一种或多种。
可选地,所述研磨球的加入量为反应容器总容积的20~35%。
可选地,所述反应容器具有盖子,所述盖子上设置有进气口和排气口,添加完研磨介质和催化剂后,用盖子封闭反应容器,打开盖子上进气阀和排气阀,用反应原料气体置换反应容器中空气。
可选地,步骤3)反应结束后,将反应容器中气体通入气相色谱仪,进行反应结果分析。本申请的分析方法为本领域的常规方法,可选的,色谱进样口温度200℃,压力13.5psi,分流比15:1,原料流量20ml/min。柱箱初始温度90℃维持4min,随后以20℃/min升温至190℃维持10min,随后结束分析。使用色谱柱为HayeSep Q、INNOWax和Plot-Q的组合,首先产物经HayeSep Q分离出氢气等永久性气体,随后经INNOWax分离水,最后通过Plot-Q分离烃类、甲醇与二甲醚。
可选地,步骤3)反应结束后,重复步骤2)~3)继续进行反应,以验证催化剂的寿命。
本申请还提供一种如上所述的方法在二氧化碳加氢制甲醇中的应用。
本申请的技术方案,具有如下优点:
1)本申请提供的CO 2加氢制甲醇反应方法,将反应原料气体和催化剂进行接触,研磨以使反应原料气体在催化剂的作用下进行反应,通过机械研磨的方式进行辅助催化,与传统直接采用催化剂进行催化的方法比,本申请的方法能有效降低反应温度,同时还可在一定程度上提升CO 2转化率 与产物甲醇的选择性,并且提高了催化剂的寿命。
2)本申请提供的CO 2加氢制甲醇反应方法,进一步的,包括如下步骤:
向反应容器中加入研磨介质和催化剂;利用反应原料气体置换反应容器中的空气,然后继续向反应容器中通入反应原料气体直至反应容器内达到预设的反应压力,封闭反应容器;将封闭后的反应容器置于研磨装置上进行研磨反应,得到所述甲醇。本申请通过上述步骤相互配合可进一步保证在较低温度下实现高转化率、高选择性以及延长催化剂寿命。
具体实施方式
实施例1
本实施例提供一种二氧化碳加氢制甲醇的方法,包括以下步骤:
1)取250ml研磨罐,依次加入总体积为60ml的Al 2O 3研磨球(Al 2O 3研磨球的加入量为研磨罐容积的24%,具体为直径为10mm的研磨球和直径为3mm的研磨球两种,二者的比例为1:2),以及25ml Cu/ZnO/Al 2O 3催化剂(所述Cu/ZnO/Al 2O 3催化剂的加入量为研磨罐容积的10%,其中金属铜、氧化锌和氧化铝的质量比为5:3:2);
2)使用盖子封闭研磨罐罐体,打开盖子上的进气阀与排气阀向研磨罐中通入反应原料气体氢气和二氧化碳气体(氢气和二氧化碳气体的摩尔比为3:1)置换研磨罐中空气,反应原料气体通入流量为100ml/min,置换时间20min;
3)空气置换完成后关闭排气阀,继续向研磨罐中通入反应原料气体直至研磨罐内压力达到1Mpa,封闭研磨罐进气口,将封闭后的研磨罐固定于行星球磨机上进行研磨反应,反应过程中利用热风枪保持反应温度恒定至 80℃,反应时间1h,研磨转速为400rpm;
反应结束后将研磨罐取出置于140℃的恒温烘箱中,将盖体排气口连接Agilent-7890B气相色谱,打开排气阀将气体通入气相色谱仪中进行反应结果分析。
实施例2
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例1相比区别在于步骤3)中利用热风枪保持反应温度恒定至70℃。
实施例3
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例1相比区别在于步骤3)中利用热风枪保持反应温度恒定至90℃。
实施例4
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例1相比区别在于步骤3)空气置换完成后关闭排气阀,继续向研磨罐中通入反应原料气体直至研磨罐内压力达到0.2Mpa。
实施例5
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例1相比区别在于步骤3)空气置换完成后关闭排气阀,继续向研磨罐中通入反应原料气体直至研磨罐内压力达到0.5Mpa。
实施例6
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例1相比区别在于步骤3)中反应时间为0.5h。
实施例7
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例1相比区别在于步骤3)中反应时间为2h。
实施例8
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例1相比区别在于,继续使用实施例1测试完后的研磨罐,重复实施例1的步骤2)-3),重复4次,共计5次反应,测试催化剂的重复使用情况。
实施例9
本实施例提供一种二氧化碳加氢制甲醇的方法,包括以下步骤:
1)取50ml研磨罐,依次加入总体积为10ml的SiO 2研磨球(SiO 2研磨球的加入量为研磨罐容积的20%,具体为直径3mm和1mm的研磨球2种,三者的比例为1:2),以及10ml In 2O 3催化剂(所述In 2O 3催化剂添加量为研磨罐容积的20%);
2)使用盖子封闭研磨罐罐体,打开盖子上的进气阀与排气阀向研磨罐中通入反应原料气体氢气和二氧化碳(氢气和二氧化碳的摩尔比为3:1)置换研磨罐中空气,反应原料气体通入流量为100ml/min,置换时间30min;
3)空气置换完成后关闭排气阀,继续向研磨罐中通入反应原料气体至研磨罐内压力达到2Mpa,封闭研磨罐进气口,将封闭后研磨罐固定于摆动式球磨机上进行研磨反应,反应过程中利用热风枪保持反应温度恒定至120℃,反应时间12h,研磨转速为800rpm。
反应结束后将研磨罐取出,置于140℃的恒温烘箱中,将盖体排气口连接Agilent-7890B气相色谱进行反应结果分析,打开排气阀将气体通入气相色谱仪中进行反应结果分析。
实施例10
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例9相比区别在于,继续使用实施例9测试完后的研磨罐,重复实施例9的步骤2)-3),重复4次,共计5次反应,测试催化剂的重复使用情况。
实施例11
本实施例提供一种二氧化碳加氢制甲醇的方法,包括以下步骤:
1)取250ml研磨罐,依次加入总体积为88ml的Al 2O 3研磨球(Al 2O 3研磨球的加入量为研磨罐容积的35%,具体为直径10mm和1mm的研磨球两种,二者的比例为1:2),以及25ml Cu/ZnO/Al 2O 3催化剂(所述Cu/ZnO/Al 2O 3催化剂的添加量为研磨罐容积的10%,其中,金属铜、氧化锌和氧化铝的质量比为5:3:2);
2)使用盖子封闭研磨罐罐体,打开盖子上的进气阀与排气阀向研磨罐中通入反应原料气体氢气和二氧化碳(氢气和二氧化碳的摩尔比为3:1)置换研磨罐中空气,反应原料气体通入流量为300ml/min,置换时间10min;
3)空气置换完成后关闭排气阀,继续向研磨罐中通入反应原料气体直至研磨罐内压力达到2Mpa,封闭研磨罐进气口,将封闭后研磨罐固定于行星球磨机上进行研磨,反应过程中利用热风枪保持反应温度恒定至60℃,反应时间8h,研磨转速为100rpm。
反应结束后将研磨罐取出,置于140℃的恒温烘箱中,将盖体排气口连接Agilent-7890B气相色谱打开排气阀将气体通入气相色谱仪中进行反应结果分析。
实施例12
本实施例提供一种二氧化碳加氢制甲醇的方法,其与实施例11相比区别在于,继续使用实施例11测试完后的研磨罐,重复实施例11的步骤2)-3),重复4次,共计5次反应,测试催化剂的重复使用情况。
对比例1
本对比例提供一种二氧化碳加氢制甲醇的方法,包括以下步骤:
1)取250ml反应罐,加入25ml Cu/ZnO/Al 2O 3催化剂(所述Cu/ZnO/Al 2O 3催化剂的加入量为研磨罐容积的10%,其中金属铜、氧化锌和氧化铝的质量比为5:3:2);
2)使用盖子封闭反应罐体,打开盖子上的进气阀与排气阀向反应罐中通入反应原料气体氢气和二氧化碳气体(氢气和二氧化碳气体的摩尔比为3:1)置换反应罐中空气,反应原料气体通入流量为100ml/min,置换时间20min;
3)空气置换完成后关闭排气阀,继续向反应罐中通入反应原料气体直至反应罐中压力达到1Mpa,封闭反应罐进气口,将反应罐放入高温烘箱保持反应温度恒定至250℃,反应时间1h。
反应结束后将反应罐取出置于140℃的恒温烘箱中,将盖体排气口连接Agilent-7890B气相色谱,打开排气阀将气体通入气相色谱中进行反应结果分析。
对比例2
本对比例提供一种二氧化碳加氢制甲醇的方法,其与对比例1的区别在于,继续利用对比例1测试完后的反应罐,重复对比例1的步骤2)-3),重复4次,共计5次反应,测定催化剂的重复使用情况。
对比例3
本对比例提供一种二氧化碳加氢制甲醇的方法,其与对比例1的区别在于步骤3)反应过程中利用热风枪保持反应温度恒定至80℃。
实验例
将实施例1-12、对比例1-3各反应条件下的CO 2转化率和甲醇转化率汇总如下表1:
表1.实施例1-12、对比例1-3评价结果
Figure PCTCN2022098666-appb-000001
Figure PCTCN2022098666-appb-000002
表1数据可以看出,本申请提供的CO 2加氢制甲醇反应方法,通过机械研磨的方式进行辅助催化,在60-120℃温度范围内即可进行反应,与传统反应方式采用的>200℃的高温相比,将反应体系温度显著降低,能够避免对铜基催化剂的烧结失活问题,延长催化剂的使用寿命。实施例9通过本申请的方法,重复使用催化剂5次,仍然具有和实施例1相同的催化效果;但是对比例2采用传统的高温反应方式,反复使用后催化剂活性明显降低,二氧化碳的转化率比对比例1降低。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种二氧化碳加氢制甲醇的方法,其特征在于,包括以下步骤:
    将反应原料气体和催化剂进行接触,研磨以使反应原料气体在催化剂的作用下进行反应,得到所述甲醇。
  2. 根据权利要求1所述的二氧化碳加氢制甲醇的方法,其特征在于,所述研磨转速为100~1000rpm,反应温度60~120℃,反应压力0.1~2Mpa,反应时间为0.5~24h。
  3. 根据权利要求1或2所述的二氧化碳加氢制甲醇的方法,其特征在于,包括如下步骤:
    1)向反应容器中加入研磨介质和催化剂;
    2)利用所述反应原料气体置换反应容器中的空气,然后继续向反应容器中通入所述反应原料气体直至反应容器内达到预设的反应压力,封闭反应容器;
    3)将封闭后的反应容器置于研磨装置上进行研磨反应,得到所述甲醇。
  4. 根据权利要求3所述的二氧化碳加氢制甲醇的方法,其特征在于,
    步骤3)中在研磨反应过程中还包括对反应容器加热至预设的反应温度的步骤。
  5. 根据权利要求4所述的二氧化碳加氢制甲醇的方法,其特征在于,
    步骤2)中预设的反应压力为0.1~2Mpa,步骤3)中预设的反应温度为60~120℃,研磨转速为100~1000rpm,反应时间为0.5~24h。
  6. 根据权利要求1-5中任一项所述的二氧化碳加氢制甲醇的方法,其特征在于,所述反应原料气体为氢气和二氧化碳气体。
  7. 根据权利要求1-5中任一项所述的二氧化碳加氢制甲醇的方法,其特征在于,所述催化剂的加入量为反应容器总容积的10~20%。
  8. 根据权利要求1-7中任一项所述的二氧化碳加氢制甲醇的方法,其特征在于,所述催化剂为二氧化碳加氢制甲醇催化剂。
  9. 根据权利要求1-7中任一项所述的二氧化碳加氢制甲醇的方法,其特征在于,所述反应容器为研磨罐,所述研磨装置为球磨机,所述球磨机选自滚筒球磨机、行星球磨机、摆动式球磨机中的一种;
    所述研磨介质为研磨球。
  10. 权利要求1-9中任一项所述的方法在二氧化碳加氢制甲醇中的应用。
PCT/CN2022/098666 2021-11-22 2022-06-14 一种二氧化碳加氢制甲醇的方法及其应用 WO2023087686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111385958.3A CN113929560B (zh) 2021-11-22 2021-11-22 一种二氧化碳加氢制甲醇的方法及其应用
CN202111385958.3 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023087686A1 true WO2023087686A1 (zh) 2023-05-25

Family

ID=79287386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098666 WO2023087686A1 (zh) 2021-11-22 2022-06-14 一种二氧化碳加氢制甲醇的方法及其应用

Country Status (2)

Country Link
CN (1) CN113929560B (zh)
WO (1) WO2023087686A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929560B (zh) * 2021-11-22 2023-02-24 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳加氢制甲醇的方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1286970A (en) * 1968-12-26 1972-08-31 Catalysts & Chem Inc Low temperature methanol synthesis catalyst precursor
GB1454557A (en) * 1973-12-27 1976-11-03 Mitsubishi Gas Chemical Co Catalyst for methanol synthesis
WO2017118572A1 (en) * 2016-01-07 2017-07-13 Total Research & Technology Feluy Supported indium oxide catalyst and process for methanol synthesis using the same
CN113929560A (zh) * 2021-11-22 2022-01-14 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳加氢制甲醇的方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1286970A (en) * 1968-12-26 1972-08-31 Catalysts & Chem Inc Low temperature methanol synthesis catalyst precursor
GB1454557A (en) * 1973-12-27 1976-11-03 Mitsubishi Gas Chemical Co Catalyst for methanol synthesis
WO2017118572A1 (en) * 2016-01-07 2017-07-13 Total Research & Technology Feluy Supported indium oxide catalyst and process for methanol synthesis using the same
CN113929560A (zh) * 2021-11-22 2022-01-14 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳加氢制甲醇的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTIN OLIVER ET AL.: "Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 55, no. 21, 17 March 2016 (2016-03-17), XP072072822, ISSN: 1521-3773, DOI: 10.1002/anie.201600943 *

Also Published As

Publication number Publication date
CN113929560B (zh) 2023-02-24
CN113929560A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2016173285A1 (zh) 一种具有核-壳结构的负载型催化剂及其制备方法与应用
WO2023087686A1 (zh) 一种二氧化碳加氢制甲醇的方法及其应用
JP5094028B2 (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
Terreni et al. Sorption‐Enhanced Methanol Synthesis
CN106540707B (zh) 一种高分散性Cu基铈氧化物复合催化剂的制备方法
Ping et al. Highly efficient MOF-templated Ni catalyst towards CO selective methanation in hydrogen-rich reformate gases
CN108554411A (zh) 加压二氧化碳重整甲烷制合成气的复合载体负载镍基催化剂
CN105540588A (zh) α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用
CN104437467A (zh) 加氢催化剂及其应用、脱氢催化剂及其应用
WO2022252580A1 (zh) 一种金属铂催化剂及其制备方法和应用
CN101773835A (zh) 一种二氧化碳重整甲烷制合成气的催化剂及制备方法
CN108620079B (zh) 加压二氧化碳重整甲烷制合成气的镍基复合催化剂
JP2007252989A (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
CN107500296A (zh) 一种棒状β‑Mo2C的可控合成及其在逆水汽变换反应中的应用
CN107497436A (zh) 催化N2O直接分解的NiO空心球催化剂及其制备方法和应用
Gai et al. Preparation of Ni-Co/SiO2 catalyst by ammonia reflux impregnation and its CH4-CO2 reforming reaction performance
CN110508315A (zh) 一种甲醇水蒸气重整制氢催化剂及其制备方法
CN104607201A (zh) 有序介孔LaCoO3和LaMnO3负载纳米Ag催化剂及制备和应用
CN109999726B (zh) 高温高压原位xrd和xas气固反应装置
CN110152735B (zh) 一种二氧化碳还原催化剂、制备方法及还原反应方法
CN114768859A (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN108786875B (zh) 一种Zn-Zr双金属二聚体催化剂的制备方法
Zhang et al. Effect of calcination temperature on structure and performance of Ni/TiO2-SiO2 catalyst for CO2 reforming of methane
JP4890194B2 (ja) 一酸化炭素除去用触媒の製造方法
CN106810419A (zh) 用于醋酸加氢制备乙醇催化剂中的石墨烯负载金属复合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894229

Country of ref document: EP

Kind code of ref document: A1